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SUMMARY

In this Masters thesis, we focus on understanding the open book decompo-

sitions of high dimensional contact manifolds. Open book decompositions are very

crucial figures in three dimensional contact topology thanks to Giroux’s theorem but

the role of open books in higher dimensions is currently being studied.

In Chapter 1, we give a basic introduction to contact and symplectic topology.

Symplectic topology is included in this thesis since open books have pages with sym-

plectic structures on them. In Chapter 1, we also see contact structures as distribu-

tions and explain some well known facts in terms of distributions.

Chapter 2 introduces the open book decompositions. We first define them for

ordinary manifolds and then explain why they are important for contact manifolds.

The correspondences between contact structures and open book decompositions are

explained.

Chapter 3 is about the generalization of Murasugi sums and plumbings to higher

dimensions. This chapter is mostly based on a paper called ”Generalized Plumbings

and Murasugi Sums” by Ozbagci and Popescu-Pampu. It describes an operation

called embedded sum which can be considered as a generalization of Murasugi sums

for manifolds of any dimensions. It explains that Murasugi sum of open books is

again an open book. However, the relations between embedded sums and contact

structures supported by open books is currently being studied.

vi



Chapter I

ON CONTACT AND SYMPLECTIC MANIFOLDS

The word symplectic topology first appears in a paper called The First Steps in Sym-

plectic Topology written by Vlademir Igorevic Arnold in 1986. But the development

of contact topology is even more recent than symplectic topology. Symplectic and

contact topology are generally mentioned together. Symplectic topology can be de-

fined on even dimensional manifolds where contact topology can be defined on odd

dimensional manifolds.

Although the primary focus of this study is contact manifolds and open book

decompositions of contact manifolds, it is useful to start with some basic structures

on symplectic manifolds since pages of open books are even dimensional and they

have symplectic structures.

1.1 Basics on Symplectic Geometry and Topology

1.1.1 Symplectic Maps and Symplectic Vector Spaces

Let V be an n-dimensional vector space and let ω : V × V → R be a skew-

symmetric bilinear map. Note that ω is skew-symmetric if ω(v1, v2) = −ω(v2, v1)

for every v1, v2 ∈ V . Under these conditions, naturally we can define a linear map

ω : V → V ∗ by ω(v1) = ωv1 where V ∗ denotes the dual space of the vector space V

and ωv1 : V → R is defined by ωv1(v2) = ω(v1, v2) for every v2 ∈ V .

Let us see ω is a linear map. Let V be a vector space over a field F . Then for any

v1, v2 ∈ V and a, b ∈ F we have :

ω(av1 + bv2) = ωav1+bv2
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For any u ∈ V using the bi-linearity of ω, we have

ωav1+bv2(u) = ω(av1 + bv2, u) = aω(v1, u) + bω(v1)(u)

which proves

ω(av1 + bv2) = aω(v1) + bω(v2).

Definition 1. For a vector space V, a skew-symmetric bilinear map ω : V ×V −→ R

is called a symplectic form if the map ω defined as above is bijective. The pair (V, ω)

is called a symplectic vector space.

There exists a more famous definition of symplectic forms.

Definition 2. On a vector space V of finite dimension, a bilinear map ω is called non-

degenerate if ω(u, v) = 0 for all v ∈ V then u = 0. Moreover ω is called symplectic if

it is non-degenerate and skew-symmetric.

In order to see the equivalence between Definition 1 and Definition 2, assume that

we have the map ω is bijective and ω(u, v) = 0 for all v ∈ V where V is a finite

dimensional vector space. Then we would have ω(u) is the zero map. By the linearity

and injectivity of ω we would have u = 0. In order to prove the reverse implication we

need to show ω is bijective when ω is given as in Definition 2. ω is injective because

ω(v1) = ω(v2) implies ωv1 = ωv2 , so ω(v1, u) = ω(v2, u) for all u ∈ V . Since ω is linear

we have ω(v1 − v2, u) = 0. By the statement in Definition 2, v1 − v2 has to be zero

which gives v1 = v2. Hence ω is injective. Surjectivity of ω follows from the rank

nullity theorem. ω is an injective linear map, so its kernel is the single element 0.

Hence the kernel of ω has dimension 0 which gives dim(Im(ω)) = dim(V ) = dim(V ∗).

Thus ω is bijective.

We now introduce some examples of symplectic vector spaces.

Example 3. Let V be a vector space and let V ∗ denote the dual space of V. Set

W = V ⊕ V ∗ and define ω((v1, α1), (v2, α2)) = α2(v1)− α1(v2). Since

ω((v1, α1), (v2, α2)) = α2(v1)− α1(v2) = −(α1(v2)− α2(v1)) = −ω((v2, α2), (v1, α1)),
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we conclude that ω is skew-symmetric. It is also non-degenerate. In order to see this

assume that ω((v1, α1), (v, α)) = 0 for all (v, α) ∈ W . Then

α(v1)− α1(v) = 0

⇒ α(v1) = α1(v)

which is possible only when α ∈ V ∗ is the zero map and v = 0.

Definition 4. Let (V, ω) be a symplectic vector space and let E be a subspace of V.

Then the symplectic orthogonal of E is denoted by E⊥ and it is defined as

E⊥ := {v ∈ V | ω(u, v) = 0,∀u ∈ E}.

Definition 5. For a symplectic vector space (V, ω) and a subspace E ⊂ V

1. E is called isotropic if E ⊂ E⊥

2. E is called Lagrangian if E = E⊥

3. E is symplectic if E ∩ E⊥ = {0}.

Proposition 6. Let (V, ω) be a symplectic vector space and let E be a symplectic

subspace of V. Then V = E ⊕ E⊥.

Proof. We start with showing that for any subspace E of V, dim(E) + dim(E⊥) =

dim(V ). Consider the exact sequence

0 −→ E −→ V −→ V/E −→ O

which induces the exact sequence

0 −→ (V/E)∗ −→ V ∗ −→ E∗ −→ 0.

Note that the dual space (V/E)∗ is isomorphic to the space of linear maps λ : V −→ R

which vanish on E. (V/E)∗ is called the annihilator of E in V ∗ which is denoted by
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AnnE. By the isomorphism ω : V −→ V ∗, E⊥ is identified with AnnE so they are of

the same dimension. From linear algebra, for any subspace E of V , V = E ⊕ AnnE

so dim(E) + dim(E⊥) = dimV .

Moreover since E ∩ E⊥ = {0}, we have V = W ⊕W⊥.

Both the definitions describing symplectic vector spaces we have given do not give

a direct reference to the fact that symplectic vector spaces have even dimension. We

will have a proposition addressing to this issue.

Proposition 7. Let (V, ω) be a symplectic vector space. Then there exists a basis

{e1, ..., en, f1, ..., fn} of V such that

ω(ei, ej) = 0

ω(fi, fj) = 0

ω(ei, fj) = δij.

Proof. Fix a non-zero element v ∈ V . Since ω is non-degenerate there exists an

element u
′ ∈ V satisfying ω(v, u

′
) = c 6= 0. Set u = u

′

c
. Then by the bilinearity of ω,

ω(v, u) = 1. The bilinearity of ω also implies v and u are linearly independent since if

v = λu, then c = ω(v, u) = ω(λu, u) = λω(u, u) = 0 which is a contradiction. Let U

be the subspace generated by u and v. Then U is of dimension 2 and it is symplectic.

The proof is complete if dim(V ) = 2 as well. If not, we can generate the claimed

basis by using induction, Proposition 6 and the fact that for a symplectic subspace

E, E⊥ is a symplectic subspace as well.

1.1.2 Symplectic Manifolds

Now it is time to introduce the symplectic forms.

Definition 8. Let ω be a 2-form on M. Then for each p ∈ M , we have wp : TpM ×

TpM → R which is skew-symmetric and bilinear on TpM . We say a 2-form ω is
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symplectic on a even dimensional manifold M if ω is closed and wp is symplectic on

the vector space TpM for each p ∈M. The pair (M,ω) is called a symplectic manifold.

As the definition describes, given a symplectic manifold (M,ω), the following

conditions are satisfied;

1. dω = 0, i.e. ω is closed on M

2. For any p ∈M , whenever w |TpM (u, v) = 0 for all v ∈ TpM we have u = 0.

Example 9. (Standard Symplectic Structure on R2n)

Take M = R2n with coordinates x1, x2, ..., xn, y1, y2, ..., yn. Define the 2-form ω =∑n
i=1 dxi ∧ dyi. Then (R2n, ω) is a symplectic manifold.

The fact that symplectic manifolds are even dimensional manifolds does not promise

that every even dimensional manifold can be considered as symplectic manifold. The

following proposition is an example of this situation.

Proposition 10. S4 does not admit a symplectic structure.

Proof. Assume that S4 has a symplectic structure, i.e. there exists a 2-form ω which

is closed and non-degenerate on S4. Since the second de Rham cohomology group of

S4 is trivial, ω is exact on S4 so there exists a 1-form α such that ω = dα. Now set

Ω = ω ∧ ω which is a volume form on S4 by the non-degenerativity of ω. Note that

d(ω ∧ α) = dω ∧ α + ω ∧ dα = ω ∧ ω = Ω

which means Ω = ω ∧ ω is an exact form, and thus is zero in cohomology. However,∫
S4

Ω =

∫
S4

0 = 0

which contradicts the fact that Ω is a volume form.

Two well-known manifolds of even dimension are tangent bundles and cotangent

bundles. The following example shows cotangent bundles are symplectic manifolds.
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Example 11. Let M be a smooth manifold and let T ∗M be its cotangent bundle. Any

section of π : T ∗M →M is a 1-form, then we can define a 1-form on α on T ∗M as

α(ξx) = π∗(ξx)

where π(ξx) = x and

π∗ : T ∗xM → T ∗ξx(T
∗M)

is the pull-back. So for a given vξx ∈ Tξx(T ∗xM), α(vξx) = ξx(π∗vξx). After this set-up

define the symplectic form on T ∗M by

ω = −dα.

Definition 12. For two symplectic manifolds (M1, ω1), (M2, ω2) a diffeomorphism

φ : M1 → M2 is called a symplectomorphism if φ∗ω2 = ω1 where φ∗ denotes the

pull-back of φ.

Given a smooth manifold of even dimension, M, it is possible to have two sym-

plectic forms ω1 and ω2 which make (M,ω1) and (M,ω2) two different symplectic

manifolds. The following two definitions relate to this situation.

Definition 13. Let M be a smooth manifold with two symplectic forms ω1 and ω2.

Then (M,ω1) and (M,ω2) are said to be strongly isotopic if there exists an isotopy

ρt : M →M satisfying ρ∗1ω1 = ω0.

Clearly strongly isotopic symplectic manifolds are symplectomorphic.

Definition 14. (M,ω1) and (M,ω2) are said to be deformation equivalent if there

exists a smooth family ωt of symplectic forms joining ω1 to ω2. (M,ω1) and (M,ω2)

are said to be isotopic if they are deformation equivalent and the de Rham cohomology

class [ωt] is independent of t.

An important and useful tool we have on symplectic manifolds is called Moser’s

trick which can be considered as a result of Cartan’s magic formula. Assume that
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we have two k-forms α0 and α1 on a manifold M and we need a diffeomorphism

φ : M −→ M such that φ∗α1 = α0. Now let αt be a smooth family of k-forms

including α0 and α1. So we would like a vector field X whose flow φ satisfies φ∗tαt = α0.

When φ∗tαt = α0 is satisfied we have

d

dt
φ∗tαt = φ∗t (

dαt
dt

+ LXtαt) = 0.

By Cartan’s formula, LXαt = iXdαt + diXαt, we have,

φ∗t (
dαt
dt

+ iXdαt + diXαt) = 0

so

dαt
dt

+ iXdαt + diXαt = 0.

If there exists a vector field X satisfying this equation and M is compact, the existence

of φ is given by integration. The following theorem describes the Moser’s trick, where

we can solve the equation for X.

Theorem 15. Let ω0 and ω1 be two symplectic forms on a compact manifold M such

that [ω0] = [ω1] and for every t ∈ [0, 1], ωt = tω1 + (1− t)ω0 is a symplectic form on

M. Then there exists a smooth family of diffeomorphisms φt : M −→ M satisfying

φ0 = idM and φ∗tωt = ω0. Moreover (M,ω0) is symplectomorphic to (M,ω1).

Proof. Note that dωt
dt

= ω1 − ω0 so

[
dωt
dt

] = [ω1 − ω0] = 0 ∈ H2
dR(M).

Then there exist a 1-form β such that

dωt
dt

= ω1 − ω0 = dβ.

Since ωt is non-degenerate there exists a vector field Xt such that

iXtωt = −β.

7



Now let φt be a set of diffeomorphisms such that

dφt
dt

= Xt ◦ φt.

Then

d

dt
φ∗tωt = φ∗tLXtωt + φ∗t

dωt
dt

= φ∗tdiXtωt + φ∗tdβ = −φ∗tdβ + φ∗tdβ = 0.

So φ∗tωt = ω0.

There exists another theorem which is actually an relative version of Moser’s

Theorem. The relative theorem points to the case where we have compact submanifold

of a symplectic manifold.

Theorem 16. Let N be a compact submanifold of a symplectic manifold with sym-

plectic forms ω0 and ω1 such that ω0 and ω1 agree at all points of N. Then there exist

two open sets of M, U0 and U1 such that N ⊂ U0 and N ⊂ U1 and there exist a

diffeomorphism ϕ : U0 −→ U1 satisfying ϕ|N= idN and ϕ∗ω1 = ω0.

Proof. Take U0 as a tubular neighborhood of N. Then ω1 − ω0 is a closed 2-form on

U0. Also for all p ∈ N , (ω1 − ω0)p = 0. Using the homotopy formula on the tubular

neighborhood, we get a 1-form µ on U0 such that dµ = ω1 − ω0 and µp = 0 for all

p ∈ N . Set

ωt = (1− t)ω0 + tω1 = ω0 + tdµ

which can assumed symplectic for t ∈ [0, 1] since we can shrink U0 if necessary. Now

consider the Moser equation

ivtωt = −µ.

Integrating vt and shrinking U0 again we get an isotopy

ρ : U0 × [0, 1] −→M

satisfying ρ∗tωt = ω0 for all t ∈ [0, 1]. So we are done by setting ϕ = ρ1 and U1 =

ρ1(U0).

8



We finish this section by introducing a special type of vector fields of symplectic

manifolds.

Definition 17. A Liouville vector field on a symplectic manifold (M,ω) is a vector

field such that LXω = ω and X is transverse to ∂M .

1.2 Basics on Contact Geometry and Topology

Before we introduce contact manifolds and their some basic properties, we start with

introducing hyperplane fields to have a better understanding of some widely used

statements.

Definition 18. Let ξ be a smooth subbundle of the tangent bundle, TM . Then ξ is

called a hyperplane field on M if for every p ∈ M, ξp = ξ ∩ TpM is a vector space of

codimension 1 in TpM .

Let α be a 1-form on a manifold M of dimension 2n+1. Then at each point

p ∈ M we have a linear map αp : TpM → R. Assuming αp is not the zero map,

by the rank-nullity theorem on linear map, ker(αp) is a hyperplane of dimension 2n.

Actually, we have even more than that. Fixing a Riemannian metric on M, one can

consider the hyperplane ξ as the kernel of a certain 1-form ω as follows. Let g be a

Riemannian metric on M. Consider ξ⊥ as the orthogonal complement of ξ in TM ,

then TM ∼= ξ ⊕ ξ⊥ and TM/ξ ∼= ξ⊥. Since ξp = ξ ∩ TpM has codimension 1 in TpM

for each p ∈M , ξ is a trivial line bundle over a neighborhood Up of each p. Taking Xp

a non-zero section of ξ⊥ |Up we can define αUp = g(X,−). Note that for each vp ∈ ξp,

since Xp is orthogonal to each vp, αUp(vp) = gp(Xp, vp) = 0 . Conversely, for a q ∈M

if αUq(vq) = 0, then gq(Xq, vq) = 0 which means vq ∈ (ξ⊥q )⊥ = ξq. Thus ξ |Up= kerαp.

Actually the fact that ξ can locally be written as a kernel of 1-form can be reached

by using other tools. These other tools will include smooth distributions which will

be described later.
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Definition 19. Let ξ be a hyperplane field on a manifold M of dimension 2n + 1.

Then ξ is called a contact structure if for any 1-form α on M such that ξ = kerα, the

2n+1 form α ∧ (dα)n never vanishes. The pair (M,ξ) is called a contact manifold.

Note that for such an α, α ∧ (dα)n is a 2n+1 form on M which never equals 0, so

it is a volume form.

Example 20. (The Standard Contact Structure on R2n+1)

Let us present the coordinates of R2n+1 by (x1, y1, ..., xn, yn, z) and define the 1-form

α = dz +
n∑
j=1

xjdyj.

Note that dα =
∑n

i=1 dxi ∧ dyi and clearly α ∧ (dα)n never vanishes. So ξ = kerα is

a contact structure.

Example 21. Using the radial coordinates (rj, ϕj) we have another contact structure

on R2n+1 by setting

α = dz +
n∑
j=1

r2
jdϕj.

Example 22. (The Standard Contact Structure on S2n+1)

Take the standard coordinates x1, y1, ..., xn+1, yn+1 on R2n+2, and set

α =
n+1∑
j=1

(xjdyj − yjdxj).

If S2n+1 is the unit sphere in R2n+2, then (S2n+1, ker(α)) is a contact manifold.

The other tools which give a way of understanding the relation between 1-forms

and contact structures can be used here as well. Many sources on contact geome-

try stating the condition α ∧ dαn never vanishes say ξ is maximally non-integrable.

Understanding why this is true requires some effort.

Definition 23. Let M be a smooth manifold and let TM be its tangent bundle. A

rank-k distribution D on M is a rank-k subbundle of TM. We say D is a smooth

distribution if it is a smooth subbundle.

10



More explicitly, if we have a rank-k distribution D on M, then for each p ∈M , D

gives Dp ⊆ TpM where Dp is k-dimensional and D =
⋃
p∈M Dp.

Note that D is a smooth k-distribution if and only if each point p ∈ M has a

neighborhood Up on which there exist k vector fields X1, X2, ..., Xk : Up → TM such

that X1|q, X2|q, ..., Xk|q form a basis for Dq at each q ∈ Up.

Definition 24. Let D be a smooth distribution on M. A nonempty immersed sub-

manifold N ⊂M is an integral manifold of D if Dp = TpN at each point p ∈ N .

Given two different vector fields on a manifold M, a useful way of generating a

new vector field on the same manifold is the Lie Bracket of two vector fields. Note

that given two vector fields X1 and X2, their Lie Bracket, [X1, X2] is another vector

field such that [X1, X2](f) = X1(X2)(f)−X2(X1)(f). The following example shows

that distributions do not have to be closed under Lie Brackets.

Example 25. Let M = R3 and let D be a distribution spanned by

X1 =
∂

∂x
+ y

∂

∂z
and X2 =

∂

∂y

The Lie Bracket of X1 and X2 gives another vector field

[X1, X2] = X1(X2)−X2(X1) = X1(1)
∂

∂y
−X2(1)

∂

∂x
−X2(y)

∂

∂z
= − ∂

∂z

Since − ∂
∂z

can not be written as a linear combination of X1 and X2, this example

shows that distributions are not necessarily closed under Lie Brackets.

Definition 26. A smooth vector field X defined on an open subset U of a manifold

M satisfying Xp ∈ Dp for each p ∈ U is called a smooth local section of D.

Definition 27. A smooth distribution D on a manifold M is called an involutive

distribution if for any two smooth local sections of D, their Lie Bracket is also a local

section of D.

11



Involutive distributions will have a great importance for us while working on

contact structures.

Definition 28. A smooth distribution D on M is called an integrable distribution if

for each p ∈M there exists an integral manifold Np of D.

A very famous and important theorem called the Frobenius Theorem gives us

a correspondence between involutive and integrable distributions. The proof of this

theorem requires more machinery, but we have enough material to prove the following:

Proposition 29. Every integrable distribution is involutive.

Proof. Let D be an integrable distribution on M and let U be an open subset of M.

We need to prove that for any two local sections X1 and X2, [X1, X2] is also a local

section of D.

Let p be any point in U. Since D is integrable there exists an integral manifold Np

of D such that p ∈ Np. So by the existence of Np, we can write TqNp = Dq,∀q ∈ U .

So X1 and X2 are tangent to Np. Since Lie Bracket of smooth vector fields which are

tangent to a manifold results in a vector field tangent to the same manifold, we have

[X1, X2]p ∈ TpNp = Dp. Then we conclude that D is involutive.

Just after Definition 22, we have discussed a way to see hyperplane fields as a kernel

of 1-forms. The following proposition can actually be considered as a generalization

of this situation.

Proposition 30. Let D be a smooth distribution on M. Then D is an involutive

distribution if and only if for any smooth 1-form β which annihilates D on an open

subset U ⊂M then dβ annihilates D on U as well.

Before the proof note that for a rank-k distribution on a smooth n-manifold M,

any n − k linearly independent 1-forms ω1, ..., ωn−k on a open subset U ⊂ M such

that Dq = kerω1|q ∩ ... ∩ kerωn−k|q for each q ∈ U are called local defining forms for

12



D. Moreover for 0 ≤ p ≤ n and ω ∈ Ωp(M) if ω(X1, ..., Xp) = 0 for any local sections

X1, ..., Xp of D then we say ω annihilates D.

Proof. Assume that D is an involutive distribution on M and let β be a smooth form

annihilating on U ⊂M where U is open. Then

dβ(X1, X2) = X1(β(X2))−X2(β(X1))− β([X1, X2]) = 0− 0− 0 = 0.

So dβ annihilates on U as well.

For the other direction of the proof assume that for any 1-form β if β annihilates

D on U then dβ annihilates D on U. Let X1, X2 be two smooth local sections of D.

Taking ω1, ..., ωn−k as local defining forms for D, then for any 1 ≤ i ≤ n− k

ωi([X1, X2]) = X1(ωi(X2))−X2(ωi(X1))− dωi(X1, X2) = 0

So we conclude that [X1, X2] is in D. So D is involutive.

Corollary 31. Let M be a smooth manifold of dimension n and D be a smooth

distribution of rank k on M and let ω1, ...ωn−k be smooth defining forms for D on an

open subset U ⊂M . Then D is involutive if and only if dω1, ..., dωn−k annihilates D.

It is time to explain The Frobenius Theorem which states a very direct correspon-

dence between integrable and involutive distribution. So far we have concluded that

every integrable distribution is involutive but Frobenius Theorem will state the other

direction works perfectly as well. Before stating the Frobenius Theorem we need some

more terminology.

Definition 32. Let D be a rank-k distribution on M. Then for a smooth coordi-

nate chart (U,ϕ) of M, if ϕ(U) is a cube in Rn and D is a distribution spanned by

∂
∂x1
, ..., ∂

∂xk
then (U,ϕ) is flat for D. If there exist a flat chart on a neighborhood of

each point of M then D is called a completely integrable distribution. Clearly every

completely integrable distribution is integrable.
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The statements about involutive, integrable and completely integrable distribu-

tions which we have verified can be summarized as

completely integrable⇒ integrable⇒ involutive.

The Frobenius Theorem will lead to the fact that we can interchange the order of the

statement above in any way, i.e we also have the following relation

integrable⇔ completely integrable⇔ involutive.

Now we state the theorem. We skip the proof.

Theorem 33. Frobenius Theorem[8] Every involutive distribution on a manifold

M of dimension m is completely integrable.

In order to make conclusions about contact manifolds by using Frobenius Theorem,

we need to introduce the representation of Frobenius Theorem in terms of differential

forms. We will use the maximal non–integrability condition and some theorems to

conclude that integral manifolds of contact distributions do not exist. Before restating

the theorem in terms of differential forms we start with some definitions.

Definition 34. Let D be a rank-k distribution on a smooth manifold M of dimension

n. For any m ≥ 1, set

Im(D) = {ω ∈ Ωm(M) : ω(X1, ..., Xm) = 0 for Xi ∈ D}

where Ωm(M) denotes the differential m-forms on M. Moreover set

I(D) =
n
⊕
m=1

Im(D)

which is all the possible differential forms on M which vanish on D.

Proposition 35. Algebraically I(D) is an ideal of Ω∗(M), i.e. for any ω ∈ I(D) and

α ∈ Ω∗(M), α ∧ ω ∈ I(D).
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Proof. Take ω ∈ Im(D) and α ∈ ∧k(M). Then α ∧ ω is the m+ k form such that

α ∧ ω(X1, X2, ..., Xk+l) = 1
(k+l)!

Σ
σ∈S2k+1

α(Xσ(1), Xσ(2), ..., Xσ(k))ω(Xσ(k+1), ..., Xσ(k+m)) = 0

for Xi ∈ D. Thus α ∧ ω ∈ I(D).

Now we have another proposition which constructs a correspondence between

distributions and 1-forms.

Proposition 36. For a rank-k distribution D on a smooth n-manifold M, for every

point p ∈ M there exist a neighborhood U of p and (n − k) 1-forms ω1, ω2, ..., ωn−k

which are linearly independent at each point of U such that for any α ∈ I(D) there

exist differential forms βi such that

α =
n−k∑
i=1

βi ∧ ωi.

In other words the ideal I(D) is locally generated by (n-k) linearly independent 1-

forms. Moreover for each q ∈ U,

Dq = {X ∈ TqM : ω1(X) = ω2(X) = ... = ωn−k(X) = 0}.

Proof. For any p ∈ M take a sufficiently small neighborhood U of p such that there

exist vector fields Xn−k+1, Xn−k+2, ..., Xn which generate D. These vector fields and

X1, ..., Xn−k together construct a basis for tangent space of each point of U. Consider

the 1-forms ω1, ω2, ..., ωn on U such that ωi(Xj) = δij. Let ω be an m-form on U.

Then we should have ω as the linear combination of m-forms

ωi1 ∧ ωi2 ∧ ... ∧ ωim where i1 < i2 < ... < im.

and their coefficient functions. If ω ∈ Im(D) then obviously we should have zero

coefficients for i1, ..., im when they are all different from 1, ..., n − k. Hence ω is an

element of the ideal generated by the forms ω1, ω2, ..., ωn−k.
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The following proposition will give a direct relation between the ideal I(D) and

involutivity of distributions. An interpretation of this proposition will lead us to make

an important remark on the the maximal non-integrability condition (α∧ (dα)n 6= 0)

of contact forms.

Proposition 37. Let D be a rank-k distribution on a smooth n-manifold M and

let I(D) be the ideal whose elements are the forms which vanish on D. Then D is

involutive if and only if

dI(D) ⊂ I(D)

where dI(D) consists of the differential forms which are exterior derivatives of the

elements of I(D).

Proof. Pick an ω ∈ I l(D). Then for any X1, X2, ..., Xl, Xl+1 ∈ D, by the involutivity

of D,

[Xi, Xj] ∈ D.

Since dω(X1, ..., Xl+1) can be written as the sum

1

l + 1
(
∑l+1

i+1(−1)l+1Xi(ω(X1, ..., X̂i, ..., Xl+1)) +
∑

i<j(−1)i+jω([Xi, Xj], X1, ..., X̂i, ..., X̂j, ..., Xl+1))

we have dω(X1, X2, ..., Xl+1) = 0 which means dω ∈ I l+1(D). Thus

dI(D) ⊂ I(D).

For the other direction assume that dI(D) ⊂ I(D) and X, Y ∈ D. Since for any

1-form ω ∈ I(D)

0 = dω(X, Y ) =
1

2
(X(ω(Y ))− Y (ω(X))− ω([X, Y ])

we have ω([X, Y ]) = 0. Hence D is involutive.

Interpreting Proposition 36 and 37 together results in the following corollary.
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Corollary 38. Let D be a rank-k distribution on a smooth n-manifold M. Then D is

involutive on an open subset U of M if and only if there exist 1-forms ωij on U such

that for each defining form ωi of D

dωi =
n−k∑
j=1

ωij ∧ ωj.

Now we can restate Frobenius Theorem in terms of differential forms.

Theorem 39. (Frobenius Theorem in Terms of Differential Forms)

Let D be a rank-k distribution on smooth n-manifold M such that

Dq = {X ∈ TqM : ω1(X) = ... = ωn−k(X) = 0}

where ωi are the linearly independent 1-forms on neighborhoods of each point of M.

Then D is completely integrable if and only if for each ωi the condition

dωi =
n−k∑
j=1

ωij ∧ ωj

from Corollary 38 is satisfied.

Remember that in the definition of contact manifolds, the local condition ξp =

kerαp gives a rank-2n distribution of a smooth manifold of dimension 2n+1. The

following proposition will present some remarks on this contact distribution.

Proposition 40. Let (M, ξ) be a contact manifold of dimension (2n+1) such that

locally ξ = kerα where α is a 1-form satisfying the maximal non-integrability condition

α ∧ (dα)n 6= 0.

Then ξ is not completely integrable.

Proof. As a very first argument, we note that by Frobenius Theorem we know that

we are done if we prove that ξ is not involutive. Assume that ξ is involutive. By

Theorem 39, we would have

dα = β ∧ α
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where β is a 1-form on M. But this gives a contradiction on the maximal non-

integrability condition since

α ∧ (dα)n = α ∧ (β ∧ α)n = 0.

So ξ is not involutive. By Frobenius Theorem it is also not integrable and maximally

integrable.

Now we state the Darboux’s Theorem which states contact structures are locally

isomorphic. A proof can be found in [5].

Theorem 41. (Darboux’s Theorem) Let M be a manifold of dimension 2n+1 and

and let α be a contact form on M. Taking p as a point in M, there exist coordinates

x1, x2, ..., xn, y1, y2, ..., yn, z on a neighborhood Up of p such that p = (0, 0, ..., 0) and

α |Up= dz +
∑n

j=1 xjdyj.

Definition 42. Assume that (M1, ξ1) and (M2, ξ2) are two contact manifolds with a

diffeomorphism f : M1 →M2. We say (M1, ξ1) and (M2, ξ2) are diffeomorphic if the

induced map f∗ : TM → TM satisfies f∗(ξ1) = ξ2. Also the map f : M1 → M2 is

called a contactomorphism.

1.3 A Bridge Between Symplectic and Contact Manifolds

Considering the definitions of contact and symplectic manifolds, it is not quite clear

to see the correspondences between them. In contact manifolds, we actually have a

1-form and we locally work on a hyperplane plane which comes as the kernel of the

1-form. For symplectic manifolds, we have a special kind of closed 2-form. A theorem

mostly based on linear algebra implies the dimension of the manifold is even.

Now we will introduce two concepts which supplies a transition between symplectic

and contact manifolds. These two concepts are called symplectisation and contacti-

zation. After symplectisation a contact manifold turns into a symplectic manifold.
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However, for the other direction we need more than ordinary symplectic manifolds.

We start with symplectisations.

Definition 43. Let (M, ξ) be a contact manifold. Set X = R ×M and define the

symplectic form as β = d(etα) where t is a coordinate function on R and α is the

contact form of M. Then (X, β) is a symplectic manifold called the symplectization of

(M, ξ).

Now we introduce the other process which constructs contact manifolds out of

symplectic manifolds. In topology it is always very easy to increase the dimension of

a given manifold since we are allowed to consider products. We will use this advantage

in this process but we will need to have a exact symplectic manifolds.

Definition 44. Let (N,ω) be an exact symplectic manifold, i.e. there exists a 1-form

β on N such that ω = dβ. Then set M = N ×S1. Then (M,α) is a contact manifold

where α = dz − β and z is projection on S1.

We will need the following lemma when we work on open books in higher dimen-

sions.

Lemma 45. Let X be a Liouville vector field on a symplectic manifold (M,ω) where

M is of dimension 2n + 2. Then α = iXω is a contact form on N where N is any

codimension-1 submanifold of M transverse to X.

Proof. We need to show α ∧ (d(α))n never vanishes.

α∧ (d(α))n = iX(ω)∧ (d(iX(ω)))n = iXω ∧ (LX(ω))n = iXω ∧ωn =
1

n+ 1
iXω

n+1 6= 0

So we are done.
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Chapter II

OPEN BOOK DECOMPOSITIONS

Another way of understanding contact manifolds is by focusing on their open book

decompositions. One thing which makes open books important is the fact that for

contact manifolds of dimension 3 we have a very clear relation between contact man-

ifolds and open book decompositions by a very famous theorem of Giroux.

2.1 Open Books

Before focusing on open book decompositions of contact manifolds it is useful to

start with the open book decompositions of ordinary manifolds. Actually the basic

definition of open books has nothing to do with contact manifolds.

Definition 46. Let N be a compact n-manifold with boundary and let φ : N → N be

a diffeomorphism such that φ|U = idU where U is an open subset of N including ∂N .

The mapping torus of φ on N, denoted Nφ is a quotient space of N × [0, 1] defined as

Nφ =
N × [0, 1]

(p, 0) ∼ (φ(p), 1)
.

Since a mapping torus is defined using manifolds with boundary it always has

boundary. More clearly,

∂Nφ = ∂(
N × [0, 1]

(p, 0) ∼ (φ(p), 1)
).

Since φ(p) = p near the boundary, we can write

∂Nφ = ∂(
N × [0, 1]

(p, 0) ∼ (p, 1)
) = ∂N × S1.

In order to turn Nφ into a closed manifold, we glue Nφ to ∂N ×D2 and get

M(N,φ) =
Nφ ∪ (∂N ×D2)

(p, θ) ∈ Nφ ∼ (p, θ) ∈ ∂(∂N ×D2) = (∂N × S1)
.
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Definition 47. For a closed n-manifold X, we say (N, φ) is an open book decompo-

sition of X if X is diffeomorphic to M(N,φ). Moreover φ is called the monodromy of

the open book. The pair (N, φ) is also called an abstract open book.

We can present a definition of open book decompositions using a different ap-

proach.

Definition 48. We can see an open book decomposition of a manifold M as a pair

(B, π) where

1. B is a codimension-2 submanifold of M with trivial normal bundle and it is

called the binding of the open book, and

2. π : (M −B) −→ S1 is a fibration such that for all θ ∈ S1, π−1(θ) is interior of

a compact hypersurface Σθ ⊂ M and ∂Σθ = B. The compact hypersurface Σθ

is called a page of the open book.

The relation between these two definitions is not trivial. The main idea behind

this is the relation between between fibrations over S1 and the mapping tori. Any

locally trivial bundle with fiber N over S1 is canonically isomorphic to the fibration

N×I
(x,1)∼(ψ(x),0)

−→ I/∂I ≈ S1. Moreover, the monodromy ψ is determined up to isotopy

and conjugation by the fibration. Conversely given a compact oriented hyperspace N

with boundary with a ψ ∈ ΓN where ΓN is the mapping class group of N, then the

mapping torus can be defined as N×I
(x,1)∼(ψ(x),0)

.

Our study will focus on understanding open books on contact manifolds which

are manifolds of odd dimension. We have the following theorem.

Theorem 49. Any closed oriented manifold of odd dimension has an open book de-

composition.

A similar statement for manifolds of odd dimension more than 7 was proved by

Wilkelnkemper(1973) in [15] and by Tamura(1972) in [12]. But in their study they
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had extra hypotheses. But in 1978, Lawson proved exactly the same statements

for manifold of odd dimensions equal or greater than 7 [7]. Quinn gave a proof for

manifolds of dimension 5[10]. 3-dimensional case was already proved by Alexander

in 1920 [1]. In order to see how we pass from a mapping torus (N,ψ) to a closed

manifold M(N,ψ), it is useful to see a very simple example.

Example 50. Take N = [0, 1] and ψ = id. Then

[0, 1]id =
[0, 1]× [0, 1]

(x, 0) ∼ (x, 1)

which is a cylinder having two boundary components {0} × S1 and {1} × S1.

The identification ∼ in the definition of M(N,ψ) implies Nid needs to be glued with

{0, 1}×D2 by identifying ∂(Nid) = {0, 1}×S1 with ∂({0, 1}×D2) = {0, 1}×S1. This

construction gives us a figure like a cylinder with two lids which is a closed manifold

homeomorphic to S2

Proposition 51. S2 is the only oriented 2-manifold that has an open book decompo-

sition.

Proof. Let M be an oriented 2-manifold with an open book decomposition. Let B be

the binding and F be the page of the open book decomposition. Then we have the

fibration

M −B −→ S1.

Since χ(M − B) = χ(F ).χ(S1) we have χ(M − B) = 0. Note that B is a zero

dimensional manifold, so it is a collection of disjoint points. For each neighborhood

of a point taken out from the 2-manifold M, M gets one more boundary component.

Considering the Euler characteristic formula for surfaces with boundary, we have

χ(M − B) = 2 − 2g − b = 0 where g denotes the genus and b denotes the number

of boundary components. The only possible solution to this equation is b = 2 and

g = 0. So M has to be S2.
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We now give some examples of open book decompositions.

Example 52. Let M = S3 ⊂ C2 where any point (z1, z2) ∈ C2 is presented as

(z1, z2) = (r1e
iΘ1 , r2e

iΘ2). Take B = {z1 = 0}. Then define the fibration

π : S3 −B → S1 by π(z1, z2) =
z1

|z1|
.

Then ({z1 = 0}, π) is an open book decomposition on S3.

A close look at Example 52 will touch to the fact that S3 can actually be considered

as union of two solid tori, one torus is the neighborhood of the binding B = {z1 =

0} ≈ C and the other one is the union of the pages.

In the following example we give another decomposition on S3 with a different

binding. But before the example it is useful to introduce Hopf fibrations since the

binding of the example is generated by fibers of the Hopf fibration.

Definition 53. The fibration

µ : S3 −→ S2 = CP 1 where µ(z1, z2) = (z1 : z2)

is called the Hopf fibration.

Now we can give another example of open book decomposition on S3.

Example 54. Take S3 ⊂ C2 as S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} and let H1 =

{(z1, z2) ∈ S3 : z1 = 0} = µ−1(0 : z2) and H2 = {(z1, z2) ∈ S3 : z2 = 0} = µ−1(z1 : 0)

be two Hopf fibers and consider the binding as

B = H1 ∪H2 = {(z1, z2) ∈ S3 : z1z2 = 0}.

Then define the fibration

ψ : S3 −B −→ S1 by ψ(z1, z2) =
z1z2

|z1z2|

which gives an open book decomposition on S3.
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We can actually generalize Example 54. But we need a theorem for that.

Theorem 55. (Milnor Fibration Theorem) Let S2n−1
r ⊂ Cn be a sphere of

radius r and let f : Cn −→ C be a holomorphic map such that f(0, 0, ..., 0) = 0

and (0, 0, ..., 0) is an isolated singular point. Then there exists ε such that taking

B = f−1(0) ∩ S2n−1
ε the following map is a fibration:

ψ : Sn−1
ε −B −→ S1 where ψ(z) =

f(z)

|f(z)|
.

So (B,ψ) is an open book for S2n−1
ε .

In dimension 3 we have following family of examples.

Example 56. Let : C2 −→ C be a polynomial such that f(0, 0) = 0 without any

other critical point except (0, 0). As the binding take B = f−1(0) ∩ S3 and define the

fibration

ψ : S3 −B → S1 by ψ(z1, z2) =
f(z1, z2)

|f(z1, z2)|
.

We also have the following explicit example.

Example 57. Let f : C2 → C be a map defined as f(z, w) = z2 + w3. Clearly

f(0, 0) = 0 and (0, 0) is critical point. Then B = f−1(0) ∩ S3 is a trefoil knot. By

Milnor Fibration Theorem the map

ψ : S3 −B → S1 where ψ(z, w) =
z2 + w3

|z2 + w3|

is a fibration.

Example 58. Otto van Koert describes a open book on the 5-manifold S2 × S3 in

[14] as the following. Let P = Σk be a Stein manifold, the 2-disk bundle over S2 with

Euler number −k where k ≥ 2 and set Sk = ∂(Σk). Since ∂(D2) = S1, Sk is actually

a S1 bundle over S2 with Euler number −k. Consider the pair (Σk, id). The mapping

torus of this pair is clearly diffeomorphic to A = Σk × S1. Consider a neighborhood
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of the binding as B = Sk × D2 and set X = A ∪∂ B. Now consider the rank 4 disk

bundle Σk ×D2 over S2. We have

∂(Σk ×D2) = Σk × S1 ∪∂ Sk ×D2 = A ∪∂ B = X

When k is even, Σk ×D2 = S2 ×D4 so we have an open book for S2 × S3.

2.2 Open Books and Contact Manifolds of Dimension 3

In 2000, Giroux proved the existence of a strong correspondence between contact

manifolds of dimension 3 and open book decompositions [6]. In this section we will

work on this correspondence and explain why this is important.

Definition 59. Let (M, ξ) be a contact manifold where M has dimension 3 and let

(B, π) be an open book decomposition of M. Then we say (M, ξ) is supported by the

open book (B, π) if for a contact form α defining ξ the following are satisfied:

1. dα is always positive on each page of (B, π), and

2. α > 0 on B.

We will have a theorem which presents equivalent statements to Definition 60.

But before the theorem we describe Reeb vector fields.

Definition 60. Let α be a contact form. Then Rα is Reeb vector field of α is the

unique vector field satisfying:

1. iRdα = 0,

2. α(R) = 1.

Theorem 61. [2],[6] Let (M, ξ) be a contact 3-manifold and let (π,B) be an open

book decomposition of M. Then the following statements are equivalent:

1. (M, ξ) is supported by the open book (π,B).
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2. On the compact subsets of the pages of (π,B), ξ can be isotoped arbitrarily

close to the tangent planes of the pages of (π,B) such that after some point the

contact planes are transverse to B and are transverse to pages of the open book

in a certain neighborhood of B.

3. There exits a Reeb vector field X for a contact structure which is isotopic to

ξ such that X is positively tangent to B and positively transverse to pages of

(π,B).

Theorem 62. [13] In dimension 3, every open book decomposition (Σ, φ) supports a

contact structure ξφ on Mφ.

Proof. Consider the closed manifold

M(Σ,φ) = Σφ ∪φ (
∐
|∂Σ|

S1 ×D2).

We start with constructing a contact structure on the mapping torus Σφ. Define the

convex set

S = {α|α is a 1− form s.t. α = (1 + s)dθ near ∂Σ and dα is a volume form on Σ}

where (s, θ) ∈ Σ× [0, 1] are coordinates near each boundary component of Σ.

The set S can seen to be not empty as follows. Let α1 be a 1-form on Σ such that

α1 = (1 + s)dθ near ∂Σ. Then by Stokes Theorem∫
∂Σ

dα1 =

∫
Σ

α1 = 2π|∂Σ|

which is always positive.

Now let ω be a volume form on Σ such that∫
Σ

ω = 2π|∂Σ|

and

ω = ds ∧ dθ around ∂Σ.
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Then ∫
Σ

(ω − dα1) =

∫
Σ

ω −
∫

Σ

dα1 = 2π|∂Σ| − 2π|∂Σ| = 0

and

ω − dα1 = 0 around ∂Σ.

By de Rham isomorphism we can find a 1-form β such that dβ = ω − dα1 and β is

zero around ∂Σ. Now λ = α1 + β ∈ S so S 6= ∅. On Σ× [0, 1] define the 1-form

λ(t,x) = tλx + (1− t)(φ∗λ)x

where (x, t) ∈ Σ[0, 1]. Also define

αK = λ(t,x) +Kdt

which is a contact form for a large enough K. On the mapping torus Σφ, αK gives a

contact form which can be extended to a solid tori neighborhood of the binding. In

order to make this extension, let ψ be the function which identifies the solid tori to

the mapping torus. We can write

ψ(ϕ, (r, υ)) = (r − 1 + ε,−ϕ, υ)

where (ϕ, (r, υ)) are coordinates on S1 × D2. When we pull-back the contact form

αK by ψ to get

αψ = Kdυ − (r + ε)dϕ

which can be extended to all over S1 ×D2 using the 1-form

f(r)dϕ+ g(r)dυ.

where g
′
f − f ′

g > 0 and near the boundary we take f(r) = −(r + ε), g(r) = K and

near the core of S1 ×D2 we take f(r) = 1 and g(r) = r2 which give us the contact

form we need.
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The following theorem of Giroux explains the relation between two contact struc-

tures supported by the same open book. The proof can be found in [2].

Theorem 63. [2] Two contact structures on a closed oriented 3-manifold M supported

by the same open book are isotopic.

In 2000, Giroux proved also the other direction, i.e the existence of open books

given a contact 3-manifold. A sketch of proof for the following theorem can be found

in [2].

Theorem 64. Every oriented contact structure on an oriented manifold of dimension

3 is supported by an open book decomposition.

In Chapter 4, we will discuss some operations of open books in high dimensions.

But before that, in order to give the Giroux correspondence without losing anything,

we should define 3-dimensional version of these operations.

Definition 65. [3] The oriented surface R ⊂ M3 is a Murasugi sum of compact

oriented surfaces R1 and R2 in M3 if:

1. R = R1 ∪D R2, D = 2n− gon,

2. R1 ⊂ B1, R2 ⊂ B2 where B1 ∩ B2 = S, S a 2-sphere B1 ∪ B2 = M3 and

R1 ∩ S = R2 ∩ S = D.

Definition 66. A 4-Murasugi sum of two compact surfaces R1 and R2 is also called

the plumbing of R1 and R2.

Note that we did not mention about open books in the operations we have in-

troduced so far. In [2], Etnyre explains the plumbing of two abstract books as the

following. Given two abstract open books (Σ1, φ1) and (Σ2, φ2), let c1 and c2 be two

properly embedded arcs in Σ1 and Σ2 respectively. Set the rectangular neighbor-

hoods R1 = c1 × [−1, 1] ⊂ Σ1 and R2 = c2 × [−1, 1] ⊂ Σ2. Then the plumbing of
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(Σ1, φ1) ∗ (Σ2, φ2) is another abstract open book with page Σ1 ∗ Σ2 = Σ1 ∪R1=R2 Σ2

where c1×{−1, 1} ⊂ ∂R1 is identified to ∂c2× [−1, 1] ⊂ ∂R2 and c2×{−1, 1} ⊂ ∂R2

is identified to ∂c1 × [−1, 1] ⊂ ∂R1. The monodromy is φ1 ◦ φ2.

It can be shown that (Σ1, φ1) ∗ (Σ2, φ2) corresponds the 4-Murasugi sum of open

books (Σ1, φ1) and (Σ2, φ2).

Now we will state a theorem on 4-Murasugi sums. However, the proof will be

provided in Chapter 3.

Theorem 67. Let (Σ1, φ1), (Σ2, φ2) be two abstract open books. Then M(Σ1,φ1)]M(Σ2,φ2)

is diffeomorphic to M(Σ1,φ1)∗(Σ2,φ2).

We will also define the stabilizations of open books which is an operation on open

books and results in a new open book. But before that we have to present Dehn

twists.

Definition 68. For a simple closed curve c in a closed, orientable surface S, let A

be a tubular neighborhood of c. Then clearly A is homeomorphic to S1 × I. Let (s, t)

be coordinates on A such that s is a complex number of the form eiθ. Let f be a map

which is zero outside of A but f(s, t) = (sei2πt, t) inside A. The f is called a Dehn

twist about the curve c.

Now we define the stabilizations.

Definition 69. Given an abstract open book (Σ, φ) the positive (negative) stabilization

of (Σ, φ) is the open book (Σ
′
, φ

′
)which is defined as

1. Σ
′
= Σ ∪D1 where D1 is a 1-handle

2. φ
′
= φ◦ τc where τc is a right(left)-handed Dehn twist about a curve c in Σ

′
that

intersects the cocore of the 1-handle exactly 1-time.

Stabilizations are denoted by S(a,±)(Σ, φ) where a = c∩Σ and ± indicates the sign of

the stabilization.
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In dimension 3, stabilization can be seen as Murasugi sum of Hopf bands. On

3-manifolds plumbing a Hopf band is the same as contact connected sum with S3.

Theorem 70. Let (Σ, φ) be an open book supporting a contact 3-manifold (M, ξ).

Then for any arc a in Σ, ξS(a,+)(Σ,φ) is isotopic to ξ(Σ,φ).

So now we have a well defined map

Ψ : Γ −→ ∆

where ∆ = {Oriented contact structures on M up to isotopy} and Γ = {Open book

decompositions of M up to positive stabilization } which is actually a bijection.

This bijection results in the famous Giroux theorem [6].

2.3 Open Books and Contact Manifolds of Higher Dimen-
sions

When we let our contact manifolds have dimensions higher than 3, the correspon-

dence between contact structures (up to isotopy) and open books (up to positive

stabilization) is more complicated. We start with explaining what we mean when we

say an open book supports a contact manifold of higher dimensions.

Definition 71. Let (M, ξ) be a contact manifold of dimension higher than 3 and let

(B, π) be an open book decomposition of M. Then we say (M, ξ) is supported by the

open book (B, π) if for a contact form α defining ξ the following are satisfied:

1. The restriction of α to the binding is a contact form on the binding.

2. dα is a symplectic form on the pages Σ and the Liouville vector field of α, X,

points outward along the boundary ∂Σ.

An equivalent description is the following.

Definition 72. A contact manifold (M, ξ) is supported by the open book (B, π) if

there is a contact form α defining ξ such that following are satisfied:
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1. (B,αB = α|B) is a contact manifold.

2. The Reeb vector field Rα associated to the contact form α is positively transerve

to the fibration π, in other words dπ(Rα) > 0. Also Rα is tangent to the binding

B.

Let (Σ, dα) be the symplectic manifold obtained as the page of an abstract open

book (Σ, φ). Then by Lemma 45, the 1-form γ = α|∂Σ is a contact form on ∂Σ.

Also we can say α = (2 − r)γ where r ∈ [1, 1 + δ] is an inwards pointing transverse

coordinate which is obtained as a result of changes of the coordinates associated to

the Liouville vector field X.

Theorem 73. Let (Σ, φ) be an abstract open book and β a 1-form such that (Σ, dβ)

is a symplectic manifold. Let X be a vector field such that iXdβ = β. Then if X points

out of ∂Σ and φ∗dβ = dβ, then there exists a contact structure supported by the open

book (Σ, φ).

Before the proof of Theorem 73 we give a lemma of Giroux which will be needed

in the proof.

Lemma 74. Let φ be the diffeomorphism given in the statement of Theorem 73.

Then φ can be isotoped to a symplectomorphism φ such that φ is identity near ∂Σ

and φ
∗
β = β − dh where h is a real valued function on Σ.

Proof. Set the 1-form µ = φ∗β − β which is closed since

dµ = d(φ∗β − β) = φ∗dβ − dβ = dβ − dβ = 0.

Since φ∗β = µ+ β, we have

d(φ∗β) = d(µ+ β)

⇒ φ∗dβ = d(µ+ β)

31



Note that since dβ is non-degenerate, there exists a unique vector field v such that

µ+ ivdβ = 0. Also

Lvdβ = d(ivdβ) = d(−µ) = 0.

Note that µ and v both vanish near ∂Σ. Taking ψt as the flow of the vector field v, set

the symplectomorphism φ = φ◦ψ1. Clearly φ is the identity near ∂Σ. Since LXµ = 0

we have ψ∗tµ = µ for all t. Note that

(φ)∗β − β = ψ∗1(µ+ β)− β = µ+ ψ∗1β − β.

Also

ψ∗1β − β =

∫ 1

0

d

dt
ψ∗t βdt =

∫ 1

0

(ψ∗tLXβ)dt

=

∫ 1

0

ψ∗t (iXdβ + d(iXβ))dt = −µ+ d

∫ 1

0

ψ∗t (iXβ)dt.

Hence ψ∗1β − β + µ = φ
∗
β − β is an exact form. Taking h =

∫ 1

0
ψ∗t (iXβ)dt we are

done.

Now we can prove Theorem 73.

Proof of Theorem 73. As a result of Lemma 74, we may assume φ∗β = β − dh. The

form α = β + dy is a contact form on Σ × R. Now the mapping torus Tφ can be

expressed as the quotient

AΣ,φ = Σ×R/(x, y) ∼ Ψ(x, y)

where Ψ(x, y) = (φ(x), y + h(x)).

The form α = β + dy induces a contact form on the mapping torus AΣ,φ since

Ψ∗α = dy + dh+ φ∗β = dy + dh+ β − dh = α.

A neighborhood of ∂AΣ,φ is N = (−1
2
, 0]× ∂Σ× S1 with the contact form

α = erβ|∂Σ + dy.
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Now set A(r, R) as the annulus A(r, R) = {z ∈ C : r < |z| < R}. Using the map

Υ : ∂Σ× A(
1

2
, 1) −→ (−1

2
, 0]× ∂Σ× S1

where

Υ(x, reiy) = (
1

2
− r, x, y),

AΣ,φ and ∂Σ×D2 can be glued together. Also the 1-form

Υ∗α = e
1
2
−rβ|∂Σ + dy

on ∂Σ× A(1
2
, 1) can be extended to a 1-form γ on the interior of ∂Σ×D2 as

γ = p(r)β|∂Σ + k(r)dy

where p and k are functions described by the following graphs. Note that

γ ∧ (dγ)n = pn−1pk
′ − kp′

r
β|∂Σ ∧ (dβ|∂Σ)n−1 ∧ dr ∧ dy > 0

since

pk
′ − kp′

r
> 0

is satisfied when we choice the functions p and k as described in the graphs.
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Figure 1: The functions p and k near the binding

The other direction also works, i.e. an open book can be constructed for a given

contact manifold which supports a contact form. More explicitly we have the following

theorem.

Theorem 75. [6]Given a contact manifold (M, ξ), there exists an open book support-

ing ξ.

A proof of Theorem 74 is sketched in [6]. In [6], Giroux constructs the open book

using asymptotically holomorphic sections.
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Chapter III

OPERATIONS ON OPEN BOOKS

By the theorems of Stalling and Gabai, plumbings and Murasugi sums work in a

very nice way in dimension 3. In this chapter, we will work on a generalization of

the plumbings and Murasugi sums to higher dimensions in a way that the operation

satisfies the Stalling’s Theorem. This chapter will be mostly based on Ozbagci and

Pampu’s paper called ”Generalized Plumbings and Murasugi Sums” [9].

Actually, we will construct the definitions of the operations on ordinary manifolds

rather than open books. But then we will apply these definitions on open books.

3.1 Plumbings and Murasugi Sums of 3-Manifolds

In Section 2.1 we have already defined the Murasugi sums and plumbings in 3-

dimensional open books since we needed them to reach Giroux’s famous theorem.

And we stated the following theorem without its proof: Let (Σ1, φ1), (Σ2, φ2) be two

abstract open books of 3-manifolds M1 and M2. Then M(Σ1,φ1)]M(Σ2,φ2) is diffeomor-

phic to M(Σ1,φ1)∗(Σ2,φ2).

Now we prove this theorem.

Proof of Theorem 67. The idea is to construct a sphere S and show thatM(Σ1∗Σ2,φ1◦φ2)−

S has M(Σ1,φ1)−B1 and M(Σ2,φ2)−B2 as its components where B1 and B2 are 3-balls.

Set Σ = Σ1 ∗ Σ2.

Let c1 and c2 be two properly embedded arcs in Σ1 and Σ2 respectively. Set

R1 = c1 × [−1, 1] and R2 = c2 × [−1, 1] as the rectangular neighborhoods of c1 and

c2 respectively. Seperate the unit interval I = [0, 1] in two pieces I1 and I2 where

I1 = [0, 1
2
] and I2 = [1

2
, 1]. We see Σ1 and Σ2 as the submanifolds of Σ and consider
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R1 and R2 as one submanifold R of Σ. Now set s1 = R∩∂Σ1 and s2 = R∩∂Σ2 which

consist of two disjoint properly embedded arcs in Σ. Note that ∂s1 and ∂s2 consist

of four points in ∂Σ where ∂s1 = ∂s2.

Note the surfaces s1 × I1 and s2 × I2 are actually unions of disks in Σφ1◦φ2 . Also

R × {0} and R × {1
2
} are disks in Σφ1◦φ2 as well. Gluing ((s1 × I1) ∪ (s2 × I2)) to

((R× {0}) ∪ (R× {1
2
}) along (s1 × {0}) ∪ (s1 × {1

2
}) ∪ (s2 × {0}) ∪ (s2 × 1

2
) we get a

surface S
′

with four boundary components such that ∂S
′
= (∂s1)× S1.

We get a sphere S out of S
′

by capping off the boundary components of S
′

by

∂s1 × D2 and ∂s2 × D2 in the neighborhood of the binding. Note that the union

((Σ× I1)∪ (Σ× I2)) where φ1 identifies (Σ×{1
2
}) ⊂ (Σ× I1) to (Σ×{1

2
}) ⊂ (Σ× I2)

and φ2 identifies Σ× {0} ⊂ Σ× I1 to Σ× {1} ⊂ Σ× I2 is actually equivalent to the

mapping torus Σφ1◦φ2 . Since φ1 is idΣ2 on Σ2 and φ2 is idΣ1 on Σ1 removing S
′

from

Σφ1◦φ2 gives (Σ1)φ1 − (R× I1) and (Σ2)φ2 − (R× I2).

For the binding note that D2 × ∂Σ is cut into four pieces along D2 × ∂s1. By

gluing the binding, M(Σ,φ1◦φ2) decomposes into two pieces:

(Σ1φ1
∪ (D2 × ∂Σ1))− ((R× I1) ∪ (D2 × s1)) = M1 − ((R× I1) ∪ (D2 × s1))

and

(Σ2φ2
∪ (D2 × ∂Σ2))− ((R× I2) ∪ (D2 × s2)) = M2 − ((R× I2) ∪ (D2 × s2)).

But notice that these are also complements of B1 = (R × I1) ∪ (D2 × s1) and B2 =

(R× I2) ∪ (D2 × s2) in M1 and M2 respectively. So we see M(Σ,φ1◦φ2) = M1]M2.

Actually Theorem 67 we have just proved is nothing other than a special case of a

theorem which was proven by Stallings in 1976 in [11]. In [11], Stallings proves that

the Murasugi sum of two pages of two open books is again the page of an open book.

Actually the original statement in his paper was “If T1 and T2 are fibre surfaces so is

T3” where he defined T3 is the surface which is obtained as Murasugi sum of T1 and

T2. He used the fundamental groups in order to prove this statement.
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In 1983, David Gabai advanced Stalling’s Theorem one step further and proved

that the other direction also works in [4]. Before stating his theorem we introduce

some more definitions.

Definition 76. For a link L a surface S is called a Seifert surface for L if ∂S = L.

Definition 77. We call a link L a fibered link if there exists one-parameter family Ft

of Seifert surfaces for L where t ∈ S1 and when t 6= s, Ft ∩ Fs = L

A knot in S3 is fibered if and only if it is a binding of an open book decomposition

of S3.

Now we give Gabai’s Theorem. We skip the proof.

Theorem 78. Let B1, B2 be two fibered links in S3 with fibers F1, F2 respectively such

that F = F1 ∗ F2. Then B = ∂F is fibered link. Conversely if B is a fibered link with

fiber F = F1 ∗ F2 then B1 and B2 are fibered links.

3.2 High Dimensional Version of Plumbings and Murasugi
Sums

Recall that in dimension 3 we saw that there was an operation, Murasugi sums, that

one could perform on a pair of abstract open books and an operation, connected

sum, that could be performed on a pair of 3-manifolds. The main result here is that

these two operations coincide, that is if one Murasugi sums two open books then

the manifold described by the resulting open book will be the connected sum of the

manifolds described by the original open books. We will now describe an operations

on higher dimensional open books and a operation on higher dimensional manifolds

and see that these two operations are similarly related.

We start with defining Seifert hypersurfaces.

Definition 79. Let W be a manifold with boundary and let M be a compact hyper-

surface of W such that ∂M is embedded in W. Then if
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1. Each connected component of M has non-empty boundary,

2. M is also embedded in the interior of W,

3. M is co-oriented

are satisfied then M is called a Seifert hypersurface.

Definition 80. Assume that W is a manifold with boundary and M ↪→ W is a Seifert

hypersurface. Consider a tubular neighborhood D2 × ∂M ⊂ W of ∂M . Let Π∂M(W )

denote the manifold obtained by gluing (D2−{0})×∂M ⊂ W\∂M to (0, 1]×S1×∂M ⊂

[0, 1]× S1 × ∂M by the diffeomorphism π0 × id∂M where π0 : [0, 1]× S1 → D2 is the

map defined as π0(r, θ) = (rcosθ, rsinθ). Then the map

π∂M : Π∂M(W )→ W

is called radial blow-up of W along ∂M if it is obtained by gluing the inclusion map

i1 : (W − ∂M) −→ W and π0× id∂M : [0, 1]×S1× ∂M −→ D2× ∂M ⊂ W. Moreover

the manifold Π∂M(W ) is called the piercing of W along ∂M .

Definition 81. Let P be a compact manifold such that ∂P 6= ∅. If A is a codi-

mensional 0 submanifold with boundary of ∂P then A is called an attaching region.

Moreover ∂P − A is called the non-attaching region. The pair (P,A) is called an

attaching pair.

Definition 82. Let M be a compact n-manifold with boundary and let (P,A) be an

attaching pair of another compact manifold of dimension n. If P is embedded in M

such that P ∩ ∂M = B where B is the non-attaching region of (P,A) then the pair

(M,P ) is called a patched manifold with patch (P,A).
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Figure 2: A patched manifold (M,P) with a patch (P,A)

Now we define an operation which can be considered as a generalization of Mura-

sugi Sums to high dimensions.

Definition 83. Let M1 and M2 be two compact n-manifolds with boundary and let P
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be compact n-manifold with boundary such that there are two embeddings φ1 : P ↪→M1

and φ2 : P ↪→M2. If (M1, φ1(P )) and (M2, φ2(P )) are patched manifolds with patches

(φ1(P ), φ1(A1)) and (φ2(P ), φ1(A2)) where A1∩A2 = ∅ respectively, then (M1, φ1(P ))

and (M2, φ2(P )) are called summable.

Definition 84. For two summable manifolds (M1, φ1(P )) and (M2, φ2(P )), we define

an operation by considering the disjoint union M1 tM2 and gluing the points of the

patch by φ2 ◦ φ−1
1 . This operation is called the abstract sum of M1 and M2 along P

and it is denoted M1

P⊎
M2. The patch of the obtained manifold M1

P⊎
M2 is the

embedding P ↪→M1

P⊎
M2 obtained by identifying two patches via the map φ2 ◦ φ−1

1 .

In dimension 3 case we have proven a nice property of Murasugi sums in Theorem

67. But talking about a similar relation in high dimensions requires some more work.

Definition 85. Let (M,P ) be a patched manifold and let W be a compact manifold

with boundary such that M ↪→ int(W ) is an embedding as an hypersurfaces. Then

we have a series of embeddings

P ↪→M ↪→ W.

If P is coorientable in W and such a coorientation is chosen then the triple (W,M,P )

is called a patch-cooriented triple.

Definition 86. Let (W1,M1, φ1(P )) and (W2,M2, φ2(P )) be two patch-cooriented

triples where φ1 : P ↪→ M1 and φ2 : P ↪→ M2 are embeddings such that (M1, φ1(P ))

and (M2, φ2(P )) are two summable patched manifolds. Then the triples (W1,M1, φ1(P ))

and (W2,M2, φ2(P )) are called summable.

A summation operation between two summable patch co-oriented triples can be

described as the following. First we consider the positive and negative thick patches.

For a patch co-oriented triple (W,M,P ), a positive thick patch is a choice of positive

side I+ × P → W of the embedding P ↪→ W intersecting M only along P where I+
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is the compact oriented interval [0, 1]. Similarly we define a negative thick patch as

choice I− × P → W of embedding intersecting M only along P where I− = [−1, 0].

For the operation consider a positive thick patch I+ × P → W1 of (W1,M1, P ) and

a negative thick patch I− × P → W2 of (W2,M2, P ) and set W ′
1 = W1\int(I+ × P )

and W ′
2 = W2\int(I−×P ) as the complements of the interiors of thick patches. Now

let σ : I+ → I− be an orientation reversing diffeomorphism, i.e σ(∂±I
+) = ∂∓I

−, we

glue W ′
1 to W ′

2 by restricting σ × idP : I+ × P → I− × P to ∂(I+ × P ). By this

restriction we identify ∂(I+ × P ) to ∂(I− × P ) to get (W1,M1)
P⊎

(W2,M2). Finally

we have the canonical embeddings:

P →M1

P⊎
M2 → (W1,M1)

P⊎
(W2,M2).

In topology there exists a very interesting idea which has very nice applications. This

idea is called cobordism. Actually cobordism is an equivalence relation and it plays

an important role in topology. We will spend some effort on introducing cobordism

and then will focus on our real matter again.

We start with giving the definition of cobordism.

Definition 87. Let W be a compact manifold with boundary. A cobordism with

corners structure on W is a structure which consists of two codimension zero compact

submanifolds with boundary ∂−W and ∂+W of ∂W where the following the conditions

are satisfied;

1. ∂−W is cooriented with the incoming coorientation and it is called the incoming

boundary region,

2. ∂+W is cooriented with the outgoing coorientation and it is called the outgoing

boundary region,

A cobordism with corners structure on W is denoted W : ∂−W ⇒ ∂+W .
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Definition 88. Let M− and M+ be two manifolds such that M− is diffeomorphic to

∂−W and M+ is diffeomorphic to ∂+W . Then W is called cobordism with corners

from M− to M+. This case is denoted W : M− ⇒ M+. Given two cobordisms with

corners W1 : M1 ⇒ M2 and W2 : M2 ⇒ M3, their composition W1 ◦W2 : M1 ⇒ M3

is another cobordism with corners which is obtained by gluing W1 to W2 along M2.

For a cobordism with corners structure on a manifold with boundary W, if ∂−W

and ∂+W are diffeomorphic, then the diffeomorphism between ∂−W and ∂+W enables

us to identify these two submanifolds with boundary. The following definitions will

be based on this idea.

Definition 89. Assume that there exists W : ∂−W ⇒ ∂+W such that ∂−W is diffeo-

morphic to ∂+W with a fixed diffeomorphism. Then W is called an endobordism of

M where M is a manifold diffeomorphic to ∂−W and ∂+W .

Definition 90. Let W be an endobordism W : M− ⇒M+. Then the mapping torus

of W is the manifold with boundary which is obtained by gluing M− to M+ via the

fixed diffeomorphism. The mapping torus of W is denoted T (W ).

Now we will define a special type of cobordism.

Definition 91. For a manifold with boundary M the product I × M where I =

[0, 1] is called a cylinder with base M. A cylinder with base M is a cobordism where

{0} × M is the incoming boundary region and {1} × M is the outgoing boundary

region. Moreover if M+ and M− are two manifolds diffeomorphic to M, we define

a cylindrical cobordism with base M as a cobordism W : M− ⇒ M+ if ∂(I ×M) =

{0, 1} ×M ∪ I × ∂M is diffeomorphic to the union of connected components of ∂W

which have non-emtpy intersection with M+ ∪M−. The union at these components

is called the cylindrical boundary and it is denoted ∂cylW . The interval I = [0, 1] is

called the directing segment of the cylindrical cobordism.
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Definition 92. Take a compact manifold with boundary W and consider a cooriented

and properly embedded compact hypersurface with boundary M ↪→ W . Then [−1, 1]×

M is a collar neighborhood of M which can be considered as an cylinder Z[−1,1] :

{−1} × M ⇒ {1} × M such that Z[−1,1] ' Z[0,1] ◦ Z[−1,0] where Z[0,1] and Z[−1,0]

denote the cylinders related to [0, 1] and [−1, 0] respectively. Let WM be the closure of

W\([−1, 1]×M) in W which can be considered as an endobordism WM : {−1}×M ⇒

{1} ×M which gives Z[−1,0] ◦WM ◦ Z[0,1] as an endobordism of M. This endobordism

is denoted by ΣM(W ) : M− ⇒M+ and it is called splitting of W along M where M−

and M+ are both diffeomorphic to M.

Definition 93. For a cylindrical cobordism W : M− ⇒M+ with base M consider its

mapping torus T (W ). A new manifold obtained by collapsing each circle S1 × {m}

to {0} × {m} as m varies on ∂M is called circle-collapsed mapping torus of W and

it is denoted by Tc(W ).

Definition 94. For a cylindrical cobordism W : M− −→ M+ with base M, the

embedding M −→ Tc(W ) is called the associated Seifert hypersurface of the cylindrical

cobordism.

We will give a theorem about the mapping tori of the cylindrical cobordisms. This

theorem is going to be used in our important theorem which will show up at the end

of the section. The proof can be found in [9].

Theorem 95. Given a cylindrical cobordism W : M− ⇒M+ with base M let N be the

manifold obtained by gluing the mapping torus T (W ) to D2 × ∂M via the canonical

identification diffeomorphism of their boundaries, i.e.

N = T (W ) ∪D2 × ∂M/ ∼

such that

(θ, p) ∈ ∂T (W ) ∼ (θ, p) ∈ ∂(D2 × ∂M) ≈ S1 × ∂M.
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Then N is diffeomorphic to the circle collapsed mapping torus Tc(W ) by a diffeomor-

phism ψ satisfying ψ|T (W )\V = id ,where V is any neighborhood of D2 × ∂M , and

ψ(0× ∂M) = ∂M.

Now we are going to define a special type of cylindrical cobordisms and we will

use this specific type in the definition of a new operation.

Definition 96. Let W : M− ⇒ M+ be a cylindrical cobordism and let V be a

neighborhood of M− ∪M+ in W. If there exist a diffeomorphism of a neighborhood

(I−int(C))×M of (∂I)×M in I×M extending the restriction to V to the diffeomor-

phism between ∂cylW and ∂(I ×M) then the cylindrical cobordism W : M− ⇒M+ is

called stiffened cylindrical cobordism. Here the neighborhood V is called the stiffening

of the stiffened cylindrical cobordism W : M− ⇒M+ and C is a compact subsegment

which is embedded in int(I) is called the core.

Now we can define an operation on stiffened cylindrical cobordisms.

Definition 97. Let (W1 : M−
1 ⇒M+

1 , V1) and (W2 : M−
2 ⇒M+

2 , V2) be two stiffened

cylindrical cobordisms with the same directing segment I and cores C1 and C2 where

(M1, φ1(P )) and (M2, φ2(P )) are two summable patched manifolds with the attaching

regions φ1(A1) and φ2(A2) respectively. If C1 ∩ C2 = ∅ and C1 situated after C2 with

respect to the orientation on I then they are called summable where their sum

(W1, V1)
P⊎

(W2, V2)

is described in the following definition.

Definition 98. Let (W1 : M−
1 ⇒M+

1 , V1) and (W2 : M−
2 ⇒M+

2 , V2) be two summable

stiffened cylindrical cobordisms as described in Definition 97.

The summation operation of two summable stiffened cylindrical cobordisms (W1 :

M−
1 ⇒ M+

1 , V1) and (W2 : M−
2 ⇒ M+

2 , V2) is denoted by (W1, V1)
P⊎

(W2, V2) and it

can be described by the following steps:
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1. For each t in (I − int(C1)), considering the canonical identifications φ1(A1)→

∂(M1/φ1(P )) and φ1(A1)→ ∂M2 glue fiberwise (M1/φ1(P )) to M2 where φ1(A1)

is the attaching region.

2. For each t in (I − int(C2)), similarly considering the canonical identifications

φ2(A2) → ∂(M2/φ2(P )) and φ2(A2) → ∂M1 glue fiberwise (M2/φ2(P )) to M1

where φ2(A2) is the attaching region.

3. For each t in (I− (int(C1)∪ int(C2)) sum fiberwise (M1, φ1(P )) to (M2, φ2(P )).

Definition 99. Let (M1, φ1(P )) and (M2, φ2(P )) be two summable patched manifolds

with attaching regions φ1(A1) and φ2(A2). Consider the cylindrical cobordisms W1 :

M−
1 ⇒ M+

1 and W2 : M−
2 ⇒ M+

2 with directing segments I1 and I2 and stiffenings

V1 and V2 respectively. Take an orientation preserving diffeomorphism ϕ : I1 → I2

placing the core segment of I1 after the core segment of I2.The sum of W1 and W2

is obtained by identifying the directing segments I1 and I2 by ϕ and applying the

operation described in Definition 98. The sum of W1 and W2 is denoted by W1

P⊎
W2.

Now we can state and prove our big theorem. We will use the definitions and the

operations we have introduced in this section for the proof.

Theorem 100. Given two summable patched Seifert hypersurfaces (W1,M1, φ1(P ))

and (W2,M2, φ2(P )), their embedded sum

M1

P⊎
M2 → (W1,M1)

P⊎
(W2,M2)

as described after Definition 86 is diffeomorphic (up to isotopy) to the circle collapsed

mapping torus of the sum of cylindirical cobordisms

Tc(ΣM1(W1)
P⊎

ΣM2(W2)).
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Proof. The statement of the theorem includes two constructions. The first one is

the circle collapsed mapping torus of the sum of two cylindrical cobordisms ΣM1(W1)

and ΣM2(W2) and the second one is the embedded sum of patch cooriented triples

(W1,M1, φ1(P )) and (W2,M2, φ2(P )). The proof will be based on showing that the

circle collapsed mapping torus of the sum ΣM1(W1)
P⊎

ΣM2(W2) actually is the man-

ifold obtained from circle collapsed mapping tori of ΣM1(W1) and ΣM2(W2) by first

taking out submanifolds which are diffeomorphic to [0, 1] × P and then identifying

the boundaries.

Note that the circle-collapsed mapping tori Tc(ΣM1(W1)) and Tc(ΣM2(W2)) are

diffeomorphic to manifolds constructed by filling ∂Tc(ΣM1(W1)) with D1 × ∂M1 and

filling ∂T (ΣM2(W2)) with D2×∂M2 respectively. Keeping this fact in our mind, refer

to Definition 80 and set

Φ∂M1(W1) = Π∂M1(W1) ∪S1×∂M1
(D2 × ∂M1)

and

Φ∂M2(W2) = Π∂M2(W2) ∪S1×∂M2
(D2 × ∂M2)

where Π∂M1(W1) and Π∂M2(W2) denote piercings of W1 and W2 along ∂M1 and ∂M2

respectively.

In order to make a similar filling of ∂(T (ΣM1(W1)
P⊎

ΣM2(W2))) consider the

stiffenings V1 of ΣM1(W1) and V2 of ΣM2(W2) such that the operation described in

Definiton 98 can be performed. We need to identify the directing segments of ΣW1(M1)

and ΣW2(M2) in order to perform the operation described before. Note that this

operation has three different processes in three regions. But one of these three regions

requires some more attention. Over (I − (int(C1) ∪ int(C2))) the operation can

be performed in many different ways. For that reason we need to search for the

description which makes us most comfortable.

Now set α+ = ∂+I and α− = ∂−I and take a point β between the cores C1
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and C2. Now set two new intervals I1 = [α−, β] and I2 = [β, α+]. Let E1 and E2

be the closures of ∂M1 − B1 in ∂M1 and ∂M2 − B2 in ∂M2 respectively where B1

is the non-attaching region for (M1, φ1(P )) and B2 is the non-attaching region for

(M2, φ2(P )). And let K1 and K2 be the closures of ∂(φ1(P ))− (φ1(A1)∪φ1(A2)) and

∂(φ2(P ))− (φ2(A1)∪ φ2(A2)) respectively. Over I1 and I2 we will perform the gluing

Figure 3: The presentation of Ei and Ki

by removing φ1(P ) and φ2(P ) from ΣM1(W1) and ΣM2(W2) respectively.

Now we can perform the following steps:

First, remove (I1 × φ1(P )) ∪ (D2 × ∂M1) from ΦM1(W1) and take the closure.

Similarly, remove (I2 × φ2(P )) ∪ (D2 × ∂M2) from ΦM2(W2) and take the closure.

Secondly, identify the boundaries that we have after the first step. Note that the

boundaries are isomorphic to

(I1 × A1) ∪ (I2 × A2) ∪ ({α−, α+} × φ1(P )) ∪ (β × φ2(P )).

Since we identify K1 and K2 in ∂(M1

P⊎
M2), we can consider them as one submanifold
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K. Now fill the new boundary by

D2 × ∂(M1

P⊎
M2) = (D2 × E1) ∪ (D2 ×K) ∪ (D2 × E2).

Note that while performing the operation the pieces (D2 × E1) and (D2 × E2) are

moving twice: they are taken out first and inserted back again. But the middle piece

(D2 ×K) moves three times: It is removed twice (once from M1 and once form M2)

but inserted back only once. An alternative way is to cut disc D2 into two pieces, say

D1 and D2, and remove D1 ×K from Φ∂M1(W1) and D2 ×K from Φ∂M2(W2).

What we are actually doing here is to remove (I1×φ1(P ))∪ (D2×A2)∪ (D1×K)

from Φ∂M1(W1) and to remove (I2 × φ2(P )) ∪ (D2 ×A1) ∪ (D2 ×K) from Φ∂M2(W2)

and then take the closures.

Now referring to the fact that (I1 × φ1(P ))∪ (D2 ×A2)∪ (D1 ×K) is isomorphic

to I1 × φ1(P ) and (I2 × φ2(P )) ∪ (D2 ×A1) ∪ (D2 ×K) is isomorphic to I2 × φ2(P ).

In order to complete the proof of Theorem 100, we need to state a new theorem

which allows us to take the final step. The proof can be found in [9].

Theorem 101. Let M be a manifold with boundary and let N be a codimension 1

submanifold with boundary of M embedded in ∂M . Let Z be a manifold obtained by

gluing [0, 1]×N to M by identifying {0}×N with N. Then Z is isomorphic to M with

an isomorphism which is the identity map outside an arbitrary small neighborhood of

N in M.

Now we turn back to the proof of Theorem 100. Since D1 and D2 are both

diffeomorphic to [0, 1]× [0, 1] applying Theorem 101 gives us the isomorphism which

completes the proof.

We will take one step further and give another theorem which is a generalization

of the theorem about stabilizations which we have in dimension 3.

Theorem 102. Let (W1,M1, φ1(P )) and (W2,M2, φ2(P )) be two summable patched

Seifert hypersurfaces being pages of open books on the closed manifolds W1 and W2
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respectively. Then the associated Seifert hypersurface of (W1,M1)
⊎

(W2,M2) is page

of an open book whose monodromy is the composition of monodromies of initial open

books.

Proof. Let (∂M1, θ1) and (∂M2, θ2) be open books on W1 and W2, respectively,

satisfying M1 = θ−1
1 (0) and M2 = θ−1

2 (0). The maps θ1 : W1\∂M1 → S1 and

θ2 : W2\∂M2 → S1 lift to maps θ1 : Π∂M1W1 → S1 and θ2 : Π∂M2W2 → S1 respec-

tively. By splitting S1 at the point of argument 0 we have the lifts

Σ(θ1) : ΣM1(W1)→ [0, 2π] and Σ(θ1) : ΣM1(W1)→ [0, 2π]

Taking C1, C2 ⊂ (0, 2π) as arbitrary compact segments with nonempty interiors, the

preimages Σ(θ1)−1([0, 2π] − int(C1)) and Σ(θ2)−1([0, 2π] − int(C2)) are stiffening of

ΣM1(W1) and ΣM2(W2) respectively. In order to perform the operation as described

before, we need to assume that C1∩C2 = ∅ and we see Σ(θ1) and Σ(θ2) as the height

functions.

Gluing the height functions we have a new height function

h : ΣM1(W1)
P⊎

ΣM2(W2)→ [0, 2π]

which is a fiber bundle projection whose genetic fiber is isomorphic to M1

P⊎
M2.

Then we have the associated Seifert hypersurface as a page of the open book

M1

P⊎
M2.

Theorem 101 gives us the isomorphism between this associated Seifert hypersur-

face and M1

P⊎
M2 → (W1,M1)

P⊎
(W2,M2)
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