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SUMMARY 
 
 
 This dissertation presents the development of a multielectrode microcompartment 

platform for understanding signal transduction in the nervous system.  The design and 

fabrication of the system and the characterization of the system for pharmacological and 

electrophysiological measurements of cultured neurons is presented in this work.  The 

electrophysiological activity of cultured dorsal root ganglion (DRG) neurons and cortical 

neurons is shown on the MEA substrate.  These recordings were measured and tied to the 

toxicological effects of the chemotherapeutic drug vincristine on DRGs.   

 Conventional electrophysiological recordings (via a patch micropipette) are made 

routinely to record action potentials and ion channel activity in neurons.  Moreover, 

Campenot chambers (traditional compartmented culture systems) have been used for the 

last thirty years to study the selective application of drugs to neurons.  Both of these 

techniques are useful and well established; however they have their limitations.  For 

instance, Campenot chambers cannot be used very well for small processs-producing 

neurons, since the barriers are difficult to tranverse.  Moreover, conventional patch 

recordings are labor-intensive, especially when more than one microelectrode needs to be 

positioned.   

 The developed system is composed of a two compartment divider, each 

compartment capable of housing axons or cell bodies.  Underneath the divider, the 

substrate has 60 electrodes, arranged in several lines to accommodate several different 

neurite “tracks”.  Neurons can be stimulated and their activity can be recorded in both of 

the compartments.  The neurotoxin and chemotherapeutic drug vincristine was tested in 

the system on the DRGs.  The drug caused length-dependent axonal degeneration in the 



 xvi

DRGs when applied locally.  Moreover, electrophysiological activity in both 

compartments showed that only the activity in the axonal compartment was affected, 

leading us to believe that the mechanism behind the degeneration is localized to the distal 

axon. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1  Thesis Objectives and Motivation 
 

The objective of this work is to design, fabricate, and test an integrated 

compartmented neuronal culture system that takes advantage of microsystems technology 

to create features that are several hundred microns or less in dimension.  The two 

improvements to traditional compartmented cultures made through this work lie in the 

integration of electrodes into these systems and in the reduction of the size of 

intercompartmental barriers.  Also, we will use the system to test a hypothesis on the 

effects of the neurotoxin vincristine.  The following chapters give the motivation for and 

detailed methodology of how the work was undertaken. 

More specifically, the aims of this work are as follows: 

Aim 1.  Design and microfabrication of the Campenot chamber system 

  Subaim 1.1.  Design and fabrication of the chemical patterning mold. 

  Subaim 1.2.  Design and fabrication of the compartment divider. 

  Subaim 1.3.  Design and fabrication of the MEA substrate. 

Aim 2.  Characterization of the microfabricated Campenot chamber system 

  Subaim 2.1.  Characterization of leakage in system 

  Subaim 2.2.  Characterization of neurite patterning 

  Subaim 2.2.  Characterization of the MEA substrate 

Aim 3.   Integration of microelectrode studies into the microfabricated Campenot 

chamber system. 

  Subaim 3.1.  Examination of vincristine neurotoxicity 
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  Subaim 3.2.  Examination of electrophysiology with vincristine 

 

1.2  Introduction to Micromachining Technology 

Microelectronics technology has created a vast new playground in the world of 

objects that are on the order of 1µm [1-50].  The application of conventional 

microelectronics technology and associated emerging technologies to fields as disparate 

as physics and biology has produced devices that have integrated functionality and are 

collectively known as microelectromechanical systems (MEMS).  MEMS technology has 

allowed researchers to manipulate biological particles, sense the environment, and actuate 

other parts.   

The novelty of MEMS comes from the fact that it allows researchers to build 

things that have been impossible or very expensive with other techniques.  MEMS brings 

much of its technology from the integrated circuit industry.  The most important aspect of 

MEMS technology lies in its ability to miniaturize objects.  By using the techniques of 

the semiconductor revolution, engineers can produce systems that are orders of 

magnitude smaller than the devices that exist in our everyday lives.  Moreover, the use of 

photolithographic techniques makes producing thousands of copies of a single device 

easy.  Finally, the ability to integrate multiple levels of functionality makes MEMS 

devices more functional than simple microelectronics [7]. 

Traditionally, MEMS have been fabricated with silicon since the majority of ICs 

made today use silicon technology.  There are two main MEMS fabrication techniques 

that are based on silicon:  bulk silicon micromachining and polysilicon surface 

micromachining.  Bulk silicon micromachining is a type of micromachining that uses a 
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silicon wafer as the building material for the device.  Silicon wafers made for the IC 

industry are single crystals of silicon cut on specific crystal planes.  Certain chemicals 

etch different silicon crystal planes at different rates.  This characteristic of silicon is used 

to etch holes into the substrate that follow specific crystal planes.  This technique, known 

as anisotropic wet etching, can be used to make many features important to the bulk 

micromachining industry.  Surface micromachining is a technique that resembles those 

used for the IC industry much more than bulk micromachining techniques.  In polysilicon 

surface micromachining, many layers of polysilicon and silicon dioxide are deposited by 

chemical vapor deposition.  Each layer is photolithographically patterned and plasma 

etched before the next layer is deposited.  When the resulting stack of films is dipped in 

hydrofluoric acid, the silicon dioxide is chemically etched away, and this process leaves 

behind multi-layered structures of polysilicon [7].   

 An offshoot of MEMS fabrication strategies is soft lithography, in which a single 

silicon micromachined master, potentially fabricated by one of the two techniques 

discussed above, is used to micromold a liquid prepolymer (e.g., PDMS, PMMA) into 

useful structures.  This technique is particularly relevant to the work in this  project.  Soft 

lithography is particularly attractive because one master can produce thousands and even 

millions of molds.  With this technique, the prepolymer of the elastomer is poured over 

the master, cured, and peeled off.  It has become popular for many reasons, including the 

ease with which these devices can be manufactured and the biocompatibility of the 

materials involved [51-65]. 
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1.3  BioMEMS 

 Biological MEMS (or BioMEMS) has become the term of choice for applications 

of MEMs devices to problems in biology and medicine.  BioMEMS is an area as varied 

as any in the engineering sciences.  The key to the advantages associated with many of 

these devices lies in the leveraging of features that are unique to MEMS (such as the 

small features or the integration of microelectronics), and any of the techniques 

mentioned in the previous section as well as a host of others that are not mentioned can 

be used to fabricate devices that are grouped into this section [6, 66]. 

 One useful designation is the differentiation of BioMEMS devices that are for in 

vitro applications and those that are for in vivo applications.  A variety of implantable 

electronic devices are based upon or use MEMS technology, including sensors, 

immunoisolation capsules, and drug delivery microchips.  Biosensors have been created 

to monitor pH, analytes, and pressure in the blood, tissue, and body fluids, but stable 

sensors for long-term implantation are difficult to find.  Even those materials generally 

considered to be biocompatible produce some sort of toxic response.  So, finding more 

biocompatible materials is one problem in moving this technology forward [6, 67-75].  

Also, immunoisolation capsules are used for implantation of cells that perform some 

function in vivo [76-79].  For instance, microfabricated silicon capsules offer the 

advantages of reproducible small features and greater mechanical strength compared to 

the traditionally used polymer-based capsules.  Finally, microfabricated drug delivery 

systems are useful for a number of applications involving the precise delivery of a drug in 

vivo.  For instance, silicon microparticles are small silicon reservoirs that can be filled 

with a drug to be delivered in vivo [80, 81].  These devices would have a dissolvable cap 
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that would allow controlled release of the drug when delivered intravenously.  Also, 

arrays of these reservoirs could be fabricated so that different drug doses can be 

incorporated into each reservoir and sealed with an electrochemically dissolvable gold 

membrane [82-84].   

Some of the in vivo applications of BioMEMS that involve neurons include in 

vivo neural probes and retinal prostheses.  There have been several versions of the in vivo 

neural probe that has been fabricated.  The most work in this area has been done at the 

University of Mighican [85-101].  The “Michigan Probes” consists of a 1024-site 128-

channel neuroelectronic interface that has integrated circuitry for processing recorded 

data.  In addition to the probe shanks and the electronics, the Michigan probes also 

incorporate sensors for microfluidics and channels for drug delivery.  The basic process 

for fabricating the Michigan probes is a silicon MEMS process that involves the 

deposition of several layers of conductors and dielectrics and a final etch step that 

releases the probes.  An alternative to the Michigan probes is the Utah electrode array, 

which is a batch fabricated two dimensional depth array formed using silicon posts 

created by sawing and etch-back [102-110].  The individual posts are insulated with 

parylene and tipped with iridium.  Each post is isolated from neighboring electrodes 

using a mote of glass surrounding the electrode at its base.  Also, Jack Judy at UCLA has 

used similar features to fabricate a silicon multielectrode probe for deep brain stimulation 

[111, 112].  It is targeted for use in stimulating the deep portions of the brain like the 

thalamus, which is located more than 2cm below the cortex in rodents.  The motivation 

for microfabricating such a structure is to provide a probe narrow enough to cause the 

least amount of damage.  Meanwhile, the MEMS-based retinal implant is a very 
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ambitious project that involves the creation of a chip that would be able to restore vision 

to patients with macular degeneration and retinitis pigmentosa.  The entire system 

consists of the MEMS implant and electronics for telemetry.  Several approaches have 

been developed; most notably, the approach adopted by Sandia National Labs is one in 

which the electrodes are mounted on flexible springs so that they can be used to stimulate 

appropriate areas of the retinal surface [113-124]. 

Some of the in vitro applications include multielectrode arrays (MEAs), patch 

clamp devices, and other lab-on-a-chip applications.  Multielectrode arrays (MEAs) have 

become popular over the last decade as a means of studying the electrophysiology of 

networks of neurons cultured in vitro.  MEAs are used to culture a wide variety of 

neurons of the central and peripheral nervous systems.  Researchers use them to culture 

neuronal cells to form a long-term, two way interface between the cultured networks and 

a computer.  They are also used to study distributed network dynamics and neural 

plasticity using both recording and stimulation.  Others have cultured individual DRG 

neurons and attempted at optimizing the neuron-electrode interface [125-141].  Others 

such as Lee have used micromachining technology to be able to perform sophisticated 

biological techniques on a chip.  His lateral patch clamp, for instance, allows for high 

throughput, parallel analysis of ion currents in an excitable cell [142].   

 

1.4  Campenot chambers 

 Our model system is the compartmented culture invented by Robert Campenot in 

1976 [143-172].  The compartmented culture system provides all the basic requirements 

for complicated studies on neurons that combine electrical stimulation with biochemical 
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exposure.  The compartmented culture was initially designed as a system to study the 

formation and maintenance of neuronal projections.  Axons originating from neurons 

plated in a proximal compartment grow across a silicone grease barrier and enter into a 

separate fluid environment within a distal compartment (see Figure 1).  The key to the 

construction of compartmented cultures is the application of silicone grease to a Teflon 

divider and then seating the divider into a culture dish with a collagen-coated substratum.  

With the conventional system, the grease barriers that neurons must traverse are large 

(~500µm) and, therefore, difficult to penetrate, especially for the small process-producing 

neurons of the central nervous system.  To reduce these barriers, Ivins et al formed a thin 

barrier (150µm) with a glass coverslip seated with silicone grease [173].  However, these 

devices were time consuming to build and culture viability was low.  Recently, 

microfabrication techniques have been used to build a novel Campenot chamber device.  

However, this device does not provide the full functionality of the traditional system.  

This system uses a hydrostatic pressure differential to allow the fluid in one compartment 

to “leak” into an adjacent compartment.  The intention was to apply biochemicals to the 

“non-leaky” compartment, thereby allowing fluidic compartmentalization of one side of 

the cultured neurons.  This design does not allow for tests in which the neurons in both 

compartments (both the extensions and the somas) could be isolated with a drug 

environment [174]. 

As part of this work, we build devices that would take advantage of the ability of 

MST to pattern small features that could guide neurons, provide fluidic isolation, and 

pattern electrodes [175-181].  Our compartmented culture systems will allow for 

complicated studies in which different parts of a neuronal culture could be biochemically 
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activated in coordination with the activation of arrays of lithographically defined 

microelectrodes.  In addition, these systems will possess the traditional benefits of 

miniaturization:  less reagent use and batch processing capability.   

Campenot chambers are currently used for many applications, all of which center 

around the effects of compartmentalizing biochemicals on cultured neurons [144, 182-

186].  However, to our knowledge, B. Campenot and P. Nelson’s groups are the only 

ones to have used compartmented cultures with electrical stimulation and recording as 

part of their experiments [185, 187].  A problem for making electrophysiological 

measurements in traditional chambers is the difficulty of positioning conventional 

 
Figure 1.1.  Traditional compartmented culture system (from [145]). 
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microelectrode pipettes at desired locations within the chamber.  We hope to remove this 

burden with a pre-patterned substrate that will create a structured arrangement of neurons 

interfacing with many electrodes.  Moreover, we believe that the ability to stimulate and 

record from neuronal cultures as they are being exposed to drugs in real-time offers a 

novel and useful technique to understand the spatiotemporal consequences of the 

pharmacological agents on the culture. 

 

1.5  Introduction to Neurons 

Neurons are unique among cells in that they have such asymmetrical morphology.  

During development, neurons become assembled into functional networks by growing 

out axons and dendrites which connect to other neurons through synapses.  The 

outgrowth of neurons moves forward by the action of growth cones --specialized 

structures at the tip of growing neurites.  The cell body, or soma, is a 15-25µm diameter 

area of the cell that houses the nucleus.  Neurons also have neurites, which are extensions 

that emerge from the cell bodies during the growth process.  Neurites can grow to several 

millimeters in length and develop into two functionally different species:  axons which 

function in sending signals to other cells and dendrites which function in receiving 

signals from other cells.   

Neurons can also be characterized by the number and types of processes that they 

possess.  Bipolar neurons like retinal cells and olfactory epithelium cells have two 

processes extending from the cell body.  Pseudounipolar cells like dorsal root ganglion 

(DRGs) cells have two axons.  Here, one axon extends centrally toward the spinal cord 

and the other axon extends towards the skin or muscle.  Finally, multipolar neurons (see 
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Figure 1.2) like motor neurons, pyramidal neurons, and Purkinje cells have many 

processes extending from the cell body, but only one of these is the axon [188]. 

These structural differences result in functional differences between different 

parts of a neuron.  Little is understood about the spatiotemporal distribution of various 

neuronal components, including organelles, ion channels, and ions.  The introduction of 

chemical species into a system that allows the investigation of these components would 

prove useful for understanding basic cellular physiology and in answering questions that 

can be posed from the applied sciences in medicine in biology. 

 

 

 

Figure 1.2.  Different types of neuron morphologies. 
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The primary function of neurons is to provide electrical signaling between 

different regions of an organism.  Action potentials are generated by ion channels, which 

consist of protein complexes that allow a chemical gradient to be established between the 

extracellular and intracellular environments.  The primary ion channels involved in spikes 

are voltage-gated in that they are opened/closed by a change in the voltage potential 

across the membrane.  There are also ligand-gated channels which are controlled by the 

binding of special chemicals (neurotransmitters) released from one cell and captured by 

another [189]. 

Action potentials, the electrical signals in neurons, are usually initiated at axon 

hillocks, points that have a low threshold for firing.  Once initiated, the action potential 

moves along the cell membrane down the axon to the next cells.  This backflow of 

information has a role in the strengthening and weakening of the synaptic connections 

between neurons and thus may play a role in learning, memory, and computation [190]. 

 Dorsal root ganglia (DRG) neurons were chosen as the biological test vehicle for 

this compartmented culture system.  This was done for several reasons.  DRGs are 

neurons of the peripheral nervous system and grow extensions that are several 

millimeters in length.  They are bipolar neurons that have two axons, one that connects to 

the central nervous system and the other that connects to receptors in areas like skin and 

muscle.  Since they grow such long extensions in a relatively short period of time, we 

thought that they would allow us to move forward with culture experiments quickly.  

Moreover, they have relatively large cell bodies and we imagined that this would aid us 

in making optical measurements.  Moreover, we chose DRGs because they have been 

characterized in compartmented cultures thoroughly.  In addition to studies involving 
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drugs applied selectively to neurons, their electrophysiological activity has been studied 

in Campenot chambers by R.D. Fields and P. Nelson’s group at the NIH.  Moreover, 

DRGs form synapses with receptors in muscle tissue and with spinal cord neurons, 

making them a good model to study how activity changes as they pass 

electrophysiological information to other cells.   

 

1.5.1  Ectopic Firing in Neurons  

 In many dysfunctions of the nervous system, the electrophysiological health of the 

neuron is implicated [191-206].  For instance, in many diseases in vivo the underlying 

culprit for the dysfunction is loss of the ability to conduct action potentials.  In epilepsy, a 

rapid firing pattern is initiated that precedes the abnormal loss of consciousness.  In ALS, 

a characteristic withering away of the neuromuscular junctions results in loss of function 

in various muscles of the body [207].  In Guillain-Barre syndrome and multiple sclerosis, 

demyelination and inflammation both contribute to the neurological deficits.  In both of 

these cases, the conduction deficits attributable to demyelination are well known.  

Conduction deficits attributable to demyelination are well known, but it is becoming clear 

that factors such as nitric oxide, endocaine, cytokines, and antiganglioside antibodies also 

play significant roles.  Other factors impairing impulse transmission include nodal 

widening, glutamate toxicity, and disturbances of both the blood-brain barrier and 

synaptic transmission [208].  Also, peripheral neuropathy is a major late complication of 

diabetes mellitus. Changes in polyol pathway flux, oxidative stress, non-enzymatic 

protein glycation, endothelial dysfunction leading to reduced nerve blood flow, disturbed 
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calcium homeostasis and deficits in neurotrophic factors probably all contribute to the 

clinical and neurophysiological findings in the diabetic patient with neuropathy [207].  

 Also, ectopic hyperexcitability in physically injured PNS neurons has been 

implicated in the feeling of pain.  In recent years, some direct evidence of PNS ectopia 

has been obtained by percutaneous microneurographic recording from single nerve fibers 

in conscious humans.  For example, Nystrom and Hagbarth showed ongoing discharge in 

the peroneal nerve in a lower extremity amputee.  The patient had ongoing phantom foot 

pain that was augmented by percussion of the neuroma.  In a related study, dysesthesias 

referred to the foot were triggered by straight-leg lifting in a patient with radicular pain 

related to surgery for disk herniation.  This activity also caused ectopic bursts in the sural 

nerve.  Also, changes in the degree of pain were caused by the injection of test substances 

at the areas where the pain was being felt.  For instance, in animal studies, injection of 

adrenaline or K+ channel blockers into an injured PNS neuron evokes pain, while the 

injection of Na+ channel blockers (e.g., lidocaine) suppresses it [209].   

 As suggested above, ectopic hyperexcitability in severed DRGs is reflected in 

abnormal sensitivity to a broad range of depolarizing stimuli.  For example, 

depolarization with elevated concentrations of extracellular K+ evokes accelerated 

discharge, as does the application of the K+ channel blockers tetraethylammonium (TEA) 

and 4-aminopyridine (4-AP).  Another potential source of chemical excitation at nerve 

injury sites is the neurotransmitter/neuromodulator contents of neighboring axons.   

Temperature also has an interesting effect.  In myelinated PNS neurons with some injury 

associated with them, the rate of spontaneous discharge increases with temperature while 

decreasing the temperature suppresses firing.  On the other hand, most unmyelinated 
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axons work in reverse; their firing is lowered by warming and excited by cooling.  

Metabolic stimuli are also efficacious in producing a change in the electrophysiology of 

neurons.  Ischemia and hypoxia, for example, cause very high firing frequencies followed 

by no activity in PNS neurons [209].   

In addition to physical and metabolic stimuli, many substances found in the body 

are known to cause ectopic discharge in neurons.  Examples are the catecholamines 

adrenaline and noradrenaline, which both promote and inhibit ectopic activity.  Ectopic 

firing also may be aroused by many different inflammatory mediators, including 

bradykinin, histamine, serotonin, and certain eicosanoids.  In vivo, these compounds are 

released by mast cells, macrophages, Schwann cells, and other cells at the injury site 

[209].   

 

1.5.2  Distal Axonal Degeneration 

Our devices will be applied towards the study of a phenotype found in many 

neurodegenerative diseases called distal axonal degeneration (DAD), a gradual 

degenerative condition that starts in the distal axon and proceeds proximally toward the 

cell body.  Ever since the seminal paper of John Cavanagh tried to systematically group 

neuropathies exhibiting DAD, researchers have posited many theories on the underlying 

mechanisms behind this phenotype and have sought to use toxic chemical probes to 

mimic in vitro the phenotype of human diseases exhibiting DAD [210-213].  Figure 1.3 

summarizes the most important of these theories.  Cavanaugh initially thought that the 

dying back of axons in toxic neuropathies resulted from the toxin impairing the anabolic 

machinery of the neuronal perikaryon.  Because protein synthesis does not occur in the 
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axon, it was believed that the reduced amounts of synthesized materials exported from 

the diseased neuronal perikaryon would fail to meet the metabolic needs of the axon.  

This would cause the distal portion of the axon to receive an inadequate supply of 

materials and thus undergo degeneration.  However, several studies have disputed this 

claim.  For instance, the pattern of nerve fiber change observed in experimental 

hexacarbon neuropathy demonstrated that PNS fiber diameter can be more important than 

axon length in determining vulnerability.  Also, in this neuropathy, giant axonal swellings 

develop in nerve terminals only after swellings have appeared more proximally in the 

supporting nerve fiber.  These observations persuaded Cavanaugh to abandon his long 

held view that dying-back disease followed neuronal perikaryon dysfunction and 

prompted him to consider the idea that these toxins might be acting directly on the nerve 

fiber through the impairment of axonal transport.  To support this idea, Mendell and 

collaborators, for example, demonstrated that the rate of downflow in the proximal 

portion of sciatic nerves is impaired progressively during the course of the disease [214].  

Moreover, Griffin et al showed that similar giant axonal swellings in proximal axons 

following β, β’-iminodipropionitrile (IDPN) intoxication resulted from a selective 

blockade of neurofilament proteins known to move along in a slow phase of axonal 

transport [215].  Meanwhile, Spencer and Schaumberg took this idea one step futher and 

suggested that the predisposing event causing degeneration was toxin-induced blockage 

of pathways synthesizing chemical energy within the fiber and the resulting reduction in 

the amount of energy available to drive energy-requiring functions.  The phenotype 

occurs first in the distal axon because the intraaxonal enzymes responsible for energy 

synthesis are supplied by axonal transport from the distant neuronal perikaryon [213].  
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More recently, Glass has shown that when applying the neurotoxin vincristine to DRG 

neurons in compartmented cultures, only the distal axon in susceptible to the drug in 

causing DAD, and neither the cell bodies or the axons in the adjacent compartments are 

affected [216-218].   

By spatially dividing the neuron in our system into two different drug 

compartments and monitoring the electrophysiological health of the neuron in both, we 

hope to understand how the entire cell responds and resolve a basic physiological 

question that results from our work with vincristine in compartmented cultures.  Is the 

observed morphology telling us the entire story of vincristine-induced DAD, leading us 

to believe that the distal axon dies on its own due to physiological mechanisms that are 

locally initiated, or is its death preordained by subtle physiological signals from the soma 

 
Figure 1.3.  Potential metabolic pathways of neurotoxicant-induced distal axonal 
degeneration. 
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as observed by changes in its normal spike activity which later cause the observed 

phenotype?   More specifically, if the soma changes its electrophysiological activity 

before any morphological change observed at the distal axon, one could argue that this 

change initiates the timing and progression of DAD and would support the involvement 

of an underlying metabolic pathway that involves the soma.  Alternately, if the 

electrophysiological response deficit and eventual disappearance is confined to only the 

axonal compartment, one could argue that a metabolic pathway localized to the distal 

axon is the pathological substrate.  By understanding the answers to these questions 

through the electrophysiological experiments possible with our system, we will be better 

able to target pharmacological interventions on the neuron for treating disorders 

exhibiting this phenotype.    
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CHAPTER 2 
 

DESIGN AND FABRICATION METHODOLOGY 
 
2.1.  Chapter Outline 

 The compartmented culture system was developed using microfabrication tools.  

This chapter outlines the strategies employed and the results of these strategies.  In 

general, microfluidics technology was used to create a chemical pattern and a 

compartment divider.  Microelectronics technology was used to create the MEA. 

 A schematic of the complete compartmented culture system is shown in Figure 2.1.  

The final system integrates the microfluidic divider with a collagen patterned MEA 

substrate.  Neurons plated in one compartment grow extensions into adjacent 

compartments across the microfluidic barrier, and microelectrodes interface with the 

neurons in each compartment.  The initial sections (sections 2.2-2.4) introduce the 

background information on the fabrication strategies employed in building the device.  

Sections 2.5-2.10 describe the strategies for the design and fabrication of the microfluidic 

compartment divider component of the system.  Next, sections 2.11 and 2.12 describe the 

strategies for designing and fabricating the collagen patterning mold.  Finally, sections 

2.13 and 2.14 describe the strategy for the design and fabrication of the multilelectrode 

array (MEA).  Taken together, these three components form the entire system. 

 

2.2.  Background and Previous Work for Microfluidic Compartmentalization 

 Microfluidics has become an enabling technology in a wide variety of disciplines.  

Microfluidics is the study of fluids through micrometer size features.  The ability to make 

networks of interconnecting channels is what lies at the heart of microfluidics.  The  
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Figure 2.1.  Schematic of integrated compartmented culture system, with microfluidic 
barriers and microelectrode array interfacing with cultured neurons.  The 
multicompartment divider is aligned to and seated on the microelectrode array.  
Neurons are then plated in one or more of the compartments, after which they grow 
into adjacent compartments.  Stimulation and recording electrodes on the 
microelectrode array interface  with somal bundles and their processes in all of the 
compartments, allowing for complicated studies in which both neuronal pharmacology 
and electrophysiology can be simultaneously studied. 
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enabling technologies came first from the world of MEMS, where the use of 

photolithographic processes to obtain micrometer features in silicon and other substrates 

was well established.  Silicon has traditionally been the material of choice for creating 

these channels; however, other materials like glass and quartz have also been used [1].  

 More recently, microchannels have been created by replication in 

polydimethylsiloxane (PDMS).  PDMS is a polymer which is becoming increasingly 

popular for microfluidic applications, because the structures made in this material are 

inexpensive, easy to handle, and rapidly fabricated by replica molding.  When cured, 

PDMS faithfully replicates nanometer size features on a master.  Microchannels are 

easily formed in PDMS if the master has a raised network of ridges to serve as a 

microfluidic network.  Moreover, PDMS is optically transparent in the UV and visible 

light range.  Since PDMS is gas permeable, bubbles created inside channels by 

electrolysis of water or from other sources may be dissipated through the material.  

Masters made in silicon can also be used to imprint or hot-emboss channels in hard 

plastic materials like polymethylmethacrylate (PMMA) at temperatures close to the 

softening point of the plastic or at elevated pressures [2].  In addition to the micromolding 

of PDMS channels from a master, other technologies like laser ablation have also been 

used to fabricate polymer microchannels.  This technique involves directing laser pulses 

at the plastic surface in defined regions, which causes degradation of the plastic at those 

spots as a consequence of a combination of photochemical and photothermal degradation 

processes [1].   
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2.3. Background and Previous Work for Chemical Patterning 

 Chemically patterned surfaces are useful for many experimental research projects 

that involve cell-substrate or cell-cell interactions.  Patterned culture surfaces provide 

researchers with a way to study these cellular activities under controlled conditions.  The 

simplest way to pattern a culture surface is to coat it uniformly with a material and then 

define its geometry using masking techniques.  Letourneau et al deposited a thin layer of 

palladium to promote cell attachment and directed growth  [3].  Moreover, irradiation 

through a mask has been used to create patterns of denatured materials that inhibit 

attachment and outgrowth [4].  Also, laser ablation of substrates was used by Corey et al 

to fabricate high resolution grid patterns of poly-d-lysine by exposing surfaces through a 

quartz mask [5].   

 Surface topography has also been manipulated to control neuronal growth.  For 

example, Nelson et al used scratched grooves to guide axonal extensions and to create 

electrically active circuits of DRG cells [6].  Curtis and Clark investigated the impact of 

topological factors on cell growth, shape, orientation, and movement by anisotropic 

etching of silicon [7].  Britland et al used adhesive pathways and topographic channeling 

simultaneously to align DRG nerve cells in microfabricated channels [8].   

 Moreover, a number of researchers have applied micromachining and 

photolithographic techniques to chemically pattern cells on substrates.  For example, 

Lom et al patterned conventional semiconductor industry photoresist to selectively define 

areas that allow amino and alkyl silanes [9].  This study proved that cells could be guided 

by both topographical and chemical cues.  Using photoresist-based ways of chemically 

patterning a substrate, Bhatia et al studied the coculture of hepatocytes and 3T3 
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fibroblasts on chemically patterned substrates [10].  Here, borosilicate wafers were spin-

coated with positive photoresist and exposed to ultraviolet light through a chromium 

mask.  After patterning of the photoresist, aminoethylaminopropyltrimethoxysilane, 

glutaraldehyde, and a protein were bound to the surface of the wafer.  Photoresist was 

then lifted off by sonication in acetone resulting in a glass/protein pattern.  By taking 

advantage of the fact that one cell type adhered to the pattern in serum-free media and the 

other only in serum-containing media, the authors were able to establish a working 

coculture. 

 The most recent alternative method for creating surface patterns is elastomeric 

stamping in which a microstamp is created by polymerizing polydimethylsiloxane 

(PDMS) in a mold defined by patterned photoresist.  PDMS stamps have been used to 

imprint a variety of materials, including proteins like polylysine and other materials like 

alkanethiols [11-13].   In these techniques, PDMS with surface topography is “inked” 

with a particular protein and brought into contact with a flat substrate.  The adsorbed 

protein is then transferred to the substrate over time.  In this way, complicated patterns in 

the stamp can be transferred to the substrate. 

 

2.4.   Background and Previous Work on Multielectrode Arrays 

 Multielectrode arrays (MEAs) have become useful for studying the properties of 

neurons in vitro.  Several different types of neurons have been cultured on MEAs.  These 

devices employ glass or silicon substrates, onto which electrode arrays made of gold, 

platinum, or indium tin oxide are fabricated.  Neurons grow over the electrodes and this 

allows signals on the order of microvolts to be recorded between the neurons and the 
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electrodes.  To prevent loss of the electrical signal between the neuron and the electrode, 

sufficient coupling needs to occur between the neuron and the substrate.  Indeed, 

Buitenweg reported that sufficient coupling between the cell and the electrode occurs 

only when a neuron is located directly on top of the electrode [14].   

 The advantages of using extracellular electrode arrays for the study of neuronal 

network activity are many.  Since the technique of extracellular recording is non-invasive 

and since it is possible to record from neurons over extended periods of time, neurons do 

not experience the damage that is normally associated with intracellular (patch or sharp 

electrode) recordings.  Moreover, MEAs can be used to stimulate one or more cells in a 

network over long periods of time.  More specifically, the dimensions and spacing of the 

extracellular microelectrodes make it possible to place a number of them under a single 

neuron so that the activity in the cell body, axon, and dendrite can be separately recorded.  

This creates the possibility of conducting complicated studies like the time progression of 

action potentials down the length of an axon.  Finally, chemical or topographical 

patterning can be used to create a predetermined network of neurons that can be useful 

for certain experiments [15]. 

 

2.5.  Design of the Compartment Divider Using Microchannel Flow 

 Several different compartment dividers were designed.  All the designs were done 

using either AUTOCAD or Coreldraw, and the masks were printed using a high 

resolution photoplotter.  The first designs envisioned the use of microchannels to squeeze 

silicone grease through them.  The idea was to confine the grease by injecting it through  

the channel either before or after the culture of neurons.  Two of the channel designs are 
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Figure 2.2.  Two different mask designs of a three compartment microfluidic 
chamber.  In both designs, the fluid barrier channels intersect the neurite tracks in 
the culture compartments. (a)  Here, the two side culture compartments 
are 4mmX4mm and the center compartment is 2.5mmX4mm.  The fluid barrier 
channels are 400µm wide and the neurite growth tracks are 50µm wide.  (b)  In the 
bottom design, the fluid barrier channels neck down to 100µm and the 
neurite tracks are 25µm wide.  Figures on the right are zoomed-in views of the 
dashed circles on the left. 
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shown in Figure 2.2.  To test the ability to slowly push or pull the grease (or other 

hydrophobic materials), we tested various designs in which we varied the size of the 

grease channels and the size of the neurite tracks that come perpendicular to them.  The 

grease channels were varied in width from 100µm to 400µm while the neurite tracks 

were varied in width from 25µm to 100µm.  We hoped that the greater resistance of the 

narrower neurite growth channels would prevent the grease from moving into them when 

moving through that area.  The two side compartments were 4mmX4mm and the center 

compartment was 2.5mmX4mm.  The sizes here were chosen such that they would hold 

an adequate amount of cell media (for culturing neurons) and so that the neurons initially 

plated in the center compartment would not have to traverse a great distance before they 

met the barrier.  The long neck on the center compartment was included so that a 

reasonable amount of cell media could be placed into this reservoir, taking into account 

the possibility for some evaporation during the incubation process. 

 

2.6.  Fabrication of the Compartment Divider Using Microchannel Flow  

 With this fabrication strategy, we wanted to be able to align the electrodes to the 

grease barriers and the ports for plating neurons.  Therefore, a process that involves the 

use of acetone-dissolvable photoresist was devised.  The process flow is shown in Figure 

2.3.  After patterning a glass substrate (conventional borosilicate glass, 1mm thickness) 

with Ti/Au metal, AZ 4620 photoresist (Clariant Corp.) was patterned 

photolithographically to align the channel configuration with the electrodes.  The process 

for using AZ 4620 is as follows.  The resist was spun at 800rpm for 30s.  Then it was 

baked for 20min at 95°C.  The OAI optical aligner was used to expose the photoresist for 
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66s at 400mJ/cm2, and it was developed using 400K developer (Clairiant Corp.) for 2-

3min.  The developer was diluted with 1 part developer for every 4 parts DI water. 

 The entire structure was placed in a Petri dish and PDMS (Sylgard 184, Dow 

Corning) was poured on top of the structure (30mL) and cured for 2hr at 100°C.  Then 

ports were laser ablated with the CO2 laser, and the photoresist was released by placing 

the entire structure in an acetone bath under ultrasonic agitation for several hours.  After 

1.  Pattern Ti/Au metal lines.

2.  Pattern AZ4620 channels and reservoirs.

3.  Create PDMS replica and laser ablate ports.
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Neuron
Compartment

Neurite Extension Tracks

1.  Pattern Ti/Au metal lines.

2.  Pattern AZ4620 channels and reservoirs.

3.  Create PDMS replica and laser ablate ports.

4.  Release the photoresist in solvent.

Fluid Barrier Channel

Neuron
Compartment

Neurite Extension Tracks

1.  Pattern Ti/Au metal lines.

2.  Pattern AZ4620 channels and reservoirs.

3.  Create PDMS replica and laser ablate ports.

4.  Release the photoresist in solvent.

Neuron
Compartment

Neurite Extension Tracks

1.  Pattern Ti/Au metal lines.

2.  Pattern AZ4620 channels and reservoirs.

3.  Create PDMS replica and laser ablate ports.

4.  Release the photoresist in solvent.

Fluid Barrier Channel

Neuron
Compartment

Neurite Extension Tracks

 
Figure 2.3.  Process flow for fabrication of integrated compartmented culture system 
with fluid barrier channels. 
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acetone sonication, the structure was sonicated in isopropanol followed by DI water to 

remove all solvent residues.  One of the problems encountered with this process was that 

when the structure was placed in acetone, the PDMS swelled due to absorption of the 

solvent, causing it to delaminate from the surface of the glass slide.  We tried to minimize 

the amount of time it took to release the photoresist; however, it was difficult since the 

channels for delivering grease were so small (around 100µm).  Causing enough solvent to 

move through the long grease channels proved difficult.  Also, sometimes, some 

photoresist remained lodged in the channels, which would lead to later cytotoxicity 

problems.  Several adhesion promoters for PDMS to glass were investigated but not 

implemented due to their known cytotoxicity.  Also, ablating through the thick (3-4mm) 

PDMS samples that resulted from the molding process meant that there was significant 

damage and debris that was generated around the periphery of the ports.  A modification 

to the above approach was to simply mold the PDMS divider and hand align/bond it to 

the substrate after fabrication.  This approach, while adding the additional step of hand 

alignment, did allow us to avoid the problems associated with releasing the photoresist in 

the previous approach.  After fabrication of the divider, it was “inked” with uncured 

PDMS and bonded to the glass slide by heat curing.   

  In the fabricated versions of these designs, we encountered several problems (see 

Figure 2.4).  In many of these early designs, the microchannels intended for neurite 

outgrowth were perpendicular to the channel for grease delivery.  We tried several 

methods of injecting the silicone grease into these channels.  First, we connected a 

syringe pump to one of the ports with tubing and seated a plastic assembly.  These 

devices usually failed when the grease entered the area where the main channel intersects 
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the channels perpendicular to it.  The grease crept into the side channels and it became 

difficult to control its advance.  We also tried different types of greases, with varying 

levels of viscosity.  Most of these greases were from Dow Corning.  The different greases 

we tried are Dow Corning high vacuum grease, Molykote bearing grease, and various 

mixtures of the high vacuum grease with different amounts of silicone oil.  Pulling these 

substances in microchannels was feasible, but in all of these cases, the viscosity of the 

material meant that it would creep into the side channels.  In addition, the grease was 

pulled through the channels at the output port rather than at the input port.  This did not 

work because PDMS (due to its low Young’s modulus) would bend to close the exit port.   

 

 

 

 

 

 

 

 

2.7.  Design of the Compartment Divider Using Microstenciling 

 Another strategy we employed was the use of a microstencil to pattern the silicone 

grease on the divider.  The design of the photoresist master for micromolding a divider 

for stenciling was the same as in the previous section, except for the fact that no channels 

were included between compartments to act as fluid barriers or to serve as neurite growth 

tracks.  For the stencil, normal Scotch tape or Shercon green tape was used to stencil 

(a) (b)
Fluid B
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Figure 2.4.  Fabricated compartment dividers in PDMS.  (a)  The fabricated version of 
the design shown in 2.2a.  Neurite tracks are 50µm wide and grease channel 
perpendiular to it is 400µm wide. (b)  Fabricated version of design shown in Figure 
2.2b.  Neurite tracks are 25µm wide and fluid barriers are 100µm wide. 
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silicone grease onto the PDMS.  In both cases the design consisted of an outline that went 

around the periphery of the culture compartments (see Figure 2.5).  Spaces were included 

in the corners of the stencil to allow the stencil to be lifted off as one piece.  The widths 

of the lines that were stenciled ranged from 200µm to 500µm with the CO2 laser and 

100µm to 150µm with the excimer laser. 

2.8.  Fabrication of the Compartment Divider Using Microstenciling 

 The fabrication strategy used with this technique is shown in Figure 2.6.  Here, the 

PDMS mold was created by curing a 3inchX1inch block of PDMS (2-3mm thick) on a 

hot plate for 2hrs at 100°C.  The tape was placed under a CO2 or an excimer laser and 

ablated under low power and high velocity parameters.  This was done so that the 

smallest amount of power would be applied to ablate fine lines in the tape.  Then the tape 

is removed from the slab, leaving behind the stenciled grease pattern around the ports on  

 

(a) (b)

Spaces Between Lines
To Remove Stencil as One 

Piece

Compartment
1

Compartment
2

Compartment
1

Compartment
2

C
om

partm
ent 3

 
Figure 2.5.  Patterns for microstenciling fluid barriers.  (a)  The stencil on the left is 
meant for a two compartment divider.  (b)  The compartment divider on the right was 
meant for a three compartment divider.  The spaces in between the lines allow the 
stencil to be lifted off of the substrate as one piece. 
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Figure 2.6.  Process for stenciling fluid barriers onto a PDMS compartment 
divider. 
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the divider.  Several problems were encountered when this technique was used.  First, too 

much power caused the pattern to be much larger than intended on the stencil.  While the 

CO2 is good for high power applications, it is not good for producing fine features 

(<100µm).  For this reason, we used the excimer laser.  The laser was operated at a 

constant energy of 250mJ with 10 pulses/spot and 60 pulses/s.  The excimer laser was 

used to cut an outline similar to the design used for the CO2 laser.  In both cases it was 

difficult to align the stencil to the PDMS compartment divider.  A picture of stenciled 

grease barriers around the periphery of a single compartment is shown in Figure 2.7.  In 

getting reproducible stenciled widths, it was important to align and seat the stencil 

properly around the compartment divider.  A razor blade coated with Dow Corning 

silicone grease was used to brush it along the stencil.  A second “raking” of the 

compartment divider was useful in removing grease from unnecessary areas and in 

lodging it firmly in the grooves of the stencil.  The tape was then removed from the edge 

cleanly.   

Culture
Compartment

Stenciled Fluid Barriers

Culture
Compartment

Stenciled Fluid Barriers

 
Figure 2.7.  Stenciled fluid barriers on a compartment divider. 
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In an alternate approach, we tried placing a piece of tape directly on the 

compartment divider and laser ablating it directly.  The advantage of this technique was 

to sidestep the issue of alignment that would come after creation of the stencil.  However, 

it was very difficult to control the laser power parameters such that ablation stopped 

directly on top of the PDMS after it had gone through the adhesive.  In almost all cases, 

the laser would ablate through part of the PDMS, causing damage to the divider.  This 

was especially true for the CO2 laser, which showed greater fluctuations in power 

delivered to the sample as it was ablating. 

 

2.9.  Design of the Compartment Divider Using Microstamping 

 In later designs, we tried experimenting with various ways of using the surface 

topography of the PDMS mold to micropattern silicone grease.  In this way, alignment 

would take care of itself.  In the initial designs, the mold itself was created using the AZ 

4620 photoresist process described above.  In the first of these designs, we had 

topography associated only with the area in between adjacent compartments.  In later 

designs, the topography for stamping silicone grease was all the way around the 

compartment.  Figure 2.8 shows the design of the final version of the divider that we 

created.  This device was created from an SU-8 photoresist master.  SU-8 was used 

because it can produce high aspect ratio features and because it is chemically durable 

after curing.  The line widths for creating the compartment barriers in this picture are 

300µm.  Also, the culture compartments were 4mmX4mm.  Smaller designs for the 

culture compartments did not work as well because they did not allow for an adequate 

amount of cell media to be contained in them.  
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2.10.  Fabrication of the Compartment Divider Using Microstamping 

 The fabrication strategy used with this technique is shown in Figure 2.9.  Here, the 

PDMS divider would have raised and lowered portions created during the micromolding 

process.  The laser ablated culture wells would be created around the topography.  Grease 

would then be spread evenly on a glass slide using a razor blade and the divider would be 

brought into contact with it.  It would be “stamped” only in those areas that were directly 

in contact with the glass slide.  A slight amount of pressure was applied to the 

compartment divider as it was sitting on the grease-coated slide.  Visual inspection under 

the glass slide verified the formation of contact between the slide and the divider.  The 

divider was then removed from the slide with the use of forceps, leaving behind thin  

 
Figure 2.8.  Mask design of a two compartment culture system assembled by 
stamping fluid barriers.  Line widths for creating compartment barriers are 
300µm.  Only the larger designs at the top of the mask were used. 
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From Curing on 
SU-8 master

Stamp Fluid Barriers Onto PDMS by 
Bringing into Contact With
a Thinly Grease-Coated Glass Slide

Blade to Form Confluent Layer

Microbarriers

Laser Ablate Culture Chambers

Laser Ablated
Neuronal
Culture Wells

Figure 2.9.  Process for stamping fluid barriers onto PDMS compartment divider. 
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silicone grease lines in those areas that were in contact with the slide.  Figure 2.10 shows 

a fabricated divider with topography only at the barrier.  Figure 2.10a shows silicone 

grease on the divider immediately after it has been removed from the slide.  Figure 2.10b 

shows how the grease is evenly spread after lightly grazing the surface of the divider with 

a clean razor blade.  Figure 2.10c is a zoomed-in view of a 100µm barrier coated with 

silicone grease.   

 As stated earlier, later designs used an SU 8 process that incorporated topography 

all the way around the PDMS divider.  Here, SU 8 2100 was spun onto a 4in. Si wafer at 

2100rpm for 30s on a spinner for a thickness of approximately 100µm.  It was then 

(a) (b) (c)
 

Figure 2.10.  Stamped fluid barriers on a compartment divider with topography only 
between barriers. (a)  PDMS divider right after stamping fluid barriers.  (b)  PDMS 
divider after raking the grease with a razor blade. (c)  Zoomed-in view of one of the 
barriers. 
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prebaked for 90min on a hotplate at 90°C.  An OAI optical aligner was used to expose 

the photoresist with 400mJ/cm2 of UV light.  Finally, the photoresist was postbaked for 1 

hour at 100°C.  The wafer was developed using SU 8 photoresist developer (Microchem 

Corp.).  The wafer was placed in the developer on a hotplate with a magnetic stirrer.  A 

stirbar was rotated at 400rpm during the 20 minute develop process to fully remove all of 

the photoresist from the wafer.  When the stirbar was not used, incomplete and uneven 

development resulted.  Next, the finished master was seated in a Petri dish and PDMS 

(Sylgard 184 elastomer kit, 10:1 ratio of elastomer to curing agent) was poured onto the 

master for approximately 3mm thickness.  The PDMS was cured on a hotplate for 1hr at 

100°C.  The mold was then peeled off of the master and ports were laser ablated in the 

PDMS using a CO2 laser (see Figure 2.11).  Debris was removed from the ablated area 

through ultrasonic agitation followed by a nitrogen blow dry.  Patterning the divider 

shown in Figure 2.11 with silicone grease proceeded in a very straightforward manner.  

The divider was brought into contact with the glass slide as discussed earlier.  Upon 

removing it with forceps, the periphery of the ports would be coated with silicone grease, 

creating a pattern that would completely enclose the ports when the divider was seated 

for later use in culture. 
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(a)

(b)

 
Figure 2.11.  (a)  Silicon master depicting microtopography for the compartment 
divider.  The designs on the left are smaller versions of the ones on the right.  (b)  
PDMS two-compartment divider. Ports are again laser ablated and are 4mmX4mm. 
The microtopography surrounding the ports is 200µm wide and 100µm high.  This 
topography is used to micropattern fluid barriers and create a fluidic barrier that allows 
neurons to cross but does not allow drugs to pass through it.  The collagen patterning 
mold is bonded to a glass substrate and liquid rat tail collagen is incubated in the 
channels and allowed to adsorb onto the substrate.  It is then removed and the 
compartment divider is aligned to and assembled on top of the substrate.  
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2.11.  Design of the Chemical Patterning Mold 

Initially, the chemical patterning of the substrate was envisioned to be part of the 

process in making the compartment divider.  The neurite tracks of the initial designs in 

which silicone grease was pushed through a microchannel would serve the dual purpose 

of selective patterning the surface with collagen.  Here, collagen would be injected into 

the ports and channels prior to plating neurons.  However, since we were not able to 

repeatably inject silicone grease into the microchannels of these early designs, we 

abandoned the associated approach for patterning collagen.  Instead, we adopted an 

approach in which the collagen would be patterned separately, without the aid of the 

compartment divider.  Figure 2.12 shows the design of the chemical patterning mold that 

was created.  Here, the channels and spaces are 200µm wide and 10mm long.  We 

selected these channels widths to match the widths of the growth tracks in traditional 

Campenot chambers.   

 
Figure 2.12.   Mask design of the collagen patterning mold.  Lines in the center of the 
four circles represent the channels for patterning collagen. 
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2.12.  Fabrication of the Chemical Patterning Mold 

 It was created using the SU 8 process discussed above for creating the compartment 

divider.  Channels were 200µm wide with 200µm spaces.  The length of the channels was 

20mm and the width of 10 adjacent channels was 4mm.  A 3mm diameter port was 

ablated at one end of the mold to serve as the outlet port (this fits the tip of a conventional 

5cc syringe from Becton Dickinson).  The inlet port was 4mmX2mm to span the width of 

all the channels combined (see Figure 2.13).   

 Collagen could be patterned with this mold by injecting it through the channels and 

allowing it to dry inside.  Also, the mold could be inked with collagen and the pattern 

could be stamped onto the glass slide.  With the first technique, the inlet port was filled 

with collagen and it was drawn through the channels to the outlet port.  An optimal 

incubation time was also developed, after which excess collagen was aspirated out of the 

channels.  With the second technique, the mold was brought into contact with a thin layer 

(a) (b)

Figure 2.13.  (a)  Silicon master depicting four identical designs for creating the 
collagen patterning mold.  (b)  PDMS collagen patterning mold. Microchannels are 
200µm wide and 20mm long.  Inlet and outlet ports are laser ablated.  The 
microchannels connecting the two ports serve to pattern the substrate with 
collagen. 
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of collagen spread across a glass coverslip.  Pressure was applied with a C-clamp to bring 

the mold into tight contact with the coverslip.  After 10 minutes, the mold was removed 

from the C-clamp and seated on another sterile coverslip.  Again, it was clamped to the 

coverslip for 10 minutes during which time the collagen adsorbed on the mold was 

allowed to adsorb onto the coverslip.     

 

2.13.  Design of the Multielectrode Array Substrate 

 Designs were created using AUTOCAD and transferred to a mask using a pattern 

generator.  The designs for two fabricated MEAs are shown in Figures 2.14 and 2.15.  

The first MEA design includes three serpentine stimulation electrodes, one ground 

electrode, and 56 recording electrodes.  This design was made so that most of the 

stimulation electrodes would be in one compartment and the recording electrodes would 

be in the adjacent one.  In the second design (Figure 2.15), all of the electrodes are the 

same size.  They are divided into four quandrants with a ground electrode in the center. 
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(a)

(b)

(c)

Nitride layer openings

Electrode pads

Electrode
lines

Stimulation
electrodes

Recording
electrodes

Figure 2.14.  Mask design of MEA substrate in AUTOCAD.  (a)  Entire design of the 
substrate.  The squares on the periphery are the electrode pads.  lines starting at the 
pads are electrode lines.  (b)  Zoomed-in area of dashed square in a.  Lines at the right 
are serpentine stimulation electrodes.  (c)  Zoomed-in area of dashed square in b.   
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(a)

(b)

(c)

Electrode pads

Electrode
lines

 
Figure 2.15.  Mask design of second MEA substrate in AUTOCAD.  (a)  Entire design 
of the substrate.  The squares on the periphery are the electrode pads. (b)  Zoomed-in 
area of dashed square in a.  (c)  Mask for nitride openings that become aligned to the 
mask in a.  
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2.14.  Fabrication of the Multielectrode Array Substrate 

 The fabrication process for making the MEAs is shown in Figure 2.16.  The 

multielectrode array (MEA) was fabricated on a glass substrate.  A plain borosilicate 

glass slide was cut to 49mmX49mm.  Then metal was patterned on the slide.  A DC 

sputterer was used to deposit 450Å of titanium followed by 2500Å of gold.  Then Shipley 

1813 photoresist was spun at 2000rpm for 30s and prebaked for 90s in an oven at 95°C.  

The substrate was exposed for 4s under an OAI Optical Aligner.  The resist was 

developed in MF 354 developer for 10s.  The underlying gold was etched for 30s using a 

potassium iodide solution and the titanium was etched using a 1% hydrofluoric acid 

solution to pattern metal in the shape of the electrodes.  The substrates were rinsed with 

DI water and silicon nitride was deposited on them using a Plasmatherm PECVD.  The 

deposition parameters were 40W power, 3sccm of NH3, 300sccm of SiH4, 900sccm of N2 

with a chamber pressure of 900mTorr.  Approximately 1µm of silicon nitride was 

deposited onto the substrate.   

 The nitride was then patterned using photoresist.  If positive photoresist was used, 

Shipley 1813 photoresist was spun at 2000rpm for 30s and prebaked for 90s in an oven at 

95°C.  The substrate is then exposed for 4s after alignment using the OAI Optical 

Aligner.  Finally, the resist is developed in MF 354 for 10s.  If negative resist was used, 

Futurrex NR-3000P was spun at 2000rpm for 30s and prebaked for 45min on a hotplate 

with ramp down at 95°C.  The optical aligner was then used to expose the photoresist for 

8s.  The substrate was postbaked for 60min at 100°C on a hotplate with ramp down.  

Finally, the photoresist was developed in RD6 developer for 40s.  Once patterned, the 

nitride was etched using the PlasmaTherm reactive ion etcher (RIE).  The etch parameters 
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were 140W power, 13.9sccm of SF6 and a chamber pressure of 100mTorr.  The substrate 

was etched for 20min in the RIE.  Finally, the photoresist was removed in an acetone, 

isopropanol, and DI water soak and dried.   
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Figure 2.16.  Process for making MEAs. 
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 After this cleanroom process, a plastic ring was bonded to the substrate with PDMS.  

This plastic ring was approximately 25mm in diameter and was seated on the MEA 

substrate by inking the ring with uncured PDMS (Sylgard 184) and applying pressure to 

the system by placing a weight on it.  The ring and weight remained on the MEA 

overnight as the PDMS cured.  Finally, the weight was removed and the system was 

ready for electroplating with platinum black.  The solution used for electroplating 

platinum black was 1% chloroplatinic acid (Sigma), 0.0025% hydrochloric acid, and 

0.01% lead acetate in water.  Platinum black was closen because it lowers the impedance 

of the electroplated electrodes, thereby increasing the signals recorded from the plated 

neurons.  The impedance is lowered since platinum black increases the surface area of the 

electrodes by making the surface granular.  Platinum black was electroplated using a 

multimeter to measure the voltage drop across the electrode as it was being plated.  

Electroplating was stopped once the voltage reached a minimum.  This happened 

approximately 3-5 minutes after the plating was started for each electrode.  A picture of 

the device used for controlling the electroplating is shown in Figure 2.17 and a picture of 

an electrode before and after electroplating is shown in Figure 2.18. 

  

 

 

 

 

 

 
 

Figure 2.17.  Device for electroplating platinum black onto multielectrode 
array. 
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 In the assembled system, the MEA substrate was hand aligned to the collagen 

patterning mold.  Once patterned, this mold was removed and the compartment divider 

was hand aligned to it.  Figure 2.19 shows the complete assembled system with one of the 

MEA designs.  Figure 2.20 shows a close up view of an MEA with the design shown in 

Figure 2.15.  Both substrates were used in the culture studies, but only the one shown in 

Figure 2.20 was used in the electrophysiology studies. 

 

 

 

 

 

 

 

 

 

Seed metal and circular
nitride layer opening

Granular ring
around the seed metal

occluding the nitride layer
opening

(a) (b)  
Figure 2.18.  A single MEA electrode (a) before and (b) after electroplating with 
platinum black.  Notice that the electrode on the right has a granular ring around the 
seed metal.  
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Figure 2.19.  Assembled compartmented culture system.  The microelectrode array 
(MEA) is fabricated using conventional semiconductor technology.  The PDMS 
compartment divider is patterned with fluid barriers and aligned to the electrode 
design on the MEA substrate.  Inset shows a close-up of the dashed area with all of 
the stimulation and recording points exposed in the nitride insulating layer.  
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(a) (b)
 

Figure 2.20.  Alternate MEA design.  (a)  Fabricated electrode array with pads on the 
periphery.  (b)  Zoomed-in view of the dashed area shown in a.  The thick electrode in 
the center is the ground electrode.  
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CHAPTER 3  
 

CHARACTERIZATION OF THE 
ENGINEERED SYSTEM 

 
 
3.1.  Chapter Outline 

 This chapter characterizes the system designed and fabricated in Chapter 2.  

Sections 3.2 and 3.3 characterize the collagen patterning mold.  Sections 3.4 and 3.5 

characterize the microfluidic compartment divider.  Finally, section 3.6 characterizes the 

MEA substrate and section 3.7 outlines the different pilot studies that were performed 

with the system. 

 

3.2.  Characterization of the Collagen Patterning Mold 

 The collagen patterning mold was characterized both from the perspective of how 

it met design specifications and from the perspective of how it performed its function.  

Below is a discussion of each of these issues. 

 

3.2.1.  Characterization of Fabrication 

 As detailed in Chapter 2, the collagen patterning mold was developed using soft 

lithography.  Critical features here were the channels and the spaces that were between 

them.  As designed, the channels were 200µm wide and the spaces were 200µm wide.  

The total thickness of the SU 8 photoresist master was 100µm.  At such thicknesses, it 

was very critical that the photoresist was completely developed.  Otherwise, the channels 

and spaces would only be partially molded (see Figure 3.1).  Therefore, it was very 

critical to use a stirbar when developing the photoresist for the full 20 minute develop 
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Partially developed
SU 8 photoresist

 
Figure 3.1.  SU-8 in between channels due to incomplete develop. 
 
 
 
 

time.  When this was done, the channels were molded to good precision, with their widths 

being between 190-210µm.  Moreover, the ports that were ablated with the CO2 laser 

easily went through the PDMS and generated very little debris.  Some damage was made 

to the edges of the ablated ports; however, it was not significant enough to affect device 

performance (see Figure 3.2).  Moreover, the PDMS mold was extremely resistant to 

wear through multiple iterations of washing with solvents like ethanol and water.  

However, the collagen that we used was extremely sticky and would clog the channels 

upon multiple uses (see Figure 3.3).  Therefore, a detergent (Liquinox, Alconox, Inc.) 

was used to get as much of it off as possible after each use.   
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Port

Ablation-
induced
damage

 
Figure 3.2.  Damage around port for collagen patterning mold (not very 
significant to affect device performance). 

(a) (b)

(c) (d)

Collagen
Adsorbed
In Channels Collagen

Adsorbed
In Channels

 
Figure 3.3.  Collagen adsorbed onto the surface of the patterning mold.  Notice how 
the channels in a and b have dried collagen residue.  The pictures in c and d show a 
pristine unused patterning mold. 
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3.2.2.  Characterization of Functionality 

 The collagen patterning mold was characterized for its ability to faithfully register 

patterned lines on a substrate.  Three techniques were used to do this (see Figure 3.4).  In 

the first technique the mold was seated on a plastic or glass substrate and pressure was 

applied to the mold to form a reversible spontaneous bond between the PDMS and the 

substrate.  Then type 1 rat tail collagen (BD Biosciences) was injected with a 

conventional plastic syringe from the input port to the output port.   

PDMS Collagen Patterning Mold

PDMS Collagen Patterning Mold

PDMS Collagen Patterning Mold

Substrate

Substrate

Substrate

collagen incubated in channels

collagen incubated in channels

collagen inked on 
substrate

PDMS mold bonded to substrate

(a)

(b)

(c)  
Figure 3.4.  Three different techniques for patterning collagen on a glass/plastic 
substrate.  (a)  With the first technique, the mold is brought into contact with the 
substrate and pressed up against it.  Collagen is then delivered in the channels.  (b)  
With the second technique, the mold is bonded to the substrate by inking uncured 
PDMS.  (c) With the third technique, a mold functionalized with collagen is brought 
into contact with the slide and clamped onto it. 
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The collagen was incubated in the channels for varying periods of time, anywhere 

from 10 min to overnight (12hrs).  The incubation of the collagen was varied because 

incubation for too long a time resulted in flaking and peeling of the patterned lines due to 

too much surface adsorption.  The time that produced consistent reliable patterns was 

20mins in the channels, followed by removal of the mold and an air dry overnight in the 

incubator (see Figure 3.5).   

In the second technique, we bonded the collagen patterning mold to the substrate 

by inking a thin layer of uncured PDMS to the mold and seating the mold onto the 

substrate.  The mold was ramped slowly from room temperature to 100°C on a hot plate 

collagen flaking

collagen flaking

smooth
patterned collagen

lines

smooth
patterned collagen

lines

(a) (c)

(b) (d)
 

Figure 3.5.  Examples of too much (a,b)  and just the right amount (c,d) of collagen 
adsorbed onto a planar surface. 
 



 70

to ensure that the PDMS was fully cured.  Then the collagen was injected into the 

channels in a manner similar to that in the first technique.  This technique allowed us to 

more faithfully register the collagen pattern on the substrate, since there was less 

likelihood of the collagen seeping in between the channels. 

In the third technique, a thin layer of collagen was spread across a sterile glass 

slide.  The collagen patterning mold was then brought into contact with the slide and 

clamped onto it with a C-clamp.  This configuration was held for 10 minutes.  Then the 

clamp and mold were removed from the slide; the mold was then seated carefully onto a 

fresh glass or plastic substrate and clamped onto it.  This configuration was again held for 

10 minutes.  During this time, the wet collagen that had adsorbed onto the mold during 

the first step was selectively adsorbed onto the second substrate.  One of the problems 

associated with this technique was that when the mold was clamped onto the fresh 

substrate in the final step, some of the collagen would seep out of the mold and cause the 

pattern to not be as clean as we would have liked it to be.  To minimize this effect, the 

mold was clamped to the substrate as lightly as possible. 

 

3.3.  Immunofluorescence of the Collagen Substrate 

 To better assess the collagen pattern adsorbed onto the substrate, we performed an 

immunofluorescenent stain of the protein.  To do this, we had to fix the substrate with a 

4% solution of paraformaldehyde in water for 15 minutes.  Then the substrate was rinsed 

three times with PBS for 10 minutes.  The substrate was then incubated in blocking 

buffer (5% goat serum, 1% bovine serum albumin (BSA), 0.05% TX100 in PBS) at room 

temperature for 60 minutes.  Finally, it was washed with wash buffer (5% goat serum, 1% 
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BSA in PBS) two times for 10 minutes each.  Then the primary antibody (at a diluton of 

1:500) was placed in the blocking buffer overnight.  After the overnight treatment, the 

sample was rinsed with PBS and was incubated with the secondary antibody (at a dilution 

of 1:1000) in blocking buffer at room temperature for 1hour.  Finally, the sample was 

viewed under a fluorescent microscope. 

 Unfortunately, we were not able to obtain clear images of the fluorescently 

labeled collagen substrates.  The collagen showed up only in those areas where it had 

readily accumulated (at the inlet and at the outlet ports).  The staining in the channels was 

light and inconsistent.  Increasing the concentration of the primary antibody in the 

blocking buffer did not seem to help.  Therefore, we hypothesized that the adsorption of 

the collagen in the channels was not uniform and tended to vary greatly.   

 

3.4.  Characterization of the Microfluidic Compartment Divider Using 

Microstamping 

The microfluidic compartment divider was characterized both from the 

perspective of how it met design specifications and from the perspective of how it 

performed its function.  Below is a discussion of each of these issues. 

 

3.4.1.  Characterization of Fabrication 

 Issues similar to the ones that arose with the collagen patterning mold arose with 

the compartment divider.  Here, the minimum feature sizes were 100µm microfluidic 

barriers.  These barriers were again created with an SU 8 photoresist master 

(thickness=100µm).  Again, use of a stirbar to ensure that these features were fully 
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developed was important in producing the barriers in the mold.  The minimum feature 

sizes varied from 90µm to 110µm.  As was the case with the SU 8 masters for some of 

the other components, repeated use of the master caused delamination from the substrate 

(see Figure 3.6).  Moreover, the compartment divider was thicker than the collagen 

patterning mold (thickness of about 3-4mm).  Therefore, higher power settings were 

needed on the CO2 laser to ablate through the entire material (see Figure 3.7).  As a 

result, there was more damage around the edges of the ablated areas.  This part also stood 

up well to repeated washes with ethanol and water when preparing for cell culture.  

Cleaning it repeatedly did, however, reduce the optical transparency of the PDMS and 

resulted in pictures of neurons that were not as clear. 

 

 

 

Delamination of the
SU 8 from substrate

 
Figure 3.6.  Delamination of the SU-8 master due to repetitive use. 
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 On the devices that had topography only associated with the barrier between the 

compartments, leakage was a constant issue since more grease was stamped around the 

periphery of these dividers than in the center between compartments.  To minimize this 

effect, we attempted to cut the mold around the periphery to make the distance between 

the edge of the compartment and the edge of the mold as small as possible.  However, we 

were not able to cut the mold so precisely as to match the 200µm width of the barriers.   

 

3.4.2.  Characterization of Functionality 

 The compartment divider was examined for its ability to provide fluidic isolation 

over the many days of culture in an incubator.  Given the small quantities of silicone 

grease being used, we examined the interface between adjacent compartments in a two 

compartment divider.  First, the divider was stamped with silicone grease by bringing a 

glass slide that has been thinly coated with silicone grease into contact with the divider.  

The substrate, having been patterned with collagen and wetted with 10µL of 0.4%  

Laser-induced
damage

Damage Due to
Wear

(a) (b)

Laser-induced
damage

Figure 3.7. (a)  Part of a compartment divider damaged due to wear and through the 
laser.  (b)  Part of a compartment divider before use.   
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Figure 3.8.  Two techniques for assembling the compartmented culture system. 
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methylcellulose dissolved in MEM media in the area between two adjacent 

compartments, was then brought into contact with the divider.  Equal amounts of media 

were poured into the two compartments and food coloring was added to one of the 

compartments.  The compartments would consistently fail after 2 to 3 days in the  

incubator due to the degradation of the grease over this time.  Therefore, we examined 

different ways of overcoming this potential pitfall.  

 First, we tried to examine the interaction between the substrate and the grease.  

Bare glass or tissue culture plastic is hydrophobic; however, when they are coated with a 

thin layer of collagen, they become more hydrophilic.  Therefore, over the many days 

that the compartment divider sits in the incubator, water accumulates at the barrier.  This 

causes leakage between the compartments.  To remedy this problem, we tried shortening 

the collagen lines so that the grease around the periphery of the compartment divider 

would not be in contact with a collagen floor.  This helped to seat the divider properly on 

the substrate and to prevent the periphery of the divider from experiencing any leaks.  We 

were able to consistently obtain leak-free compartments for 3 to 4 days using this 

technique. 

 As a further improvement, the compartment divider was seated on the neurons 

once they had grown on the substrate (see Figure 3.8).  Here, neurons were plated on a 

sterile coverslip with a temporary barrier placed in the center.  A compartment divider 

with no grease was placed on top of the coverslip.  It provided a good enough seal with 

the coverslip such that when neurons were plated in one compartment, they did not leak 

into the other compartment.  After allowing the neurons to attach to the substrate 

overnight, the divider was removed.  Neurons were allowed to grow along the collagen 
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tracks for 4 to 5 days so that they had processes that were several millimeters in length.  

Then the culture media was aspirated out of the Petri dish containing the coverslip and 

the sides of the coverslip were coated with a thin layer of silicone grease using a sterile 

razor blade.  The grease was spread as thin as possible and care was taken not to disturb 

the growing neurons.  Then a sterile compartment divider was inked with silicone grease 

as described before and, using a dissection microscope, the divider was aligned to the 

growing neurons so that the somal bundles were in one compartment and their associated 

processes were in another. 

 Leakage between compartments was tested by adding dye to one of the 

compartments (see Figure 3.9).  Initially, both compartments were filled with the same 

volume of media (50µl) and dye was added to one of the compartments (approximately 

5µl).  These dividers leaked on an average of 3 days after assembly.  To help control 

leakage for a longer period of time, we added more fluid to one of the compartments 

Commassie blue
Stamped Silicone 

Grease BarrierCommassie blue
Stamped Silicone 

Grease Barrier

 
Figure 3.9.  Technique for assessing leakage in the system.  Compartment on the  
left has dye and compartment on the right has no dye.  Microfluidic barrier separates 
the two compartments. 
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compared to the other ones.  Here, approximately 10-15µl of dye (blue food coloring) 

was added to one of the compartments and 30µl of cell media was added to the other.  

Periodically adding cell media to the compartment that did not have any dye was useful 

in preventing further leakage. 

 Another option we explored was the use of materials other than silicone grease to 

contain drugs.  We tried Vaseline instead of silicone grease and explored its ability to 

form an effective seal.  Since Vaseline has a thinner consistency than the high vacuum 

grease (Dow Corning) that we used, it was easier to seat the divider on the substrate and 

cause it to form a seal with the substrate.  However, this material was just as likely as 

silicone grease to eventually leak due to water accumulation at the interface between the 

two compartments.   

 

3.5.  Characterization of the Microfluidic Compartment Divider Using 

Microstenciling 

 

3.5.1.  Characterization of Fabrication 

 The fabricated microfluidic compartment divider using microstenciling had some 

of the same fabrication issues as the previous components of the system.  Unique to this 

component was the stencil that was placed on top of the PDMS mold.  As described in 

Chapter 2, this stencil was created using adhesive tape and was very sensitive to power 

fluctuations in the CO2 laser (see Figure 3.10 and Figure 3.11).  Only the lowest power 

settings for the tape were admissible since the tape was very thin.  Too high a setting 

resulted in line widths that were greater than 400µm.  One solution to this problem was 
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the use of the excimer laser.  This laser allowed us to achieve line widths that were closer 

to 100µm; however, at this width, the sidewalls of the ablated area slanted inward, 

resulting in a width that was much smaller than 100µm at the bottom of the stencil.  This 

produced uneven widths of stenciled grease and resulted in compartments that leaked 

continuously.  Therefore, 200µm was the most effective ablated line width even with the 

excimer laser.   

(a) (b)

damage at the sides
of line

damage at the sides
of line

Figure 3.10.  (a)  Line in adhesive tape laser-ablated with the CO2 laser at lowest 
power settings (325µm wide).  (b)  Line width almost doubles in size by doubling the 
power.  

Compartment
1

Compartment
2

Laser-ablated lines

 
Figure 3.11.  Full pattern of ablated tape showing compartment lines and spaces to 
create the stencil for a two-compartment divider.  Even within a single power setting, 
there is some variability in line width. 
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3.5.2.  Characterization of Functionality 

 Initially, with the laser ablated compartment dividers, the microstencil was 

aligned and taped to the divider and silicone grease was spread across it with a razor 

blade angled at 45°.  Only a thin layer of silicone grease was spread across the divider.  A 

second stroke was made after the initial one to firmly lodge the grease in the stencil.  

Then the stencil was removed in one stroke, leaving behind the grease pattern on the 

compartment divider. 

 Once the grease had been stenciled on the divider, it was assembled onto a glass 

or plastic substrate in the same way as it had been assembled using the previous approach 

for patterning grease.  One problem encountered here was that the grease was not 

uniformily stenciled on the divider.  The laser used to cut the stencil pattern had 

fluctuations in the power so we were not able to get a uniform silicone grease pattern; 

some areas of the stencil had thicker amounts of grease and others were thinner.  

Therefore, when the divider was seated on the substrate, some areas of the divider were 

seated more readily than others with the substrate.  This caused the divider to be leak-

prone at a very early stage (several hours after assembly). 

 

3.6.  Characterization of the MEA substrate 

 The MEA substrate was characterized for its ability to faithfully register 

extracellular neuronal signals.  The impedance of the electrodes was characterized using 

a test apparatus connected to a PC (shown in Chapter 2).  The apparatus had the ability to 

sequence through each electrode on the substrate.  The electrodes started out with an 
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impedance of 300kΩ and after two minutes of plating at 1µA per electrode (16 electrodes 

at a time), were reduced to 30kΩ.   

 

3.6.1. Characterization of Fabrication 

 The fabricated MEA met design specifications.  The electrode line widths necked 

down from 200µm to 10µm openings.  The critical step for producing these line widths 

was the amount of time the electrodes were placed in the gold and titanium etchants.  Too 

short a time resulted in incomplete removal of the metal from unwanted areas.  Too long 

a time resulted in severe undercutting of the metal, producing line widths much shorter 

than the designed values.   

 One of the issues with respect to the electrodes was the insertion of pinholes into 

the nitride layer (see Figure 3.12).  Pinholes are due to nonuniformities in the PECVD 

Pinholes in nitride
Insulation layer

 
Figure 3.12.  Pinholes in the nitride layer of the MEA. 
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deposition process of the silicon nitride.  Others have reported several ways of mitigating 

this problem.  One solution reported in the literature has been the incorporation of a 

silicon nitride and silicon dioxide sandwich.  We opted for a somewhat nontraditional 

approach.  The epoxy-based photoresist SU 8 (Microchem Corp.) was used to replace the 

nitride.  A 1µm layer of SU 8 was easily spun-cast on the electrode substrate.  SU 8 2 was 

spun cast by spinning at 2200rpm for 30s.  It was then cured on a hotplate for 30min at 

90°C.  An OAI Optical Aligner was then used to align and expose the photoresist at 

100mJ/cm2.  The substrate was then postbaked for 30min at 100°C.  Finally, the film was 

developed using SU 8 developer for 10s.  SU 8 produces a film that is very uniform and 

pinhole-free.  We noticed a significant difference between the electrode impedance of the 

substrates insulated with SU 8 and those that were insulated with a similar thickness of 

silicon nitride.  The electrode substrates insulated with SU 8 dropped from an impedance 

of 360kΩ to 12kΩ whereas those insulated with silicon nitride dropped from an 

impedance of 30kΩ to 9kΩ.   

 Another approach used to deal with the issue of pinholes was the use of the STS 

PECVD instead of the PlasmaTherm PECVD.  The STS PECVD deposits higher quality 

nitride than the PlasmaTherm PECVD by alternating the frequency of the coils that 

power the system.  Low stress nitride is continuously stacked on top of high stress nitride 

to produce a high quality film.  With either PECVD deposition system, the thicker the 

nitride deposited, the more stress created in the thin film and the greater the variability in 

the thickness in different areas of the substrate.  For our purposes, we determined that a 

1µm thick film was enough to produce an effective insulation layer.   
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 The alignment step for patterning the nitride was the most difficult step in the 

whole process.  The alignment step was critical in opening up the appropriate areas for 

recording.  Here, the openings had to be exposed for the right amount of time to UV light 

to ensure that the nitride openings were the same size as in the design.  After alignment 

and exposure/development of the photoresist, the samples were placed in an SF6 plasma.  

The process was optimized to certain gas flow pressures and duration.  If the samples 

were not placed for long enough in the plasma, the nitride would not be fully removed in 

the desired areas.  On the other hand, if the nitride was placed for too long a time, the 

photoresist would be removed and the nitride underneath the photoresist would also be 

removed in unwanted areas. 

Collagen, Other
Protiens

Adsorbed on
MEA

 
Figure 3.13.  Deposition of collagen and other proteins from the culture media and 
neurons on the MEA substrate through repeated use. 
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 Platinum black electrodeposition was important to ensure that their impedance 

was lowered.  As indicated above, it was important to get either high quality nitride 

deposition or a good SU 8 insulation layer to ensure that there were no pinholes in the 

insulating layer.  This allowed the electrodes to be plated only at the openings. 

 Of all the parts created, the substrates themselves were the toughest to clean for 

reusability.  Once they were fabricated the substrates were soaked in ethanol and 

isopropanol.  However, during the length of a culture (approximately 2 weeks), the 

patterned collagen and other biomolecules from the culture media and those secreted by 

neurons tended to deposit on the MEAs.  To remove these depositions, the substrates 

were gently scrubbed with a foam applicator before soaking in ethanol and water for 1 

hour.  Care was taken to apply as little pressure as possible to the applicator.  However, 

this method did not remove all of the accumulations and, after a dozen platings, 

depositions tended to invariably accumulate (see Figure 3.13).   

 When placed in the MEA recording setup with no cells and just culture media, the 

substrate was characterized for baseline noise levels.  On each substrate there were 

invariably some channels that produced more baseline noise than desirable.  The increase 

in noise levels was due to several imperfections in the fabrication process.  For instance, 

variability in the etch rates of the metal lines sometimes produced breaks in the lines. 

Also, as mentioned earlier, pinholes in the nitride layer produced lines that had electro-

deposited platinum black in undesirable locations.  However, for the most part, all the 

channels had baseline noise levels that hovered around ±10µVpeak-to-peak.   
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3.6.2.  Culture Protocol for Cortical Neurons 

 Dissociated cortical cell cultures were prepared by papain digestion of embryonic-

day-18 rat whole cortices.  Timed-pregnant Wistar rats were euthanized by CO2 

inhalation, according to NIH-approved protocols for the care and use of lab animals.  

Embryos were removed, chilled on ice, and the cortex was microdissected under sterile 

conditions.  Papain solution was quick frozen by immersion in liquid nitrogen in 2ml 

aliquots, stored at -15°C, and thawed at 35°C just before use.  One millimeter cortex 

pieces were digested in 2ml papain solution for 30min at 35°C with gentle inversion 

every 5min.  The papain solution was aspirated and the pieces were triturated three times, 

three passes each with 1mL of medium, using a P-1000 Pipetman.  50000 cells were 

plated in a 20µl droplet covering the 1.5mm electrode region of the MEAs, forming a 

dense monolayer.  The dishes were flooded with 1ml of medium after the cells had 

adhered to the substrate for >15min and stored with FEP membrane lids in a 65% RH 

incubator at 35°C, 5% CO2, 9% O2.  The medium was Dulbecco’s modified Eagle’s 

medium with 10% equine serum (Hyclone).  

 

3.6.3.  Culture Protocol for DRGs 

The surgery involved several steps.  Media was prepared with Eagle’s MEM 

supplemented with 1% N2 supplement and 7S NGF (Alomone Labs, Jerusalem, Israel) at 

100ng/ml.  The animal procured was an embryonic day 15 (Jackson Labs, Maine) 

Sprague-Dawley rat.  First, the animal was anesthesized with a 0.4% solution of chloral 

hydrate.  After 10 minutes, the pregnant female was laid on her back with the belly 

exposed.  The belly was then soaked with alcohol and wiped with sterile gauze.  Then the 
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abdomen was exposed by cutting and opening the skin.  The uterus was then cut from the 

mother and the pups were plated into a 150mm Petri dish containing 5ml of MEM media.  

The pups were then separated from their placental sacs and placed in a 100mm Petri dish 

containing 2ml MEM media. 

The head and tail were cut off with scissors.  Then the pup was laid on their back 

and its organs were removed.  To expose the spinal cord, the vertebral column was then 

cut away with fine forceps.  The spinal cord was then pulled off of the body.  Finally, the 

DRGs were plucked from the cord and placed in a 35mm Petri dish containing culture 

media.  If dissociated cultures were used, the explants were incubated in 100µl of 10X 

trypsin for 30min.  Afterwards, the cells were centrifuged and washed twice with cell 

media.  After the second rinse, 200µl of cell media were added to the cells and they were 

mechanically triturated to complete the dissociation process.  After counting the cells on 

a haemocytometer, they were plated at the appropriate density in each culture 

compartment.  Pictures of outgrowth were taken each day for several days in culture 

using a light microscope. 

  

3.6.4.  Preliminary Electrophysiological Recordings from Cultured Neurons 

 To characterize the MEA substrate for its ability to record from neuronal signals, 

we initially studied how well the system could capture signals generated by cortical 

neurons.  These neurons were used because they were well-characterized in one of our 

collaborators’ labs (S. Potter, Georgia Tech).  Moreover, they produce synaptically 

activated networks in culture and, therefore, fire spontaneously.  Hence, we were able to 

avoid all of the issues with stimulation artifacts.   
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 To perform this experiment, we prepared our MEAs using a standard cleaning 

protocol.  First, a 3% BM cleaning solution (recommended by Multichannel Systems) 

was used to rinse the MEAs.  Then they were soaked in ultrapure water overnight, 

sterilized in pure ethanol, and allowed to dry.  On the day of use, a 100µl drop of 0.05% 

(w/v) polyethylene imine solution in borate buffer was applied to the center of the dish 

for 1hr, rinsed 4 times  with sterile water, and allowed to dry.  Twenty microliters of 

1mg/ml laminin (Sigma) was diluted in 1mL of medium, and a 10µL droplet was applied 

to the center of the MEA, covering the electrode region.  Dishes were covered and 

allowed to sit at room temperature for at least 30min to allow the laminin to attach to the 

substrate.  Most of the droplet was aspirated just before adding the cell suspension to the 

dish. 

 
Figure 3.14.  MEA preamplifier recording setup with  microfluidic  
compartment divider seated in the center of the MEA. 
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Figure 3.15.  Cortical neurons on an MEA substrate. 

 

 Recordings were made using a Multichannel Systems (Reutlingen, Germany) 

preamplifier system (see Figure 3.14).  After 1200X amplification, signals were sampled 

at 25kHz using a MultiChannel Systems data acquisition card, controlled through 

Meabench software.  Meabench’s digital filtering system for reducing stimulus artifacts 

allowed for detecting action potentials as early as 2ms after stimulation (except on the 

electrode used for stimulation, which remains saturated by stimulation artifacts for 50-

150ms).  Spikes were detected online by thresholding at 5X rms noise.   

 After 9DIV, the cultures were placed in the preamplifier system and neuronal 

signals were recorded for 10s (see Figure 3.15).  Baseline noise readings hovered 

between ±10µVpeak-to-peak.  Several of the channels (approximately 1/5) exhibited neuronal 

activity and periodic bursts of activity.  Neuronal activity (i.e., action potentials) ranged 

from 50µV to 100µV in amplitude and lasted anywhere from 2ms for single action 

potentials to 10ms for bursts.   
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 Moreover, the ability to record action potentials from DRGs was confirmed on the 

MEA apparatus (see Figure 3.16).  Dissociated cultures of DRGs were prepared as 

described in the previous section.  Here the recording software was Multichannel 

Systems commercial software known as MC_Rack.  Here also, spikes were recorded 

based on being 5X above RMS noise.  DRGs do not fire spontaneously, so their acitivity 

needed to be stimulated.  For this purpose, we chose a 2.5M solution of KCl in cell 

media.  Upon addition of the KCl buffer, we were able to record extracellular action  

potentials from DRGs.  Their amplitudes varied widely from run to run but ranged from 

tens to hundreds of microvolts.  Also, during a 1 minute recording, we were able to 

record several hundred action potentials from the dish.  A summary of this data is shown 

in Table 3.1.  When compared with the level of activity for cortical neurons above, the 

number of action potentials generated is far less since most of the activity recorded in 

cortical neuronal cultures is due to network wide bursts.  Looking at the data in Table 3.1, 

it seems that addition of cell culture media 1 minute after the KCl buffer solution causes 

(a) (b)

Explant
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Outgrowth

Axonal
Outgrowth

Axonal
Outgrowth

Figure 3.16.  (a)  DRG explant on a petri dish.  Notice the lush outgrowth of axons 
from the somal bundle.  (b)  Dissociated cultures of DRGs on a MEA substrate 
(10DIV).  Cells were initially plated near the crosshairs and their extensions can be 
seen growing away from them. 
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the activity to die down; however, there are still some aftereffects of the KCl buffer.  

Addition of the KCl buffer for a second time causes the neurons to fire again, leading us 

to believe that they are still alive.   

 

 

 

 

 

 

 

 

 

 

 

 

3.7.  Pilot Studies with Cell Culture 

 The entire system was used to culture cells for biocompatibility.  The system was 

assembled as described in the previous sections with the electrode substrate.  Several 

different methods were investigated for biocompatibility of the materials.  These methods 

were an ethanol rinse, UV overnight treatment, dry heat treatment, and an autoclave step.  

Of all the treatments, the autoclave step provided the most robust neurite outgrowth and 

was, therefore, adopted.  While the ethanol rinse and the UV overnight treatment seemed 

to produce some good results, the dry heat treatment did not produce healthy growth.   

Table 3.1.  Summary of Data for Extracellular Action Potentials from DRGs 
Run 3Run 2Run 1

44.817854.8115933.183812.5M KCl

1081444.80554035.3883Cell Media

956.36934527.58811335.381412.5M KCl
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71.667123.2722127.9382125mM
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Media
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 Initially, we studied the growth of DRGs on a glass slide with the aid of a pin 

rake.  The pin rake would provide small paths for the guidance of neurons.  While some 

neurons were able to be guided effectively, the pin-raked lines were not uniform so 

neuronal growth was not uniform.  However, as we became better at growing both DRG 

explants and dissociated DRG cultures, we began to grow DRGs on plastic substrates 

with pin raked grooves and on chemically modified substrates.   
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CHAPTER 4 
 

NEURONAL GROWTH IN COMPARTMENTED CULTURES 
 
 

4.1.  Chapter Outline 

 This chapter outlines the neuronal growth in compartmented cultures.  Sections 

4.2-4.5 give the background information for neuronal cell culture.  Finally, sections 4.6-

4.8 detail the parameters of growing explants and dissociated dorsal root ganglia cells in 

compartmented cultures. 

 

4.2.  Background on Neuronal Cell Culture 

 The techniques of cell culture have developed over the last thirty years.  Ever 

since the seminal discovery of R.G. Harrison, researchers have tried to take advantage of 

the ability to grow living tissue and cells outside of the body.  Since that time, two means 

of neuronal cell culture have developed.  One is the primary cell culture and the other is 

the cell line.  Primary cultures are those obtained directly from animals.  When cells from 

the embryonic brain are dissociated and cultured, neurons that have completed division 

will extend processes and become electrically active.  Meanwhile, cell lines are originally 

obtained from tumor cells.  With these cells, it is possible to “passage” them by removing 

them from the substrate and allowing them to divide again.  However, the properties of 

the cultured cells change gradually with passaging, as more rapidly dividing cell 

populations dominate and more differentiated cells are lost.  Though there are cell lines 

that express many of the individual characteristics of differentiated neurons, they are not 

always good candidates for the neuronal phenotype [1].   
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4.3.  Background on Primary Cultures 

 A dissociated cell culture is one that is prepared from suspensions of individual 

cells obtained by dissociation of neural tissue.  When plated onto a substrate, the neurons 

begin to extend processes within several hours and form a dense network.  Under certain 

conditions, it is possible to maintain these cultures for months.  These cultures develop 

axons and dendrites, form synapses, and express the receptors and ion channels 

characteristic of neurons.  When certain types of neurons are cocultured with Schwann 

cells or oligodendrocytes, axons become myelinated.  During the first few days in culture, 

before the neural network becomes too complicated, individual neurons can be seen.  

This allows direct observation of growing axons as they continue to branch.  This 

specificity allows for many experiments to be performed.  Primary dissociated neuronal 

cultures are thus suitable to morphological and physiological investigation.   

 However, a limitation of primary cell culture is that they are not as well-suited for 

traditional biochemical approaches because the quantity of material obtainable from these 

cultures is usually limited.  Another limitation is that they often contain mixtures of 

different types of cells.  Hence, the development of approaches to deal with the mixtures 

of cell types is essential to the successful use of primary cultures.  Finally, a last obstacle 

in using primary cultures is that optimizing the conditions that permit good culture 

involves lots of work [1].   

 

4.4.  Background on Explant Cultures 

 Explant cultures are thin slices of tissue that are allowed to attach to an 

appropriate substrate and cultured in a nutrient medium.  The need for nutrients and 
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oxygen to diffuse to the center of the tissue limits their thickness to approximately one 

millimeter.  As with dissociated cell cultures, embryonic and neonatal tissue grows best.  

One advantage of using explant cultures is that they have extensive fiber outgrowth [1].   

 

4.5.  Background on Protocols for Cell Culture 

 At all stages, tissues and cells must be maintained in an osmotically balanced 

solution at physiological pH.  A balanced salt solution consists of the right mixture of 

salts at concentrations approximating those of extracellular fluid and glucose.  In addition 

to the salts, media contain nutrients like amino acids and vitamins needed for long-term 

growth of cells.  There are several variations of balanced salt solutions that differ 

primarily in the buffers they contain [1].   

 The first step in the preparation of any primary culture is the dissection.  Of 

primary importance is the fact that the tissue must not develop an infection.  Normally, 

work is done either at room temperature or the tissue is kept on ice.  For obtaining 

individual cells, the tissue must be dissociated to give a suspension of single cells.  

Dissociation is helped by the removal of divalent cations (such as calcium and 

magnesium).  Usually, an enzyme like trypsin is used to perform the dissociation.  The 

tissue fragments are then dissociated mechanically with the Pasteur pipette.  Finally, they 

are plated on an appropriate substratum in cell media [1]. 

 A complete medium for culturing cells consists of a basal medium, such as 

minimal essential medium, supplemented either with serum or with a defined set of 

hormones and growth factors.  In all these media, glutamine is present at much higher 

concentrations than are other amino acids; this is because of its instability and its use as a 
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carbon source by many cells in culture.  To provide the nutrients and growth factors 

necessary for growth and maintenance of certain cell types, basal media are frequently 

augmented by the addition of serum at concentrations ranging from 5% to 20%.  In 1979, 

with the introduction of chemically defined media, neuronal cells were able to be cultured 

without the need for serum.  One can either allow cultured cells to produce their own 

trophic factors or add purified growth factors to the medium.  For several decades, the 

only factor that was available for use in tissue culture was nerve growth factor (NGF), 

and this was a limitation in the type of cells that could be cultured.  During the last 10 

years, however, many new growth factors have become widely available.   

 Many types of peripheral nervous system (PNS) neurons exhibit simple trophic 

requirements in vitro.  For example, rat sympathetic and dorsal root sensory neurons 

require only NGF for their survival and can grow for several months with it.  However, 

there are complications involved.  For instance, rat dorsal root ganglia contain several 

cell populations.  The small cell population is responsive to NGF, but the large cell 

population responds to different neurotrophins [1].   

 

4.6.  Growing Explants in Microfabricated Compartmented Cultures 

 

4.6.1.  Neuronal Growth in Pre-Assembled Systems 

Explants were grown in the system because they are easy to culture.  DRGs grow 

axonal halos that are approximately 5mm in length after 10 days in culture.  The DRGs 

were placed into the chamber one of two ways.  Either they were placed physically by 

grabbing them with fine forceps or they were injected into the chambers with a pippetter.  
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Usually, cultures worked best when 2 or 3 explants were plated in one compartment.  

Care was taken not to allow the DRG explants to float away from the barrier when 

moving the culture in and out of the incubator.  The explant generally adhered to the 

collagen floor and began extending small processes after 12h in vitro.  If the explant did 

not adhere to the substrate, it would not form any processes and would float in the media.  

To increase the likelihood of an explant not floating in the media, the tissue was placed as 

close to the surface of the substrate as possible. 

A photomontage of growing axonal halos in a two compartment culture is shown 

in Figure 4.1.  Here, 2 halos can be seen in one of the compartments and their extensions 

have grown into the adjacent compartment.  Notice how the extensions are only loosely 

associated with the chemical pattern on the substrate in the compartment on the left but 

have more well-oriented growth cones in the compartment on the right.  This was true of 

many of the explant cultures that we observed.  We hypothesize that the extremely high 

(a)

Neurite
TracksDRG

explants

Fluid BarrierDRG
explant

 
Figure 4.1.  Culturing of DRG explants in a two compartment system for 15DIV.  (a) 
an 8-track neurite system.  Explants were plated in the left compartment and grew 
extensions along pre-patterned collagen tracks into the adjacent compartment after 
several days in vitro. (b) close-up of dashed box showing 2 of the 8 tracks.  
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density of neuronal processes at the DRG center prevents the chemical pattern from being 

as effective.  As the halo becomes larger over the course of several days, the density of 

projections thins out, allowing the individual processes to feel the effects of a chemically 

patterned substrate.   

 

4.6.2.  Neuronal Growth in Post-Growth Assembled Systems 

 The second approach used was assembling the divider after neuronal growth in 

the compartmented culture system.  With this approach, the compartment divider was 

gently placed on the DRG after it had developed an axonal halo approximately with 3mm  

radius.  To accomplish this, media was aspirated surrounding the DRG so that there was 

only a small puddle with the cell in the center.  Silicone grease was spread very thinly 

Compartment
Barrier

Axonal 
Halo

DRG 
Explant

Axons
In

Adjacent
Compartment

 
Figure 4.2.  A two compartment divider placed on a DRG axonal halo after 5 DIV 
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using a razor blade to surround the cell.  Then a compartment divider microstamped with 

grease was hand aligned to the explant under a dissection microscope.  A picture of 

assembling the divider in this way are shown in Figure 4.2.   

4.7.  Growing Dissociated Cells in Microfabricated Compartmented Cultures 

 

4.7.1.  Neuronal Growth Before in Pre-Assembled Systems 

 Dissociated cells were grown in the system to allow yet another cell model to be 

studied.  Explants were dissociated with trypsin incubation for half an hour in the 

Somal
Compartment

Axonal
Compartment

Somal bundles Fluid Barrier Distal
Axons

Fluid
Barrier

Neurite
Tracks 2DIV 4DIV 6DIV

1mm

(a)

(b)  
Figure 4.3.  Culturing of dissociated DRG neurons in a two compartment system.  (a) 
an 8-track neurite system.  Neurons were plated in the left compartment and grew 
extensions along pre-patterned collagen tracks into the adjacent compartment after 
several days in vitro. Usually, after several hours in vitro, neurons initially plated in a 
random arrangement begin to group together along the collagen tracks and after 1 
DIV, have already begun to grow processes in these tracks.  Several of the neurons 
have “jumped” tracks and formed connections with the neurons in adjacent tracks. (b) 
close-up of dashed box showing 2 of the 8 tracks. 
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incubator.  Approximately 100000 cells were plated in one of the two compartments and 

their growth was observed over the course of two weeks in the system.  In the 

preassembled system, neurons traversed small silicone grease barriers (200µm wide) 

approximately after 6 DIV.  Neurons grew an average of 1mm every 2days.  A photo of 

the growing axons and their time course is shown in Figure 4.3.  Clearly, bundles of cells 

of cell bodies can be seen in the somal compartment.  Although some of the neurites have 

“jumped tracks”, most of them have been confined to a single track.   

Varying the plating density had differing effects on the culture.  Plating densities 

were varied from 20000 cells all the way up to 200000.  Too low a plating density caused 

poor growth, resulting in death only several days after plating.  Plating too many neurons 

in one of the compartments resulted in poor pattern formation.  Here, many neurons 

crossed from one track to another.  An optimal number of neurons in a 4mmX4mm port 

was between 50000 and 100000 neurons.  Within this range, cell densities closer to the 

lower bound resulted in cultures that had less bundle formation and fewer numbers of 

processes.  The upper bound resulted in poorer pattern formation but more robust process 

outgrowth. 

 Finally, in the system where neurons were allowed to grow before they were 

compartmentalized, the compartment divider was assembled on top of the growing 

neurons after growing the neurons for 1 week in the incubator.  If too much pressure was 

applied to the divider when seated over the axons, the distal portions of the axons would 

die, presumably due to too much pressure being placed on them.  So, care was taken to 

seat the divider on the neurons gently.  The grease-patterned divider was aligned to the 

neurons under a dissection microscope and, if it was allowed to sit long enough, the 
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grease would settle and the divider would settle along with it.  Once assembled, the 

chamber device was placed in a 35mm Petri dish and viewed under an inverted 

microscope.  If the divider was seated properly, the phase contrast would show the grease 

around the periphery to be darker than that of the grease in the center.   

 Compared to neurons cultured on unpatterned collagen substrates, there was a 

clear directionality associated with the growth.  Neurons cultured on bare collagen with 

no patterning seemed to develop randomly oriented networks and meandered on the 

substrate.   

 

4.7.2.  Neuronal Growth in Post-Growth Assembled Systems 

 If the divider is assembled after neuronal growth, the divider was placed carefully 

on the growing neurons after 4-5 days of growth.  This period of growth allowed the 

axons to grow to a sufficient length to be able to position the divider properly over the 

growing neurons.  As described previously, a glass substrate was patterned with collagen, 

the neurons were grown in one of the compartments of a temporarily attached 

compartment divider, which was removed once the neurons attached.  After five days of 

neuronal growth, all of the media was aspirated out of the 35mm Petri dish with the 

neurons and brought under a dissection microscope as described in the previous section 

for explants.  Silicone grease was spread across the edges of the slide and the new grease-

stamped compartment divider was placed on top of the neurons under a dissection 

microscope.  In this scenario, we had to make sure to place the compartment divider on 

the neurons very gently, as too much pressure caused axonal injury.  To accomplish this, 

we applied virtually no pressure in seating the compartment divider on the growing 



 100

neurites.  The divider was brought into contact with the substrate very gently and placed 

on top of it. 

 

4.8.  Temporal Changes in Neurons Cultured on a Collagen-Patterned Substrate 

 Chemically patterned substrates were analyzed for their ability to guide neuronal 

growth.  Neurons were plated in one compartment in a random arrangement and they 

reoriented themselves to fit the patterned substrates after several days in vitro (see Figure 

4.4).  Clearly, those neurons that did not adhere to the pattern had died after 1DIV.  At 

2DIV, bundles of neurons can be seen in one of the compartments and their processes are 

seen extending out into the compartment along tracks.  In this experiment, 100000 DRG 

cells were plated in the somal compartment.  Increasing or decreasing the cell density 

initially at plating did not significantly alter the general result; however, with lower cell 

densities, thinner lines of neurons were seen “hugging” the tracks.   

(a) (b) (c)

1 hr in
vitro

1 DIV 2 DIV

neurite tracks

Compartment
Barrier

 
Figure 4.4.  Photo montage showing the development of a neuronal pattern due to 
collagen tracks on a glass substrate.  Notice how plating occurs in a random 
orientation at the beginning and after just 1DIV, neurons have already begun to 
cluster preferentially on the collagen tracks.  Moreover, by 2DIV they have 
developed processes and are approaching the grease barrier at the right as shown in 
Figure 4.4c. 
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 When an explant landed directly on a patterned line of collagen, sometimes all the 

extensions grew along that line and might branch to an adjacent line.  This highly 

directional growth occurred throughout the entire time of culture.  When it landed outside 

of the patterned area, it would grow in random orientations initially; however, the 

processes would grow along the patterned tracks when they reached this area.  If the 

explants became lodged in the area right next to the grease barrier, the likelihood of 

growth was slim since the explant has a finite thickness associated with it.  In this 

scenario, it became difficult to deliver nutrients and remove wastes to the explant.  

Therefore, there was a tradeoff in getting the explant close to the barrier to minimize the 

amount of growth it had to experience before its processes crossed the barrier and in 

being too close so that nutrients and waste products could not be effectively circulated. 
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CHAPTER 5 
 

PHARMACOLOGICAL AND ELECTROPHYSIOLOGICAL 
STUDIES 

 
 
5.1.  Chapter Outline 

This chapter outlines the pharmacological and electrophysiological studies that 

were conducted with the compartmented culture system.  Section 5.2 gives an overview 

of axonal degeneration due to toxins applied in vitro.  Sections 5.3 talks about the 

neurotoxin vincristine.  Section 5.4 gives a brief overview of some types of 

electrophysiological responses obtained from DRGs and section 5.5 discusses some 

background information on the different electrophysiological responses obtained with 

vincristine.  Sections 5.6 and 5.7 discuss the experiments conducted in a two 

compartment chamber; the first one deals with the toxicology of vincristine and the 

second section talks about how the electrophysiology correlates to the toxicological 

observations. 

 

5.2.  Neurotoxicant-Induced Axonal Degeneration 

 Axonal degeneration is the pathological substrate leading to loss of neurological 

function in a wide variety of acute and chronic disorders of the CNS and PNS.  Diseases 

as different as stroke, spinocerebellar degenerations, and peripheral neuropathies share 

the common pathological substrate of axonal degeneration.  Even in primary 

demyleinating disorders such as multiple sclerosis and HMSN, axonal degeneration is the 

pathological finding that is most highly correlated with the clinical symptoms.  However, 
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the mechanisms underlying axonal degeneration in all of these disorders are unknown 

[1].   

 As mentioned in Chapter 1, several neurotoxicants have been used to induce 

axonal degeneration.  Ultrastructural analysis of neurons after exposure to these 

neurotoxicants has revealed various impairments in the neuron; for instance some of 

these studies have shown neurofilament and microtubule impairment and others have 

shown direct toxic effects on the distal axon.  These experimental model systems have 

become an invaluable tool for studying the molecular mechanisms behind 

neurodegenerative disease.  More specifically, by examining the morphology and 

physiology of the neurons exposed to such experimental models of axonal degeneration, 

we have been able to better target pharmacological interventions for diseases exhibiting 

this phenotype. 

 

5.3.  Vincristine 

 Vincristine is a chemotherapeutic agent used to treat leukemias and other types of 

human cancer.  However, patients treated with vincristine develop neuropathic symptoms 

and signs, some of which include distal-extremity paresthesias, sensory loss, and 

reduction of deep tendon reflexes.  Pathologically, vincristine causes length-dependent 

axonal degeneration that is typical of many other drug-induced peripheral neuropathies 

[2].  While vincristine has been used since the 1960s, research on vincristine has been 

rudimentary.  Vincristine is a naturally occurring alkaloid, and it is present in small 

quantities in the leaves of the periwinkle plant Catharanthus roseus.  It has been known 
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for its medicinal properties since the seventeenth century, and its extracts were used to 

treat hemorrhage, scurvy, toothaches, wounds and diabetic ulcers.  [2]. 

 Neurotoxicity is the dose-limiting side effect of vincristine..  The neuropathy is 

particularly evident in the distal extremities.  Moreover, severe central nervous system 

toxicity has also been reported, especially in patients who were treated with high dosages.  

However, many of the neurotoxic symptoms and signs disappear weeks to months after 

vincristine therapy has been discontinued.  Several factors influence the severity of 

neuropathy; two of these factors are dosage regimen and age of the patient [2].   

The most well-understood mechanism by which vincristine inhibits tumor growth 

is its interference with the mitotic spindle microtubules resulting in inhibition of mitosis.  

In vitro, vincristine causes apoptosis in tumor cells.  Vincristine has its effect on 

microtubules by binding to tubulin or microtubules.    Binding to spindle microtubules 

damages spindle structure in a concentration-dependent relationship, resulting in 

microtubule disruption.  At low concentrations, vincristine stabilizes the spindle 

apparatus resulting in failure of the chromosomes to segregate leading to metaphase 

arrest and inhibition of mitosis.  However, at higher concentrations, disruption and 

significant depolymerization of microtubules may be observed.  Several authors have also 

demonstrated the in vitro importance of apoptosis in mediating the cytotoxicity of 

vincristine.  This might explain why cells can die in M-phase as well as in interphase.  

Drug-induced disruption of the normal cell cycle is the likely trigger initiating apoptosis 

[2].  Some ultrastructural studies of the saphenous nerve in rats have shown also that 

vincristine treatment alters the cytoskeleton in that there were more tangential 

microtubules and neurofilaments that appeared to be abnormally clustered in the central 
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portion of the axoplasm in vincristine-treated axons.  This same study found that while 

vincristine does not decrease the total number of microtubules in unmyelinated sensory 

axons, it does increase the axonal cross-sectional area and the diameter of unmyelinated 

sensory axons [3]. 

 As stated previously, vincristine-induced neurotoxicity is caused by interference 

with microtubule function resulting in blockage of axonal transport and thus in axonal 

degeneration.  An increase in the numbers of neurofilaments and accumulation and 

degeneration of organelles at the proximal end of the node of Ranvier have also been 

demonstrated.  Vincristine induced axonal degeneration is described as Wallerian-like 

and of the dying-back type with changes in the distal nerves similar to those occurring 

after dissection from the cell body starting distally and progressing proximally.  Changes 

of the proximal part with or without changes of the perikaryon have also been described.  

Demyelinization is considered secondary to axonal degeneration.  However, recently, a 

greater degree of Schwann cell and myelin damage than axonal damage has been 

described, suggesting demyelinization might be the primary event.  Vincristine associated 

neuropathy is reversible unless the degeneration process has reached the perikaryon.  

Regeneration requires nerve sprouting.  Growth factors are released by denervated 

muscles.  After absorption by the distal axonal end, growth factors will be transported to 

the nucleus, resulting in nerve sprouting and regeneration.  Since neuronal microtubules 

have a function in nerve sprouting, it is probable that vincristine interferes with the 

process of regeneration [2].   

 Initially, uptake of vincristine into cells in vitro was thought to depend on a 

temperature-dependent and saturable carrier-mediated transport mechanism.  Later, a 
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temperature-independent and non-saturable mechanism was found to be primarily 

responsible for vincristine uptake.  Uptake into human hepatocytes is rapid.  Once 

vincristine is taken up into normal or malignant cells, it is slowly released, even when 

vincristine is washed out of the culture medium.  After vincristine injection, several other 

peaks other than that of vincristine have been identified by HPLC.  Up to 13 peaks have 

been found in plasma, bile, and urine after vincristine injection in vivo or incubation in 

vitro.  It is still controversial whether peaks are degradation products or metabolites of 

vincristine.  The relationship between vincristine plasma pharmacokinetics and the 

oncolytic and neurotoxic features are poorly understood.  Both in vitro and animal model 

studies have demonstrated a positive correlation between the oncolytic effect of 

vincristine and the degree of vincristine retention in tumor cells and tumor tissue [2].   

 The use of neuroprotective agents may decrease certain clinical consequences of 

vincristine neuropathy.  The potential for these agents to interfere with the cytotoxicity of 

vincristine requires further study before these agents can be used outside experimental 

settings.  Folinic acid, vitamins B1, B6, and B12 and gangliosides were promising in 

animal models but did not protect against vincristine-induced neuropathy in humans.  

Moreover, (L-)Glutamic acid was found to protect against vincristine-induced neuropathy 

in animal models as well as in patients.  Potential protective agents against vincristine 

induced neuropathy studied more recently are insulin-like growth factor (IGF-I) and 

nerve growth factor (NGF).  IGF-I, a polypeptide hormone, showed protection against 

vincristine induced neuropathy in mice.  The mechanism of neuroprotection here might 

be stimulation of nerve regeneration or protection against apoptosis [2].   
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5.4  Current Clamping of DRGs 

 DRGs generate action potentials in a variety of ways.  Many research groups have 

tried to stimulate and record from DRGs using conventional patch clamp techniques.  

DRGs respond to different types of stimulation parameters and in different ways to these 

protocols.  One group has also tried to stimulate and record from DRGs using MEAs.  

This group found that signal processing was necessary after stimulation to obtain an 

extracellularly recorded signal.  Also, a stimulation window was observed for evoking a 

response [4].   
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Figure 5.1.  Various responses from current-clamp recordings of dissociated cultures 
of DRGs after 5DIV.  Top figures in the four sets show responses and bottom graphs  
show the stimulation protocol used to obtain them.  
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To obtain a basic idea for the shapes and protocols needed for stimulation of our 

DRGs, we tried to obtain recordings from dissociated cultures that had been in the 

incubator for 5 days.  The basic protocol for current clamping is as follows.  The 

extracellular recording media consisted of a solution of 150mM NaCl, 5mM KCl, 1mM 

MgCl2, 2.5mM CaCl2, 10mM HEPES, and 10mM glucose, all in deionized water.  The 

intracellular recording media consisted of 140mM KCl, 1mM CaCl2, 2mM MgCl2, 

11mM EgTA, and 10mM of HEPES, all in deionized water.  The pH was titrated to 7.4 

with sodium hydroxide for the extracellular solution and with potassium hydroxide for 

the intracellular solution.  The extracellular solution was targeted for 340mOsm and the 

intracellular solution was targeted for 310mOsm.  Cells were placed under an inverted 

microscope with a platform for seating a 35mm Petri dish.  A ground electrode was 

placed in the extracellular media using an Agar bridge filled with CaCl2 solution.  The 

patch electrodes were pulled to 2-5µm diameter and had a resistance of 5-10MΩ when 

placed in the extracellular media.  Recordings were made with a HEKA EPC 9 

preamplifier.  DRGs were identified by their phase bright appearance in the microscope 

(to distinguish them from the phase dark appearance of Schwann cells). 

Some of the protocols that were tried and the recordings obtained from them are 

shown in Figure 5.1.  Notice that an action potential in DRGs was obtained for the four 

protocols that were tried.  The maximum observed response lasted for 2-5ms and had an 

amplitude of 80mV, consistent with previous published literature on action potentials 

generated in DRGs [5].  Ramp functions and square waves were more effective in 

generating trains of action potentials than a simple step response.   
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5.5.  Electrophysiological Effects in Vincristine Neuropathy 

 Neurophysiological studies have shown little or no change in nerve conduction 

velocities following vincristine treatment.  An increase in distal latencies and a 

progressive decrease in the amplitudes of compound nerve action potentials have been 

demonstrated during treatment.  These changes are consistent with axonal degeneration, 

which might be complicated by secondary demyelination.  The mechanism responsible 

for increased latencies is uncertain and could be attributed to a reduction in the number of 

terminal nerve fibers prior to death.  Previously, the pathogenesis was attributed to distal 

nerve involvement; however, recently, mainly proximal involvement was shown.  These 

neurophysiological features are consistent with the clinical picture and pathophysiology 

of vincristine-induced neuropathy [2]. 

 Also, the effect of vincristine to prevent any alteration in the excitability of dorsal 

horn neurons following peripheral nerve injury was investigated in rats.  With injury, 

vincristine-treated rats had significantly lower levels of excitability than those that did not 

have the drug treatment.  Without the injury, both the drug-treated and untreated groups 

exhibited normal values of excitability [6].  In another animal study, vincristine sulfate 

was administered intravenously to rats at doses of 0.25, 0.5, and 0.75 mg/kg.  During the 

first week following treatment, extensor digitorum longus (EDL) muscle contraction 

strength and fiber electrophysiologic parameters were measured.  At all doses tested, 

vincristine strongly reduced twitch and titanic tension [7].  Moreover, weekly injections 

of vincristine produced a dose-dependent delay in regeneration following sciatic nerve 

crush in rats.  With 50 and 100µg/kg/wk, electrophysiological evidence of reinnervation 

of the foot muscles was significantly delayed and muscle action potential amplitude 
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increased at a slower rate compared to controls [8].  In cats, vincristine sulfate (50µg/kg 

intravenously every four days) was administered and studied after 7-29 injections when 

neurological deficits became evident.  The conduction velocity spectrum of individual 

afferent nerves from soleus muscles was shifted toward slower velocities.  Here, the 

average conduction velocity of soleus motor axons was reduced 30% but no deficit was 

detected in motor nerve terminal function [9].  Daily intraperitoneal injections of 

vincristine in rats (0.1mg/kg/day) for 5 days produced mechanical allodynia and 

hyperalgesia.  Moreover, electrophysiological recording from wide dynamic range 

(WDR) neurons in the lumbar (L4-L5) spinal dorsal horn in hyperalgesic rats 

demonstrated significantly increased spontaneous activity and after-discharges to noxious 

mechanical stimuli [10].  Another rat study showed that systemic administration of 

vincristine (100µg/kg) caused approximately half of the C-fiber nociceptors to become 

markedly hyperresponsive to mechanical stimulation.  Instantaneous frequency plots 

showed that vincristine induced an irregular pattern of action-potential firing in 

hyperresponsive C-fibers, characterized by interspersed occurrences of high- and low-

frequency firing.  This pattern was associated with an increase in the percentage of 

interspike intervals 100-199ms in duration compared with that in C-fibers from control 

rats and vincristine-treated C-fibers that did not become hyperresponsive.  Analysis 

revealed that vincristine altered the pattern of action-potential timing, so that 

combinations of higher firing frequency and higher variability occurred that were not 

observed in control fibers [11].   

 Clinically, in humans, evidence of denervation was detected in weak muscles, but 

there was little fall in motor conduction velocity.  Fall in sensory action potential 
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Figure 5.2.  Axonal degeneration caused by exposure to vincristine for 1 day.  The 
axons at the far left have begun to break down compared to more proximal portions of 
the axons at the far right.  Vincristine neuropathy results in a gradual dying away of 
axons from the distal to proximal portions.  The exact mechanism behind this 
degenerative process is not known; however, it is thought to be related to the way it 
alters the structure of axonal microtubules.  

amplitude was closely related to dose and duration of therapy and occurred before 

clinical abnormalities were apparent.  Sensory action potential amplitude remained 

abnormal despite clinical improvement or recovery.  The electrophysiological studies 

suggest that the neuropathy is of the dying back type [12].  In another study, 

somatosensory evoked potentials were measured prospectively in 38 children with acute 

lymphoblastic leukemia to evaluate the side effects of vincristine therapy on conduction 

velocities in peripheral nerves.  Patients that had been administered the drug showed a 

prolongation in the conduction time of the posterior tibial nerve [13]. 

 

5.6.  Pharmacological Studies  

 We used vincristine as the test vehicle in our devices.  After culturing dissociated 

cultures of DRGs for 5 to 6 days in our devices, we applied vincristine to both the somal 

compartment and the axonal compartment at varying concentrations.  Vincristine has 

deleterious effects on neurons at all concentrations; however, at certain concentrations, 

the effects are more severe than at others.  A picture of vincristine neuropathy is shown in 

Figure 5.2.  Axonal degeneration was observed at concentrations of 0.01µM.  We 
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performed tests on the rates of axonal degeneration in vincristine neurotoxicity when the 

drug was applied to the axonal compartment and to the somal compartment.  The length 

of the axon was measured either from the edge of the explant to the end of the axon or 

from the soma to the end of the axon, depending on the type of culture.  Table 5.1 and 

Graph 5.1 summarize the data for this study.  Notice that axonal degeneration was present 

at this concentration only when applied to the distal axon, indicating that the distal axon 

is primarily susceptible to chemotherapy-induced neurodegeneration.   

 

Table 5.1.  Axonal Degeneration Due to Vincristine-Induced Toxicity in a Two 
Compartment Culture (n=4) 

1.19±0.10mm1.22±0.24mm4.38±0.21mmVincristine to Axons

6.28±0.75mm5.66±0.42mm5.44±0.78mmControl

Day 2Day 1Day 0

1.19±0.10mm1.22±0.24mm4.38±0.21mmVincristine to Axons

6.28±0.75mm5.66±0.42mm5.44±0.78mmControl

Day 2Day 1Day 0

 
Values are mean ± SEM. P<0.001 when vincristine sample compared to control  
at day 2. 

Graph 5.1.  Axonal degeneration due to vincristine-induced toxicity in a two 
compartment culture 
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5.7.  Electrophysiological Studies 

5.7.1  Control Experiments with Tetrodotoxin 

To gain more confidence in our electrode substrate, control experiments were 

performed with the sodium channel blocker tetrodotoxin.  As described in Chapter 3, KCl 

(2.5M solution) was used to induce action potentials in the neurons.  Tetrodotoxin was 

applied to the axonal compartment after KCl was applied to both of them.  As expected, 

Table 5.2 shows that after application of the depolarizing chemical TTX, the neurites in 

the axonal compartment stopped generating action potentials. 

 

5.7.2  Recordings with Vincristine  

Electrophysiological recordings were then performed with the neurotoxin 

vincristine.  After 10 days of culture, a 0.01µM solution of vincristine was applied to the 

Table 5.2.  Summary of Data for Extracellular Action Potentials from DRGs 
In a Two Compartment Culture (n=4) 

Axonal 
Compartment

Somal
Compartment

Axonal 
Compartment

Somal
Compartment

TTX Added to Axonal CompartmentKCL in  Both Compartments

5±299±21100±18115±12Number
Of Spikes

Axonal 
Compartment

Somal
Compartment

Axonal 
Compartment

Somal
Compartment

TTX Added to Axonal CompartmentKCL in  Both Compartments

5±299±21100±18115±12Number
Of Spikes

 
Values are mean ± SEM.  P<0.001 when axonal compartments are compared.  P>0.05 
when somal compartments are compared. 
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axonal compartment of the system.  Then recordings were made on two systems every 

day for two days.   

Table 5.3 and Graphs 5.2 and 5.3 summarizes this data.  Clearly, the data shows 

that over the course of a two day period, the number of action potentials generated by the 

axonal compartment decreases while the number of action potentials stays constant in the 

somal compartment.  This finding adds more evidence that vincristine neuropathy is 

regulated by a mechanism local to the distal axon and that the soma is not involved in 

Table 5.3.  Electrophysiological Evidence of Direct Axonal Effects in Vincristine-
Induced Axonal Degeneration (n=4) 

7±451±1450±858±10(Day 2) Number of Spikes

15±552±940±1329±14(Day 1) Number of Spikes

64±944±877±854±8(Day 0) Number of Spikes

Axonal 
Compartment

Somal
Compartment

Axonal
Compartment

Somal
Compartment

Vincristine Added to Axonal 
Compartment 

No Vincristine (control)

7±451±1450±858±10(Day 2) Number of Spikes

15±552±940±1329±14(Day 1) Number of Spikes

64±944±877±854±8(Day 0) Number of Spikes

Axonal 
Compartment

Somal
Compartment

Axonal
Compartment

Somal
Compartment

Vincristine Added to Axonal 
Compartment 

No Vincristine (control)

 
Values are mean ± SEM.  P<0.001 when axonal compartments are compared at day 2.  
P>0.05 when somal compartments are compared at day 2. 

Graph 5.2.  Number of Action Potentials Recorded in the Somal Compartment during 
a One Minute Window. 
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such a process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graph 5.3.  Number of Action Potentials Recorded in the Axonal Compartment during 
a One Minute Window. 
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CHAPTER 6 
 

CONCLUSIONS AND FUTURE WORK 
 
 

6.1.  Conclusions 

 This work concentrated on the development of a microelectrofluidic 

compartmented culture system for interfacing with neurons.  The neurons can be spatially 

divided into different drug compartments and their physiological response can be 

measured through microscopy and through substrate embedded electrodes.  The system 

was designed, fabricated, and characterized using standard experimental techniques.  The 

neurons used in this work were dorsal root ganglia, unipolar sensory neurons that are 

involved in transmitting sensory information from receptors in muscle and skin to the 

CNS.  These neurons were shown to be cultured in the system and their growth rates 

were characterized.  Moreover, the electrophysiological effects of vincristine, a 

chemotherapeutic drug and neurotoxin, was investigated in several experiments.  The 

experiments showed that vincristine’s neurotoxicological effects proceed by a mechanism 

local to the distal axon. 

 

6.2.  Modifications to the Compartment Divider 

The work in this thesis concentrated on the development of a two compartment 

divider.  Future work will concentrate on the development of compartment dividers with 

more compartments.  For instance, by spatially dividing the neuron into more 

compartments, we can investigate how the promixal axons play a role in signaling 

between the distal axon and the neuronal soma.  Moreover, we can take advantage of 

laminar flows in microchannels to provide a different means of compartmentalizing drugs 
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in channels.  Use of flows in microchannels has the potential to circumvent some of the 

issues with leakage in channels that we have heretofore been experiencing; however, 

other issues with flow rates and the constant removal of autrocrine factors will present 

themselves.  Also, interfacing the flow-based system with fluidic interconnect and a 

syringe pump will add complexity to the engineered system. 

 

6.3.  Modifications to the Multielectrode Substrate 

 The multielectrode substrate provides the ability to stimulate and record from 

neurons cultured on top of it.  By varying the spacing between the electrodes to match the 

size of the compartment divider, new experiments can be designed that are tailored to 

answer specific neurobiological hypotheses.  Also, we can investigate different, more 

robust insulating materials for the electrodes.   

 An interesting extension of this work might be the inclusion of substrate-

embedded patch electrodes for stimulation and recording.  If we are able to get neurons 

aligned to the patch electrodes, we can localize a recorded signal not only to a particular 

compartment but also to a particular point along the length of the neuron.  To accomplish 

this task, the insulating layer must have topography micropatterned such that suction can 

be pulled on the neuron resting on top of the electrode.  The materials and fabrication 

strategies for performing this task will be investigated. 

 

6.4  Adding Complexity to the Biology 

 Arguably, the most exciting extension of this work lies in the complexity of the 

biological circuit that can be created with the engineered system.  Neurons are cells that 
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communicate through a rich array of signaling mechanisms and the ability to image cells 

and sense their electrophysiological responses in multicompartment systems has the 

potential to answer some very interesting questions on physiological mechanisms in vivo.  

For instance, through synaptic interconnections, neurons can be co-cultured with other 

cell types, providing a more complete picture of the in vivo situation.  Taken together, the 

platform developed has the potential to resolve questions in areas such as molecular 

trafficking, synaptic plasticity, and cellular apoptosis. 
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