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SUMMARY

Theoretical self-similar processes have been an essential tool for modeling a wide

range of real-world signals or images that describe phenomena in engineering, physics,

medicine, biology, economics, geology, chemistry, and so on. However, it is often dif-

ficult for general modeling methods to quantify a self-similarity due to irregularities

in the signals or images. Wavelet-based spectral tools have become standard so-

lutions for such problems in signal and image processing and achieved outstanding

performances in real applications.

This thesis proposes three novel wavelet-based spectral tools to improve the as-

sessment of self-similarity.

In Chapter 2, we propose spectral tools based on non-decimated complex wavelet

transforms implemented by their matrix formulation. This non-decimated complex

wavelet spectra utilizes both real and imaginary parts of complex-valued wavelet co-

efficients via their modulus and phase. A structural redundancy in non-decimated

wavelets and a componential redundancy in complex wavelets act in a synergy when

extracting wavelet-based informative descriptors. In particular, we suggest an im-

proved way of separating signals and images based on their scaling indices in terms

of spectral slopes and information contained in the phase in order to improve per-

formance of classification. It is also worth mentioning that the proposed method

can handle signals of an arbitrary size and in 2-D case, rectangular images of pos-

sibly different and non-dyadic dimensions because of the matrix formulation of non-

decimated wavelet transform. This is in contrast to the standard wavelet transforms

where algorithms for handling objects of non-dyadic dimensions requires either data
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preprocessing or customized algorithm adjustments.

Quaternion wavelets are another redundant wavelet transforms generalizing complex-

valued wavelet transforms. In Chapter 3, we step into the quaternion domain and

propose a matrix-formulation for non-decimated quaternion wavelet transforms and

define spectral tools for use in machine learning tasks. Since quaternionic algebra is

an extension of complex algebra, quaternion wavelets bring more redundancy in the

components that proves beneficial in wavelet based tasks. Specifically, the wavelet

coefficients in the decomposition are quaternion-valued numbers that define the mod-

ulus and three phases. We define non-decimated quaternion wavelet spectra based

on the modulus and three phase-dependent statistics as low-dimensional summaries

for 1-D signals or 2-D images. A structural redundancy in non-decimated wavelets

and a componential redundancy in quaternion wavelets are linked to extract more

informative features.

Dual relation that is an alternative representation to analyze the same problem

has been used in various fields including optimization, physics, engineering, and math-

ematics, etc. However, we are not aware of the definition of wavelet spectra dual to a

standard wavelet second-order spectra, as far as we know, thus, the duality concept

is worth considering to measure a self-similarity index by novel scaling indices from a

different perspective. In Chapter 4, we suggest a dual wavelet spectra based on non-

decimated wavelet transform in real, complex, and quaternion domains. This spectra

is derived from a new perspective that draws on the link of energies of the signal with

the temporal or spatial scales in the multiscale representations. Unlike finding linear

relationship between log-energies and discretized scales, that was a staple for defining

standard wavelet specta (or primal specta in this context), we look at the behavior of

scales as a function of quantized log-energies of all wavelet coefficients. Specifically,

we would be interested in an average scale found among all coefficients of a fixed log-

energy (or a log-energy from a fixed interval) in a wavelet decomposition of a signal.
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Potentially, any multiscale transform utilized for definition of primal spectra can serve

as a basis for defining the dual spectra. Here we advocate the use of non-decimated

wavelet transforms because of their redundancy and robustness. In the implementa-

tions of dual spectra we will use non-decimated wavelet transforms implemented by

matrices. This matrix formulation is beneficial for several reasons, including versatil-

ity, adaptivity, and generalizability, especially in the multidimensional formulations

as fore-mentioned. We utilize the dual wavelet spectral tools for distilling additional

low-dimensional descriptors in classification tasks involving signals and images. We

also quantify the benefits of including such descriptors in the classification proce-

dures. As we demonstrated, the dual descriptors increase classification performance

when added to spectral descriptors derived from primal spectra. The proposed dual

wavelet spectra from the real domain is extended to complex and quaternion domains

utilizing matrix formulation with complex and quaternion wavelet filters.

In Chapter 5, to demonstrate the use of three defined spectral methodologies, we

provide four examples of application on real-data problems: classification of visual

acuity using scaling in pupil diameter dynamic in time and diagnostic, classification

of sounds using scaling in high-frequency recordings over time, screening digital mam-

mogram images using the fractality of digitized images of the background tissue, and

monitoring of steel rolling process using the fractality of captured digitized images.

The proposed tools are compared with the counterparts based on standard wavelet

transforms in terms of computing time and evaluation metrics for classification prob-

lems.
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CHAPTER I

INTRODUCTION

1.1 Self-similar Process

Theoretical self-similar processes such as fractional Brownian motion are becoming

an fundamental tool for modeling a wide range of real-world phenomena in engineer-

ing, physics, medicine, biology, economics, geology, chemistry, and so on. Time series

can be examined in two complementary domains: time and scale/frequency domain.

Here we focus on the second domain revealing the scaling and self-similarity properties

of time series.

1.1.1 Examples of Self-similar Process

1.1.1.1 It Started with Hurst and Nile Data

Hurst exponent was discovered by Harold Edwin Hurst who, during his 62 years

in Egypt, mainly worked to design reservoirs for the Nile River. Hurst was trying

to find an optimal reservoir capacity R such that it can accept the river flow in N

units of time, X1, X2, . . . , XN , and have a constant withdrawal of X̄ per unit time.

By inspecting historical data on Nile River flow, Hurst discovered an interesting

phenomenon that is now referred to as the Hurst effect. The optimal volume of the

reservoir was given by the so called adjusted range,

R = max
1≤k≤N

(X1 + · · ·+Xk − kX̄)− min
1≤k≤N

(X1 + · · ·+Xk − kX̄).
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Hurst also reviewed other geophysical data because records of the water flow rarely

lasted more than 100 years. Thus, he standardized their adjusted ranges R for com-

parisons with sample standard deviation

S =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̄)2

to obtain dimensionless ratio R/S and adjusted range. On basis of more that 800

records, Hurst discovered that quantity R/S scales as NH , for ranging from 0.46 to

0.93, with mean 0.73 and standard deviation of 0.09 (Hurst, 1951). This result was

in contrast to the fact that for independent normal random variables H is 1/2 in the

limit. Feller (1951) proved that the theoretical value of R/S was 1/2 for indepen-

dent and identically distributed random variables with a finite second moment. It

was supposed that strong Markovian dependence was responsible for deviations from

H = 1/2 until Barnard (1956) proved that limit H = 1/2 holds for the Markovian

dependence case. Mandelbrot (1975), Mandelbrot and Ness (1968), and Mandelbrot

and Wallis (1968) associated the Hurst (or Joseph) phenomenon in the presence of

long memory. Figure 1 (left) presents n=512 consecutive yearly measurements from

the famous Nile River Data set for the years 62-1281 A.D. Figure 1 (right) displays

its wavelet spectra, demonstrating the scaling law.

Figure 1: Nile yearly minimal level data (left) and its wavelet spectra (right).
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1.1.1.2 Rates of Exchange

Many economic time series, such as stock market prices, exchange rates and asset

returns exhibit self-similar property and long range dependence (LRD). This is in

empirical contradiction to several economic theories such as random walk theory

for stock market, perfect markets, and so on. Thus, several theories and models

describing the scaling and LRD (such as ARFIMA, fGn, fBm, GARCH, etc) have been

developed. The rates of exchange between Hong Kong Dollar (HKD) and USDollar

(USD) reported by the ONADA Company between 24 March 1995 and 1 November

2000 are illustrated in Figure 2. Figure 2(a) shows the rates of exchange and panels

(b) and (c) represent scaling behaviors in Fourier and wavelet domain, respectively.

Figure 2: (a) Exchange Rates HKD per USD (b) scaling behavior in the Fourier
domain, and (c) in the wavelet domain.

1.1.1.3 Gait Data

Scaling laws were recently detected in the apparently “noisy” variations in the

stride interval (duration of the gait cycle) of human walking. Dynamic analysis of

these step-to-step fluctuations revealed a self-similar pattern: Fluctuations at one

time scale are statistically similar to those at multiple other time scales, at least over

hundreds of steps, while healthy subjects walk at their normal rate. The experimental

data are from healthy subjects walking for 1 hour at usual, slow, and fast paces.
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The fluctuations of stride interval demonstrated long-range correlations with power-

law decay for up to a thousand strides by every three walking rates. It is curious

that during metronomically-paced walking, these long-range correlations disappeared;

variations in the stride interval were anti-correlated. Experiments confirm that scaling

behavior of spontaneous stride interval are normally quite robust and intrinsic to the

locomotor system. Furthermore, this fractal property of neural output may be related

to the higher nervous centers responsible for control of walking rhythm.

The gait data is collected from participants who had no history of any neuro-

muscular, respiratory or cardiovascular disorders, and were taking no medications.

Average age of participants was 21.7 years and a range of age was 18-29 years. A

range of height was 1.77 ± 0.08 meters (mean ± SD), and a range of weight was

71.8± 10.7 kg. Participants were asked to walk continuously on level ground around

an obstacle free, length of either 225 or 400 meters, approximately oval path. The

stride interval was collected using ultra-thin and force-sensitive switches attached in-

side one of shoes. Figure 3 shows 2048 data points collected for one subject. Slow

and fast stride intervals have slopes of -0.91 and -0.97 while stride intervals for normal

walk show scaling with -0.74 slope. Based on these we can confirm that the slopes

depend on a degree of self-similarity.

Figure 3: (a) Gait timing for Slow, Normal and Fast Walk (b) scaling behavior in
the Fourier domain, and (c) in the wavelet domain.
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1.1.2 Definitions and Properties of Self-similar Process

We present the definitions and properties of self-similar processes. All stochastic

processes discussed are real-valued and defined on the same parameter space.

Definition 1.1.1. If two stochastic processes X(t) and Y (t) are equal in all finite

dimensional distributions, then they are denoted as X(t)
d
= Y (t).

The Definition 1.1.1 means that fir any selection of time, 0 ≤ t1 < t2 < · · · <

tk < inf, random vectors (X(ω, t1), . . . , (X(ω, tk)) and (Y (ω, t1), . . . , (Y (ω, tk)) have

the same distribution. Informally, processes equal-in-distribution are statistically

indistinguishable.

Definition 1.1.2. A stochastic processes X(t) is called stochastically continuous at

t if limh→0P (|X(t+ h)−X(t)| > ε) = 0, for any fixed ε > 0.

Definition 1.1.3. A stochastic processes X(t), t > 0 is self-similar if for any a > 0,

there exist b > 0 such that

X(at)
d
= bX(t). (1)

The Definitions 1.1.2 and 1.1.3 are building blocks for an understanding of self-

similar processes. Lamperti (1962) also proved the result,

Theorem 1.1.1. If a stochastic processes X(t), t > 0 is non-trivial, stochastically

continuous at t = 0, and self-similar, then there exists a unique H > 0 such that b in

the Definition 1.1.3 can be represented as b = aH . If X(0) = 0, a.s. then H > 0.

Then, standard definition of self-similar process is as follows.

Definition 1.1.4. A stochastic processes X(t) is self-similar with self-similar index

H if and only if there exists H > 0 such that for any a > 0, X(at)
d
= aHX(t).

Uniqueness of H is not obvious from this definition although Lamperti’s Theorem

1.1.1 guarantees uniqueness. Furthermore, it follows that X(0) = 0 almost surely

from Definition 1.1.4.
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1.2 Basics of Wavelets

1.2.1 Multiresolution Analysis

A multiresolution analysis of L2(R) is a nested sequence of closed subspaces, Vj ⊂

L2(R), lying in a containment hierarchy

Vj ⊂ Vj+1. (2)

The interaction of the nested subspaces consists of only zeros functions and their

union is dense in L(R) such that

⋂
j

Vj = {0},
⋃
j

Vj = L2(R),

where A is the closure of a set A.

The hierarchy structure of Equation (2) is constructed based on two conditions.

First, V-spaces are self-similar such that

f(2jx) ∈ Vj iff f(x) ∈ V0.

Second, there is a scaling function φ ∈ V0 whose integer-translates span the space V0

such that

V0 =
{
f ∈ L2(R)|f(x) =

∑
k

ckφ(x− k)
}
,

and for which the set {φ(x − k), k ∈ Z} is an orthonormal basis for V0 and, conse-

quently, the set of functions

φj,k(x) = 2
j
2φ(2jx− k)

is an orthonormal basis for Vj where j, k ∈ Z. Since φ ∈ V0 ⊂ V1, a sequence of

wavelet filter coefficients hk exists such that
∑

k∈Z hk =
√

2 and the function φ is

represented as a linear combination of functions from V1, i.e.,

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k). (3)
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This equation is referred to as scaling function and plays an fundamental role in

constructing, exploring, and utilizing wavelets.

Similar to the φj,k(x), there is an orthonormal basis for L2(R),

ψj,k(x) = 2
j
2ψ(2jx− k)

where j, k ∈ Z such that {ψj,k(x), j = fixed, k ∈ Z} is an orthonormal basis for the

difference space Wj = Vj+1	Vj. Next, we derive ψ(x) called a wavelet function based

on the scaling function. Since ψ ∈ W0 ⊂ V1, the wavelet function can be represented

as

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k), (4)

for wavelet filter coefficients gk, k ∈ Z. Additionally, we can relate both hk and gk,

elements of wavelet filter h and g called the quadrature mirror filters, as follows:

gk = (−1)kh1−k. (5)

The relation in Equation (5) is well-known as the quadrature mirror relation in signal

processing fields.

1.2.2 Mallat’s Algorithm

After simple replacements for the indices in Equation (3) and (4) in section 1.2.1,

we obtain

φj−1,l(x) =
∑
k∈Z

hk−2lφj,k(x) and ψj−1,l(x) =
∑
k∈Z

gk−2lψj,k(x). (6)

The Equations in (6) are bases for building the cascade algorithm. Considering a

multiresolution analysis in Equation (2), any function vj ∈ Vj can be uniquely defined

as vj(x) = vj−1(x) + wj−1(x) where vj−1 ∈ Vj−1 and wj−1 ∈ Wj−1 since Vj = Vj−1 ⊕

Wj−1. It is usual to denote the coefficients corresponded with φj,k(x) and ψj,k(x) by
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cj,k and dj,k, respectively. Then, we can obtain

vj(x) =
∑
k

cj,kφj,k(x)

=
∑
l

cj−1,lφj−1,l(x) +
∑
l

dj−1,lψj−1,l(x)

= vj−1(x) + wj−1(x).

Using the standard scaling function in Equation (6), orthogonality of wj−1(x) and

φj−1,l(x) for any j and l, and additivity of inner products, we can obtain the well-

known fast wavelet decomposition algorithms as follows:

cj−1,l = 〈vj, φj−1,l〉

= 〈vj,
∑
k∈Z

hk−2lφj,k(x)〉

=
∑
k∈Z

hk−2l〈vj, φj,k(x)〉 (7)

=
∑
k∈Z

hk−2lcj,k

and similarly dj−1,l =
∑

k∈Z gk−2lcj,k. The cascade algorithm is still effective in the

reverse direction. We can obtain the coefficients located in the next finer scale corre-

sponding to Vj from the coefficients corresponding to Vj−1 and Wj−1. The equation

cj,k = 〈vj, φj,k〉

=
∑
l

cj−1,l〈φj−1,l, φj,k〉+
∑
l

dj−1,l〈ψj−1,l, φj,k〉

=
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l

represents a single step in the inverse wavelet transform algorithm for reconstruction.

1.3 Discrete Wavelet Transformation

To obtain discrete outputs, we can apply discrete wavelet transformations (DWT)

to the discrete datasets. The procedures of performing DWT resembles performing

the fast Fourier transformation (FFT), which is the Fourier method for a set of discrete

data.
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Table 1: The analogy between Fourier and wavelet methods.

Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier Transformations
Wavelet Continuous Wavelet Discrete
Methods Wavelet Transformations Series Wavelet Transformations

The original discrete input data in time domain can be mapped to a vector of

the same size in wavelet domain using discrete wavelet transformations. Since such

process is linear, it also can be implemented by a matrix multiplication. For example,

a matrix of size n×n can be multiplied to one dimensional input data of size n for the

discrete wavelet transformation. Depending on boundary conditions, such matrices

can be either orthogonal or “close” to orthogonal. When the transformation matrix is

orthogonal, such process is a rotation in Rn space in which an input data represents

coordinates of a single point. Finally, the discrete wavelet transformation of the

original data is the new coordinates in the rotated space.

Example 1.3.1. Let an input data be {1, 2} and let M(1, 2) be the point in R2

with coordinates given by the data vector. DWT with the Haar wavelet basis can be

performed via rotating the coordinate axes by an angle of π
4
. The rotation matrix is

W =

 cos π
4

sin π
4

cos π
4
− sin π

4

 =

 1√
2

1√
2

1√
2
− 1√

2

 ,

and the discrete wavelet transformation of (−1, 2)′ is W · (−1, 2)′ = ( 1√
2
,− 3√

2
)′. It is

notable that the energy (squared distance of the point from the origin) is preserved,

(−1)2 + (2)2 = ( 1√
2
)2 + (− 1√

2
)2, since W is a rotation.

Example 1.3.2. Let y = (1, 0,−5
2
, 3

2
, 1

2
,−1

2
, 3

2
, 5

2
). The values f(n) = yn, n =

0, 1, . . . , 7 are interpolated by the father wavelet from the Haar wavelet, the vec-

tor represent the sampled piecewise constant function. It is clear that such defined
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f belongs to Haar’s multiresolution space V0. The following matrix equation links y

and the wavelet coefficients.



1

0

−5
2

3
2

1
2

−1
2

3
2

5
2



=



1
2
√

2
1

2
√

2
1
2

0 1√
2

0 0 0

1
2
√

2
1

2
√

2
1
2

0 − 1√
2

0 0 0

1
2
√

2
1

2
√

2
−1

2
0 0 1√

2
0 0

1
2
√

2
1

2
√

2
−1

2
0 0 − 1√

2
0 0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 1√

2
0

1
2
√

2
− 1

2
√

2
0 1

2
0 0 − 1√

2
0

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 1√

2

1
2
√

2
− 1

2
√

2
0 −1

2
0 0 0 − 1√

2



·



c00

d00

d10

d11

d20

d21

d22

d23


The solution is 

c00

d00

d10

d11

d20

d21

d22

d23



=



√
2

−
√

2

1

−2

1√
2

−2
√

2

1√
2

− 1√
2


Thus,

f =
√

2φ−3,0 −
√

2ψ−3,0 + ψ−2,0 − 2ψ−2,1

+
1√
2
ψ−1,0 − 2

√
2ψ−1,1 +

1√
2
ψ−1,2 −

1√
2
ψ−1,3.

The solution is easy to prove. For example, when x ∈ [0, 1),

f(x) =
√

2 · 1

2
√

2
−
√

2 · 1

2
√

2
+ 1 · 1

2
+

1√
2
· 1√

2
=

1

2
+

1

2
= 1 = y0.
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Such multiplication process for DWT is conceptually straightforward, but of lim-

ited practical value. Storing and manipulating transformation matrices when inputs

are long (n > 1015) may not even be feasible. However, such matrix transforms are an

excellent tool when handling images of moderate size as explained in later sections.

1.3.1 Matrix-based Discrete Wavelet Transformation

The change of basis in V1 from B1 = {φ1k(x), k ∈ Z} to B2 = {φ0k(x), k ∈ Z} ∪

{ψ0k(x), k ∈ Z} can be implemented via matrix multiplication, thus, we can define

discrete wavelet transformation by matrices. Example 1.3.2 presented an example of

transformation matrix corresponding to Haar’s inverse transformation. Suppose that

the length of the input signal is 2J , the wavelet filter is h = {hs, s ∈ Z}, and N is a

constant. Denote Hk by a matrix of size (2J−k × 2J−k+1), k = 1, . . . at position (i, j)

with entries

hs, s = (N − 1) + (i− 1)− 2(j − 1) modulo 2J−k+1. (8)

Note that Hk is the circulant matrix, which means that its ith row is the circularly

shifted to the right by 2(i − 1) units. This circularity is derived from the modulo

operator in (8).

By analogy, we can define a matrix Gk by using the filter g. The Gk is connected

to the pre-defined Hk and can be obtained by replacing hi with (−1)ihN+1−i. The

constant N is a shift parameter and affects the position of the wavelet on the time

scale.

The unitary matrix

 Hk

Gk

 is a basis-change matrix in 2J−k+1 dimensional space.

Therefore,

I2J−k =

[
H ′k G′k

] Hk

Gk

 = H ′k ·Hk +G′k ·Gk
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and

I2J−k =

 Hk

Gk

[ H ′k G′k

]
=

 Hk ·H ′k Hk ·G′k

Gk ·H ′k Gk ·G′k

 .
This implies that Hk ·H ′k = I, Gk ·G′k = I, Gk ·H ′k = Hk ·G′k = 0, and H ′k ·Hk +

G′k ·Gk = I. Now, for a sequence y the J-step wavelet transformation is d = WJ · y,

where

W1 =

 H1

G1

 , W2 =


 H2

G2

 ·H1

G1

 , W3 =




 H3

G3

 ·H2

G2

 ·H1

G1


, . . .

Example 1.3.3. Suppose that y = (1, 0,−5
2
, 3

2
, 1

2
,−1

2
, 3

2
, 5

2
) and filter is h = (h0, h1, h2, h3) =(

1+
√

3
4
√

2
, 3+

√
3

4
√

2
, 3−

√
3

4
√

2
, 1−

√
3

4
√

2

)
. Then, J = 3 and matrices Hk and Gk are of dimension

23−k × 23−k+1 with

H1 =



h1 h2 h3 0 0 0 0 h0

0 h0 h1 h2 h3 0 0 0

0 0 0 h0 h1 h2 h3 0

h3 0 0 0 0 h0 h1 h2


and

G1 =



−h2 h1 −h0 0 0 0 0 h3

0 h3 −h2 h1 −h0 0 0 0

0 0 0 h3 −h2 h1 −h0 0

−h0 0 0 0 0 h3 −h2 h1


.

Since,

H1 · y = {1.2089,−0.3239,−0.0657, 2.6818},

G1 · y = {0.6470, 0.0947, 0.0820,−2.9451},

so

W1 · y = {1.2089,−0.3239,−0.0657, 2.6818 | 0.6470, 0.0947, 0.0820,−2.9451}.
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Next,

H2 =

 h1 h2 h3 h0

h3 h0 h1 h2

 , G2 =

 −h2 h1 −h0 h3

−h0 h3 −h2 h1

 .
In this example, we can perform discrete wavelet transformation for two steps only,

W1 and W2 due to lengths of the filter and data.

The two-step DAUB2 discrete wavelet transformation of y is

W2 · y = {1.3125, 0.6875 | − 0.0658, 2.6818 | 0.6470, 0.0947, 0.0820,−2.9451},

because

H2 ·H1 · y = H2 · {1.2089,−0.3239,−0.0657, 2.6818}

= {1.3125, 0.6875}

G2 ·H1 · y = G2 · {1.2089,−0.3239,−0.0657, 2.6818}

= {−0.0658, 2.6818}.

1.4 Traditional Orthogonal Wavelet Transform

The functional representations of traditional orthogonal wavelet transform are

presented in this section. Traditionally, we implement a wavelet transform with a

convolution of an input data and wavelet/scaling functions. Assuming that a mul-

tiresolution framework is specified, scaling and wavelet functions are represented as φ

and ψ, respectively. Then, we can express a data vector y = (y0, y1, . . . , ym−1) of size

m as a function f in context of shifts of the scaling function at some multiresolution

level J as follows:

f(x) =
m−1∑
k=0

ykφJ,k(x)

where J − 1 < log2m ≤ J and φJ,k(x) = 2
J
2 φ(2Jx− k). Next, we also can represent

the data interpolating function f as

f(x) =
2J0−1∑
k=0

cJ0,kφJ0,k(x) +
J−1∑
j=J0

2j−1∑
k=0

dj,kψj,k(x)

13



where

φJ0,k(x) = 2
J0
2 φ
(
2J0x− k

)
,

ψj,k(x) = 2
j
2ψ
(
2jx− k

)
,

and J0 is the coarsest level. Then, the discrete wavelet transforms of vector y

are composed of wavelet coefficients, c(J0) = (cJ0,0, cJ0,1, . . . , cJ0,2J0−1) and d (j) =

(dj,0, dj,1, . . . , dj,2j−1) where j = J0, . . . , J − 1 for a decomposition depth p = J − J0.

To be specific, c(J0) contains coarse fluctuation within an input and called coarse

coefficients, while d (j) contains detail information within an input and called detail

coefficients. Since the shift indicator k depends on a level as 2−jk, the number of

wavelet coefficients decreases by half as the level decreases. Consequently, the total

number of wavelet coefficients is m that is identical to that of original data vector y .

1.4.1 Standard 2-D Wavelet Transform

Next, we extend the 1-D definitions to the standard and scale-mixing 2-D wavelet

transforms of f(x, y) where (x, y) ∈ R2. The representation of wavelets in 2-D can be

implemented through one scaling function and three wavelet functions as follows:

φ(x, y) = φ(x)φ(y),

ψ(h)(x, y) = φ(x)ψ(y),

ψ(v)(x, y) = ψ(x)φ(y), (9)

ψ(d)(x, y) = ψ(x)ψ(y),

where symbols h, v, d denote the horizontal, vertical, and diagonal directions, respec-

tively.
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For the standard 2-D wavelet transform, we define the wavelet atoms as follows:

φJ0,k1,k2(x, y) = 2J0φ(2J0x− k1)φ(2J0y − k2),

ψ
(h)
j,k1,k2

(x, y) = 2jφ(2jx− k1)ψ(2jy − k2),

ψ
(v)
j,k1,k2

(x, y) = 2jψ(2jx− k1)φ(2jy − k2),

ψ
(d)
j,k1,k2

(x, y) = 2jψ(2jx− k1)ψ(2jy − k2),

where (k1, k2) ∈ Z2 is the location pair and j = J0, . . . , J−1 with depth p = J−1−J0.

Then, the wavelet coefficients of f(x, y) are computed as

cJ0,k1,k2 =

∫∫
f(x, y)φ̄J0,k1,k2(x, y) dxdy,

d
(h)
j,k1,k2

=

∫∫
f(x, y)ψ̄

(i)
j,k1,k2

(x, y) dxdy,

d
(v)
j,k1,k2

=

∫∫
f(x, y)ψ̄

(i)
j,k1,k2

(x, y) dxdy,

d
(d)
j,k1,k2

=

∫∫
f(x, y)ψ̄

(i)
j,k1,k2

(x, y) dxdy,

where φ̄ and ψ̄ are complex conjugates of φ and ψ, respectively. The tessellation of a

standard 2-D wavelet transform is illustrated in Figure 4(a).

(a) (b)

Figure 4: (a) Tessellations for standard 2-D WT of depth 3 (b) Tessellations for
scale-mixing 2-D WT of depth 3.
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1.4.2 Scale-mixing 2-D Wavelet Transform

Compared to the traditional 2-D wavelet transform, the scale-mixing 2-D wavelet

transform is better for compressibility, which is desired in dimension reduction appli-

cations (Remenyi et al, 2014). For the scale-mixing 2-D wavelet transform, we define

the wavelet atoms as follows:

φJ01,J02,k1,k2(x, y) = 2
J01+J02

2 φ(2J01x− k1)φ(2J02y − k2),

ψ
(h)
J01,j2,k1,k2

(x, y) = 2
J01+j2

2 φ(2J01x− k1)ψ(2j2y − k2),

ψ
(v)
j1,J02,k1,k2

(x, y) = 2
j1+J02

2 ψ(2j1x− k1)φ(2J02y − k2),

ψ
(d)
j1,j2,k1,k2

(x, y) = 2
j1+j2

2 ψ(2j1x− k1)ψ(2j2y − k2),

where (k1, k2) ∈ Z2, j1 ≥ J01; j2 ≥ J02 and J01 and J02 are the coarsest decomposition

levels of rows and columns. Then, any function f ∈ L2(R2) can be expressed as

f(x, y) =
∑
k1

∑
k2

cJ01,J02,k1,k2φJ01,J02,k1,k2(x, y)

+
∑
j2>J02

∑
k1

∑
k2

dJ01,j2,k1,k2ψ
(h)
J01,j2,k1,k2

(x, y) (10)

+
∑
j1>J01

∑
k1

∑
k2

dj1,J02,k1,k2ψ
(v)
j1,J02,k1,k2

(x, y)

+
∑
j1>J02

∑
j2>J01

∑
k1

∑
k2

dj1,j2,k1,k2ψ
(d)
j1,j2,k1,k2

(x, y),

which defines a scale-mixing wavelet transform. Unlike the traditional 2-D wavelet

transform, the scale-mixing atoms mix such indices that capture the energy flux

between the scales. Notice that the pair (j1, j2) can be indexed as (j1, j1 + s) with

s ∈ Z as well. Finally, the resulting scale-mixing wavelet coefficients are

cJ01,J02,k1,k2 =

∫∫
f(x, y)φJ01,J02,k1,k2(x, y) dxdy,

d
(h)
J01,j2,k1,k2

=

∫∫
f(x, y)ψ

(h)
J01,j2,k1,k2

(x, y) dxdy,

d
(v)
j1,J02,k1,k2

=

∫∫
f(x, y)ψ

(v)
j1,J02,k1,k2

(x, y) dxdy,

d
(d)
j1,j2,k1,k2

=

∫∫
f(x, y)ψ

(d)
j1,j2,k1,k2

(x, y) dxdy,
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where φ̄ and ψ̄ are complex conjugates of φ and ψ, respectively. Notice that we handle

a pair (j1, j2) indicating that two scales are mixed in the scale-mixing 2-D wavelet

transform, while we handle a single j to denote a scale in the traditional 2-D wavelet

transform.

For the 2-D real-valued scale-mixing transform, G = WAW T is defined as the

wavelet-transformed data of image A. We generalize this definition for the 2-D

complex-valued scale-mixing transform here. First, let us transform the rows of A

through a wavelet matrix W , which results in WA†. Next, repeat a same work on

the rows of WA† and then we obtain the scale-mixing wavelet transform of matrix A

as

G = W (WA†)† = WAW † (11)

where W † stands for the Hermitian transpose of a complex-valued wavelet matrix W .

Since the unitary characteristic of W in Equation (11) implies E = trace(AA†) =

trace(GG†), the total energy, E, in image A is preserved. Note that the relationship

in Equation (11) implies a 2-D implementation of (10) for signal f(x) sampled in

a form of matrix A. The tessellation of a scale-mixing 2-D wavelet transform is

illustrated in Figure 4(b) and we can identify some hierarchies of the detail spaces.

The diagonal hierarchy indicates coefficients with the same component scales and

has a same hierarchy in the standard 2-D transform in Figure 4(a). In addition, the

hierarchies that are one level above and below the diagonal hierarchy represent detail

spaces with the scales differed by 1. To be specific, the scales along x-axis are faced

with the next coarser scale along y-axis for the hierarchy above the diagonal, and vice

versa for the hierarchy below the diagonal.
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1.5 Complex Wavelet Transform

1.5.1 Daubechies Complex Wavelet Basis

The Daubechies complex wavelets are implemented via the symmetric Daubechies

wavelets. In this section, we present some conditions of the symmetric Daubechies

wavelets.

1. Compactness of the support of φ: It is required for φ and ψ to have a compact

support within the interval [−J, J + 1] for integer value J that is, hk 6= 0 for

k = −J,−J + 1, . . . , J, J + 1.

2. Orthogonality of the φ(x − k): This constraint defines the Daubechies wavelets

in a broad sense. The polynomial is written as

F (z) =
J+1∑
n=−J

1√
2
hnz

n, with F (1) = 1, (12)

where z is on the unit circle, |z| = 1. Then, the orthonormality constraint of the

set {φ0,k(x), k ∈ Z} can be satisfied with the equation as

P (z)− P (−z) = z (13)

where the polynormial P (z) is stated as

P (z) = zF (z)F (z).

3. Strang-Fix condition: The vanishing of the first J moments of the wavelets is

required to maximize the regularity of the functions generated by φ. In other

words, the Strang-Fix condition can be stated as

F (−1) = F ′(−1) = F ′′(−1) = · · · = F (J)(−1) = 0 (14)

in the polynomial aspect. Note that the real polynomial solutions of the Equa-

tion (13) and (14) leads to the standard Daubechies wavelets and the degree of

symmetry makes differences within them. Generally, the standard Daubechies

wavelets is considered as the least asymmetric solution.
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4. Symmetry: The following constraint have to be on the filter, i.e. hk = h1−k,

F (z) = zF (z−1).

A solution of the full conditions was investigated by Daubechies through an in-

spection of the roots of the following polynomial satisfying the Equation (13) defined

by

PJ(z) = (
1 + z

2
)2J+2pJ(z−1)

where

pJ(z) =
2J∑
j=0

rj(z + 1)2J−j(z − 1)j, with

 r2j = (−1)j2−2J
(

2J+1
j

)
r2j+1 = 0

where j = 0, 1, . . . , J . The proof that the polynomial PJ(z) satisfies the Equation

(13) is provided in Appendix A.1.

The appropriacy of the polynomial PJ(z) in building multiresolution bases depends

on the notable relationship between 2J roots of pJ(z) because they show distinct

symmetries. To be concrete, the inverse and conjugate of a root are also roots and

no root is of unit modulus. When xk=1,2,...,J are the J roots inside the unit circle

(|xk| < 1) and x̄k = xJ+1−k, we can define the factorization of pJ(z) as

pJ(z) =
J∏
k=1

(
z − xk
1− xk

)
J∏
k=1

(
z − x̄−1

k

1− x̄−1
k

)
and the low-pass filter F (z) as

F (z) =

(
1 + z

2

)1+J

p(z−1) with p(z) =
∏
m∈R

(
z − xm
1− xm

)∏
n∈R̄

(
z − x̄−1

n

1− x̄−1
n

)
. (15)

The polynomial p(z) can be stated by particular roots of pJ(z) withR, R̄ ⊂ {1, 2, . . . , J}.

In addition, pJ(z) = zJp(z−1)p(z) is defined through the spectral factorization of

PJ(z) = zF (z)F̄ (z), which leads to the constraint on R and R̄ as follows:

k ∈ R⇔ k 6∈ R̄. (16)
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Note that replacing R with R̄ is equivalent to converting a wavelet filter coefficient

hk to its complex conjugate. Thus, the polynomial defined by

m0(w) =

(
1 + eiw

2

)∏
k∈R

(
e−iw − xk

1− xk

)∏
k 6∈R

(
e−iw − x̄−1

k

1− x̄−1
k

)
(17)

with an arbitrary choice of R of roots of pJ(z) implies an admissible trigonometric

polynomial and consequently a compactly supported orthonormal dyadic wavelet ba-

sis. This choice of roots satisfies the conditions 1 , 2 , 3 . With the three conditions,

Dabechies investigated real-valued solutions of Equation (17) for hk by a new rule

derived from the constraint (16) as

k ∈ R⇔ J − k + 1 ∈ R and k 6∈ R̄, (18)

which leads to real coefficients in m0(w) =
∑

k
1√
2
hke

iwk. Consequently the DAUBn

solution with n = 2J+2 leads to the usual Daubechies wavelets that have real-valued

functions. Note that the number of solutions is 2J−1 that is half of the whole solutions

(2J) except for the Haar case (J = 0, h0 =
√

2
2
, h1 =

√
2

2
). We provide some solutions

with the first values of J with the rule (18).

Example 1. J=1: The polynomial p1(z) has two roots x1 = r = 2 −
√

3 and x−1
1 .

Then, the unique solution is

m0(w) =

(
1 + eiw

2

)2(
e−iw − r

1− r

)

corresponding to the DAUB4 wavelets whose scaling and wavelet func-

tions are illustrated in Figure 5.

Example 2. J=2: The polynomial p2(z) has four roots as

x1 =
3

2
− i
√

5

12
− 1

2

√
10

3
− 2i
√

15,

x1 =
3

2
− i
√

5

12
+

1

2

√
10

3
− 2i
√

15
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Figure 5: (a) The scaling function φ of DAUB4 wavelets with J = 1. (b) The wavelet
function ψ of DAUB4 wavelets with J = 1.

and x̄−2
1 , x̄−2

2 . Two particular cases are identified: R = {1, 2} and R =

{1}. We consider the R = {1, 2} case for real-valued wavelets here and

then the R = {1} case later in this section for complex-valued wavelets.

The solution with the R = {1, 2} is

m0(w) =

(
1 + eiw

2

)3(
e−iw − x1

1− x1

)(
e−iw − x2

1− x2

)

corresponding to the DAUB6 wavelets whose scaling and wavelet func-

tions are illustrated in Figure 6.

With the three conditions 1 , 2 , 3 as in the above real solution cases, addition of

the symmetry condition 4 provides to an other subset of solutions of Equation (15).

Similar to the rule (18), an additional new selection rule of the roots can be derived

as

k ∈ R⇔ J − k + 1 ∈ R̄ and k 6∈ R̄. (19)

Note that the rule (18) and the rule (19) cannot be compatible since the latter rule

produces the complex-valued symmetric Daubechies wavelets. We obtain 2
J
2 solutions

in the original set of “orthogonal compactly supported regular wavelets” (2J compo-

nents, complex or real) for any even value of J and call them SDAUBn solutions with
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Figure 6: (a) The real scaling function φ of DAUB6 wavelets with J = 2 and selection
of the R = {1, 2}. (b) The real wavelet function ψ of DAUB6 wavelets with J = 2
and selection of the R = {1, 2}.

n = 2J + 2 leading to the symmetric Daubechies wavelets that have complex-valued

functions.

Consequently, the complex scaling and wavelet functions can be defined as

φ(x) = h(x) + ig(x) and ψ(x) = w(x) + iv(x)

where h, g, w and v are all real-valued functions. Note that a complex conjugate of

a scaling function is also a scaling function. We present an examined solution with

the first values of J with the rule (19) following the above example with the R = {1}

case.

Example 1. J=2: The solution with the R = {1} is

m0(w) =

(
1 + eiw

2

)3(
e−iw − x1

1− x1

)(
e−iw − x̄−1

2

1− x̄2−1

)
corresponding to the symmetric but complex-valued wavelets whose com-

plex scaling and wavelet functions are illustrated in Figure 7. Such com-

plex solutions can be obtained for any J ≥ 2, however, only even values

of J can satisfy the symmetry condition 4 . Complex filter banks for the

filter coefficients hk with J = 2, 4, 6 are given in Table 2. For simplicity,
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we abbreviate the symmetric Daubechies Wavelets (SDAUBn) as the

Complex Wavelets (CWn) from the next section.
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Figure 7: (a) The complex scaling function φ of SDAUB6 wavelets with J = 2 and
selection of the R = {1}. (b) The complex wavelet function ψ of SDAUB6 wavelets
with J = 2 and selection of the R = {1}. The blue solid line indicates the real part
and the red dashed line indicates the imaginary part for both figure (a) and (b).

Table 2: Complex filter banks with SDAUBn (n = 2J + 2) multiresolution analysis
with J = 2, 4, 6, respectively.

SDAUB6, J = 2 SDAUB10, J = 4 SDAUB14, J = 6
h1 = h0 0.662912 + 1.171163i 0.643003 + 0.182852i 0.633885 + 0.179835i
h2 = h−1 0.110485− 0.085581i 0.151379− 0.094223i 0.171512− 0.094452i
h3 = h−2 −0.066291− 0.085581i −0.080639− 0.117947i −0.086478− 0.130859i
h4 = h−3 −0.017128 + 0.008728i −0.030746 + 0.014044i
h5 = h−4 0.010492 + 0.020590i 0.017651 + 0.037601i
h6 = h−5 0.0032388− 0.001300i
h7 = h−6 −0.001956− 0.004869i
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1.5.2 Mallat’s Algorithm with Complex Wavelet Basis

Using one of the complex filters in Table 2, we can obtain the wavelet decompo-

sition algorithms as follows:

cj−1,l = 〈vj, φj−1,l〉

= 〈vj,
∑
k∈Z

h̄k−2lφj,k(x)〉

=
∑
k∈Z

h̄k−2l〈vj, φj,k(x)〉

=
∑
k∈Z

h̄k−2lcj,k

and similarly dj−1,l =
∑

k∈Z ḡk−2lcj,k. Note that the complex conjugate h̄k−2l and

ḡk−2l are used instead of hk−2l and gk−2l in Equation (7) for traditional Mallat’s

algorithm since we consider complex wavelets. The cascade algorithm is still effective

in the reverse direction. We can obtain the coefficients located in the next finer

scale corresponding to Vj from the coefficients corresponding to Vj−1 and Wj−1. The

equation

cj,k = 〈vj, φj,k〉

=
∑
l

cj−1,l〈φj−1,l, φj,k〉+
∑
l

dj−1,l〈ψj−1,l, φj,k〉

=
∑
l

cj−1,lh̄k−2l +
∑
l

dj−1,lḡk−2l

represents a single step in the inverse wavelet transform algorithm for reconstruction.

Finally, corresponding detail complex wavelet coefficients that we will mainly handle

in the later sections are obtained as

dj,k = Re(dj,k) + i · Im(dj,k)

with magnitude

|dj,k| =
√
Re(dj,k)2 + Im(dj,k)2

and phase

∠dj,k = arctan

(
Im(dj,k)

Re(dj,k)

)
.
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1.6 Quaternion Wavelet Transform

In recent decades, the traditional real-valued discrete wavelet transform (DWT)

has been utilized as powerful mathematical tool in signal and image processing, in

tasks of denoising, segmentation, compression, classification, and so on (Rajini, 2016).

The traditional real-valued orthogonal discrete wavelet transforms (DWT) feature el-

egant, parsimonious, and informative representations, but have two shortcomings.

The first is that DWT is not shift-invariant. Even a small shift of a signal results in

complete change of wavelet coefficients, which causes problems in efficient computa-

tion and feature extraction in real-time. The second is that no phase information is

encoded, unlike the Fourier representations (Chan et al, 2008). To accommodate the

phase information, the complex wavelet transform was proposed in Lina (1997). We

denote it as WTc where c refers to complex instead of CWT that usually stands for

continuous wavelet transform.

The WTc is orthogonal, symmetric, and have decomposing atoms of compact size

(Lina, 1997; Gao and Yan, 2011). Most notable characteristic is the phase information

that WTc additionally provides compared to real-valued wavelet decompositions.

This phase information enables the WTc to pack more information about the signal

or image that it represents. Because of these merits, WTc has been exploited in

various wavelet-based tasks (Lina and MacGibbon, 1997; Remenyi et al, 2014; Jeon

et al, 2014).

As an extension of the WTc, the quaternion wavelet transform (QWT) provides

a richer scale-space analysis by taking into account the axioms of the quaternion

algebra (Billow, 1999; Gai and Luo, 2015). This transform leads to quaternion-valued

wavelet coefficients in the form of a vector of one modulus and three phases that

possess symmetry properties and near shift-invariance, according to Billow’s results

(Billow and Sommer, 1997). The modulus reflects the outline of signal or image

while the three phases encode local image shifts and represent subtle information
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such as cusps, boundaries, and texture structure. Preserving the benefits of WTc,

the QWT can provide a more extensive redundancy with its three phases. Based on

these merits, the QWT has been utilized in image denoising (Gai and Luo, 2015),

texture classification (Soulard and Carre, 2011), image segmentation (Subakan and

Vemuri, 2011), face recognition (Jones and Abbott, 2006), image fusion (Xue-Ni et al,

2016), etc. Note that these tasks usually have been performed with constructing

quaternion wavelets utilizing four real-valued DWT: the first corresponding to the

real part of the quaternion and the other three linked with the first via Hilbert

transform correspond to the three imaginary parts of the quaternion wavelets. This

transform possesses approximate shift invariance, abundant phase information, and

limited redundancy while retaining the traditional wavelet time-frequency localization

ability (Rajini, 2016). However, this original so-called QWTs were really DWT or

WTc in disguise (Fletcher and Sangwine, 2017). In fact, their filter coefficients are

real-valued, which means that it was technically wrong to name them QWT. In recent

years, several studies have been conducted to construct a bonafide QWT that is not

a conglomerate of DWTs and WTc (Carre and Denis, 2006; Hogan and Morris, 2012;

Ginzberg and Walden, 2013). Ginzberg and Walden (2013) suggested true quaternion

matrix-valued wavelets with quaternion-valued filter coefficients. Of the provided

filters, for the analysis in later chapters, we selected non-trivial quaternion scaling

and wavelet filters of length L = 10 and with five vanishing moments (A = 5) as a

compromise between locality and smoothness. The selected filters correspond to non-

trivial symmetric quaternion wavelet functions with compact support via a matrix-

based implementation. Selected quaternion basis can address some critical problems

from which other established but not fully quaternion wavelet designs had suffered.

In addition, full quaternion approach leads to meaningful uniqueness and selective

existence for filters of only certain lengths and numbers of vanishing moments. More

details can be found in Ginzberg and Walden (2013).
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1.6.1 Quaternion Algebra

Sir William Hamilton in 1843 first developed a quaternion algebra; the notation

H for the field of all quaternions, is proposed after him (Gurlebeck and Sprossig,

1998). In a four-dimensional (4-D) algebra, the elements of H are given as linear

combinations of a real scalar and three orthogonal imaginary units i, j, and k with

real coefficients as

H = {q = q0 + q1i+ q2j + q3k | q0, q1, q2, q3 ∈ R}, (20)

where the three imaginary units (i, j, k) satisfy the following non-commutative Hamil-

ton’s multiplication rules as

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1.

The conjugate of a quaternion q can be written as

q = q0 − q1i− q2j − q3k, (21)

and some useful properties for the conjugate as follows:

q = q, q + p = q + p, qp = q p, ∀ q, p ∈ H.

Since the product of a quaternion q and its conjugate q in Equation (21) is

qq = q2
0 + q2

1 + q2
2 + q2

3,

the modulus |q| of a quaternion q is correspondingly defined as

|q| =
√
qq =

√
q2

0 + q2
1 + q2

2 + q2
3.

In a manner similar to complex numbers, the expression of quaternion q in Equa-

tion (20) can have an alternative representation in polar form as

q = |q|eiφejθekψ, (22)

where (φ, θ, ψ) ∈ [−π, π] × [−π
2
, π

2
] × [−π

4
, π

4
]. For a unit quaternion, |q| = qq = 1,

their corresponding three phases can be evaluated as follows:
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1. First, compute ψ as

ψ = −1

2
arcsin

(
2(q1q2 − q0q3)

)
.

2. If ψ ∈ (−π
4
, π

4
), then φ = 1

2
arctan 2

(
2(q0q1 + q2q3), q2

0 − q2
1 + q2

2 − q2
3

)
,

θ = 1
2

arctan 2
(
2(q0q2 + q1q3), q2

0 + q2
1 − q2

2 − q2
3

)
.

3. If ψ = ±π
4
, then select either φ = 1

2
arctan 2

(
2(q0q1 − q2q3), q2

0 − q2
1 − q2

2 + q2
3

)
,

θ = 0.

or  φ = 0,

θ = 1
2

arctan 2
(
2(q0q2 − q1q3), q2

0 − q2
1 − q2

2 + q2
3

))
.

4. If eiφejθekψ = −q and φ ≥ 0, then φ→ φ− π.

5. If eiφejθekψ = −q and φ < 0, then φ→ φ+ π.

1.6.2 Matrix-based Non-trivial Quaternion Wavelet Basis

As we mentioned before, Ginzberg and Walden (2013) suggested a true quaternion

matrix-valued wavelets with quaternion-valued filter coefficients. From the provided

filters, for applications in this thesis, we selected the non-trivial quaternion scaling

and wavelet filters of length L = 10 and with five vanishing moments (A = 5).

Specifically, for L = 10 and A = 5, the set of design equations is given as

9∑
k=0

Hk =
√

2I4,

9∑
k=0

(−1)kkdHk = 04 for d = 0, 1, 2, 3, 4,

9−2m∑
k=0

HkH
T
k+2m = δm,0I4 for m = 1, 2, 3, 4,
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where the Hk each denote 4 × 4 matrix representations of quaternion. By solving

these equations, one obtains the wavelet filters as

h0 = h9 = C2i,

h1 = h8 = −5C1 + C2k,

h2 = h7 = −7C1 − 7C2i+ 3C2k,

h3 = h6 = 35C1 − 5C2i+ C2k,

h4 = h5 = 105C1 + 11C2i− 5C2k,

where C1 =
√

2
256

and C2 =
√

35
256

. The corresponding antisymmetric scaling filters are

also described as

g0 = −g9 = C3(89
√

35i+ 35
√

2j − 35
√

35k),

g1 = −g8 = C3(−480
√

2 + 35
√

35i− 175
√

2j + 79
√

35k),

g2 = −g7 = C4(84
√

2− 91
√

35i+ 35
√

2j +
√

35k),

g3 = −g6 = C5(35
√

2 + 5
√

35i−
√

35k),

g4 = −g5 = C6(−5040
√

2 + 577
√

35i− 245
√

2j + 5
√

35k),

where C3 = 1
24576

, C4 = 1
3072

, C5 = 1
256

and C6 = 1
12288

. Note that we renamed

Ginzberg’s G for H and g for h in accordance with conventional notations of H for

low pass filter and G for high pass filter. The scaling and wavelet functions for all

real and imaginary parts are presented in Figure 8.

1.7 Non-decimated Wavelet Transform

In this section, we overview the non-decimated wavelet transform (NDWT) that

is another popular version of wavelet transforms. As we look at its alternative names

such as “stationary wavelet transform,” “time-invariant wavelet transform,” “á trous

transform,” or “maximal overlap wavelet transform”, the NDWT can resolve a prob-

lem of sensitivity to translations in time and shift detected in traditional orthogonal
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Figure 8: Quaternion scaling and wavelet functions for L = 10 and A = 5.

wavelet transform. Even if some researches on the names use somewhat different

terms, they are inherently same with the NDWT. All of them show characteristics

such as translation/shift invariance and denser approximation of continuous wavelet

transform, which resulted from a redundancy property of them. This property is

caused since they are performed by repeated filtering with a minimal shift (or with a

maximal sampling rate) at all dyadic scales. Consequently, there are the same num-

bers of wavelet transformed coefficients at each multiresolution level as original data

and we call this phenomenon a non-decimated transform. Even though the total size

of decomposition obtained by NDWT is larger than that of the orthogonal transform,

this redundancy is often preferred by practitioners in many fields. More details can

be found in excellent monographs Percival and Walden (2006) and Mallat (2009).

Compared to the traditional wavelet transform, the main difference is a sampling

rate. We assume that a multiresolution framework is specified and denote scaling

and wavelet functions as φ and ψ, respectively. Then, we can represent a data vector

y = (y0, y1, . . . , ym−1) of size m as a function f in terms of shifts of the scaling function
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at some multiresolution level J as follows:

f(x) =
m−1∑
k=0

ykφJ,k(x)

where J − 1 < log2m ≤ J and φJ,k(x) = 2
J
2 φ(2J(x− k)). Next, we also can express

the data interpolating function f as

f(x) =
m−1∑
k=0

cJ0,kφJ0,k(x) +
J−1∑
j=J0

m−1∑
k=0

dj,kψj,k(x) (23)

where

φJ0,k(x) = 2
J0
2 φ
(
2J0(x− k)

)
,

ψj,k(x) = 2
j
2ψ
(
2j(x− k)

)
,

and J0 is the coarsest decomposition level. Then, the non-decimated wavelet trans-

forms of vector y consist of wavelet coefficients, c(J0) = (cJ0,0, cJ0,1, . . . , cJ0,m−1) and

d (j) = (dj,0, dj,1, . . . , dj,m−1) where j = J0, . . . , J − 1 for a decomposition depth

p = J − J0, which are redundant representations of the input data y as seen in

the Equation (23). To be specific, c(J0) serves as the coarsest approximation of the

input data and called coarse coefficients, while d (j) contains detail information within

an input and called detail coefficients. Note that we cannot take a p that is larger

than log2m due to the non-decimated property.

The principal difference between the standard- and non-decimated wavelet trans-

form is that the shift indicator k of the latter is constant at all level unlike the former

whose shifts are level dependent as 2−jk. We can know that this non-decimated

transform is time invariant because of the constancy of the shifts across the levels.

As a result, the total number of wavelet coefficients is (p+ 1)×m with p detail lev-

els. Notice that the non-decimated wavelet coefficients at each decomposition level

are related based on Mallat’s pyramid algorithm (Mallat, 1989b,a). The low-pass

wavelet filter h and the high-pass wavelet filter g are quadrature mirror filters and
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their convolutions are performed in a cascade. Given a fully and uniquely specified h

through the choice of wavelet basis, the ith component of g is gi = (−1)l−ihm−s−i for

any fixed integer l and s. We will further discuss the filter operators in terms of the

NDWT later in this section.

1.7.1 Discrete Non-decimated Wavelet Transform

The functional series including wavelet and scaling functions as decomposing com-

ponents have been established as a mathematical framework to describe the NDWT.

However, for discrete inputs, an alternative description of the NDWT utilizing convo-

lution operators is preferred (Nason and Silverman, 1995; Strang and Nguyen, 1996;

Vidakovic, 1999).

We denote [↑ 2] as the upsampling of a given sequence that inserts a zero between

every two interfaced components of a sequence. The dilations of wavelet filters h and

g are defined as follows:

h[0] =h, g[0] = g (24)

h[r] =[↑ 2]h[r−1], g[r] = [↑ 2]g[r−1].

This method is sometimes referred as Algorithm á Trous since holes (trous, in French)

are produced by inserting zeros between each component of filter h[r−1] and g[r−1]

(Shensa, 1992).

Applying convolution operators, H[j] and G[j], from the dilated filters h[r] and

g[r] in sequence, we can complete the non-decimated wavelet transform. Then, detail

and coarse coefficient vectors for each level have a same size, m, that is a size of the

original data. Employing repeatedly the convolution operators to a coarse coefficient

vector of the previous decomposition level, J − j + 1, we can calculate coefficient
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vector of the level J − j where j ∈ {1, 2, . . . , p} as follows:

c(J−j) = H[j−1]c(J−j+1)

d(J−j) = G[j−1]c(J−j+1),

where H[j−1] and G[j−1] are low- and high-pass filter operators based on quadrature

mirror filters h[j−1] and g[j−1], respectively. Then, we can perform the NDWT by

repeatedly applying the two convolution operators, H[j] and G[j]. However, the op-

erators have a problem of no orthogonality, so to resolve this problem, we apply two

additional operators D0 and D1 to implement decimation by choosing all even and

odd elements of input data. We can use these decimation operators, D0 and D1, with

a signal x as

(D0x)i = x2i,

(D1x)i = x2i+1,

where i implies the location of an component in the signal x. Then, we can obtain

the even and odd elements of the non-decimated wavelet coefficient vectors, c(J−j)

and d(J−j), by employing (D0H
[j−1], D0G

[j−1]) and (D1H
[j−1], D1G

[j−1]) to the signal

x. Thus, we can represent the implementation of the Equation (24) as follows:

(c(J−j))2i = D0H
[j−1]c(J−j+1)

(c(J−j))2i+1 = D1H
[j−1]c(J−j+1)

(d(J−j))2i = D0G
[j−1]c(J−j+1)

(d(J−j))2i+1 = D1G
[j−1]c(J−j+1).

This NDWT process is graphically illustrated in Figure 9. Note that a shift does not

make an effect on transformation since the filtering is applied twice at the even and

odd locations for each decomposition level, which makes the NDWT time-invariant.

This time-invariance characteristic makes it possible for the NDWT to have a smaller
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mean squared error and decrease the Gibbs phenomenon in denoising (Coifman and

Donoho, 1995). While such a property has the advantage, it complicates the signal re-

construction due to the non-compliance of variance preservation. In the next section,

we will consider a way of lossless reconstruction using a matrix-based NDWT.

Figure 9: Graphical illustration of the NDWT process. The NDWT decomposes
the original signal of size m to p + 1 multiresolution subspaces including p levels of
detail coefficients and one level of coarsest coefficients. Then we can obtain a set of
coefficient vectors, d(J−1),d(J−2), . . . ,d(J−p), and c(J−p) in the shaded blocks.

1.7.2 Standard 2-D Non-decimated Wavelet Transform

Next, we overview the standard versions of the 2-D NDWT of f(x, y) extended

from the 1-D definitions where (x, y) ∈ R2. The representation of non-decimated

wavelets in 2-D can be performed equivalently as Relations in (1.4.1) although φ(x)

and ψ(x) are different.

For the standard 2-D NDWT, we define the wavelet atoms as follows:

φJ0,k1,k2(x, y) = 2J0φ(2J0(x− k1))φ(2J0(y − k2)),

ψ
(h)
j,k1,k2

(x, y) = 2jφ(2j(x− k1))ψ(2j(y − k2)),

ψ
(v)
j,k1,k2

(x, y) = 2jψ(2j(x− k1))φ(2j(y − k2)),

ψ
(d)
j,k1,k2

(x, y) = 2jψ(2j(x− k1))ψ(2j(y − k2)),

where (k1, k2) ∈ Z2 is the location pair and j = J0, . . . , J−1 with depth p = J−1−J0.
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Then, the wavelet coefficients of f(x, y) are obtained as

cJ0,k1,k2 =

∫∫
f(x, y)φJ0,k1,k2(x, y) dxdy,

d
(h)
j,k1,k2

=

∫∫
f(x, y)ψ

(i)
j,k1,k2

(x, y) dxdy,

d
(v)
j,k1,k2

=

∫∫
f(x, y)ψ

(i)
j,k1,k2

(x, y) dxdy,

d
(d)
j,k1,k2

=

∫∫
f(x, y)ψ

(i)
j,k1,k2

(x, y) dxdy.

The tessellation of a standard 2-D NDWT is presented in Figure 10(a).

(a) (b)

Figure 10: (a) Tessellations for traditional 2-D NDWT of depth 3 (b) Tessellations
for scale-mixing 2-D NDWT of depth 3.

1.7.3 Scale-mixing 2-D Non-decimated Wavelet Transform

For the scale-mixing 2-D NDWT, we define the wavelet atoms as follows:

φJ01,J02,k1,k2(x, y) = 2
J01+J02

2 φ(2J01(x− k1))φ(2J02(y − k2)),

ψ
(h)
J01,j2,k1,k2

(x, y) = 2
J01+j2

2 φ(2J01(x− k1))ψ(2j2(y − k2)),

ψ
(v)
j1,J02,k1,k2

(x, y) = 2
j1+J02

2 ψ(2j1(x− k1))φ(2J02(y − k2)),

ψ
(d)
j1,j2,k1,k2

(x, y) = 2
j1+j2

2 ψ(2j1(x− k1))ψ(2j2(y − k2)),
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where (k1, k2) ∈ Z2, j1 ≥ J01; j2 ≥ J02 and J01 and J02 are the coarsest decomposition

levels of rows and columns. Then, any function f ∈ L2(R2) can be expressed as

f(x, y) =
∑
k1

∑
k2

cJ01,J02,k1,k2φJ01,J02,k1,k2(x, y)

+
∑
j2>J02

∑
k1

∑
k2

dJ01,j2,k1,k2ψ
(h)
J01,j2,k1,k2

(x, y) (25)

+
∑
j1>J01

∑
k1

∑
k2

dj1,J02,k1,k2ψ
(v)
j1,J02,k1,k2

(x, y)

+
∑
j1>J02

∑
j2>J01

∑
k1

∑
k2

dj1,j2,k1,k2ψ
(d)
j1,j2,k1,k2

(x, y),

which defines a scale-mixing NDWT. Unlike the standard 2-D NDWT denoting a scale

as j, we denote mixed two scales as a pair (j1, j2). Finally, the resulting scale-mixing

wavelet coefficients are

cJ01,J02,k1,k2 =

∫∫
f(x, y)φJ01,J02,k1,k2(x, y) dxdy,

d
(h)
J01,j2,k1,k2

=

∫∫
f(x, y)ψ

(h)
J01,j2,k1,k2

(x, y) dxdy, (26)

d
(v)
j1,J02,k1,k2

=

∫∫
f(x, y)ψ

(v)
j1,J02,k1,k2

(x, y) dxdy,

d
(d)
j1,j2,k1,k2

=

∫∫
f(x, y)ψ

(d)
j1,j2,k1,k2

(x, y) dxdy.

The tessellation of a scale-mixing 2-D NDWT is presented in Figure 10(b).

1.7.4 Matrix-based Non-decimated Wavelet Transform

1.7.4.1 1-D case

Research in Kang and Vidakovic (2016) provided how to perform the NDWT

through a simple matrix multiplication instead of the multiple convolutions shown in

the section 1.7.1. To be specific, we do not need to formulate the NDWT anymore

by implementation of convolutions in a cascade with wavelet and scaling functions

in Mallat’s algorithm. Alternatively, we simplify perform the NDWT by matrix

multiplication and the cascade algorithm is as follows. This matrix formulation is
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beneficial for several reasons, including versatility, adaptivity, and generalizability,

especially in the multidimensional formulations.

First, we repeatedly perform matrix multiplications of low- and high-pass filter

matrices, (H) and (G), which implies the Mallat’s cascade algorithm. The filter

matrices

[
Hp Gp

]T
are constructed by the following rule.

Rule 1. The sizes of Hp and Gp for depth p are the same as m×m.

Rule 2. h
[p−1]
s defines the sth component of a dilated wavelet filter h[p−1] that has

p− 1 zeros in between the original filter elements, (h1, h2, . . . , hu), as

h[p−1] = (h1,

p− 1︷ ︸︸ ︷
0, . . . , 0, h2,

p− 1︷ ︸︸ ︷
0, . . . , 0, h3, . . . ,

p− 1︷ ︸︸ ︷
0, . . . , 0, hu).

For instance, h
[p−1]
1 = h1, h

[p−1]
p+1 = h2, . . . , and, h

[p−1]
p(u−1)+1 = hu.

Rule 3. The components of Hp and Gp at the location (i, j) are

hij =
1√
2
h[p−1]
s , s = N + i− j modulo m

gij =
1√
2

(−1)sh
[p−1]
N+1−s, s = N + i− j modulo m,

where N is a shift parameter.

Then, we can obtain the NDWT matrix, W
(p)
m , that is a combination of such filter

matrices, Hp and Gp, to implement a transform of depth p. The W
(p)
m is a matrix of

size m(p+ 1) × m composed of p+ 1 stacked submatrices, Hp and Gp, of size m×m.

Examples for depth 1,2, and 3 are provided as follows:

W (1)
m =

H1

G1


[2m×m]

W (2)
m =


H2

G2

 ·H1

G1


[3m×m]

W (3)
m =




H3

G3

 ·H2

G2

 ·H1

G1


[4m×m]
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We can perform the NDWT through the matrix formulation W
(p)
m , however, a

reconstruction cannot be simply implemented by its transpose only since the provided

NDWT matrix is not normalized. In fact, we need the multiplication by 1
2

at each

inverse transform step for a perfect reconstruction in context of Mallat’s algorithm

(Mallat, 2009). Thus, we provide a way of correct inverse transform using a diagonal

weight matrix that re-scales the square submatrices composing the NDWT matrix.

The weight matrix for W
(p)
m is of size m(p+ 1)×m(p+ 1) and represented as

T (p)
m = diag(

2m︷ ︸︸ ︷
1/2p, . . . , 1/2p,

m︷ ︸︸ ︷
1/2p−1, . . . , 1/2p−1,

m︷ ︸︸ ︷
1/2p−2, . . . , 1/2p−2, . . . ,

m︷ ︸︸ ︷
1/2, . . . , 1/2).

For 1-D signal y of size m×1, we transform it to a non-decimated wavelet transformed

vector d with depth p by multiplying y by W
(p)
m . Following the transformation, we

can reconstruct y from d by multiplying d by both (W
(p)
m )T and T

(p)
m as follows:

d = W (p)
m × y[m×1]

y = (W (p)
m )′ × T (p)

m × d, (27)

where p and m are arbitrary.

Notice that (W
(p)
m )′ ×W (p)

m 6= Im, while column vectors of matrix as

V (p)
m =

(
T (p)
m

)1/2
W (p)
m

build an orthonormal set, thus,

(V (p)
m )′ × V (p)

m = Im. (28)

The reverse product, V
(p)
m × (V

(p)
m )′, is not an identity matrix, however,

∑
i

(
V (p)
m × (V (p)

m )′
)
ij

=

(∑
j

(
V (p)
m × (V (p)

m )′
)
ij

)′
= [1m,0pm] ,

where [1m,0pm] implies a row vector composed of m ones followed by the pm zeros.

Finally, the perfect reconstruction can be performed by multiplying d by (W
(p)
m )′×

T
(p)
m because Im = (V

(p)
m )′ × V (p)

m = (W
(p)
m )′ × T (p)

m ×W (p)
m as in Equation (27). Note
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that a transform by V
(p)
m can be considered more natural due to the relation in (28).

However, the scaling of wavelet coefficients transformed by V
(p)
m does not match the

correct scaling wavelet coefficients achieved by Mallat’s algorithm. Thus, we should

use not V
(p)
m but W

(p)
m since the exact scaling of wavelet coefficients is essential in

applications such as regularity assessment of signals and images.

1.7.4.2 2-D case

To obtain a 2-D wavelet transformed image B from A of size [m × n] for p1-

and p2-depth along rows and columns through the scale-mixing NDWT, we apply the

NDWT matrix multiplication to A the from the left and its transpose from the right.

Then, the size of B becomes (p1 + 1)m × (p2 + 1)n. Note that the weight matrix

with p1- and p2-level decompositions, T
(p1)
m and T

(p2)
n , are applied for a correct inverse

transform. These processes can be summarized as follows:

B = W (p1)
m ×A[m×n] × (W (p2)

n )′

A = (W (p1)
m )′ × T (p1)

m ×B × T (p2)
n ×W (p2)

n ,

An example of a graphical illustration of a 2-D scale-mixing NDWT is provided in

Figure 11. Since W
(p1)
m and W

(p2)
m are distinguished, they can be constructed by

different wavelet filters, respectively.

Figure 11: A 2-D scale-mixing NDWT process is graphically presented with 3-levels
along the rows and 2-levels along the columns.
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The reason why we use the 2-D scale-mixing NDWT is because it shows a re-

markable compressibility. In particular, the superb performance on compression is

exceptionally advantageous for wavelet-based data compression or denoising. When

an image shows a some extent of smoothness, the diagonal decomposition coefficients

(d(d) in Equation (27)) have smaller magnitudes comparing to the other three types

of coefficients (c, d(v), and d(h) in Equation (27)). Let us consider a p-level decompo-

sition example of 2-D image of size m×n by both standard NDWT and scale-mixing

NDWT from matrix formulation. We can define a compressibility of wavelet trans-

form as the proportion of d(d) compared with the total number of wavelet coefficients.

Recall that d(d) indicates the decomposing atoms containing two wavelet functions,

while c, d(v), and d(h) represent the decomposing atoms consisting of at least one

scaling function. Thus, for a depth p, the compressibility of the standard NDWT is

pmn/((3p+1)mn) while that of the scale-mixing NDWT is p2mn/((p+1)2mn), which

is shown in Figure 12. Note that the latter is always larger than the former except

for the case of p = 1 where the two values are same. Therefore, we can conclude that

the scale-mixing NDWT is more compressive than the standard NDWT.

(a) (b)

Figure 12: (a) Tessellations for standard 2-D NDWT of depth 3 (b) Tessellations
for scale-mixing 2-D NDWT of depth 3. The shaded regions indicate the diagonal
wavelet coefficients, d(d).
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More details on matrix formulation of NDWT can be found in Kang and Vidakovic

(2016).
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CHAPTER II

NON-DECIMATED COMPLEX WAVELET SPECTRAL

TOOLS

Wavelets have become standard tools in signal and image processing. Of many

versions of a wavelet transforms that are used in such applications, a popular version

is a complex wavelet transform. We denote it as WTc where c refers to complex

instead of CWT that usually stands for continuous wavelet transform. In the past,

the multiresolution analysis based on the complex-valued coefficients had not been

widely utilized since the resulting redundant representations of real signals seemed

to be uninformative (Lina, 1997). It is agreed among experts that desirable proper-

ties for basis functions in functional representation of signals and images should be

orthogonality, symmetry, and compact support (Gao and Yan, 2011). Orthogonality

is important because of representational parsimony (Mallat, 2009). In particular, the

orthogonality is important for a coherent definition of power spectra because of energy

preservation. The symmetry is especially desired when dealing with images (Antonini

et al, 1992). In particular, the study in Simoncelli and Adelson (1996) showed that

symmetric basis functions can prevent directional distortions via an orientation-free

representation of features. Finally, functional representations should be computation-

ally efficient and local which requires compact support for decomposing functions.

These three desirable properties in the wavelet context are only available by the or-

thogonal complex wavelets with an odd number of vanishing moments. The Haar

wavelet is an exception (Lawton, 1993). For Daubechies complex wavelets in Lina

(1997), these characteristics result from the underlying differential operators defining
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the complex-valued multiresolution. Even though the complex wavelets are orthogo-

nal, the representations are redundant because of complex-valued coefficients. This

provides for a potential benefit of phase information (Jeon et al, 2014). Because

of this supplemental phase information the complex wavelets have been utilized in

various fields including motion estimation (Magarey and Kingsbury, 1998), texture

image modeling (Portilla and Simoncelli, 2000), signal denoising (Achim and Ku-

ruoglu, 2005; Remenyi et al, 2014), NMR spectra classification (Kim et al, 2008), and

mammogram images classification (Jeon et al, 2014).

Although orthogonal transforms are minimal, mathematically elegant, and easy

to implement, they suffer from the Balian-Low obstacle concerning simultaneous lo-

cality in the time and scale domains. Redundant dictionaries can be constructed

that preserve the ease of computation and do not suffer from the Balian-Low limita-

tions by sacrificing the orthogonality property. As a compromise, the non-decimated

wavelet transform (NDWT) is a superposition of many orthogonal transforms, and

as such preserves the ease of computation but results in redundant representations.

As we look at some alternative names of NDWT such as “stationary wavelet trans-

form,” “time-invariant wavelet transform,” “á trous transform,” or “maximal overlap

wavelet transform”, they all refer to its two properties: redundancy and translation

invariance, both absent in traditional orthogonal discrete wavelet transforms (DWT).

Non-decimated wavelet transform represents a dense discrete sample of coefficients

from continuous wavelet transforms, which results in their structural redundancy.

Operationally, non-decimated wavelet transform is performed by Mallat’s algorithm

without decimation: a repeated filtering with a minimal shift at all dyadic scales.

Consequently, at each multiresolution level the number of wavelet coefficients is the

same as the size of the original data. Although the non-decimated wavelet transform

increases computational complexity, it has been widely used particularly because of

the usefulness of redundancy and an easy way to adjust for the energy preservation.
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More details on some additional benefits over the standard WT can be found in Kang

and Vidakovic (2016).

In this chapter we propose a non-decimated complex wavelet transform (NDWTc)

that is a combination of the aforementioned two types of wavelet transform. The

WTc produces complex-valued redundant type of wavelet coefficients and the non-

decimated wavelets have a redundant structure of wavelet coefficients. We call the

former componential redundancy and the latter structural redundancy. Since they

represent different types of redundancy, we suggested that their combination can be

beneficial in feature extraction.

A study in Jeon et al (2014) suggested a classification procedure for mammogram

images based on obtained spectral slope based on the modulus and average of phases

at the finest level, constructed from coefficients in WTc. The novelty of that approach

was that it calculated a descriptor based on phases of complex wavelet coefficients

and used it as an additional input in machine learning tasks. The authors in Jeon

et al (2014) showed that use of phase increased the precision of the classification.

We suggest that this performance can be improved by incorporating the phase

information from all detail levels in the multiresolution analysis. Different levels

of detail in the multiresolution hierarchy carry almost independent information on

the signal behavior on various scales. Experimental evidence showed that phase

information from the coarser scales can serve as useful summaries in classification

algorithms. Besides, the accuracy can be increased more when the WTc is used

with the NDWT together because of the redundancy. This is because level based

summaries are obtained from large number of coefficients. One criticism could be

that the increased dependence of the coefficients within the level in non-decimated

transforms can be detrimental to the summary statistics. It is true that this would be

an impediment for the estimation inference, but not so for the classification because

the possible bias in the summaries affects the coefficients from different classes in the
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same way.

The one of disadvantages of standard wavelet transforms is that they are effi-

ciently applied only to signals and square-sized images whose dimensions are dyadic,

even for the complex wavelets and convolution-based non-decimated wavelets (Lina,

1999; Percival and Walden, 2000). In practice, this is a serious limitation and to

overcome it one increases the computational complexity. We construct the matrix-

based NDWT in Kang and Vidakovic (2016) with complex-valued filters in order to

have an automatic transform for the signals and images of arbitrary size. Thus, this

property of matrix-based implementation gives us more flexibility that is necessary

for tackling real-world data. We note that the use of matrix-based transform is not

practical for very long 1-D signals, in which case special sparse matrix representation

and operations have to be used, which ultimately boils down to the Mallat’s algo-

rithm. But for the 2-D transforms, this is not the case. If the computer can store

the data matrix, then it can store the transformation matrix as well and can perform

the matrix multiplication to transform. Most real-life images are of order of tens

megapixels, so the matrix-type transforms are readily implementable even on modest

personal computers.

This chapter is organized as follows. Section 2.1 describes the NDWTc for 1-D

and 2-D cases, respectively. For the 2-D case, we present a scale-mixing 2-D NDWTc.

Section 2.2 illustrates a non-decimated complex wavelet spectra based on the modulus

of the wavelet coefficients, while Section 2.3 proposes an effective way of utilizing

the phase information leading to phase-based summaries enhancing discriminatory

analysis of signal and images. Section 2.4 demonstrates a power of the proposed

method with 1-D and 2-D applications and Section 2.5 contains some remarks and

directions for future study.
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2.1 Non-decimated Complex Wavelet Transform

The wavelet and scaling functions for complex wavelets in Lawton (1993), Strang

and Nguyen (1996), Lina (1999), and Zhang et al (1999) satisfy

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k) = h(x) + ig(x), (29)

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k) = w(x) + iv(x), (30)

where hk denotes the low pass filter and gk is defined as

gk = (−1)kh1−k,

where h1−k denotes a complex conjugate of h1−k.

Using the complex wavelet bases, in this section, we define the non-decimated

complex wavelet transform (NDWTc) separately for 1-D and 2-D cases by connecting

the complex scaling and wavelet functions in non-decimated fashion.

2.1.1 1-D case

Suppose that a data vector y = (y0, y1, . . . , ym−1) of size m is given and that a

multiresolution framework is specified. To understand the interplay between trans-

form applied to discrete data and wavelet series representation of the function, we

can link the data vector y to a function f in terms of shifts of the scaling function at

a multiresolution level J as follows:

f(x) =
m−1∑
k=0

ykφJ,k(x)

where J − 1 < log2m ≤ J , i.e. J = dlog2me, and

φJ,k(x) = 2
J
2 φ(2J(x− k)).

Since we consider the complex-valued filters in this wavelet transform, the scaling

function is also complex-valued function as in Equation (29). Note that 2J(x− k) is
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used as an argument of scaling function, instead of 2Jx− k as in traditional wavelet

transform, since we do not decimate.

Similarly, we can also express the data interpolating function f in terms of wavelet

coefficients as

f(x) =
m−1∑
k=0

cJ0,kφJ0,k(x) +
J−1∑
j=J0

m−1∑
k=0

dj,kψj,k(x)

where

φJ0,k(x) = 2
J0
2 φ
(
2J0(x− k)

)
,

ψj,k(x) = 2
j
2ψ
(
2j(x− k)

)
,

and J0 is the coarsest decomposition level. Note that the non-decimated complex

wavelet coefficients, cJ0,k and dj,k, have both real and imaginary parts as

cJ0,k = Re(cJ0,k) + i · Im(cJ0,k),

dj,k = Re(dj,k) + i · Im(dj,k) for j = J0, . . . , J − 1. (31)

On the basis of these complex-valued wavelet coefficients we will, in the later sec-

tions, construct a wavelet spectra of modulus and as well as level-dependent phase

summaries.

For a decomposition depth p = J − J0, the NDWTc transform of a vector y

consists of a vector of “smooth” coefficients serving as a coarse approximation of y ,

c(J0) = (cJ0,0, cJ0,1, . . . , cJ0,m−1),

and a set of “detail” coefficients containing information about the localized features

in the data

d (j) = (dj,0, dj,1, . . . , dj,m−1), j = J0, . . . , J − 1.

The total number of coefficients of each vector is always m, which implies the re-

dundancy of non-decimated transforms in contrast to the length-preserving standard
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DWT. This results in total of (p+1)×m wavelet coefficients, with p standing for num-

ber of levels of detail and 1 for the coarse level. The constancy of the level-wise shifts

enables the NDWTc to be time invariant. The Mallat type algorithm for NDWTc

is graphically illustrated in Figure 13. The coefficients in shaded boxes comprise the

transform.

Figure 13: Graphical illustration of the NDCWT Mallat algorithm. The NDCWT
decomposes the original signal of size m to p+ 1 multiresolution subspaces including
p levels of detail coefficients and one level of coarse coefficients. The coefficients of
the transform d(J−1),d(J−2), . . . ,d(J−p), and c(J−p) are in the shaded blocks.

Since the non-decimated wavelet transform is linear, the wavelet coefficients can

be linked to the original signal by a matrix multiplication. For the proposed NDWTc,

we apply the complex scaling and wavelet filters in Equation (29) and (30) into the

matrix formulation of NDWT defined in Kang and Vidakovic (2016) to obtain a

matrix W
(p)
m . This matrix corresponds to a non-decimated complex wavelet transform

of depth p, that is with p levels of detail, and with m as the size of input data.

As we indicated earlier, the reason why we prefer the matrix-formulation is that it

provides more flexibility especially in the 2-D case, with only a slight increase of

computational complexity. Details for constructing the W
(p)
m can be found in Kang

and Vidakovic (2016). With use of W
(p)
m we can transform a 1-D signal y of size m

to a non-decimated complex vector d

d = W (p)
m · y
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where p is a depth of the transform and p and m are arbitrary. When the matrix

wavelet transforms is used, one needs a weight matrix, T
(p)
m , to reconstruct back y

from d. The need for a weight matrix is caused by the inherent redundancy of the

transform, and serves for deflation of the energy inflated by the transform. The weight

matrix T
(p)
m is defined as

T (p)
m = diag(

2m︷ ︸︸ ︷
1/2p, . . . , 1/2p,

m︷ ︸︸ ︷
1/2p−1, . . . , 1/2p−1, . . . ,

m︷ ︸︸ ︷
1/2, . . . , 1/2). (32)

By using the weight matrix, the perfect reconstruction can be obtained as

y = (W (p)
m )′ · T (p)

m · d.

Graphical illustrations of matrix-based NDWTc for 1-D doppler signal is displayed

in Figure 14.
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Figure 14: An example of matrix-based NDCWT for a Doppler signal of length 300.
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2.1.2 2-D case

Next, we extend the 1-D definitions to the scale-mixing 2-D NDWTc of f(x, y)

where (x, y) ∈ R2. The representation of non-decimated complex wavelets in 2-D

can be implemented through one scaling function and three wavelet functions defined

using Equations (29) and (30) as follows:

φ(x, y) = φ(x)φ(y) = Θ(x, y) + iΨ(x, y),

ψ(h)(x, y) = φ(x)ψ(y) = ξ(h)(x, y) + iζ(h)(x, y),

ψ(v)(x, y) = ψ(x)φ(y) = ξ(v)(x, y) + iζ(v)(x, y),

ψ(d)(x, y) = ψ(x)ψ(y) = ξ(d)(x, y) + iζ(d)(x, y), (33)

where symbols h, v, and d denote the horizontal, vertical, and diagonal directions,

respectively. This h, v, d -notation is standardly used in 2-D wavelet literature and

refers to directions in which the features are located in the hierarchy of multiresolution

subspaces.

2.1.2.1 Scale-Mixing 2-D Non-decimated Complex Wavelet Transform

Although various versions of the 2-D WT can be constructed by appropriate tes-

sellations of the detail spaces, here we utilize the scale-mixing 2-D NDWTc. As we

will argue later, the use scale-mixing version is motivated by its remarkable flexibility,

compressibility, and ease of computation.

For the scale-mixing 2-D NDWTc, we define the wavelet atoms as follows:

φJ01,J02,k1,k2(x, y) = ΘJ01,k1,k2(x, y) + iΨJ02,k1,k2(x, y),

ψ
(h)
J01,j2,k1,k2

(x, y) = ξ
(h)
J01,k1,k2

(x, y) + iζ
(h)
j2,k1,k2

(x, y),

ψ
(v)
j1,J02,k1,k2

(x, y) = ξ
(v)
j1,k1,k2

(x, y) + iζ
(v)
J02,k1,k2

(x, y),

ψ
(d)
j1,j2,k1,k2

(x, y) = ξ
(d)
j1,k1,k2

(x, y) + iζ
(d)
j2,k1,k2

(x, y), (34)

where k1 = 0, . . . ,m−1, k2 = 0, . . . , n−1, j1 = J01, . . . , J−1, j2 = J02, . . . , J−1, and

J = dlog2 min(m,n)e. Note that J01 and J02 are the coarsest decomposition levels of
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rows and columns. Then any function f ∈ L2(R2) can be expressed as

f(x, y) =
∑
k1

∑
k2

cJ01,J02,k1,k2φJ01,J02,k1,k2(x, y)

+
∑
j2>J02

∑
k1

∑
k2

d
(h)
J01,j2,k1,k2

ψ
(h)
J01,j2,k1,k2

(x, y)

+
∑
j1>J01

∑
k1

∑
k2

d
(v)
j1,J02,k1,k2

ψ
(v)
j1,J02,k1,k2

(x, y)

+
∑
j1>J02

∑
j2>J01

∑
k1

∑
k2

d
(d)
j1,j2,k1,k2

ψ
(d)
j1,j2,k1,k2

(x, y),

which defines a scale-mixing NDWTc. Unlike the standard 2-D NDWTc denoting

a scale as only j, we denote such mixed two scales as a pair (j1, j2) capturing the

energy flux between the scales.

Finally, the resulting scale-mixing non-decimated complex wavelet coefficients are

cJ01,J02,k1,k2 =

∫∫
f(x, y)φJ01,J02,k1,k2(x, y) dxdy

= Re(cJ01,J02,k1,k2) + i · Im(cJ01,J02,k1,k2),

d
(h)
J01,j2,k1,k2

=

∫∫
f(x, y)ψ

(h)

J01,j2,k1,k2
(x, y) dxdy

= Re(d
(h)
J01,j2,k1,k2

) + i · Im(d
(h)
J01,j2,k1,k2

), (35)

d
(v)
j1,J02,k1,k2

=

∫∫
f(x, y)ψ

(v)

j1,J02,k1,k2
(x, y) dxdy

= Re(d
(v)
j1,J02,k1,k2

) + i · Im(d
(v)
j1,J02,k1,k2

),

d
(d)
j1,j2,k1,k2

=

∫∫
f(x, y)ψ

(d)

j1,j2,k1,k2
(x, y) dxdy

= Re(d
(d)
j1,j2,k1,k2

) + i · Im(d
(d)
j1,j2,k1,k2

).

where φ denotes the complex conjugate of φ. Note that the non-decimated complex

wavelet coefficients in Equation (36) have both real and imaginary parts as complex

numbers.

Similar to the 1-D case, we can connect the 2-D wavelet coefficients to the original

image through a matrix equation. Here we apply the complex scaling and wavelet

filters in Equation (33) into the matrix formulation of NDWT to obtain W
(p1)
m and

W
(p2)
n that are non-decimated complex wavelet matrices with p1, p2 detail levels and
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m, n size of row and column, respectively. For 2-D case, using the matrix-formulation

allows to use any non-square image. More rigorous details on these matrix formulation

for real-valued wavelets can be found in Kang and Vidakovic (2016).

Next, we can transform a 2-D image A of size m×n to a non-decimated complex

wavelet transformed matrix B with depth p1 and p2 as

B = W (p1)
m ·A · (W (p2)

n )† (36)

where p1, p2,m, and n are arbitrary. The W † denotes a Hermitian transpose of ma-

trix W . Note that Equation (36) represents a finite-dimensional implementation of

Equation (36) for f(x) sampled in a form of matrix, as f(x, y). Then the resulting

transformed matrix B has a size of (p1 + 1)m × (p2 + 1)n. Similar to the 1-D case,

for perfect reconstruction of A, we need two weight matrices, that is, p1- and p2-level

weight matrices T
(p1)
m and T

(p2)
n . The matrices are defined as in Equation (32) with

different m,n, p1, and p2. By using the weight matrices, the perfect reconstruction

can be performed as

A = W (p1)
m · T (p1)

m ·B · T (p2)
n · (W (p2)

n )†.

Graphical illustrations of matrix-based scale-mixing 2-D NDWTc for a lena image

is displayed in Figure 15.

2.2 Non-decimated Complex Wavelet Spectra

High-frequency, time series data from various sources often possess hidden pat-

terns that reveal the effects of underlying functional differences. Such patterns cannot

be elucidated by basic descriptive statistics or trends in some real-life situations. For

example, the high-frequency pupillary response behavior (PRB) data collected during

computer-based interaction captures the changes in pupil diameter in response to var-

ious stimuli. Researchers found that there may be underlying unique patterns hidden

within PRB data, and these patterns may reveal the intrinsic individual differences
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Figure 15: An example of matrix-based scale-mixing 2-D NDCWT for a lena image
of size 256 × 512. (a) Original image, (b) Recovered image, (c) Real part of non-
decimated complex wavelet transformed image, (d) Imaginary part of non-decimated
complex wavelet transformed image.

in cognitive, sensory and motor functions (Moloney et al, 2006). Yet, such patterns

cannot be explained by the trends and traditional statistical summaries, for the mag-

nitude of the pupil diameter depends on the ambient light, not on the inherent eye

function or link to the cognitive task. When the intrinsic individual functional differ-

ences cannot be modeled by statistical tools in the domain of the data acquisition, the

transformed time/scale or time/frequency domains may help. High frequency data as

a rule scale, and this scaling can be quantified by the Hurst exponent as an optional

measure to characterize the patients.

The Hurst exponent is an informative summary of the behavior of self-similar
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processes and is also related to the presence of long memory and degree of fractality

in signals and images. Among many methods for estimating the Hurst exponent,

the wavelet-based methods have shown to be particularly accurate. The main con-

tribution of this chapter is a construction of the non-decimated complex wavelet

spectra with extension of the method into the scale-mixing 2-D non-decimated com-

plex wavelet spectra for 2-D case, all with the goal of assessing the Hurst exponent or

its equivalent spectral slope. As a bonus, the complex valued wavelets would provide

informative multiscale phase information.

Next we briefly overview the notion of self-similarity and its link with the Hurst

exponent. Suppose that a random process {X(t), t ∈ R} for some λ > 0 satisfies

X(λt)
d
= λHX(t) for any

where
d
= stands for equality of all joint finite-dimensional distributions, then, X(t) is

self-similar with self-similarity index H, traditionally called Hurst exponent.

If X(t) is transformed in the wavelet domain and dj,k is the wavelet coefficient at

scale j and shift k in standard DWT, can be shown that

dj,k
d
= 2−j(H+ 1

2
)d0,k.

Here the notation
d
= denotes the equality in distribution. For the non-decimated

complex wavelets, however, dj,k is a complex number, as in Equation (31), and we

use |dj,k| for a modulus of dj,k,

|dj,k| =
√
Re(dj,k)2 + Im(dj,k)2, j = J0, . . . , J − 1.

The Equation (2.2) now can be re-stated as

|dj,k|
d
= 2−j(H+ 1

2
)|d0,k|, j = J0, . . . , J − 1.

If the process X(t) possesses stationary increments, for any q > 0, E(|d0,k|) = 0 and

E(|d0,k|q) = E(|d0,0|q). Thus,

E(|dj,k|q) = C2−jq(H+ 1
2

), j = J0, . . . , J − 1 (37)
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where C = E(|d0,0|q). Although q could be arbitrary nonnegative, here we will use

standard q = 2 that has “energy” interpretation. By taking logarithms on both sides

in Equation (37), we can obtain the non-decimated complex wavelet spectrum of X(t)

as

S(j) = log2(E(|dj,k|2)) = −j(2H + 1) + C ′, j = J0, . . . , J − 1. (38)

Note that the wavelet spectrum describes the relationship between the scales and

energies at the scales. If along the scales the energies decay regularly, this indicates

that there is a regular scaling in the data, and we can measure a self-similarity via

a rate of energy decay. Operationally, we find the slope in regression of log energies

to scale indices, as in Equation (38), and use it to estimate the Hurst exponent. For

discrete observed data of size m, we use empirical counterpart of S(j) defined as

Ŝ(j) = log2

1

m

m∑
k=1

|dj,k|2 = log2 |dj,k|2, j = J0, . . . , J − 1.

We can plot the set of Ŝ(j) against j as
(
j, Ŝ(j)

)
, which is called 2nd order Logscale

Diagram (2-LD) and this is the wavelet spectra as displayed in Figure 16. Finally, we

can estimate the slope of the spectra usually by regression methodology (an ordinary,

weighted, or robust regression) and use it to estimate the Hurst exponent H, as

Ĥ = −(slope + 1)/2. More details on wavelet spectra method and its applications

can be found in Veitch and Abry (1999), Mallat (2009), Ramı́rez and Vidakovic

(2013), and Roberts et al (2017).

2.2.1 Scale-Mixing 2-D Non-decimated Complex Wavelet Spectra

To introduce a scale-mixing 2-D non-decimated complex wavelet spectra, consider

a 2-D fractional Brownian motion (fBm) in two dimensions, BH(u) for u ∈ [0, 1]×[0, 1]

and H ∈ (0, 1). The 2-D fBm, BH(u), is a random process with stationary zero-mean

Gaussian increments leading to

BH(at)
d
= aHBH(t) for any a ≥ 0.
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Figure 16: Examples of non-decimated complex wavelet spectra using the modulus
of coefficients. The slopes are -1.53007, -2.01486, and -2.45532 corresponding to
estimator Ĥ = 0.2650, 0.5074, and 0.7277. The original 4096-length signals were
simulated as a fBm with Hurst exponent 0.3, 0.5, and 0.7.

For this process, the scale-mixing non-decimated complex wavelet detail coefficients

can be defined as

d(j1,j2+s,k1,k2) = 2
1
2

(j1+j2+s)

∫
BH(u)ψ

(
2j1(u1 − k1), 2j2+s(u2 − k2)

)
du

where ψ denotes the complex conjugate of ψ(d) defined in Equation (34). In this

chapter, we only consider the main diagonal hierarchy whose 2-D scale indices coincide

as j1 = j2 = j and thus J01 = J02 = J0.

Since the d(j,j+s,k1,k2) is a complex number, we need to consider its modulus

|d(j,j+s,k1,k2)| =
√
Re(d(j,j+s,k1,k2))2 + Im(d(j,j+s,k1,k2))2, j = J0, . . . , J − 1.

Then average of squared modulus of the coefficients is calculated as

E
[
|d(j,j+s,k1,k2)|2

]
= 22j+s

∫
ψ
(
2j(u1 − k1), 2j+s(u2 − k2)

)
× ψ

(
2j(v1 − k1), 2j+s(v2 − k2)

)
E [BH(u)BH(v)] du dv. (39)
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As a result, the Equation (39) can be restated as

E
[
|d(j,j+s,k1,k2)|2

]
= 2−j(2H+2) Vψ,s(H), (40)

and its proof is provided in Jeon et al (2014). Note that Vψ,s(H) does not depend on

the scale j but on ψ, H and s. Finally, the scale-mixing 2-D non-decimated complex

wavelet spectrum is defined by taking logarithms on both sides of the Equation (40),

S(j, j + s) = log2(E(|dj,j+s,k1,k2|2)) = −j(2H + 2) + C ′, j = J0, . . . , J − 1.

Similar to the 1-D case, its empirical counterpart is

Ŝ(j, j + s) = log2

1

mn

m∑
k1=1

n∑
k2=1

|dj,j+s,k1,k2|2 = log2 |dj,j+s,k1,k2|2, j = J0, . . . , J − 1

where m and n are row and column sizes, respectively. The way of constructing

wavelet spectra goes along the lines of the construction in 1-D case, except for the

expressing the Hurst exponent from the slope. In the 2-D case H is estimated as

Ĥ = −(slope + 2)/2.

2.3 Phase-based Statistics for Classification Analysis

In the area of Fourier representations, there is a considerable of interest about

the information the phase carries about signals or images (Oppenheim and Li, 1981;

Levi and Stark, 1983). For complex wavelet domains, there is also an interest about

information related to interactions between scales and spatial symmetries contained

in the phase, as investigated by Lina (1997), Lina (1999), and Jeon et al (2014).

Therefore, it is natural to explore the role of phase in the complex-valued wavelet

coefficients of signals or images. Theoretically, it is known that the original signal

can be reconstructed from the phase information only. We briefly describe two exper-

iments conducted in Oppenheim and Li (1981) and Jeon et al (2014) for the Fourier

and wavelet transforms, respectively. Both experiments transformed two different im-

ages of the same size to complex-valued domains and from the coefficients obtained
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modulus and phases. Then the phase information was switched and images were

reconstructed from the original modulus and switched phases. Surprisingly, both re-

constructed images were more alike to the phase corresponding images, that is, the

phase information dominated the modulus information. Motivated by these exper-

iment results, Jeon et al (2014) proposed a way of utilizing phase information for

discriminatory analysis. They suggested a summary statistic of the phases at the

finest levels and demonstrated in a particular classification task the accuracy can be

improved, albeit only slightly. This is because the phases from the finest level only

were used. Wavelet coefficients at each level, however, have slightly different infor-

mation on the given data, which is the one of advantages of their multiresolution

nature. Generally, the phase information from different levels may be complemen-

tary. If we utilize phase information on the other levels, an overall accuracy would

be further improved. In this section we propose more extensive phase-based modal-

ities using NDWTc for signal or image classification problems to improve an overall

performance.

The phase of a non-decimated complex wavelet coefficient defined in Equation

(31) is

∠dj,k = arctan

(
Im(dj,k)

Re(dj,k)

)
,

∠d(j,j+s,k1,k2) = arctan

(
Im(d(j,j+s,k1,k2))

Re(d(j,j+s,k1,k2))

)
for 1-D and 2-D cases, respectively. Then, an average of phases at level j for both

cases can be calculated as

∠dj =
1

m

m∑
k=1

∠dj,k, j = J0, . . . , J − 1, (41)

∠dj,j+s =
1

mn

m∑
k1=1

n∑
k2=1

∠d(j,j+s,k1,k2), j = J0, . . . , J − 1

for 1-D and 2-D cases, respectively. Finally, we set the averages of phases at all

considered multiresolution level j as new descriptors in a wavelet-based classification
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analysis. Note that these descriptors do not indicate any scaling regularity, unlike

the modulus, as seen in Figure 17.
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Figure 17: Visualization of phase averages at all multiresolution levels.

2.4 Applications

Since the proposed methods in Chapter 2, 3, and 4 share the same datasets, we set

aside all analysis results in Chapter 5 (APPLICATIONS). In particular, the detail

explanations in terms of NDWTc for all four applications can be found in section

5.1.3.1, 5.2.3.1, 5.3.3.1, and 5.4.3.1.

2.5 Conclusions and Future Studies

In this chapter we explored a non-decimated complex wavelet transform (NDWTc)

for both 1-D and 2-D cases. We demonstrated that the proposed spectra performs

well in classification problems, with phase-based statistics improving the classification

accuracy. We presented comparative simulations in four real-life applications and

found that the classification procedures induced by the NDWTc outperforms the
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WTc and NDWT. Thus, the NDWTc may be of interest to researchers seeking more

efficient wavelet-based classification method for signals or images with intrinsic self-

similarity.

As possible future directions we may be interested in different ways of calculating

the spectral slopes, as similarly as in Hamilton et al (2011) or Feng et al (2018).

Additionally, for the scale-mixing 2-D NDWTc, using d(h) and d(v) in addition to

d(d) for phase statistics could potentially improve the performance. Finally using

different wavelet filters for rows and columns in the scale-mixing 2-D NDWTc would

provide more modeling freedom. For instance, one can search for a wavelet, or pair of

wavelets, in a library of complex-valued wavelets for which classification is optimal.

In the spirit of reproducible research we prepared an illustrative demo as a stand

alone MATLAB software with solved examples. The demo is posted on the repository

Jacket Wavelets http://gtwavelet.bme.gatech.edu/.
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CHAPTER III

NON-DECIMATED QUATERNION WAVELET

SPECTRAL TOOLS

The redundancy in WTc in Section 1.5 and the NDWT in Section 1.7 is of dif-

ferent nature. The Chapter 2 focused on non-decimated complex wavelet transforms

(NDWTc) that combine WTc and NDWT. Specifically, NDWTc produces redundant

wavelet coefficients both as complex numbers and by NDWT as oversampled. The

chapter suggested a way of building phase-based statistics as variables for classifica-

tion problems and showed significant increase in precision of classification, compared

to other existing wavelet-based methods. Furthermore, the NDWTc is more flexible

than the decimated wavelet transforms because of the matrix-based implementation

proposed in Kang and Vidakovic (2016). The decimated wavelet transform methods

including WTc and even convolution-based NDWT can be routinely applied to signals

and squared images dyadic sizes (Lina, 1999; Percival and Walden, 2006). However,

a real-world data typically do not have such sizes and need pre-processing prior to

application. The matrix-based NDWT enables us to directly analyze 1-D signals of

an 2-D images of arbitrary size. More details can be found in Kang and Vidakovic

(2016).

As an extension of the methodology suggested in Chapter 2, given the useful

characteristics of the QWT in Section 1.6 and matrix-based NDWT in Section 1.7,

we propose a non-decimated quaternion wavelet transform (NDQWT) and its wavelet

spectra defined by quaternionic modulus and the three phases. Since the QWT is

an extension of the WTc, we expect that classification accuracy would improve with

QWT-defined spectral tools. The modulus of the QWT behaves as the wavelet spectra
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in a conventional wavelet transform, so that our main focus is on the contribution by

the three phases. Several researches including Billow (1999) and Soulard and Carre

(2010) also focused on exploiting phases of quaternion wavelets. However, as far as

we know, there is no proposal of quaternionic phase-based levelwise statistics for use

in classification problems, and wider, for machine learning. Also, as we pointed out,

existing use of phase depended on the artificially constructed QWT. Taken together

with non-decimated nature of the underlying transform, the proposed spectral tools

are novel in terms of providing new modalities for classification problems. And finally,

the goal of this study is to demonstrate superiority of the proposed method over

several competing wavelet-based methods through applications in real-data.

The chapter is organized as follows. Next, Section 3.1 explains the NDQWT for

1-D and 2-D cases, respectively. For the 2-D case, we present the scale-mixing version

of 2-D NDQWT. Section 3.2 describes the non-decimated quaternion wavelet-based

spectra focusing on the modulus information of the coefficients, while Section 3.3 sug-

gests construction of a three phase-based statistics as new covariates in discriminatory

analysis. In Section 3.4, the proposed tools are applied on 1-D and 2-D real-data,

and finally, concluding remarks and directions for future study are given in Section

3.5.

3.1 Non-decimated Quaternion Wavelet Transform

The quaternion scaling and wavelet functions in Bayro-Corrochano (2005) and

Chan et al (2008) satisfy

φ(x) =
∑
k∈Z

hk
√

2φ(2x− k) = w0(x) + i · w1(x) + j · w2(x) + k · w3(x), (42)

ψ(x) =
∑
k∈Z

gk
√

2φ(2x− k) = v0(x) + i · v1(x) + j · v2(x) + k · v3(x), (43)

where hk denotes the low pass filter and gk is the high pass filter. We define the

non-decimated quaternion wavelet transform (NDQWT) separately for 1-D and 2-D
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cases by connecting the quaternion low- and high-pass filters with a non-decimation

property.

3.1.1 1-D case

Given a specified a multiresolution framework and a data vector y = (y0, y1, . . . , ym−1)

of size m, the discrete data vector y can be connected to a function f which is a linear

combination of shifts of the scaling function at some decomposition level J ,

f(x) =
m−1∑
k=0

ykφJ,k(x) (44)

where J − 1 < log2m ≤ J , i.e. J = dlog2me and

φJ,k(x) = 2
J
2 φ(2J(x− k)). (45)

For the NDQWT, the scaling functions in Equation (44) and (45) will be the quaternion-

valued scaling functions from Equation (42).

Alternatively, the data interpolating function f also can be represented in terms

of wavelet coefficients as follows:

f(x) =
m−1∑
k=0

cJ0,kφJ0,k(x) +
J−1∑
j=J0

m−1∑
k=0

dj,kψj,k(x), (46)

where

φJ0,k(x) = 2
J0
2 φ
(
2J0(x− k)

)
,

ψj,k(x) = 2
j
2ψ
(
2j(x− k)

)
, (47)

and J0 is the coarsest decomposition level. Note that 2J(x− k) is used inside of the

scaling function in Equation (45) and (47) instead of 2Jx− k for the traditional deci-

mation in wavelet domain in order to make this wavelet decomposition non-decimated.

By using 2J(x−k), the shift indicator k remains constant at all levels, and this corre-

sponds to levelwise sampling rate that results in the non-decimation. In comparison,
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for DWT case, the shifts are level dependent as 2−jk. After performing the NDQWT

on the vector y , one obtains a vector of smooth coefficients as

c(J0) = (cJ0,0, cJ0,1, . . . , cJ0,m−1) (48)

which corresponds to the coarsest approximation of y . Likewise, the vectors of detail

coefficients are given as

d (j) = (dj,0, dj,1, . . . , dj,m−1), j = J0, . . . , J − 1, (49)

which carry fine-scale information within the input y . Of course, the number of

coefficients in the vectors c(J0) and d (j) is always m and this is due to the non-

decimated property of NDQWT. As a result, we obtain total (p + 1) × m wavelet

coefficients, with pm details and p coarse coefficients. The Mallat type of algorithm

for forward NDQWT is graphically illustrated in Figure 18.

Figure 18: Graphical illustration of the Mallat algorithm. The NDQWT decomposes
the original signal of size m to p+1 multiresolution subspaces comprising of p levels of
detail coefficients and one level of coarse coefficients. The The shaded boxes represent
the transformation, d(J−1),d(J−2), . . . ,d(J−p), and c(J−p).

Next we focus on each wavelet coefficient in Equation (48) and (49). Since the scal-

ing and wavelet functions in Equation (47) are quaternion-valued, the non-decimated

quaternion wavelet coefficients cJ0,k and dj,k in Equation (46) have one real and three
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imaginary parts as

cJ0,k = Re(cJ0,k) + i · Imi(cJ0,k) + j · Imj(cJ0,k) + k · Imk(cJ0,k),

dj,k = Re(dj,k) + i · Imi(dj,k) + j · Imj(dj,k) + k · Imk(dj,k), (50)

where j = J0, . . . , J − 1 and Imi(q) = q1, Imj(q) = q2, and Imk(q) = q3. These

quaternion-valued wavelet coefficients would be considered in the later sections for

construction of a NDQWT-based spectra, as well as level-dependent phase summaries.

Note that the multiresolution levels and location parameters have been conven-

tionally denoted as j and k in wavelet-based multiresolution analysis and this is the

same for the j and k denoting the second and third imaginary unit in the quaternion

algebra. These duplicated denotations can cause a little confusing expression of the

quaternion-valued wavelet coefficients, dj,k in Equation (50). However, they can be so

clearly and easily separated in the context that we would continuously denote both

multiresolution level and second imaginary unit as the j, and both location parameter

and third imaginary unit as the k.

Unlike standard convolution-based approach, the matrix-based NDWT can pro-

vide several additional features. First, the matrix-formulation allows us to use any

non-dyadic size signal. Due to typical sizes of the signals and images processed, the

matrix based transform does not significantly increase practical computational com-

plexity. Thus, we incorporate the quaternion scaling and wavelet filters in Equation

(42) into the matrix formulation of NDWT in order to utilize its convenient prop-

erties. We obtain a non-decimated quaternion wavelet matrix, W
(p)
m , that is formed

directly from quaternion wavelet filter coefficients with p detail levels and m size of in-

put data. Details for constructing W
(p)
m are explained in Kang and Vidakovic (2016).

To obtain a non-decimated quaternion wavelet transformed vector d with depth p

from a 1-D signal y of size m× 1, we multiply y by W
(p)
m as

d = W (p)
m · y,
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where p andm are arbitrary. For the reconstruction from d to d, we need an additional

weight matrix for W
(p)
m as T

(p)
m that is defined as

T (p)
m = diag(

2m︷ ︸︸ ︷
1/2p, . . . , 1/2p,

m︷ ︸︸ ︷
1/2p−1, . . . , 1/2p−1, . . . ,

m︷ ︸︸ ︷
1/2, . . . , 1/2). (51)

Utilizing the weight matrix, T
(p)
m , we can perform the perfect reconstruction as

y = (W (p)
m )† · T (p)

m · d

where the W † denotes a Hermitian transpose matrix of W . Graphical illustrations of

matrix-based NDQWT is displayed in Figure 19.
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Figure 19: An example of matrix-based NDQWT of a Doppler signal of length 300.
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3.1.2 2-D case

The real power of matrix implementation of wavelet transforms can be seen in

2-D cases, where the so called scale-mixing property is utilized. The scale-mixing

transforms typically have lower entropy compared to traditional 2-D transforms which

is beneficial in tasks of wavelet shrinkage. For the scaling analysis, scale mixing

transforms enable definition of a range of spectra along the hierarchies of scale-mixing

spaces. In this chapter, we focus only on diagonal hierarchy, but emphasize that the

spectral tools can be further generalized.

In this section, the 1-D NDQWT from Section 3.1.1 is extended to a scale-mixing 2-

D NDQWT of f(x, y) where (x, y) ∈ R2. The decomposition has one scaling function

and three wavelet functions defined as tensor product of functions Equations (42):

φ(x, y) = φ(x)φ(y)

= µ(x, y) + iα(x, y) + jβ(x, y) + kγ(x, y),

ψ(h)(x, y) = φ(x)ψ(y)

= ξ(h)(x, y) + iζ(h)(x, y) + jγ(h)(x, y) + kω(h)(x, y), (52)

ψ(v)(x, y) = ψ(x)φ(y)

= ξ(v)(x, y) + iζ(v)(x, y) + jγ(h)(x, y) + kω(h)(x, y),

ψ(d)(x, y) = ψ(x)ψ(y)

= ξ(d)(x, y) + iζ(d)(x, y) + jγ(h)(x, y) + kω(h)(x, y),

where symbols h, v, d denote the horizontal, vertical, and diagonal directions, respec-

tively.

3.1.2.1 Scale-Mixing 2-D Non-decimated Quaternion Wavelet Transform

The various versions of the 2-D WT with appropriate tessellations of the detail

spaces have been considered in 2-D wavelet literature. Here we focus on the scale-

mixing 2-D wavelet transform because of its remarkable flexibility, compressibility,
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and ease of computation (Ramı́rez and Vidakovic, 2013). From the scaling and wavelet

functions in Equations (52) the wavelet atoms of the scale-mixing 2-D NDQWT can

be represented as

φJ01,J02,k1,k2(x, y) = µJ01,k1,k2(x, y) +

i · αJ02,k1,k2(x, y) + j · βJ02,k1,k2(x, y) + k · γJ02,k1,k2(x, y),

ψ
(h)
J01,j2,k1,k2

(x, y) = ξ
(h)
J01,k1,k2

(x, y) +

i · ζ(h)
j2,k1,k2

(x, y) + j · γ(h)
j2,k1,k2

(x, y) + k · ω(h)
j2,k1,k2

(x, y),

ψ
(v)
j1,J02,k1,k2

(x, y) = ξ
(v)
j1,k1,k2

(x, y) + (53)

i · ζ(v)
J02,k1,k2

(x, y) + j · γ(v)
j2,k1,k2

(x, y) + k · ω(v)
j2,k1,k2

(x, y),

ψ
(d)
j1,j2,k1,k2

(x, y) = ξ
(d)
j1,k1,k2

(x, y) +

i · ζ(d)
j2,k1,k2

(x, y) + j · γ(d)
j2,k1,k2

(x, y) + k · ω(d)
j2,k1,k2

(x, y),

where k1 = 0, . . . ,m−1, k2 = 0, . . . , n−1, j1 = J01, . . . , J−1, j2 = J02, . . . , J−1, and

J = dlog2 min(m,n)e. Notice that J01 and J02 indicate the coarsest decomposition

levels of rows and columns, respectively. Using these definitions, we can express any

function f ∈ L2(R2) via wavelet decomposition as

f(x, y) =
∑
k1

∑
k2

cJ01,J02,k1,k2φJ01,J02,k1,k2(x, y)

+
∑
j2>J02

∑
k1

∑
k2

d
(h)
J01,j2,k1,k2

ψ
(h)
J01,j2,k1,k2

(x, y)

+
∑
j1>J01

∑
k1

∑
k2

d
(v)
j1,J02,k1,k2

ψ
(v)
j1,J02,k1,k2

(x, y)

+
∑
j1>J02

∑
j2>J01

∑
k1

∑
k2

d
(d)
j1,j2,k1,k2

ψ
(d)
j1,j2,k1,k2

(x, y).

This defines a scale-mixing 2-D NDQWT. Unlike the standard 2-D NDQWT using a

single scale denoted by j, here we denote by pair (j1, j2) a mixture of two scales. The

coefficients corresponding to these scale-mixed atoms in the decomposition capture

the local “energy flux” between scales j1 and j2.

68



Finally, we can obtain the scale-mixing non-decimated quaternion wavelet coeffi-

cients as

cJ01,J02,k1,k2 =

∫∫
f(x, y)φJ01,J02,k1,k2(x, y) dxdy

= Re(cJ01,J02,k1,k2) + i · Imi(cJ01,J02,k1,k2) +

j · Imj(cJ01,J02,k1,k2) + k · Imk(cJ01,J02,k1,k2)

d
(h)
J01,j2,k1,k2

=

∫∫
f(x, y)ψ

(h)

J01,j2,k1,k2
(x, y) dxdy

= Re(d
(h)
J01,j2,k1,k2

) + i · Imi(d
(h)
J01,j2,k1,k2

) +

j · Imj(d
(h)
J01,j2,k1,k2

) + k · Imk(d
(h)
J01,j2,k1,k2

) (54)

d
(v)
j1,J02,k1,k2

=

∫∫
f(x, y)ψ

(v)

j1,J02,k1,k2
(x, y) dxdy

= Re(d
(v)
j1,J02,k1,k2

) + i · Imi(d
(v)
j1,J02,k1,k2

) +

j · Imj(d
(v)
j1,J02,k1,k2

) + k · Imk(d
(v)
j1,J02,k1,k2

)

d
(d)
j1,j2,k1,k2

=

∫∫
f(x, y)ψ

(d)

j1,j2,k1,k2
(x, y) dxdy

= Re(d
(d)
j1,j2,k1,k2

) + i · Imi(d
(d)
j1,j2,k1,k2

) +

j · Imj(d
(d)
j1,j2,k1,k2

) + k · Imk(d
(d)
j1,j2,k1,k2

),

where φ denotes the quaternion conjugate of φ defined in Equation (21). As we can

see, the non-decimated quaternion wavelet coefficients in Equation (55) contain one

real and three imaginary parts as quaternion numbers.

Matrix formulation can be used to perform the scale-mixing 2-D NDQWT for

images of any size without a preprocessing work. Transformation of a 2-D image A

of size m × n into a non-decimated quaternion wavelet transformed matrix B with

depth p1 and p2 is implemented as

B = W (p1)
m ·A · (W (p2)

n )†

where p1, p2,m, and n are arbitrary. Also, the W
(p1)
m and W

(p2)
n with p1, p2 detail levels

and m, n size of input data, respectively, are constructed from the quaternion scaling
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and wavelet filters in Equation (52). Then, the resulting transformed matrix B has

a size of (p1 + 1)m× (p2 + 1)n and represents a finite-dimensional implementation of

the Equation (55) for f(x) sampled in a matrix form. To correctly reconstruct the

original image A of size m × n, we need two weight matrices T
(p1)
m and T

(p2)
n with

p1- and p2-level weight matrices, which are equally obtained as Equation (51) with

different m,n, p1, p2. Then the reconstruction can be implemented using the weight

matrices as

A = W (p1)
m · T (p1)

m ·B · T (p2)
n · (W (p2)

n )†.

More rigorous details on these matrix formulation for real-valued wavelets can be

found in Kang and Vidakovic (2016).

Graphical illustrations of matrix-based scale-mixing 2-D NDQWT for a lena image

is displayed in Figure 20.

3.2 Non-decimated Quaternion Wavelet Spectra

Wavelet-based spectra is an efficient tool to estimate Hurst exponent in analyzing

self-similar processes, such as fractional Brownian motion. Any hierarchy of mul-

tiresolution spaces can lead to definition of spectra. Especially important is that the

multiscale analysis is generated by orthogonal filters because of energy preservation

and resulting unbiased spectra. The literature on different approaches to defining a

spectra based on wavelets is vast.

The previous Chapter 2 suggested the non-decimated complex wavelet spectra and

demonstrated that consideration of redundancy and phase information were beneficial

in the tasks of signal and image classification. Here, we extend the complex-valued

method into the quaternion-valued wavelet spectra retaining the non-decimation and

in 2-D case scale-mixing decomposition. First, we will explain this method for 1-D

case and then expand its to 2-D case, by considering the scale-mixing 2-D transforms.

A real-valued stochastic process {X(t), t ∈ R} is said to be self-similar with the
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Imaginary part 2 of non-decimated quaternion wavelet transformed image
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Imaginary part 3 of non-decimated quaternion wavelet transformed image
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Figure 20: An example of matrix-based scale-mixing 2-D NDQWT for a lena im-
age of size 256 × 512. (a) Original image, (b) Recovered image, (c) Real part of
non-decimated quaternion wavelet transformed image, (d) Imaginary part 1 of non-
decimated quaternion wavelet transformed image. (e) Imaginary part 2 of non-
decimated quaternion wavelet transformed image. (f) Imaginary part 3 of non-
decimated quaternion wavelet transformed image.
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Hurst exponent H if

X(λt)
d
= λHX(t) for any λ ∈ R, (55)

where
d
= indicates equality in all joint finite-dimensional distributions. Given Equa-

tion (55), the wavelet coefficient, dj,k, can be represented as

dj,k
d
= 2−j(H+ 1

2
)d0,k (56)

under L2 normalization in a real-valued wavelet transform at fixed dyadic scale j. In

the NDQWT, we need to use a modulus |dj,k| instead of dj,k. The |dj,k| is defined as

|dj,k| =
√
Re(dj,k)2 + Imi(dj,k)2 + Imj(dj,k)2 + Imk(dj,k)2, j = J0, . . . , J − 1.

Then, we can re-state Equation (56)as

|dj,k|
d
= 2−j(H+ 1

2
)|d0,k|, j = J0, . . . , J − 1.

where the numbers of k are all same for each j because of the non-decimation property

of NDQWT. Here the notation
d
= means the equality in all finite-dimensional distri-

butions. When X(t) shows a stationary increment, E(|d0,k|) = 0 and E(|d0,k|q) =

E(|d0,0|q). This leads to

E(|dj,k|q) = C2−jq(H+ 1
2

), j = J0, . . . , J − 1 (57)

where C = E(|d0,0|q). Power q is usually 2, corresponding to “power spectrum, or

energy spectrum” and this would be used in this chapter. By taking logarithms on

both sides of the Equation (57) we obtain a basis for wavelet-based estimation of H,

as

S(j) = log2(E(|dj,k|2)) = −j(2H + 1) + C ′, j = J0, . . . , J − 1.

With all considered scaling levels as j ∈ Z, a set of S(j) represents a wavelet-based

spectra. It describes a transition of energies along the scales. If a signal has a regular

scaling, the energies would regularly decay, the plot of log-energy against the log-scale
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is a straight line. The rate of energy decay, that is, the slope of the regression line,

measures self-similarity of a given signal.

Operationally, we empirically estimate the wavelet-based spectrum, S(j), as

Ŝ(j) = log2

1

m

m∑
k=1

|dj,k|2 = log2 |dj,k|2, j = J0, . . . , J − 1

where m is the number of given data. Then, we can plot a 2nd order Logscale Diagram

(2-LD) that is a set of Ŝ(j) against j as
(
j, Ŝ(j)

)
as displayed in Figure 21. Finally,

we can measure the slope of energy decay by regression methodology (an ordinary,

weighted, or robust regression) and calculate the Hurst exponent H based on the

slope as H = −(slope + 1)/2. More rigorous proof and explanation of wavelet-based

spectra and its applications can be found in Veitch and Abry (1999), Mallat (2009),

and Ramı́rez and Vidakovic (2013).

500 1000 1500 2000 2500 3000 3500 4000

-1

0

1

H=0.3

500 1000 1500 2000 2500 3000 3500 4000

-1.5

-1

-0.5

0

H=0.5

500 1000 1500 2000 2500 3000 3500 4000

-1

-0.5

0

H=0.7

1 2 3 4 5 6 7 8 9 10 11

Multiresolution level

-5

0

5

W
a

v
e

le
t 

s
p

e
c

tr
u

m

-1.40713

1 2 3 4 5 6 7 8 9 10 11

Multiresolution level

-10

-5

0

5

W
a

v
e

le
t 

s
p

e
c

tr
u

m

-1.94054

1 2 3 4 5 6 7 8 9 10 11

Multiresolution level

-15

-10

-5

0

5

W
a

v
e

le
t 

s
p

e
c

tr
u

m

-2.38634

Figure 21: Examples of non-decimated quaternion wavelet spectra using the modulus
of coefficients. The slopes are -1.40713, -1.94054, and -2.38634 corresponding to
estimator Ĥ = 0.2035, 0.4703, and 0.6932. The original 4096-length signals were
simulated as a fBm with Hurst exponent 0.3, 0.5, and 0.7.
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3.2.1 Scale-Mixing 2-D Non-decimated Quaternion Wavelet Spectra

A 2-D fractional Brownian motion (fBm) in two dimensions, BH(u) for u ∈ [0, 1]×

[0, 1] and H ∈ (0, 1), will be used as a model to explain a scale-mixing 2-D non-

decimated complex wavelet spectra. The 2-D fBm, BH(u), is a self-similar process

BH(at)
d
= aHBH(t) for any a ∈ R,

with stationary zero-mean Gaussian increments. When 2-D fBm is decomposed by a

scale-mixing non-decimated quaternion transform, the wavelet detail coefficients are

d(j1,j2+s,k1,k2) = 2
1
2

(j1+j2+s)

∫
BH(u)ψ

(
2j1(u1 − k1), 2j2+s(u2 − k2)

)
du,

where ψ is the quaternion conjugate of ψ(d) defined in Equation (53). We will focus on

the main diagonal hierarchy where the 2-D scale indices coincide, we will use notation

j = j1 = j2 and J0 = J01 = J02 in the sequel.

As in the 1-D case, we need to consider a modulus, |d(j,j+s,k1,k2)|, instead of

quaternion-valued d(j,j+s,k1,k2) defined as:

|d(j,j+s,k1,k2)| =√
Re(d(j,j+s,k1,k2))2 + Imi(d(j,j+s,k1,k2))2 + Imj(d(j,j+s,k1,k2))2 + Imk(d(j,j+s,k1,k2))2,

j = J0, . . . , J − 1.

Next, we can calculate an average of squared modulus of the coefficients as

E
[
|d(j,j+s,k1,k2)|2

]
= 22j+s

∫
ψ
(
2j(u1 − k1), 2j+s(u2 − k2)

)
× ψ

(
2j(v1 − k1), 2j+s(v2 − k2)

)
E [BH(u)BH(v)] du dv,

which be expressed as

E
[
|d(j,j+s,k1,k2)|2

]
= 2−j(2H+2) Vψ,s(H). (58)

This was proven in Jeon et al (2014) for complex wavelets and in Kang and Vidakovic

(2016) for non-decimated wavelets. Here, the Vψ,s(H) can be treated as constant with
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respect to scale j but it depends on ψ, H and s. Finally, we can obtain the scale-

mixing 2-D non-decimated quaternion wavelet spectrum by taking logarithms on both

sides of the Equation (58) as following:

S(j, j + s) = log2(E(|dj,j+s,k1,k2|2)) = −j(2H + 2) + C ′, j = J0, . . . , J − 1.

The empirical counterpart of S(j, j + s) is

Ŝ(j, j + s) = log2

1

mn

m∑
k1=1

n∑
k2=1

|dj,j+s,k1,k2|2 = log2 |dj,j+s,k1,k2|2, j = J0, . . . , J − 1

where m is a row length and n is a column length. To estimate Hurst exponent H we

use the spectral slope as in the 1-D case except that in 2-D case Ĥ = −(slope + 2)/2

instead of Ĥ = −(slope + 1)/2.

3.3 Phase-based Statistics for Classification Analysis

Importance of properly utilizing phase information that is not available for the

real-valued wavelets was exemplified in Jeon et al (2014) and Chapter 2 for the

complex-valued wavelets. Although the spectra based on the phase information can-

not be used to estimate the Hurst exponent, here we suggest the use of phase-based

modalities to improve performance in classification tasks. Given the three phases in

quaternion decompositions, we expect that the discriminatory power of summaries

that include phase modalities would significantly increase.

First, we need to calculate three phases of non-decimated quaternion wavelet

coefficient defined in Equation (50). For 1-D case, substituting the four coefficients,

Re(dj,k), Im
i(dj,k), Im

j(dj,k), and Imk(dj,k) for the q0, q1, q2, and q3, we obtain the three

phases φdj,k , θdj,k , and ψdj,k as explained in Section 1.6.1. It is the same for 2-D case

after replacing the dj,k with d(j,j+s,k1,k2).
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Then, the three phase averages at level j can be obtained as

φj =
1

m

m∑
k=1

φdj,k , θj =
1

m

m∑
k=1

θdj,k , ψj =
1

m

m∑
k=1

ψdj,k , (59)

φj =
1

mn

m∑
k1=1

n∑
k2=1

φd(j,j+s,k1,k2)
, θj =

1

mn

m∑
k1=1

n∑
k2=1

θd(j,j+s,k1,k2)
, ψj =

1

mn

m∑
k1=1

n∑
k2=1

ψd(j,j+s,k1,k2)
,

j = J0, . . . , J − 1

for 1-D and 2-D cases, separately.

While the phases do not indicate any scaling regularity as explained at the begin-

ning of this section and as displayed in Figure 22, the three phase averages defined in

Equation (59) would improve a power of classification if used with the wavelet-based

spectra described in section 3.2. In Chapter 5, we demonstrate this and show that the

new modalities have surpassed the traditional wavelet-based spectra method which

is based on the modulus of wavelet coefficients.

3.4 Applications

To illustrate the proposed methodology, we consider four applications in tasks of

supervised learning. Since the proposed methods in Chapter 2, 3, and 4 share the

same datasets, we set aside all analysis results in Chapter 5 (APPLICATIONS). In

particular, the detail explanations in terms of NDQWT for all four applications can

be found in section 5.1.3.2, 5.2.3.2, 5.3.3.2, and 5.4.3.2.

3.5 Conclusions and Future Studies

In this chapter, we suggested a non-decimated quaternion wavelet transform (NDQWT)

for both 1-D and 2-D cases. We demonstrated that the proposed wavelet spectra

works well in classification problems with standard spectrum based on the magni-

tudes is enhanced by the three quaternionic phase-based statistics. Through com-

parative investigation in four real-life applications, we found that the classification

76



1 2 3 4 5 6 7 8 9

Multiresolution level

-0.3

-0.2

-0.1

0
A

v
e
ra

g
e
 o

f 
p

h
a
s
e
s
 1

(a)

1 2 3 4 5 6 7 8 9

Multiresolution level

-0.3

-0.2

-0.1

0

A
v
e
ra

g
e
 o

f 
p

h
a
s
e
s
 2

(b)

1 2 3 4 5 6 7 8 9

Multiresolution level

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
v
e
ra

g
e
 o

f 
p

h
a
s
e
s
 3

(c)

Figure 22: Visualization of three phase averages (φ, θ, ψ) at all multiresolution levels.

procedure by NDQWT outperforms the QWT and NDWT. This indicated that com-

bination of two different redundancies, structural one from NDWT and componential

one from QWT benefited the performance. The NDQWT can appeal to researchers

seeking more efficient wavelet-based classification methodology for signals or images

with intrinsic self-similarity.

There are several directions for possible future research. The performance could

be robustified if we calculate the spectral slopes in different ways as done in Hamilton

et al (2011) or Feng et al (2018) where robust Theil-type regressions and trimean

estimators have been proposed. For the scale-mixing 2-D NDQWT, the diagonal

hierarchy of coefficients d(d) itself is provided good discriminatory descriptors such
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as spectral slopes and phase-based statistics. By using scale mixing hierarchies in

addition to d(d) may likely further improve the performance of classification. Finally,

performing a scale-mixing 2-D NDQWT with different wavelet filters for rows and

columns of pixels enables more modeling freedom. For instance, the left-hand side

can be a matrix based on the quaternion-valued filter while the right-hand side can

be based on real-valued filters such as Haar, Symmlet, Coiflet, and so on.

In the spirit of reproducible research, we prepared an illustrative demo as a stand

alone MATLAB software with solved examples. The demo is posted on the repository

Jacket Wavelets http://gtwavelet.bme.gatech.edu/.
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CHAPTER IV

DUAL WAVELET SPECTRAL TOOLS

Theoretical self-similar processes such as fractional Brownian motion and pro-

cesses with 1/f power-law spectra have been an essential tool for modeling a wide

range of real-world signals or images that describe scaling phenomena in engineering,

physics, medicine, biology, economics, geology, chemistry, and so on. However, it is

often difficult for quantify a self-similarity in the signal acquisition domain due to

an inherent irregularity. To solve this problem, a number of researches have focused

on the modeling in the space/scale domains and focusing on the behavior of “ener-

gies”. One can define the energy in the frequency/scale domain as the variance of a

zero-mean signal in the original domain. This total energy can be partitioned in an

ANOVA fashion to energies contained in the coefficients in a multiresolution repre-

sentation of a signal, such as wavelet transform, for example. Then, the total energy

is the sum of the squared coefficients (component energies) in the frequency/scale

domain if the transformation is orthogonal.

Although the behavior of a signal in original domain can be chaotic, there can

be regular behavior in frequency/scale domain in the terms of energies that scale

predictably and we call this phenomenon a regular scaling. If the regular scaling

exists in signals or images, it means that the scales or resolutions in multiresolution

decomposition have average energies that behave linearly on the log-scale. This be-

havior is typical for a monofractal and has been widely used to quantify the degree

of irregularity of signals or images.

The standard measure of self-similarity in terms of regular scaling is the Hurst

exponent estimated from scaling analysis. This is an informative summary for the
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behavior of self-similar process and also related to the presence of long memory and

monofractality in signals and images. Of many methods for estimating the Hurst

exponent, the method based on wavelets is an efficient and powerful technique. In

the past, the researches mostly focused on the study of scaling in one-dimensional ob-

jects. These days, there is increased interest for exploring scaling in multidimensional

objects most importantly, images.

Dual relation as an alternative representation to analyze the same problem has

been used in various field including optimization, physics, engineering, and mathe-

matics, etc. In particular, dual relation in multifractal spectra has been explored

for it can provide a complementary statistical summary of singular fields (Roux and

Jensen, 2004). In traditional multifractal analysis, the multifractal formalism has

been proven as an excellent dimensional analysis method to solve a multitude of sin-

gular field problems. This is done by characterizing the scaling properties of a physical

density ρ as a function of the distance L (Benzi et al, 1985; Halsey et al, 1987). The

singular field can be decomposed into a continuum of fractal supports depending on its

singularity index, α. Then, the multifractal spectrum can be constructed as a fractal

dimension f(α) as a function of the singularity, α. An alternative dual representa-

tion to analyze the same fields was proposed in Jensen (1999). While the traditional

approach considers the statistical distribution of mass m(L) over a fixed distance L,

Jensen and Roux reversely studied the distribution of distances L(m) associated to

a fixed mass, m, contained in each subset. They suggest to use new scaling from the

dual approach to characterize property of singular field. This alternative method was

later more extensively researched; Roux and Jensen (2004) established dual relation

with the traditional method. The authors applied the dual method to a multifractal

cantor set as well as the turbulent GOY shell model, extending theoretical results to

a realistic physical problem. It was shown that the two spectra are related through

simple duality relations and that the moment scaling exponents are related to the
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usual series of scaling exponents.

Even if this kind of duality concept has been studied in various fields (e.g. physics,

atmosphetic sciences, etc.), we are nor aware of the definition of wavelet spectra dual

to a standard wavelet second-order spectra, as far as we know. Thus, we suggest a

wavelet spectral tools dual to the original wavelet spectra to characterize the self-

similarity by novel scaling indices. In this context, we will call the original wavelet

spectra the primal spectra.

As a dual representation of primal wavelet spectra, distributions of levels (scales)

with regard to quantized energy (squared wavelet coefficients within the interval)

are established as opposed to distributions of energies along the scale levels as in

the primal wavelet spectra. Quantization, as a standard operation in digital signal

processing, maps the squared energies from a continuous nonnegative set to a finite

discrete set. The elements of this set are centers of intervals that partition the whole

set of energies and the boundaries are determined by sample percentiles to ensure

that the partition intervals are nonempty.

Orthogonal versions of wavelet transform produce the same number of wavelet co-

efficients as is the length of 1-D signal (or size of 2-D image), which is inadequate to

build a robust and reliable dual wavelet spectra. Simply the number of wavelet coef-

ficients for quantizing their energies is not sufficiently large for coarse levels to assure

stability and robustness. Instead of minimal, that is orthogonal, transforms we em-

ploy a NDWT. The NDWT is time-invariant unlike traditional orthogonal transforms

and provides a dense approximation to continuous wavelet transform. This invariance

follows from non-decimation property that preserves location information across the

scales. The term “non-decimated” is linked to implementational aspect of NDWT,

in which the Mallat algorithm does not employ decimation in the signal/image filter-

ing process, see Mallat (2009). With non-decimation property providing more dense

approximation to continuous wavelet transform, we expect that dual wavelet spectra
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can represent more various and elaborated information compared to primal wavelet

spectra. Specifically, we can manually set the number of points on x-axis in dual

spectra very dense while points on x-axis in primal spectra are the multiresolution

levels that are fixed and a few. Thus, we can supposed that information from which

we can derive can be different between the primal and dual spectra.

To generalize both primal and dual spectra, filters in Mallat algorithm can be

complex-valued or quaternion-valued. Structural redundancy from the NDWT and

componential redundancy from a complex or quaternion wavelet filters have demon-

strated their usefulness and synergy effects when they are considered together as

demonstrated in Chapter 2 and 3. From the dual wavelet spectra based on the non-

decimated wavelet transform, we expect an additional type of redundancy, and call it

dual redundancy. In addition, complex-values and quaternion-valued domains provide

dual representation of phase-based statistics from NDWTc and NDQWT proposed in

Chapter 2 and 3. Finally, we compare the proposed dual methodology with their pri-

mal versions and demonstrate that the dual representations can increase classification

performance when considered jointly.

This chapter is organized as follows. Section 4.1 briefly describes a way of con-

structing a primal wavelet spectra with NDWT. Section 4.2 and 4.3 illustrates a dual

wavelet spectra with the NDWT for 1-D and 2-D cases and extends them into com-

plex and quaternion domains with phase information leading to dual phase-based

statistics. Section 4.4 demonstrates a power of the proposed method with 1-D and

2-D applications and Section 4.5 contains some concluding remarks and directions for

future study.

4.1 Primal Wavelet Spectra with Non-decimated Wavelet
Transform

In this section, we briefly describe a way of constructing traditional wavelet spectra

with NDWT representing relationships between scale j and energies at the scales.
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First, an energy is defined as average of squared wavelet coefficients at each level. If

energies decay regularly, it indicates that there is a regular scaling in the data, thus,

we can measure a self-similarity via a rate of energy decay. Operationally, we find

the slope in regression of log energies to scale indices and use it to estimate the Hurst

exponent. For discrete observed data of size m, we use empirical wavelet spectrum

defined as

Ŝ(j) = log2

1

m

m∑
k=1

d2
j,k = log2 d

2
j,k, j = J0, . . . , J − 1.

We can plot the set of Ŝ(j) against j as
(
j, Ŝ(j)

)
, which is called 2nd order Logscale

Diagram (2-LD) and this is the wavelet spectra as displayed in Figure 23. Finally, we

can estimate the slope of the spectra usually by regression methodology (an ordinary,

weighted, or robust regression) and use it to estimate the Hurst exponent H, as

Ĥ = −(slope + 1)/2. More details on wavelet spectra method and its applications

can be found in Veitch and Abry (1999), Mallat (2009), Ramı́rez and Vidakovic

(2013), and Roberts et al (2017).
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Figure 23: Examples of non-decimated wavelet spectra. The slopes are -1.49402,
-1.99398, and -2.36691 corresponding to estimator Ĥ = 0.2470, 0.4970, and 0.6835.
The original 4096-length signals were simulated as a fBm with Hurst exponent 0.3,
0.5, and 0.7.
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4.2 1-D Dual Wavelet Spectra with Non-decimated Wavelet
Transform

First, we transform a signal from time domain to the wavelet domain using the

NDWT to obtain a set of non-decimated wavelet coefficients as in Section (1.7) with

J = dlog2me. Then, we define log2 EN that is a set of logarithm (base 2) of squared

wavelet coefficients for all levels as following:

log2 EN = {log2(dj,k)
2 | j = J0, . . . , J − 1, k = 0, . . . ,m− 1}.

To perform a role of the levels in primal wavelet spectra we need predefined inter-

vals for log2 EN in which almost same number of wavelet coefficients exist. This

is necessary to make distributions of levels at each interval consistent and robust.

The number of intervals for log2 EN is denoted as L and it can be manually selected

depending on a size of data.

First, we define pi as

pi =
i

L
, i = 0, . . . , L.

and then obtain L+ 1 quantiles of log2 EN that are boundaries of L intervals as

Qpi =

 log2 EN(1) if pi <
1
Jm
,

log2 EN(bJmpic) + (Jmpi − bJmpic)(log2 EN(bJmpic+1) − log2 EN(bJmpic)) if pi ≥ 1
Jm
,

for i = 0, . . . , L, through a linear interpolation of the empirical distribution function.

Then, we can find subsets of level j in all L individual intervals as

j pi,pi+1
= { j | Qpi ≤ log2(dj,k)

2 < Qpi+1
, j = J0, . . . , J − 1, k = 0, . . . ,m− 1}

for i = 0, . . . , L− 1. Each subset, j pi,pi+1
, has its own distribution of level j as shown

in Figure 24.

As shown in Section 4.1, general wavelet spectra examines distributions of energies

with regard to each level while dual wavelet spectra looks into distributions of levels

with regard to each quantile intervals of log2 EN. Thus, first we calculate average
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Figure 24: Estimated density plots of level j at some selected intervals with dotted
blue line for mean.

levels in each interval, the blue dotted lines in Figure 24, and center points of all

intervals as

jpi,pi+1
=

1

ni

∑
j, ∀j ∈ j pi,pi+1

,

xi,i+1 =
Qpi +Qpi+1

2

for i = 0, . . . , L− 1, where ni is the number of coefficients in a set j pi,pi+1
. Then, we

can build the dual wavelet spectra where xi,i+1 are on x-axis and jpi,pi+1
are on y-axis.

Finally, we regress jpi,pi+1
with xi,i+1 and find a slope to measure a self-similarity. Note

that we only consider samples within 20% - 95% range of jpi,pi+1
to find a more robust

dual spectral slope. In this dissertation the default of the L is 100 for applications.

Graphical examples using fractal Brownian motion (fBm) are as shown in Figure 25.

4.2.1 1-D Dual Wavelet Spectra with Non-decimated Complex Wavelet
Transform

In the area of Fourier representations, a lot of researches as in Oppenheim and Li

(1981) and Levi and Stark (1983) are interested in the phase information on signals
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Figure 25: Examples of dual non-decimated wavelet spectra. The slopes are -0.59614,
-0.42910, and -0.37984. The original 4096-length signals were simulated as a fBm with
Hurst exponent 0.3, 0.5, and 0.7.

or images. Similarly, there is also an interest in complex wavelet domain about infor-

mation related to interactions between decomposition levels and spatial symmetries

contained in the phase, as investigated by Lina (1997), Lina (1999), and Jeon et al

(2014). Therefore, it is natural to explore the role of phase in the complex-valued

wavelet coefficients in Equation (31). The previous Chapter 2 described a way of con-

structing wavelet spectra with complex-valued wavelet coefficients in non-decimated

fashion. Based on the non-decimated complex wavelet spectra it suggested its spec-

tral slope to estimate the Hurst exponent and phase-based summaries as additional

modalities in classification analysis. For the phase-based summaries, it did not ob-

tain the corresponding spectral slope since the phase-based descriptors do not show a

scaling property. Instead, it just utilized them as individual descriptors and demon-

strated their effects with some classification applications. As a dual representation of

this version, here we propose how to obtain dual spectra slope of modulus and dual

phase-based summaries and use them as descriptors in classification analysis.
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First, a modulus of the non-decimated complex wavelet coefficients is defined as

|dj,k| =
√
Re(dj,k)2 + Im(dj,k)2, j = J0, . . . , J − 1.

Then, we apply the same way of constructing dual wavelet spectra as described in

Section 4.2 using |dj,k| instead of dj,k.

Next, a phase of the non-decimated complex wavelet coefficients can be calculated

as

∠dj,k = arctan

(
Im(dj,k)

Re(dj,k)

)
whose range is [−π, π]. In this case, we do not need such dense intervals in modulus

case because we would extract a countable number of dual phase-based statistics

instead of a spectral slope. Thus, we intuitionally divide the range of phase, [−π, π],

into 4 intervals with bounds, Qpi , defined as

Qpi = (pi − 0.5)2π, i = 0, . . . , 4

where pi = i
4
. Then, we can find subsets of level j in the 4 intervals as

j ∠d,pi,pi+1
= { j | Qpi ≤ ∠dj,k < Qpi+1

, j = J0, . . . , J − 1, k = 0, . . . ,m− 1}

for i = 0, . . . , 3 and calculate averages of levels in the 4 intervals as

j∠d,pi,pi+1
=

1

ni

∑
j, ∀j ∈ j ∠d,pi,pi+1

for i = 0, . . . , 3 where ni is the number of data in a subset j ∠d,pi,pi+1
. Finally, a

dual phase-based statistics, j
2

∠d,pi,pi+1
, are obtained as new descriptors since quadratic

relations are empirically better than linear relations in our real applications.

4.2.2 1-D Dual Wavelet Spectra with Non-decimated Quaternion Wavelet
Transform

The previous Chapter 3 extended complex wavelets in non-decimated fashion into

a quaternion wavelet domain. Following emphasis on a role of phase in complex
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wavelets as in Chapter 2 it supposed and demonstrated that the additional two phases

can improve performances of the phase-based summaries in classification analysis.

Therefore, here we suppose a similar improvement in dual representation and explore

a dual wavelet spectra with non-decimated quaternion-valued wavelet coefficients in

Equation (50) in terms of modulus and three phases.

Similar to the previous complex case, we can define a modulus of non-decimated

quaternion wavelet coefficients as

|dj,k| =
√
Re(dj,k)2 + Imi(dj,k)2 + Imj(dj,k)2 + Imk(dj,k)2, j = J0, . . . , J − 1.

Instead of dj,k, the |dj,k| can be used to build a dual wavelet spectra as explained in

Section 4.2

For all three phase-based summaries, we do not find a dual spectral slope since

the phase-based statistics do not show a regular decaying. Instead, we define three

dual phase-based summaries as additional modalities in quaternion domain. First,

we can obtain three phases of a quaternion-valued wavelet coefficient as

(φdj,k , θdj,k , ψdj,k) ∈ [−π, π]× [−π
2
,
π

2
]× [−π

4
,
π

4
],

where j = J0, . . . , J − 1 and k = 0, . . . ,m− 1. Calculating procedures for the three

phases can be found in Section 1.6.1. The dense intervals as in modulus case is not

necessary here because we will not obtain a dual spectral slope. To divide the ranges

of three phases, [−π, π] × [−π
2
, π

2
] × [−π

4
, π

4
], into 4 intervals, we first define bounds,

Qpi , as

Qpi = (pi − 0.5)2π, i = 0, . . . , 16

where pi = i
16

. With uses of Qpi we can find subsets of level j in the 4 intervals for

all three phases as

j φ,pi,pi+4
= { j | Qpi ≤ φdj,k < Qpi+4

, j = J0, . . . , J − 1, k = 0, . . . ,m− 1} for i = 0, 4, 8, 12,

j θ,pi,pi+2
= { j | Qpi ≤ θdj,k < Qpi+2

, j = J0, . . . , J − 1, k = 0, . . . ,m− 1} for i = 4, 6, 8, 10,

j ψ,pi,pi+1
= { j | Qpi ≤ ψdj,k < Qpi+1

, j = J0, . . . , J − 1, k = 0, . . . ,m− 1} for i = 6, 7, 8, 9,
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and calculate averages of levels in them as

jφ,pi,pi+4
=

1

ni

∑
j, ∀j ∈ j φ,pi,pi+4

for i = 0, 4, 8, 12,

jθ,pi,pi+2
=

1

ni

∑
j, ∀j ∈ j θ,pi,pi+2

for i = 4, 6, 8, 10,

jψ,pi,pi+1
=

1

ni

∑
j, ∀j ∈ j ψ,pi,pi+1

for i = 6, 7, 8, 9,

where ni is the number of coefficients in a corresponding set of j φ,pi,pi+4
, j θ,pi,pi+2

, and

j ψ,pi,pi+1
. Finally, we can obtain three dual phase-based statistics, j

2

φ,pi,pi+4
, j

2

θ,pi,pi+2
, j

2

ψ,pi,pi+1
,

as new descriptors since empirical experiments showed that quadratic relations are

more reasonable than linear relations.

4.3 2-D Dual Wavelet Spectra with Non-decimated Wavelet
Transform

The 1-D dual wavelet spectra can be extended to its 2-D counterpart. Although

various versions of the 2-D wavelet transform can be constructed by appropriate

tessellations of the detail spaces, here we utilize the scale-mixing 2-D NDWT. As we

argued before, the use of scale-mixing version is motivated by its remarkable flexibility,

compressibility, and ease of computation. As a first step, we transform a 2-D image

size of m × n from time domain to the wavelet domain using the scale-mixing 2-D

NDWT to obtain a set of non-decimated wavelet coefficients in Equation (27) with

J = dlog2 min(m,n)e. In this chapter, we only consider the main diagonal hierarchy

whose 2-D scale indices coincide as j1 = j2 = j and thus J01 = J02 = J0. Next, a set

of logarithm (base 2) of squared wavelet coefficients for all levels, log2 EN, is defined

as

log2 EN = {log2(dj,j+s,k1,k2)
2 | j = J0, . . . , J−1, k1 = 0, . . . ,m−1, k2 = 0, . . . , n−1}.

For this 2-D dual wavelet spectra, the L intervals for log2 EN is also needed to have

consistent distributions of levels at each interval. With use of pi defined as

pi =
i

L
, i = 0, . . . , L,
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L+ 1 quantiles of log2 EN are obtained as

Qpi =

 log2 EN(1) if pi <
1

Jmn
,

log2 EN(bJmnpic) + (Jmnpi − bJmnpic)(log2 EN(bJmnpic+1) − log2 EN(bJmnpic))

if pi ≥
1

Jmn

for i = 0, . . . , L, through a linear interpolation of the empirical distribution function.

Utilizing the Qpi as boundaries, we can find subsets of level j in all L individual

intervals as

j pi,pi+1
= { j | Qpi ≤ log2(dj,j+s,k1,k2)

2 < Qpi+1
,

j = J0, . . . , J − 1, k1 = 0, . . . ,m− 1, k2 = 0, . . . , n− 1}

for i = 0, . . . , L−1. Based on the set of j pi,pi+1
, the ways of building 2-D dual wavelet

spectra and finding a slope are the same with 1-D case explained in Section 4.2. In

this dissertation we set the default of the L as 100 for applications.

4.3.1 2-D Dual Wavelet Spectra with Non-decimated Complex Wavelet
Transform

Using a complex filter, we can build a dual wavelet spectra for 2-D images with

non-decimated complex-valued wavelet coefficients in Equation (36) in terms of mod-

ulus and phase.

First, we have a modulus of the non-decimated complex wavelet coefficients as

|d(j,j+s,k1,k2)| =
√
Re(d(j,j+s,k1,k2))2 + Im(d(j,j+s,k1,k2))2, j = J0, . . . , J − 1.

Then, dual wavelet spectra can be constructed equally as described in Section 4.3

using |d(j,j+s,k1,k2)| instead of d(j,j+s,k1,k2).

Next, we can calculate a phase of non-decimated complex wavelet coefficients as

∠d(j,j+s,k1,k2) = arctan

(
Im(d(j,j+s,k1,k2))

Re(d(j,j+s,k1,k2))

)
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whose range is [−π, π]. Instead of dense intervals in modulus case, the range of phase,

[−π, π], is divided into 4 intervals with bounds, Qpi , defined as

Qpi = (pi − 0.5)2π, i = 0, . . . , 4

where pi = i
4
. Then, 4 subsets of level j in each interval can be obtained as

j ∠d,pi,pi+1
= { j | Qpi ≤ ∠dj,j+s,k1,k2 < Qpi+1

,

j = J0, . . . , J − 1, k1 = 0, . . . ,m− 1, k2 = 0, . . . , n− 1}

for i = 0, . . . , 3 and calculate averages of levels in each subset as

j∠d,pi,pi+1
=

1

ni

∑
j, ∀j ∈ j ∠d,pi,pi+1

for i = 0, . . . , 3 where ni is the number of data in a subset j ∠d,pi,pi+1
. Because of

the same reasons fore-mentioned in Section 4.2.1 we do not find a spectral slope and

instead determine a set of dual phase-based statistics, j
2

∠d,pi,pi+1
, as descriptors.

4.3.2 2-D Dual Wavelet Spectra with Non-decimated Quaternion Wavelet
Transform

Using a quaternion filter, we can build a dual wavelet spectra for 2-D images

with non-decimated quaternion wavelet coefficients in Equation (55) with regard to

modulus and three phases.

First, a modulus of the non-decimated quaternion wavelet coefficients is defined

as

|d(j,j+s,k1,k2)| =√
Re(d(j,j+s,k1,k2))2 + Imi(d(j,j+s,k1,k2))2 + Imj(d(j,j+s,k1,k2))2 + Imk(d(j,j+s,k1,k2))2,

j = J0, . . . , J − 1.

Then, we apply the same way of constructing dual wavelet spectra as described in

Section 4.3 using |d(j,j+s,k1,k2)| instead of d(j,j+s,k1,k2).
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First, we can obtain three phases of a quaternion-valued wavelet coefficient as

(φd(j,j+s,k1,k2)
, θd(j,j+s,k1,k2)

, ψd(j,j+s,k1,k2)
) ∈ [−π, π]× [−π

2
,
π

2
]× [−π

4
,
π

4
]

where j = J0, . . . , J − 1 k1 = 0, . . . ,m− 1, and k2 = 0, . . . , n− 1.

In this case, dense intervals in modulus case is not required because we just extract

a countable dual phase-based summaries. Therefore, we divide the respective ranges

of three phases, [−π, π] × [−π
2
, π

2
] × [−π

4
, π

4
], into 4 intervals with boundaries, Qpi ,

defined as

Qpi = (pi − 0.5)2π, i = 0, . . . , 16

where pi = i
16

. Then, we can find subsets of level j in 4 intervals for each phase as

j φ,pi,pi+4
= { j | Qpi ≤ φdj,j+s,k1,k2

< Qpi+4
,

j = J0, . . . , J − 1, k1 = 0, . . . ,m− 1, k2 = 0, . . . , n− 1} for i = 0, 4, 8, 12,

j θ,pi,pi+2
= { j | Qpi ≤ θdj,j+s,k1,k2

< Qpi+2
,

j = J0, . . . , J − 1, k1 = 0, . . . ,m− 1, k2 = 0, . . . , n− 1} for i = 4, 6, 8, 10,

j ψ,pi,pi+1
= { j | Qpi ≤ ψdj,j+s,k1,k2

< Qpi+1
,

j = J0, . . . , J − 1, k1 = 0, . . . ,m− 1, k2 = 0, . . . , n− 1} for i = 6, 7, 8, 9,

and calculate averages of levels in each subset of three phases as

jφ,pi,pi+4
=

1

ni

∑
j, ∀j ∈ j φ,pi,pi+4

for i = 0, 4, 8, 12,

jθ,pi,pi+2
=

1

ni

∑
j, ∀j ∈ j θ,pi,pi+2

for i = 4, 6, 8, 10,

jψ,pi,pi+1
=

1

ni

∑
j, ∀j ∈ j ψ,pi,pi+1

for i = 6, 7, 8, 9,

where ni is the number of coefficients in a corresponding set j . Finally, a dual phase-

based statistics, j
2

φ,pi,pi+4
, j

2

θ,pi,pi+2
, j

2

ψ,pi,pi+1
, are obtained as new modalities.

4.4 Applications

Since the proposed methods in Chapter 2, 3, and 4 share the same datasets,

we set aside all analysis results in Chapter 5 (APPLICATIONS). In particular, the
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detail explanations in terms of dual wavelet spectra in real, complex, and quaternion

domains for all four applications can be found in section 5.1.3.3, 5.2.3.3, 5.3.3.3, and

5.4.3.3.

4.5 Conclusions and Future Studies

In this chapter, we examined dual wavelet-based spectra with non-decimated

wavelet transform for both 1-D and 2-D cases. Furthermore, we extended it from real

domain to complex and quaternion domains with a non-decimated complex wavelet

transform (NDWTc) and a non-decimated quaternion wavelet transform (NDQWT).

Through comparative simulations in four real-life applications, we demonstrated that

the proposed dual method can help increase performances of the original counter-

part in classification problems with additional descriptors obtained via dual rela-

tions. Therefore, the dual wavelet spectra may be of interest to researchers seeking

new perspectives on wavelet-based classification methodology for signals or images

with intrinsic self-similarity.

As possible future studies, using d(h) and d(v) in addition to d(d) from the scale-

mixing 2-D wavelet transform could potentially improve the performance of classifi-

cation. Specifically, asymmetric statistics in Roberts et al (2017) can be considered

as new descriptors. Moreover, performing a scale-mixing 2-D wavelet transforms with

different wavelet filters for rows and columns of pixels would provide more modeling

freedom. For example, one can be the complex-valued filter and the other can be the

real-valued filter for which classification is optimal. Finally, we may be interested in

more robust ways of calculating the dual spectral slopes as suggested in Hamilton

et al (2011) or Feng et al (2018).
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CHAPTER V

APPLICATIONS

Table 3: Descriptions of employed wavelet-based features.

Symbol Method Description

Slope All versions of original WT Spectral slope
Slope* All versions of dual WT Dual spectral slope
∠dj WTc and NDWTc Average phase (∠d) at level j with complex filter

j∠d,pi,pi+1
Dual NDWTc Average level at each phase (∠d) interval with complex filter

φj QWT and NDQWT Average 1st phase (φ) at level j with quaternion filter
θj QWT and NDQWT Average 2nd phase (θ) at level j with quaternion filter
ψj QWT and NDQWT Average 3rd phase (ψ) at level j with quaternion filter

jφ,pi,pi+4
Dual NDQWT Average level at each 1st phase (φ) interval with quaternion filter

jθ,pi,pi+2
Dual NDQWT Average level at each 2nd phase (θ) interval with quaternion filter

jψ,pi,pi+1
Dual NDQWT Average level at each 3rd phase (ψ) interval with quaternion filter

5.1 Application 1: Classifying Pupillary Signal Data

The human computer interaction (HCI) community has been interested in eval-

uating and improving user performance and interaction in a variety of fields. In

particular, a variety of researches have been performed to investigate the interactions

of users with age-related macular degeneration (AMD) since it is one of main causes

of visual impairments and blindness in people over 55 years old (The Schepens Eye

Research Institute, 2002). AMD influences high resolution vision that affects abili-

ties of people for focus-intensive tasks such as using a computer (The Center for the

Study of Macular Degeneration, 2002). The research has proved that people with

AMD are likely to show worse performance than ordinary people based on measures

such as task times and errors on simple computer-based tasks. In this regard, mental

workload due to sensory impairments is well known as a significant factor of hu-

man performance while interacting with a complicated system (Gopher and Donchin,

94



1986). However, only a few studies have been performed to investigate how mental

workload due to sensory impairments makes effects on the performance mentioned

above. Thus, we need to consider pupil diameter that is one of significant measures

of workload (Loewenfeld, 1999; Andreassi, 2000). However, the pupil has such a com-

plex control mechanism that it is difficult to find meaningful signals from considerably

noised signals of pupillary activity (Barbur, 2004). Therefore, it is necessary for a

strong support to develop an analytical model to analyze dynamic pupil behaviors.

Note that trends in high frequency of pupil-diameter measures are not significant

because other factors that are not related to the pathologies could affect them, such

as a change of environmental light intensity. Instead, the scaling information can be

used for the analysis since pupil-diameter measures are considered self-similar sig-

nals. Thus, we propose an comprehensive wavelet-based analytic tool based on the

all methods suggested in section 2, 3, and 4.

5.1.1 Description of Data

The dataset consists of pupillary response signals for 24 subjects as described in

Table 4.

Table 4: Group characterization summary.

Group N Visual acuity AMD Number of samples

Control 6 20/20 - 20/40 No 1170
Case 1 8 20/20 - 20/50 Yes 1970
Case 2 4 20/60 - 20/100 Yes 1928
Case 3 6 20/100 Yes 3547

In this summary of data, N refers to the number of subjects for each group. Visual

acuity indicates the range of visual acuity scores assessed by ETDRS of the better

eye and AMD represents the presence (Yes) or absence (No) of AMD. Then data

are classified into 4 groups based on the visual acuity and the presence or absence of
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AMD. The visual acuity is related to an ability to resolve fine visual detail and can be

measured by the protocol outlined in the Early Treatment of Diabetic Retinopathy

Study (ETDRS) (Moloney et al, 2006), which means that the group of case 3 is the

worst case and the group of case 1 is the weakest among the three patient groups.

Data on pupil diameter are recorded in the system at a rate of 60 HZ, or 60 times per

second and a scaling factor is applied the relative recorded pupil diameter to account

for camera distortion of size.

Note that we segmented the signals for each individual since the number of subjects

is too small due to difficulty of collecting the measurements. Another reason for the

segmentation is that their lengths are not equally long. For each signal, we cut the

total signal into 1024-length pieces with 100 window size. For example, we obtain

total 11 dataset (segments) of 1024 length from a 2048 length pupillary signal and

its visual representation is provided in Figure 26. Table 4 summarizes the finalized

dataset according to this segmentation concept and finally the total number of samples

is 8615.
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Figure 26: An example of 2048 length pupillary signal segmentation. The red, green,
and blue intervals represent the 1st, 2nd, and 3rd segments.

5.1.2 Classification

In this section, we describe a way of classifying the pupillary signals based on

the comprehensive wavelet-based analytic tool based on the all methods suggested
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in Section 2, 3, and 4. First, we performed the all considered versions of wavelet

transforms to the segmented signals found in section 5.1.1. Next, we extract all

suggested features using both original and dual wavelet spectra and use them in

classification analysis.

As we discussed in Section 5.1.1, segmentation of signals can increase the number

of available data. However, it also induces dependence within the data for each

subject. In order to quantify and remove the dependence effects within each subject,

we performed a two-way nested analysis of variance (ANOVA) under the model as

yijk = u+ αi + βj(i) + εijk, εijk ∼ N(0, σ2) (60)

with standard identifiability constraints
∑

i αi = 0,
∑

j βj(i) = 0. For the model (60),

let us consider yijk as the spectral slope obtained by the NDWTc for each segmented

pupillary signal, then it can be decomposed to a grand mean u, an effect of groups

on the slope αi, i = 1, 2, 3, 4, an effect of subjects on the slope βj(1), j = 1, 2, . . . , 6,

βj(2), j = 1, 2, . . . , 8, βj(3), j = 1, 2, . . . , 4, and βj(4), j = 1, 2, . . . , 6 for the control,

case 1, case 2, and case 3, respectively, and finally an error εijk. The result of the

two-way nested ANOVA test based on the model (60) is presented in the Table 5.

Table 5: The result of the two-way nested ANOVA based on the model (60).

Source SSE df MSE F stat Prob>F

Group 131.5808 3 43.8603 498.0589 0
Nested subject 355.0408 20 17.7520 201.5848 0

Error 756.6321 8592 0.0881
Total 1243.2537 8614

We can see that effects of both the groups and subjects are significantly different;

the two hypotheses, H0 : αi = 0 for all i and H0 : βj(i) = 0 for all i and j, are

rejected. Since we are not interested in the effects of nested subjects, to represent

each pupillary signal we use y∗ijk = yijk − β̂j(i) instead of yijk for our classification
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analysis where β̂j(i) = ȳij. − ȳi... All other factors such as phase averages at each

level and spectral slopes from different wavelet transform methods were tested in the

same way. Every test showed comparable results with the case of the spectral slope

obtained by the NDWTc. We use the y∗ijk = yijk− β̂j(i) instead of yijk for all variables.

Using the two types of extracted descriptors with such modifications, we employed

gradient boosting to classify the pupillary signals. We also considered random forest,

k-NN, and SVM, however, the gradient boosting consistently outperformed the rest.

In next section, we only provide the classification result by gradient boosting. The

others by the unselected three machine learning methods and the comprehensive best

classification result are given in Appendix B.1. For simulations, we randomly split

the dataset to training and testing sets in proportion 75% to 25%, respectively. This

random partition to training and testing sets was repeated 1, 000 times, and the

reported prediction measures are averages over the 1, 000 runs.

5.1.3 Results

Since there are four labeled groups, we evaluated performances of the three sug-

gested methods in the context of overall accuracy and sensitivities of the four groups

as shown in Table 6. For comparisons, we also performed the standard DWT, WTc,

and QWT and their non-decimated versions. Moreover, the dual wavelet spectra of

them were also considered to extract features. For convenience, we named the meth-

ods in order from 1 to 26 for the convenience. We recorded calculational complexity

(in terms of times) for standard and dual versions of wavelets (DWT, WTc, NDWT,

NDWTc, and NDQWT) to transform one 1024-length signal. As expected, the com-

putation times are proportion to the overall accuracies: more accurate results take

longer to calculate. It is also notable that computing times for the dual wavelet spec-

tra are a little bit longer than the corresponding original cases. However, when they

are used together to improve a classification performance as suggested, computing
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time is not a summation of times for both original and dual methods since they share

the same wavelet coefficients from wavelet transforms. Thus, the dual descriptors are

worth considering to improve a classification performance in reasonable ranges.

Table 6: Gradient Boosting classification results. Total 26 methods are compared
and the best result is obtained by the 26th method.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Control
Sensitivity

Case 1
Sensitivity

Case 2
Sensitivity

Case 3
Computing

Time

1st DWT Slope 0.4458 0.0913 0.4119 0.0513 0.7966 0.0150s
2nd WTc Slope 0.3992 0.2066 0.3018 0.1265 0.6668
3rd ∠dj 0.5808 0.2117 0.2755 0.8395 0.7332 0.0207s
4th Slope + ∠dj 0.6685 0.3301 0.3728 0.8729 0.8338
5th QWT Slope 0.4082 0.1685 0.3743 0.1903 0.6249
6th φj + θj + ψj 0.6915 0.4610 0.5162 0.7871 0.8121 0.0298s
7th Slope + φj + θj + ψj 0.7535 0.5238 0.6647 0.8206 0.8423
8th NDWT Slope 0.4596 0.0916 0.4799 0.0635 0.7856 0.0192s
9th Slope* 0.5387 0.0319 0.0822 0.7725 0.8299 0.0229s
10th 8th + 9th 0.6177 0.1917 0.4577 0.7504 0.7747 0.0283s
11th NDWTc Slope 0.4172 0.1762 0.3936 0.2178 0.6184
12th ∠dj 0.7753 0.6588 0.6235 0.8755 0.8431 0.0272s
13th Slope + ∠dj 0.8226 0.6857 0.7263 0.8864 0.8870
14th Slope* 0.4825 0.1099 0.2185 0.5513 0.7164
15th j∠d,pi,pi+1

0.4507 0.1167 0.2460 0.5259 0.6324 0.0321s

16th Slope* + j∠d,pi,pi+1
0.5709 0.1282 0.3350 0.6750 0.7930

17th 13th + 16th 0.8879 0.7688 0.8417 0.9210 0.9348 0.0375s
18th NDQWT Slope 0.4151 0.1543 0.3887 0.2098 0.6275
19th φj + θj + ψj 0.9005 0.8788 0.8102 0.9389 0.9371 0.0415s
20th Slope + φj + θj + ψj 0.9278 0.8976 0.8830 0.9446 0.9537
21th Slope* 0.4596 0.0874 0.2016 0.5956 0.6535
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.7827 0.6000 0.6435 0.8960 0.8581 0.0620s

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.8056 0.6403 0.6754 0.9137 0.8733

24th 20th + 23th 0.9523 0.9178 0.9108 0.9798 0.9717 0.0757s
25th 13th + 20th 0.9533 0.9216 0.9176 0.9806 0.9699 0.0687s
26th 13th + 16th + 20th + 23th 0.9711 0.9484 0.9361 0.9879 0.9821 0.1132s

5.1.3.1 Non-decimated Complex Wavelet Transform

Box plots of suggested non-decimated complex wavelet spectral slope and phase-

based statistics at all levels are displayed in Appendix C.1.1.

Note that for the WTc and NDWTc, the phase averages are more than the slopes

and combinations of the two gives the best results. Another interesting finding is that

classifiers without phase information tend to show low performance in classifying the

control and case 2. In this context, we can conclude that information that separates

the control and case 2 is located in the phase. Comparing the 4th and 8th to the

13th, one can see that the NDWTc dominates both WTc and NDWT. Therefore, the
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performance improves if the wavelet spectra from NDWTc with additional descriptors

based on phase are used.

5.1.3.2 Non-decimated Quaternion Wavelet Transform

Box plots of suggested non-decimated quaternion wavelet spectral slope and three

phase-based statistics at all levels are displayed in Appendix C.1.2.

First, QWT (7th) outperformed DWT (1th) and WTc (4th) because they gen-

erate wavelet coefficients in a more redundant domain. Moreover, its non-decimated

version, NDQWT (20th), is also superior to NDWT (8th) and NDWTc (13th) with

the same trend. Although DWT (1th) and NDWT (8th) show very similar perfor-

mance, NDWTc (13th) and NDQWT (20th) show better performance compared to

decimated versions because of the compound effects of componential and structural

redundancies. In general, classifiers with only slope show similar and inadequate per-

formance while the others based on phase-dependent summaries perform better. In

particular, classifiers with quaternion-based phase information tend to show excellent

performance in classifying the control group. In this context, we can find that dis-

criminatory information characteristic for the control group is located in the phases

of quaternion-valued wavelet coefficients.

In conclusion, comparing the 7th and 8th with 20th methods, we can observe

that the proposed NDQWT dominates both QWT and NDWT by its compounding

positive effect of the componential and structural redundancies. Note that the best

performance is shown by 25th method utilizing all features from the NDWTc and

NDQWT together in one integrated model. Since this is slightly better than the

NDQWT alone, we can conclude that NDWTc and NDQWT can act in a synergy

with complementary interactions.
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5.1.3.3 Duality of Non-decimated Wavelet Transform

Box plots of suggested features obtained by dual wavelet spectra in all real, com-

plex, and quaternion domains are displayed in Appendix C.1.3.

The notable thing is that the dual spectral slopes in 9th, 14th, and 21th show

slightly better performances compared to their original versions in 8th, 11th, and 18th.

This implies that dual relations are worthy of notice in wavelet domain. In complex

and quaternion versions, classifiers with only the dual phase-based statistics as in

15th and 22th tend to show lower performances compared to their original versions

in 12th and 19th. However, we can demonstrate that the new descriptors with the

proposed dual wavelet spectra can help classifiers with original wavelet spectra to

increase performances in classification. In all of the real, complex, and quaternion

domains, the performances improved when the original and dual wavelet spectra are

used together as seen in 10th, 17th, and 24th. Note that the best performance is

achieved when both NDWTc and NDQWT are used together with the additional

dual descriptors as in 26th method.

5.2 Application 2: Classifying Sounds Data

Nowadays the air conditioners (AC) are quieter than ever. High-efficiency AC

utilizes sound-dampening technology and two-stage compressors to keep noise levels

below 55 decibels. So if unusual sounds come from an air conditioner during the

course of normal operation, one should not ignore them as this could be a sign of

malfunction or wearout. Ignoring unusual noises from AC can turn minor issues into

major expenses because these noises could indicate a specific problem. The sooner we

can find and resolve the cause of the noise, the better. Therefore, if an automatic noise

analyzing system is available, it could increase AC’s reliability and maintainability.

To develop an automatic noise analyzer, we are given three sound signals that AC

(from unnamed company) could make. Since the normal sound signal is not provided,
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our task is to build a classification model for the three noises named as air, sha, and

water, which would be used as a prototypes. Descriptions of the noise sounds and

what they may signify are as follows.

‘Air’ indicates hissing noise sound and implies a possible leak. So if there is a

hissing sound coming from AC, it is likely either a ductwork issue or a refrigerant

leak. There may be a leak in ducts allowing air or refrigerant to escape. When air is

leaking the system is not running efficiently, while if the refrigerant is leaking, users

may be exposed to a dangerous chemical.

‘Sha’ represents buzzing noise sound. Buzzing is almost always a sign of an elec-

trical issue. If buzzing only occurs when triggering certain settings through a control

panel, it is likely just because of a faulty part. But the constant buzzing is more

likely to indicate a problem with the wiring, like a loose or exposed wire, causing

electricity to spark within the unit. Slight humming is common and usually does not

mean anything serious. On the other hand, if air conditioner is making loud buzzing,

it could be a sign of loose parts or motor problems.

‘Water’ relates to bubbling noise sound. Although bubbling noise is not common,

the problem is not likely to be a serious issue. Bubbling noise usually occurs when

the condensing pump malfunctions. As condensate builds up within the AC, it drips

to the bottom of the air handler where it empties into a drain pan via either gravity

or a condensing pump. Water accumulation and pump malfunctioning can lead to

such noises.

Since a variety of noises including the air, sha, and water require different types

of professional attention, it is important task to classify them. To achieve this goal

the extraction of informative features from the sound signals is critical. It is notable

that trends are not significant because they usually relate to volume of the sounds.

Alternatively, focusing on the scaling information may be discriminatory since these

sound signals digitized at a high frequency are typically self-similar in nature.
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5.2.1 Description of Data

Data on sound signals are recorded in the system at a rate of 0.0333MHz. The

original dataset consists of three long sound signals: air, sha, and water, of unequal

sizes. We segmented the signals to make the dataset convenient for our analysis. For

each signal, we take subsequent non-overlapping 1024-length pieces. For instance,

we obtain a total 4 dataset (segments) of length 1024 from a signal of 4096 length.

We emphasize that pieces of arbitrary length can be selected to form the data set,

but because of comparisons with decimated transforms, we selected length which is

a power of 2.

Table 7 summarizes the finalized dataset according to this segmentation concept

and finally the total number of samples is 1341.

Table 7: Group characterization summary.

Group Original length Number of samples

Air 491520 479
Sha 655360 639

Water 229376 223

5.2.2 Classification

In this section, we explain how to classify the sound signals. First, we performed

all considered versions of wavelet transforms to the segmented signals described in

Section 5.2.1. Next, we extract all suggested features using both original and dual

wavelet spectra and use them in classification analysis. Finally, we chose gradient

boosting to classify the sound signals. Random forest, k-NN with k = 7, and SVM

are also considered. The gradient boosting consistently outperformed the rest. In

next section, we only provide the classification result by gradient boosting. The

others by the unselected three machine learning methods and the comprehensive best
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classification result are given in Appendix B.2. In simulations, we randomly split the

dataset into 75% part as training set, and take the remaining 25% part as testing set.

This random partition to training and testing sets was repeated 1, 000 times, thus,

the provided performance measures were averaged over 1, 000 runs.

5.2.3 Results

The performance in terms of overall accuracy and sensitivities of the three groups is

shown in Table 8. For comparisons, we also performed the standard DWT, WTc, and

QWT and their non-decimated versions. Moreover, the dual wavelet spectra of them

were also considered to extract features. For convenience, the considered methods

are numbered from 1 to 26 according to transformation method and features utilized.

We denoted the average of phases from NDWTc as ∠dj, and the averages of three

phases from NDQWT as φj, θj, ψj.

To compare computational costs, we recorded computing times for all considered

versions of wavelets (DWT, WTc, QWT, NDWT, NDWTc, and NDQWT) needed

to transform a single signal of length 1024. As expected, the computation times are

proportional to the overall accuracies: more accurate results take longer to calculate.

It is also notable that computing times for the dual wavelet spectra are a little bit

longer than the corresponding original cases. However, when they are used together

to improve a classification performance as suggested, computing time is not a sum-

mation of times for both original and dual methods since they share the same wavelet

coefficients from wavelet transforms. Thus, the dual descriptors are worth considering

to improve a classification performance in reasonable ranges.

5.2.3.1 Non-decimated Complex Wavelet Transform

Box plots of suggested non-decimated complex wavelet spectral slope and phase-

based statistics at all levels are displayed in Appendix C.2.1.

Comparing the 4th and 8th to the 13th, we can demonstrate that the NDWTc
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Table 8: Gradient boosting classification results. Total 26 methods are compared
and the best result is obtained by the 26th method.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Air
Sensitivity

Sha
Sensitivity

Water
Computing

Time

1st DWT Slope 0.3841 0.3324 0.4918 0.1846 0.0150s
2nd WTc Slope 0.3993 0.3624 0.5221 0.1387
3rd ∠dj 0.4014 0.3767 0.5002 0.1787 0.0207s
4th Slope + ∠dj 0.4236 0.3969 0.5337 0.1641
5th QWT Slope 0.3947 0.3416 0.5214 0.1423
6th φj + θj + ψj 0.6539 0.6208 0.7377 0.4881 0.0298s
7th Slope + φj + θj + ψj 0.6580 0.6294 0.7348 0.5037
8th NDWT Slope 0.3968 0.3565 0.5040 0.1781 0.0192s
9th Slope* 0.3832 0.3652 0.4737 0.1636 0.0229s
10th 8th + 9th 0.4155 0.3744 0.5255 0.1869 0.0283s
11th NDWTc Slope 0.4026 0.3618 0.5085 0.1962
12th ∠dj 0.6536 0.7088 0.7422 0.2898 0.0272s
13th Slope + ∠dj 0.6614 0.7006 0.7504 0.3213
14th Slope* 0.3998 0.3437 0.5162 0.1885
15th j∠d,pi,pi+1

0.4482 0.4083 0.5604 0.2234 0.0321s

16th Slope* + j∠d,pi,pi+1
0.4725 0.4490 0.5763 0.2333

17th 13th + 16th 0.6852 0.7211 0.7672 0.3736 0.0375s
18th NDQWT Slope 0.3789 0.3442 0.4829 0.1606
19th φj + θj + ψj 0.7558 0.7585 0.8096 0.5957 0.0415s
20th Slope + φj + θj + ψj 0.7564 0.7541 0.8199 0.5860
21th Slope* 0.3936 0.3712 0.4907 0.1610
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.4513 0.4040 0.5815 0.1742 0.0620s

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.4764 0.4272 0.6103 0.2030

24th 20th + 23th 0.7684 0.7756 0.8212 0.6027 0.0757s
25th 13th + 20th 0.7822 0.7895 0.8407 0.5997 0.0687s
26th 13th + 16th + 20th + 23th 0.7914 0.8039 0.8491 0.6014 0.1132s

dominates both WTc and NDWT. Furthermore, the classifier with only phase aver-

ages provides a better result than the one with only modulus as comparing 11th and

12th. In particular, the classifiers including phase averages (12th and 13th) show al-

most double sensitivity for air sound compared to the one with only modulus (11th).

Thus, we can conclude that information that separates the air sound is located in the

complex phase. The best performance is achieved by 13th derived from the wavelet

spectra from NDWTc with additional descriptors.

5.2.3.2 Non-decimated Quaternion Wavelet Transform

Box plots of suggested non-decimated quaternion wavelet spectral slope and three

phase-based statistics at all levels are displayed in Appendix C.2.2.

As expected, WTc (4th) is better than DWT (1th) and QWT (7th) is superior to
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WTc (4th) because they produce wavelet coefficients in a more redundant domain.

Also, their corresponding non-decimated versions, NDWT (8th), NDWTc (13th), and

NDQWT (20th), show the same trend and better performance compared to decimated

versions, except for the NDWT because of the compound effects of componential

and structural redundancies. Generally, all methods using slopes show similar and

inadequate performance while the methods that in addition use phase-based statistics

perform better. In particular, classifiers without quaternion-based phase information

tend to show low performance in classifying the water sound. In this context, we can

conclude that discriminatory information characteristic for the water sound is located

in the phases of quaternion-valued wavelet coefficients. This, of course, may not be

case for arbitrary data, but the results in this case validated the use of quaternion-

based phase information.

In conclusion, comparing the 7th and 8th with 20th methods, we can observe

that the proposed NDQWT dominates both QWT and NDWT by its compounding

positive effect of the componential and structural redundancies. Note that the best

performance is achieved if we utilize all features from the NDWTc and NDQWT

together in one integrated model as 25th, which is slightly better than the NDQWT

alone.

5.2.3.3 Duality of Non-decimated Wavelet Transform

Box plots of suggested features obtained by dual wavelet spectra in all real, com-

plex, and quaternion domains are displayed in Appendix C.2.3.

The dual spectral slopes in 9th, 14th, and 21th show very similar performances

compared to their original versions in 8th, 11th, and 18th. This implies that dual

approaches can be another options in wavelet domain. In complex and quaternion

versions, classifiers with only the dual phase-based statistics as in 15th and 22th tend

to show lower performances compared to their original versions in 12th and 19th.
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However, the new descriptors with the proposed dual wavelet spectra slightly increase

performances of primal versions as seen in 17th and 24th. This is a little significant

compared to the case in Section 5.1.3.3, however, it is still worth considering because

of its possibility of development. Finally, the 26th method with all descriptors shows

the best performance.

5.3 Application 3: Screening Mammograms

Breast cancer is the second leading cause of cancer-related death in women in the

United States. The National Cancer Institute’s research in Altekruse et al (2010)

estimated that 1 in 8 women is likely to develop breast cancer during their lives. The

U.S Department of Health and Human Services set a goal to reduce breast cancer

death rate by 10% by 2020. Mammography is the one of the widely-used screening

methods for early detection of breast cancer which can improve prognosis as well

as lead to less invasive interventions (National Cancer Institute, 2014). However,

the radiological interpretation of mammogram images is a difficult task due to the

heterogeneous nature of normal breast tissue. In other words, it is difficult to classify

cancerous and non-cancerous images by merely looking at them. Moreover, cancers

can be of similar radiographic density as normal tissue, which can affect correct

detection and decrease the sensitivity of the tests. Specificity of detection is of concern

as well because it was observed that of the 5% of the mammogram images suggested

for further testing, as many as 93% turned out to be false positives (Houssami et al,

2006). Therefore, it is very important to improve both the sensitivity and specificity

of the mammographic diagnostics.

It is well-known fact that one of the testing modalities is a density and fine scale

structure of the breast tissue. This indicates that the scaling information of the

digitized images can be utilized for classification. Some previous work on mammogram

classification by using a wavelet spectra can be found in Jeon et al (2014), Roberts
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et al (2017), and Feng et al (2018). Since the wavelet spectra captures information

contained in the background tissue of images rather than predefined templates of

expected cancer morphology (tumors and microcalcifications), the spectral descriptors

provide for a new and independent modality for diagnostic testing.

A study of Jeon et al (2014) suggested a classification procedure based on the esti-

mated slope of modulus and phase average from the finest level in a WTc transformed

image. As mentioned in the previous section, the method showed relatively low clas-

sification accuracy in spite of better balancing specificity and sensitivity compared

to other wavelet-based methods using real-valued wavelets. Another disadvantage of

the method was that it only can be applied to squared images of dyadic size, since

it is based on the standard DWT. In studies by Jeon et al (2014), and Roberts et al

(2017) the mammogram images were manually split into 5 dyadic sub-images due to

this limitation in experiments. This manual selection of sub-images is impractical

for screening mammogram images and even causes a problem of multicollinearity due

to overlapping. The study of Kang and Vidakovic (2016) resolved these problems

by using the NDWT with non-decimation property. However, its classification result

can increase more if we apply the wavelet filter in complex or quaternion as well as

their dual versions. In the next section, we provide classification results using all fore-

mentioned methods in section 2, 3, and 4 and demonstrate that the three proposed

methods dominates others.

5.3.1 Description of Data

The collection of digitized mammograms for analysis was obtained from the Uni-

versity of South Florida’s Digital Database for Screening Mammography (DDSM),

which are explained in detail in Heath et al (2001). Images from this database con-

taining suspicious areas are accompanied gold standard true label assessed and verified
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through biopsy. We selected 45 normal controls (benign) and 79 cancer cases (ma-

lignant) scanned on the HOWTEK scanner at the full 43.5 micron per pixel spatial

resolution. Each case contains craniocaudal (CC) and mediolateral oblique (MLO)

projection mammograms from a screening exam. We only analyze the CC projec-

tions. Note that an image containing an area outside of breast can seriously impact

the result when self-similarity features are used in classification. Since the outside

area is smooth the spectral slope may appear steeper. To resolve this problem, the

studies in Jeon et al (2014), and Roberts et al (2017) split the mammogram images

into 5 sub-images within the tissue region. This image-by-image splitting method,

however, has problems since some subimages partially overlapped. Instead, the study

in Kang et al (2019) used a mask-based method to remove irrelevant parts of the

mammogram image, and to define self-similarity properties based on coefficients be-

longing only to tissue part. However, the masked images also covered the side regions

of breast tissues that are unlikely to contain significant information on the cancer

status. Thus, we alternatively select a single region of interest (ROI) from each mam-

mogram image as illustrated in Figure 27. Even though we could analyze images of

any size, thanks to the non-decimation property, the sub-images of size 1024× 1024

were manually selected because some other methods used for comparisons require

dyadic image dimensions.

5.3.2 Classification

In this section, we explain how to classify the mammogram images based on the

comprehensive wavelet-based analytic tool based on the all methods suggested in

section 2, 3, and 4. First, on the ROI images from Section 5.3.1 we applied the all

versions of scale-mixing 2-D wavelet transforms with s = 0 for comparison.

With all of the extracted features, we employed random forest to classify the mam-

mogram images. We also considered the logistic regression, k-NN, SVM, and gradient
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Figure 27: An example of mammogram image. The 1024× 1024 area surrounded by
red lines indicates the ROI.

boosting, however, the random forest consistently outperformed the competitors. In

next section, we only provide the classification result by random forest. The others

by the unselected four machine learning methods and the comprehensive best clas-

sification result are given in Appendix B.3. For a simulation, since the dataset is

imbalanced and has a relatively small size, we selected 75% for training and 25% for

testing at random for both control and case samples. The classification was repeated

1,000 times, and the prediction measures were obtained by averaging over 1,000 runs.
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5.3.3 Results

We compared classification performances in the context of sensitivity, specificity,

and overall accuracy rate, which are shown in Table 9. For comparisons, we also

performed the standard DWT, WTc, and QWT and their non-decimated versions.

Moreover, the dual wavelet spectra of them were also considered to extract features.

For convenience, we named the methods in order from 1 to 26 for the convenience.

We denote a pair of levels as (j) instead of (j, j+s) because we only consider diagonal

wavelet coefficients in scale-mixing 2-D wavelets.

Similar to the 1-D applications, we recorded computation times for all standard

and dual versions of wavelets (DWT, WTc, NDWT, NDWTc, and NDQWT) to

transform one 1024 × 1024 image. The computation times also increase with the

increase of overall accuracies, as in with 1-D case, however, the rate of increase is

much larger. This is because in 2-D the wavelet transform needs double matrix

multiplication, compared to single in 1-D case. Although the times rapidly increase,

they are still in a reasonable range, for the 25th method showing the best performance

takes approximately 28 seconds per image.

In this 2-D case, computing times for dual wavelet spectra are rather longer than

original ones. However, as discussed in Section 5.1.3, this can decrease significantly

since computing time is not a summation of times for both original and dual methods

since they share wavelet transforms.

5.3.3.1 Non-decimated Complex Wavelet Transform

Box plots of suggested non-decimated complex wavelet spectral slope and phase-

based statistics at all levels are displayed in Appendix C.3.1.

Comparing the 4th and 8th with the 13th, the NDWTc dominates both WTc and

NDWT, thus we can see that the NDWTc acts in a synergy. Note that the classifier

with only phase averages (12) is slightly better than the one with only modulus (11).
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Table 9: Random Forest classification results. Total 26 methods are compared and
the best result is achieved by the 25th method.

Order Transform Features Accuracy rate Specificity Sensitivity Computing Time

1st DWT Slope 0.5306 0.3651 0.6302 0.0724s
2nd WTc Slope 0.4900 0.3114 0.5991
3rd ∠dj 0.5117 0.3347 0.6175 0.3378s
4th Slope + ∠dj 0.5173 0.2975 0.6505
5th QWT Slope 0.5608 0.3756 0.6734
6th φj + θj + ψj 0.6190 0.1723 0.8806 0.6576s
7th Slope + φj + θj + ψj 0.6174 0.1685 0.8814
8th NDWT Slope 0.5571 0.3726 0.6694 2.3428s
9th Slope* 0.5165 0.3354 0.6257 7.9523s
10th 8th + 9th 0.5617 0.2908 0.7231 9.1563s
11th NDWTc Slope 0.5453 0.3667 0.6541
12th ∠dj 0.7456 0.7038 0.7748 8.2451s
13th Slope + ∠dj 0.7342 0.6954 0.7617
14th Slope* 0.6082 0.4651 0.6956
15th j∠d,pi,pi+1

0.6723 0.4135 0.8260 21.4702s

16th Slope* + j∠d,pi,pi+1
0.6705 0.4020 0.8303

17th 13th + 16th 0.7472 0.6915 0.7851 27.5641s
18th NDQWT Slope 0.5290 0.3487 0.6375
19th φj + θj + ψj 0.7678 0.6666 0.8309 20.1100s
20th Slope + φj + θj + ψj 0.7651 0.6639 0.8296
21th Slope* 0.5858 0.3469 0.7271
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.6375 0.3397 0.8152 54.5265s

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.6499 0.3509 0.8281

24th 20th + 23th 0.7413 0.6132 0.8218 63.1964s
25th 13th + 20th 0.7830 0.7442 0.8116 28.3551s
26th 13th + 16th + 20th + 23th 0.7761 0.7397 0.8012 90.7605s

It is also notable that the phase averages dominate slopes when comparing 11th

with 12th, and even the phase averages alone is slightly outperform the slope in com-

paring 12th with 13th. This, of course, may not be the case for other data, but these

results emphasized the discriminatory power of the phase information. Note that

specificity significantly increased when the phase averages of NDWTc are included.

In conclusion, we can see that the best performance is achieved by 12th method which

is based on NDWTc with only phase-based features.

5.3.3.2 Non-decimated Quaternion Wavelet Transform

Box plots of suggested non-decimated quaternion wavelet spectral slope and three

phase-based statistics at all levels are displayed in Appendix C.3.2.

As expected the methods show almost same trend comparing to the 1-D case in

Section 5.1.3 and 5.2.3. Comparing 7th, 8th, and 20th, we conclude that the NDQWT

112



outperforms both QWT and NDWT. In particular, the specificity of NDQWT (20th)

significantly increased compared to that of QWT (7th) and NDWT (8th). This shows

that phase information in non-decimated fashion can perform better compared to the

primal versions. Moreover, the three phase averages as descriptors outperform the

slope, when comparing 18th and 19th.

Although the total accuracy of NDQWT is higher than that of NDWTc, the

former shows higher specificity and the latter does higher sensitivity when compared

each other. As 25th method that is a combination of both NDQWT and NDWTc,

shows the best performance with balanced sensitivity and specificity, we can see that

there are complementary interactions between them.

5.3.3.3 Duality of Non-decimated Wavelet Transform

Box plots of suggested features obtained by dual wavelet spectra in all real, com-

plex, and quaternion domains are displayed in Appendix C.3.3.

In real domain, the primal slope outperforms the dual slope and there is almost

no improvement when used together as in 10th. In complex and quaternion domain,

dual spectral slopes (14th and 21th) slightly outperform the original counterparts

(11th and 18th). However, phase-dependent summaries in dual wavelet spectra for

both NDWTc and NDQWT (15th and 22th), show lower performance compared to

their primal versions (12th and 19th). Moreover, in this case, the additional dual

descriptors do not tend to improve classification performance when used together

with their primal versions as seen in 17th, 24th, and 26th. For all four applications,

this is the only case that the 26th classifier with all descriptors from both primal and

dual wavelet spectra, does not show the best performance. In this case, 25th method

that is a combination of both NDQWT and NDWTc, is the best, however, this may

not be case for arbitrary data as shown in Section 5.3.3.3.
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5.3.4 Comparison with CNN

In a final comparison, we applied CNN (Convolutional Neural Network) which

is the state-of-the-art image analyzing tool. Our goal of this additional experiment

was to compare CNN with the proposed method in terms of accuracy and computing

time. Tensorflow 1.5.0 in Python 3.5.2 was used for CNN with 5 layers, 0.001 learning

rate, 11 batch size, and 100 training epochs and MATLAB 9.1.0 is for wavelet-based

methods on Intel(R) Core(TM) i7-6500U CPU at 2.50GHz with 12GM RAM. We

found their computing times notably different. For the 25th method, the time for

extracting features was 58 mins and then 1000 iterations of training and testing took

additional 56 sec. Thus, the total processing time was approximately 58 mins 56 secs.

In contrast, the CNN took 15 hours 1 min on average for its one-time training and

testing. Given large size of training data, the CNN did not need multiple training

because large size of testing data was also available. However, due to a limited number

of mammogram images, multiple training for validation was needed. This would take

approximately 15 × 1000 hours for 1000 iterations. Worse yet, the average accuracy

for 10 iterations was 0.6250 with 0.4286 specificity and 0.7059 sensitivity; these are

inferior to the 25th method showing the best performance. One explanation is the

following. The information on cancerous or non-cancerous tissue is strongly related to

details, which are linked to the self-similarity, as discussed before. Generally, the CNN

is well known for its superb performance on classifying MNIST or CIFAR-10 where

detail information is not critical. On the other hand, the wavelet-based classifiers are

very useful when critical information is located not in the coarse approximations but

details, such as noise dynamics, for example.
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5.4 Application 4: Seam Detection in Steel Rolling Process

In various manufacturing fields, fault diagnosis or anomaly detection in 2-D images

have been widely deployed thanks to their low implementation cost and the rich infor-

mation from a high acquisition rate of image sensors. Thus, considerable research has

been conducted on inspection systems for rolling process (Jin et al, 2004), composite

material fabrication (Sohn et al, 2004), liquid crystal display manufacturing (Jiang

et al, 2005), fabric and textile manufacturing (Kumar, 2008), and so on. In these

systems, snapshots of particular products or parts are obtained during production

process, to be analyzed as digital images for detecting defects or anomalies.

A representative example is an inspection system for the subsequent rolling pro-

cess, continuous casting manufacturing, in which a semi-finished billet is solidified

from molten metal. Specifically, rolling process is a high-speed deformation by con-

sistent diameters between sets of rollers to decrease the cross-sectional size in a long

steel bar by applying compressive forces. One of surface defects caused during the

rolling process is a seam defect that leads to stress concentration on the bulk material,

which further may create failures when a steel bar is used. Thus, timely detection

of such anomaly is significant to preventing such failures and for reducing overall

manufacturing costs. For this purpose, advanced vision sensing systems have been

developed in rolling processes to obtain high-resolution snapshots of the product sur-

face with a high data acquisition rate of billets at short time intervals. An example

of the bar surface image with seam defects of rolling process is shown in Figure 28.

Until recently a quality inspection or anomaly detection had been performed man-

ually. However, automatic inspection systems with high speed and accuracy have been

developed, since machine learning is utilized to analyze images. Since the seam de-

fects are typically sparse as shown in Figure 28, the inherent self-similarity of the

background is disturbed by the anomaly, that can be sensed well by wavelet tools.

The proposed wavelet-based method considered here should not be used in practice
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Figure 28: An example of surface image of steel rolling bar. The white ellipse
indicates seem defects in rolling process.

alone. This should be added to a battery of other standard image recognition tools

based on the image features in the original domain.

To illustrate the power of the proposed method, we set a classification problem

with a test set of surface images and compare classification results in following sec-

tions.

5.4.1 Description of Data

One hundred surface images of size of 128× 512 pixels of a rolling bar are sequen-

tially collected. In this dataset, the images generally appear smooth in the rolling

(vertical) direction. Seam defects that occur typically towards the end of the rolling

bar started to appear from 76th image, so 71th to 80th images are omitted for an

objective experiment. We define the first 70 images as controls without seam defects

and the last 20 images as case samples with seam defects.

5.4.2 Classification

In this section, we describe a way of classifying the rolling surface images. First,

we performed all considered scale-mixing 2-D versions of wavelet transforms to the

rolling bar images. Next, we extract all suggested features using both original and

dual wavelet spectra as descriptors used in classification analysis.

At last, we decided to use random forests methodology to classify the rolling sur-

face images. In addition, we considered logistic regression, k-NN, SVM, and gradient

116



boosting, however, the random forests consistently outperformed the rest. In next

section, we only provide the classification result by random forest. The others by the

unselected four machine learning methods and the comprehensive best classification

result are given in Appendix B.4. In simulations, since the dataset is imbalanced and

of a relatively small size, we separately selected 75% for training and 25% for testing

for both control and case samples to repeatedly measure performances 1,000 times.

Thus, the prediction measures were obtained by averaging the repeated 1,000 runs.

5.4.3 Results

We compared classification performances in the context of sensitivity, specificity,

and overall accuracy rate, which are shown in Table 10. For comparisons, we also

performed the standard DWT, WTc, and QWT and their non-decimated versions.

Moreover, the dual wavelet spectra of them were also considered to extract features.

For convenience, the considered methods are numbered from 1 to 26 according to

transformation method and features utilized. We denoted the phase average from

NDWTc as ∠dj and the three phase averages from NDQWT as φj, θj, ψj.

As in the 1-D application, we recorded computation times for all considered ver-

sions of wavelets (DWT, WTc, QWT, NDWT, NDWTc, and NDQWT) needed to

transform a single 128 × 512 image. The computing times also increase with the

increase of the overall accuracies, as in with 1-D case, however, the rate of increase

is much steeper. This is because 2-D wavelet transform requires double matrix mul-

tiplications, as explained in Section 3.1. Although the times rapidly increase, they

are still in the reasonable range; the NDQWT takes approximately 1.17 seconds per

image.

In this 2-D case, computing times for dual wavelet spectra are rather longer than

original ones. However, as discussed in Section 5.1.3, this can decrease significantly

since computing time is not a summation of times for both original and dual methods
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since they share wavelet transforms.

Table 10: Random Forest classification results. Total 26 methods are compared and
the best result is achieved by the 26th method.

Order Transform Features Accuracy rate Specificity Sensitivity Computing Time

1st DWT Slope 0.6057 0.7372 0.2110 0.0222s
2nd WTc Slope 0.7449 0.8324 0.4822
3rd ∠dj 0.6156 0.7127 0.3240 0.0937s
4th Slope + ∠dj 0.7811 0.9050 0.4094
5th QWT Slope 0.7222 0.8254 0.4124
6th φj + θj + ψj 0.8359 0.9749 0.4188 0.4206s
7th Slope + φj + θj + ψj 0.8447 0.9823 0.4320
8th NDWT Slope 0.6594 0.7569 0.3666 0.0696s
9th Slope* 0.7691 0.8494 0.5280 0.3593s
10th 8th + 9th 0.8226 0.9311 0.4968 0.3712s
11th NDWTc Slope 0.7844 0.8755 0.5108
12th ∠dj 0.8600 0.9664 0.5408 0.2538s
13th Slope + ∠dj 0.8938 0.9717 0.6598
14th Slope* 0.7612 0.8549 0.4802
15th j∠d,pi,pi+1

0.8979 0.9602 0.7108 0.6386s

16th Slope* + j∠d,pi,pi+1
0.9085 0.9669 0.7330

17th 13th + 16th 0.9263 0.9809 0.7626 0.7168s
18th NDQWT Slope 0.7483 0.8227 0.5250
19th φj + θj + ψj 0.9139 0.9868 0.6950 1.1777s
20th Slope + φj + θj + ψj 0.9220 0.9831 0.7384
21th Slope* 0.8214 0.8985 0.5515
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.8911 0.9507 0.6825 2.1205s

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.9230 0.9719 0.7521

24th 20th + 23th 0.9384 0.9873 0.7674 2.8963s
25th 13th + 20th 0.9310 0.9819 0.7529 1.4315s
26th 13th + 16th + 20th + 23th 0.9523 0.9999 0.8029 3.6131s

5.4.3.1 Non-decimated Complex Wavelet Transform

Box plots of suggested non-decimated complex wavelet spectral slope and phase-

based statistics at all levels are displayed in Appendix C.4.1.

Comparing the 4th and 8th to the 13th, we can see that the NDWTc dominates

both WTc and NDWT. It is also notable that the phase averages dominate slopes

when comparing 11th with 12th. When they are used together in one integrated

model (13th), it shows the best performance. In particular, the sensitivity significantly

increased.
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5.4.3.2 Non-decimated Quaternion Wavelet Transform

Box plots of suggested non-decimated quaternion wavelet spectral slope and three

phase-based statistics at all levels are displayed in Appendix C.4.2.

The methods show almost same trend comparing to the counterparts in Section

5.2.3; the only difference is that in this case the slopes are also informative features.

Contrasting 7th and 8th to 20th, we see that the NDQWT dominates both QWT

and NDWT. In particular, the sensitivity of NDQWT (20th) significantly increased

compared to that of QWT (7th), which means that redundancy is beneficial in cap-

turing information on defects. It is also notable that the three phase averages as

descriptors outperform the slope, when comparing 18th and 19th cases. In conclu-

sion, we find that the best performance is achieved by 25th method which is based

on all descriptors from NDWTc and NDQWT.

5.4.3.3 Duality of Non-decimated Wavelet Transform

Box plots of suggested features obtained by dual wavelet spectra in all real, com-

plex, and quaternion domains are displayed in Appendix C.4.3.

In real domain, the dual slope in 9th outperforms the original one in 8th. More-

over, the dual slope can help the original counterpart improve performance when

used together as in 10th. In complex and quaternion domain, it is hard to distinguish

superiority between the original and dual wavelet spectra since their results are very

similar. However, we can see that the dual spectra can support the original one as like

the real domain case as seen in 17th and 24th. It is also notable that the phase-based

statistics are better descriptors than the slope for all versions. In conclusion, we find

that the best performance is achieved by 26th method based on all descriptors from

NDWTc and NDQWT. This indicates that the performance can be better if we apply

the NDWTc and NDQWT together with the additional dual descriptors.
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5.4.4 Comparison with CNN

As a final comparison, we applied CNN (Convolutional Neural Network) which

is the state-of-the-art image analyzing tool nowadays. The goal of this additional

experiment is to compare CNN with the proposed method in terms of accuracy and

computing time. Tensorflow 1.5.0 in Python 3.5.2 is used for CNN with 5 layers,

0.001 learning rate, 70 batch size, and 100 training epochs and MATLAB 9.1.0 is for

wavelet-based methods on Intel(R) Core(TM) i7-6500U CPU at 2.50GHz with 12GM

RAM. Surprisingly, we found that computing times are notably different. For 26th

method showing the best performance, its time for extracting features was 5.42 mins

and then 1000 iteration of training and testing took about 1.47 mins. Thus, total

processing time was approximately 6.89 mins. In comparison, CNN showed 0.8987

average accuracy for 100 iterations with 0.9139 specificity and 0.8457 sensitivity,

which seems to be competitive with the 26th method. Surprisingly, the CNN took 22

mins 48 secs on average for its one-time training and testing. For dataset of large size

of training data, CNN does not need multiple training because a large size of testing

data would be available as well. However, due to a small size of dataset, multiple

training and validation runs are desired here, which will take whooping 23 × 1000

mins for 1000 iterations. This is the reason why the proposed method outperformed

the CNN method in classification of rolling surface images in terms of both accuracy

and computing time.
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APPENDIX A

PROOFS AND DERIVATIONS

A.1 The proof that the polynomial PJ(z) satisfies the Equa-
tion (13)

First, reform the PJ(z) as

PJ(z) =
1

z2J

J∑
j=0

(−1)j
(

2J + 1

j

)
H(−z)jH(z)2J+1−j (61)

where H(z) = (1+z)2

4
. Since

(
2J+1
j

)
=
(

2J+1
2J+1−j

)
, we can obtain

PJ(−z) =
1

z2J

2J+1∑
j=J+1

(−1)1−J
(

2J + 1

j

)
H(−z)jH(z)2J+1−j (62)

and consequently Equation (13) by taking the difference of the last two Equation (61)

and Equation (62) as follows:

PJ(z)− PJ(−z) =
1

z2J

2J+1∑
j=0

(−1)j
(

2J + 1

j

)
(−H(−z))jH(z)2J+1−j

=
1

z2J
(H(z)−H(−z))2J+1

= z
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APPENDIX B

CLASSIFICATION RESULTS

B.1 Application 1: Classifying Pupillary Signal Data

Table 11: Comprehensive best classification results of classifying pupillary signal
data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Control
Sensitivity

Case 1
Sensitivity

Case 2
Sensitivity

Case 3
Method

1st DWT Slope 0.4467 0.0000 0.1872 0.0000 0.9777 SVM
2nd WTc Slope 0.5416 0.0000 0.0000 0.6932 0.9353 SVM
3rd ∠dj 0.6779 0.2987 0.5121 0.7284 0.8690 SVM
4th Slope + ∠dj 0.7007 0.3237 0.5399 0.7616 0.8826 SVM
5th QWT Slope 0.4359 0.0123 0.1683 0.0000 0.9792 SVM
6th φj + θj + ψj 0.6915 0.4610 0.5162 0.7871 0.8121 GB
7th Slope + φj + θj + ψj 0.7535 0.5238 0.6647 0.8206 0.8423 GB
8th NDWT Slope 0.4596 0.0916 0.4799 0.0635 0.7856 GB
9th Slope* 0.5418 0.0000 0.0000 0.6931 0.9375 SVM
10th 8th + 9th 0.6177 0.1917 0.4577 0.7504 0.7747 GB
11th NDWTc Slope 0.4454 0.0069 0.1732 0.0000 0.9754 SVM
12th ∠dj 0.7883 0.6641 0.6012 0.8821 0.8819 RF
13th Slope + ∠dj 0.8345 0.6842 0.7400 0.8899 0.9062 RF
14th Slope* 0.5222 0.0000 0.0000 0.6013 0.9389 SVM
15th j∠d,pi,pi+1

0.4890 0.0000 0.0186 0.4081 0.9601 SVM

16th Slope* + j∠d,pi,pi+1
0.5723 0.1181 0.3597 0.7868 0.7215 RF

17th 13th + 16th 0.8879 0.7688 0.8417 0.9210 0.9348 GB
18th NDQWT Slope 0.4432 0.0000 0.1825 0.0000 0.9805 SVM
19th φj + θj + ψj 0.9048 0.9391 0.8253 0.9708 0.9016 kNN
20th Slope + φj + θj + ψj 0.9278 0.8976 0.8830 0.9446 0.9537 GB
21th Slope* 0.5236 0.0000 0.0000 0.5984 0.9386 SVM
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.7827 0.6000 0.6435 0.8960 0.8581 GB

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.8056 0.6403 0.6754 0.9137 0.8733 GB

24th 20th + 23th 0.9523 0.9178 0.9108 0.9798 0.9717 GB
25th 13th + 20th 0.9533 0.9216 0.9176 0.9806 0.9699 GB
26th 13th + 16th + 20th + 23th 0.9711 0.9484 0.9361 0.9879 0.9821 GB
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Table 12: Random forest classification results of classifying pupillary signal data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Control
Sensitivity

Case 1
Sensitivity

Case 2
Sensitivity

Case 3

1st DWT Slope 0.3548 0.1996 0.3268 0.2580 0.4745
2nd WTc Slope 0.3604 0.2510 0.3148 0.2460 0.4840
3rd ∠dj 0.6062 0.1560 0.2063 0.8637 0.8370
4th Slope + ∠dj 0.6723 0.2912 0.3607 0.8816 0.8579
5th QWT Slope 0.3678 0.2168 0.3558 0.2660 0.4790
6th φj + θj + ψj 0.6504 0.3073 0.3402 0.7965 0.8568
7th Slope + φj + θj + ψj 0.6997 0.3726 0.5291 0.7823 0.8568
8th NDWT Slope 0.3602 0.2019 0.3414 0.2583 0.4781
9th Slope* 0.4322 0.1957 0.2860 0.6303 0.4842
10th 8th + 9th 0.5721 0.2348 0.4528 0.7382 0.6591
11th NDWTc Slope 0.3742 0.2218 0.3487 0.2848 0.4871
12th ∠dj 0.7883 0.6641 0.6012 0.8821 0.8819
13th Slope + ∠dj 0.8345 0.6842 0.7400 0.8899 0.9062
14th Slope* 0.4050 0.1631 0.2803 0.5975 0.4497
15th j∠d,pi,pi+1

0.4785 0.0777 0.2272 0.5735 0.6984

16th Slope* + j∠d,pi,pi+1
0.5723 0.1181 0.3597 0.7868 0.7215

17th 13th + 16th 0.8604 0.7082 0.7699 0.9334 0.9215
18th NDQWT Slope 0.3758 0.1976 0.3586 0.2791 0.4965
19th φj + θj + ψj 0.8667 0.8173 0.6960 0.9259 0.9453
20th Slope + φj + θj + ψj 0.8986 0.8423 0.8019 0.9281 0.9550
21th Slope* 0.4208 0.1764 0.3020 0.6065 0.4667
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.7680 0.5107 0.5648 0.9024 0.8932

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.7931 0.5512 0.6273 0.9224 0.8959

24th 20th + 23th 0.9227 0.8530 0.8317 0.9711 0.9700
25th 13th + 20th 0.9251 0.8691 0.8388 0.9673 0.9684
26th 13th + 16th + 20th + 23th 0.9295 0.8665 0.8536 0.9695 0.9709
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Table 13: Support vector machine classification results of classifying pupillary signal
data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Control
Sensitivity

Case 1
Sensitivity

Case 2
Sensitivity

Case 3

1st DWT Slope 0.4467 0.0000 0.1872 0.0000 0.9777
2nd WTc Slope 0.5416 0.0000 0.0000 0.6932 0.9353
3rd ∠dj 0.6778 0.2987 0.5121 0.7284 0.8690
4th Slope + ∠dj 0.7006 0.3237 0.5399 0.7616 0.8826
5th QWT Slope 0.4358 0.0123 0.1683 0.0000 0.9792
6th φj + θj + ψj 0.6279 0.2909 0.3676 0.7171 0.8351
7th Slope + φj + θj + ψj 0.6908 0.3485 0.5573 0.7358 0.8515
8th NDWT Slope 0.4518 0.0000 0.1841 0.0000 0.9778
9th Slope* 0.5417 0.0000 0.0000 0.6931 0.9375
10th 8th + 9th 0.5987 0.0190 0.2981 0.7175 0.8908
11th NDWTc Slope 0.4453 0.0069 0.1732 0.0000 0.9754
12th ∠dj 0.7004 0.3367 0.4502 0.8022 0.9016
13th Slope + ∠dj 0.7457 0.3909 0.5871 0.8141 0.9129
14th Slope* 0.5222 0.0000 0.0000 0.6013 0.9389
15th j∠d,pi,pi+1

0.4889 0.0000 0.0186 0.4081 0.9601

16th Slope* + j∠d,pi,pi+1
0.5629 0.0240 0.0351 0.7307 0.9467

17th 13th + 16th 0.7907 0.4739 0.6823 0.8638 0.9190
18th NDQWT Slope 0.4431 0.0000 0.1825 0.0000 0.9805
19th φj + θj + ψj 0.8235 0.6449 0.6611 0.8676 0.9481
20th Slope + φj + θj + ψj 0.8648 0.6881 0.7596 0.9135 0.9555
21th Slope* 0.5236 0.0000 0.0000 0.5984 0.9386
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.6921 0.3500 0.4640 0.7966 0.8816

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.7133 0.3302 0.5111 0.8396 0.8887

24th 20th + 23th 0.9049 0.7477 0.8333 0.9599 0.9669
25th 13th + 20th 0.9033 0.7230 0.8324 0.9540 0.9759
26th 13th + 16th + 20th + 23th 0.9171 0.7669 0.8634 0.9601 0.9741
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Table 14: k-nearest neighbor (k = 1) classification results of classifying pupillary
signal data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Control
Sensitivity

Case 1
Sensitivity

Case 2
Sensitivity

Case 3

1st DWT Slope 0.3550 0.1996 0.3256 0.2601 0.4742
2nd WTc Slope 0.3590 0.2530 0.3184 0.2385 0.4827
3rd ∠dj 0.4690 0.2366 0.2498 0.6805 0.5529
4th Slope + ∠dj 0.5199 0.2915 0.2989 0.7055 0.6174
5th QWT Slope 0.3673 0.2160 0.3594 0.2674 0.4766
6th φj + θj + ψj 0.4820 0.3146 0.3303 0.5805 0.5681
7th Slope + φj + θj + ψj 0.5291 0.3514 0.4040 0.6242 0.6050
8th NDWT Slope 0.3611 0.2033 0.3428 0.2610 0.4777
9th Slope* 0.4330 0.1954 0.2855 0.6333 0.4847
10th 8th + 9th 0.5248 0.2577 0.4284 0.6528 0.5965
11th NDWTc Slope 0.3737 0.2142 0.3447 0.2852 0.4908
12th ∠dj 0.7520 0.6703 0.6076 0.8604 0.8002
13th Slope + ∠dj 0.8142 0.7372 0.7222 0.8821 0.8538
14th Slope* 0.4065 0.1661 0.2823 0.5972 0.4525
15th j∠d,pi,pi+1

0.3960 0.1917 0.2804 0.4720 0.4864

16th Slope* + j∠d,pi,pi+1
0.5007 0.2678 0.3669 0.7221 0.5321

17th 13th + 16th 0.8428 0.8038 0.7423 0.9336 0.8624
18th NDQWT Slope 0.3760 0.1972 0.3621 0.2813 0.4949
19th φj + θj + ψj 0.9048 0.9391 0.8253 0.9708 0.9016
20th Slope + φj + θj + ψj 0.9171 0.9514 0.8477 0.9767 0.9124
21th Slope* 0.4195 0.1760 0.3048 0.6080 0.4601
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.7108 0.6225 0.5413 0.8711 0.7463

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.7461 0.6673 0.6030 0.8944 0.7707

24th 20th + 23th 0.9204 0.9515 0.8457 0.9885 0.9151
25th 13th + 20th 0.9371 0.9725 0.8791 0.9887 0.9296
26th 13th + 16th + 20th + 23th 0.9320 0.9673 0.8673 0.9935 0.9229
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B.2 Application 2: Classifying Sounds Data

Table 15: Comprehensive best classification results of classifying sounds data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Air
Sensitivity

Sha
Sensitivity

Water
Method

1st DWT Slope 0.4340 0.3142 0.6506 0.0858 kNN
2nd WTc Slope 0.4339 0.3233 0.6544 0.0401 kNN
3rd ∠dj 0.4446 0.3637 0.6323 0.0770 kNN
4th Slope + ∠dj 0.4236 0.3969 0.5337 0.1641 GB
5th QWT Slope 0.4336 0.3324 0.6403 0.0763 kNN
6th φj + θj + ψj 0.6654 0.6101 0.7934 0.4130 RF
7th Slope + φj + θj + ψj 0.6702 0.6209 0.7931 0.4244 RF
8th NDWT Slope 0.4347 0.3189 0.6322 0.1091 kNN
9th Slope* 0.4209 0.3209 0.6118 0.0998 kNN
10th 8th + 9th 0.4326 0.3824 0.5676 0.1615 RF
11th NDWTc Slope 0.4246 0.3215 0.6156 0.1060 kNN
12th ∠dj 0.6757 0.7333 0.7836 0.2419 RF
13th Slope + ∠dj 0.6837 0.7333 0.8007 0.2326 RF
14th Slope* 0.4471 0.3392 0.6580 0.0917 kNN
15th j∠d,pi,pi+1

0.4678 0.4028 0.6176 0.1793 RF

16th Slope* + j∠d,pi,pi+1
0.4901 0.4326 0.6487 0.1672 RF

17th 13th + 16th 0.6884 0.7222 0.8273 0.2201 RF
18th NDQWT Slope 0.4302 0.3183 0.6282 0.1145 kNN
19th φj + θj + ψj 0.7655 0.7670 0.8486 0.5269 RF
20th Slope + φj + θj + ψj 0.7565 0.7589 0.8407 0.5216 RF
21th Slope* 0.4603 0.3753 0.6720 0.0439 kNN
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.4878 0.3962 0.6819 0.1376 RF

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.5113 0.4278 0.7001 0.1514 RF

24th 20th + 23th 0.7684 0.7756 0.8212 0.6027 GB
25th 13th + 20th 0.7822 0.7895 0.8407 0.5997 GB
26th 13th + 16th + 20th + 23th 0.7914 0.8039 0.8491 0.6014 GB
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Table 16: Random forest classification results of classifying sounds data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Air
Sensitivity

Sha
Sensitivity

Water

1st DWT Slope 0.3802 0.3378 0.4833 0.1772
2nd WTc Slope 0.3893 0.3662 0.4920 0.1522
3rd ∠dj 0.4010 0.3753 0.4915 0.1973
4th Slope + ∠dj 0.4230 0.3799 0.5629 0.1238
5th QWT Slope 0.3866 0.3449 0.4977 0.1625
6th φj + θj + ψj 0.6654 0.6101 0.7934 0.4130
7th Slope + φj + θj + ψj 0.6702 0.6209 0.7931 0.4244
8th NDWT Slope 0.3961 0.3677 0.4848 0.2117
9th Slope* 0.3900 0.3909 0.4662 0.1709
10th 8th + 9th 0.4326 0.3824 0.5676 0.1615
11th NDWTc Slope 0.4019 0.3688 0.4928 0.2147
12th ∠dj 0.6757 0.7333 0.7836 0.2419
13th Slope + ∠dj 0.6837 0.7333 0.8007 0.2326
14th Slope* 0.3958 0.3630 0.4872 0.2080
15th j∠d,pi,pi+1

0.4678 0.4028 0.6176 0.1793

16th Slope* + j∠d,pi,pi+1
0.4901 0.4326 0.6487 0.1672

17th 13th + 16th 0.6884 0.7222 0.8273 0.2201
18th NDQWT Slope 0.3740 0.3455 0.4662 0.1716
19th φj + θj + ψj 0.7655 0.7670 0.8486 0.5269
20th Slope + φj + θj + ψj 0.7565 0.7589 0.8407 0.5216
21th Slope* 0.3906 0.3701 0.4835 0.1707
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.4878 0.3962 0.6819 0.1376

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.5113 0.4278 0.7001 0.1514

24th 20th + 23th 0.7651 0.7660 0.8560 0.4993
25th 13th + 20th 0.7774 0.7898 0.8648 0.5073
26th 13th + 16th + 20th + 23th 0.7762 0.7834 0.8686 0.4951
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Table 17: Support vector machine classification results of classifying sounds data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Air
Sensitivity

Sha
Sensitivity

Water

1st DWT Slope 0.3907 0.3055 0.5382 0.1501
2nd WTc Slope 0.3955 0.3317 0.5367 0.1310
3rd ∠dj 0.3886 0.3212 0.5240 0.1578
4th Slope + ∠dj 0.3995 0.3610 0.5081 0.1732
5th QWT Slope 0.3908 0.3131 0.5333 0.1561
6th φj + θj + ψj 0.6610 0.6586 0.7358 0.4572
7th Slope + φj + θj + ψj 0.6647 0.6464 0.7514 0.4622
8th NDWT Slope 0.3858 0.3271 0.5105 0.1457
9th Slope* 0.3965 0.3454 0.5279 0.1363
10th 8th + 9th 0.3955 0.3670 0.5035 0.1526
11th NDWTc Slope 0.3929 0.3458 0.5104 0.1611
12th ∠dj 0.6336 0.6961 0.7333 0.2062
13th Slope + ∠dj 0.6431 0.7043 0.7406 0.2441
14th Slope* 0.3850 0.3325 0.5170 0.1179
15th j∠d,pi,pi+1

0.4013 0.3517 0.5255 0.1461

16th Slope* + j∠d,pi,pi+1
0.4104 0.3889 0.5190 0.1507

17th 13th + 16th 0.6451 0.6908 0.7329 0.2972
18th NDQWT Slope 0.3909 0.3263 0.5222 0.1571
19th φj + θj + ψj 0.7327 0.7531 0.7916 0.5261
20th Slope + φj + θj + ψj 0.7396 0.7482 0.8060 0.5314
21th Slope* 0.3908 0.3508 0.5152 0.1269
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.4145 0.3789 0.5289 0.1670

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.4231 0.3608 0.5613 0.1667

24th 20th + 23th 0.7455 0.7587 0.8080 0.5416
25th 13th + 20th 0.7725 0.7859 0.8391 0.5577
26th 13th + 16th + 20th + 23th 0.7798 0.7936 0.8332 0.5943
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Table 18: k-nearest neighbors (k = 7) classification results of classifying sounds data.

Order Transform Features
Overall

Accuracy rate
Sensitivity

Air
Sensitivity

Sha
Sensitivity

Water

1st DWT Slope 0.4340 0.3142 0.6506 0.0858
2nd WTc Slope 0.4339 0.3233 0.6544 0.0401
3rd ∠dj 0.4446 0.3637 0.6323 0.0770
4th Slope + ∠dj 0.4222 0.3368 0.6124 0.0696
5th QWT Slope 0.4336 0.3324 0.6403 0.0763
6th φj + θj + ψj 0.6190 0.6093 0.7509 0.2701
7th Slope + φj + θj + ψj 0.6137 0.5985 0.7443 0.2796
8th NDWT Slope 0.4347 0.3189 0.6322 0.1091
9th Slope* 0.4209 0.3209 0.6118 0.0998
10th 8th + 9th 0.4303 0.3582 0.6022 0.1027
11th NDWTc Slope 0.4246 0.3215 0.6156 0.1060
12th ∠dj 0.6529 0.6528 0.8226 0.1774
13th Slope + ∠dj 0.6594 0.6632 0.8217 0.1873
14th Slope* 0.4471 0.3392 0.6580 0.0917
15th j∠d,pi,pi+1

0.4537 0.4106 0.6107 0.1094

16th Slope* + j∠d,pi,pi+1
0.4758 0.4437 0.6262 0.1261

17th 13th + 16th 0.6581 0.6268 0.8342 0.2160
18th NDQWT Slope 0.4302 0.3183 0.6282 0.1145
19th φj + θj + ψj 0.7010 0.6909 0.8553 0.2878
20th Slope + φj + θj + ψj 0.7033 0.6946 0.8531 0.2950
21th Slope* 0.4603 0.3753 0.6720 0.0439
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.4576 0.4052 0.6232 0.0903

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.4710 0.4233 0.6362 0.1023

24th 20th + 23th 0.7027 0.6916 0.8535 0.2879
25th 13th + 20th 0.7190 0.7194 0.8723 0.2797
26th 13th + 16th + 20th + 23th 0.7212 0.7189 0.8695 0.2910
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B.3 Application 3: Screening Mammograms

Table 19: Comprehensive best classification results of screening mammograms.

Order Transform Features Accuracy rate Specificity Sensitivity Method

1st DWT Slope 0.6038 0.0326 0.9251 LR
2nd WTc Slope 0.6078 0.0558 0.9183 LR
3rd ∠dj 0.6006 0.0819 0.8923 LR
4th Slope + ∠dj 0.6088 0.1491 0.8673 SVM
5th QWT Slope 0.6376 0.0233 0.9831 LR
6th φj + θj + ψj 0.6665 0.2964 0.8746 SVM
7th Slope + φj + θj + ψj 0.6608 0.2927 0.8679 SVM
8th NDWT Slope 0.6625 0.3194 0.8555 LR
9th Slope* 0.6702 0.3533 0.8485 LR
10th 8th + 9th 0.6578 0.3364 0.8386 LR
11th NDWTc Slope 0.6546 0.2996 0.8543 LR
12th ∠dj 0.7456 0.7038 0.7748 RF
13th Slope + ∠dj 0.7648 0.7277 0.7858 LR
14th Slope* 0.6564 0.2901 0.8625 LR
15th j∠d,pi,pi+1

0.6723 0.4135 0.8260 RF

16th Slope* + j∠d,pi,pi+1
0.6705 0.4020 0.8303 RF

17th 13th + 16th 0.7472 0.6915 0.7851 RF
18th NDQWT Slope 0.6561 0.3019 0.8553 LR
19th φj + θj + ψj 0.7678 0.6666 0.8309 RF
20th Slope + φj + θj + ψj 0.7651 0.6639 0.8296 RF
21th Slope* 0.6532 0.2810 0.8626 LR
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.6375 0.3397 0.8152 RF

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.6499 0.3509 0.8281 RF

24th 20th + 23th 0.7413 0.6132 0.8218 RF
25th 13th + 20th 0.7830 0.7442 0.8116 RF
26th 13th + 16th + 20th + 23th 0.7761 0.7397 0.8012 RF
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Table 20: Gradient boosting classification results of screening mammograms.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.5560 0.3714 0.6598
2nd WTc Slope 0.5036 0.3098 0.6126
3rd ∠dj 0.5274 0.3330 0.6367
4th Slope + ∠dj 0.4855 0.3061 0.5864
5th QWT Slope 0.5679 0.3843 0.6712
6th φj + θj + ψj 0.5649 0.3340 0.6948
7th Slope + φj + θj + ψj 0.5636 0.3209 0.7001
8th NDWT Slope 0.5697 0.3963 0.6672
9th Slope* 0.5327 0.3464 0.6375
10th 8th + 9th 0.5267 0.3070 0.6503
11th NDWTc Slope 0.5623 0.3831 0.6631
12th ∠dj 0.7366 0.6579 0.7809
13th Slope + ∠dj 0.7290 0.6523 0.7721
14th Slope* 0.5978 0.4377 0.6879
15th j∠d,pi,pi+1

0.6470 0.4482 0.7588

16th Slope* + j∠d,pi,pi+1
0.6528 0.4481 0.7679

17th 13th + 16th 0.7266 0.6233 0.7847
18th NDQWT Slope 0.5375 0.3397 0.6488
19th φj + θj + ψj 0.7337 0.6254 0.7946
20th Slope + φj + θj + ψj 0.7301 0.6037 0.8012
21th Slope* 0.5790 0.3054 0.7329
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.6256 0.4052 0.7496

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.6198 0.4039 0.7413

24th 20th + 23th 0.7111 0.5886 0.7800
25th 13th + 20th 0.7452 0.6707 0.7872
26th 13th + 16th + 20th + 23th 0.7662 0.7084 0.7987
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Table 21: Support vector machine classification results of screening mammograms.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.5856 0.3094 0.7409
2nd WTc Slope 0.5700 0.3747 0.6798
3rd ∠dj 0.5690 0.3607 0.6863
4th Slope + ∠dj 0.6088 0.1491 0.8673
5th QWT Slope 0.5519 0.4197 0.6263
6th φj + θj + ψj 0.6665 0.2964 0.8746
7th Slope + φj + θj + ψj 0.6608 0.2927 0.8679
8th NDWT Slope 0.5409 0.3117 0.6699
9th Slope* 0.5752 0.3446 0.7049
10th 8th + 9th 0.5498 0.2950 0.6932
11th NDWTc Slope 0.5834 0.3336 0.7239
12th ∠dj 0.7418 0.6981 0.7664
13th Slope + ∠dj 0.7334 0.6021 0.8073
14th Slope* 0.5888 0.3396 0.7290
15th j∠d,pi,pi+1

0.5813 0.4393 0.6611

16th Slope* + j∠d,pi,pi+1
0.6630 0.5033 0.7528

17th 13th + 16th 0.7408 0.6351 0.8002
18th NDQWT Slope 0.5761 0.3278 0.7158
19th φj + θj + ψj 0.7170 0.6448 0.7576
20th Slope + φj + θj + ψj 0.7235 0.6080 0.7884
21th Slope* 0.5660 0.3313 0.6981
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.5827 0.2011 0.7973

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.5898 0.2861 0.7606

24th 20th + 23th 0.7138 0.5699 0.7948
25th 13th + 20th 0.7412 0.6347 0.8012
26th 13th + 16th + 20th + 23th 0.7576 0.6840 0.7991
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Table 22: k-nearest neighbors (k = 10) classification results of screening mammo-
grams.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.4990 0.4965 0.5003
2nd WTc Slope 0.5012 0.5023 0.5006
3rd ∠dj 0.4994 0.5009 0.4986
4th Slope + ∠dj 0.4994 0.5000 0.4991
5th QWT Slope 0.5009 0.5012 0.5007
6th φj + θj + ψj 0.4546 0.7535 0.3340
7th Slope + φj + θj + ψj 0.4585 0.7362 0.3494
8th NDWT Slope 0.5001 0.4987 0.5008
9th Slope* 0.5031 0.5019 0.5038
10th 8th + 9th 0.4958 0.4957 0.4959
11th NDWTc Slope 0.5007 0.5000 0.5010
12th ∠dj 0.5005 0.5001 0.5007
13th Slope + ∠dj 0.5013 0.4989 0.5027
14th Slope* 0.5005 0.5015 0.5000
15th j∠d,pi,pi+1

0.5001 0.4987 0.5008

16th Slope* + j∠d,pi,pi+1
0.5001 0.5010 0.4996

17th 13th + 16th 0.6983 0.7709 0.6605
18th NDQWT Slope 0.4987 0.4986 0.4988
19th φj + θj + ψj 0.6098 0.8429 0.4883
20th Slope + φj + θj + ψj 0.6206 0.8201 0.5167
21th Slope* 0.4972 0.4970 0.4973
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.5490 0.4719 0.5896

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.5552 0.4696 0.5999

24th 20th + 23th 0.6650 0.7930 0.6061
25th 13th + 20th 0.7064 0.8586 0.6364
26th 13th + 16th + 20th + 23th 0.7062 0.8646 0.6333
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Table 23: Logistic regression classification results of screening mammograms.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.6038 0.0326 0.9251
2nd WTc Slope 0.6078 0.0558 0.9183
3rd ∠dj 0.6006 0.0819 0.8923
4th Slope + ∠dj 0.5929 0.1896 0.8198
5th QWT Slope 0.6376 0.0233 0.9831
6th φj + θj + ψj 0.6231 0.5296 0.6758
7th Slope + φj + θj + ψj 0.6144 0.5190 0.6680
8th NDWT Slope 0.6625 0.3194 0.8555
9th Slope* 0.6702 0.3533 0.8485
10th 8th + 9th 0.6578 0.3364 0.8386
11th NDWTc Slope 0.6546 0.2996 0.8543
12th ∠dj 0.7667 0.7416 0.7809
13th Slope + ∠dj 0.7648 0.7277 0.7858
14th Slope* 0.6564 0.2901 0.8625
15th j∠d,pi,pi+1

0.6535 0.4927 0.7439

16th Slope* + j∠d,pi,pi+1
0.6696 0.4844 0.7737

17th 13th + 16th 0.7337 0.6664 0.7716
18th NDQWT Slope 0.6561 0.3019 0.8553
19th φj + θj + ψj 0.7450 0.6848 0.7789
20th Slope + φj + θj + ψj 0.7340 0.6746 0.7674
21th Slope* 0.6532 0.2810 0.8626
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.5773 0.3676 0.6953

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.5720 0.3476 0.6983

24th 20th + 23th 0.7070 0.6232 0.7541
25th 13th + 20th 0.7074 0.6229 0.7550
26th 13th + 16th + 20th + 23th 0.7368 0.6974 0.7589
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B.4 Application 4: Seam Detection in Steel Rolling Process

Table 24: Comprehensive best classification results of seam detection in steel rolling
process.

Order Transform Features Accuracy rate Specificity Sensitivity Method

1st DWT Slope 0.7480 0.9973 0.0000 LR
2nd WTc Slope 0.8133 0.9806 0.3114 LR
3rd ∠dj 0.7499 0.9998 0.0000 LR
4th Slope + ∠dj 0.8120 0.9779 0.3144 LR
5th QWT Slope 0.7852 0.9661 0.2422 SVM
6th φj + θj + ψj 0.8359 0.9749 0.4188 RF
7th Slope + φj + θj + ψj 0.8447 0.9823 0.4320 RF
8th NDWT Slope 0.8432 0.9666 0.4730 LR
9th Slope* 0.8237 1.0000 0.2946 LR
10th 8th + 9th 0.8427 0.9701 0.4602 LR
11th NDWTc Slope 0.8371 0.9679 0.4448 LR
12th ∠dj 0.8600 0.9664 0.5408 RF
13th Slope + ∠dj 0.8938 0.9717 0.6598 RF
14th Slope* 0.7674 1.0000 0.0694 LR
15th j∠d,pi,pi+1

0.9265 0.9883 0.7412 LR

16th Slope* + j∠d,pi,pi+1
0.9195 0.9831 0.7286 LR

17th 13th + 16th 0.9263 0.9809 0.7626 RF
18th NDQWT Slope 0.8406 0.9751 0.4372 LR
19th φj + θj + ψj 0.9139 0.9868 0.6950 RF
20th Slope + φj + θj + ψj 0.9220 0.9831 0.7384 RF
21th Slope* 0.8214 0.8985 0.5515 RF
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.8911 0.9507 0.6825 RF

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.9230 0.9719 0.7521 RF

24th 20th + 23th 0.9384 0.9873 0.7674 RF
25th 13th + 20th 0.9310 0.9819 0.7529 RF
26th 13th + 16th + 20th + 23th 0.9523 0.9999 0.8029 RF
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Table 25: Gradient boosting classification results of seam detection in steel rolling
process.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.6168 0.7551 0.2018
2nd WTc Slope 0.7410 0.8308 0.4714
3rd ∠dj 0.6241 0.7274 0.3140
4th Slope + ∠dj 0.7632 0.8574 0.4806
5th QWT Slope 0.7040 0.7976 0.4232
6th φj + θj + ψj 0.8022 0.9194 0.4504
7th Slope + φj + θj + ψj 0.8104 0.9197 0.4826
8th NDWT Slope 0.6675 0.7593 0.3922
9th Slope* 0.7558 0.8517 0.4680
10th 8th + 9th 0.7711 0.8581 0.5098
11th NDWTc Slope 0.7873 0.8803 0.5080
12th ∠dj 0.8460 0.9237 0.6128
13th Slope + ∠dj 0.8731 0.9387 0.6764
14th Slope* 0.7487 0.8465 0.4550
15th j∠d,pi,pi+1

0.8881 0.9456 0.7156

16th Slope* + j∠d,pi,pi+1
0.8787 0.9388 0.6982

17th 13th + 16th 0.9001 0.9523 0.7436
18th NDQWT Slope 0.7600 0.8379 0.5262
19th φj + θj + ψj 0.8842 0.9457 0.6996
20th Slope + φj + θj + ψj 0.8728 0.9347 0.6870
21th Slope* 0.8001 0.8738 0.5790
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.8205 0.8984 0.5868

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.8418 0.9093 0.6392

24th 20th + 23th 0.8733 0.9429 0.6644
25th 13th + 20th 0.8646 0.9315 0.6640
26th 13th + 16th + 20th + 23th 0.8991 0.9599 0.7168
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Table 26: Support vector machine classification results of seam detection in steel
rolling process.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.6842 0.8905 0.0652
2nd WTc Slope 0.6743 0.7803 0.3562
3rd ∠dj 0.6847 0.8863 0.0796
4th Slope + ∠dj 0.6962 0.8409 0.2618
5th QWT Slope 0.7852 0.9661 0.2422
6th φj + θj + ψj 0.8273 0.9740 0.3872
7th Slope + φj + θj + ψj 0.8321 0.9773 0.3962
8th NDWT Slope 0.6842 0.8084 0.3116
9th Slope* 0.6053 0.7897 0.0522
10th 8th + 9th 0.6985 0.8339 0.2922
11th NDWTc Slope 0.7138 0.8033 0.4454
12th ∠dj 0.7531 0.9934 0.0322
13th Slope + ∠dj 0.8171 0.9659 0.3706
14th Slope* 0.7311 0.9483 0.0792
15th j∠d,pi,pi+1

0.8689 0.9885 0.5100

16th Slope* + j∠d,pi,pi+1
0.8388 0.9715 0.4404

17th 13th + 16th 0.8791 0.9834 0.5662
18th NDQWT Slope 0.6745 0.7724 0.3808
19th φj + θj + ψj 0.8301 0.9791 0.3832
20th Slope + φj + θj + ψj 0.8446 0.9689 0.4716
21th Slope* 0.7902 0.9983 0.1658
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.8571 0.9442 0.5956

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.8614 0.9649 0.5506

24th 20th + 23th 0.8766 0.9903 0.5354
25th 13th + 20th 0.8422 0.9711 0.4556
26th 13th + 16th + 20th + 23th 0.8892 0.9993 0.5588
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Table 27: k-nearest neighbors (k = 3) classification results of seam detection in steel
rolling process.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.4926 0.4799 0.5320
2nd WTc Slope 0.6235 0.6602 0.5106
3rd ∠dj 0.4989 0.5036 0.4844
4th Slope + ∠dj 0.5924 0.6136 0.5259
5th QWT Slope 0.6027 0.6727 0.3867
6th φj + θj + ψj 0.6588 0.6928 0.5105
7th Slope + φj + θj + ψj 0.6827 0.7181 0.5224
8th NDWT Slope 0.6841 0.7282 0.5480
9th Slope* 0.6259 0.6954 0.4118
10th 8th + 9th 0.6662 0.7108 0.5255
11th NDWTc Slope 0.7087 0.7527 0.5730
12th ∠dj 0.6874 0.7495 0.4749
13th Slope + ∠dj 0.7429 0.7943 0.5626
14th Slope* 0.5847 0.6491 0.3862
15th j∠d,pi,pi+1

0.7770 0.8084 0.6730

16th Slope* + j∠d,pi,pi+1
0.7655 0.8077 0.6255

17th 13th + 16th 0.8229 0.8596 0.6799
18th NDQWT Slope 0.6725 0.7116 0.5520
19th φj + θj + ψj 0.7821 0.8127 0.6465
20th Slope + φj + θj + ψj 0.7875 0.8133 0.6710
21th Slope* 0.6485 0.7314 0.3928
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.8095 0.8277 0.7397

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.8230 0.8442 0.7394

24th 20th + 23th 0.8626 0.8892 0.7034
25th 13th + 20th 0.8049 0.8266 0.6920
26th 13th + 16th + 20th + 23th 0.9027 0.9235 0.7373
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Table 28: Logistic regression classification results of seam detection in steel rolling
process.

Order Transform Features Accuracy rate Specificity Sensitivity

1st DWT Slope 0.7480 0.9973 0.0000
2nd WTc Slope 0.8133 0.9806 0.3114
3rd ∠dj 0.7499 0.9998 0.0000
4th Slope + ∠dj 0.8120 0.9779 0.3144
5th QWT Slope 0.7504 1.0000 0.0016
6th φj + θj + ψj 0.7760 0.8677 0.5008
7th Slope + φj + θj + ψj 0.7848 0.8686 0.5334
8th NDWT Slope 0.8432 0.9666 0.4730
9th Slope* 0.8237 1.0000 0.2946
10th 8th + 9th 0.8427 0.9701 0.4602
11th NDWTc Slope 0.8371 0.9679 0.4448
12th ∠dj 0.7478 0.9768 0.0608
13th Slope + ∠dj 0.8342 0.9349 0.5320
14th Slope* 0.7674 1.0000 0.0694
15th j∠d,pi,pi+1

0.9265 0.9883 0.7412

16th Slope* + j∠d,pi,pi+1
0.9195 0.9831 0.7286

17th 13th + 16th 0.8790 0.9291 0.7288
18th NDQWT Slope 0.8406 0.9751 0.4372
19th φj + θj + ψj 0.7840 0.8261 0.6574
20th Slope + φj + θj + ψj 0.7801 0.8199 0.6604
21th Slope* 0.7579 1.0000 0.0314
22th jφ,pi,pi+4

+ jθ,pi,pi+2
+ jψ,pi,pi+1

0.8480 0.8968 0.7014

23th Slope* + jφ,pi,pi+4
+ jθ,pi,pi+2

+ jψ,pi,pi+1
0.8383 0.8921 0.6766

24th 20th + 23th 0.7817 0.8327 0.6284
25th 13th + 20th 0.7378 0.7791 0.6138
26th 13th + 16th + 20th + 23th 0.8010 0.8370 0.6928
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APPENDIX C

BOX PLOTS

C.1 Application 1: Classifying Pupillary Signal Data

C.1.1 Non-decimated Complex Wavelet Transform
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Figure 29: Application 1: Box plot of spectral slope obtained by NDCWT.
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Figure 30: Application 1: Box plots of phase averages at all multiresolution levels
obtained by NDCWT.
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C.1.2 Non-decimated Quaternion Wavelet Transform
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Figure 31: Application 1: Box plot of spectral slope obtained by NDQWT.
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Figure 32: Application 1: Box plots of averages of phase φ at all multiresolution
levels obtained by NDQWT.
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Figure 33: Application 1: Box plots of averages of phase θ at all multiresolution
levels obtained by NDQWT.
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Figure 34: Application 1: Box plots of averages of phase ψ at all multiresolution
levels obtained by NDQWT.
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C.1.3 Duality of Non-decimated Wavelet Transform
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Figure 35: Application 1: Box plots of slopes of dual slopes with NDWT (a), ND-
CWT (b), and NDQWT (c).
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Figure 36: Application 1: Box plots of average squared levels from NDCWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].

148



Control Case 1 Case 2 Case 3

Groups

20

30

40

50

60

70

80

S
qu

ar
ed

 a
vg

 le
ve

ls

(a)

Control Case 1 Case 2 Case 3

Groups

20

22

24

26

S
qu

ar
ed

 a
vg

 le
ve

ls

(b)

Control Case 1 Case 2 Case 3

Groups

26

28

30

32

34

36

38

S
qu

ar
ed

 a
vg

 le
ve

ls

(c)

Control Case 1 Case 2 Case 3

Groups

20

30

40

50

60

70

80

S
qu

ar
ed

 a
vg

 le
ve

ls

(d)

Figure 37: Application 1: Box plots of average squared levels from φ of NDQWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].
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Figure 38: Application 1: Box plots of average squared levels from θ of NDQWT in
interval (a) [−1

2
π,−1

4
π), (b) [−1

4
π, 0), (c) [0, 1

4
π), and (d) [1

4
π, 1

2
π].
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Figure 39: Application 1: Box plots of average squared levels from ψ of NDQWT in
interval (a) [−1

4
π,−1

8
π), (b) [−1

8
π, 0), (c) [0, 1

8
π), and (d) [1

8
π, 1

4
π].
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C.2 Application 2: Classifying Sounds Data

C.2.1 Non-decimated Complex Wavelet Transform
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Figure 40: Application 2: Box plot of spectral slope obtained by NDCWT.
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Figure 41: Application 2: Box plots of phase averages at all multiresolution levels
obtained by NDCWT.
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C.2.2 Non-decimated Quaternion Wavelet Transform
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Figure 42: Application 2: Box plot of spectral slope obtained by NDQWT.
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Figure 43: Application 2: Box plots of averages of phase φ at all multiresolution
levels obtained by NDQWT.
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Figure 44: Application 2: Box plots of averages of phase θ at all multiresolution
levels obtained by NDQWT.
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Figure 45: Application 2: Box plots of averages of phase ψ at all multiresolution
levels obtained by NDQWT.
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C.2.3 Duality of Non-decimated Wavelet Transform
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Figure 46: Application 2: Box plots of slopes of dual slopes with NDWT (a), ND-
CWT (b), and NDQWT (c).
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Figure 47: Application 2: Box plots of average squared levels from NDCWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].
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Figure 48: Application 2: Box plots of average squared levels from φ of NDQWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].
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Figure 49: Application 2: Box plots of average squared levels from θ of NDQWT in
interval (a) [−1

2
π,−1

4
π), (b) [−1

4
π, 0), (c) [0, 1

4
π), and (d) [1

4
π, 1
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π].
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Figure 50: Application 2: Box plots of average squared levels from ψ of NDQWT in
interval (a) [−1

4
π,−1

8
π), (b) [−1

8
π, 0), (c) [0, 1

8
π), and (d) [1

8
π, 1

4
π].
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C.3 Application 3: Screening Mammograms

C.3.1 Non-decimated Complex Wavelet Transform
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Figure 51: Application 3: Box plot of spectral slope obtained by NDCWT.
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Figure 52: Application 3: Box plots of phase averages at all multiresolution levels
obtained by NDCWT.

164



C.3.2 Non-decimated Quaternion Wavelet Transform
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Figure 53: Application 3: Box plot of spectral slope obtained by NDQWT.
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Figure 54: Application 3: Box plots of averages of phase φ at all multiresolution
levels obtained by NDQWT.
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Figure 55: Application 3: Box plots of averages of phase θ at all multiresolution
levels obtained by NDQWT.
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Figure 56: Application 3: Box plots of averages of phase ψ at all multiresolution
levels obtained by NDQWT.
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C.3.3 Duality of Non-decimated Wavelet Transform
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Figure 57: Application 3: Box plots of slopes of dual slopes with NDWT (a), ND-
CWT (b), and NDQWT (c).
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Figure 58: Application 3: Box plots of average squared levels from NDCWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].

170



Normal Cancer

Groups

44

46

48

50

S
qu

ar
ed

 a
vg

 le
ve

ls

(a)

Normal Cancer

Groups

32

32.5

33

33.5

34

34.5

35

S
qu

ar
ed

 a
vg

 le
ve

ls

(b)

Normal Cancer

Groups

30

31

32

33

S
qu

ar
ed

 a
vg

 le
ve

ls

(c)

Normal Cancer

Groups

44

46

48

50

S
qu

ar
ed

 a
vg

 le
ve

ls

(d)

Figure 59: Application 3: Box plots of average squared levels from φ of NDQWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].
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Figure 60: Application 3: Box plots of average squared levels from θ of NDQWT in
interval (a) [−1

2
π,−1

4
π), (b) [−1

4
π, 0), (c) [0, 1

4
π), and (d) [1

4
π, 1

2
π].
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Figure 61: Application 3: Box plots of average squared levels from ψ of NDQWT in
interval (a) [−1

4
π,−1

8
π), (b) [−1

8
π, 0), (c) [0, 1

8
π), and (d) [1

8
π, 1

4
π].
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C.4 Application 4: Seam Detection in Steel Rolling Process

C.4.1 Non-decimated Complex Wavelet Transform

Normal Defect

Groups

-3

-2.5

-2

S
lo

p
e

Figure 62: Application 4: Box plot of spectral slope obtained by NDCWT.
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Figure 63: Application 4: Box plots of phase averages at all multiresolution levels
obtained by NDCWT.
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C.4.2 Non-decimated Quaternion Wavelet Transform
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Figure 64: Application 4: Box plot of spectral slope obtained by NDQWT.
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Figure 65: Application 4: Box plots of averages of phase φ at all multiresolution
levels obtained by NDQWT.
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Figure 66: Application 4: Box plots of averages of phase θ at all multiresolution
levels obtained by NDQWT.
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Figure 67: Application 4: Box plots of averages of phase ψ at all multiresolution
levels obtained by NDQWT.
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C.4.3 Duality of Non-decimated Wavelet Transform
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Figure 68: Application 4: Box plots of slopes of dual slopes with NDWT (a), ND-
CWT (b), and NDQWT (c).
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Figure 69: Application 4: Box plots of average squared levels from NDCWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].
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Figure 70: Application 4: Box plots of average squared levels from φ of NDQWT in
interval (a) [−π,−1

2
π), (b) [−1

2
π, 0), (c) [0, 1

2
π), and (d) [1

2
π, π].
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Figure 71: Application 4: Box plots of average squared levels from θ of NDQWT in
interval (a) [−1

2
π,−1

4
π), (b) [−1

4
π, 0), (c) [0, 1

4
π), and (d) [1

4
π, 1

2
π].
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Figure 72: Application 4: Box plots of average squared levels from ψ of NDQWT in
interval (a) [−1

4
π,−1

8
π), (b) [−1

8
π, 0), (c) [0, 1

8
π), and (d) [1

8
π, 1

4
π].
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