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SUMMARY

In this thesis, we study qualitative and quantitative properties of stationary/uniformly-rotating

solutions of the 2D incompressible Euler equation and the generalized Surface Quasi-Geostrophic

(SQG) equations. The main goal is to establish sufficient and necessary conditions for the station-

ary/uniformly rotating solutions to be radially symmetric. In addition, we also derive quantitative

estimates for non-radial, uniformly-rotating patch solutions for the 2D Euler equation.

In chapter 1, we briefly review basic properties of the 2D incompressible Euler equation and the

generalized SQG equations. We also rigorously define stationary and uniformly-rotating solutions

to those equations by means of the stream function.

Chapters 2 to 4 describe the joint work with Javier Gómez–Serrano, Jia Shi and Yao Yao [50,

52]. We establish sufficient conditions for stationary/uniformly-rotating solutions for some active

scalar equations to be radially symmetric. In short, we prove that for the 2D Euler equation,

i (Patch setting) If a vortex patch ω = 1D is uniformly rotating with angular velocity Ω ∈
(
0, 1

2

)c,
then D must be radially symmetric up to a translation.

ii (Smooth setting) If a smooth, non-negative compactly supported vorticity ω is uniformly rotat-

ing with angular velocity Ω ≤ 0, then ω is radially symmetric.

The proof is based on a variational argument that a uniformly-rotating solution can be formally

thought of as a critical point of an energy functional. We apply this idea to more general active

scalar equations (gSQG) and vortex sheet equation.

In chapter 5, we construct a non-radial vortex sheet with non-constant vortex strength, which is

rotating with angular velocity Ω > 0. We obtain a curve of such non-radial solutions, bifurcating

from trivial ones. This result comes from the joint work with Javier Gómez–Serrano, Jia Shi and

Yao Yao [51].

In chapter 6, we describe the result in [97]. We adapt the variational argument that was used in

x



chapter 2 to study non-radial rotating vortex patches. It is well known that for Ω ∈ (0, 1
2
), there are

m-fold symmetric rotating patches. We derive some quantitative estimates for those patches about

their angular velocities and the difference with the unit disk.

xi



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Two dimensional active scalar equations: Euler and gSQG

The two-dimensional incompressible Euler equation in vorticity form reads


∂tω + u · ∇ω = 0 in R2 × R+,

u(·, t) = −∇⊥(−∆)−1ω(·, t) in R2,

ω(·, 0) = ω0 in R2,

(1.1.1)

where∇⊥ := (−∂x2 , ∂x1). Note that we can express u as u(·, t) = ∇⊥(ω(·, t)∗N ),whereN (x) :=

1
2π

ln |x| is the Newtonian potential in two dimensions. This equation describes the motion of

incompressible ideal fluid in two dimensional space. Mathematically, the 2D Euler equation can

be seen as an example of active scalar equation, in the sense that the scalar-valued function ω is

transported by the velocity u, meanwhile the velocity also depends on ω. Another interesting active

scalar equation is the inviscid Surface Quasi-Geostropic equation, where we replace (−∆)−1 by

(−∆)−
1
2 in (Equation 1.1.1). Besides its importance in the context of geophysics and atmosphere

science, the inviscid SQG also serves as a toy model for the 3D incompressible Euler equation

[32]. More generally, both the 2D Euler equation and the inviscid SQG equation belong to the

following family of active scalar equations indexed by a parameter α, (0 ≤ α < 2), known as the
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generalized SQG equations:


∂tω + u · ∇ω = 0 in R2 × R+,

u(·, t) = −∇⊥(−∆)−1+α
2 ω(·, t) in R2,

ω(·, 0) = ω0 in R2.

(1.1.2)

Here we can also express the Biot–Savart law as

u(·, t) = ∇⊥(ω(·, t) ∗Kα), (1.1.3)

where Kα is the fundamental solution for −(−∆)−1+α
2 , that is,

Kα(x) =


1

2π
ln |x| for α = 0,

−Cα|x|−α for α ∈ (0, 2),

(1.1.4)

where Cα = 1
2π

Γ(α
2

)

21−αΓ(1−α
2

)
is a positive constant only depending on α.

We either work with the patch setting, where ω(·, t) = 1D(t) is an indicator function of

a bounded set that moves with the fluid, or the smooth setting, where ω(·, t) is smooth and

compactly-supported in x. For well-posedness results for patch solutions, see the global well-

posedness results [9, 26] for (Equation 1.1.1), and local well-posedness results [25, 101, 43, 75,

33] for (Equation 1.1.2) with α ∈ (0, 2).

1.1.1 Uniformly rotating/Stationary solutions of 2D Euler and gSQG

Let us begin with the definition of a stationary/uniformly-rotating solution in the patch setting. For

a bounded domain D ⊂ R2 with C1 boundary, we say ω = 1D is a stationary patch solution to

(Equation 1.1.2) for some α ∈ [0, 2) if u(x) · ~n(x) = 0 on ∂D, with u given by (Equation 1.1.3).

2



This leads to the integral equation

1D ∗ Kα ≡ Ci on ∂D, (1.1.5)

where the constant Ci can differ on different connected components of ∂D. And if ω(x, t) =

1D(RΩtx) is a uniformly-rotating patch solution with angular velocity Ω (where RΩtx rotates a

vector x ∈ R2 counter-clockwise by angle Ωt about the origin), then 1D becomes stationary in the

rotating frame with angular velocity Ω, that is,
(
∇⊥(ω(·, t) ∗Kα)− Ωx⊥

)
· ~n(x) = 0 on ∂D. As

a result we have

1D ∗ Kα −
Ω

2
|x|2 ≡ Ci on ∂D, (1.1.6)

where Ci again can take different values along different connected components of ∂D. Note that a

stationary patch D also satisfies (Equation 1.1.6) with Ω = 0, and it can be considered as a special

case of uniformly-rotating patch with zero angular velocity.

Likewise, in the smooth setting, if ω(x, t) = ω0(RΩtx) is a uniformly-rotating solution of

(Equation 1.1.2) with angular velocity Ω (which becomes a stationary solution in the Ω = 0 case),

then we have (∇⊥(ω0 ∗Kα)− Ωx⊥) · ∇ω0 = 0. As a result, ω0 satisfies

ω0 ∗ Kα −
Ω

2
|x|2 ≡ Ci on each connected component of a regular level set of ω0, (1.1.7)

where Ci can be different if a regular level set {ω0 = c} has multiple connected components.

1.1.2 Uniformly rotating/Stationary vortex sheets

A vortex sheet is a weak solution of the 2D Euler equations:

vt + v · ∇v = −∇p, ∇ · v = 0, (1.1.8)

3



whose vorticity ω = curl(v) is a delta function supported on a curve or a finite number of curves

Γi = zi(α, t), i.e.

ω(x, t) =
∑
i

$i(α, t)δ(x− zi(α, t)). (1.1.9)

Here $i(α, t) is the vorticity strength on Γi with respect to the parametrization zi, and the above

equation is understood in the sense that

ˆ
R2

ϕ(x)dω(x, t) =
∑
i

ˆ
ϕ(zi(α, t))$i(α, t)dα

for all test functions ϕ(x) ∈ C∞0 (R2).

The motivation of the study of the equation (Equation 1.1.8) with vortex sheet initial data comes

from the fact that in fluids with small viscosity, flows separate from rigid walls and corners [87,

102]. To model it, one may think of a solution to (Equation 1.1.8) with one incompressible fluid

where the velocity changes sign in a discontinuous (tangential) way across a streamline z. This

discontinuity induces vorticity in z.

The equations of motion of $i and zi can be derived by means of the Birkhoff-Rott operator

([20, 81, 87, 108]), namely:

BR(z,$)(x, t) =
1

2π
PV

ˆ
(x− z(β, t))⊥

|x− z(β, t)|2
$(β, t)dβ, (1.1.10)

yielding

∂tzi(α, t) =
∑
j

BR(zj, $i)(zi(α, t)) + ci(α, t)∂αzi(α, t) (1.1.11)

∂t$i(α, t) = ∂α(ci(α, t)$i(α, t)), (1.1.12)

where the term ci(α, t) accounts for the reparametrization freedom of the curves. See the paper [70]

by Izosimov–Khesin where they propose geodesic, group-theoretic, and Hamiltonian frameworks

4



for their description.

As in the patch/smooth setting, we first define what we mean by a stationary vortex sheet. As-

sume the initial data ω0 of (Equation 1.1.9) is supported on a finite number of curves parametrized

by zi(α), with strength $i(α) (with respect to the parametrization zi) respectively. If there ex-

ists some reparametrization choice ci(α) such that the right hand sides of (Equation 1.1.11)–

(Equation 1.1.12) are both identically zero for every i, it gives that ω(·, t) is invariant in time,

and we say ω(·, t) = ω0 is a stationary vortex sheet.

For any x ∈ R2 and Ω ∈ R, let RΩtx denote the rotation of x counter-clockwise by angle Ωt

about the origin. We say ω(x, t) = ω0(RΩtx) is a uniformly-rotating vortex sheet with angular

velocity Ω if ω0 is stationary in the rotating frame with angular velocity Ω. (Note that in the special

case Ω = 0, the uniformly-rotating sheet is in fact stationary.) In chapter 4, we will derive the

equations satisfied by a stationary/rotating vortex sheet.

1.2 Main results and idea of proofs

In subsection 1.2.1 and subsection 1.2.2, we describe the results of joint work with Javier Gómez–

Serrano, Jia Shi and Yao Yao [50, 52, 51], which concern rigidity/flexibility of uniformly-

rotating/stationary solutions. The proofs for these results will be contained in chapter 2-chapter 5.

In subsection 1.2.3, we describe the results obtained in [97]. The proofs for quantitative estimates

will be presented in chapter 6.

1.2.1 Rigidity results for 2D Euler and gSQG [50]

Chapter 2 and Chapter 3 will be devoted to establish rigidity results for 2D Euler and gSQG

equations. Clearly, every radially symmetric patch/smooth function automatically satisfies

(Equation 1.1.6) or (Equation 1.1.7) for all Ω ∈ R. The goal of chapter 2-chapter 3 is to address

the complementary question, which can be roughly stated as following:

5



Question 1. In the patch or smooth setting, under what condition must a stationary/uniformly-

rotating solution be radially symmetric?

Below we summarize the previous literature related to this question, and state our main results.

We will first discuss the 2D Euler equation in the patch and smooth setting respectively, then

discuss the gSQG equation with α ∈ (0, 2).

2D Euler in the patch setting

Let us deal with the patch setting first. So far affirmative answers to Question 1 have only been

only obtained for simply-connected patches, for angular velocities Ω = 0, Ω < 0 (under some

additional convexity assumptions), and Ω = 1
2
. For stationary patches (Ω = 0), Fraenkel [41,

Chapter 4] proved that if D satisfies (Equation 1.1.6) (where Kα = N ) with the same constant

C on the whole ∂D, then D must be a disk. The idea is that in this case the stream function

ψ = 1D ∗ N solves a semilinear elliptic equation ∆ψ = g(ψ) in R2 with g(ψ) = 1{ψ<C}, where

the monotonicity of the discontinuous function g allows one to apply the moving plane method

developed in [105, 48] to obtain the symmetry of ψ. As a direct consequence, every simply-

connected stationary patch must be a disk. But if D is not simply-connected, (Equation 1.1.6)

gives that ψ = Ci on different connected components of ∂D, thus ψ might not solve a single

semilinear elliptic equation in R2. Even if ψ satisfies ∆ψ = g(ψ), g might not have the right

monotonicity. For these reasons, whether a non-simply-connected stationary patch must be radial

still remained an open question.

For Ω < 0, Hmidi [59] used the moving plane method to show that a simply-connected

uniformly-rotating patch D satisfies some additional convexity assumption (which is stronger than

star-shapedness but weaker than convexity), then D must be a disk. In the special case Ω = 1
2
,

Hmidi [59] also showed that a simply-connected uniformly-rotating patch D must be a disk, using

the fact that 1D ∗ N − Ω
2
|x|2 becomes a harmonic function in D when Ω = 1

2
.

On the other hand, it is known that there can be non-radial uniformly-rotating patches for

6



Ω ∈ (0, 1
2
). The first example dates back to the Kirchhoff ellipse [74], where it was shown that

any ellipse D with semiaxes a, b is a uniformly-rotating patch with angular velocity ab
(a+b)2 . Deem–

Zabusky [36] numerically found families of patch solutions of (Equation 1.1.1) with m-fold sym-

metry by bifurcating from a disk at explicit angular velocities Ω0
m = m−1

2m
and coined the term

V-states. Further numerics were done in [116, 37, 86, 103]. Burbea gave the first rigorous proof

of their existence by using (local) bifurcation theory arguments close to the disk [12]. There have

been many recent developments in a series of works by Hmidi–Mateu–Verdera and de la Hoz–

Hmidi–Mateu–Verdera [63, 67, 64] in different settings and directions (regularity of the boundary,

different topologies, etc.). In particular, [67] showed the existence of m-fold doubly-connected

non-radial patches bifurcating at any angular velocity Ω ∈
(
0, 1

2

)
from some annulus of radii

b ∈ (0, 1) and 1.

There are many other interesting perspectives of the V-states, which we briefly review below,

although they are not directly related to Question 1. Hassainia–Masmoudi–Wheeler [58] were able

to perform global bifurcation arguments and study the whole branch of V-states. Other scenarios

such as the bifurcation from ellipses instead of disks have also been studied: first numerically

by Kamm [71] and later theoretically by Castro–Córdoba–Gómez-Serrano [22] and Hmidi–Mateu

[60]. See also the work of Carrillo–Mateu–Mora–Rondi–Scardia–Verdera [19] for variational tech-

niques applied to other anisotropic problems related to vortex patches. Love [82] established linear

stability for ellipses of aspect ratio bigger than 1
3

and linear instability for ellipses of aspect ratio

smaller than 1
3
. Most of the efforts have been devoted to establish nonlinear stability and instability

in the range predicted by the linear part. Wan [114], and Tang [110] proved the nonlinear stable

case, whereas Guo–Hallstrom–Spirn [53] settled the nonlinear unstable one. See also [30]. In

[112], Turkington consideredN vortex patches rotating around the origin in the variational setting,

yielding solutions of the problem which are close to point vortices.

Our first main result is summarized in the following Theorem A, which gives a complete answer

to Question 1 for 2D Euler in the patch setting. Note thatD is allowed to be disconnected, and each
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connected component can be non-simply-connected. Figure Figure 1.1 illustrates a comparison of

our result (in red color) with the previous results (in black color).

Theorem A (= Corollary 2.1.8, Theorems 2.1.10 and 2.1.12). Let D ⊂ R2 be a bounded

domain with C1 boundary. Assume D is a stationary/uniformly-rotating patch of (Equation 1.1.1),

in the sense that D satisfies (Equation 1.1.6) (with Kα = N ) for some Ω ∈ R. Then D must be

radially symmetric if Ω ∈ (−∞, 0) ∪ [1
2
,∞), and radially symmetric up to a translation if Ω = 0.

0 1
2 Ω

m−1
2m

all patches must be radial

???

simply-connected patch
must be a disk

simply-connected patch
must be a disk

convex patch
must be a disk

all patches must be radial

Figure 1.1: For 2D Euler in the patch setting, previous results on Question 1 are summarized in
black color. Our results in Theorem A are colored in red.

2D Euler in the smooth setting

One of the main motivations of this work is to find sufficient rigidity conditions in terms of the

vorticity, such that the only stationary/uniformly-rotating solutions are radial ones. Heuristically

speaking, this belongs to the broader class of “Liouville Theorem” type of results, which show

that solutions satisfying certain conditions must have a simpler geometric structure, such as being

constant (in one direction, or all directions) or being radial. In the literature we could not find

any conditions on 2D Euler that leads to radial symmetry, although several other Liouville-type

results have been established for 2D fluid equations: For 2D Euler, Hamel–Nadirashvili [55, 54]

proved that any stationary solution without a stagnation point must be a shear flow. (But note

that this result does not apply to our setting (Equation 1.1.7), since the velocity field u associated

with any compactly-supported ω0 must have a stagnation point). See also the Liouville theorem by

Koch–Nadirashvili–Seregin–Šverák for the 2D Navier–Stokes equations [76].
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Let us briefly review some results on the characterization of stationary solutions to 2D Euler,

although they are not directly related to Question 1. Nadirashvili [92] studied the geometry and

the stability of stationary solutions, following the works of Arnold [2, 3, 4]. Izosimov–Khesin

[69] characterized stationary solutions of 2D Euler on surfaces. Choffrut–Šverák [28] showed that

locally near each stationary smooth solution there exists a manifold of stationary smooth solutions

transversal to the foliation, and Choffrut–Székelyhidi [27] showed that there is an abundant set of

stationary weak (L∞) solutions near a smooth stationary one. Shvydkoy–Luo [84, 85] classified

the set of stationary smooth solutions of the form v = ∇⊥(rγf(ω)), where (r, ω) are polar coor-

dinates. In a different direction, Turkington [111] used variational methods to construct stationary

vortex patches of a prescribed area in a bounded domain, imposing that the patch is a characteristic

function of the set {Ψ > 0}, and also studied the asymptotic limit of the patches tending to point

vortices. Long–Wang–Zeng [80] studied their stability, as well as the regularity in the smooth

setting (see also [16]). For other variational constructions close to point vortices, we refer to the

work of Cao–Liu–Wei [14], Cao–Peng–Yan [15] and Smets–van Schaftingen [107]. We remark

that these results do not rule out that those solutions may be radial. Musso–Pacard–Wei [91] con-

structed nonradial smooth stationary solutions without compact support in ω. The (nonlinear L1)

stability of circular patches was proved by Wan–Pulvirenti [113] and later Sideris–Vega gave a

shorter proof [106]. See also Beichman–Denisov [7] for similar results on the strip.

Lately, Gavrilov [45, 46] provided a remarkable construction of nontrivial stationary solutions

of 3D Euler with compactly supported velocity. See also Constantin–La–Vicol for a simplified

proof with extensions to other fluid equations [31].

Regarding uniformly-rotating smooth solutions (Ω 6= 0) for 2D Euler, Castro–Córdoba–

Gómez-Serrano [24] were able to desingularize a vortex patch to produce a smooth m-fold V-state

with Ω ∼ m−1
2m

> 0 for m ≥ 2. Recently García–Hmidi–Soler [44] studied the construction of

V-states bifurcating from other radial profiles (Gaussians and piecewise quadratic functions).

Our second main result is the following theorem, which gives radial symmetry in the smooth
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setting for Ω ≤ 0, under the additional assumption ω0 ≥ 0:

Theorem B (= Theorem 2.2.5 and Corollary 2.2.6). Let ω0 ≥ 0 be smooth and

compactly-supported. Assume ω(x, t) = ω0(RΩtx) is a stationary/uniformly-rotating solution

of (Equation 1.1.1) with Ω ≤ 0, in the sense that it satisfies (Equation 1.1.7). Then ω0 must be

radially symmetric if Ω < 0, and radially symmetric up to a translation if Ω = 0.

The gSQG case (0 < α < 2)

Recall that in the patch setting, a stationary/uniformly-rotating patch satisfies (Equation 1.1.6)

with Kα given in (Equation 1.1.4). Even though the kernels Kα are qualitatively similar for all

α ∈ [0, 2), there is a key difference on the symmetry v.s. non-symmetry results between the cases

α = 0 and α > 0: For the 2D Euler equation (α = 0), we proved in Theorem A that any rotating

patch D with Ω ≤ 0 must be radial, even if D is not simply-connected. However, this result is

not true for any α ∈ (0, 2): de la Hoz–Hassainia–Hmidi–Mateu [68] showed that there exist non-

radial patches bifurcating from annuli at Ω < 0 and Gómez-Serrano [49] constructed non-radial,

doubly connected stationary patches (Ω = 0). Therefore we cannot expect a non-simply-connected

rotating patch D with Ω ≤ 0 to be radial for α ∈ (0, 2).

However, if D is a simply-connected stationary patch, then radial symmetry results were

obtained in a series of works for α ∈ [0, 5
3
), which we review below. These works consider

(Equation 1.1.6) in a more general context not limited to dimension 2: Let Kα,d be the fundamen-

tal solution of (−∆)−1+α
2 in Rd for d ≥ 2, given by

Kα,d := −Cα,d|x|−d+2−α (1.2.1)

for some Cα,d > 0; except that in the special case −d+ 2− α = 0 it becomes Kα,d = Cd ln |x| for

some Cd > 0. Note that Kα,d ∈ L1
loc(Rd) for all α < 2. Consider the following question:
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Question 2. Let α ∈ [0, 2). Assume D ⊂ Rd is a bounded domain such that

Kα,d ∗ 1D −
Ω

2
|x|2 = const on ∂D (1.2.2)

for some Ω ≤ 0, where the constant is the same along all connected components of ∂D. Must D

be a ball in Rd?

Positive answers to Question 2 were obtained in the Ω = 0 case for α < 5
3

in the following

works. As we discussed before, Fraenkel [41] proved that D must be a ball for α = 0. Also

using the moving plane method, Reichel [99, Theorem 2], Lu–Zhu [83] and Han–Lu–Zhu [56]

generalized this result to α ∈ [0, 1). Here [83] also covered generic radially increasing potentials

not too singular at the origin (which include all Riesz potentials Kα,d with α ∈ [0, 1)). Recently,

Choksi–Neumayer–Topaloglu [29, Theorem 1.3] further pushed the range to α ∈ [0, 5
3
), leaving

the range α ∈ [5
3
, 2) an open problem. We point out that in all these results for α > 0, ∂D was

assumed to be at least C1. All above results were obtained using the moving plane method.

In our third main result, we use a completely different approach to give an affirmative answer

to Question 2 for all Ω ≤ 0 and α ∈ [0, 2), under a weaker assumption on the regularity of ∂D.

Theorem C (= Theorem 3.1.2). Let D be a bounded domain in Rd with Lipschitz boundary (and

if d = 2 we only require ∂D to be rectifiable). If D satisfies (Equation 1.2.2) for some Ω ≤ 0 and

α ∈ [0, 2), then it must be a ball in Rd.

As a directly consequence, Theorem C implies that for the gSQG equation with α ∈ [0, 2), any

simply-connected rotating patch with Ω ≤ 0 must be a disk (see Theorem 3.1.4). In addition, in the

smooth setting (Equation 1.1.7), we prove a similar result in Corollary 3.1.7 for uniformly-rotating

solutions with Ω ≤ 0 for all α ∈ [0, 2): if the super level-sets {ω0 > h} are all simply-connected

for all h > 0, then ω0 must be radially decreasing.

Next we review the previous literature on uniformly-rotating solutions for the gSQG equa-

tion. Note that the case of α ∈ (0, 2) is more challenging than the 2D Euler case, since
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the velocity is more singular and this produces obstructions to the bifurcation theory when it

comes to the choice of spaces and the regularity of the functionals involved in the construction.

Hassainia–Hmidi [57] showed the existence of V-states with Ck boundary regularity in the case

0 < α < 1, and in [21], Castro–Córdoba–Gómez-Serrano upgraded the result to show exis-

tence and C∞ boundary regularity in the remaining open cases: α ∈ [1, 2) for the existence,

α ∈ (0, 2) for the regularity. In that case, the solutions bifurcate at angular velocities given by

Ωα
m := 2α−1 Γ(1−α)

Γ(1−α
2 )

2

(
Γ(1+α

2 )
Γ(2−α

2 )
− Γ(m+α

2 )
Γ(m+1−α

2 )

)
. This boundary regularity was subsequently im-

proved to analytic in [22]. See also [62] for another family of rotating solutions, [68, 100] for

the doubly connected case and [23] for a construction in the smooth setting.

One can check that Ωα
m are increasing functions of m for any α, whose limit is a finite number

Ωα := 2α−1 Γ(1−α)

Γ(1−α
2 )

2

Γ(1+α
2 )

Γ(2−α
2 )

for α ∈ [0, 1), and +∞ if α ≥ 1. It is then a natural question to

ask whether there exist V-states (with area π) that rotate with angular velocity faster than Ωα for

α ∈ (0, 1). Our fourth main theorem answers this question among all simply-connected patches:

Theorem D (= Theorem 3.2.1). For α ∈ (0, 1), let 1D be a simply connected V-state of area π

and let its angular velocity be Ω ≥ Ωα. Then D must be the unit disk.

Finally, we illustrate a comparison of our results in Theorem C and D (in red color) with the

previous results (in black color) in Figure Figure 1.2.

0

(finite if 0 < α < 1, Ω

Ωαm
a simply-connected patch

simply-connected stationary patch
must be a disk for α ∈ [0, 5

3
)

must be a disk (0 < α < 2)
a simply-connected patch
must be a disk (0 < α < 1)

= +∞ if 1 ≤ α < 2)
there exists nonradial

non-simply-connected patch

Ωα

Figure 1.2: For gSQG in the patch setting, previous results on Question 1 are summarized in black
color, with our results in Theorem C and D colored in red.
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Structure of the proofs: Theorem A-Theorem D

While all the previous symmetry results on Question 1 and Equation 2 [41, 83, 56, 59, 99, 29] are

done by moving plane methods, our approaches are completely different, which have a variational

flavor.

Theorem A is based on computing the first variation of the energy functional

E [1D] = −1

2

ˆ
R2

1D(x)(1D ∗ N )(x)− Ω

2
|x|21D(x)dx

as we deform D along a carefully chosen vector field. On the one hand, we show the first variation

should be 0 if D is a stationary/rotating patch with angular velocity Ω; on the other hand, we show

that the first variation must be non-zero if Ω ≤ 0 or Ω ≥ 1
2
, leading to a contradiction. In the

proof, a rearrangement inequality due to Talenti [109] is crucial to get a sign condition. In the case

when the patch is non-simply-connected, the choice of the right vector field is more involved since

one has to deal with all the connected components at once, and even though the stream function ψ

is constant on each of the boundaries, it is not guaranteed that this constant will be the same for

each of them, potentially yielding extra boundary terms which are not sign definite, and having to

reprove a new version of the aforementioned inequality.

The smooth setting in Theorem B is based on a similar idea, but technically more difficult.

The point of view is to approximate a smooth function by step functions and consider the above

perturbation in each set where the step function is constant. To do this we need to obtain some

quantitative (stability) estimates on our version of Talenti’s rearrangement inequality, in particular

in terms of the Fraenkel asymmetry of the domain in the spirit of Fusco–Maggi–Pratelli [42].

Theorem C is also based on a variational approach, but we need a different perturbation from

the vector field in Theorem A, which heavily relies on the Newtonian potential, and fails for general

Riesz potential Kα. The key ingredient to prove Theorem C is to perturb D using the continuous

Steiner symmetrization [11], which has been successfully applied in other contexts by Carrillo–
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Hittmeir–Volzone–Yao [18] (nonlinear aggregation models) or Morgan [90] (minimizers of the

gravitational energy). This method is much more flexible and allows to treat more singular kernels

than in the existing papers using moving plane methods. Due to the low regularity of the kernels,

instead of computing the derivative of the energy under the perturbation, we work with finite

differences instead.

Theorem D uses maximum principles and monotonicity formulas for nonlocal equations. The

idea is to find the smallest disk B(0, R) containing D (which intersects ∂D at some x0), then use

two different ways to compute ∇(1B(0,R)\D ∗Kα) at x0, and obtain a contradiction if Ω ≥ Ωα and

D is not a disk. The proof works for the full range of α ∈ [0, 2), thus closing the problem raised

by Hmidi [59] and de la Hoz–Hassainia–Hmidi–Mateu [66] among all simply-connected patches.

1.2.2 Rigidity/Flexibility results for vortex sheets [51, 52]

In chapter 4 and chapter 5, we will focus on the vortex sheet equation. There are very few known

examples of nontrivial steady solutions, and in fact, other than the circle or the line, the list only

comprises the segment of length 2a and density

γ(x) = Ω
√
a2 − x2, x ∈ [−a, a], (1.2.3)

which is a rotating solution with angular velocity Ω [6] and the family found by Protas–Sakajo [98],

made out of segments rotating about a common center of rotation with endpoints at the vertices of

a regular polygon. We remark that none of these are supported on a closed curve.

Numerically, O’Neil [93, 94] used point vortices to approximate the vortex sheet and compute

uniformly rotating solutions and Elling [40] constructed numerically self-similar vortex sheets

forming cusps. O’Neil [95, 96] also found numerically steady solutions which are combinations

of point vortices and vortex sheets.

As in the patch/smooth setting, it is easy to see that if the zi’s are concentric circles with con-
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stant $i (with respect to the constant-speed parametrization) for every i, the solution is stationary,

and it is also uniformly-rotating with any Ω ∈ R. We would like to understand the reverse impli-

cation, namely:

Question 3. Under what conditions must a stationary/uniformly-rotating vortex sheet be radially

symmetric?

The next two theorems are the main results in chapter 4 and chapter 5 regarding the vortex

sheet equations:

Theorem E. Let ω(x, t) = ω0(RΩtx) be a stationary/uniformly-rotating vortex sheet with angular

velocity Ω. Assume that ω0 is concentrated on Γ, which is a finite union of smooth curves, and ω0

has positive vorticity strength on Γ. (See (H1)–(H3) in section 4.1 for the precise regularity and

positivity assumptions.)

If Ω ≤ 0, Γ must be a union of concentric circles, and ω0 must have constant strength along

each circle (with respect to the constant-speed parametrization). In addition, if Ω < 0, all circles

must be centered at the origin.

Theorem F (= Theorem 5.1.2). There exists nontrivial rotating vortex sheets with positive angu-

lar velocity Ω > 0, whose vortex strength is strictly positive but not concentrated on a non-radial

curve.

Structure of the proofs: Theorem E-Theorem F

The proof of Theorem E is inspired by our recent rigidity result in the paper [50] on stationary

and rotating solutions of the 2D Euler equations both in the smooth and vortex patch settings. To

prove it, we constructed an appropriate functional and showed, on one hand, that any stationary

solution had to be a critical point, and on the other, for any curve which is not a circle there existed

a vector field along which the first variation was non-zero. This vector field is defined in terms of

an elliptic equation in the interior of the patch. In the case of the vortex sheet, this is not possible
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anymore. Instead, we desingularize the problem by considering patches of thickness∼ εwhich are

tubular neighborhoods of the sheet. The drawback is that we lose the property that any stationary

solution has to be a critical point if ε > 0 and very careful, quantitative estimates need to be done

to show that indeed the first variation of a stationary solution tends to 0 as ε → 0. This setup is

also reminiscent of the numerical work by Baker–Shelley [5], where they approximate the motion

of a vortex sheet by a vortex patch of very small width. In [8], Benedetto–Pulvirenti proved the

stability (for short time) of vortex sheet solutions with respect to solutions to 2D Euler with a thin

strip of vorticity around a curve. See also the work by Caflisch–Lombardo–Sammartino [13] for

more stability results with a different desingularization.

The main strategy to prove Theorem 5.1.2, is to employ bifurcation theory and try to bifur-

cate from the simple eigenvalue b := 1
2π

´ π
−π γ(x, t)dx = 2. However, the standard methods

(Crandall-Rabinowitz [35]) fail since the linearized operator around the circle does not satisfy the

transversality condition: in other words, the nontrivial zero set is not transversal to the trivial one

(disks with constant vorticity amplitude). This phenomenon is usually known in the literature as

a degenerate bifurcation [73, 72]. Graphically, this can be seen in Figure Figure 5.1. The prob-

lem is that we no longer have a single branch emanating from the disk, but two, and therefore the

linearized operator fails to describe the local behaviour at the bifurcation point. To overcome this

issue, we first reduce the nonlinear problem to a suitable finite dimensional space by means of a

Lyapunov-Schmidt reduction since the restriction of DF is an isomorphism between Ker(DF)⊥

and Im(DF). After having done so, we are left with a finite dimensional system and it is there

where we perform a higher order expansion around the bifurcation point, since, as expected by the

failure of the transversality condition, the first order approximation is identically zero. We obtain

that in suitable coordinates, the zero sets of F behave as x2 − y2 = 0 and thus two bifurcation

branches emanate from the bifurcation point. The last part of the proof is devoted to handle the

higher order terms, which can be controlled if we restrict the bifurcation domain to a suitable small

enough neighbourhood. We mention here that this technique had been successfully employed by
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Hmidi–Mateu [61] (in the hyperbolic case) and Hmidi–Renault [65] (in the elliptic case).

1.2.3 Quantitative estimates for rotating vortex patches [97]

The goal of chapter 6 is to establish some quantitative estimates for non-radial simply-connected

rotating patches, which are known to exist. From now on, we assume that a bounded domain D

is simply-connected and has C2 boundary. If ω(x, t) := 1D(RΩtx) is a uniformly-rotating patch,

then the net velocity in the rotating frame has no contribution to the deformation of the boundary

∂D, namely,∇⊥
(
(1D ∗ N )− Ω

2
|x|2
)
·~n = 0, where ~n denotes the outer normal vector on ∂D. By

integrating this along the boundary, one can derive the following equation for the relative stream

function Ψ:

Ψ(x) := 1D ∗ N −
Ω

2
|x|2 = constant for all x ∈ ∂D. (1.2.4)

In the rest of the paper, we say a pair (D,Ω) is a solution to (Equation 1.2.4) if 1D and Ω satisfy

the equation (Equation 1.2.4).

Small angular velocity Ω

Our first main result is about the outmost point on ∂D when the angular velocity Ω is small. As

mentioned earlier, ellipses are uniformly-rotating solutions. More precisely, an ellipse with semi-

axes a, b is rotating with angular velocity Ω = ab
(a+b)2 . By imposing b = 1

a
to keep the area of the

patch equal to π, one can easily see that for any 0 < Ω ≤ 1
4
, there exists an ellipse that is rotating

with the given Ω. Moreover, the boundary is stretching as Ω tends to 0 in the sense that the length

of the major axis is comparable with Ω−
1
2 . Note that ellipses are not the only uniformly-rotating

solutions for small angular velocities. For example, the existence of secondary bifurcations from

ellipses was numerically observed by Kamm in his thesis [71] and theoretically proved in [22, 60].

17



Thus it is a natural question whether every non-radial simply-connected rotating patch with a fixed

area and 0 < Ω � 1 must have its outmost point very far from the origin (center of rotation). In

the next theorem, we prove this is indeed true.

Theorem G. . Let D ⊂ R2 be a simply connected domain such that |D| = |B| = π, where B

is the unit disk centered at the origin. Then there exist positive constants Ω0 and κ0 such that if

(D,Ω) is a solution to (Equation 1.2.4) with Ω ∈ (0,Ω0), then either D = B, or

sup
x∈∂D

|x| > κ0Ω−
1
2 . (1.2.5)

Remark 1.2.1. Note that the power −1
2

is sharp since it is achieved by ellipses. Furthermore, one

can easily show that (Equation 1.2.4) is scaling invariant in the sense that if (D,Ω) is a solution,

then (Da,Ω) is also a solution for any a > 0, where Da := {ax ∈ R2 : x ∈ D}. Therefore without

the restriction on the size of the patch, (Equation 1.2.5) reads as

1√
|D|

sup
x∈∂D

|x| > κ0√
π

Ω−
1
2 .

m-fold symmetric patches

It has been known since the work of Burbea [12] that there are m-fold symmetric rotating patches

for every integer m ≥ 2. From the numerical results [36, 58], it appears that for m � 1, the

angular velocity Ω along the bifurcation curve is very close to 1
2

(i.e. 0 < 1
2
− Ω� 1 for m� 1).

But there are no such type of quantitative estimates so far. In the next theorem, we will derive a

lower bound of the angular velocity by imposing large m.

Theorem H. There exist m0 ≥ 2 and c > 0 such that if (Ω, D) is a solution to (Equation 1.2.4)
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and D is simply-connected, non-radial, and m-fold symmetric for some m ≥ m0 then

1

2
− Ω ≤ c

m
.

We emphasize that this theorem holds for a general simply-connected patch, which does not

need to lie on the bifurcation curve.

For m-fold symmetric solutions on the global bifurcation curves constructed in [58], we will

also estimate the difference between a rotating patch and the unit disk. To be precise, we will focus

on the curves,

Cm :=

{(
ũm(s), Ω̃m(s)

)
∈ C2(T)×

(
0,

1

2

)
: s ∈ [0,∞)

}
for m ≥ 2,

that satisfy the following properties (see [58, Theorem 1.1] for the details):

(A1) ũm(s) ∈ {u ∈ C2(T) : u(θ) =
∑∞

n=1 an cos(nmθ) for some (an)∞n=1 and u > −1}.

(A2) (Dũm(s), Ω̃m(s)) is a solution for (Equation 1.2.4),

where Du := {r(cos θ, sin θ) ∈ R2 : 0 ≤ r < (1 + u(θ)), θ ∈ T}.

(A3) ∂θu(θ) < 0 for all θ ∈ (0, π
m

), where u = ũm(s).

(A4) (ũm(0), Ω̃m(0)) =
(
0, m−1

2m

)
.

For such curves, we have the following theorem:

Theorem I. Let Cm :=
{

(ũm(s), Ω̃m(s)) ∈ C2(T)×
(
0, 1

2

)
: 0 ≤ s <∞

}
be a continuous curve

that satisfies the properties (A1)-(A4). Then there exist constants c > 0 and m0 ≥ 3 such that if

m ≥ m0, then

‖ũm(s)‖L∞(T) ≤
c

m
for all s ≥ 0.
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Although each curve emanates from the unit disk, the possibility that minθ∈T(1 + ũm(s)) tends

to 0 along the curve has not been completely eliminated ([58, Theorem 4.6, Lemma 6.6]), while it

does certainly happen for ellipses (m = 2). The significant difference betweenm = 2 andm ≥ 3 is

that ifm ≥ 3, then the stream function (1D ∗N ) behaves quite nicely, namely, |∇(1D∗N )|
|x| is globally

bounded (especially near the origin) independently of D (Lemma 6.2.1. See also [38, 39], and the

references therein, where global boundedness of gradient of m-fold symmetric stream functions

was proved). This will play a crucial role to eliminate the scenario that ∂D almost touches the

origin when 1
2
− Ω is sufficiently large compared to 1

m
in Lemma 6.2.2.

We summarize the main results in Figure Figure 1.3

0 1
2

Ω

(m−1
2m , 0)

|u|L∞

c1
m

1
2 −

c2
m

Figure 1.3: Illustration of the main results. a) Any patch with Ω � 1 must have its outmost point
very far from the origin. b) A bifurcation curve of m-fold symmetric patches cannot be continued
beyond the blue dashed lines for large m.

Structure of the proofs: Theorem G - Theorem I

The starting point for Theorem G and Theorem H is the variational formulation of (Equation 1.2.4),

used by Gómez-Serrano, Shi, Yao and the author in [50]. Namely, if (D,Ω) is a solution to

(Equation 1.2.4) and ∂D is C2, then formally, 1D can be thought of as a critical point of the
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functional,

I(ρ) :=
1

2

ˆ
R2

ρ ∗ N (x)ρ(x)dx− Ω

ˆ
R2

|x|2

2
ρ(x)dx =: I1(ρ)− ΩI2(ρ),

under measure-preserving perturbations. More precisely, it holds that

ˆ
D

~v · ∇Ψ(x)dx = 0, for any v ∈ C2(D) such that∇ · ~v = 0, (1.2.6)

Indeed, (Equation 1.2.6) follows directly from (Equation 1.2.4) and the integration by parts. By

choosing a specific vector field ~v := x + ∇p, where p is defined as the solution to the Poisson

equation,


∆p = −2 in D,

p = 0 on ∂D,
(1.2.7)

Gómez-Serrano et al. derived the following identity for uniformly-rotating patches:

2Ω

(ˆ
D

|x|2

2
dx− |D|

2

4π

)
= (1− 2Ω)

(
|D|2

4π
−
ˆ
D

pdx

)
. (1.2.8)

Note that both parentheses are strictly positive if D 6= B, where B is the unit disk centered

at the origin. Thanks to the result by Brasco–De Philippis–Velichkov in [10, Proposition 2.1],

one can find a lower bound of the right-hand side of (Equation 1.2.8) in terms of |D4B|, namely,

|D|2
4π
−
´
D
pdx & |D4B|2. Hence (Equation 1.2.8) yields that

|D4B|2 . Ω

(ˆ
D

|x|2

2
dx− |D|

2

4π

)
< Ω sup

x∈∂D
|x|2,

for Ω� 1. Therefore we only need to rule out the case where |D4B| is small. Assuming |D4B|

and Ω are sufficiently small, we will prove (Lemma 6.1.6) that D is necessarily star-shaped and
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the boundary can be parametrized by (1 + u(x))x, for x ∈ ∂B1 and some u ∈ C2(∂B). However,

the difficulty is that we have |D4B| ∼‖u‖L1(∂B) and
´
D
|x|2
2
dx − |D|2

4π
∼‖u‖2

L2(∂B), while L1

and L2 are not comparable. The key idea is to use a different vector ~v := x − 2∇ (1D ∗ N ) in

(Equation 1.2.6), which gives another identity for any simply-connected rotating patches,

(
1

2
− Ω

)(ˆ
D

|x|2dx− |D|
2

2π

)
=

1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx. (1.2.9)

Thanks to the result of Loeper [79, Proposition 3.1], the right-hand side in (Equation 1.2.9) can

be estimated in terms of 2-Wasserstein distance between 1Ddx and 1Bdx (see Proposition 6.1.9).

In the proof of Proposition 6.1.8, we will construct an explicit transport map and obtain the bound

for the right-hand side: If ‖u‖L∞(T) ≤ 1
2
,

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx .
(
a

ˆ
T
|u|2dθ +

1

a

ˆ
T
f(θ)2dθ

)
, (1.2.10)

where f(θ) :=
´ θ

0
u(s)2 + 2u(s)ds and a ∈ (2‖u‖L∞(T), 1). Since ‖f‖L∞(T) .‖u‖L1(T),

(Equation 1.2.9) and (Equation 1.2.10) will give us ‖u‖L1(T) ∼‖u‖L2(T) for 0 < Ω � 1, if we

can choose a sufficiently small.

The proof of Theorem H also relies on the identity (Equation 1.2.9). By imposing m-fold

symmetry on the patch, we can lower the total cost of the transportation, from which we can obtain

a suitable upper bound of 1
2
− Ω when m is sufficiently large. Indeed, if u is 2π

m
periodic, then f is

also 2π
m

periodic as well. Thus by choosing large m, we can lower ‖f‖L∞(T) on the right-hand side

in (Equation 1.2.10) by using Jensen’s inequality.

Theorem I will be proved by showing that if ‖ũm(s)‖L∞ is too large, then 1
2
−Ω must be large

enough to contradict Theorem H. The main difficulty is that 1
2
− Ω can be estimated in terms

of ‖ũm(s)‖L2(T) by using the identity (Equation 1.2.8) (Lemma 6.2.4), while L2 and L∞ are not

comparable. We resolve this issue by estimating the gradient of the stream function in a very
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delicate way (Lemma 6.2.5 and 6.2.6).
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CHAPTER 2

RIGIDITY RESULTS FOR 2D EULER

In chapter 2-chapter 3, we study radial symmetry in 2D Euler equation and generalized SQG

equations.

Notations Through chapter 2-chapter 3, we use the following notations.

For a simple closed curve Γ, denote int(Γ) by its interior, which is the bounded connected

component of R2 separated by the curve Γ. Note that the Jordan–Schoenflies theorem guarantees

that int(Γ) is open and simply connected.

We say that two disjoint simple closed curves Γ1 and Γ2 are nested if Γ1 ⊂ int(Γ2) or vice

versa. We say that two connected domains D1, D2 are nested if one is contained in a hole of the

other one.

For a bounded connected domain D ⊂ R2, we denote by ∂outD its outer boundary. And if D is

doubly-connected, we denote by ∂inD its inner boundary,

For a set D, we use 1D(x) to denote its indicator function. And for a statement S, we let

1S =


1 if S is true

0 if S is false
. (e.g. 1π<3 = 0).

For a domain U ⊂ R2, in the boundary integral
´
∂U
~n · ~fdσ, the vector ~n is taken as the outer

normal of the domain U in that integral.

24



2.1 Radial symmetry of steady/rotating patches for 2D Euler equation

Throughout this section we work with the 2D Euler equation (Equation 1.1.1) in the patch setting.

For a stationary or uniformly-rotating patch D with angular velocity Ω ∈ R, let

fΩ(x) := (1D ∗ N )(x)− Ω

2
|x|2.

Recall that in (Equation 1.1.6) we have shown that fΩ ≡ Ci on each connected component of ∂D,

where the constants can be different on different connected components.

Our goal in this section is to prove Theorem A, which completely answers Question 1 for 2D

Euler patches. As we described in the introduction, our proof has a variational flavor, which is

done by perturbing D by a carefully chosen vector field, and compute the first variation of an

associated energy functional in two different ways. In subsection 2.1.1, we will define the energy

functional and the perturbation vector field, and give a one-page proof in Theorem 2.1.2 that

answers Question 1 among simply-connected patches. (Note that even among simply-connected

patches, it is an open question whether every rotating patch with Ω > 1
2

or Ω < 0 must be a disk.)

In the following subsections, we further develop this method, and modify our perturbation vector

field to cover non-simply-connected patches.

2.1.1 Warm-up: radial symmetry of simply-connected rotating patches

We begin by providing a sketch and some motivations of our approach, and then give a rigorous

proof afterwards in Theorem 2.1.2. Suppose that D is a C1 simply-connected rotating patch with

angular velocity Ω that is not a disk. We perturb D in “time” (here the “time” t is just a name

for our perturbation parameter, and is irrelevant with the actual time in the Euler equation) with a

velocity field ~v(x) ∈ C1(D) ∩ C(D̄) that is divergence-free in D, which we will fix later. That is,

consider the transport equation

ρt +∇ · (ρ~v) = 0
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with ρ(·, 0) = 1D. We then investigate how the “energy functional”

E [ρ] := −
ˆ
R2

1

2
ρ(x)(ρ ∗ N )(x)− Ω

2
|x|2ρ(x)dx

changes in time under the perturbation. Formally, we have

d

dt
E [ρ]

∣∣∣
t=0

= −
ˆ
R2

ρt(x, 0)
(

(ρ(·, 0) ∗ N )(x)− Ω

2
|x|2
)
dx

= −
ˆ
D

~v(x) · ∇
(

(1D ∗ N )(x)− Ω

2
|x|2
)
dx.

(2.1.1)

The above transport equation and the energy functional only serve as our motivation, and will not

appear in the proof. In the actual proof we only focus on the right hand side of (Equation 2.1.1),

which is an integral that is well-defined by itself:

I := −
ˆ
D

~v(x) · ∇
(

(1D ∗ N )(x)− Ω

2
|x|2
)
dx = −

ˆ
D

~v · ∇fΩ dx. (2.1.2)

We will use two different ways to compute I, and show that if D is not a disk, the two ways lead

to a contradiction for Ω ≤ 0 or Ω ≥ 1
2
.

On the one hand, since fΩ is a constant on ∂D (denote it by c), the divergence theorem yields

the following for every ~v ∈ C1(D) ∩ C(D̄) that is divergence-free in D:

I = −c
ˆ
∂D

~n · ~vdσ +

ˆ
D

(∇ · ~v)fΩ dx = −c
ˆ
D

∇ · ~vdx+

ˆ
D

(∇ · ~v)fΩ dx = 0. (2.1.3)

On the other hand, we fix ~v as follows, which is at the heart of our proof. Let ~v(x) := −∇ϕ(x) in

D, where

ϕ(x) :=
|x|2

2
+ p(x) in D, (2.1.4)
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with p(x) being the solution to Poisson’s equation


∆p(x) = −2 in D

p(x) = 0 on ∂D.
(2.1.5)

Note that ϕ is harmonic in D, thus ~v is indeed divergence-free in D. This definition of ~v is

motivated by the fact that among all divergence-free vector fields in D, such ~v is the closest one

to −~x in the L2(D) distance. (In fact, such ~v is connected to the gradient flow of
´
D
|x|2
2
dx in

the metric space endowed by 2-Wasserstein distance, under the constraint that |D(t)| must remain

constant [88, 89, 1].) Formally, one expects that D becomes “more symmetric” as we perturb it by

~v, which inspires us to consider the first variation of E under such perturbation.

In the proof we will show that with such choice of ~v, we can compute I in another way and

obtain that I > 0 for Ω ≤ 0 and I < 0 for Ω ≥ 1
2
. Therefore in both cases, we obtain a

contradiction with I = 0 in (Equation 2.1.3).

Our proof makes use of a rearrangement inequality for solutions to elliptic equations, which is

due to Talenti [109]. Below is the form that we will use; the original theorem works for a more

general class of elliptic equations.

Proposition 2.1.1 ([109], Theorem 1). Let D ⊂ R2 be a bounded domain with C1 boundary, and

let p be defined as in (Equation 2.1.5). Let B be a disk centered at the origin with |B| = |D|, and

let pB solve (Equation 2.1.5) in B. Then we have p∗ ≤ pB pointwise in B, where p∗ is the radial

decreasing rearrangement of p∗. As a consequence, we have

ˆ
D

p(x)dx ≤ 1

4π
|D|2,

and the equality is achieved if and only if D is a disk.

Now we are ready to prove the following theorem, saying that any simply-connected station-
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ary/rotating patch with Ω ≤ 0 or Ω ≥ 1
2

must be a disk. Interestingly, the same proof can treat the

two disjoint intervals Ω ≤ 0 and Ω ≥ 1
2

all at once.

Theorem 2.1.2. Let D be a simply-connected domain with C1 boundary. If D is a rotating patch

solution with angular velocity Ω, where Ω ≤ 0 or Ω ≥ 1
2
, then D must be a disk, and it must be

centered at the origin unless Ω = 0.

Proof. Let D be a rotating patch with Ω ∈ (−∞, 0] ∪ [1
2
,∞). As we described above, in this

theorem we will use two different ways to compute the integral I defined in (Equation 2.1.2),

where we fix ~v(x) := −∇ϕ(x), with ϕ and p defined as in (Equation 2.1.4) and (Equation 2.1.5).

On the one hand, we have that ~v is divergence free in D, and elliptic regularity theory im-

mediately yields that ~v ∈ C1(D) ∩ C(D̄). Using the assumption that D is a rotating patch, we

know fΩ is a constant on ∂D. (Note that ∂D is a connected closed curve since we assume D is

simply-connected). Thus the computation in (Equation 2.1.3) directly gives that I = 0.

On the other hand, we compute I as follows:

I = −
ˆ
D

~v · ∇fΩdx =

ˆ
D

∇ϕ · ∇fΩdx =

ˆ
D

x · ∇fΩdx︸ ︷︷ ︸
=:I1

+

ˆ
D

∇p · ∇fΩdx︸ ︷︷ ︸
=:I2

. (2.1.6)

For I1, we have

I1 =

ˆ
D

x · ∇(1D ∗ N )dx−
ˆ
D

x · Ωxdx

=
1

2π

ˆ
D

ˆ
D

x · (x− y)

|x− y|2
dydx− Ω

ˆ
D

|x|2dx

=
1

4π

ˆ
D

ˆ
D

x · (x− y)− y · (x− y)

|x− y|2
dydx− Ω

ˆ
D

|x|2dx

=
1

4π
|D|2 − Ω

ˆ
D

|x|2dx,

(2.1.7)

where the third equality is obtained by exchanging xwith y in the first integral, then taking average

with the original integral. To compute I2, using the divergence theorem (and the fact that p = 0 on
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∂D), we have

I2 = −
ˆ
D

p∆fΩdx = (2Ω− 1)

ˆ
D

pdx. (2.1.8)

Plugging (Equation 2.1.7) and (Equation 2.1.8) into (Equation 2.1.6) gives

I =
1

4π
|D|2 − Ω

ˆ
D

|x|2dx+ (2Ω− 1)

ˆ
D

pdx. (2.1.9)

When Ω = 0, Proposition 2.1.1 directly gives that I > 0 if D is not a disk, contradicting I = 0.

When Ω ∈ (−∞, 0) ∪ [1
2
,∞), let B be a disk centered at the origin with the same area as D.

Towards a contradiction, assume D 6= B. Among all sets with the same area as D, the disk B is

the unique one that minimizes the second moment, thus we have

ˆ
D

|x|2dx >
ˆ
B

|x|2dx =
1

2π
|D|2,

where the last step follows from an elementary computation. Plugging this into (Equation 2.1.9)

gives the following inequality for Ω ∈ [1
2
,∞):

I < 1

4π
|D|2 − Ω

2π
|D|2 + (2Ω− 1)

ˆ
D

pdx = (1− 2Ω)
( 1

4π
|D|2 −

ˆ
D

pdx
)
≤ 0.

On the other hand, for Ω ∈ (−∞, 0), we have

I > 1

4π
|D|2 − Ω

2π
|D|2 + (2Ω− 1)

ˆ
D

pdx = (1− 2Ω)
( 1

4π
|D|2 −

ˆ
D

pdx
)
> 0,

and we get a contradiction to I = 0 in all the cases, thus the proof is finished.

Remark 2.1.3. In fact, one can easily check that Theorem 2.1.2 holds for a bounded discon-

nected patch D = ∪̇Ni=1Di with C1 boundary, as long as each connected component Di is simply-
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connected. Here the proof remains the same, except a small change in the I = 0 proof: since now

we have fΩ = ci on ∂Di, (Equation 2.1.3) should be replaced by

I = −
N∑
i=1

(
ci

ˆ
∂Di

~n · ~vdσ +

ˆ
Di

(∇ · ~v)fΩdx

)
= 0.

Even in the regime Ω ∈ (0, 1
2
), where non-radial rotating patches are known to exist (recall that

there exist patches bifurcating from a disk at Ωm = m−1
2m

for all m ≥ 2), our approach still allows

us to obtain the following quantitative estimate, saying that if a simply-connected patch D rotates

with angular velocity Ω ∈ (0, 1
2
) that is very close to 1

2
, then D must be very close to a disk, in the

sense that their symmetric difference must be small.

Corollary 2.1.4. Let D be a simply-connected domain with C1 boundary. Assume D is a rotating

patch solution with angular velocity Ω, where Ω ∈ (1
4
, 1

2
). Let δ := 1

2
− Ω. Then we have

|D4B| ≤ 2
√

2δ|D|,

where B is the disk centered at the origin with the same area as D.

Proof. In the proof of Theorem 2.1.2, combining the equation I = 0 and (Equation 2.1.9) to-

gether, we have that
1

4π
|D|2 − Ω

ˆ
D

|x|2dx− (1− 2Ω)

ˆ
D

pdx = 0.

Dividing both sides by Ω and rearranging the terms, we obtain

ˆ
D

|x|2dx− 1

2π
|D|2 =

1− 2Ω

Ω

(
1

4π
|D|2 −

ˆ
D

pdx

)
≤ 2δ|D|2

π
,

where in the inequality we used that 2δ := 1− 2Ω, Ω > 1
4
, and

´
D
pdx ≥ 0.
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Since
´
B
|x|2dx = 1

2π
|D|2, the above inequality implies that

ˆ
D\B
|x|2dx−

ˆ
B\D
|x|2dx ≤ 2δ|D|2

π
. (2.1.10)

Since D and B has the same area, let us denote β := |D \ B| = |B \D|. Among all sets U ⊂ Bc

with area β,
´
U
|x|2dx is minimized when U is an annulus with area β and inner circle coinciding

with ∂B, thus an elementary computation gives

ˆ
D\B
|x|2dx ≥ inf

U⊂Bc,|U |=β

ˆ
U

|x|2dx =
β(2|B|+ β)

2π
.

Likewise, among all sets V ⊂ B with area β,
´
V
|x|2dx is maximized when V is an annulus with

area β and outer circle coinciding with ∂B, thus

ˆ
B\D
|x|2dx ≤ sup

V⊂B,|V |=β

ˆ
V

|x|2dx =
β(2|B| − β)

2π
.

Subtracting these two inequalities yields

ˆ
D\B
|x|2dx−

ˆ
B\D
|x|2dx ≥ β2

π
,

and combining this with (Equation 2.1.10) immediately gives

β2 ≤ 2δ|D|2,

thus |D4B| = 2β ≤ 2
√

2δ|D|.

2.1.2 Radial symmetry of non-simply-connected stationary patches

In this subsection, we aim to prove radial symmetry of a connected rotating patch D with Ω ≤ 0,

where D is allowed to be non-simply-connected. Let D ⊂ R2 be a bounded connected domain
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with C1 boundary. Assume D has n holes with n ≥ 0, and then let h1, · · · , hn ⊂ R2 denote the

n holes of D (each hi is a bounded open set). Note that ∂D has n + 1 connected components:

they include the outer boundary of D, which we denote by ∂D0, and the inner boundaries ∂hi for

i = 1, ..., n.

To begin with, we point out that even for the steady patch case Ω = 0, the proof of Theo-

rem 2.1.2 cannot be directly adapted to the non-simply-connected patch. If we define ~v in the

same way, then the second way to compute I still goes through (since Proposition 2.1.1 still holds

for non-simply-connected D), and leads to I > 0 if D is not a disk. But the first way to compute

I no longer gives I = 0: if D is stationary and not simply-connected, f(x) := (1D ∗ N )(x)

may take different constant values on different connected components of ∂D, thus the identity

(Equation 2.1.3) no longer holds.

In order to fix this issue, we still define ~v = −∇ϕ = −∇( |x|
2

2
+ p), but modify the definition

of p in the following lemma. Compared to the previous definition (Equation 2.1.5), the difference

is that p now takes different values 0, c1, . . . , cn on each connected component of ∂D. The lemma

shows that there exist values of {ci}ni=1, such that
´
∂hi
∇p · ~ndσ = −2|hi| along the boundary of

each hole. As we will see later, this leads to
´
∂hi
~v ·~ndσ = 0 for i = 1, . . . , n,which ensures I = 0.

(Of course, with p defined in the new way, the second way of computing I no longer follows from

Proposition 2.1.1, and we will take care of this later in Proposition 2.1.6.)

Lemma 2.1.5. Let D, hi and ∂D0 be given as in the first paragraph of Section subsection 2.1.2.

Then there exist positive constants {ci}ni=1, such that the solution p : D → R to the Poisson

equation


∆p = −2 in D,

p = ci on ∂hi for i = 1, . . . , n,

p = 0 on ∂D0.

(2.1.11)
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satisfies ˆ
∂hi

∇p · ~n dσ = −2|hi| for i = 1, . . . , n. (2.1.12)

Here |hi| is the area of the domain hi ⊂ R2.

Proof. Let u satisfy that


∆u = −2 in D

u = 0 on ∂D.

Furthermore let the function vj for j = 1, ..., n be the solution to


∆vj = 0 in D

vj = 0 on ∂D \ ∂hj

vj = 1 on ∂hj.

Now we consider the following linear equation,

Ax = b, (2.1.13)

where Ai,j =
´
∂hi
∇vj · ~n dσ and bi = −2|hi| −

´
∂hi
∇u · ~n dσ. We argue that (Equation 2.1.13)

has a unique solution. Thanks to the divergence theorem, we have

0 =

ˆ
D

∆vjdx =

ˆ
∂D0

∇vj · ~ndσ −
n∑
i=1

ˆ
∂hi

∇vj · ~ndσ.

Therefore,
n∑
i=1

Ai,j =

ˆ
∂D0

∇vj · ~ndσ < 0,

where the last inequality follows from the Hopf Lemma since vj attains its minimum value 0 on
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∂D0, and vj 6≡ 0 on ∂D. A similar argument gives that Ai,j > 0 for i 6= j and Aj,j < 0. Thus A

is invertible by Gershgorin circle theorem [47], leading to a unique solution of (Equation 2.1.13).

Let us denote the solution by x = (c1, ..., cn)t. Then the function p defined by

p := u+
n∑
i=1

civi

satisfies the desired properties (Equation 2.1.12).

Now we prove that ci > 0 for i ≥ 1. Suppose that ci∗ := mini ci ≤ 0. Then by the minimum

principle, p attains its minimum on ∂hi∗ . Therefore,

0 ≤
ˆ
∂hi∗

∇p · ~ndσ = −2|hi∗| < 0,

which is a contradiction.

Next we prove a parallel version of Talenti’s theorem for the function p constructed in

Lemma 2.1.5. We will use this result throughout Section section 4.1–section 4.2.

Proposition 2.1.6. Let D ⊂ R2 be a bounded connected domain with C1 boundary. Assume D

has n holes with n ≥ 0, and denote by h1, · · · , hn ⊂ R2 the holes of D (each hi is a bounded open

set). Let p : D → R be the function constructed in Lemma 2.1.5. Then the following two estimates

hold:

sup
D

p ≤ |D|
2π

(2.1.14)

and ˆ
D

p(x)dx ≤ |D|
2

4π
(2.1.15)

Furthermore, for each of the two inequalities above, the equality is achieved if and only if D is

either a disk or an annulus.

Proof. The proof is divided into two parts: In step 1 we prove the two inequalities
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(Equation 2.1.14) and (Equation 2.1.15), and in step 2 we show that equality can be achieved if

and only if D is a disk or an annulus.

Step 1. When D is simply-connected, (Equation 2.1.14) and (Equation 2.1.15) directly follow

from Talenti’s theorem Proposition 2.1.1. Next we consider a non-simply-connected domain D,

and prove that these inequalities also hold when p : D → R is defined as in Lemma 2.1.5.

For k ∈ R+, let us denote Dk := {x ∈ D : p(x) > k}, g(k) := |Dk| and D̃k :=

Dk∪̇(∪̇{i:ci>k}hi). Elliptic regularity theory gives that p ∈ C∞(D), thus by Sard’s theorem, k

is a regular value for almost every k ∈ (0, supD p), that is, |∇p(x)| > 0 on {x ∈ D : p(x) = k}.

Thus {x ∈ D : p(x) = k} is a union of smooth simply closed curves and equal to ∂D̃k for almost

every k ∈ (0, supD p).

Since ∂Dk = ∂D̃k∪̇(∪̇{i:ci>k}∂hi) for k /∈ {c1, ..., cn}, we compute

g(k) = −1

2

ˆ
Dk

∆p(x)dx = −1

2

ˆ
∂Dk

∇p · ~ndσ

= −1

2

ˆ
∂D̃k

∇p · ~ndσ +
1

2

∑
{i:ci>k}

ˆ
∂hi

∇p · ~ndσ

= −1

2

ˆ
∂D̃k

∇p · ~ndσ −
∑
{i:ci>k}

|hi|,

where the last identity is due to (Equation 2.1.12). Therefore, it follows that

g(k) +
∑
{i:ci>k}

|hi| = −
1

2

ˆ
∂D̃k

∇p · ~ndσ =
1

2

ˆ
∂D̃k

|∇p|dσ, (2.1.16)

where the last equality follows from the fact that ∇p is perpendicular to the tangent vector on the

level set.

On the other hand, the coarea formula yields that

g(k) =

ˆ
R

ˆ
∂D̃s

1Dk
1

|∇p|
dσds =

ˆ ∞
k

ˆ
∂D̃s

1

|∇p|
dσds.
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Therefore, it follows that for almost every k ∈ (0, supD p),

g′(k) = −
ˆ
∂D̃k

1

|∇p|
dσ. (2.1.17)

Thus it follows from (Equation 2.1.16) and (Equation 2.1.17) that

g′(k)

g(k) +
∑
{i:ci>k}

|hi|

 = −1

2

(ˆ
∂D̃k

|∇p|dσ
)(ˆ

∂D̃k

1

|∇p|
dσ

)
≤ −1

2
P (D̃k)

2, (2.1.18)

where P (E) denotes the perimeter of a rectifiable curve ∂E. Note that the last inequality becomes

equality if and only if |∇p| is a constant on ∂D̃k. Also, the isoperimetric inequality gives that

P (D̃k)
2 ≥ 4π|D̃k|, (2.1.19)

where equality holds if and only if D̃k is a disk. This yields that

g′(k)

g(k) +
∑
{i:ci>k}

|hi|

 ≤ −2π|D̃k| = −2π

g(k) +
∑
{i:ci>k}

|hi|

 . (2.1.20)

Therefore, g′(k) ≤ −2π for almost every k ∈ (0, supD p). Combining it with the fact that g(0) =

|D|, we have

g(k) ≤ (g(0)− 2πk)+ = (|D| − 2πk)+ for almost every k ≥ 0.

This proves that supD̄ p ≤
|D|
2π

. It follows that

ˆ
D

p(x)dx =

ˆ
D

ˆ |D|
2π

0

1{k<p(x)}dkdx =

ˆ |D|
2π

0

g(k)dk ≤
ˆ |D|

2π

0

(|D| − 2πk)+dx =
|D|2

4π
.

Step 2. Now we show that for the two inequalities (Equation 2.1.14) and (Equation 2.1.15),
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the equality is achieved if and only if D is either a disk or an annulus. First, if D is either a disk

or annulus centered at some x0 ∈ R2, then uniqueness of solution to Poisson’s equation gives that

p is radially symmetric about x0. Since we have ∆p = −2 in D and p = 0 on the outer boundary

of D, this gives an explicit formula p(x) = − |x−x0|2
2

+ R2

2
for x ∈ D, where R is the outer radius

of D. For either a disk or an annulus, one can explicitly compute supD p and
´
D
pdx to check that

equalities in (Equation 2.1.14) and (Equation 2.1.15) are achieved.

To prove the converse, assume that either (Equation 2.1.14) or (Equation 2.1.15) achieves

equality, and we aim to show that D is either a disk or an annulus. In order for either equality

to be achieved, (Equation 2.1.20) needs to achieve equality at almost every k ∈ (0, supD p). In ad-

dition, g(k) needs to be continuous in k since g(k) is decreasing. Since (Equation 2.1.20) follows

from a combination of the Cauchy-Schwarz inequality in (Equation 2.1.18) and the isoperimetric

inequality in (Equation 2.1.19), we need to have all the three conditions below in order for either

(Equation 2.1.14) or (Equation 2.1.15) to achieve equality:

(1) |∇p| is a constant on each level set ∂D̃k for almost every k ∈ (0, supD p);

(2) D̃k is a disk for almost every k ∈ (0, supD p).

(3) g(k) = |Dk| is continuous in k. As a result, |D̃k| is continuous in k at all k 6= ci, with

ci > 0 defined in (Equation 2.1.11).

Next we will show that if all these three conditions are satisfied, then D must be an annulus or

disk. First, note that by sending k ↘ 0 in condition (2), and combining it with the continuity of

|D̃k| as k ↘ 0, it already gives that the outer boundary of D must be a circle. Therefore if D is

simply-connected, it must be a disk.

If D is non-simply-connected, using condition (2) and (3), we claim that D can have only one

hole, which must be a disk, and p must achieve its maximum value in D̄ on the boundary of the

hole. To see this, let hi be any hole of D, and recall that p|∂hi = ci. As we consider the set limit of
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D̃k as k approaches ci from below and above, by definition of D̃k we have

lim
k↗ci

D̃k = lim
k↘ci

D̃k∪̇(∪̇{j:cj=ci}hj).

By (2) and (3), the left hand side limk↗ci D̃k is a disk, and the set limk↘ci D̃k on the right hand side

is also a disk (if the limit is non-empty). But after taking union with the holes {hj : cj = ci} (each

is a simply-connected set), the right hand side will be a disk if and only if limk↘ci D̃k is empty,

∪̇{j:cj=ci}hj = hi, and hi is a disk. This implies ci = supD p and cj < ci for all j 6= i. But since hi

is chosen to be any hole of D, we know D can have only one hole (call it h), which is a disk, and

supD p = p|∂h. Finally, note that condition (1) gives that all the disks {D̃k} are concentric, and as

a result we have D is an annulus, finishing the proof.

Finally, we are ready to show that every connected stationary patch D with C1 boundary must

be either a disk or an annulus.

Theorem 2.1.7. LetD ⊂ R2 be a bounded domain withC1 boundary. Suppose that ω(x) := 1D(x)

is a stationary patch solution to the 2D Euler equation in the sense of (Equation 1.1.5). Then D is

either a disk or an annulus.

Proof. If D has n holes (where n ≥ 0), denote them by h1, . . . , hn. By (Equation 1.1.5), the

function f := 1D ∗ N is constant on each of connected component of ∂D, and let us denote

f(x) =


ai on ∂hi

a0 on ∂D0.

(2.1.21)

Let p : D → R be defined as in Lemma 2.1.5, and let ϕ := |x|2
2

+ p. Similar to the proof of

Theorem 2.1.2, we calculate I :=
´
D
∇ϕ·∇fdx in two different ways. Note that∇f = ∇(f−a0)

in D. Applying the divergence theorem to I and using (Equation 2.1.21) and ∆ϕ = 0 in D, it
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follows that

I =

ˆ
∂D

(∇ϕ · ~n)(f − a0)dσ −
ˆ
D

∆ϕ(f − a0)dx = −
n∑
i=1

(ai − a0)

ˆ
∂hi

∇ϕ · ~ndσ. (2.1.22)

By definition of ϕ, and combining it with the property of p in (Equation 2.1.12), we have

ˆ
∂hi

∇ϕ · ~ndσ =

ˆ
∂hi

∇
(
|x|2

2

)
· ~ndσ +

ˆ
∂hi

∇p · ~ndσ

=

ˆ
hi

2dx+

ˆ
∂hi

∇p · ~ndσ = 0.

(2.1.23)

Plugging this into (Equation 2.1.22) gives I = 0. On the other hand, we also have

I =

ˆ
D

x · ∇fdx+

ˆ
D

∇p · ∇fdx =: E1 + E2.

We compute

E1 =

ˆ
D

x · (1D ∗ ∇N )dx =

ˆ
D

ˆ
D

1

2π

x · (x− y)

|x− y|2
dydx =

|D|2

4π
, (2.1.24)

where the last equality is obtained by exchanging x with y and taking the average with the original

integral. For E2, the divergence theorem yields that

E2 =

ˆ
∂D

p∇f · ~ndσ −
ˆ
D

p∆fdx =

ˆ
∂D

p∇f · ~ndσ −
ˆ
D

pdx.

Using the property of p in (Equation 2.1.11) and the fact that ∆f = 0 in hi, the divergence theorem

yields

ˆ
∂D

p∇f · ~ndσ = −
n∑
i=1

ˆ
∂hi

p∇f · ~ndσ = −
n∑
i=1

ci

ˆ
hi

∆fdx = 0, (2.1.25)
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As a result, we have E2 = −
´
D
pdx. If D is neither a disk nor an annulus, Proposition 2.1.6 gives

I = E1 + E2 =
|D|2

4π
−
ˆ
D

pdx > 0,

contradicting I = 0.

In the next corollary, we generalize the above result to a nonnegative stationary patch with

multiple (disjoint) patches.

Corollary 2.1.8. Let ω(x) :=
∑n

i=1 αi1Di , where αi > 0, each Di is a bounded connected domain

with C1 boundary, and Di ∩Dj = ∅ if i 6= j. Assume that ω is a stationary patch solution, that is,

the function f(x) := ω ∗ N satisfies ∇⊥f · ~n = 0 on ∂Di for all i = 1, . . . , n. Then ω is radially

symmetric up to a translation.

Proof. Following similar notations as the beginning of Section subsection 2.1.2, we denote the

outer boundary of Di by ∂Di0, and the holes of each Di (if any) by hik for k = 1, . . . , Ni. Let

pi : Di → R be defined as in Lemma 2.1.5, that is, pi satisfies


∆pi = −2 in Di

pi = cik on ∂hik

pi = 0 on ∂Di0,

where cik is chosen such that
´
∂hik
∇pi · ~ndσ = −2|hik|. We then define ϕ : ∪ni=1Di → R, such

that in each Di we have ϕ = ϕi := |x|2
2

+ pi.

Similar to Theorem 2.1.7, we compute

I :=

ˆ
R2

ω∇ϕ · ∇fdx =
n∑
i=1

ˆ
Di

αi∇ϕi · ∇fdx

in two different ways. On the one hand, since f = ω∗N is a constant on each connected component
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of ∂Di, the same computation of Theorem 2.1.7 yields that
´
Di
∇ϕi · ∇fdx = 0, therefore I = 0.

On the other hand, since∇ϕ = x+∇pi in each Di, we break I into

I =
n∑

i,j=1

αiαj

ˆ
Di

x · ∇(1Dj ∗ N )dx+
n∑

i,j=1

αiαj

ˆ
Di

∇pi · ∇(1Dj ∗ N )dx =: I1 + I2.

For I1, we compute

I1 =
n∑

i,j=1

αiαj
2

(ˆ
Di

x · ∇(1Dj ∗ N )dx+

ˆ
Dj

x · ∇(1Di ∗ N )dx

)

=
n∑

i,j=1

αiαj
2

(ˆ
Di

ˆ
Dj

x · (x− y)

2π|x− y|2
dydx+

ˆ
Dj

ˆ
Di

x · (x− y)

2π|x− y|2
dydx

)

=
n∑

i,j=1

αiαj
4π
|Di||Dj|, (2.1.26)

where we exchanged i with j to get the first equality. For I2, we have

I2 =
n∑
i=1

α2
i

ˆ
Di

∇pi · ∇(1Di ∗ N )dx+
∑
i 6=j

αiαj

ˆ
Di

∇pi · ∇(1Dj ∗ N )dx =: I21 + I22.

By the same computation for E2 in the proof of Theorem 2.1.7, we have

I21 = −
n∑
i=1

α2
i

ˆ
Di

pidx. (2.1.27)

For i 6= j, we denote j ≺ i if Dj is contained in a hole of Di. (And if Dj is not contained in

any hole of Di, we say j 6≺ i.) Using this notation, the divergence theorem directly yields that

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ = −
Ni∑
k=1

ˆ
∂hik

pi∇(1Dj ∗ N ) · ~ndσ = 0 if j 6≺ i. (2.1.28)
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And if j ≺ i, then the divergence theorem and (Equation 2.1.14) in Proposition 2.1.6 yield

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ ≥ − sup
∂Di

pi|Dj| ≥ −
1

2π
|Di||Dj| if j ≺ i. (2.1.29)

Hence it follows that

I22 ≥ −
∑
i 6=j

1j≺i
αiαj
2π
|Di||Dj| = −

∑
i 6=j

(1j≺i + 1i≺j)
αiαj
4π
|Di||Dj|, (2.1.30)

where the last step is obtained by exchanging i, j and taking average with the original sum. Note

that we have 1j≺i + 1i≺j ≤ 1 for any i 6= j. From (Equation 2.1.26), (Equation 2.1.27) and

(Equation 2.1.30), we obtain

I ≥
n∑
i=1

α2
i

(
|Di|2

4π
−
ˆ
Di

pidx

)
+

∑
j 6≺i and i 6≺j

i6=j

αiαj
|Di||Dj|

4π
. (2.1.31)

Since we already know that I = 0 and all the summands in (Equation 2.1.31) are nonnegative, it

follows that

|Di|2

4π
=

ˆ
Di

pidx for all i = 1, . . . , n and {(i, j) : i 6= j, i 6≺ j and j 6≺ i} = ∅.

Therefore every Di is either a disk or an annulus by Proposition 2.1.6 and they are nested. By

relabeling the indices, we can assume that i ≺ i+ 1 for i = 1, . . . , n− 1.

Next we prove that all Di’s are concentric by induction. For k ≥ 1, suppose D1, . . . , Dk are

known to be concentric about some o ∈ R2. To show Dk+1 is also centered at o, we break f into

f =
k∑
i=1

(αi1Di) ∗ N +
n∑

i=k+1

(αi1Di) ∗ N .

In the first sum, eachDi is centered at o for i ≤ k, thus Lemma 2.1.9(a) (which we prove right after
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this theorem) yields that
∑k

i=1(αi1Di)∗N = C
2π

ln |x−o| on ∂inDk+1, whereC =
∑k

i=1 αi|Di| > 0.

In the second sum, for each i ≥ k + 1, since each Di is an annulus with ∂inDk+1 in its hole,

Lemma 2.1.9(b) gives that 1Di ∗ N ≡ const on ∂inDk+1 for all i ≥ k + 1. Thus overall we have

f = C
2π

ln |x−o|+C2 on ∂inDk+1 for C > 0. Combining it with the assumption that f is a constant

on ∂inDk+1, we know Dk+1 must also be centered at o, finishing the induction step.

Now we state and prove the lemma used in the proof of Corollary 2.1.8, which follows from

standard properties of the Newtonian potential.

Lemma 2.1.9. Assume g ∈ L∞(R2) is radially symmetric about some o ∈ R2, and is compactly

supported in B(o,R). Then η := g ∗ N satisfies the following:

(a) η(x) =

´
R2 gdx

2π
ln |x− o| for all x ∈ B(0, R)c.

(b) If in addition we have g ≡ 0 in B(o, r) for some r ∈ (0, R), then η = const in B(o, r).

Proof. To show (a), we take any x ∈ B(o,R)c and consider the circle Γ 3 x centered at o. By

radial symmetry of η about o and the divergence theorem, we have

∇η · x
|x|

=
1

|Γ|

ˆ
Γ

∇η · ~ndσ =
1

|Γ|

ˆ
int(Γ)

∆ηdx =

´
R2 g(x)dx

2π|x− o|
,

which implies η(x) =
´
gdx

2π
ln |x− o|+ C. To show that C = 0, for |x| sufficiently large we have

|C| =
∣∣∣ˆ

B(o,R)

g(x)(N (x− y)−N (x− o))dy
∣∣∣ ≤ ‖g‖L∞(R2) sup

y∈B(o,R)

|N (x− o)−N (x− y)|,

and by sending |x| → ∞ we have C = 0, which gives (a). To show (b), it suffices to prove that

∇η ≡ 0 in B(o, r). Take any x ∈ B(o, r), and consider the circle Γ2 3 x centered at o. Again,

symmetry and the divergence theorem yield that

|∇η(x)| = 1

|Γ2|

ˆ
Γ2

∇η · ~ndσ =
1

|Γ2|

ˆ
int(Γ2)

∆ηdx =

´
int(Γ)

g(x)dx

|Γ|
= 0,
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finishing the proof of (b).

2.1.3 Radial symmetry of non-simply-connected rotating patches with Ω < 0

In this subsection, we show that a nonnegative uniformly rotating patch solution (with multiple

disjoint patches) must be radially symmetric if the angular velocity Ω < 0.

Theorem 2.1.10. For i = 1, . . . , n, let Di be a connected domain with C1 boundary, and assume

Di ∩ Dj = ∅ for i 6= j. If ω =
∑n

i=1 αi1Di is a nonnegative rotating patch solution with αi > 0

and angular velocity Ω < 0, then ω must be radially symmetric.

Proof. In this proof, let

fΩ(x) := ω ∗ N − Ω

2
|x|2.

In each Di, let us define pi as in Lemma 2.1.5. Let ϕi := |x|2
2

+ pi in each Di. As in Theo-

rem 2.1.10, we compute I :=
∑n

i=1 αi
´
Di
∇ϕi · ∇fΩdx in two different ways. Since fΩ is a

constant on each connected component of ∂Di and ∇ϕi is divergence free in Di, we still have

I = 0 as in the proof of Theorem 2.1.7.

On the other hand, we have

I =
n∑
i=1

αi

ˆ
Di

(x+∇pi) · ∇ (ω ∗ N ) dx+ (−Ω)︸ ︷︷ ︸
≥0

n∑
i=1

αi

ˆ
Di

(x+∇pi) · xdx

=: I1 + (−Ω)I2.

As in the proof of Corollary 2.1.8, we have

I1 =
n∑
i=1

α2
i

(
|Di|2

4π
−
ˆ
Di

pidx

)
+

∑
j 6≺i and i 6≺j

i 6=j

αiαj
|Di||Dj|

4π
≥ 0. (2.1.32)

Note that I1 = 0 as long as all Di’s are nested annuli/disk, even if they are not concentric. For I2,

using Cauchy-Schwarz inequality in the second step, and Lemma 2.1.11 in the third step (which
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we will prove right after this theorem), we have

I2 =
n∑
i=1

αi

(ˆ
Di

|x|2dx+

ˆ
Di

∇pi · xdx
)

≥
n∑
i=1

αi

(ˆ
Di

|x|2dx−
(ˆ

Di

|∇p|2dx
)1/2(ˆ

Di

|x|2dx
)1/2

)
≥ 0.

(2.1.33)

Combining (Equation 2.1.32) and (Equation 2.1.33) gives us I ≥ 0. If there is any Di that is not a

disk or annulus centered at the origin, Lemma 2.1.11 would give a strict inequality in the last step

of (Equation 2.1.33), which leads to I > 0 and thus contradicts with I = 0.

Now we state and prove the lemma that is used in the proof of Theorem 2.1.10.

Lemma 2.1.11. Let D be a connected domain with C1 boundary, and let p be as in Lemma 2.1.5.

Then we have

−
ˆ
D

∇p · xdx =

ˆ
D

|∇p|2dx ≤
ˆ
D

|x|2dx. (2.1.34)

Furthermore, in the inequality, “=” is achieved if and only if D is a disk or annulus centered at

the origin.

Proof. We compute

ˆ
D

|∇p|2dx =

ˆ
∂D

p∇p · ~ndσ +

ˆ
D

2pdx

= −
ˆ
∂D

px · ~ndσ +

ˆ
D

2pdx,

where in the last equality we use that p is constant along each ∂hi, as well as the following identity

due to (Equation 2.1.12) and the divergence theorem (here ~n is the outer normal of hi):

ˆ
∂hi

∇p · ~ndσ = −2|hi| = −
ˆ
hi

∆
|x|2

2
dx = −

ˆ
∂hi

x · ~ndσ.
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On the other hand, the divergence theorem yields

−
ˆ
D

∇p · xdx = −
ˆ
∂D

px · ~ndσ +

ˆ
D

2pdx.

Therefore using Young’s inequality −∇p · x ≤ 1
2
|∇p|2 + 1

2
|x|2 (where the equality is achieved if

and only if −∇p = x), we have

ˆ
D

|∇p|2dx = −
ˆ
D

∇p · xdx ≤ 1

2

ˆ
D

|∇p|2dx+
1

2

ˆ
D

|x|2dx,

which proves (Equation 2.1.34). Here the equality is achieved if and only if−∇p = x in D, which

is equivalent with p+ |x|2
2

being a constant in D, and it can be extended to D̄ due to continuity of p.

By our construction of p in Lemma 2.1.5, p is already a constant on each connected component of

∂D, implying |x|
2

2
is constant on each piece of ∂D, hence ∂D must be a family of circles centered

at the origin. By the assumption that D is connected, it must be either a disk or annulus centered

at the origin.

2.1.4 Radial symmetry of non-simply-connected rotating patches with Ω ≥ 1
2

In this final subsection for patches, we consider a bounded domain D with C1 boundary. D

can have multiple connected components, and each connected component can be non-simply-

connected. If 1D is a rotating patch solution to the Euler equation with angular velocity Ω ≥ 1
2
, we

will show D must be radially symmetric and centered at the origin.

To do this, one might be tempted to proceed as in Theorem 2.1.2 and replace p : D → R by

the function defined in Lemma 2.1.5. Here the first way of computing I =
´
D

(x +∇p) · ∇fΩdx

still yields I = 0, but the second way gives some undesired terms caused by the holes hi:

I =
1

4π
|D|2 − Ω

ˆ
D

|x|2dx+ (2Ω− 1)

ˆ
D

pdx+ 2Ω
n∑
i=1

p|∂hi |hi|.
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Due to the last term on the right hand side, we are unable to show I ≤ 0 when Ω ≥ 1
2

as we did

before in Theorem 2.1.2. For this reason, we take a different approach in the next theorem. Instead

of defining p as a function in D and I as an integral in D, we want to define them in Dc. But since

Dc is unbounded, we define pR and IR in a truncated set B(0, R) \Dc, and then use two different

ways to compute IR. By sending R → ∞, we will show that the two ways give a contradiction

unless D is radially symmetric.

Theorem 2.1.12. For a bounded domain D with C1 boundary, assume that 1D is a rotating patch

solution to the Euler equation with angular velocity Ω ≥ 1
2
. Then D is radially symmetric and

centered at the origin.

Proof. Since D is bounded, let us choose R0 > 0 such that BR0 ⊃ D. For any R > R0, consider

the domain BR \ D, which may have multiple connected components. We call the component

touching ∂BR as D0,R, and name the other connected components by U1, . . . , Un. Throughout

this proof we assume that n ≥ 1: if not, then each connected component of D is simply con-

nected, which has been already treated in Theorem 2.1.2 and Remark 2.1.3. We also define

V := BR \ D0,R, which is the union of D and all its holes. Note that V may have multiple con-

nected components, but each must be simply-connected. See Figure Figure 2.1 for an illustration

of D0,R, {Ui}ni=1 and V .

D

∂B(0, R0)
∂B(0, R)

D0,R
U1

U2

V

Figure 2.1: For a set D ⊂ B(0, R0) (the whole yellow region on the left), the middle figure
illustrates the definition of D0,R (the blue region), {Ui} (the gray regions), and right right figure
illustrate V = BR \D0,R (the green region).
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To prove the theorem, the key idea is to define pR and IR in BR \D, instead of in D. Let p0,R

and pi be defined as in Lemma 2.1.5 in D0,R and Ui respectively, then set ϕ0,R := p0,R + |x|2
2

in

D0,R, and ϕi := pi + |x|2
2

in Ui for i = 1, . . . , n. Finally, define pR and ϕR : R2 → R as

pR := p0,R1D0,R
+

n∑
i=1

pi1Ui , ϕR := ϕ0,R1D0,R
+

n∑
i=1

ϕi1Ui .

Since 1D rotates with angular velocity Ω ≥ 1
2
, we know fΩ := 1D ∗ N − Ω

2
|x|2 is constant on

each connected component of ∂D. Next we will compute

IR :=

ˆ
BR\D

∇fΩ · ∇ϕRdx (2.1.35)

in two different ways. If some connected component of ∂D is not a circle, we will derive a

contradiction by sending R → ∞. We point out that as we increase R, the domain D0,R will

change, but the domains {Ui}ni=1 and V all remain unchanged.

On the one hand, we break IR into

IR =

ˆ
D0,R

∇fΩ · ∇ϕ0,Rdx+
n∑
i=1

ˆ
Ui

∇fΩ · ∇ϕidx =: I1
R + I2

R.

Since fΩ is constant on each connected component of ∂Ui, the same computation as

(Equation 2.1.22)–(Equation 2.1.23) gives I2
R = 0. For I1

R, note that although fΩ is a constant

along the boundary of each hole of D0,R, it is not a constant along ∂outD0,R = ∂BR. Thus similar

computations as (Equation 2.1.22)–(Equation 2.1.23) now give

I1
R =

ˆ
∂BR

(
1D ∗ N −

Ω

2
R2
)
∇ϕ0,R · ~ndσ

=

ˆ
∂BR

((1D ∗ N )(x)− |D|N (x))∇ϕ0,R · ~ndσ(x),

(2.1.36)

where in the second equality we used
´
∂BR
∇ϕ0,R · ~ndσ = 0 and the fact that N (x) is constant on
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∂BR. For any x ∈ ∂BR, since D ⊂ BR0 and R > R0, we can control (1D ∗ N )(x)− |D|N (x) as

∣∣(1D ∗ N )(x)− |D|N (x)
∣∣∣ ≤ 1

2π

ˆ
D

∣∣∣ log |x− y| − log |x|
∣∣∣dy ≤ |D|

2π

∣∣∣∣log

(
1− R0

R

)∣∣∣∣ on ∂BR.

(2.1.37)

We introduce the following lemma to control |∇ϕ0,R · ~n| on ∂BR, whose proof is postponed to the

end of this subsection.

Lemma 2.1.13. Let D ⊂ BR0 be a domain with C1 boundary. For any R > R0, let D0,R, V , p0,R

and ϕ0,R be defined as in the proof of Theorem 2.1.12. Then we have

|∇ϕ0,R · ~n| ≤
NR2

0

2R log(R/R0)
on ∂BR, (2.1.38)

where N > 0 is the number of connected components of V (and is independent of R).

Once we have this lemma, plugging (Equation 2.1.38) and (Equation 2.1.37) into

(Equation 2.1.36) yields

|I1
R| ≤

N |D|R2
0

2

∣∣∣∣log

(
1− R0

R

)∣∣∣∣ (log(R/R0))−1 ≤ |D|C(D,R0)

R logR
→ 0 as R→∞.

Combining this with I2
R = 0 gives

lim
R→∞

IR = 0. (2.1.39)

Next we compute IR in another way. Note that 1BR ∗N −
|x|2
4

is a radial harmonic function in BR,

thus is equal to some constant CR in BR. Using this fact, we can rewrite fΩ as

fΩ = 1D ∗ N −
Ω

2
|x|2 = (1D − 1BR) ∗ N −

(Ω

2
− 1

4

)
|x|2 + CR.
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As a result, IR can be rewritten as

IR = −
ˆ
BR\D

∇
(

1BR\D ∗ N
)
· ∇ϕRdx− (2Ω− 1)

2

ˆ
BR\D

x · ∇ϕRdx

=: −J 1
R −

(2Ω− 1)

2
J 2
R.

(2.1.40)

Next we will show J 1
R,J 2

R ≥ 0, leading to IR ≤ 0. Let us start with J 2
R. Applying Lemma 2.1.11

to each of D0,R and {Ui}ni=1 immediately gives

J 2
R ≥

ˆ
D0,R

|x|2 +∇p0,R · xdx+
n∑
i=1

ˆ
Ui

|x|2 +∇pi · xdx =: T0,R +
n∑
i=1

Ti ≥ 0. (2.1.41)

Note that the Ti’s are independent of R for i = 1, . . . , n, and we know Ti ≥ 0 with equality

achieved if and only if Ui is an annulus or a disk centered at the origin. This will be used later to

show all {Ui}ni=1 are centered at the origin in the Ω > 1
2

case. (When Ω = 1
2
, the coefficient of J 2

R

becomes 0 in (Equation 2.1.40), thus a different argument is needed in this case.)

We now move on to J 1
R. We first break it as

J 1
R =

ˆ
BR\D

∇(1BR\D ∗ N ) · xdx+

ˆ
BR\D

∇(1BR\D ∗ N ) · ∇pRdx =: J11 + J12.

An identical computation as (Equation 2.1.24) gives J11 =
1

4π

(
|D0,R| +

n∑
i=1

|Ui|
)2

. For J12, the

same computation as (Equation 2.1.27)–(Equation 2.1.29) gives the following (where we used that

each Ui lies in a hole of D0,R for i = 1, . . . , n):

J12 ≥ −
ˆ
D0,R

p0,Rdx−
n∑
i=1

ˆ
Ui

pidx−
∑

1≤i≤n

|Ui| sup
D0,R

p0,R −
∑

1≤i,j≤n
j≺i

|Ui||Uj|
2π

.
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Adding up the estimates for J11 and J12, we get

J 1
R ≥

(
1

4π
|D0,R|2 −

ˆ
D0,R

p0,Rdx

)
+

( ∑
1≤i≤n

|Ui|

)(
1

2π
|D0,R| − sup

D0,R

p0,R

)

+
n∑
i=1

(
1

4π
|Ui|2 −

ˆ
Ui

pidx

)
+

∑
j 6≺i and i 6≺j

i 6=j

1

4π
|Ui||Uj|.

(2.1.42)

By Proposition 2.1.6, all terms on the right hand side are nonnegative. But note that only the two

terms in the second line are independent of R. Plugging (Equation 2.1.42) and (Equation 2.1.41)

into (Equation 2.1.40) gives the following (where we only keep the terms independent of R on the

right hand side):

lim inf
R→∞

(−IR) ≥
n∑
i=1

(
1

4π
|Ui|2 −

ˆ
Ui

pidx

)
+

∑
j 6≺i and i 6≺j

i 6=j

1

4π
|Ui||Uj|+

2Ω− 1

2

n∑
i=1

Ti ≥ 0.

Combining this with the previous limit (Equation 2.1.39), we know Ui must be an annulus or a

disk for i = 1, . . . , n, and they must be nested in each other. In addition, if Ω > 1
2
, we have Ti = 0

for i = 1, . . . , n, implying that each Ui is centered at the origin.

The radial symmetry of D0,R is more difficult to obtain. Although the first two terms on the

right hand side of (Equation 2.1.42) are both strictly positive if D0,R is not an annulus, we need

some uniform-in-R lower bound to get a contradiction in the R → ∞ limit. Between these two

terms, it turns out the second term is easier to control. This is done in the next lemma, whose proof

we postpone to the end of this subsection.

Lemma 2.1.14. Let D ⊂ BR0 be a domain with C1 boundary. For any R > R0, let D0,R, V and

p0,R be given as in the proof of Theorem 2.1.12. If V is not a single disk, there exists some constant

51



C(V ) > 0 only depending on V , such that

lim inf
R→∞

(
1

2π
|D0,R| − sup

D0,R

p0,R

)
≥ C(V ) > 0.

If V is not a disk, Lemma 2.1.14 gives lim infR→∞ J 1
R >

(∑
1≤i≤n |Ui|

)
C(V ) > 0. (Recall

that in the beginning of this proof we assume
∑

1≤i≤n |Ui| > 0, and it is independent of R.) This

implies lim infR→∞(−IR) ≥ C(V ) > 0, contradicting (Equation 2.1.39).

So far we have shown that ∂D is a union of nested circles, and it remains to show that they are

all centered at 0. For the Ω > 1
2

case, we already showed all {Ui}ni=1 are centered at 0, so it suffices

to show the outmost circle ∂V (denote by B(õ, r̃)) is also centered at 0. By definition of {Ui}ni=1,

we have D = B(õ, r̃) \
(
∪̇ni=1Ui

)
. Note that 1B(õ,r̃) ∗ N = |x−õ|2

4
+ C for some constant C, and

1∪̇ni=1Ui
∗ N is radially increasing. Therefore fΩ can be written as

fΩ = 1B(õ,r̃) ∗ N − 1∪̇ni=1Ui
∗ N − Ω

2
|x|2 =

|x− õ|2

4
− g(x),

where g is radially symmetric, and strictly increasing in the radial variable. Since both fΩ and

|x−õ|2
4

are known to take constant values on ∂B(õ, r̃), it implies g must be constant on ∂B(õ, r̃)

too, and the fact that g is a radially increasing function gives that õ = 0. This finishes the proof for

Ω > 1
2
.

For Ω = 1
2
, we do not know whether {Ui}ni=1 are centered at 0 yet. Denote by U1 be the

innermost one. Then we have

fΩ(x) =
|x− õ|2

4
− 1∪̇ni=1Ui

∗ N − |x|
2

4
=
õ · x

2
+ const for x ∈ ∂outU1, (2.1.43)

where the second equality follows from Lemma 2.1.9(b), where we used that 1 ≺ j for all 2 ≤

j ≤ n. Combining (Equation 2.1.43) with the fact that fΩ = const on ∂outU1 gives õ = 0, that is,

the outmost circle must be centered at 0. This leads to fΩ = −
∑n

i=1 1Ui ∗ N . Since fΩ = const
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on each connected component of ∂Ui, we can apply the last part in the proof of Corollary 2.1.8

to show that all {Ui}ni=1 are all concentric. Denoting their center by o1, we can show that o1 = 0:

Lemma 2.1.9(a) gives fΩ(x) = C ln |x − o1| for some C < 0 on ∂B(õ, r̃), and since we have

f = const on ∂B(õ, r̃) and õ = 0, it implies that o1 = 0, finishing the proof.

Proof of Lemma 2.1.13. For notational simplicity, we shorten p0,R, D0,R and ϕ0,R into pR, DR

and ϕR thoughout this proof. Recall that ∂DR = ∂BR ∪ ∂V . Clearly we have ϕR = R2

2
on ∂BR,

due to pR = 0 on ∂outDR = ∂BR. We claim that

−NR
2
0

2
≤ ϕR −

R2

2
≤ R2

0

2
on ∂V, (2.1.44)

where N ≥ 1 is the number of connected components of V . Once it is proved, we apply the

comparison principle to the functions ϕR − R2

2
and ±g, where

g(x) :=
NR2

0

2 log(R/R0)
log

R

|x|
.

Note that g ≡ 0 on ∂BR, and g ≥ NR2
0

2
on ∂V since ∂V ⊂ BR0 . If 0 6∈ DR, then the functions

ϕR − R2

2
and ±g are all harmonic in DR, their values on ∂BR are all 0, and their boundary values

on ∂V are ordered due to (Equation 2.1.44). The comparison principle in DR then yields

−g(x) ≤ ϕR(x)− R2

2
≤ g(x) in DR. (2.1.45)

Since ϕR − R2

2
≡ g ≡ 0 on ∂BR, (Equation 2.1.45) gives |∇ϕR · ~n| ≤ |∇g · ~n| =

NR2
0

2R log(R/R0)
on

∂BR, which is the desired estimate (Equation 2.1.38). And if 0 ∈ DR, then (Equation 2.1.45) still

holds in DR \ Bε for all sufficiently small ε > 0 by applying the comparison principle in this set,

and (Equation 2.1.38) again follows as a consequence.
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In the rest of the proof we will show (Equation 2.1.44). Its second inequality is straightforward:

ϕR −
R2

2
≤ R2

0

2
+ sup

DR

pR −
R2

2
≤ R2

0

2
on ∂V,

here the first inequality follows from the definition of ϕR and the fact that V ⊂ BR0 , and the

second inequality is due to supDR pR ≤
|DR|
2π
≤ R2

2
in Proposition 2.1.6.

It remains to prove the first inequality of (Equation 2.1.44). Let us fix any R > R0. Denote

the N connected components of ∂V by {Γi}Ni=1, and let Γ0 := ∂BR. These notations lead to

∂DR = ∪Ni=0Γi. For i = 0, . . . , N , let Li ⊂ R be the range of ϕR − R2

2
on Γi. By continuity of

ϕR, each Li is a closed bounded interval, which can be a single point. Clearly, L0 = {0} due to

ϕR|∂BR = R2

2
. Towards a contradiction, suppose

vmin := min
1≤i≤N

inf Li = inf
∂V

(
ϕR −

R2

2

)
=: −N |R0|2

2
− δ for some δ > 0. (2.1.46)

As for the maximum value, since L0 = {0} we have

vmax := max
0≤i≤N

supLi ≥ 0. (2.1.47)

For i = 1, . . . , N , using pR|Γi = const, ϕR = pR + |x|2
2

and Γi ⊂ BR0 , the length of each interval

Li satisfies ∣∣Li∣∣ = oscΓi

|x|2

2
≤ R2

0

2
for i = 1, . . . , N. (2.1.48)

Comparing (Equation 2.1.48) with (Equation 2.1.46)–(Equation 2.1.47), we know the union of

{Li}Ni=0 cannot fully cover the interval [vmin, vmax], thus they can be separated in the following

sense: there exists a nonempty proper subset S ⊂ {0, . . . , N}, such that the range of Li for

indices in S and Sc := {0, . . . , N} \ S are strictly separated by at least δ, i.e. mini∈S inf Li ≥
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maxi∈Sc supLi + δ. In terms of ϕR, we have

min
i∈S

inf
Γi
ϕR ≥ max

i∈Sc
max

Γi
ϕR + δ. (2.1.49)

Since ϕR is harmonic in DR, whose boundary is ∪Ni=0Γi, it is a standard comparison principle

exercise to show that (Equation 2.1.49) implies

∑
i∈S

ˆ
Γi

∇ϕR · ~ndσ > 0, (2.1.50)

where ~n denotes the outer normal of DR. But on the other hand, we have

ˆ
Γi

∇ϕR · ~ndσ = 0 for i = 0, . . . , N. (2.1.51)

To see this, the cases i = 1, . . . , N can be done by an identical computation as (Equation 2.1.23),

and the i = 0 case follows from
´
∂DR

ϕR · ~ndσ =
´
DR

∆ϕRdx = 0 and the fact that ∂DR =

∪Ni=0Γi. Thus we have obtained a contradiction between (Equation 2.1.50) and (Equation 2.1.51),

completing the proof.

Proof of Lemma 2.1.14. Assume V has N connected components {Vj}Nj=1 for N ≥ 1. For

notational simplicity, we shorten D0,R, p0,R and ϕ0,R into DR, pR and ϕR in this proof. Let

εR := 1
2π
|DR| − supDR pR, which is nonnegative by Proposition 2.1.6. Towards a contradiction,

assume there exists a diverging subsequence {Ri}∞i=1 such that limi→0 εRi = 0.

Define ϕ̃Ri := ϕRi −
R2
i

2
. We claim that {ϕ̃Ri}∞i=1 has a subsequence that converges locally

uniformly to some bounded harmonic function ϕ∞ in R2 \ V .

To show this, we will first obtain a uniform bound of {ϕ̃Ri}∞i=1. Note that (Equation 2.1.44)

gives that sup∂V |ϕ̃Ri | ≤
NR2

0

2
for all i ∈ N+. Since ϕ̃Ri ≡ 0 on ∂BRi for all i ∈ N+, the maximum

principle for harmonic function gives supDRi
|ϕ̃Ri | ≤

NR2
0

2
for all i ∈ N+.

For any R > 2R0, we will obtain a uniform gradient estimate for {ϕ̃Ri} in DR for all Ri > 2R.
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First note that since ∂BR is in the interior of DRi (due to Ri > 2R), interior estimate for harmonic

function (together with the above uniform bound) gives that ‖ϕ̃Ri‖C2(∂BR) ≤ C(N,R0). On the

other boundary ∂V , recall that ϕ̃Ri |∂Vj = |x|2
2

+ ci,j , with |ci,j| ≤ (N+1)R2
0

2
. Thus ‖ϕ̃Ri‖C2(∂DR) ≤

C(N,R0) for all Ri > 2R, and the standard elliptic regularity theory gives the uniform gradient

estimate supDR |∇ϕ̃Ri | ≤ C(V ). This allows us to take a further subsequence (which we still

denote by {ϕ̃Ri}) that converges uniformly in D̄R to some harmonic function ϕ̃∞ ∈ C(D̄R).

Since R > 2R0 is arbitrary, we can repeat this procedure (for countably many times) to obtain

a subsequence that converges locally uniformly to a harmonic function ϕ̃∞ in R2 \ V , where

ϕ̃∞|∂Vj = |x|2
2

+ cj with |cj| ≤ (N+1)R2
0

2
. This finishes the proof of the claim.

Now define

p̃Ri := pRi −
R2
i

2
= ϕ̃Ri −

|x|2

2
,

which is known to converge locally uniformly to p̃∞ := ϕ̃∞ − |x|
2

2
in R2 \ V . Note that p̃∞ is not

radially symmetric up to any translation: To see this, recall that p̃∞|∂Vj ≡ cj . If p̃∞ is radial about

some x0, it must be of the form − |x−x0|2
2

+ c due to ∆p̃∞ = −2. As a result, the level sets of p̃∞

are all nested circles, thus V must be a single disk (where we used that each connected component

of V is simply-connected).

Next we will show that limi→0 εRi = 0 implies p̃∞ is radial up to a translation, leading to a

contradiction. For k ∈ R, let gi(k) := |{x ∈ DRi : pRi(x) > k}|. In the proof of Proposition 2.1.6,

we have shown that gi(0) = |DRi |, gi is decreasing in k, with g′i(k) ≤ −2π for almost every

k ∈ (0, supDRi
pRi). Since supDRi

pRi = 1
2π
|DRi | − εRi , we can control gi(k) from below and

above as follows:

(|DRi | − 2πk − 2πεRi)+ ≤ gi(k) ≤ (|DRi | − 2πk)+ for all k ≥ 0. (2.1.52)

Likewise, define g̃i(k) := |{x ∈ DRi : p̃Ri(x) > k}|, and g̃∞(k) := |{x ∈ DRi : p̃∞(x) > k}|.

Since p̃Ri = pRi −
R2
i

2
, we have g̃i(k) = gi(k +

R2
i

2
) for all k ≥ −R2

i

2
, thus (Equation 2.1.52) is
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equivalent to

(−|V | − 2πk − 2πεRi)+ ≤ g̃i(k) ≤ (−|V | − 2πk)+ for all k ≥ −R
2
i

2
.

The locally uniform convergence of pRi gives limi→∞ g̃i = g̃0, and since we assume limi→∞ εRi =

0, we take the i→∞ limit in the above inequality and obtain

g̃∞(k) = (−2πk − |V |)+ for all k ∈ R,

which implies

g̃′∞(k) = −2π for all k ∈ (−∞, sup
R2\V

p̃∞). (2.1.53)

Applying the proof of Proposition 2.1.6 to p̃∞ (note that the proof still goes through even

though p̃∞ takes negative values, and is defined in an unbounded domain), we have that

(Equation 2.1.53) can happen only if D̃k := {p̃∞ > k}∪̇(∪̇{j:cj>k}Vj) is a disk for almost ev-

ery k ∈ (−∞, supR2\V p̃∞), and |∇p̃∞| is a constant on almost every ∂D̃k. These two conditions

imply that all regular sets of p̃∞ are concentric circles, thus p̃∞ is radial up to a translation, and we

have obtained a contradiction.

2.2 Radial symmetry of nonnegative smooth stationary solutions

Let ω be a nonnegative compactly supported smooth stationary solution of the 2D Euler equation.

Note that ω being stationary is equivalent with

∇⊥ω · ∇(ω ∗ N ) = 0 in R2.

As a result, along every regular level set of ω, we have f := ω ∗ N is a constant.

In this section, we prove that such ω must be radially symmetric up to a translation. In the
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proof, the two key steps are to show that every regular level set of ω is a circle, and these circles

are concentric. These are done by approximating ω by a step function ωn =
∑Mn

i=1 αi1Di such that

the sets {Di} are disjoint, and ‖ω − ωn‖L∞ = O(1/n). We then define ϕn = |x|2
2

+
∑Mn

i=1 1Dipi

corresponding to this step function ωn, and compute In =
´
ωn∇ϕn · ∇fdx in two ways.

Due to the O(1/n) error in the approximation, the qualitative statement in Proposition 2.1.6

that “the equality is achieved if and only if D is a disk or annulus” is no longer good enough

for us. We need to obtain various quantitative versions of (Equation 2.1.14) for doubly-connected

domains, and two such versions are stated below.

In Lemma 2.2.2, the quantitative constant c0 > 0 depends on the Fraenkel asymmetry of the

outer boundary defined in Definition 2.2.1.

Definition 2.2.1 (c.f. [42, Section 1.2]). For a bounded domain E ⊆ R2, we define the Fraenkel

asymmetry A(E) ∈ [0, 1) as

A(E) := inf
x0

{
|E∆(x0 + rB)|

|E|
: x0 ∈ R2, πr2 = |E|

}
,

where B is a unit disk in R2.

Lemma 2.2.2. Let D be a doubly connected set. Let us denote the hole of D by an open set h, and

let D̃ := D ∪ h̄. We define p in D as in Lemma 2.1.5. Then if A(D̃) > 0, there is a constant c0

that only depends on A(D̃), such that

p|∂h ≤
|D|
2π

(1− c0),

Lemma 2.2.2 will be used in the main theorem to show that all level sets of ω are circles. To

obtain radial symmetry of ω, we also need to show all these level sets are concentric. To do this,

we need to obtain some quantitative lemmas for a region between two non-concentric disks. In

Lemma 2.2.3 we consider a thin tubular region between two non-concentric disks whose radii are
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close to each other, and obtain a quantitative version of (Equation 2.1.14) for such domain.

Lemma 2.2.3. For ε > 0, consider two open disks B1 := B(o1, 1) and B2 = B(o2, 1 + ε) such

that B1 ⊂ B2. Suppose |o1 − o2| = aε with a ∈ (0, 1), and let p be defined as in Lemma 2.1.5 in

D := B2 \B1. Then if ε and a satisfy that 0 < ε < a2

64
, we have

p
∣∣
∂B1
≤ |D|

2π

(
1− a2

16

)
. (2.2.1)

In Lemma 2.2.4 we consider a region between two non-concentric disks (that is not necessarily

a thin tubular region), and obtain a quantitative version of (Equation 2.1.14) for such domain.

Lemma 2.2.4. Consider two open disks Br := B(o1, r) and BR = B(o2, R) such that Br ⊂ BR .

Let p be defined as in ( 2.1.5) in D := BR\Br. Suppose l := |o1 − o2| > 0 and there exist δ1 > 0,

and δ2 > 0 such that δ1 < r < R < δ2. Then there exist a constant c0 that only depends on δ1, δ2

and l such that

p|∂Br ≤
|D|
2π

(1− c0).

The proofs of the above quantitative lemmas will be postponed to Section subsection 2.2.1.

Now we are ready to prove the main theorem.

Theorem 2.2.5. Let ω be a compactly supported smooth nonnegative stationary solution to the 2D

Euler equation. Then ω is radially symmetric up to a translation.

Proof. Note that as mentioned in step 1 of Proposition 2.1.6, we have that for almost every k ∈

(0, ‖ω‖L∞), ω−1({k}) is a smooth 1-manifold. Furthermore, since ω is compactly supported, each

such level set is a disjoint union of finite number of simply closed curves. For any such closed

curve, we call it a “level set component” in this proof.

We split the proof into several steps. Throughout step 1, 2 and 3, we prove that all level set

components of ω must be circles. In step 4, we will prove that any two level set components are
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nested, i.e. one is contained in the other. Lastly we present the proof that all level set components

are concentric in step 5 and 6.

Step 1. Towards a contradiction, suppose there is k > 0 that is a regular value of ω, and

ω−1({k}) has a connected component Γ that differs from a circle. Recall that int(Γ) denotes the

interior of Γ, which is open and simply connected. Since Γ is not a circle, we have A(int(Γ)) > 0,

with A as in Definition 2.2.1.

In this step, we investigate level set components near Γ. Since k is a regular value, we can find

an open neighborhood U of Γ and a constant η > 0 such that |∇ω| > η in U . For any x ∈ Γ,

consider the flow map Φt(x) originating from x, given by

d

dt
Φt(x) =

∇ω(Φt(x))

|∇ω(Φt(x))|2

with initial condition Φ0(x) = x. Since ∇ω
|∇ω|2 is smooth and bounded in U , we can choose δ1 > 0

so that Φt(Γ) := {Φt(x) : x ∈ Γ} lies in U for any t ∈ (−δ1, δ1). Note that Φt is a 1-parameter

group of diffeomorphisms, thus Φt(Γ) is also a smooth simply closed curve for t ∈ (−δ1, δ1). Then

we observe that

d

dt
ω(Φt(x)) = ∇ω(Φt(x)) · ∇ω(Φt(x))

|∇ω(Φt(x))|2
= 1 for (t, x) ∈ (−δ1, δ1)× Γ. (2.2.2)

Hence for each t ∈ (−δ1, δ1), Φt(Γ) is a level set component and

ω(Φt1(Γ)) 6= ω(Φt2(Γ)) if t1 6= t2. (2.2.3)

By continuity of the map (t, x) 7→ Φt(x), we can find δ2 ∈ (0, δ1) such that

A(int(Φt(Γ))) >
1

2
A(int(Γ)) for any t ∈ (−δ2, δ2). (2.2.4)
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Since two different level sets cannot intersect, we can assume without loss of generality

that int(Φ−δ2(Γ)) ⊂ int(Φδ2(Γ)). Then it follows from the intermediate value theorem and

(Equation 2.2.2) that

int(Φ−δ2(Γ)) ⊂ Φt(Γ) ⊂ int(Φδ2(Γ)), for any t ∈ (−δ2, δ2). (2.2.5)

Lastly we denote V := int(Φδ2(Γ))\int(Φ−δ2(Γ)) which is a nonempty open doubly connected

set, therefore |V | > 0.

Step 2. For any integer n > 1, we claim that we can approximate ω by a step function ωn of

the form ωn(x) =
∑Mn

i=1 αi1Di(x), which satisfies all the following properties.

(a) EachDi is a connected open domain with smooth boundary and possibly has a finite number

of holes.

(b) Each connected component of ∂Di is a level set component of ω.

(c) Di ∩Dj = ∅ if i 6= j.

(d) ‖ωn − ω‖L∞(R2) ≤ 2
n
‖ω‖L∞(Rn).

To construct such ωn for a fixed n > 1, let r0 = 0 and rn+1 = ‖ω‖L∞ . We pick r1, . . . , rn

to be regular values of ω, such that 0 < r1 < · · · < rn < ‖ω‖L∞ , and ri+1 − ri <
2
n
‖ω‖L∞

for i = 0, . . . , n. We denote Di := {x ∈ R2 : ri < ω(x) < ri+1} for i = 1, . . . , n − 1, and let

Dn := {x ∈ R2 : ω(x) > rn}. Thus for each i = 1, · · · , n, Di is a bounded domain with smooth

boundary. We can then write it as Di = ∪̇mil=1D
l
i for some mi ∈ N where Dl

i’s are connected

components of Di. Then let ωn(x) :=
∑n

i=1 ri
∑mi

l=1 1Dli . By relabeling the indices, we rewrite

ωn(x) =
∑Mn

i=1 αi1Di , where Mn =
∑n

i=1 mi, and each αi ∈ {r1, . . . , rn}. One can easily check

that such ωn satisfies properties (a)–(d).
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Of course, there are many ways to choose the values r1, · · · , rn, with each choice leading

to a different ωn. From now on, for any n > 1, we fix ωn(x) :=
∑Mn

i=1 αi1Di(x) as any function

constructed in the above way. (Note that αi andDi all depend on n, but we omit their n dependence

for notational simplicity.)

Finally, let us point out that for ωn(x) constructed above, if Di ⊂ V for some i, then Di must

be doubly connected, since step 1 shows that all level set components in V are nested curves. We

will use this in step 3 and 5.

Step 3. For any n > 1, let ωn(x) =
∑Mn

i=1 αi1Di(x) be constructed in Step 2. For each Di, let

we define pni in Di as in Lemma 2.1.5. We set


pn :=

∑Mn

i=1 p
n
i 1Di

ϕni := pi + |x|2
2

in Di

ϕn :=
∑Mn

i=1 ϕ
n
i 1Di .

(2.2.6)

As in Theorem 2.1.7, let f := ω ∗ N , and we will compute

In :=

ˆ
R2

ωn(x)∇ϕn(x) · ∇f(x)dx (2.2.7)

in two different ways and derive a contradiction by taking the n→∞ limit.

On the one hand, the same computation as in (Equation 2.1.22)–(Equation 2.1.23) yields that

In =
Mn∑
i=1

αi

(ˆ
∂Di

f(x)∇ϕni (x) · ~ndσ −
ˆ
Di

f(x)∆ϕni (x)dx

)
= 0. (2.2.8)
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On the other hand,

In =

ˆ
R2

ωn(x)x · ∇f(x)dx+

ˆ
R2

ωn(x)∇pn(x) · ∇f(x)dx

=: In1 + In2 .

Since ωn satisfies property (d) in step 2, it follows that

lim
n→∞

In1 =

ˆ
R2

ω(x)x · ∇f(x)dx.

A similar computation as in (Equation 2.1.24) yields that

ˆ
R2

ω(x)x · ∇f(x)dx =
1

2π

ˆ
R2

ˆ
R2

ω(x)ω(y)
x · (x− y)

|x− y|2
dxdy

=
1

4π

ˆ
R2

ˆ
R2

ω(x)ω(y)dxdy

=
1

4π

(ˆ
R2

ω(x)dx

)2

, (2.2.9)

where we used the symmetry of the integration domain to get the second equality.

Now we estimate the limit of In2 . By Lemma 2.1.11, we have
´
Di
|∇pni |2dx ≤

´
Di
|x|2dx,

hence ‖ωn∇p‖L2(R2) is uniformly bounded. Since ωn → ω in L∞, the bounded convergence

theorem yields that

lim
n→∞

ˆ
R2

ωn∇pn · ∇ ((ωn − ω) ∗ N ) (x)dx = 0,

therefore

lim inf
n→∞

In2 = lim inf
n→∞

ˆ
R2

ωn(x)∇pn(x) · ∇(ωn ∗ N )dx.
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From now on, we will omit the n dependence in pni for notational simplicity. Let us break the

integral in the right hand side as

ˆ
R2

ωn(x)∇pn(x) · ∇(ωn ∗ N )dx =
Mn∑
i,j=1

αiαj

ˆ
Di

∇pi · ∇(1Dj ∗ N )dx

=
Mn∑
i=1

α2
i

ˆ
Di

∇pi · ∇(1Di ∗ N )dx+
∑
i 6=j

αiαj

ˆ
Di

∇pi · ∇(1Dj ∗ N )dx

=: F1 + F2.

(2.2.10)

For F1, the divergence theorem yields

F1 =
Mn∑
i=1

α2
i

(ˆ
∂Di

pi∇(1Di ∗ N ) · ~ndσ −
ˆ
Di

pidx

)
= −

Mn∑
i=1

α2
i

ˆ
Di

pidx, (2.2.11)

where the second equality follows from an identical computation as in (Equation 2.1.25). Then by

Proposition 2.1.6, we have

F1 ≥ −
1

4π

Mn∑
i=1

α2
i |Di|2. (2.2.12)

For F2, the divergence theorem yields

F2 =
∑
i 6=j

αiαj

(ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ −
ˆ
Di

pi1Djdx

)
=
∑
i 6=j

αiαj

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ,

where we use property (c) in step 2 to get the last equality.

For i 6= j, recall that as in the proof of Corollary 2.1.8, we denote j ≺ i if Dj is contained in
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a hole of Di. Then divergence theorem gives

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ


= 0 if j 6≺ i,

≥ − supDi pi|Dj| if j ≺ i.

(2.2.13)

Next we will improve this inequality for j ≺ i and i ∈ L, where L := {i : Di ⊂ V }. (Note that

L depends on ωn, where we omit this dependence for notational simplicity.) From the discussion

at the end of step 2, we know that Di has exactly one hole for all i ∈ L. Using the divergence

theorem together with this observation, (Equation 2.2.13) becomes

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ


= 0 if j 6≺ i,

≥ − supDi pi|Dj| if j ≺ i and i 6∈ L,

= −pi|∂inDi |Dj| if j ≺ i and i ∈ L.

(2.2.14)

For the second case on the right hand side, we simply use the crude bound supDi pi ≤
|Di|
2π

from

Proposition 2.1.6. For the third case we can have a better bound: for any i ∈ L, by Lemma 2.2.2

and (Equation 2.2.4), there exists an ε > 0 that only depends on A(int(Γ)) (and in particular is

independent of n), such that pi|∂inDi ≤ ( 1
2π
− ε)|Di|. Thus (Equation 2.2.14) now becomes

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ


= 0 if j 6≺ i,

≥ − 1
2π
|Di||Dj| if j ≺ i and i 6∈ L,

≥ −( 1
2π
− ε)|Di||Dj| if j ≺ i and i ∈ L.

(2.2.15)
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Now we are ready to estimate F2. Let us break it into

F2 =
∑
j≺i

(i,j)6∈L×L

αiαj

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ +
∑
j≺i

(i,j)∈L×L

αiαj

ˆ
∂Di

pi∇(1Dj ∗ N ) · ~ndσ

≥ −
∑
j≺i

(i,j)6∈L×L

αiαj
1

2π
|Di||Dj| −

∑
j≺i

(i,j)∈L×L

αiαj

( 1

2π
− ε
)
|Di||Dj|

where the first equality follows from case 1 of (Equation 2.2.15), and the second inequality follows

from case 2,3 of (Equation 2.2.15). Finally, by exchanging i with j and taking average with the

original inequality, we have

F2 ≥ −
1

4π

∑
i 6=j

(i,j)6∈L×L

(1i≺j + 1j≺i)αiαj|Di||Dj| −
1

2

∑
i 6=j

(i,j)∈L×L

(1i≺j + 1j≺i)αiαj

( 1

2π
− ε
)
|Di||Dj|

≥ − 1

4π

∑
i 6=j

(i,j)6∈L×L

αiαj|Di||Dj| −
1

2

∑
i 6=j

(i,j)∈L×L

αiαj

( 1

2π
− ε
)
|Di||Dj|

= − 1

4π

∑
i 6=j

αiαj|Di||Dj|+
ε

2

∑
i 6=j

(i,j)∈L×L

αiαj|Di||Dj|,

(2.2.16)

where the second inequality is due to the fact that for any i 6= j, at most one of i ≺ j and j ≺ i

can be true, thus we always have 1i≺j + 1j≺i ≤ 1.

Therefore, from (Equation 2.2.12) and (Equation 2.2.16) it follows that

F1 + F2 ≥ −
1

4π

Mn∑
i,j=1

αiαj|Di||Dj|+
ε

2

∑
(i,j)∈L×L

αiαj|Di||Dj| −
ε

2

∑
i∈L

α2
i |Di|2

= − 1

4π

(
Mn∑
i=1

αi|Di|

)2

+
ε

2

(∑
i∈L

αi|Di|

)2

− ε

2

∑
i∈L

α2
i |Di|2. (2.2.17)

Since we will send n → ∞, in the rest of step 3 we will denote L by Ln to emphasize that L

depends on ωn. (In fact αi and Di depend on n as well, and we omit the n dependence for them to
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avoid overcomplicating the notations.)

Note that
∑

i∈Ln αi1Di converges to ω1V in L1(R2). Also if i ∈ Ln, then the nondegeneracy of

|∇ω| on V yields that limn→∞ supi∈Ln |Di| = 0, consequently

lim
n→∞

∑
i∈Ln

α2
i |Di|2 ≤ ‖ω‖L∞ lim

n→∞
sup
i∈Ln
|Di|

ˆ
R2

ωdx = 0.

Therefore it follows that

lim inf
n→∞

In2 = lim inf
n→∞

(F1 + F2)

≥ − lim
n→∞

1

4π

(
Mn∑
i=1

αi|Di|

)2

+ lim
n→∞

ε

2

(∑
i∈Ln

αi|Di|

)2

= − 1

4π

(ˆ
R2

ω(x)dx

)2

+
ε

2

(ˆ
V

ω(x)dx

)2

. (2.2.18)

Note that ω is strictly positive in V , due to |∇ω| > 0 in V and ω ≥ 0 in R2. Thus from

(Equation 2.2.8), (Equation 2.2.9) and (Equation 2.2.18), it follows that

0 = lim
n→∞

In ≥ lim
n→∞

In1 + lim inf
n→∞

In2 ≥
ε

2

(ˆ
V

ω(x)dx

)2

> 0, (2.2.19)

which is a contradiction and we have proved that any connected component of a regular level set

is a circle.

Step 4. In this step we show that every pair of disjoint level set components are nested. Towards

a contradiction, assume that there exist Γ1 and Γ2 that are connected components of level sets of

regular values of ω, such that Γ1 and Γ2 are not nested.

From step 3, we know that Γ1 and Γ2 are circles. Then the disks int(Γ1) and int(Γ2) are disjoint,

and they must be separated by a positive distance since Γ1 and Γ2 are level sets of regular values of

ω. As in step 1, using the flow map Φt originating from the two circles, we can find disjoint open
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annuli V1 and V2 such that Γi ⊂ Vi for i = 1, 2, and both ∂outVi and ∂inVi are level set components

of ω.

For any n > 1, let ωn(x) =
∑Mn

i=1 αi1Di(x) be constructed in step 2, and let

Ln1 := {i : Di ⊂ V1} and Ln2 := {i : Di ⊂ V2} .

Let pi be defined in (Equation 2.2.6) of step 3, and In defined in (Equation 2.2.7). Then on the one

hand, the same computations in step 3 give

lim
n→∞

In = 0 and lim
n→∞

In1 =
1

4π

(ˆ
R2

ω(x)dx

)2

. (2.2.20)

Let F1 and F2 be given by (Equation 2.2.10). For F1, the estimate (Equation 2.2.12) still holds.

For F2, using (Equation 2.2.13) and Proposition 2.1.6, we have

F2 ≥ −
1

4π

∑
i≺j or j≺i

αiαj|Di||Dj|.

Since V1 and V2 are assumed to be not nested, if (i, j) ∈ Ln1 × Ln2 then neither i ≺ j nor j ≺ i.

Therefore it follows that

F2 ≥ −
1

4π

∑
i 6=j

αiαj|Di||Dj|+
1

4π

∑
(i,j)∈L1×L2

αiαj|Di||Dj|+
1

4π

∑
(j,i)∈L1×L2

αiαj|Di||Dj|.

Combining the estimates for F1 and F2 yields

F1 + F2 ≥ −
1

4π

Mn∑
i,j=1

αiαj|Di||Di|+
1

2π

∑
i∈Ln1

αi|Di|

∑
i∈Ln2

αi|Di|

 .

As n → ∞, since
∑

i∈Ln1
αi1Di and

∑
i∈Ln2

αi1Di converge to ω1V1 and ω1V2 respectively in
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L1(R2), we have

lim inf
n→∞

In2 ≥ lim
n→∞

(F1 + F2) = − 1

4π

(ˆ
R2

ω(x)dx

)2

+
1

2π

(ˆ
V1

ω(x)dx

)(ˆ
V2

ω(x)dx

)
.

(2.2.21)

Combining (Equation 2.2.20) and (Equation 2.2.21) gives us a similar contradiction as in

(Equation 2.2.19), except that ε
2

(´
V
ω(x)dx

)2 is now replaced by 1
2π

(´
V1
ω(x)dx

)(´
V2
ω(x)dx

)
.

Thus we complete the proof that level sets are nested.

Step 5. In this step, we aim to show that all level set components are concentric within the

same connected component of supp ω. This immediately implies that each connected component

of supp ω is an annulus or a disk, and ω is radially symmetric about its center.

Towards a contradiction, suppose that there are two level set components Γin and Γout in the

same connected component of supp ω, such that they are nested circles, but their centers Oin and

Oout do not coincide. We denote their radii by rin and rout, and define

U := int(Γout) \ int(Γin).

For an illustration of Γin and Γout and U , see Figure Figure 2.2(a).

We claim that ω is uniformly positive in U . Recall that all level set components of ω are nested

by step 4. Thus if ω achieves zero in U , the zero level set must be also nested between Γin and

Γout, since it can be taken as a limit of level set components whose value approaches 0; but this

contradicts with the assumption that Γin and Γout lie in the same connected component of supp ω.

As a result, we have ωmin := infU ω > 0.

For a sufficiently large n, let ωn =
∑Mn

i=1 αi1Di(x) be given in step 2, where we further require

both Γin and Γout coincide with some boundary of Di. (This is allowed in our construction of ωn in

69



Γout

Γin

Oin Oout
rout

rin

U
{Di}i∈Bn

(a) (b)

Figure 2.2: (a) Illustration of the circles Γin and Γout, whose centers are Oin and Oout. The set U
is colored in blue. (b) For a fixed n, each open set {Di}i∈Bn is colored in yellow. Note that their
union gives exactly the set U .

step 2, since ω is regular along both Γin and Γout.) Let us denote

Bn := {1 ≤ i ≤Mn : Di ⊂ U},

and note that U := ∪i∈BnDi. See Figure Figure 2.2(b) for an illustration of {Di}i∈Bn .

As before, we denote i ≺ j if Di is nested in Dj . For the integral In in (Equation 2.2.7), on

the one hand, we have In = 0 for all n > 1 by (Equation 2.2.8). On the other hand, following

the same argument as in step 3 up to (Equation 2.2.13) (where we also use that each Di is already

known to be doubly-connected, thus
´
∂Di

pi∇(1Dj ∗ N ) · ~ndσ = −pi|∂inDi |Dj| if j ≺ i), we have

lim inf
n→∞

In = lim inf
n→∞

(
1

4π

( Mn∑
i=1

αi|Di|
)2

−
Mn∑
i=1

α2
i

ˆ
Di

pidx−
∑

1≤i,j≤Mn,j≺i

αiαjpi
∣∣
∂inDi
|Dj|

)

≥ lim inf
n→∞

( ∑
1≤i,j≤Mn, j≺i

αiαj

( 1

2π
|Di| − pi

∣∣
∂inDi

)
|Dj|︸ ︷︷ ︸

=:Tn

)
,

where in the last step we used Proposition 2.1.6.

Note that Proposition 2.1.6 gives Tn > 0, where we have strict positivity, since Oin 6= Oout

implies that some {Di}i∈Bn must be non-radial. But since the area of theseDi’s may approach 0 as
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n→∞, in order to derive a contradiction after taking lim infn→∞, we need to obtain a quantitative

estimate for Proposition 2.1.6 for a thin tubular region Di between two circles, which is done in

Lemma 2.2.3.

Next we show that the sets {Di}i∈Bn that are “non-radial to some extent” must occupy a certain

portion of U . For i ∈ Bn, denote by oiin and riin the center and radius of ∂inDi, and likewise oiout

and riout the center and radius of ∂outDi. Note that if Di is the inner-most set in {Di}i∈Bn , then we

have oiin = Oin, and the outmost Di satisfies oiout = Oout. In addition, if ∂outDi = ∂inDj for some

i, j ∈ Bn, then oiout = ojin. Thus triangle inequality gives

∑
i∈Bn

|oiin − oiout| ≥ |Oin −Oout| =: c0 > 0 for all n ≥ n0. (2.2.22)

In order to apply Lemma 2.2.3 (which requires the region to have inner radius 1), for each

i ∈ Bn, consider the scaling

p̃i(x) := (riin)
−2pi(r

i
inx).

Then p̃i is defined in D̃i := (riin)
−1Di. Due to the scaling, D̃i has inner radius 1 (denote the hole by

h̃i), and outer radius 1 + εi, where εi :=
riout−riin
riin

> 0. In addition, the distance between the centers

of ∂inD̃i and ∂outD̃i is aiεi, where

ai :=
|oiin − oiout|
|riin − riout|

.

One can also easily check that p̃i satisfies ∆p̃i = −2 in D̃i, and
´
∂h̃i
∇p̃ · ~ndσ = −2|h̃i| = −2π.

By Lemma 2.2.3, if 0 < εi <
(ai)

2

64
, then p̃i|∂h̃i ≤

|D̃i|
2π

(1− a2
i

16
). Thus in terms of pi, we have

pi
∣∣
∂inDi
≤ 1

2π
|Di| − c1a

2
i |Di| if i ∈ Bn satisfies riout − riin ≤ c2a

2
i , (2.2.23)

where c1 := 1
32π

and c2 := rin
64

are independent of n and i, due to the fact that riin ≥ rin > 0 for all
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i ∈ Bn. Using the definition of ai, (Equation 2.2.22) can be written as

∑
i∈Bn

ai|riin − riout| > c0. (2.2.24)

Note that
∑

i∈Bn |r
i
in − riout| satisfies the upper bound

∑
i∈Bn

|riin − riout| ≤
|U |

2πrin
=: M, (2.2.25)

which follows from

|U | =
∑
i∈Bn

|Di| = π
∑
i∈Bn

|riin − riout| (riin + riout)︸ ︷︷ ︸
>2rin

.

Combining (Equation 2.2.24) and (Equation 2.2.25) gives

∑
i∈Bn

1ai>
c0
2M
|riin − riout| ≥

∑
i∈Bn

(
ai −

c0

2M

)
|riin − riout| ≥

c0

2
, (2.2.26)

where the first inequality follows from 1ai>
c0
2M
≥ ai − c0

2M
(recall that ai ∈ (0, 1)), and the second

inequality follows from subtracting c0
2M

times (Equation 2.2.25) from (Equation 2.2.24).

Let

Kn :=
{
i ∈ Bn : ai >

c0

2M

}
.

Using this definition and the fact that |Di| > 2πrin|riin − riout|, (Equation 2.2.26) can be rewritten

as ∑
i∈Kn

|Di| > 2πrin

∑
i∈Kn

|riin − riout| ≥ πrinc0. (2.2.27)

Now we take a sufficiently large n, and discuss two cases (note that different nmay lead to different

cases):

Case 1. Every i ∈ Kn satisfies riout − riin ≤ min{c2( c0
2M

)2, rinc0
4rout
}. By definition of Kn, we have

riout − riin ≤ c2( c0
2M

)2 ≤ c2a
2
i for i ∈ Kn. (The motivation of the second term in the min function
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will be made clear later.) Then by (Equation 2.2.23), we have

1

2π
|Di| − pi

∣∣
∂inDi
≥ c1a

2
i |Di| ≥

c1c
2
0

4M2
|Di| for all i ∈ Kn.

Since Kn is a subset of Bn (and recall that αi ≥ ωmin > 0 for all i ∈ Bn), we have the following

lower bound for Tn:

Tn ≥ ω2
min

∑
i,j∈Kn, j≺i

( 1

2π
|Di| − pi

∣∣
∂inDi

)
|Dj|

≥ ω2
min

∑
i,j∈Kn, j≺i

c1c
2
0

4M2
|Di||Dj| = ω2

min

∑
i,j∈Kn, i 6=j

c1c
2
0

8M2
|Di||Dj|

= ω2
min

c1c
2
0

16M2

((∑
i∈Kn

|Di|
)2

−
∑
i∈Kn

|Di|2
) (2.2.28)

Note that the second term in the min function in the assumption gives

max
i∈Kn
|Di| < 2πrout(r

i
out − riin) ≤

πrinc0

2
≤ 1

2

∑
i∈Kn

|Di|,

where we use (Equation 2.2.27) in the last inequality. Applying this to the right hand side of

(Equation 2.2.28) gives

Tn ≥ ω2
min

c1c
2
0

16M2
· 1

2

(∑
i∈Kn

|Di|
)2

≥ ω2
min

c1c
2
0

32M2
(πrinc0)2.

Case 2. If Case 1 is not true, then there must be some i0 ∈ Kn satisfying ri0out − ri0in >

min{c2( c0
2M

)2, rinc0
4rout
} =: c3, which leads to

|oi0in − oi0out| = ai0(ri0out − r
i0
in ) >

c0c3

2M
=: l.

Although this set Di0 is likely not thin enough for us to apply Lemma 2.2.3, since |oi0in − o
i0
out| is
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bounded below by a positive constant independent of n, we can still use Lemma 2.2.4 to conclude

that 1
2π
|Di0| − pi0

∣∣
∂inDi0

≥ c4 for some c4 > 0 only depending on rin, rout and l. This leads to

Tn ≥
∑
i0�j

ωminαjc4|Dj| ≥ ωminc4

∑
Dj⊂int(Γin)

αj|Dj| ≥ ωminc4 ·
1

2

ˆ
int(Γin)

ωdx,

where the last inequality follows from the fact that for all sufficiently large n, the definition of ωn

gives
∑

Dj⊂int(Γin) αj|Dj| =
´

int(Γin)
ωndx ≥ 1

2

´
int(Γin)

ωdx. Note that the last integral is positive

since ω > 0 on Γin, and it is clearly independent of n.

From the above discussion, for all sufficiently large n, regardless of whether we are in Case

1 or 2 for this n, we always have that Tn is bounded below by some uniformly positive constant

independent of n. Therefore taking the n→∞ limit gives

lim inf
n→∞

In ≥ lim inf
n→∞

Tn > 0.

This contradicts In = 0, therefore finishing the proof of step 5.

Step 6. It remains to show that all connected components of supp ω are concentric. If supp ω

has finitely many connected components, we could proceed similarly as the end of the proof of

Corollary 2.1.8. But since supp ω may have countably many connected components, we need to

use a different argument.

Let us denote the connected components of supp ω by {Ui}i∈I , where I may have countably

many elements. Denote their centers by {oi}i∈I , their radii by {Ri}i∈I , and their outer boundaries

by {∂outUi}i∈I . Without loss of generality, suppose the x-coordinates of their centers {o1
i }i∈I are

not all identical.

Among the (possibly infinitely many) collection of circles {∂outUi}i∈I , let Γr be the “circle with

rightmost center” among them, in the following sense:

• If there exists some i0 ∈ I such that o1
i0

= supi∈I o
1
i , we define Γr := ∂outUi0 . (If the
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supremum is achieved at more than one indices, we set i0 to be any of them.)

•Otherwise, take any subsequence {ik}k∈N ⊂ I such that limk→∞ o
1
ik

= supi∈I o
1
i . Since ω has

compact support, we can extract a further subsequence (which we still denote by {ik}k∈N), such

that both oik and rik converge as k → ∞, and denote their limit by Or ∈ R2 and Rr ∈ R. Finally

let Γr := ∂B(Or, Rr).

With the above definition, we point out that f := ω ∗ N = const on Γr. Note that in both

cases above, we can find a sequence of level set components of ω that converges to Γr, in the sense

that the Hausdorff distance between the two sets goes to 0. Since f = const on each level set

component of ω, continuity of f gives that f = const on Γr.

Let fi(x) := (ω1Ui) ∗N for i ∈ I; note that by definition we have f =
∑

i∈I fi. Lemma 2.1.9

gives the following:

(a) For all x ∈ (int(∂outUi))
c, we have fi(x) = 1

2π

( ´
Ui
ωdx

)
ln |x− oi|.

(b) If Ui is doubly-connected, then fi = const in int(∂inUi), where the constants are different

for different i.

Note that for any i ∈ I , Ui must be either nested inside Γr, or have Γr nested in its hole.

(By a slight abuse of notation, we use i ≺ Γr and i � Γr to denote these two relations.) Let

ΓRr := (O1
r + Rr, O

2
r) and ΓLr := (O1

r − Rr, O
2
r) be the rightmost/leftmost point of the circle Γr.

Note that (b) implies fi(ΓRr ) = fi(Γ
L
r ) for all i � Γr, whereas (a) gives the following for all i ≺ Γr:

fi(Γ
R
r ) =

´
Ui
ωdx

2π
ln |ΓRr − oi| ≥

´
Ui
ωdx

2π
ln |ΓLr − oi| = fi(Γ

L
r ),

where the inequality follows from that |O1
r +Rr − o1

i | ≥ |O1
r −Rr − o1

i |, which is a consequence

of o1
i ≤ O1

r due to our choice of Or. (Also note that ΓRr and ΓLr have the same y-coordinate.)

As a result, summing over all i ∈ I gives f(ΓRr ) ≥ f(ΓLr ), where the equality is achieved if

and only if o1
i = Or for all i ≺ Γr. Now we discuss two cases:

Case 1. There is some i ≺ Γr with o1
i < Or. In this case the above discussion gives f(ΓRr ) >
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f(ΓLr ), which directly leads to a contradiction to f = const on Γr.

Case 2. If case 1 does not hold, then let us define Γl as a “circle with leftmost center” among

{∂outUi}i∈I in the same way as Γr. Then we must have O1
l < O1

r , and since case 1 does not hold

(i.e. all i ≺ Γr satisfy that o1
i = Or), we must have Γl � Γr. By definition of Γr, there exists some

Ui0 whose outer boundary is sufficiently close to Γr and center sufficiently close to Or. As a result,

i0 ≺ Γl and o1
i0
> O1

l .

Let ΓLl and ΓRl be the leftmost/rightmost point of Γl. A parallel argument as above then gives

that fi(ΓLl ) ≥ fi(Γ
R
l ) for all i ∈ I . Since we have found an i0 ≺ Γl with o1

i0
> O1

l , we have

fi0(ΓLl ) > fi0(ΓRl ), thus summing over all i ∈ I gives the strict inequality f(ΓLl ) > f(ΓRl ),

contradicting with f = const on Γl.

In both cases above we have obtained a contradiction, thus {oi}i∈I must have the same x-

coordinate. An identical argument shows that their y-coordinate must also be identical, thus

{Ui}i∈I are concentric. Since ω is known to be radial within each Ui (about its own center) in

step 1–5, the proof is now finished.

In the next corollary, we show that the above proof for stationary smooth solutions can be

extended (with some modifications) to show radial symmetry for rotating patches with Ω < 0.

Corollary 2.2.6. Let ω be a compactly supported smooth nonnegative rotating solution to the 2D

Euler equation, with angular velocity Ω < 0. Then ω is radially symmetric about the origin.

Proof. The proof is very similar to the proof of Theorem 2.2.5, and we only highlight the dif-

ferences. Let {ωn} be the same approximation for ω as in step 2 of Theorem 2.2.5. We con-

sider the same setting as in (Equation 2.2.6) and (Equation 2.2.7), except with f(x) replaced by

fΩ(x) := ω ∗N − Ω
2
|x|2. From the assumption on ω, we have that fΩ is a constant on each regular

level set component of ω. Thus the same computations in (Equation 2.2.8) give In = 0 for all

n > 1.
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On the other hand, we have

In =

ˆ
R2

ωn∇ϕn · ∇ (ω ∗ N ) dx+ (−Ω)

ˆ
R2

ωn∇ϕn · xdx =: In1 + (−Ω)︸ ︷︷ ︸
≥0

In2 . (2.2.29)

The same argument as in (Equation 2.1.33) of Theorem 2.1.10 gives that In2 ≥ 0. As for In1 , in

step 3 – step 5 of the proof of Theorem 2.2.5, we have already shown that lim infn→∞ In1 ≥ 0, and

the equality is achieved if and only if each connected component of {ω > 0} is radially symmetric

up to a translation, and they are all nested.

Let us decompose supp ω into (possibly infinitely many) connected components ∪i∈IUi, with

centers {oi}i∈I . Our goal is to show oi ≡ (0, 0) for i ∈ I . Note that it suffices to show that their

x-coordinates satisfy supi∈I o
1
i ≤ 0. Once we prove this, a parallel argument gives infi∈I o

1
i ≥ 0,

which implies o1
i ≡ 0 for i ∈ I , and the same can be done for the y-coordinate.

Towards a contradiction, suppose supi∈I o
1
i > 0. We can then define Γr in the same way as step

6 of the proof of Theorem 2.2.5, i.e. it is the “circle with rightmost center” among {∂outUi}i∈I ,

and its center Or satisfies O1
r = supi∈I o

1
i > 0. Since the new f function takes constant values

along each level set component of ω, we again have that f = const on Γr. Let ΓRr and ΓLr be the

rightmost/leftmost points on Γr. Note that their distances to the origin satisfy |ΓRr | > |ΓLr |, where

the strict inequality is due to the assumption O1
r > 0.

Let us define fi(x) = (ω1Ui) ∗ N for i ∈ I , and note that fΩ = (
∑

i∈I fi) − Ω|x|2. The

properties (a,b) in step 6 of Theorem 2.2.5 still hold for fi, thus we have fi(ΓRr ) ≥ fi(Γ
L
r ) for all

i ∈ I . This leads to

fΩ(ΓRr ) =
(∑

i∈I

fi(Γ
R
r )
)

+ (−Ω)︸ ︷︷ ︸
>0

∣∣ΓRr ∣∣2 > (∑
i∈I

fi(Γ
L
r )
)

+ (−Ω)
∣∣ΓLr ∣∣2 = fΩ(ΓLr ),

contradicting the fact that fΩ ≡ const on Γr.
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2.2.1 Proofs of the quantitative lemmas

Let us start with the proof of Lemma 2.2.2. Let us begin by stating two lemmas that we will use in

the proof. The first one is a quantitative version of the isoperimetric inequality obtained by Fusco,

Maggi and Pratelli [42].

Lemma 2.2.7 (c.f. [42, Section 1.2]). Let E ⊆ R2 be a bounded domain. Then there is some

constant c ∈ (0, 1), such that

P (E) ≥ 2
√
π
√
|E|
(
1 + cA(E)2

)
,

where P (E) = H1(∂E) denotes the perimeter of E.

The second lemma is a simple result relating the Fraenkel asymmetry of a setE with its subsets

U .

Lemma 2.2.8 (c.f. [34, Lemma 4.4]). Let E ⊆ R2 be a bounded domain. For all U ⊆ E satisfying

|U | ≥ |E|(1− A(E)
4

), we have

A(U) ≥ A(E)

4
.

Proof of Lemma 2.2.2. The proof of the Lemma 2.2.2 is similar to [34, Proposition 4.5] obtained

by Craig, Kim and the last author. For the sake of completeness, we give a proof below. Let g(k),

Dk and D̃k be defined as in Proposition 2.1.6, let D̃ = D ∪ h and define ph := p|∂h. We start by

following the proof of Proposition 2.1.6, except that after obtaining (Equation 2.1.18), instead of

using the isoperimetric inequality, we use the stability version in Lemma 2.2.7 to control P (D̃k).
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This gives

g′(k)
(
g(k) + |h|1ph>k

)
≤ −1

2
P (D̃k)

2

≤ −2π|D̃k|
(

1 + cA(D̃k)
2
)2

≤ −2π
(
g(k) + |h|1ph>k

) (
1 + cA(D̃k)

2
)
.

Hence it follows from Lemma 2.2.8 that

g′(k) ≤ −2π
(

1 + c
A(D̃)2

16

)
for all k such that |D̃k| ≥ |D̃|

(
1− A(D̃)

4

)
. (2.2.30)

We claim that

g(k) ≤ |D| − 2π
(

1 + c
A(D̃)2

16

)
k for k < min

{
ph,
A(D̃)|D̃|

16π

}
. (2.2.31)

Towards a contradiction, suppose there is k0 ≤ min
(
ph,

A(D̃)|D̃|
16π

)
such that (Equation 2.2.31) is

violated. Since 1 + cA(D̃)2

16
≤ 2, we have

g(k0) > |D| − 4πk0 ≥ |D| −
A(D̃)|D̃|

4
,

therefore

|D̃k0| = g(k0) + |h|

> |D| − A(D̃)|D̃|
4

+ |h|

= |D̃| − A(D̃)|D̃|
4

= |D̃|
(

1− A(D̃)

4

)
.
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Hence for all k ≤ k0, g′(k) satisfies the inequality (Equation 2.2.30). Thus we have

g(k0) ≤
ˆ k0

0

−2π
(

1 + c
A(D̃)2

16

)
dk + |D|

= |D| − 2π
(

1 + c
A(D̃)2

16

)
k0,

contradicting our assumption on k0.

Finally, to control ph, we discuss two cases below, depending on which one in the minimum

function in (Equation 2.2.31) is smaller. For simplicity, we denote A := A(D̃)|D̃|
16π

and B := cA(D̃)2

16
.

Case 1: ph ≤ A. In this case (Equation 2.2.31) holds for all k ≤ ph, thus

0 ≤ g(ph) ≤ |D| − 2π (1 +B) ph,

implying

ph ≤
|D|

2π (1 +B)
≤ |D|

2π
(1− c0),

for some constant c0 which only depends on A(D̃).

Case 2: ph > A. In this case (Equation 2.2.31) gives g(A) ≤ |D| − 2π(1 + B)A and

we use a crude bound for k ≥ A that is g′(k) ≤ −2π. Therefore for k > A,

g(k) =

ˆ k

A

g′(k)dk + g(A) ≤ −2π(k − A) + |D| − 2π(1 +B)A

= |D| − 2πk − 2πAB

≤ |D|(1− A(D̃)

8
B)− 2πk,
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where the last inequality follows from A > A(D̃)|D|
16π

. Plugging in k = ph gives

0 ≤ g(ph) ≤ |D|(1−
A(D̃)

8
B)− 2πph

leading to

ph ≤
|D|
2π

(1− c0),

again c0 only depends on A(D̃).

Next we prove Lemma 2.2.3.

Proof of Lemma 2.2.3. Without loss of generality, we can assume that o1 = (0, 0) and o2 =

(aε, 0). To estimate p|∂B1 , we decompose p into

p = p
∣∣
∂B1

g + u,

where g satisfies 
∆g = 0 in D

g = 1 on ∂B1

g = 0 on ∂B2,

(2.2.32)

and u satisfies 
∆u = −2 in D

u = 0 on ∂D.
(2.2.33)

Using this decomposition as well as the definition of p, we have

−2|B1| =
ˆ
∂B1

∇p · ~ndσ = p
∣∣
∂B1

ˆ
∂B1

∇g · ~ndσ +

ˆ
∂B1

∇u · ~ndσ,
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where ~n is the outer-normal of B1 throughout this proof. Thus

p
∣∣
∂B1

=
1´

∂B1
∇g · ~ndσ

(
−2π −

ˆ
∂B1

∇u · ~ndσ
)
. (2.2.34)

To estimate p
∣∣
∂B1

, it remains to estimate the two integrals in (Equation 2.2.34).

The function g can be explicitly constructed using the conformal mapping from D to a perfect

annulus centered at 0. Consider the Möbius map h : C→ C given by

h(z) :=
z + b

1 + bz
,

where b ∈ R will be fixed soon. Note that the unit circle and the real line are both invariant under

h, and ∂B2 is mapped to some circle centered on the real line. In order to make h(∂B2) centered

at 0, since the left/right endpoints of ∂B2 are ±(1 + ε) + aε, we look for b ∈ R that solves

h(1 + ε+ aε) = −h(−1− ε+ aε). (2.2.35)

Plugging the definition of h into the above equation, we know that b is a root of the quadratic

polynomial

f(b) := b2 − 2 + (1− a2)ε

a
b+ 1.

Clearly, for 0 < a < 1, f has two positive roots whose product is 1, thus one is in (0, 1) and the

other in (1,+∞). We define b to be the root in (0, 1). One can easily check that f(a) < 0, and

f(a
2
) > 0 if a2 > 2(1−a2)ε, which is true due to our assumption a2 > 64ε. Thus for all ε ∈ (0, a

2

64
)

we have

0 <
a

2
< b < a < 1.

Note that h is holomorphic in C except at the two singularity points −b and −1
b
. We have

already shown that −b ∈ B1, thus it is outside of D. Next we will show that −1
b
∈ Bc

2, thus is also
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outside of D. To see this, note that

−1− ε+ aε+ b

1 + b(−1− ε+ aε)
= h(−1− ε+ aε) = −h(1 + ε+ aε) = − 1 + ε+ aε+ b

1 + b(1 + ε+ aε)
< 0,

where the inequality follows from the fact that a, b, ε > 0. Since the numerator of the left hand

side is already known to be negative due to a, b ∈ (0, 1), its denominator must be positive, leading

to −1
b
< −1− ε+ aε, i.e. −1

b
∈ Bc

2.

Now we define g : R2 \ {(−b, 0) ∪ (−1/b, 0)} → R as

g(x) := − 1

log |h(1 + ε+ aε)|
log |h(z)|+ 1 for z = x1 + ix2.

Let us check that g indeed satisfies (Equation 2.2.32): first note that g satisfies the boundary condi-

tions in (Equation 2.2.32), since h maps D to a perfect annulus centered at the origin, whose inner

boundary is ∂B1. In addition, g is harmonic in R2 \ {(−b, 0) ∪ (−1/b, 0)}, thus harmonic in D.

Using the explicit formula of g, we have

∆g(x) = − 2π

log |h(1 + ε+ aε)|

(
δ(−b,0)(x)− δ(− 1

b
,0)(x)

)

in the distribution sense. We can then apply the divergence theorem to g in B1, and compute the

integral containing g in (Equation 2.2.34) explicitly as

ˆ
∂B1

∇g · ~ndσ = − 2π

log |h(1 + ε+ aε)|
. (2.2.36)

As for the integral containing u in (Equation 2.2.34), we compare u with a radial barrier function

w(x) := −2(|x| − 1)(|x| − 1− 2ε),
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which satisfies w = 0 on ∂B1 and w > 0 on ∂B2. Note that

∆w =

(
∂rr +

1

r
∂r

)
w = −8 +

4 + 4ε

r
≤ −2 in D,

where we used that ε ∈ (0, 1
2
) and r > 1 in D in the last inequality. Thus w − u is superharmonic

in D and nonnegative on ∂D, which allows us to apply the classical maximum principle to obtain

u ≤ w in D. Combining this with the fact that u = w = 0 on ∂B1, we have

∇u(x) · ~n(x) ≤ ∇w(x) · ~n(x) =
d

dr
w(r)

∣∣∣
r=1

= 4ε for all x ∈ ∂B1,

hence ˆ
∂B1

∇u · ~ndσ ≤ 8πε. (2.2.37)

Plugging (Equation 2.2.36) and (Equation 2.2.37) into (Equation 2.2.34), we obtain

p
∣∣
∂B1
≤ log(|h(1 + ε+ aε)|)(1 + 4ε).

Since log s ≤ s− 1 for s > 1, it follows that

log |h(1 + ε+ aε)| ≤ h(1 + ε+ aε)− 1 =
1 + ε+ aε+ b

1 + b(1 + ε+ aε)
− 1

= ε

(
1 +

a− 2b− ab− bε− abε
1 + b(1 + ε+ aε)

)
≤ ε

(
1− ab

4

)
≤ ε

(
1− a2

8

)
,

where we used b > a
2

to obtain the last two inequalities. Finally, using that ε < a2

64
, we have

p
∣∣
∂B1
≤ ε

(
1− a2

8

)(
1 +

a2

16

)
≤ ε

(
1− 1

16
a2

)
<
|D|
2π

(
1− 1

16
a2

)
,

where in the last step we use that |D| = π(1 + ε)2 − π > 2πε. This finishes the proof of the
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lemma.

Finally we give the proof of Lemma 2.2.4.

Proof of Lemma 2.2.4. Without loss of generality, we can assume that o2 is the origin. Let β :=

p|∂Br . From the proof of Proposition 2.1.6, we already know that g′(k) ≤ −2π, where g(k) :=

| {x ∈ D : p(x) > k} |. This implies that g(k) ≥ −2π(k − β). Therefore we have

ˆ
D

pdx =

ˆ β

0

g(k)dk ≥
ˆ β

0

−2π(k − β)dk = πβ2.

On the other hand, the same computation in the proof of Lemma 2.1.11 gives

β|Br|+
ˆ
D

pdx =
1

2

ˆ
D

|∇p|2dx ≤ 1

2

ˆ
D

|x|2dx.

Since

1

2

ˆ
D

|x|2dx =
1

2

(ˆ
BR

|x|2dx−
ˆ
Br

|x|2dx
)

=
|D|2

4π
+
|D||Br|

2π
+
|Br|2

4π
− 1

2

ˆ
Br

|x|2dx

=
|D|2

4π
+
|D||Br|

2π
− l2|Br|

2
,

it follows that

πβ2 + β|Br| ≤
|D|2

4π
+
|D||Br|

2π
− l2|Br|

2
. (2.2.38)

By solving the quadratic inequality (Equation 2.2.38), we find that

β ≤ |D|
2π

(1− c0),

for some constant c0 which only depends on δ1, δ2 and l.
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CHAPTER 3

RIGIDITY RESULTS FOR GENERALIZED SQG

3.1 Radial symmetry for stationary/rotating gSQG solutions with Ω ≤ 0

In this section, we consider the family of gSQG equations with 0 < α < 2, and study the symmetry

property for rotating patch/smooth solutions with angular velocity Ω ≤ 0.

Let us deal with patch solutions first. As we have discussed in the introduction, we cannot

expect a non-simply-connected patch D with Ω ≤ 0 to be radial, due to the non-radial examples

in [68, 49] for α ∈ (0, 2). For a simply-connected patch D, the constant on the right hand side of

(Equation 1.1.6) is the same on ∂D, which motivates us to consider Question 2 in the introduction.

The goal of this section is to prove Theorem C, which gives an affirmative answer to Question 2

for the whole range α ∈ [0, 2).

Our results are not limited to the Riesz potentials Kα,d in (Equation 1.1.4); in fact, we only

need the potential being radially increasing and not too singular at the origin. Below we state our

assumption on the potential K, which covers the whole range of Kα,d with α ∈ [0, 2).

(HK) Let K ∈ C1(Rd \ {0}) be radially symmetric with K ′(r) > 0 for all r > 0. (Here we

denote K(x) = K(r) by a slight abuse of notation.) Also assume there is some δ > 0 such that

K ′(r) ≤ r−d−1+δ for all 0 < r ≤ 1.

Our proof is done by a variational approach, which relies on a continuous Steiner symmetriza-

tion argument in a similar spirit as [18].

3.1.1 Definition and properties of continuous Steiner symmetrization

Below we define the continuous Steiner symmetrization for a bounded open set D ⊂ Rd with

respect to the direction e1 = (1, 0, . . . , 0), which can be easily adapted to any other direction in Rd.

86



The definition is the same as [18, Section 2.2.1], which we briefly outline below for completeness.

For a one-dimensional open set U ⊂ R, we define its continuous Steiner symmetrization

M τ [U ] as follows. If U = (a, b) is an open interval, then M τ [U ] shifts the midpoint of this

interval towards the origin with velocity 1, while preserving the length of interval. That is,

M τ [U ] :=


(
a− τ sgn(a+b

2
), b− τ sgn(a+b

2
)
)

for 0 ≤ τ < |a+b|
2
,

(− b−a
2
, b−a

2
) for τ ≥ |a+b|

2
.

If U = ∪Ni=1Ui is a finite union of open intervals, then M τ [U ] is defined by ∪Ni=1M
τ [Ui], and

as soon as two intervals touch each other, we merge them into one interval as in [18, Definition

2.10(2)]. Finally, if U = ∪∞i=1Ui is a countable union of open intervals, we define M τ [U ] as a limit

of M τ [∪Ni=1Ui] as N → ∞ as in [18, Definition 2.10(3)]. See [18, Figure 1] for an illustration of

M τ [U ].

Next we move on to higher dimensions. We denote a point x ∈ Rd by (x1, x
′), where x′ =

(x2, . . . , xd) ∈ Rd−1. For a bounded domain D ⊂ Rd and any x′ ∈ Rd−1, we define the section of

D with respect to the direction x1 as

Dx′ := {x1 ∈ R : (x1, x
′) ∈ D},

which is an open set inR. If the sectionDx′ is a single open interval centered at 0 for all x′ ∈ Rd−1,

then we say the setD is Steiner symmetric about the hyperplane {x1 = 0}. Note that this definition

is stronger than being symmetric about {x1 = 0}. For example, an annulus in R2 is symmetric

about {x1 = 0}, but not Steiner symmetric about it.

Finally, for any τ > 0, the continuous Steiner symmetrization of D ⊂ Rd is defined as

Sτ [D] := {(x1, x
′) ∈ Rd : x1 ∈M τ [Dx′ ]},
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with M τ given above being the continuous Steiner symmetrization for one-dimensional open sets.

See Figure Figure 3.1 for a comparison of the sets D and Sτ [D] for small τ > 0.

{x1 = 0} {x1 = 0}

D Sτ [D]
D

Figure 3.1: Illustration of the continuous Steiner symmetrization Sτ [D] for a set D ⊂ R2. The left
figure is the setD, with the midpoints of all subintervals of its 1D section highlighted in red circles.
The right figure shows the set Sτ [D] for some small τ > 0, with the new midpoints denoted by
blue squares.

One can easily check that Sτ [D] satisfies the following properties.

Lemma 3.1.1. For any bounded open set D ⊂ Rd, its continuous Steiner symmetrization Sτ [D]

satisfies the following properties:

(a) |Sτ [D]| = |D| for any τ > 0, where | · | denotes the Lebesgue measure in Rd.

(b) (Sτ [D])4D ⊂ Bτ [D] for any τ > 0, where 4 is the symmetric difference between the two

sets, and Bτ [D] is the τ -neighborhood of ∂D, given by

Bτ [D] := {x ∈ Rd : dist(x, ∂D) ≤ τ}. (3.1.1)

Proof. (a) is a direct consequence of the fact that |M τ [U ]| = |U | for any open set U ⊂ R and

τ > 0 [18, Lemma 2.11(b)]. To prove (b), one can start with the one-dimensional version: For any

bounded open set U ⊂ R, we have M τ [U ]4U ⊂ {x ∈ R : dist(x, ∂U) ≤ τ}, which follows from
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the fact that the intervals move with velocity at most 1. Thus for any bounded open set D ⊂ Rd,

Sτ [D]4D = {(x1, x
′) ∈ Rd : x1 ∈M τ [Dx′ ]4Dx′}

⊂ {(x1, x
′) : dist(x1, ∂(Dx′)) ≤ τ}

⊂ Bτ [D],

finishing the proof.

3.1.2 Simply-connected patch solutions with Ω ≤ 0

We assume that D ⊂ Rd satisfies the following condition.

(HD) D ⊂ Rd is a bounded domain, and there exists some M > 0 depending on D, such that

|Bτ [D]| ≤Mτ for all sufficiently small τ > 0, where Bτ [D] is given in (item 3.1.1).

It can be easily checked that for d ≥ 2, any bounded domain D with Lipschitz continuous

boundary satisfies condition (HD). In fact, for d = 2, we will show any domain D ⊂ R2 with a

rectifiable boundary satisfies (HD), with a precise bound

|Bτ [D]| ≤ 2|∂D|τ for all τ ≥ 0, (3.1.2)

where |∂D| is the total length of ∂D. Let us first prove (Equation 3.1.2) holds for any polygon

P ⊂ R2. Erect two polygons at distance τ from P and the transversal sides being bisectors of

the inner angles of P (see Figure Figure 3.2). It is clear that Bτ [P ] is contained in the trapezoidal

region, which has area no more than 2|∂P |τ . Finally, this can be extended to the general case by

approximating any rectifiable curve by polygons.

Below we state our main theorem of this section, which is slightly more general than Theo-

rem Theorem C.

Theorem 3.1.2. Let D ⊂ Rd and K ∈ C1(Rd \ {0}) satisfy the conditions (HD) and (HK)
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P

τ
τ

area = 2l1τ

l1

τ

τ

Figure 3.2: Illustration of the polygon P and the underlying trapezoidal region (the whole colored
region). Here the blue trapezoid has area 2l1τ (l1 is the corresponding side length in P ), and
summing over all edges gives a total area 2|∂P |τ . Since the trapezoids may intersect for large τ ,
the whole trapezoidal region has area no more than 2|∂P |τ .

respectively. Let g ∈ C1(Rd) be a radial function with g′(r) > 0 for all r > 0.

If D satisfies that

1D ∗K −
Ω

2
g(x) = const on ∂D (3.1.3)

for some Ω ≤ 0 (where the constant is the same on all connected components of ∂D), then D is a

ball. Moreover, the ball is centered at the origin if Ω < 0.

Remark 3.1.3. (1) Note that D does not need to be simply-connected in Theorem 3.1.2. However,

since the constant on the right hand side of (Equation 3.1.3) is assumed to be the same on all

connected components of ∂D, comparing with (Equation 1.1.6), Theorem 3.1.2 only implies that

all simply-connected patches with Ω ≤ 0 must be a disk.

(2) In the case Ω = 0, the problem is translation invariant, so in the proof we assume without

loss of generality that the center of mass of D is at the origin.

Proof. We prove it by contradiction. Without loss of generality, we assume D is not Steiner sym-

metric about the hyperplane {x1 = 0}. LetDτ := Sτ [D] be the continuous Steiner symmetrization

of D at time τ > 0. By Lemma 3.1.1(b), we have

Dτ4D ⊂ Bτ [D], (3.1.4)
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where Bτ is defined in (item 3.1.1). Let us consider the functional

E [D] :=

ˆ
Rd

ˆ
Rd

1D(x)1D(y)K(x− y)dxdy︸ ︷︷ ︸
=:I[D]

+ (−Ω)

ˆ
Rd
g(x)1D(x)dx︸ ︷︷ ︸

=:V[D]

.

We will use two different ways to compute d+

dτ
E [Dτ ]

∣∣∣
τ=0

, where d+

dτ
denotes the right derivative.

On the one hand, using the equation (Equation 3.1.3) and the regularity assumptions on D,K and

g, we aim to show that
d+

dτ
E [Dτ ]

∣∣∣
τ=0

= 0. (3.1.5)

Instead of directly taking the derivative, we consider the finite difference

E [Dτ ]−E [D] =

ˆ
Rd

2(1Dτ − 1D)

(
1D ∗K −

Ω

2
g(x)

)
dx︸ ︷︷ ︸

=:I1

+

ˆ
Rd

(1Dτ − 1D)((1Dτ − 1D) ∗K)dx︸ ︷︷ ︸
=:I2

,

where in the equality we used that
´

1D(1Dτ ∗K)dx =
´

1Dτ (1D ∗K)dx for any radial kernel K.

Let us control the term I1 first. First note that (Equation 3.1.4) implies that the integrand is

supported inBτ [D]. Next we claim that (HK) implies 1D∗K−Ω
2
g ∈ C0,δ′(Rd) for δ′ := min{δ, 1},

where C0,1 stands for Lipschitz continuity. The proof is a simple potential theory estimate, which

we provide below for completeness. For any x, z ∈ Rd,

|(1D ∗K)(x+ z)− (1D ∗K)(x)| =
∣∣∣∣ˆ
Rd

1D(x− y)(K(y + z)−K(y))dy

∣∣∣∣
≤
ˆ
|y|<2|z|

|K(y + z)−K(y)|dy +

ˆ
|y|>2|z|

1D(x− y)|K(y + z)−K(y)|dy

=: J1 + J2.

For J1, a crude estimate gives

J1 ≤
ˆ
|y|<2|z|

|K(y + z)|+ |K(y)|dy ≤ 2

ˆ
|y|<3|z|

|K(y)|dy ≤ C(d)|z|δ,
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where in the last step we used that (HK) implies |K(y)| ≤ C|y|−d+δ for |y| ≤ 1. For J2, note that

(HK) and the mean-value theorem gives

|K(y + z)−K(y)| ≤ C|y|−d−1+δ|z| for all |y| > 2|z|,

and plugging it into the integral gives J2 ≤ C(d, |D|)|z|δ. Putting the estimates for J1 and J2

together gives that 1D ∗K ∈ C0,δ′(Rd) for δ′ = min{δ, 1}, and combining this with the assumption

g ∈ C1(Rd) gives 1D ∗K − Ω
2
g ∈ C0,δ′(Rd).

In addition, by (Equation 3.1.3), We have 1D ∗K − Ω
2
g(x) ≡ C0 on ∂D for some constant C0.

Thus we have ∣∣∣1D ∗K − Ω

2
g(x)− C0

∣∣∣ ≤ C(δ′, d, |D|)τ δ′ in Bτ [D]

for some constant C > 0, where we used the Hölder continuity of 1D ∗K − Ω
2
g and the definition

of Bτ [D]. This leads to

|I1| ≤ 2|Bτ [D]| sup
x∈Bτ [D]

∣∣∣1D ∗K − Ω

2
g(x)− C0

∣∣∣ ≤ C(δ′, d, |D|)Mτ 1+δ′ ,

where in the first inequality we used that
´
Bτ

(1D − 1Dτ )C0dx = 0, which follows from

Lemma 3.1.1(a); and in the second inequality we used (HD).

Next we control I2 by the crude bound

|I2| ≤
ˆ
Rd

1Bτ [D]|(1Bτ [D] ∗K)|dx ≤ |Bτ [D]| ‖1Bτ [D] ∗K‖∞ ≤Mτ‖(1Bτ [D])
∗ ∗K‖∞,

where the last step follows from the Hardy–Littlewood inequality, where (1Bτ [D])
∗ is the radial

decreasing rearrangement of 1Bτ [D]. By (HD), (1Bτ [D])
∗ is a characteristic function of a ball whose
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radius is bounded by C(d)(Mτ)1/d, thus

‖(1Bτ [D])
∗ ∗K‖∞ ≤

ˆ C(d)(Mτ)1/d

0

|K(r)|ωdrd−1dr ≤
ˆ C(d)(Mτ)1/d

0

ωdr
−1+δdx ≤ C(d)(Mτ)

δ
d ,

and plugging it into the I2 estimate gives

|I2| ≤ C(d)M
d+δ
d τ 1+ δ

d .

Putting the estimates of I1 and I2 together directly yields

|E [Dτ ]− E [D]|
τ

≤ C(δ′, d,M, |D|)τmin{ δ
d
,δ′},

and since δ > 0 we have d+

dτ
E [Dτ ]

∣∣∣
τ=0

= 0.

Now, we use another way to calculate d+

dτ
E [Dτ ]

∣∣
τ=0

. Let us deal with the Ω < 0 case first.

Since K is radial and increasing in r, it has been shown in [11, Corollary 2] and [78, Theorem 3.7]

that the interaction energy I[Dτ ] =
´
Dτ

´
Dτ
K(x−y)dxdy is non-increasing along the continuous

Steiner symmetrization, leading to

d+

dτ
I[Dτ ] ≤ 0 for all τ ≥ 0.

For the other term V [Dτ ] = (−Ω)
´
Dτ
g(x)dx, by the assumptions that g′(r) > 0 for all r > 0 and

D is not Steiner symmetric about {x1 = 0}, we can use [18, Lemma 2.22] to show, for Ω < 0,

d+

dτ
V [Dτ ]

∣∣∣∣
τ=0

= (−Ω)
d+

dτ

ˆ
Dτ
g(x)dx

∣∣∣∣
τ=0

< 0.

Adding them together gives
d+

dτ
E [Dτ ]

∣∣∣∣
τ=0

< 0

leading to a contradiction with (Equation 3.1.5).
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In the Ω = 0 case, recall that we assume that the center of mass of D is at the origin. Thus if D

is not Steiner symmetric about {x1 = 0}, the same proof as [18, Proposition 2.15] gives that I[D]

must be decreasing to the first order for a short time, leading to

d+

dτ
E [Dτ ]

∣∣∣∣
τ=0

=
d+

dτ

ˆ
Dτ

ˆ
Dτ
K(|x− y|)dxdy

∣∣∣∣
τ=0

< 0,

again contradicting (Equation 3.1.5). We point out that although the proposition was stated for

continuous densities, the same proof works for the patch setting. In addition, although [18] only

dealt with the kernels no more singular than Newtonian potential, the proof indeed holds for all

kernels K satisfying (HK): see [17, Theorem 6] for an extension to all Riesz potentials Kα,d with

α ∈ (0, 2).

The above theorem immediately leads to the following result concerning simply-connected

stationary/rotating patch solution with Ω ≤ 0.

Theorem 3.1.4. Let D ⊂ R2 be a bounded, simply-connected domain with rectifiable boundary. If

1D is a V-state for (Equation 1.1.2) for some α ∈ [0, 2) with angular velocity Ω ≤ 0, then D must

be a disk. In addition, the disk must be centered at the origin if Ω < 0.

Proof. We have 1D ∗ K − Ω
2
|x|2 = C for some constant C on ∂D. For the Euler equation,

K = 1
2π

ln |x|. For the g-SQG equation. K = −Cα|x|−α. In both cases, the proof follows from

Theorem 3.1.2.

Remark 3.1.5. As we discussed in the beginning of this subsection, in the case of gSQG with

α ∈ (0, 2), Theorem 3.1.4 is not true if the simply connected assumption is dropped, due to the

non-radial patches in [68, 49] bifurcating from annuli.

3.1.3 Smooth solutions with simply-connected level sets with Ω ≤ 0

The rest of this section is devoted to the smooth setting. We will show that any nonnegative smooth

rotating solution of the Euler or gSQG equation with angular velocity Ω ≤ 0 must be radial, under
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the additional assumption that all the super level-sets Uh

Uh := {x ∈ Rd : ω(x) > h} (3.1.6)

are simply-connected for any h > 0. We believe that the simply-connected assumption is neces-

sary, since it is likely that the bifurcation arguments from annuli in [68, 49] can be extended to the

smooth setting as well, using a similar argument as in [24] or [23].

Theorem 3.1.6. Let ω(x) ∈ C1(R2) be nonnegative and compactly supported. In addition, assume

the super level-set Uh as in (Equation 3.1.6) is simply connected for all h ∈ (0, supω). Assume K

satisfies (HK). If for some Ω ≤ 0, we have

ω ∗K − Ω

2
|x|2 = C0(h) on ∂Uh for all h ∈ (0, supω), (3.1.7)

then ω is radially decreasing up to a translation. Moreover, it is centered at the origin if Ω < 0.

Proof. We prove it by contradiction. For the Ω < 0 case, without loss of generality, we assume ω

is not symmetric decreasing about the line x1 = 0. For the Ω = 0 case, similar to Remark 3.1.3,

without loss of generality we assume the center of mass is at the origin, and then we assume ω is

not symmetric decreasing about the line x1 = 0.

For any τ ≥ 0, we define the continuous Steiner symmetrization ωτ (x) in the same way as [18,

Definition 2.12]:

ωτ (x) :=

ˆ h0

0

1Sτ [Uh](x) dh,

where h0 := supω, and Sτ [Uh] is the continuous Steiner symmetrization of the super level set Uh

at time τ ≥ 0.
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Consider the energy functional

E [ω] :=

ˆ
R2

ˆ
R2

ω(x)ω(y)K(x− y)dxdy︸ ︷︷ ︸
=:I[ω]

+ (−Ω)

ˆ
R2

ω(x)|x|2dx︸ ︷︷ ︸
=:V[ω]

.

We proceed similarly as in Theorem 3.1.2 to compute d+

dτ
E [ωτ ] in two different ways. We first

rewrite the finite difference E [ωτ ]− E [ω] as

E [ωτ ]− E [ω]

=

ˆ
R2

2(ωτ (x)− ω(x))

(
ω ∗K − Ω

2
|x|2
)
dx+

¨
R2×R2

(ωτ (x)− ω(x))(ωτ (y)− ω(y))K(x− y)dxdy

=: I1 + I2. (3.1.8)

Since ω ∈ C1
c (R2) and K satisfies (HK) (hence is locally integrable), one can easily check that

ω∗K−Ω
2
|x|2 is Lipschitz in D̃ := {x ∈ R2 : dist(x, suppω) ≤ 1}.Note that we have supp ωτ ∈ D̃

for all τ ∈ [0, 1]. Combining this fact with the assumption (Equation 3.1.7), there exists C1 > 0

independent of h, such that

∣∣∣(ω ∗K)(x)− Ω

2
|x|2 − C0(h)

∣∣∣ ≤ C1τ on Sτ [Uh]4Uh for all h ∈ (0, h0). (3.1.9)

Let us first rewrite I1 as

I1 = 2

ˆ h0

0

ˆ
R2

(
1Sτ [Uh](x)− 1Uh(x)

)(
(ω ∗K)(x)− Ω

2
|x|2
)
dx dh.

By Lemma 3.1.1(a), we have
´
R2(1Sτ [Uh](x) − 1Uh(x))dx = 0 for all h ∈ (0, h0). Thus we can
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control I1 as

|I1| =
∣∣∣∣2 ˆ h0

0

ˆ
R2

(
1Sτ [Uh](x)− 1Uh(x)

)(
(ω ∗K)(x)− Ω

2
|x|2 − C0(h)

)
dxdh

∣∣∣∣
≤ 2C1τ

ˆ h0

0

∣∣∣(Sτ [Uh])4Uh
∣∣∣dh

≤ 2C1τ

ˆ h0

0

2|∂Uh|τ dh

= 4C1τ
2

ˆ
supp ω

|∇ω|dx ≤ C(ω)τ 2.

(3.1.10)

Here in the second line we used (Equation 3.1.9); in the third line we used Lemma 3.1.1(b) and the

property (Equation 3.1.2) in two dimensions; and in the fourth line we used the co-area formula

and the fact that ω ∈ C1
c .

We next move on to I2. Since |∇ω| is bounded, Lemma 3.1.1(b) leads to

|ωτ (x)− ω(x)| =
∣∣∣∣ˆ ∞

0

1Sτ [Uh](x)− 1Uh(x)dh

∣∣∣∣
≤ ‖∇ω‖L∞τ for all x ∈ R2,

and supp ωτ ∈ D̃ for all τ ∈ [0, 1]. Thus

|I2| ≤ ‖ωτ − ω‖L1‖(ωτ − ω) ∗K‖L∞

≤ ‖ωτ − ω‖L1‖ωτ − ω‖L∞
ˆ
D̃

|K(x)|dx

≤ C(ω)τ 2.

Combining the estimates for I1 and I2 gives E [ωτ ]− E [ω] ≤ C(ω)τ 2 for all τ ∈ [0, 1], thus

d+

dτ
E [ωτ ]

∣∣∣∣
τ=0

=
d+

dτ
(I1 + I2)

∣∣∣∣
τ=0

= 0. (3.1.11)
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On the other hand, we compute d+

dτ
E [ωτ ]

∣∣
τ=0

in a different way as

d+

dτ
E [ωτ ]

∣∣∣∣
τ=0

=
d+

dτ
(I[ωτ ] + V [ωτ ])

∣∣∣∣
τ=0

.

In the Ω < 0 case, similarly as in Theorem 3.1.2, we have I[ωτ ] is non-increasing along the

continuous Steiner symmetrization by [11, Corollary 2] and [78, Theorem 3.7], thus

d+

dτ
I[ωτ ] ≤ 0 for all τ > 0.

For V [ωτ ], by the assumption that ω is not symmetric decreasing about {x1 = 0}, we again use

[18, Lemma 2.22] to show, for Ω < 0,

d+

dτ
V [ωτ ] = (−Ω)

d+

dτ

ˆ
R2

ω(x)|x|2dx
∣∣∣∣
τ=0

< 0.

Adding them together gives d+

dτ
E [Dτ ]

∣∣
τ=0

< 0, contradicting (Equation 3.1.11).

In the Ω = 0 case, we assume that the center of mass of ω is at the origin. Thus if ω is not

symmetric decreasing about {x1 = 0}, the same proof as [18, Proposition 2.15] gives that I[D]

must be decreasing to the first order for a short time (again, the proof holds for all kernels K

satisfying (HK); see [17, Theorem 6] for extensions to Riesz kernels Kα,d with α ∈ (0, 2)). This

gives d+

dτ
E [Dτ ]

∣∣
τ=0

< 0, again contradicting (Equation 3.1.11).

The above theorem immediately gives the following corollary concerning the V-states for the

Euler and gSQG equations.

Corollary 3.1.7. Assume ω(x) ∈ C1(R2) is a nonnegative, compactly supported V-state satisfying

the Euler equation or the gSQG equation for some α ∈ (0, 2) with Ω ≤ 0. In addition, assume the

super level-set Uh as in (Equation 3.1.6) is simply connected for all h ∈ (0, supω). Then ω must

be radially decreasing if Ω < 0, and radially decreasing up to a translation if Ω = 0.
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Proof. For the Euler equation, K = 1
2π

ln |x|. For the gSQG equation. K = −Cα|x|−α. In both

cases, the proof follows from Theorem 3.1.6.

3.2 Radial symmetry of rotating gSQG solutions with Ω > Ωα

In this section, we focus on rotating gSQG patches with area π and α 6= 0. As we discussed in the

introduction, for α ∈ [0, 2), there exist rotating patches bifurcating from the unit disk at angular

velocities Ωα
m = 2α−1 Γ(1−α)

Γ(1−α
2 )

2

(
Γ(1+α

2 )
Γ(2−α

2 )
− Γ(m+α

2 )
Γ(m+1−α

2 )

)
, where Ωα

m is increasing in m for any fixed

α ∈ [0, 2). Let us denote Ωα := limm→∞Ωα
m. If α ∈ (0, 1) we have that

Ωα = 2α−1 Γ(1− α)

Γ
(
1− α

2

)2

Γ
(
1 + α

2

)
Γ
(
2− α

2

) . (3.2.1)

Note that Ωα is a continuous function of α for α ∈ (0, 1), with Ω0 = 1
2
, and Ωα = +∞ for all

α ∈ [1, 2).

A natural question is whether there can be rotating patches with area π with Ω ≥ Ωα for

α ∈ (0, 1). Note that the area constraint is necessary for all α > 0: ifD is a rotating gSQG patch for

α ∈ (0, 2) with angular velocity Ω, then one can easily check that its scaling λD = {λx : x ∈ D}

is a rotating patch with angular velocity λ−αΩ.

In Theorem 2.1.12, we showed that for the 2D Euler case (α = 0), all rotating patches with

Ω ≥ Ω0 = 1
2

must be a disk. In this section, our goal is to show that all simply-connected rotating

patches with area π with Ω ≥ Ωα for α ∈ (0, 1) must be a disk. Whether there exist non-simply-

connected or disconnected rotating patches with Ω ≥ Ωα for α ∈ (0, 1) is still an open question.

Below is the main theorem of this section. Recall that for α ∈ (0, 2), Kα = −Cα|x|−α is the

fundamental solution for −(−∆)−1+α
2 , where Cα = 1

2π

Γ(α
2

)

21−αΓ(1−α
2

)
.

Theorem 3.2.1. Let D ⊂ R2 be a bounded, simply-connected patch with C1 boundary. Let us

denote R := maxx∈D |x|. Assume that D is a uniformly rotating patch with angular velocity Ω of
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the gSQG equation with α ∈ (0, 1), i.e.,

1D ∗Kα −
Ω

2
|x|2 = C on ∂D. (3.2.2)

Let Ωc(R) := R−αΩα. If Ω ≥ Ωc(R), then D must coincide with B(0, R).

Remark 3.2.2. (a) Note that all sets D ⊂ R2 with area π must have R ≥ 1. In this case we have

Ωc(R) ≤ Ωα, thus Theorem 3.2.1 immediately implies that all simply-connected rotating patches

with area π and Ω ≥ Ωα must be a disk.

(b) Note that the constant Ωα is sharp, since there exist patches bifurcating from a disk of radius

1 at velocities Ωα
m, which can get arbitrarily close to Ωα as m→∞ [57, Theorem 1.4].

Proof. Towards a contradiction, assume that D 6= B(0, R). Let x0 ∈ ∂D be the farthest point

from 0. Then we have that D ⊂ B(0, R), and let U := B(0, R) \D. See Figure Figure 3.3 for an

illustration of U and x0. Then (Equation 3.2.2) can be rewritten as

1U ∗Kα = 1B(0,R) ∗Kα −
Ω

2
|x|2 − C on ∂D. (3.2.3)

B(0, R)

O

x0 D

U

Figure 3.3: Illustration of the set U and the point x0.

The key idea of this proof is to use two different ways to compute ∇(1U ∗ Kα)(x0) · x0, and
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obtain a contradiction if Ω ≥ Ωc(R). On the one hand,

∇(1U ∗Kα)(x0) · x0 = αCα

ˆ
U

(x0 − y) · x0

|x0 − y|α+2
dy > 0, (3.2.4)

where we used the fact that (x0 − y) · x0 > 0 for all y ∈ U ⊂ B(0, R) since the two vectors point

to the same halfplane.

On the other hand, we claim the following properties hold for 1U ∗Kα:

1. ∆(1U ∗Kα) < 0 in D.

2. Along ∂D, the minimum of 1U ∗Kα is achieved at x0.

To show property 1, using the fact that Kα = −Cα|x|−α is the fundamental solution for

−(−∆)−1+α
2 , we have 1U ∗ Kα = −(−∆)−1+α

2 1U , thus ∆(1U ∗ Kα) = (−∆)α/21U . Thus for

any x ∈ D, using the singular integral definition of the fractional Laplacian [77, Theorem 1.1,

Definition (e)] and the fact that 1U ≡ 0 in D, we have

(−∆)α/21U(x) = C1(α)

ˆ
R2

1U(x)− 1U(y)

|x− y|2+α
dy = C1(α)

ˆ
R2

0− 1U(y)

|x− y|2+α
dy < 0 for x ∈ D

for some constant C1(α) > 0. Note that despite the denominator being singular, the integral indeed

converges for all x ∈ D, due to the fact that D is open and the integrand is identically zero in D

which yields

∆(1U ∗Kα)(x) = (−∆)α/21U(x) < 0 in D.

We now move on to property 2. Due to (Equation 3.2.3) and the fact that x0 is the outmost

point on ∂D, it suffices to show that the radial function 1B(0,R) ∗Kα − Ω
2
|x|2 is non-increasing in

|x| for all Ω ≥ Ωc(R). We prove this in Proposition 3.2.3 right after this theorem.

The above claims allow us to apply the maximum principle to 1U ∗Kα, which yields that the
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minimum of 1U ∗Kα in D is also achieved at x0, thus

∇(1U ∗Kα)(x0) · ~n(x0) ≤ 0,

where ~n(x0) is the outer normal ofD at x0. Since ~n(x0) = x0/|x0|, the above inequality contradicts

with (Equation 3.2.4). As a result, D must coincide with B(0, R).

Now we prove the proposition that was used in the proof of the above theorem.

Proposition 3.2.3. For a fixed α ∈ (0, 1) and R > 0, let Ωc(R) be the smallest number such that

gR(x) := 1B(0,R) ∗Kα −
Ωc

2
|x|2

is non-increasing in |x|. Then we have Ωc(R) = R−αΩα, with Ωα given in (Equation 3.2.1).

Proof. Recall that Kα = −Cα|x|−α with Cα = 1
2π

Γ(α
2

)

21−αΓ(1−α
2

)
. Since |x|2 and 1B(0,R) ∗Kα are both

radially symmetric and increasing in |x|, we have

Ωc(R) = 2Cα sup
|x1|6=|x2|

ˆ
B(0,R)

|x2 − y|−αdy −
ˆ
B(0,R)

|x1 − y|−αdy

|x1|2 − |x2|2
.

Let us denote the fraction above by F (x1, x2). We claim that the sup|x1|6=|x2| F (x1, x2) is attained

when |x1| = R, and |x2| → R.

To prove the claim, we first compute I(x) :=
´
B(0,R)

|x−y|−αdy. Taking the Fourier transform:

I(x) = CR2−α
ˆ ∞

0

ra−2J1(r)J0

(
|x|r
R

)
dr,

where C is some positive constant. By Sonine-Schafheitlin’s formula [115, p. 401] and by conti-
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nuity, we obtain

I(x) =


CR2−α2α−2 Γ(α2 )

Γ(2−α
2 ) 2F1

(
α
2
− 1, α

2
, 1, |x|

2

R2

)
if |x| ≤ R

CR2−α2α−2|x|−αRα Γ(α2 )
Γ(1−α

2 ) 2F1

(
α
2
, α

2
, 2, R

2

|x|2

)
if |x| > R.

By the mean value theorem, it is enough to check that min J(z) = J(R2), where

J(z) =


d
dz

(
2F1

(
α
2
− 1, α

2
, 1, z

R2

))
if z ≤ R2

d
dz

((
1− α

2

)
z−

α
2Rα

2F1

(
α
2
, α

2
, 2, R

2

z

))
if z > R2

=


α(α−2)

4
1
R2 2F1

(
α
2
, 1 + α

2
, 2, z

R2

)
if z ≤ R2

α(α−2)
4

z−1−α
2Rα

2F1

(
α
2
, 1 + α

2
, 2, R

2

z

)
if z > R2

Writing the series expansion (respectively at z = 0 and z =∞) of the hypergeometric series:

α(α− 2)

4

1

R2 2F1

(α
2
, 1 +

α

2
, 2, z

)
=

1

R2

∞∑
n=0

Γ
(
α
2

+ n
)

Γ
(
n+ 1 + α

2

)
Γ
(
α
2
− 1
)

Γ
(
α
2

)
Γ(1 + n)Γ(2 + n)

( z

R2

)n
α(α− 2)

4
z−1−α

2Rα
2F1

(
α

2
, 1 +

α

2
, 2,

1

z

)
=

(
1

z

)α
2

Rα−2

∞∑
n=1

Γ
(
α
2

+ n
)

Γ
(
n− 1 + α

2

)
Γ
(
α
2
− 1
)

Γ
(
α
2

)
Γ(n)Γ(n+ 1)

(
R2

z

)n
,

which are both minimized at z = R2 since every coefficient is negative. This proves the claim.

The claim immediately implies

Ωc(R) = −Cα
R

d

d|x|

ˆ
B(0,R)

|x− y|−αdy
∣∣∣∣
|x|=R

, (3.2.5)

Where d
d|x| denotes the derivative in the radial variable (recall that

´
B(0,R)

|x − y|−αdy is radially

symmetric). To compute the derivative at |x| = R, we can simply compute the partial derivative in
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the x1 direction at the point (R, 0):

∂

∂x1

ˆ
B(0,R)

|x− y|−αdy
∣∣∣∣
x=(R,0)

= −α
ˆ
B(0,R)

(
(R− y1)2 + y2

2

)−α
2
−1

(R− y1)dy1dy2

= −2

ˆ R

0

(
(R− y1)2 + y2

2
)−α

2

∣∣∣y1=
√
R2−y2

2

y1=−
√
R2−y2

2
dy2

= −21−α
2R1−α

(ˆ 1

0

(
1−
√

1− u2
)−α

2
du−

ˆ 1

0

(
1 +
√

1− u2
)−α

2
du

)
= −21−α

2R1−α

(ˆ π
2

0

(1− cos θ)−
α
2 cos θ dθ −

ˆ π
2

0

(1 + cos θ)−
α
2 cos θ dθ

)

=: −21−α
2R1−α(I1 − I2),

(3.2.6)

where in the third line we used the identity (R ±
√
R2 − y2

2)2 + y2
2 = 2R2(1±

√
1− (R−1y2)2),

as well as the substitution u = R−1y2.

Using a substitution θ = 2β, we rewrite I1 as

I1 = 2

ˆ π
4

0

(1− cos(2β))−
α
2 cos(2β) dβ = 21−α

2

ˆ π
4

0

(sin β)−α(1− 2 sin2 β) dβ.

Likewise, the substitution θ = π − 2β allows us to rewrite −I2 as

−I2 = 2

ˆ π
2

π
4

(1− cos(2β))−
α
2 cos(2β) dβ = 21−α

2

ˆ π
2

π
4

(sin β)−α(1− 2 sin2 β) dβ.

Adding the above two identities for I1 and −I2 together gives

I1 − I2 = 21−α
2

ˆ π
2

0

(sin β)−α(1− 2 sin2 β) dβ

= 21−α
2

(
1

2
B
(1− α

2
,
1

2

)
−B

(3− α
2

,
1

2

))
= 2−

α
2

Γ(1−α
2

)Γ(1
2
)

Γ(1− α
2
)
− 21−α

2
Γ(3−α

2
)Γ(1

2
)

Γ(2− α
2
)
,

where B stands for the beta function. Here the second identity follows from the property that
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B(x, y) = 2
´ π/2

0
(sin θ)2x−1(cos θ)2y−1dθ, and the third line follows from the property that

B(x, y) = Γ(x)Γ(y)
Γ(x+y)

. According to the properties of the gamma function Γ(z + 1) = zΓ(z) and

Γ(z)Γ(z + 1
2
) = 21−2z

√
πΓ(2z), we have

I1 − I2 = 2−1+α
2

α

2− α
· 2πΓ(1− α)

Γ(1− α
2
)2
. (3.2.7)

Finally, plugging this into (Equation 3.2.6) and (Equation 3.2.5) gives

Ωc(R) = R−αCα21−α
2 (I1 − I2)

= R−α
1

2π

Γ(α
2
)

21−αΓ(1− α
2
)

α

2− α

(
2πΓ(1− α)

Γ(1− α
2
)2

)
= R−α

2α−1Γ(1− α)Γ(α
2

+ 1)

Γ(1− α
2
)2Γ(2− α

2
)

= R−αΩα,

finishing the proof.

At the end of this section, we point out that Theorem 3.2.1 directly gives the following quan-

titative estimate: if a simply-connected patch D rotates with angular velocity Ω ∈ (0,Ωα) that is

very close to Ωα, then D must be very close to a disk in terms of symmetric difference.

Corollary 3.2.4. Assume 0 < α < 1. Let D be a rotating patch with area π and angular velocity

Ω ∈ (0,Ωα), and let B be the unit disk. Then we have

|D4B| ≤ 2π

((Ωα

Ω

)2/α

− 1

)
.

Note that for a fixed α ∈ (0, 1), the right hand side goes to 0 as Ω↗ Ωα.

Proof. Denote R := maxx∈D |x|. If D is a rotating patch with angular velocity Ω and is not a disk,

Theorem 3.2.1 gives that Ω ≤ R−αΩα, which gives that R ≤ (Ωα
Ω

)1/α. Thus D ⊂ B(0, (Ωα
Ω

)1/α),
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which implies that the symmetric difference D4B satisfies

|D4B| = 2|D \B| ≤ 2

∣∣∣∣B(0,
(Ωα

Ω

)1/α
)
\B
∣∣∣∣ = 2π

((Ωα

Ω

)2/α

− 1

)
.
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CHAPTER 4

RIGIDITY RESULTS FOR VORTEX SHEETS

In this chapter, we study radial symmetry of stationary/uniformly-rotating vortex sheets. We fix

the following notations in this chapter.

Notations For a bounded domainD ⊂ R2, we denote |D| by its area (i.e. its Lebesgue measure).

For x ∈ R2 and r > 0, denote by B(x, r) or Br(x) the open ball centered at x with radius r.

Through section 4.2-section 4.3, we will desingularize the vortex sheet into a vortex layer with

width ∼ ε, and obtain various quantitative estimates. In all these estimates, we say a term f is

O(g(ε)) if |f | ≤ Cg(ε) for some constant C independent of ε.

For a domain U ⊂ R2, in the boundary integral
´
∂U

~f · ndσ, n denotes the outer normal of the

domain U .

4.1 Equations for a stationary/rotating vortex sheet

Let ω(·, t) = ω0(RΩt) be a stationary/rotating vortex sheet solution to the incompressible 2D Euler

equation, where ω0 ∈ M(R2) ∩ H−1(R2) is a Radon measure. Here Ω = 0 corresponds to a

stationary solution, and Ω 6= 0 corresponds to a rotating solution. Assume ω0 is concentrated

on Γ, which is a finite disjoint union of curves. Throughout this paper we assume Γ satisfies the

following:

(H1) Each connected component of Γ is smooth and with finite length, and it is either a simple

closed curve (denote them by Γ1, . . . ,Γn), or a non-self-intersecting curve with two endpoints

(denote them by Γn+1, . . . ,Γn+m). Here we require n+m ≥ 1, but allow either n or m to be 0.

Let us denote

dΓ := min
k 6=i

dist(Γi,Γk), (4.1.1)
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which is strictly positive since we assume the curves {Γi}n+m
i=1 are disjoint. For i = 1, . . . , n + m,

denote by Li the length of Γi. Let zi : Si → Γi denote a constant-speed parameterization of Γi (in

counter-clockwise direction if Γi is a closed curve), where the parameter domain Si is given by

Si :=


R/Z for i = 1, . . . , n,

[0, 1] for i = n+ 1, . . . , n+m.

Note that this gives |z′i| ≡ Li, and the arc-chord constant

FΓ := max
i=1,...,n+m

sup
α 6=β∈Si

|α− β|
|zi(α)− zi(β)|

(4.1.2)

is finite, since Γ is non-self-intersecting. Let s : Γ → R2 be the unit tangential vector on Γ, given

by s(zi(α)) :=
z′i(α)

|z′i(α)| =
z′i(α)

Li
, and n : Γ → R2 be the unit normal vector, given by n = s⊥. See

Figure Figure 4.1 for an illustration.

For i = 1, . . . , n + m, let us denote by γi(α) the vorticity strength at zi(α) with respect to the

arclength parametrization, which is related to $i(α) by

γi(α) =
$i(α)

|z′i(α)|
for α ∈ Si. (4.1.3)

Throughout this paper we will be working with γi, instead of $i. We impose the following regu-

larity and positivity assumptions on γi:

(H2) Assume that γi ∈ C2(Si) for i = 1, . . . , n and γi ∈ Cb(Si) ∩ C1(S◦i ) for some b ∈ (0, 1)

for i = n+ 1, . . . , n+m.1

(H3) For i = 1, . . . , n, assume γi > 0 in Si. And for i = n + 1, . . . , n + m, assume γi > 0 in

S◦i , and γi(0) = γi(1) = 0.

1For an open curve i = n+1, . . . , n+m, note that (H2) does not require γi to be C1 up to the boundary of Si, and
its derivative is allowed to blow up at the endpoints. This is motivated by the fact that in the explicit uniformly-rotating
solution (Equation 1.2.3), its strength γ is Hölder continuous in [−a, a] and smooth in the interior, but its derivative
blows up at the endpoints.
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Note that for a closed curve, (H3) implies that γi is uniformly positive; whereas for an open

curve, γi is positive in the interior of Si but vanishes at its endpoints. This is because any station-

ary/rotating vortex sheet with continuous γi must have it vanishing at the two endpoints of any

open curve: if not, one can easily check that |BR(zi(α)) · n(zi(α))| → ∞ as α approaches the

endpoint, thus such a vortex sheet cannot be stationary in the rotating frame.

With the above notations of zi and γi, the Birkhoff-Rott integral (Equation 1.1.10) along the

sheet can now be expressed as

BR(zi(α)) =
n+m∑
k=1

BRk(zi(α)) :=
n+m∑
k=1

PV

ˆ
Sk

K2(zi(α)− zk(α′)) γk(α′)|z′k(α′)| dα′, (4.1.4)

with the kernel K2 given by

K2(x) := (2π)−1∇⊥ log |x| = x⊥

2π|x|2
, (4.1.5)

and the principal value in (Equation 4.1.4) is only needed for the integral with k = i.

Let v : R2 → R2 be the velocity field generated by ω0, given by v := ∇⊥(ω0 ∗ N ). Note that

v ∈ C∞(R2 \Γ), but v is discontinuous across Γ. Let v+,v− : Γ→ R2 denote the two limits of v

on the two sides of Γ (with v+ being the limit on the side that n points into – see Figure Figure 4.1

for an illustration), and [v] := v− − v+ the jump in v across the sheets. [v] is related to the

vortex-sheet strength γ as follows (see [87, Eq. (9.8)] for a derivation): [v] · n = 0, and

[v]× n = [v] · s = γ.

In addition, the Birkhoff-Rott integral (Equation 4.1.4) is the the average of v+ and v−, namely

BR(zi(α)) =
1

2
(v+(zi(α)) + v−(zi(α))) for all α ∈ Si, i = 1, . . . , n+m.
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Γ1, . . . ,Γn

Γn+1, . . . ,Γn+m

s
n

v+v−

sn

v+ v−

Figure 4.1: Illustration of the closed curves Γ1, . . . ,Γn and the open curves Γn+1, . . . ,Γn+m, and
the definitions of n, s, v+ and v−.

In the following lemma, we derive the equation that the Birkhoff-Rott integral satisfies for a

stationary/rotating vortex sheet.

Lemma 4.1.1. Assume ω(·, t) = ω0(RΩtx) is a stationary/uniformly-rotating vortex sheet with

angular velocity Ω ∈ R, and ω0 is concentrated on ∪n+m
i=1 Γi, with zi and γi defined as above.

Then the Birkhoff-Rott integral BR (Equation 4.1.4) and the strength γi satisfy the following two

equations:

(BR− Ωx⊥) · n = v+ · n = v− · n = 0 on Γ, (4.1.6)

and

(BR(zi(α))− Ωz⊥i (α)) · s(zi(α)) γi(α) =


Ci on Si for i = 1, . . . , n,

0 on Si for i = n+ 1, . . . , n+m.

(4.1.7)

In particular, the above two equations imply that BR(zi(α))−Ωz⊥i (α) ≡ 0 for i = n+1, . . . , n+

m.

Proof. By definition of the stationary/uniformly-rotating solutions, ω0 is a stationary vortex sheet

in the rotating frame with angular velocity Ω. In this rotating frame, an extra velocity −Ωz⊥i
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should be added to the right hand side of (Equation 1.1.11). Therefore the evolution equations

(Equation 1.1.11)–(Equation 1.1.12) become the following in the rotating frame (where we also

use (Equation 4.1.4)):

∂tzi(α, t) = BR(zi(α, t))− Ωz⊥i (α, t) + ci(α, t)∂αzi(α, t) (4.1.8)

∂t$i(α, t) = ∂α(ci(α, t)$i(α, t)), (4.1.9)

where the term ci(α, t) accounts for the reparametrization freedom of the curves. Since ω0 is

stationary in the rotating frame, zi(·, t) parametrizes the same curve as zi(·, 0). Therefore ∂tzi(α, t)

is tangent to the curve Γi, and multiplying n(zi(α, t)) to (Equation 4.1.8) gives

0 = ∂tzi(α, t) · n(zi(α, t)) = (BR(zi(α, t))− Ωz⊥i (α, t)) · n(zi(α, t)), (4.1.10)

where we use that n(zi(α, t)) · ∂αzi(α, t) = 0. This proves (Equation 5.1.1).

Now we prove (Equation 5.1.2). Towards this end, let us choose

ci(α, t) := −(BR(zi(α, t))− Ωz⊥i (α, t)) · s(zi(α, t))
|∂αzi(α, t)|

,

so that multiplying s(zi(α, t)) to (Equation 4.1.8) gives ∂tzi(α, t) · s(zi(α, t)) = 0, and combin-

ing it with (Equation 4.1.10) gives ∂tzi(α, t) = 0. In other words, with such choice of ci, the

parametrization zi(α, t) remains fixed in time. Since ω0 is stationary in the rotating frame, we

know that with a fixed parametrization zi(α, t) = zi(α, 0), the strength $i(α, t) must also remain

invariant in time. Thus (Equation 4.1.9) becomes

ci(α, t)$i(α, t) ≡ Ci.

Plugging the definition of ci into the equation above and using the fact that zi is invariant in t, we
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have
(BR(zi(α))− Ωz⊥i (α)) · s(zi(α))$i(α)

|∂αzi(α)|
≡ −Ci for all α ∈ Si,

and finally the relationship between γi and $i in (Equation 4.1.3) yields (Equation 5.1.2) for i =

1, . . . , n.

And for the open curves i = n+ 1, . . . , n+m, note that we do not have any reparametrization

freedom at the two endpoints α = 0, 1, therefore the endpoint velocity BR(zi(0, t)) − Ωz⊥i (0, t)

must be 0 to ensure that ω0 is stationary in the rotating frame. This immediately leads to Ci = 0

for i = n+ 1, . . . , n+m, finishing the proof of (Equation 5.1.2).

4.2 Approximation by a thin vortex layer

Our aim in this section is to desingularize the vortex sheet ω0. Namely, for 0 < ε � 1, we will

construct a vorticity ωε ∈ L∞(R2) ∩ L1(R2) that only takes values 0 and ε−1, and is supported in

an O(ε) neighborhood of Γ, such that ωε weakly converges to ω0 as ε→ 0+.

For each i = 1, . . . , n + m, we will describe a neighborhood of Γi using the following change

of coordinates: let Rε
i : Si × R→ R2 be given by

Rε
i(α, η) := zi(α) + εγi(α)n(zi(α))η, (4.2.1)

and let

Dε
i := {Rε

i(α, η) : α ∈ S◦i , η ∈ (−1, 0)} .

Note that each Dε
i is a connected open set, and for all ε > 0 sufficiently small, the sets (Dε

i)
n+m
i=1

are disjoint. For i = 1, . . . , n, the domains Dε
i are doubly-connected with smooth boundary, and

its inner boundary coincides with Γi; see the left of Figure Figure 4.2 for an illustration. And for

i = n+ 1, . . . , n+m, the domains Dε
i are simply-connected, and its boundary is smooth except at

at most two points; see the right of Figure Figure 4.2 for an illustration.
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Γi = Rεi(·, 0)

n

s
Rεi(α, η)εγi(α)

zi(α)

Dε
i

Rεi(·,−1)

Dε
j

Γj = Rεj(·, 0)
n

zj(α)

εγj(α) Rεj(·,−1)Rεj(α, η)
s

Figure 4.2: Illustration of the definitions of Rε
i and Dε

i for a closed curve (left) and an open curve
(right).

In addition, for ε > 0 that is sufficiently small, one can check that Rε
i : S◦i × (−1, 0)→ Dε

i is a

diffeomorphism. Since γi ∈ C1(Si) and zi ∈ C2(Si), we only need to show Rε
i : S◦i × (−1, 0)→

Dε
i is injective. Below we prove this fact in a stronger quantitative version, which will be used

later.

Lemma 4.2.1. For any i = 1, . . . , n + m, assume Γi and γi satisfy (H1)–(H2). Then the map

Rε
i : S◦i × (−1, 0) → Dε

i given by (Equation 4.2.1) is injective. In addition, there exist some

c0, ε0 > 0 depending on ‖zi‖C2(Si), ‖γi‖L∞(Si) and FΓ, such that for all ε ∈ (0, ε0) we have

|Rε
i(α
′, η′)−Rε

i(α, η)| ≥ c0

(
|α′ − α|+ ε|γi(α)η − γi(α′)η′|

)
, (4.2.2)

for all α, α′ ∈ S◦i , η, η′ ∈ (−1, 0).2

Proof. To begin with, note that (Equation 4.2.2) immediately implies that Rε
i : S◦i × (−1, 0)→ Dε

i

is injective, where we used the positivity assumption γi > 0 in S◦i in (H2). Thus it suffices

to prove (Equation 4.2.2). Throughout the proof, we fix any i ∈ {1, . . . , n + m}, and we will

omit the subscript i for notational simplicity. Using the definition (Equation 4.2.1), let us break

2In fact, (Equation 4.2.2) also holds (with a slightly smaller ε0 and c0) for η, η′ ∈ (−2, 2), even though such Rεi
may not belong to Dε

i . We will use this fact later in the proof of Lemma 4.2.5.
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Rε(α′, η′)−Rε(α, η) into

Rε(α′, η′)−Rε(α, η) = z(α′)− z(α)︸ ︷︷ ︸
=:T1

+ ε (γ(α′)η′ − γ(α)η)n(z(α′))︸ ︷︷ ︸
=:T2

+ εγ(α)η (n(z(α′))− n(z(α)))︸ ︷︷ ︸
=:T3

.

(4.2.3)

For T1 and T3, we have

|T1 − z′(α′)(α′ − α)| ≤‖z‖C2(S)|α− α′|2,

|T3| ≤ εγ(α)‖z‖C2(S)|α− α′|.
(4.2.4)

Also, using that z′(α′) = Ls(z(α′)) is perpendicular to n(z(α′)), we have

|z′(α′)(α′ − α) + T2| = |L(α′ − α)s(z(α′)) + ε (γ(α′)η′ − γ(α)η)n(z(α′))|

≥ 1

2
L|α′ − α|+ 1

2
ε |γ(α′)η′ − γ(α)η| ,

where we use that
√
x2 + y2 ≥ 1

2
(|x|+ |y|). Combining this with (Equation 4.2.4) gives

|T1 + T2 + T3| ≥ |α− α′|
(
L

2
−‖z‖C2(S) (|α− α′|+ εγ(α))

)
+

1

2
ε|γ(α′)η′ − γ(α)η|,

thus

|Rε(α′, η′)−Rε(α, η)| ≥ L

4
|α− α′|+ 1

2
ε|γ(α′)η′ − γ(α)η| (4.2.5)

for all 0 < ε < L(8‖z‖C2‖γ‖L∞)−1 and |α− α′| ≤ L
8‖z‖C2

.

For |α−α′| > L
8‖z‖C2

, recall that the definition of FΓ in (Equation 4.1.2) gives |z(α′)−z(α)| ≥

F−1
Γ |α′ − α|. Thus a crude estimate gives

|Rε(α′, η′)−Rε(α, η)| ≥ |z(α′)−z(α)|−2ε‖γ‖L∞(S) ≥
1

2FΓ

|α′−α|+ε|γ(α′)η′−γ(α)η| (4.2.6)

for 0 < ε < L(64FΓ‖z‖C2‖γ‖L∞)−1. (Note that for such ε we have 4ε‖γ‖L∞ ≤ 1
2FΓ
|α′ − α| due
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to our assumption that |α− α′| > L
8‖z‖C2

).

Finally, combining (Equation 4.2.5) and (Equation 4.2.6), it follows that (Equation 4.2.2) holds

for c0 = min{L
4
, 1

2FΓ
, 1

2
} and ε0 = min{L(8‖z‖C2‖γ‖L∞)−1, L(64FΓ‖z‖C2‖γ‖L∞)−1}. This fin-

ishes the proof.

In the next lemma we compute the partial derivatives and Jacobian of Rε
i(α, η), which will be

useful later.

Lemma 4.2.2. For any i = 1, . . . , n+m, let zi be a constant-speed parameterization of the curve

Γi (with length Li), and let Rε
i be given by (Equation 4.2.1). Then its partial derivatives are

∂αR
ε
i(α, η) = z′i(α) + ε

(
γ′i(α)

z′i(α)⊥

Li
η + γi(α)

z′′i (α)⊥

Li
η

)
,

∂ηR
ε
i(α, η) = εγi(α)

z′i(α)⊥

Li
.

(4.2.7)

Moreover, its Jacobian is given by

det(∇α,ηR
ε
i) = εLiγi(α)− ε2Liγ2

i (α)κi(α)η, (4.2.8)

where κi(α) denotes the signed curvature of Γi at zi(α).

Proof. Since zi is the constant-speed parameterization of Γi (which has length Li), we have |z′i| ≡

Li and n(zi(α)) = z′i(α)⊥/Li. Taking the α and η partial derivatives of (Equation 4.2.1) directly

yields (Equation 4.2.7).

Putting the two partial derivatives into columns of a 2×2 matrix and computing the determinant,

we have

det(∇α,ηR
ε
i) = εγi(α)

|z′i(α)|2

Li
+ ε2γ2

i (α)
z′′i (α)⊥ · z′i(α)

L2
i

η

= εLiγi(α)− ε2Liγ2
i (α)κi(α)η,
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where in the second equality we used that z′′i (α) = κi(α)n(zi(α))L2
i (recall that zi has constant

speed Li). This finishes the proof.

Remark 4.2.3. We point out that for each i = 1, . . . , n + m, the determinant formula

(Equation 4.2.8) immediately gives the following approximation of |Dε
i |, which will be helpful in

the proofs later:

|Dε
i |
ε

=
1

ε

ˆ
Dεi

1dx =
1

ε

ˆ
Si

ˆ 0

−1

det(∇α,ηR
ε
i(α, η)) dηdα = Li

ˆ
Si

γi(α)dα +O(ε), (4.2.9)

where the O(ε) error term has its absolute value bounded by Cε, with C only depending on

‖zi‖C2(Si) and ‖γi‖L∞(Si).

Finally, let Dε := ∪n+m
i=1 Dε

i , and ωε : R2 → R is defined as

ωε(x) := ε−11Dε(x) = ε−1

n+m∑
i=1

1Dεi (x),

and let

vε = ∇⊥(ωε ∗ N ) (4.2.10)

be the velocity field generated by ωε.

In the next lemma we aim to obtain some fine estimate of vε in the thin vortex layer Dε. Our

goal is to show that along each cross section of the thin layer (i.e. fix i and α, and let η vary in

[−1, 0]), the function η 7→ vε(Rε
i(α, η)) is almost a linear function in η, with the endpoint values

(at η = −1 and 0) being almost v−(zi(α)) and v+(zi(α)) respectively.

Lemma 4.2.4. For i = 1, . . . , n+m, assume Γi and γi satisfy (H1)–(H3). Let

gi(α, η) := BR(zi(α))−
(
η +

1

2

)
[v](zi(α)) for α ∈ Si,

and note that gi(α, 0) = v+(zi(α)) and gi(α,−1) = v−(zi(α)) (see Figure Figure 4.3 for an
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illustration of gi(α, η)). Then for all sufficiently small ε > 0, for all i = 1, . . . , n+m we have

|vε(Rε
i(α, η))− gi(α, η)| ≤ Cεb| log ε| for all α ∈ Si, η ∈ [−1, 0], (4.2.11)

where b ∈ (0, 1) is as in (H2), and C depends on b, maxi ‖zi‖C2(Si), maxi ‖γi‖Cb(Si), dΓ and FΓ.

Γi
zi(α)

n(zi(α))

v+(zi(α))

v−(zi(α))

Rεi(α, η) gi(α, η)

Dε
i

Figure 4.3: Illustration of the definition of gi(α, ·) (the orange arrows).

Proof. Let i be any fixed index in 1, . . . , n+m. We begin with breaking vε into contributions from

different components {Dε
k}n+m

k=1 , namely

vε(x) =
n+m∑
k=1

vεk(x) :=
n+m∑
k=1

ε−1

ˆ
Dεi

K2(x− y)dy,

where the kernel K2 is given by (Equation 4.1.5). Similarly, we can break BR(zi(α)) into

BR(zi(α)) =
n+m∑
k=1

BRk(zi(α)), where BRk is the contribution from the k-th integral in

(Equation 4.1.4), and note that the PV symbol is only needed for k = i.

• Estimates for k 6= i terms. For any k 6= i, we aim to show that

|vεk(Rε
i(α, η))−BRk(zi(α))| ≤ Cε, (4.2.12)

where C depends on dΓ,maxk ‖zk‖C2 and maxk ‖γk‖L∞ . Applying a change of variable y =
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Rε
k(α

′, η′), we can rewrite vεk as

vεk(R
ε
i(α, η)) = ε−1

ˆ
Dεk

K2(Rε
i(α, η)− y) dy

=

ˆ
Sk

ˆ 0

−1

K2(Rε
i(α, η)−Rε

k(α
′, η′))︸ ︷︷ ︸

=:T1

ε−1 det(∇α′,η′R
ε
k(α

′, η′))︸ ︷︷ ︸
=:T2

dη′dα′.
(4.2.13)

Using the facts that Rε
i(α, η) − Rε

k(α
′, η′) = zi(α) − zk(α′) + O(ε) as well as |zi(α) − zk(α′)| ≥

dΓ > 0 (recall that dΓ is as given in (Equation 4.1.1)), for all sufficiently small ε > 0 we have

T1 = K2(zi(α)− zk(α′)) +O(ε). For T2, the explicit formula (Equation 4.2.8) for the determinant

gives T2 = Lkγk(α
′) +O(ε). Plugging these into the above integral yields

vεk(R
ε
i(α, η)) =

ˆ
Sk

K2(zi(α)− zk(α′))Lkγk(α′) dα′ +O(ε) = BRk(zi(α)) +O(ε),

finishing the proof of (Equation 4.2.12).

• Estimates for the k = i term. It will be more involved to control the k = i term, and our goal

is to show that

∣∣∣∣vεi(Rε
i(α, η))−BRi(zi(α)) +

(
η +

1

2

)
[v](zi(α))

∣∣∣∣ ≤ Cεb| log ε|. (4.2.14)

To begin with, we again rewrite vεi as in (Equation 4.2.13) with k = i, and plug in the formula

(Equation 4.2.8) for the determinant. This leads to

vεi(R
ε
i(α, η)) =

ˆ
Sk

ˆ 0

−1

K2(Rε
i(α, η)−Rε

i(α
′, η′))

(
Liγi(α

′)− εLiγ2
i (α

′)κi(α
′)η′
)
dη′dα′

=: I1 + I2,

where I1, I2 are the contributions from the two terms in the last parenthesis respectively. Let us

control I2 first, and we claim that

|I2| ≤ Cε| log ε|. (4.2.15)
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Using (Equation 4.2.2) of Lemma 4.2.1 and the fact that |K2(x)| ≤ |x|−1, we can bound I2 as

|I2| =
∣∣∣∣ˆ
Sk

ˆ 0

−1

K2(Rε
i(α, η)−Rε

i(α
′, η′)) εLiγ

2
i (α

′)κi(α
′)η′ dη′dα′

∣∣∣∣
≤ Cε

ˆ
Sk

ˆ 0

−1

γi(α
′)

|α′ − α|+ ε|γi(α′)η′ − γi(α)η|
dη′dα′

≤ Cε

ˆ
Sk

ˆ ‖γi‖∞
−‖γi‖∞

1

|α′ − α|+ ε|θ′|
dθ′dα′ (θ′ := γi(α

′)η′ − γi(α)η)

≤ Cε

ˆ 1/ε

−1/ε

ˆ ‖γi‖∞
−‖γi‖∞

1

|β′|+ |θ′|
dθ′dβ′ (β′ := ε−1(α′ − α))

≤ Cε| log ε|

(4.2.16)

where C depends on ‖zi‖C2 and ‖γi‖L∞ .

In the rest of the proof we focus on estimating I1 =

ˆ
Sk

ˆ 0

−1

K2(Rε
i(α, η) −

Rε
i(α
′, η′))Liγi(α

′) dη′dα′. For t ∈ [0, 1], let us define

f(α, α′, η, η′; t) := Rε
i(α, η − tη′)−Rε

i(α
′, η′ − tη′),

J(t) :=

ˆ
Sk

ˆ 0

−1

K2(f(α, α′, η, η′; t))Liγi(α
′) dη′dα′. (4.2.17)

Note that in the definition of f , the argument η − tη′ of Rε
i belongs to [−1, 1], instead of [−1, 0]

as in the original definition of (Equation 4.2.1). Here Rε
i(α, η − tη′) is defined as in the formula

(Equation 4.2.1), even though it might not belong to Dε
i . Clearly, J(0) = I1. The motivation for

us to define such f and J(t) is that at t = 1, we have

J(1) =

ˆ
Sk

ˆ 0

−1

K2(Rε
i(α, η − η′)− zi(α′))Liγi(α′) dη′dα′ =

ˆ 0

−1

vi(R
ε
i(α, η − η′)) dη′,

(4.2.18)

where vi is the velocity field generated by the sheet Γi. Recall that vi has a jump across Γi, where

we denote its limits on two sides by v±i . Using Lemma 4.2.5, which we will prove momentarily,
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we have

vi(R
ε
i(α, η − η′)) =


v+
i (zi(α)) +O(εb| log ε|) if η − η′ ∈ (0, 2),

v−i (zi(α)) +O(εb| log ε|) if η − η′ ∈ (−2, 0).

(4.2.19)

We can then split the integration domain on the right hand side of (Equation 6.2.56) into η′ ∈

(−1, η) and η′ ∈ (η, 0), and use (Equation 4.2.19) to approximate the integrand in each interval.

This gives

J(1) = (η + 1)v+
i (zi(α))− ηv−i (zi(α)) +O(εb| log ε|)

= BRi(zi(α))−
(
η +

1

2

)
[v](zi(α)) +O(εb| log ε|),

(4.2.20)

where in the last step we used that [v](zi(α)) = [vi](zi(α)), since all other vk with k 6= i are

continuous across Γi.

Finally, it remains to control |J(0)− J(1)|. Note that by (Equation 4.2.2), we have

f(α, α′, η, η′; t) ≥ c0

(
|α− α′|+ ε|γi(α′)η′ − γi(α)η|

)
.

In addition, we have

∣∣∣∣ ∂∂tf(α, α′, η, η′; t)

∣∣∣∣ =
∣∣ε(γi(α)n(zi(α))− γi(α′)n(zi(α

′))
)
η′
∣∣ ≤ Cε|α− α′|b,

where the last inequality follows from (H2) and the fact that n(zi(α)) ∈ C1(Si). Therefore, for

any t ∈ (0, 1), taking the t derivative of (Equation 4.2.17) and using that |∇K2(x)| ≤ |x|−2, we
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have

|J ′(t)| ≤ C

ˆ
Sk

ˆ 0

−1

ε|α− α′|bγi(α′)(
|α− α′|+ ε|γi(α′)η′ − γi(α)η|

)2dη
′dα′

≤ Cε

ˆ
Sk

ˆ 0

−1

γi(α
′)

|α− α′|1−b (|α− α′|+ ε|γi(α′)η′ − γi(α)η|)
dη′dα′

≤ Cεb
ˆ 1/ε

−1/ε

ˆ ‖γi‖∞
−‖γi‖∞

1

|β′|1−b(|β′|+ |θ′|)
dθ′dβ′ (θ′ := γi(α

′)η′ − γi(α)η, β′ := ε−1(α′ − α))

≤ Cεb
ˆ 1/ε

−1/ε

|β′|b−1 log

(
1 +
‖γi‖L∞
|β′|

)
dβ′

≤ Cεb,

where C depends on b, ‖γi‖Cb(Si), ‖zi‖C2(Si) and FΓ. This leads to

|J(1)− I1| = |J(1)− J(0)| ≤ Cεb| log ε|.

Finally, combining this with (Equation 4.2.20) and (Equation 4.2.15) yields (Equation 4.2.14), fin-

ishing the proof of the k = i case. We can then conclude the proof by taking the sum of this

estimate with all the k 6= i estimates in (Equation 4.2.12).

The following lemma proves (Equation 4.2.19). Let vi be the velocity field generated by the

sheet Γi, which is smooth inR2\Γi, and has a discontinuity across Γi. It is known that vi converges

to v±i respectively on the two sides of Γi [87]. However, we were unable to find a quantitative

convergence rate (in terms of the distance from the point to Γi) in the literature, especially under

the assumption that γi is only in Cb(Si) for the open curves. Below we prove such an estimate.

Lemma 4.2.5. For i = 1, . . . , n+m, let vi be the velocity field generated by the sheet Γi, given by

vi(x) :=

ˆ
Si

K2(x− zi(α′)) γi(α′)|z′i(α′)| dα′ for x ∈ R2 \ Γi.

Then there exist constants C, ε0 > 0 depending on on b (as in (H2)), ‖zi‖C2(Si), ‖γi‖Cb(Si) and FΓ,
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such that for all ε ∈ (0, ε0) and η ∈ (−2, 2) we have

∣∣vi(Rε
i(α, η))− v+

i (zi(α))
∣∣ ≤ Cεb| log ε| if η ∈ (0, 2), (4.2.21)∣∣vi(Rε

i(α, η))− v−i (zi(α))
∣∣ ≤ Cεb| log ε| if η ∈ (−2, 0), (4.2.22)

where

v+
i = BRi(zi(α)) +

n(zi(α))⊥γi(α)

2
, v−i = BRi(zi(α))− n(zi(α))⊥γi(α)

2
,

and BRi is the contribution from the i-th integral in (Equation 4.1.4).

Proof. We will show (Equation 4.2.21) only since (Equation 4.2.22) can be treated in the same

way. From the definition of Rε
i in (Equation 4.2.1), we have

vi(R
ε
i(α, η)) =

Li
2π

ˆ
Si

(zi(α)− zi(α′))⊥ γi(α′)
|zi(α)− zi(α′) + εηn(zi(α))γi(α)|2

dα′

+
Li
2π

ˆ
Si

εηn(zi(α))⊥γi(α)γi(α
′)

|zi(α)− zi(α′) + εηn(zi(α))γi(α)|2
dα′

=: A1 + A2.

We claim that for all ε > 0 sufficiently small and η ∈ [0, 2), we have

|A1 −BRi(z(α))| ≤ Cεb| log ε|, (4.2.23)∣∣∣∣A2 −
n(z(α))⊥γ(α)

2

∣∣∣∣ ≤ Cεb, (4.2.24)

and note that these two claims immediately yield (Equation 4.2.21). From now on, let us fix

i ∈ {1, . . . , n+m} and omit it in the notation for simplicity. Throughout this proof, let us denote

y(α, α′) := z(α)− z(α′) and c(α) := εηn(z(α))γ(α),
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so that

A1 =
L

2π

ˆ
S

y⊥(α, α′)γ(α′)

|y(α, α′) + c(α)|2
dα′, A2 =

L

2π

ˆ
S

c⊥(α)γ(α′)

|y(α, α′) + c(α)|2
dα′.

Note that

F−1
Γ |α− α

′| ≤ |y(α, α′)| ≤ ‖z‖C1|α− α′|. (4.2.25)

For the closed curves with i = 1, . . . , n, since z has period 1, we can always set α − α′ ∈ [−1
2
, 1

2
)

in this proof.

Applying (Equation 4.2.2) (with η′ = 0), we have

|y(α, α′) + c(α)|2 ≥ c0(|α− α′|2 + ε2η2γ2(α)) = c0(|α− α′|2 + |c(α)|2). (4.2.26)

Since z′(α) = Ls(z(α)), let us define

ỹ(α, α′) := Ls(z(α))(α− α′),

which is a close approximation of y in the sense that

|y(α, α′)− ỹ(α, α′)| ≤ ‖z‖C2(α− α′)2. (4.2.27)

Using s(z(α)) ⊥ n(z(α)), we have

|ỹ(α, α′) + c(α)|2 = L2|α− α′|2 + ε2η2γ2(α) = L2|α− α′|2 + |c(α)|2. (4.2.28)

From now on, for notational simplicity, we compress the dependence of y(α, α′), ỹ(α, α′), c(α)

on α and α′ in the rest of the proof.

• Estimate (Equation 4.2.23). Note that BRi(z(α)) can also be written using the above nota-
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tions as

BRi(z(α)) =
L

2π
PV

ˆ
S

y⊥

|y|2
γ(α′)dα,

thus A1 −BRi(z(α)) can be written as follows:

A1 −BRi(z(α)) =
L

2π
PV

ˆ
S

(
y⊥

|y + c|2
− y⊥

|y|2

)
︸ ︷︷ ︸

=:f(y,c)

γ(α′)dα′

=
L

2π

ˆ
S

f(y, c)(γ(α′)− γ(α))dα′ +
Lγ(α)

2π
PV

ˆ
S

f(y, c)dα′

=: A11 + A12.

A direct computation gives

f(y, c) = − y⊥

|y|2
2y · c + |c|2

|y + c|2
. (4.2.29)

Since y · c = (y − ỹ) · c ≤ C|α − α′|2|c|, (where we use ỹ ⊥ n(z(α)) and (Equation 4.2.27)),

combining this with (Equation 4.2.25) and (Equation 4.2.26) gives a crude bound

|f(y, c)| . |α− α′|2|c|+ |c|2

|α− α′|(|α− α′|2 + |c|2)
.

Plugging this into A11 and using the Hölder continuity of γ, we have

|A11| .
ˆ
S

|α− α′|2|c|+ |c|2

|α− α′|(|α− α′|2 + |c|2)
|α− α′|bdα′

.
ˆ
|θ|<|c|

(|θ|1+b|c|−1 + |θ|b−1)dθ +

ˆ
|c|≤|θ|≤1

(|c||θ|b−1 + |c|2|θ|b−3)dθ (θ := α′ − α)

. |c|b ≤ Cεb,

where the last step follows from the fact that |c| ≤ 2ε‖γ‖∞. Now let us turn to A12, which requires

a more delicate estimate of f(y, c). Let us break A12 as

A12 =
Lγ(α)

2π

ˆ
S

(f(y, c)− f(ỹ, c))dα′ +
Lγ(α)

2π
PV

ˆ
S

f(ỹ, c)dα′ =: B1 +B2.
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For B1, let us take the gradient of f(y, c) (as in (Equation 4.2.29)) in the first variable. An elemen-

tary computation yields that

|∇xf(x, c)| ≤ C|x|−2 min
{

1,
|c|
|x|

}
(4.2.30)

as long as x satisfies

|x + c|2 ≥ c0(|x|2 + |c|2). (4.2.31)

We point out that x = ξy + (1 − ξ)ỹ indeed satisfies (Equation 4.2.31) for all ξ ∈ [0, 1]: to see

this, in the proof of Lemma 4.2.1, if we replace T1 in (Equation 4.2.3) by ξy + (1− ξ)ỹ, one can

easily check the proof still goes through for ξ ∈ [0, 1]. In addition, for any ξ ∈ [0, 1] we also have

|ξy + (1− ξ)ỹ| ≥ c0|α− α′|. (4.2.32)

Thus the gradient estimate (Equation 4.2.30) together with (Equation 4.2.27) and (Equation 4.2.32)

yields

|f(y, c)− f(ỹ, c)| . min{1, |c||α− α′|−1} . min{1, ε|α− α′|−1},

and plugging this into B1 gives

|B1| . ε+

ˆ
ε<|α−α′|<1

ε|α− α′|−1dα′ . ε| log ε|.

As for B2, using the definition of ỹ, the identity (Equation 4.2.28) and the fact that ỹ · c = 0, we

have

B2 =
Lγ(α)

2π
PV

ˆ
S

− ỹ⊥

|ỹ|2
|c|2

|ỹ + c|2
dα′

=
Lγ(α)|c|2n(z(α))

2πL
PV

ˆ
S

α′ − α
|α′ − α|2(L2|α′ − α|2 + |c|2)

dα′.
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For the closed curves i = 1, . . . , n, we immediately have B2 = 0 since α − α′ ∈ [−1
2
, 1

2
), and the

integrand is an odd function of α′ − α.

For the open curves i = n+ 1, . . . , n+m, the above integral becomes

B2 =
Lγ(α)|c|2n(z(α))

2πL
PV

ˆ 1−α

−α

θ

|θ|2(L2|θ|2 + |c|2)
dθ (θ := α′ − α)

=
Lγ(α)|c|2n(z(α))

2πL

ˆ 1−α

α

θ

θ2(L2θ2 + |c|2)
dθ,

where in the second inequality we used that the integral in [−α, α] gives zero contribution to the

principal value, since the integrand is odd.

Next we discuss two cases. If α > |c|, we bound the integrand by Cθ−3, which gives

|B2| ≤ Cγ(α)|c|2α−2 ≤ C|c|2αb−2 ≤ C|c|b ≤ Cεb.

where the second inequality follows from the assumption γ(0) = 0 for an open curve in (H3), as

well as the Hölder continuity of γ. And if 0 < α ≤ |c|, the integrand can be bounded above by

θ−1|c|−2, which immediately leads to

|B2| ≤ Cγ(α)| logα| ≤ C|c|b| log |c|| ≤ Cεb| log ε|.

In both cases we have |B2| ≤ Cεb| log ε|, and combining it with the B1 and A11 estimates gives

(Equation 4.2.23).

• Estimate (Equation 4.2.24). We break A2 into

A2 =
Lc⊥

2π

ˆ
S

γ(α′)− γ(α)

|y + c|2
dα′ +

Lc⊥γ(α)

2π

ˆ
S

(
1

|y + c|2
− 1

|ỹ + c|2

)
dα′ +

Lc⊥γ(α)

2π

ˆ
S

1

|ỹ + c|2
dα′

=: A21 + A22 + A23.
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For A21, (Equation 4.2.26) and the Hölder continuity of γ immediately lead to

|A21| ≤ C|c|
ˆ
S

|α− α′|b

|α− α′|2 + |c|2
dα′ ≤ |c|b ≤ Cεb. (4.2.33)

For A22, its integrand can be controlled as

∣∣∣∣ 1

|y + c|2
− 1

|ỹ + c|2

∣∣∣∣ ≤ |y − ỹ|(|y + c|+ |ỹ + c|)
|y + c|2|ỹ + c|2

≤ C|α− α′|2

(|α− α′|2 + |c|2)3/2
,

where the last step follows from (Equation 4.2.26), (Equation 4.2.27) and (Equation 4.2.28). This

allows us to control A22 as

|A22| ≤ C|c|
ˆ 1

−1

θ2

(θ2 + |c|2)3/2
dθ ≤ C|c|

∣∣ log |c|
∣∣ ≤ Cε| log ε|. (4.2.34)

Finally, for the A23 term, (Equation 4.2.28) gives

A23 =
Lc⊥γ(α)

2π

ˆ
S

1

L2|α′ − α|2 + |c|2
dα′ =

n⊥(α)γ(α)

2π

ˆ
I

1

θ2 + 1
dθ (set θ :=

L(α′ − α)

|c|
),

where the integration interval I = (− L
2|c| ,

L
2|c|) for i = 1, . . . , n, and I = (−Lα

|c| ,
L(1−α)
|c| ) for

i = n + 1, . . . , n + m, and in the last equality we also used that c⊥

|c| = n⊥. For i = 1, . . . , n, one

can easily check that

∣∣∣∣ˆ
I

1

θ2 + 1
dθ − π

∣∣∣∣ = 2

ˆ ∞
L

2|c|

1

θ2 + 1
dθ ≤ C|c| ≤ Cε,

which immediately leads to

∣∣∣∣A23 −
n(z(α))⊥γ(α)

2

∣∣∣∣ =

∣∣∣∣n⊥(α)γ(α)

2π

(ˆ
I

1

θ2 + 1
dθ − π

)∣∣∣∣ ≤ Cε

for i = 1, . . . , n. Next we turn to the open curves i = n+1, . . . , n+m, and let us assume α ∈ [0, 1
2
]
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without loss of generality. In this case we have

∣∣∣∣ˆ
I

1

θ2 + 1
dθ − π

∣∣∣∣ =

ˆ −Lα|c|
−∞

1

θ2 + 1
dθ +

ˆ ∞
L(1−α)
|c|

1

θ2 + 1
dθ ≤ min

{
C
|c|
α
,
π

2

}
+ Cε.

where we used 1− α > 1
2

to control the second integral by Cε. Using the above inequality as well

as the fact that γ(α) ≤ Cαb due to (H3), we have

∣∣∣∣A23 −
n(z(α))⊥γ(α)

2

∣∣∣∣ =
γ(α)

2π

∣∣∣∣ˆ
I

1

θ2 + 1
dθ − π

∣∣∣∣ ≤ Cαb min

{
|c|
α
, 1

}
+Cε ≤ C(|c|b+ε) ≤ Cεb

for i = n + 1, . . . , n + m. Finally, combining the A23 estimates together with (Equation 4.2.33)

and (Equation 4.2.34) yields (Equation 4.2.24).

4.3 Constructing a divergence-free perturbation

In this section, we aim to construct a divergence-free velocity field uε : Dε → R2, such that −uε

tends to make each Dε
i “more symmetric”. Let uε : Dε → R2 be given by

uε := x+∇pε in Dε, (4.3.1)

where the function pε : Dε → R is chosen such that

∇ · uε = 0 in Dε, (4.3.2)

and on each connected component l of ∂Dε, uε satisfies

ˆ
l

uε · n dσ = 0, (4.3.3)
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where n is the unit normal of l pointing outwards of Dε. Note that ∂Dε has a total of 2n +

m connected components: Dε
i is doubly-connected for i = 1, . . . , n (denote its outer and inner

boundaries by ∂Dε
i,out and ∂Dε

i,in; note that ∂Dε
i,in coincides with Γi), whereas it is simply-connected

for i = n+ 1, . . . , n+m (denote its boundary by ∂Dε
i ).

Next we show that there indeed exists a function pε so that uε satisfies (Equation 4.3.2)–

(Equation 4.3.3). Clearly, (Equation 4.3.2) requires that pε satisfies

∆pε = −2 in Dε. (4.3.4)

As for the boundary conditions, we let

pε|∂Dεi = 0 for i = n+ 1, . . . , n+m, (4.3.5)

so the divergence theorem yields that (Equation 4.3.3) is satisfied for each l = ∂Dε
i for i = n +

1, . . . , n+m. As for i = 1, . . . , n, we define

pε =


0 on ∂Dε

i,out

cεi on ∂Dε
i,in = Γi

for i = 1, . . . , n, (4.3.6)

where cεi > 0 is the unique constant such that

ˆ
∂Ui

∇pε · ndσ = −2|Ui| for i = 1, . . . , n, (4.3.7)

where Ui is the domain enclosed by ∂Dε
i,in = Γi (thus Ui is independent of ε), and n is the outer

normal of Ui (thus the inner normal of Dε
i ). The existence of cεi is guaranteed by [50, Lemma 2.5].

One can then check that
´
∂Ui

uε · ndσ = 0. Applying the divergence theorem in Dε
i then gives us

that
´
∂Dεi,out

uε · ndσ = 0 as well.
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In [50] we proved a rearrangement inequality for such pε in a similar spirit of Talenti’s rear-

rangement inequality for elliptic equations [109], which we state below.

Lemma 4.3.1 ([50, Proposition 2.6]). The function pε : Dε → R defined in (Equation 4.3.4)–

(Equation 4.3.7) satisfies the following in each Dε
i for i = 1, . . . , n+m:

sup
Dεi

pε ≤ |D
ε
i |

2π
, (4.3.8)

and ˆ
Dεi

pε(x)dx ≤ |D
ε
i |2

4π
. (4.3.9)

Moreover, each inequality above achieves equality if and only Dε
i is either a disk or an annulus.

Note that the inequalities (Equation 4.3.8)–(Equation 4.3.9) hold for any domain with C1,α

boundary. Even though the inequalities are strict whenDε
i is non-radial, they are not strong enough

to rule out non-radial vortex sheets, as we need quantitative versions of strict inequalities that are

still valid in the ε → 0+ limit. As we will see in the proof of Proposition 4.4.2, the key step is

to show that if some Γi is either not a circle or does not have a constant γi, then the following

quantitative version of (Equation 4.3.9) holds: ε−2
(
|Dεi |2

4π
−
´
Dεi
pε(x)dx

)
≥ c0 > 0, where c0 is

independent of ε.

In order to upgrade (Equation 4.3.9) into a quantitative version, we need to obtain some fine

estimates for pε that take into account the shape of the thin domains Dε
i . For i = n+ 1, . . . , n+m,

since pε = 0 on ∂Dε
i , and the domain Dε

i is a thin simply-connected domain with width ε � 1,

intuitively one would expect that |pε| ≤ Cε2. The next proposition shows that this crude estimate

is indeed true, and its proof is postponed to Section subsection 4.3.1.

Proposition 4.3.2. For any i = n + 1, . . . , n + m, let pε : Dε
i → R be given by (Equation 4.3.4)–

(Equation 4.3.5). Then there exist ε1 and C only depending on ‖zi‖C2(Si), ‖γi‖L∞(Si) and FΓ, such
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that

|pε| ≤ Cε2 in Dε
i

for all ε ∈ (0, ε1).

For i = 1, . . . , n, the estimate is more involved, since pε takes different values cεi and 0 on

the inner and outer boundaries of Dε
i . Heuristically speaking, since Dε

i is a doubly-connected

thin tubular domain with width ∼ ε, we would expect that pεi (in α, η coordinate) changes almost

linearly from 0 to cεi as η goes from−1 (outer boundary) to 0 (inner boundary). Next we will show

that the error between pε(Rε
i(α, η)) and the linear-in-η function cεi(1 + η) is indeed controlled by

O(ε2). We will also obtain fine estimates of the gradient of the function cεi(1 + η), as well as the

boundary value cεi . Again, its proof is postponed to Section subsection 4.3.1.

Proposition 4.3.3. For any i = 1, . . . , n, let pε : Dε
i → R and cεi ∈ R be given by (Equation 4.3.4)

and (Equation 4.3.6)–(Equation 4.3.7). For such pε, let us define p̃ε,qε : Dε
i 7→ R as follows:

p̃ε(Rε
i(α, η)) := cεi(1 + η) for α ∈ Si, η ∈ [0,−1], (4.3.10)

qε := pε − p̃ε in Dε
i .

Also let

βi :=
2|Ui|

Li
´
Si
γ−1
i (α)dα

. (4.3.11)

Then there exist ε1 and C only depending on ‖zi‖C3(Si), ‖γi‖C2(Si) and FΓ, such that for all ε ∈
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(0, ε1) we have the following:


|qε| ≤ Cε2 in Dε

i ,

qε = 0 on ∂Dε
i ,

(4.3.12)

∣∣∣∣cεiε − βi
∣∣∣∣ ≤ Cε, (4.3.13)∣∣∣∣∇p̃ε(Rε
i(α, η))− βi

γi(α)
n(zi(α))

∣∣∣∣ ≤ Cε for α ∈ Si, η ∈ [0,−1]. (4.3.14)

4.3.1 Proof of the quantitative lemmas for pε

In this subsection we aim to prove Propositions 4.3.2 and 4.3.3. We start with a technical lemma

on estimating the solution of Poisson’s equation (with zero boundary condition) in the domain Dε
i .

Lemma 4.3.4. For any i = 1, . . . , n+m, assume Γi and γi satisfy (H1)–(H3). Let vε ∈ C2(Dε
i)∩

C(Dε
i) solve the Poisson’s equation with zero boundary condition:


∆vε = −1 in Dε

i ,

vε = 0 on ∂Dε
i .

(4.3.15)

Then there exist positive constants ε0 = C(‖zi‖C2(Si), ‖γi‖L∞(Si), FΓ) and C1, C2 =

C(‖γi‖L∞(Si)), such that for all ε ∈ (0, ε0) we have

0 ≤ vε ≤ C1ε
2 in Dε

i (4.3.16)

and

‖∇vε‖L∞(Γi) ≤ C2ε for i = 1, . . . , n. (4.3.17)

Proof. Throughout the proof, let i ∈ {1, . . . , n+m} be fixed. For notational simplicity, in the rest

of the proof we omit the subscript i in Rε
i , D

ε
i , Si, zi and γi.

132



Step 1. We start with a simple geometric result that Dε is “flat” in a small neighborhood of any

z(α). For any α ∈ S, let V ε(α) := Dε ∩ B6ε‖γ‖∞(z(α)), where ‖ · ‖∞ denotes ‖ · ‖L∞(S). We will

show that any y ∈ V ε(α) satisfies

∣∣(z(α)− y) · n(z(α))
∣∣ ≤ 2ε‖γ‖∞ (4.3.18)

for all sufficiently small ε > 0 (to be quantified in (Equation 4.3.23)). See Figure Figure 4.4(a) for

an illustration.

Since y ∈ V ε(α) ⊂ Dε, there exist β ∈ S and η ∈ (−1, 0) such that y = Rε(β, η) =

z(β) + εγ(β)n(z(β))η. It follows that

∣∣(z(α)− y) · n(z(α))
∣∣ ≤ |(z(α)− z(β)) · n(z(α))|+ ε‖γ‖∞

≤‖z′′‖∞(α− β)2 + ε‖γ‖∞,
(4.3.19)

where in the second inequality we used

|(z(α)− z(β))− z′(α)(α− β)| ≤ ‖z′′‖∞(α− β)2 (4.3.20)

and z′(α) · n(z(α)) = 0. To bound α− β on the right hand side of (Equation 4.3.19), the fact that

y ∈ B6ε‖γ‖∞(z(α)) gives

6ε‖γ‖∞ ≥ |z(α)− y| ≥ |z(α)− z(β)| − εγ(β), (4.3.21)

which implies |z(α)− z(β)| ≤ 7ε‖γ‖∞. Since the arc-chord constant FΓ given in (Equation 4.1.2)

is finite, this implies

|α− β| ≤ 7FΓ‖γ‖∞ε. (4.3.22)

Plugging this into the right hand side of (Equation 4.3.19), we know (Equation 4.3.18) holds for
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z(α)

n(z(α))

V ε(α)
Dε

y = R(β, η)

2ε‖γ‖∞

6ε‖γ‖∞

Γ

z(α0)

n(z(α0))

V ε(α0)

∂V ε
1 (α0)

∂V ε
2 (α0)

z(β)

(a) (b)

Figure 4.4: (a) In Step 1, V ε(α) (the yellow set) must lie between the two dashed lines for small ε.
(b) In Step 2, ∂V ε(α0) is decomposed into ∂V ε

1 (α0) (in dark green) and ∂V ε
2 (α0) (in purple).

all

0 < ε ≤ (49‖z′′‖∞F 2
Γ‖γ‖∞)−1. (4.3.23)

Step 2. Next we prove (Equation 4.3.16). Note that vε is superharmonic in Dε and vanishes

on the boundary, thus it follows from the maximum principle that vε ≥ 0 in Dε. Denote M :=

maxx∈Dε v(x), and pick x0 = R(α0, η0) ∈ Dε such that v(x0) = M . Without loss of generality,

we can assume that z(α0) = (0, 0) and s(z(α0)) = e1 := (1, 0), so that n(z(α0)) = (0, 1) and

x0 = (0, εγ(α0)η0). Let us consider a barrier function b1 : R2 7→ R given by

b1(x1, x2) = x2
2 −

x2
1

2
.

Clearly ∆b1 = 1, so vε + b1 is harmonic in Dε. It then follows from the maximum principle that

maxV ε(α0)(v
ε + b1) is achieved at some boundary point x̃0 ∈ ∂V ε(α0). Let us break ∂V ε(α0) into

∂V ε
1 (α0) ∪ ∂V ε

2 (α0) (see Figure Figure 4.4(b) for an illustration), given by

∂V ε
1 (α0) := ∂Dε ∩B6ε‖γ‖∞(z(α0)), ∂V ε

2 (α0) := Dε ∩ ∂B6ε‖γ‖∞(z(α0)). (4.3.24)
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We claim that x̃0 ∈ ∂V ε
1 (α0). To see this, note that any y = (y1, y2) ∈ ∂V ε

2 (α0) satisfies |y| =

6ε‖γ‖∞ and |y2| ≤ 2ε‖γ‖∞, where the latter follows from (Equation 4.3.18) and our assumption

that s(z(α0)) = e1. This implies that |y1| ≥ 4ε‖γ‖∞ > |y2|, thus b1(y) < 0. Using that vε(x0) =

M ≥ vε(y) and b1(x0) = b1(0, εγ(α0)η0) ≥ 0, we have (vε + b1)(y) < (vε + b1)(x0). This shows

that maxV ε(α0)(v
ε + b1) cannot be achieved on ∂V ε

2 (α0), finishing the proof of the claim.

Since x̃0 ∈ ∂V ε
1 (α0) ⊂ ∂Dε, the boundary condition in (Equation 4.3.15) yields that vε(x̃0) =

0. Thus

M + b1(x0) = vε(x0) + b1(x0) ≤ vε(x̃0) + b1(x̃0) = b1(x̃0).

Using b1(x0) = b1(0, εγ(α0)η0) ≥ 0, the above inequality becomes

M ≤ b1(x̃0) ≤ |x̃0|2 ≤ 36‖γ‖2
∞ε

2, (4.3.25)

where the second inequality follows from the definition of b1. This proves (Equation 4.3.16) for

C1 = 36‖γ‖2
∞.

Step 3. It remains to prove (Equation 4.3.17). First note that for i ∈ {1, . . . , n}, the assump-

tions (H1)–(H3) yield that Dε
i has C2 boundary, therefore vε ∈ C2(Dε

i) ∩ C1(Dε
i). Let us fix

i ∈ {1, . . . , n} and any α ∈ S, and we aim to show that |∇vε(z(α))| ≤ C2ε. Again, without loss

of generality we can assume that z(α) = (0, 0) and s(z(α)) = e1. Let us consider a new barrier

function b2 : R2 → R

b2(x1, x2) := x2
2 + 4ε‖γ‖∞x2 −

x2
1

2
, (4.3.26)

which satisfies b2(0, 0) = 0, and one can easily check that its zero level set has horizontal tangent

at (0, 0) (thus tangent to ∂Dε at z(α)).

Again, let us decompose ∂V ε(α) as ∂V ε
1 (α) ∪ ∂V ε

2 (α) as in (Equation 4.3.24) (except that α0
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now becomes α). We claim that for all sufficiently small ε > 0, the new barrier function b2 satisfies

∆b2 = 1 in V ε(α), (4.3.27)

b2 ≤ 0 on ∂V ε
1 , (4.3.28)

b2 ≤ −ε2 on ∂V ε
2 . (4.3.29)

Let us assume for a moment that (Equation 4.3.27)–(Equation 4.3.29) are true. Then it follows

that

vε + C2b2 ≤ 0 in V ε(α), (4.3.30)

where C2 := max {1, C1} and C1 is as in (Equation 4.3.16) (in the end of step 2 we have

C1 = 36‖γ‖2
∞). To show (Equation 4.3.30), note that vε + C2b2 is subharmonic in V ε(α) due

to (Equation 4.3.27) and the definition of C2, thus its maximum is attained on its boundary.

The boundary conditions in (Equation 4.3.15) and (Equation 4.3.28) yield that vε + C2b2 ≤ 0

on ∂V ε
1 (α); whereas (Equation 4.3.16), (Equation 4.3.29) and the definition of C2 yield that

vε +C2b2 ≤ 0 on ∂V ε
2 (α). Thus vε +C2b2 ≤ 0 on ∂V ε

1 (α)∪ ∂V ε
2 (α), implying (Equation 4.3.30).

However, vε + C2b2 is actually zero at z(α) ∈ ∂V ε(α), therefore Hopf’s Lemma implies that

∇ (vε + C2b2) (z(α)) · ~n(z(α)) > 0, where ~n(z(α)) is the outer normal of ∂Dε at z(α). Hence

|∇vε(z(α))| = −∇vε(z(α)) · ~n(z(α)) < C2∇b2(z(α)) · ~n(z(α)) = 4C2‖γ‖∞ε, (4.3.31)

where the first equality follows from the fact that vε is superharmonic in Dε and constant on

∂Dε, and the second equality is a direct computation of ∇b2. Thus (Equation 4.3.31) proves

(Equation 4.3.17).

To complete the proof, we only need to prove (Equation 4.3.27)–(Equation 4.3.29) for small

ε > 0. Note that (Equation 4.3.27) follows immediately from computing the Laplacian of b2.

For (Equation 4.3.28), let us pick y ∈ ∂V ε
1 (α), and we aim to show that b2(y) ≤ 0. Note that
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y = Rε(β, 0) or Rε(β,−1) for some β ∈ S. We first deal with the first case.

Let us denote y = (y1, y2). Rewriting (Equation 4.3.20) into two inequalities for the two

components, and using that z(α) = (0, 0) and z′(α) = Le1 (L is the length of the curve Γi), we

have

|0− y1 − L(α− β)| ≤ ‖z′′‖∞(α− β)2 (4.3.32)

|y2| = |0− y2| ≤ ‖z′′‖∞(α− β)2. (4.3.33)

Also, (Equation 4.3.22) gives |α−β| ≤ 7FΓ‖γ‖∞ε. Applying it to (Equation 4.3.32), for all ε > 0

sufficiently small we have that

|y1| ≥
L

2
|α− β|. (4.3.34)

Plugging (Equation 4.3.34) and (Equation 4.3.33) into b2(y) = −1
2
y2

1 + y2
2 + 4ε‖γ‖∞y2, we have

b2(y) ≤ −L
2

8
(α− β)2 + ‖z′′‖2

∞(α− β)4 + 4ε‖γ‖∞‖z′′‖∞(α− β)2

≤
(
−L

2

8
+ Cε2 + Cε

)
(α− β)2 ≤ 0,

for all ε > 0 sufficiently small, where the second inequality follows from (Equation 4.3.22). This

finishes the proof of (Equation 4.3.28) for the case y = Rε(β, 0).

Before we deal with the case y = Rε(β,−1), let us prove (Equation 4.3.29) first. For any y =

(y1, y2) ∈ ∂V ε
2 (α), (Equation 4.3.18) gives |y2| ≤ 2ε‖γ‖∞. Combining this with |y| = 6ε‖γ‖∞

yields |y1| ≥
√

32ε‖γ‖∞. Thus

b2(y) ≤ (2ε‖γ‖∞)2 + 4ε‖γ‖∞(2ε‖γ‖∞)− (
√

32ε‖γ‖∞)2

2
≤ −4ε2‖γ‖2

∞.

Finally we turn to the proof of (Equation 4.3.28) for the case y = Rε(β,−1). Note that the

curve {Rε(β,−1) : β ∈ S} ∩ B6ε‖γ‖∞(z(α)) lies in the interior of the region bounded by Γ ∩
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B6ε‖γ‖∞(z(α)) on the top, ∂B6ε‖γ‖∞(z(α)) on the sides, and y2 = −2ε‖γ‖∞ on the bottom. (The

last one follows from (Equation 4.3.18) and our assumption that s(z(α)) = e1). We have already

shown b2 ≤ 0 on Γ ∩ B6ε‖γ‖∞(z(α)) and the lateral boundaries, and it is easy to check that b2 ≤ 0

on y2 = −2ε‖γ‖∞. Since the set {b2 ≤ 0} is simply-connected, it implies that b2 ≤ 0 in the

interior of this region, finishing the proof.

Note that (Equation 4.3.16) of Lemma 4.3.4 immediately implies Proposition 4.3.2. (The

only difference is that ∆vε = −1 in Lemma 4.3.4 whereas ∆pε = −2 in Proposition 4.3.2, so the

constant C in Proposition 4.3.2 is twice of that in (Equation 4.3.16)). The lemma also implies the

following corollary, which will be helpful in the proof of Proposition 4.3.3.

Corollary 4.3.5. For any i = 1, . . . , n + m, assume Γi and γi satisfy (H1)–(H3). Assume vε ∈

C2(Dε
i) ∩ C(Dε

i) satisfies that 
|∆vε| ≤ C0 in Dε

i ,

vε = 0 on ∂Dε
i ,

for some constantC0 > 0. Then for the same constants ε0, C1, C2 as in Lemma 4.3.4, the following

holds for all ε ∈ (0, ε0):

|vε| ≤ C0C1ε
2 in Dε

i , (4.3.35)

and if vε ∈ C2(Dε
i) ∩ C1(Dε

i), we have

‖∇vε‖L∞(Γi) ≤ C0C2ε for i = 1, . . . , n. (4.3.36)

Proof. Let ṽ be a solution to 
∆ṽ = −C0 in Dε

i ,

ṽ = 0 on ∂Dε
i .

It is clear that vε + ṽ is super-harmonic and vε − ṽ is sub-harmonic in Dε
i , and they both vanish on
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the boundary. Thus the maximum principle implies that

−ṽ ≤ vε ≤ ṽ in Dε
i . (4.3.37)

Applying (Equation 4.3.16) of Lemma 4.3.4 to ṽ
C0

, we obtain 0 ≤ ṽ ≤ C0C1ε
2 in Dε

i for all

ε ∈ (0, ε0), leading to (Equation 4.3.35). Furthermore, (Equation 4.3.37) and the fact that vε and v

both have zero boundary condition imply that

|∇vε| ≤ |∇ṽ| on ∂Dε
i .

We then apply (Equation 4.3.17) of Lemma 4.3.4 to ṽ
C0

and obtain ‖∇vε‖L∞(Γi) ≤ C0C2ε, which

proves (Equation 4.3.36).

Now we are ready to prove Proposition 4.3.3.

Proof of Proposition 4.3.3. Throughout the proof, let i ∈ {1, . . . , n} be fixed. For notational

simplicity, in the rest of the proof we omit the subscript i from all terms.

We claim that

∣∣∣∣∇p̃ε(Rε(α, η))− cε

εγ(α)
n(z(α))

∣∣∣∣ ≤ Cε for all α ∈ S, η ∈ [0,−1], (4.3.38)

‖∆qε‖L∞(Dε) ≤ C (4.3.39)

for some constant C > 0 only depending on ‖zi‖C3(Si), ‖γi‖C2(Si) and FΓ. Assuming these are

true, let us explain how they lead to (Equation 4.3.12)–(Equation 4.3.14). By (Equation 4.3.6) and

(Equation 4.3.10), pε and p̃ε have the same boundary condition, thus qε = 0 on ∂Dε. This and

(Equation 4.3.39) allow us to apply Corollary 4.3.5 to qε to obtain the estimate (Equation 4.3.35),

implying (Equation 4.3.12).
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Due to (Equation 4.3.36) of Corollary 4.3.5, we also have

‖∇qε‖L∞(Γ) ≤ Cε. (4.3.40)

Using (Equation 4.3.7) and pε = p̃ε + qε, we have

−2|U | =
ˆ
∂U

∇p̃ε · ndσ +

ˆ
∂U

∇qε · ndσ

= −c
εL

ε

ˆ
S

γ−1(α)dα +O(ε),

where the second equality follows from (Equation 4.3.38) for η = 0, n(z(α)) = −n(z(α)) and

dσ = Ldα, as well as (Equation 4.3.40). Rearranging the terms and using the definition of β in

(Equation 4.3.11) yields (Equation 4.3.13).

Finally, note that (Equation 4.3.13) and (Equation 4.3.38) directly lead to (Equation 4.3.14),

where we are using the fact that γi is uniformly positive for i = 1, . . . , n, due to (H3).

The rest of the proof is devoted to proving the claims (Equation 4.3.38) and (Equation 4.3.39).

For (Equation 4.3.38), we compute the gradient of p̃ε. Differentiating (Equation 4.3.10) with re-

spect to α and η, we obtain

(∇α,ηR
ε(α, η))t∇p̃(Rε(α, η)) =

0

cε

 , (4.3.41)

where (∇α,ηR
ε)t denotes the transpose of the Jacobian matrix of Rε. Since ∇α,ηR

ε =

(∂αR
ε, ∂ηR

ε), using the formula for inverses of 2× 2 matrices, we have

(
(∇α,ηR

ε)t
)−1

=
1

J(α, η)

(
−(∂ηR

ε)⊥, (∂αR
ε)⊥
)
. (4.3.42)

where J(α, η) := det(∇α,ηR
ε). Multiplying the inverse matrix on both sides of (Equation 4.3.41),
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we have

∇p̃ε(Rε(α, η)) =
1

J

(
−(∂ηR

ε)⊥, (∂αR
ε)⊥
)0

cε

 =
cε

J
(∂αR

ε)⊥. (4.3.43)

Recall that Lemma 4.2.2 gives (∂αR
ε)⊥ = z′(α)⊥ + O(ε) = Ln(z(α)) + O(ε), and J = εLγ +

O(ε2). Plugging these into (Equation 4.3.43) gives

∇p̃ε(R(α, η)) =
cε

ε

(
n(z(α))

γ
+O(ε)

)
. (4.3.44)

Note that it follows from (Equation 4.3.8) that cε ≤ |Dε|
2π

, where |Dε| ≤ Cε due to (Equation 4.2.9).

These imply
cε
ε
≤ C, (4.3.45)

and applying it to (Equation 4.3.44) yields (Equation 4.3.38).

To prove (Equation 4.3.39), since qε = pε − p̃ε and ∆pε = −2 in Dε, it suffices to show that

|∆p̃ε| ≤ C in Dε, (4.3.46)

and we will begin with an explicit computation of ∂x1x1 p̃
ε and ∂x2x2 p̃

ε. Let us denote Rε =:

(R1, R2). For notational simplicity, in the rest of the proof we will use subscripts on Rε, R1, R2

and J to denote their partial derivative, e.g. R1
α := ∂αR

1.

From (Equation 4.3.43), it follows that

∂x1 p̃
ε(Rε(α, η)) = −c

ε

J
R2
α.
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Differentiating in α and η, we get

∇ (∂x1 p̃
ε) (Rε(α, η)) =

(
(∇α,ηR

ε)t
)−1∇α,η

(
−c

ε

J
R2
α

)

=
cε

J

 R2
η −R2

α

−R1
η R1

α


Jα

J2R
2
α − 1

J
R2
αα

Jη
J2R

2
α − 1

J
R2
αη

 ,

thus

∂x1x1 p̃
ε(R(α, η)) =

cε

J

(
Jα
J2
R2
ηR

2
α −

1

J
R2
ηR

2
αα −

Jη
J2

(R2
α)2 +

1

J
R2
αR

2
αη

)
.

Likewise, ∂x2x2 p̃(R(α, η)) takes the same expression except every R2 is changed into R1. Adding

them together gives

∆p̃ε(R(α, η)) =
cε

J

(
Jα
J2
Rε
η ·Rε

α −
1

J
Rε
η ·Rε

αα −
Jη
J2
Rε
α ·Rε

α +
1

J
Rε
α ·Rε

αη

)
. (4.3.47)

Using the explicit formulae of Rα, Rη and J in Lemma 4.2.2, we directly obtain |Rε
α|, |Rε

αα| ≤ C;

|Rε
η|, |Rε

αη|, |Jα| ≤ Cε; |Jη| ≤ Cε2; and J−1 ≤ Cε−1 when ε is sufficiently small, where

C depends on ‖zi‖C3(Si) and ‖γi‖C2(Si). As a result, all the four terms in the parenthesis of

(Equation 4.3.47) are bounded by some constant C independent of ε. Finally, (Equation 4.3.45)

yields cε
J
≤ C as well, thus |∆p̃ε| ≤ C, and this proves the second claim (Equation 4.3.39).

4.4 Proof of the symmetry result

In this section we prove that a stationary vortex sheet with positive vorticity must be radially sym-

metric up to a translation, and a rotating vortex sheet with positive vorticity and angular velocity

Ω < 0 must be radially symmetric. The key idea of the proof is to define the integral

Iε :=

ˆ
Dε
ε−1uε · ∇

(
ωε ∗ N − Ω

2
|x|2
)
dx

=

ˆ
Dε
ε−1(x+∇pε) · ∇

(
ωε ∗ N − Ω

2
|x|2
)
dx,

(4.4.1)
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and compute it in two different ways. The motivation of the definition is as follows. As discussed

in [50, Section 2.1], Iε can be thought of as a first variation of an “energy functional”

E [ωε] :=

ˆ
1

2
ωε(ωε ∗ N )− Ω

2
ωε|x|2 dx

when we perturb ωε by a divergence free vector uε in Dε. (This functional E only serves as

our motivation, and will not appear in the proof.) On the one hand, using that ω0 is stationary

in the rotating frame with angular velocity Ω and ωε is a close approximation of ω0, we will

show in Proposition 4.4.1 that Iε is of order O(ε| log ε|), thus goes to zero as ε → 0. On the

other hand, using the particular uε that we constructed in Section section 4.3, we will prove in

Proposition 4.4.2 that if Ω = 0, Iε is strictly positive independently of ε unless all the vortex

sheets are nested circles with constant density; and also prove a similar result in Corollary 4.4.3

for Ω < 0.

Proposition 4.4.1. Assume ω(·, t) = ω0(RΩt·) is a stationary/uniformly-rotating vortex sheet with

angular velocity Ω ∈ R, where ω0 satisfies (H1)–(H3). Then there exists some C > 0 only

depending on b (as in (H2)), maxi ‖zi‖C3(Si), maxi≤n ‖γi‖C2(Si), maxi>n ‖γi‖Cb(Si), dΓ and FΓ,

such that |Iε| < Cεb| log ε| for all sufficiently small ε > 0.

Proof. Let us decompose Iε =:
∑n+m

i=1 Iεi , where Iεi :=
´
Dεi
ε−1(x+∇pε) · ∇(ωε ∗ N − Ω

2
|x|2)dx.

We start with showing that |Iεi | ≤ Cεb| log ε| for i = n + 1, . . . , n + m. For such i, pε = 0 on

∂Dε
i , thus the divergence theorem (and the fact that ωε = ε−1 in Dε

i ) gives

Iεi =

ˆ
Dεi

ε−1x · ∇
(
ωε ∗ N − Ω

2
|x|2
)
dx︸ ︷︷ ︸

=:T εi

−
ˆ
Dεi

ε−1(ε−1 − 2Ω)pε(x)dx.

Using the estimate |pε| ≤ Cε2 in Proposition 4.3.2 and the fact that |Dε
i | ≤ Cε from

(Equation 4.2.9), we easily bound the second integral by Cε. To control the first integral T εi ,
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we rewrite it using the change of variables x = Rε
i(α, η) and the definition vε := ∇⊥(ωε ∗ N ) in

(Equation 4.2.10): (also note that on the right hand side we group ε−1 with the determinant)

T εi =

ˆ
Si

ˆ 0

−1

Rε
i(α, η) ·

(
−(vε)⊥(Rε

i(α, η))− ΩRε
i(α, η)

)
︸ ︷︷ ︸

=:Jεi

ε−1 det(∇α,ηR
ε
i(α, η))︸ ︷︷ ︸

=:Kε
i

dηdα.

Let us take a closer look at the integrand, which is a product of 3 terms. Clearly, the definition of

Rε
i gives Rε

i(α, η) = zi(α) +O(ε). As for the middle term J εi , Lemma 4.2.4 yields

J εi (α, η) = −BR⊥(zi(α)) +

(
η +

1

2

)
[v]⊥(zi(α))− Ωzi(α) +O(εb| log ε|). (4.4.2)

Using the fact that BR(zi(α)) = Ωz⊥i (α) for i = n + 1, . . . , n + m (which follows from

(Equation 5.1.1) and (Equation 5.1.2)), it becomes

J εi (α, η) =

(
η +

1

2

)
[v]⊥(zi(α)) +O(εb| log ε|). (4.4.3)

Also it follows from (Equation 4.2.8) that Kε
i (α, η) = Liγi(α) + O(ε). Plugging these three esti-

mates into the above integral gives

T εi =

ˆ
Si

ˆ 0

−1

zi(α) ·
(
η +

1

2

)
[v]⊥(zi(α))Liγi(α)dηdα +O(εb| log ε|) = O(εb| log ε|),

where the last step follows from the fact that
´ 0

−1
(η + 1

2
)dη = 0. This finishes the proof that

|Iεi | ≤ Cεb| log ε| for i = n+1, . . . , n+m, whereC depends on b, maxi ‖zi‖C2(Si), maxi ‖γi‖Cb(Si),

dΓ and FΓ.

In the rest of the proof we aim to show |Iεi | ≤ Cεb| log ε| for i = 1, . . . , n, which is slightly

more involved. Recall that in Proposition 4.3.3 we defined p̃ε and qε in Dε
i for i = 1, . . . , n, where

they satisfy pε = p̃ε+ qε in Dε
i , and qε = 0 on ∂Dε

i . This allows us to apply the divergence theorem
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(to the qε term only) and decompose Iεi as

Iεi =

ˆ
Dεi

ε−1(x+∇p̃ε) · ∇
(
ωε ∗ N − Ω

2
|x|2
)
dx−

ˆ
Dεi

ε−1(ε−1 − 2Ω)qε(x)dx =: Iεi,1 + Iεi,2.

We can easily show that Iεi,2 = O(ε): (Equation 4.3.12) of Proposition 4.3.3 gives |qε| ≤ Cε2, and

combining it with |Dε
i | ≤ Cε in (Equation 4.2.9) immediately yields the desired estimate.

Next we turn to Iεi,1. Again, the change of variables x = Rε
i(α, η) and the definition vε :=

∇⊥(ωε ∗ N ) gives

Iεi,1 =

ˆ
Si

ˆ 0

−1

(
Rε
i(α, η)+∇p̃ε(Rε

i(α, η))
)
·
(
−(vε)⊥(Rε

i(α, η))− ΩRε
i(α, η)

)
︸ ︷︷ ︸

=:Jεi

ε−1 det(∇α,ηR
ε
i(α, η))︸ ︷︷ ︸

=:Kε
i

dηdα.

For the three terms in the product of the integrand, we will approximate the first term using the

definition of Rε
i and (Equation 4.3.14) of Proposition 4.3.3:

Rε
i(α, η) +∇p̃ε(Rε

i(α, η)) = zi(α) +
βi

γi(α)
n(zi(α)) +O(ε),

where βi := 2|Ui|
Li

´
Si
γ−1
i (α)dα

is given by (Equation 4.3.11). Lemma 4.2.4 allows us to approximate

the middle term J εi as (Equation 4.4.2), however (Equation 4.4.3) no longer holds since for i =

1, . . . , n we do not have BR(zi(α)) = Ωz⊥i (α). As for Kε
i , we again use (Equation 4.2.8) to

approximate it by Kε
i (α, η) = Liγi(α) +O(ε). Plugging these three estimates into the integrand of

Iεi,1 gives

Iεi,1 =

ˆ
Si

(
zi(α) +

βi
γi(α)

n(zi(α))

)
·
(
−BR⊥(zi(α))− Ωzi(α)

)
Liγi(α)dα +O(εb| log ε|),

where we again use the fact that the (η + 1
2
) term gives zero contribution since

´ 0

−1
(η + 1

2
)dη = 0.

Next we will show the integral on the right hand side is in fact 0. Since ω is a rotating solution
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with angular velocity Ω, the conditions (Equation 5.1.1) and (Equation 5.1.2) yield that

−BR⊥(zi(α))− Ωzi(α) = Ciγ
−1
i (α)n(zi(α)),

for some constant Ci. Plugging this into the above integral gives

Iεi,1 = CiLi

ˆ
Si

(
zi(α) · n(zi(α)) +

βi
γi(α)

)
dα +O(εb| log ε|)

= CiLi

(ˆ
Si

zi(α) · n(zi(α))dα +
2|Ui|
Li

)
+O(εb| log ε|),

where the second step follows from the definition of βi in (Equation 4.3.11). Let us compute the in-

tegral on the right hand side by changing to arclength parametrization and applying the divergence

theorem: ˆ
Si

zi(α) · n(zi(α))dα = − 1

Li

ˆ
∂Ui

x · ndσ = −2|Ui|
Li

,

which yields Iεi,1 = O(εb| log ε|), and finishes the proof that |Iεi | ≤ Cεb| log ε| for i = 1, . . . , n,

where C depends on b, ‖zi‖C3(Si), ‖γi‖C2(Si), dΓ and FΓ.

Finally, summing the Iεi estimates for i = 1, . . . , n + m gives |Iε| ≤ Cεb| log ε| for all suffi-

ciently small ε > 0, thus we can conclude.

Now we will use a different way to compute Iε. Let us first define a new integral Ĩε that is the

same as Iε except with Ω set to zero:

Ĩε :=

ˆ
Dε
ε−1(x+∇pε) · ∇ (ωε ∗ N ) dx. (4.4.4)

Next we will prove that Ĩε is strictly positive independently of ε unless all the vortex sheets

are nested circles with constant density. As we will see in the proof, the key step is to show

that if some Γi is either not a circle or does not have a constant γi, then the estimates on

pε in Propositions 4.3.2– 4.3.3 lead to the following quantitative version of (Equation 4.3.9):
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ε−2
(
|Dεi |2

4π
−
´
Dεi
pε(x)dx

)
≥ c0 > 0, where c0 is independent of ε.

Proposition 4.4.2. Let Ĩε be defined as in (Equation 4.4.4). Assume that Γi and γi satisfy (H1)–

(H3) for i = 1, . . . , n+m. Then we have Ĩε ≥ 0 for all sufficiently small ε > 0.

In addition, if Γ is not a union of nested circles with constant γi’s on each connected compo-

nent, there exists some c0 > 0 independent of ε, such that Ĩε > c0 > 0 for all sufficiently small

ε > 0.

Proof. We start by decomposing Ĩε as

Ĩε =

ˆ
Dε
ε−1x · ∇(ωε ∗ N )dx+

ˆ
Dε
ε−1∇pε · ∇(ωε ∗ N )dx =: Iε1 + Iε2.

Iε1 can be easily computed as

Iε1 =
1

2πε2

ˆ
Dε

ˆ
Dε

x · (x− y)

|x− y|2
dxdy =

|Dε|2

4πε2
=

1

4πε2

(
n+m∑
i=1

|Dε
i |

)2

(4.4.5)

where the second equality is obtained by exchanging x with y and taking the average with the

original integral. As for Iε2, we have

Iε2 =
1

ε

ˆ
∂Dε

pε∇(ωε ∗ N ) · ndσ − 1

ε

ˆ
Dε
pεωεdx

= −1

ε

n∑
i=1

cεi

ˆ
∂Ui

∇(ωε ∗ N ) · ndσ − 1

ε2

ˆ
Dε
pεdx

≥ − 1

ε2

n∑
i=1

n+m∑
j=1

|Dε
i |

2π

ˆ
Ui

1Dεjdx−
1

ε2

n+m∑
i=1

ˆ
Dεi

pεdx,

(4.4.6)

where the first equality follows from the divergence theorem, the second equality follows from the

boundary conditions (Equation 4.3.5) and (Equation 4.3.6) for pε (as well as the fact that ∂Ui and

∂Dε
i have opposite outer normals), and the last inequality follows from the divergence theorem as

well as the inequality cεi ≤ supDεi p ≤
|Dεi |
2π

due to (Equation 4.3.8).
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Let us denote j ≺ i if i ∈ {1, . . . , n} , j ∈ {1, . . . , n + m}, j 6= i and Γj lies in the interior of

the domain enclosed by Γi (that is, Γj ⊂ Ui). If not, we denote j ⊀ i. Note that for sufficiently

small ε > 0, we have

ˆ
Ui

1Dεjdx =


|Dε

j| if j ≺ i,

0 otherwise.
(4.4.7)

Applying this to (Equation 4.4.6) yields

Iε2 ≥ −
1

2πε2

n+m∑
i,j=1

1j≺i |Dε
i ||Dε

j| −
1

ε2

n+m∑
i=1

ˆ
Dεi

pεidx

= − 1

4πε2

n+m∑
i,j=1

(1j≺i + 1i≺j) |Dε
i ||Dε

j| −
1

ε2

n+m∑
i=1

ˆ
Dεi

pεidx

(4.4.8)

where in the first step we used that the i = n + 1, . . . , n + m terms have zero contribution in the

first sum, due to the definition of j ≺ i.

Adding (Equation 4.4.5) and (Equation 4.4.8) together, we obtain

Ĩε ≥
n+m∑
i=1

1

ε2

(
|Dε

i |2

4π
−
ˆ
Dεi

pεidx

)
︸ ︷︷ ︸

=:Aεi

+
n+m∑
i,j=1

1

ε2
(1i 6=j − (1j≺i + 1i≺j))

|Dε
i ||Dε

j|
4π︸ ︷︷ ︸

=:Bεi,j

, (4.4.9)

From (Equation 4.3.9), it follows that Aεi ≥ 0 for all i = 1, . . . , n + m, with equality achieved if

and only if each Dε
i is a disk or an annulus. Note that Bε

i,j ≥ 0 as well for all i and j, since for any

i 6= j, at most one of i ≺ j and j ≺ i can hold. Putting these together yields that Ĩε ≥ 0 for any

sufficiently small ε > 0.

In the rest of the proof, we assume Γ is not a union of nested circles with constant γi’s on each

connected component. Therefore at least one of the following 3 cases must be true. In each case

we aim to show that Ĩε ≥ c0 > 0, where c0 is independent of ε for all sufficiently small ε > 0.

Case 1. There exists some open curve Γi that is not a loop. In this case Dε
i is simply-

connected, and pε = 0 on ∂Dε
i by (Equation 4.3.5). Applying Proposition 4.3.2 to pε in Dε

i ,
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we have supDεi p
ε ≤ Cε2, where C is independent of ε. This leads to

´
Dεi
pεdx ≤ Cε3, since

|Dε
i | = O(ε) by (Equation 4.2.9). As a result, for the index i we have

Aεi =
|Dε

i |2

4πε2
− ε−2

ˆ
Dεi

pεidx ≥
L2
i

4π

(ˆ
Si

γi(α)dα

)2

− Cε,

where we again used (Equation 4.2.9) in the second inequality. This gives that Aεi ≥
L2
i

8π
(
´
Si
γi(α)dα)2 > 0 for all sufficiently small ε > 0.

Case 2. There exists some closed curve Γi that is either not a circle, or γi is not a constant. In

this case we aim to show that Aεi ≥ c0 > 0, and this will be done by finding good approximations

(independent of ε) for both terms in Aεi . For the first term |Dεi |2
4πε2

, using (Equation 4.2.9) we again

have
|Dε

i |2

4πε2
≥ L2

i

4π

(ˆ
Si

γi(α)dα

)2

− Cε =: Ji − Cε, (4.4.10)

where Ji > 0 is independent of ε. For the second term ε−2
´
Dεi
pεidx, rewriting the integral using

the change of variables x = Rε
i(a, η) gives

ε−2

ˆ
Dεi

pεidx =

ˆ
Si

ˆ 0

−1

pε(Rε
i(α, η))

ε

det(∇α,ηR
ε
i)

ε
dηdα.

Recall that in Proposition 4.3.3 we defined p̃ε(Rε
i(α, η)) := cεi(1+η) and qε such that pε− p̃ε = qε.

By (Equation 4.3.12) and (Equation 4.3.13), for all α ∈ Si and η ∈ (−1, 0) we have

∣∣∣∣pε(Rε
i(α, η))

ε
− βi(1 + η)

∣∣∣∣ ≤ ∣∣∣∣pε(Rε
i(α, η))

ε
− cεi

ε
(1 + η)

∣∣∣∣+

∣∣∣∣cεiε − βi
∣∣∣∣ ≤ Cε,

where βi := 2|Ui|
Li

´
Si
γ−1
i (α)dα

is defined in (Equation 4.3.11). Combining this with the expression of
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the determinant in (Equation 4.2.8), we have

ε−2

ˆ
Dεi

pεidx =

ˆ
Si

ˆ 0

−1

(βi(1 + η) +O(ε))(Liγi(α) +O(ε))dηdα

≤ |Ui|´
Si
γ−1
i (α)dα

ˆ
Si

γi(α)dα + Cε =: Ki + Cε,

where Ki is independent of ε. Putting this together with (Equation 4.4.10) yields the following:

Aεi ≥ Ji −Ki − Cε

=
L2
i

4π

´
Si
γi(α)dα´

Si
γ−1
i (α)dα

(ˆ
Si

γ−1
i (α)dα

ˆ
Si

γi(α)dα− 4π|Ui|
L2
i

)
− Cε.

(4.4.11)

Let us take a closer look at the two terms inside the parenthesis. For the first term, Cauchy-Schwarz

inequality gives ˆ
Si

γ−1
i (α)dα

ˆ
Si

γi(α)dα ≥ 1,

with equality achieved if and only if γi is a constant. For the second term, the isoperimetric

inequality yields
4π|Ui|
L2
i

≤ 1,

(recall that Li = |∂Ui|), with equality achieved if and only Ui is a disk. By the assumption of

Case 2, at least one of the inequalities must be strict, thus the parenthesis on the right hand side of

(Equation 4.4.11) is strictly positive (and independent of ε). Therefore there exists some constant

c0 > 0 such that Ĩε ≥ Aεi ≥ c0 for all sufficiently small ε.

Case 3. There exist i 6= j such that i ⊀ j and j ⊀ i. Then it is clear that for such i, j, Bε
i,j in

(Equation 4.4.9) is given by Bε
i,j =

|Dεi ||Dεj |
4πε2

. Hence (Equation 4.2.9) gives

Bε
i,j ≥ LiLj

( ˆ
Si

γi(α)dα

)( ˆ
Sj

γj(α)dα

)
− Cε,
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which yields Ĩε ≥ 1
2
LiLj(

´
Si
γidα)(

´
Sj
γjdα) > 0 for all sufficiently small ε > 0.

This finishes our discussion on all 3 cases. To conclude, since Γ is not a union of nested circles

with constant γi’s on each connected component, at least one of the 3 cases must hold, and all of

them lead to Ĩε ≥ c0 > 0.

The above proposition immediately leads to the following corollary for the Ω < 0 case.

Corollary 4.4.3. Assume that Γi and γi satisfy (H1)–(H3) for i = 1, . . . , n+m. Let Iε be defined

as in (Equation 4.4.1), and assume Ω < 0. Then we have Iε ≥ 0 for all sufficiently small ε > 0. In

addition, if Γ is not a union of concentric circles all centered at the origin with constant γi’s, there

exists some c0 > 0 independent of ε, such that Iε > c0 > 0 for all sufficiently small ε > 0.

Proof. Let us decompose Iε as follows (recall the definition of Ĩε in (Equation 4.4.4))

Iε = Ĩε + (−Ω)

(
ε−1

ˆ
Dε

(|x|2 +∇pε · x)dx

)
=: Ĩε + (−Ω)︸ ︷︷ ︸

>0

J ε. (4.4.12)

Recall that Proposition 4.4.2 gives Ĩε ≥ c0 > 0 as long as Γ is not a union of nested circles with

constant γi’s. By [50, Lemma 2.11], we have

ˆ
Dεi

(|x|2 +∇pε · x)dx ≥ 0 for any i = 1, . . . , n+m,

thus J ε ≥ 0. Putting them together, and using the fact that Ω < 0, we know Iε ≥ c0 > 0 if Γ is not

a union of nested circles with constant γi’s.

To finish the proof, we only need to focus on the case that the Γi’s are nested circles with

constant γi’s, but not all of them are centered at the origin. Assume that there exists k ∈ {1, . . . , n}

such that Γk is a circle with radius rk centered at xk 6= 0. Since γk is a constant, Dε
k is an

annulus given by B(xk, rk + εγk) \B(xk, rk). The symmetry of Dε
k about xk immediately leads to
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pε|Dεk = −1
2
|x− xk|2 + 1

2
(rk + εγk)

2. An elementary computation gives

ε−1

ˆ
Dεk

(|x|2 +∇pε · x)dx = ε−1

ˆ
Dεk

|x|2 − (x− xk) · xdx = ε−1|xk|2|Dε
k| ≥ 2πrkγk|xk|2 > 0,

where in the second-to-last step we used that |Dε
k| = 2πεrkγk + πε2γ2

k . Setting c0 := 2πrkγk|xk|2

gives Iε ≥ c0 > 0, thus we can conclude.

Now we are ready to prove Theorem A. Note that for Ω < 0, the symmetry result immediately

follows from Proposition 4.4.1 and Corollary 4.4.3. For Ω = 0, Proposition 4.4.1– 4.4.2 already

imply that a stationary vortex sheet with positive strength must be a union of nested circles with

constant strength on each of them. To finish the proof, we only need to show that these nested

circles must be concentric.

Proof of Theorem A. For a uniformly-rotating vortex sheet with Ω < 0, the symmetry result for

Ω < 0 is a direct consequence of Proposition 4.4.1 and Corollary 4.4.3. Next we focus on the

stationary (i.e. Ω = 0) case.

Combining Propsitions 4.4.1– 4.4.2, we obtain that Γ is a union of nested circles, and γi is

constant on Γi for all i = 1 . . . , n. It remains to show that all Γi’s are concentric. Let us denote by

vi the contribution to the velocity field by Γi. Since Γi is a circle with constant strength γi, a quick

application of the divergence theorem yields that vi ≡ 0 in the open disk enclosed by Γi, whereas

vi(x) =
γiLi(x− x0

i )
⊥

2π|x− x0
i |2

in the open set outside Γi, where x0
i is the center of the circle Γi.

Without loss of generality, let us reorder the indices such that Γi is nested inside Γj for i < j.

Towards a contradiction, let k > 1 be such that Γk is the first circle that is not concentric with Γ1.

From the above discussion, we know that vi = 0 on Γk for i = k + 1, . . . , n (since Γk is nested

inside Γi), whereas for i = 1, . . . , k − 1 we have vi =
γiLi(x− x0

1)⊥

2π|x− x0
1|2

on Γk, since all these Γi’s

have the same center x0
1 and are nested inside Γk. Summing them up (and also using the fact that
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Γk contributes zero normal velocity on itself, since it is a circle with constant strength), we have

BR(x) · n =
n∑
i=1

vi(x) · n =

(
k−1∑
i=1

γiLi

)
(x− x0

1)⊥ · n
2π|x− x0

1|2
on Γk,

where the right hand side is not a zero function since Γk has a different center from x0
1. This

causes a contradiction with the fact that ω = ω0 is stationary. As a result, all Γ1, . . . ,Γn must be

concentric circles, finishing the proof.
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CHAPTER 5

FLEXIBILITY RESULTS FOR VORTEX SHEETS

5.1 The equations and the functional spaces

Let ω(·, t) = ω0(RΩt) be a stationary/rotating vortex sheet solution to the incompressible 2D Euler

equation, where ω0 ∈ M(R2) ∩ H−1(R2). Here Ω = 0 corresponds to a stationary solution, and

Ω 6= 0 corresponds to a rotating solution. Assume that ω0 is concentrated on Γ. Throughout this

paper we will assume that Γ is a simple closed curve and Ω > 0. Following [52, Lemma 2.1], we

have that:

Lemma 5.1.1. Assume ω(·, t) = ω0(RΩtx) is a stationary/uniformly-rotating vortex sheet with

angular velocity Ω ∈ R, and ω0 is concentrated on Γ, with z and γ defined as above. Then the

Birkhoff-Rott integral BR (Equation 4.1.4) and the strength γ satisfy the following two equations:

(BR− Ωx⊥) · n = v+ · n = v− · n = 0 on Γ, (5.1.1)

and

(BR(z(α))− Ωz⊥(α)) · s(z(α))
γ(α)

|z′(α)|
= C. (5.1.2)

Note that (Equation 5.1.2) can be written as

(I − P0)

[(
BR(z,Γ)(z(θ))− Ωz(θ)⊥

)
· z
′(θ)γ(θ)

|z′(θ)|2

]
= 0, (5.1.3)

where P0 is a projection to the mean, that is, P0f := 1
2π

´ π
−π f(θ)dθ. For simplicity, we also denote

ffl
f(θ)dθ := 1

2π

´ π
−π f(θ)dθ. Now plugging z(θ) = (1 + r(θ))(cos(θ), sin(θ)) and γ(θ) := b+g(θ)
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into (Equation 5.1.1), (Equation 5.1.2) and (Equation 5.1.3) yields that

F(b, g, r) := (F1,F2) = (0, 0), (5.1.4)

where

F1(b, g, r) :=

 π

−π
(b+ g(η))

(r′(θ) cos(θ − η)− (1 + r(θ)) sin(θ − η)) (1 + r(η))− (1 + r(θ))r′(θ)

(1 + r(θ))2 + (1 + r(η))2 − 2(1 + r(θ))(1 + r(η)) cos(θ − η)
dη

+ Ωr′(θ)(1 + r(θ)),

F2(b, g, r) := (I − P0) F̃2(b, g, r),

F̃2(b, g, r) :=

 π

−π
(b+ g(η))

(1 + r(θ))2 − (r′(θ) sin(θ − η) + (1 + r(θ)) cos(θ − η))(1 + r(η))

(1 + r(θ))2 + (1 + r(η))2 − 2(1 + r(θ))(1 + r(η)) cos(θ − η)
dη

× (b+ g(θ))

r′(θ)2 + (1 + r(θ))2
− Ω(1 + r(θ))2 b+ g(θ)

r′(θ)2 + (1 + r(θ))2
.

Throughout the paper we will work with the following analytic function spaces. Let c > 0 be a

sufficiently small parameter and let Cw(c) be the space of analytic functions in the strip |=(z)| ≤ c.

For k ∈ N, denote

Xk
c :=

{
f(θ) ∈ Cw(c), f(θ) =

∞∑
n=1

an cos(2nθ),
∑
±

ˆ π

−π
|f(θ ± ic)|2 + |∂kf(θ ± ic)|2dθ <∞

}

Y k
c :=

{
f(θ) ∈ Cw(c), f(θ) =

∞∑
n=1

an sin(2nθ),
∑
±

ˆ π

−π
|f(θ ± ic)|2 + |∂kf(θ ± ic)|2dθ <∞

}
,

From now on, due to scaling considerations, we will fix Ω = 1 and b will play the role as

bifurcation parameter. It is clear that F(b, 0, 0) = (0, 0) for all b ∈ R since F1(b, 0, 0) = 0 and

F̃2(b, 0, 0) is constant. Our main theorem in this paper is the following:

Theorem 5.1.2. Let k ≥ 3, and let c > 0 be sufficiently small. Then, there exists a curve of

solutions (b, g, r) of F = (0, 0), belonging to R×Xk
c ×Xk+1

c and a neighbourhood of (b, g, r) =

(2, 0, 0), bifurcating from (b, g, r) = (2, 0, 0) such that (g, r) 6= (0, 0).

155



5.2 Proof of Theorem 5.1.2

The goal of this section is to prove the existence of non-radial uniformly-rotating vortex sheets.

To do so, we will split the proof into the following steps: first we will prove that the functional

F is C3, next we will study DF to show that, as mentioned in the introduction, it is a Fredholm

operator of index 0, with dim(Ker(DF)) = 1. The next step is to apply Lyapunov-Schmidt theory

and reduce the problem to a finite (2) dimensional one. In those coordinates, linear expansions

fail to be conclusive (all the linear terms vanish) since 2 nontrivial branches emanate from the

bifurcation point (as opposed to 1). Instead, we perform a quadratic expansion to determine that

locally the bifurcation branches look like two pairs of straight lines (specifically as x2 − y2 = 0

in some well-chosen coordinates) and hence the bifurcation does not trivialize (as if it had been of

the type x2 + y2 = 0). We conclude the proof by handling the higher order terms and showing that

they don’t alter the quadratic behaviour in a sufficiently small neighbourhood of the bifurcation

point.

5.2.1 Continuity of the functional

In this subsection, we will check the regularity of F . As explained above, we will reduce the

infinite dimensional problem to a finite dimensional problem and investigate its Taylor expansion

up to quadratic order. Hence, we need to check if the functional is regular enough to do so. To this

end, we have the following proposition:

Proposition 5.2.1. Let k ≥ 3. Then there exists a neighborhood U of (2, 0, 0) ∈ R×Xk
c ×Xk+1

c

such that F ∈ C3
(
U ;Y k

c ×Xk
c

)
.

Proof. Since the stream function, ω ∗ N , is invariant under rotations, it follows immediately that

F is also invariant under rotation by π-radians, hence F has only even Fourier modes. Also the

oddness of F1 and evenness of F2 follow from the invariance under reflection.
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To prove the regularity, we briefly sketch the idea. We impose k ≥ 3 to ensure that Hk is a

Banach algebra. It is clear that F is smooth in b. It is also straightforward that, for example, for all

(g, r) near (0, 0) ∈ Xk
c ×Xk+1

c ,

d

dt
F1(b, g + th1, r + th2)

∣∣∣∣
t=0

= PV

 
h1(η)

(r′(θ) cos(θ − η)− (1 + r(θ)) sin(θ − η)) (1 + r(η))− (1 + r(θ))r′(θ)

(1 + r(θ))2 + (1 + r(η))2 − 2(1 + r(θ))(1 + r(η)) cos(θ − η)

+ (b+ g(η))

[
(h′2(θ) cos(θ − η)− h2(θ) sin(θ − η))(1 + r(η))− h2(θ)r′(θ)

(1 + r(θ))2 + (1 + r(η))2 − 2(1 + r(θ))(1 + r(η)) cos(θ − η)

+
(r′(θ) cos(θ − η)− (1 + r(θ)) sin(θ − η))h2(η)− (1 + r(θ))h′2(θ)

(1 + r(θ))2 + (1 + r(η))2 − 2(1 + r(θ))(1 + r(η)) cos(θ − η)

− [(r′(θ) cos(θ − η)− (1 + r(θ)) sin(θ − η)) (1 + r(η))− (1 + r(θ))r′(θ)]

× [2(1 + r(θ)h2(θ) + 2(1 + r(η)h2(η)− 2 cos(θ − η)(h2(θ)(1 + r(η)) + h2(η)(1 + r(θ)))]

((1 + r(θ))2 + (1 + r(η))2 − 2(1 + r(θ))(1 + r(η)) cos(θ − η))2

]
dη

+ Ωh′2(θ)

=: DF1(b, g, r)[h1, h2],

and DF1 : R×Xk
c ×Xk+1

c 7→ L(Xk
c ×Xk+1

c ;Y k
c ×Xk

c ) is continuous. A similar derivation can

be performed for DF2. For the higher derivatives, we refer to [21, 22, 49, 63, 100] for the method

to deal with the singular integrals arising throughout the calculations.

5.2.2 Fredholm index of the linearized operator DF

This subsection is devoted to show that DF is Fredholm of index zero. We can make all the

calculations explicit, moreover the operator diagonalizes in Fourier modes. We have the following

lemmas:
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Lemma 5.2.2. Let g(θ) =
∑∞

n=1 an cos(2nθ) and r(θ) =
∑∞

n=1 bn cos(2nθ). Then we have that

DF(b, 0, 0) [g, r] =

 ĝ(θ)

r̂(θ)

 ,

where

ĝ(θ) =
∞∑
n=1

ân sin(2nθ), r̂(θ) =
∞∑
n=1

b̂n cos(2nθ),

and the coefficients satisfy, for any n ≥ 1:

Mn

an
bn

 :=

 −1
2
−2n

(
Ω− b

2

)
b
2
− Ω b2(n− 1)


an
bn

 =

ân
b̂n

 .

Proof. We use (Equation A.1.3) in Lemma A.1.2 and obtain

ĝ(θ) =
d

dt
F1(b, tg, tr) = −

 
g(η) sin(θ − η)

2− 2 cos(θ − η)
dη +

(
Ω− b

2

)
r′(θ)

= −
∞∑
n=1

an

 
cos(2nη) sin(θ − η)

2− 2 cos(θ − η)
dη +

∞∑
n=1

(−2n)

(
Ω− b

2

)
bn sin(2nθ)

=
∞∑
n=1

(
−an

2
+ (−2n)

(
Ω− b

2

)
bn

)
sin(2nθ),

where the last equality follows from (Equation A.1.29). Similarly, we apply (Equation A.1.4) in

Lemma A.1.2 and (Equation A.1.30) to obtain

r̂(θ) =

(
b

2
− Ω

)
g(θ) + b2

( 
r(θ)− r(η)

2− 2 cos(θ − η)
dη − r(θ)

)
=
∞∑
n=1

(
b

2
− Ω

)
an cos(2nθ) + b2

∞∑
n=1

bn

( 
cos(2nθ)− cos(2nη)

2− 2 cos(θ − η)
dη − cos(2nθ)

)
=
∞∑
n=1

((
b

2
− Ω

)
an + b2 (n− 1) bn

)
cos(2nθ).
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This proves the lemma.

Lemma 5.2.3. Let us fix b = 2 and Ω = 1. We also denote v := (0, cos(2θ)) ∈ Xk
c × Xk+1

c and

w := (0, cos(2θ)) ∈ Y k
c ×Xk

c . Then it holds that

Ker (DF(2, 0, 0)) = span {v} ⊂ Xk
c ×Xk+1

c ,

Im (DF(2, 0, 0))⊥ = span {w} ⊂ Y k
c ×Xk

c .

Proof. From Lemma 5.2.2, we have

Mn =

−1
2

0

0 4(n− 1)

 ,

for all n ≥ 1. For all n ≥ 2,Mn is clearly an isomorphism, while Ker(M1) = Im(M1)⊥ =

 0

1

.

By orthogonality of Fourier modes, this proves the lemma.

5.2.3 Lyapunov-Schmidt reduction

In this subsection, we will aim to derive a finite dimensional system which is equivalent to

(Equation 5.1.4). From Lemma 5.2.3, we have the following orthogonal decompositions of the

function spaces:

X := Xk
c ×Xk+1

c = span {v} ⊕ Ker (DF(2, 0, 0))⊥ =: span {v} ⊕ X , v ∈ Ker (DF(2, 0, 0)) ,

Y := Y k
c ×Xk

c = span {w} ⊕ Im (DF(2, 0, 0)) =: span {w} ⊕ Y , w ∈ Im (DF(2, 0, 0))⊥ ,

where v and w are as defined in Lemma 5.2.3. Let us consider the orthogonal projections

P : X → span {v} , Q : Y → span {w} .
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More precisely, we have

P (g(θ), r(θ)) =

(
0,

(
1

π

ˆ
r(η) cos(2η)dη

)
cos(2θ)

)
for all (g, r) ∈ Xk

c ×Xk+1
c , (5.2.1)

Q(G(θ), R(θ)) =

(
0,

(
1

π

ˆ
R(η) cos(2η)dη

)
cos(2θ)

)
for all (G,R) ∈ Y k

c ×Xk
c . (5.2.2)

We remark that we will sometimes abuse notation and identify F(b, g, r) with F(b, (g, r)), where

(g, r) ∈ X . Let us define G : R× span {v} × X 7→ Y as follows:

G(b, f, x) := F(b, f + x), for b ∈ R, f ∈ span {v} , x ∈ X .

Then (Equation 5.1.4) is equivalent to (for (g, r) = f + x)

QG(b, f, x) = 0 and (I −Q)G(b, f, x) = 0. (5.2.3)

However, it follows from Lemma 5.2.3 that

Dx ((I −Q)G) (b, 0, 0) = (I −Q)DF(b, 0)P : X 7→ Y (5.2.4)

is an isomorphism, consequently, the implicit function theorem yields that there is an open set

U ⊂ R× span {v} near (b, 0) and a function ϕ : U 7→ X such that

(I −Q)G(b, f, ϕ(b, f)) = (I −Q)F(b, f + ϕ(b, f)) = 0.

Note that from F(b, 0) = (0, 0) for any b ∈ R, we have

ϕ(b, 0) = 0, (5.2.5)
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and thus (Equation 5.2.3) is equivalent to

0 = QG(b, f, ϕ(b, f)) = QF(b, f + ϕ(b, f)), (b, f) ∈ U. (5.2.6)

Since span {v} is one dimensional, we have f = tv for some t ∈ R, therefore the system

(Equation 5.2.6) can be written in terms of the variables b and t as

0 = QF(b, tv + ϕ(b, tv)) =

ˆ 1

0

d

ds
(QF(b, stv + ϕ(b, stv))) ds

=

ˆ 1

0

QDF(b, stv + ϕ(b, stv))(tv + t∂fϕ(b, stv)v)ds,

where we used (Equation 5.2.5) to obtain the second equality. Dividing the right-hand side by t to

get rid of the trivial solutions, we are led to solve the following two dimensional problem:

0 = Fred(b, t) :=

ˆ 1

0

QDF(b, stv + ϕ(b, stv))(v + ∂fϕ(b, stv)v)ds, (b, tv) ∈ U. (5.2.7)

5.2.4 Quadratic expansion of the reduced functional

The main idea is to expand the reduced functional Fred up to quadratic terms. To this end, we recall

the following proposition for the derivatives of Fred.

Proposition 5.2.4. ([61, Proposition 3], [65, Proposition 3.1]) Let Fred be defined as in

(Equation 5.2.7). Then the following hold:

(a) First derivatives:

∂bFred(2, 0) = Q∂bDF(2, 0)v,

∂tFred(2, 0) =
1

2

d2

dt2
QF(2, tv)

∣∣∣∣
t=0

.
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(b) Second derivatives:

∂bbFred(2, 0) = 2Q∂bDF(2, 0)ṽ,

∂ttFred(2, 0) =
1

3

d3

dt3
[QF(2, tv)]

∣∣∣∣
t=0

+Q
d2

dtds
F(2, tv + sv̂)

∣∣∣∣
t=s=0

,

∂tbFred(2, 0) =
1

2
∂bQ

d2

dt2
F(b, tv)

∣∣∣∣
b=2,t=0

+
1

2
Q∂bDF(2, 0)v̂ +Q

d2

dtds
F(2, tv + sṽ)

∣∣∣∣
t=s=0

,

where

v̂ := − [DF(2, 0)]−1 d
2

dt2
[(I −Q)F(2, tv)]

∣∣∣∣
t=0

,

ṽ := − [DF(2, 0)]−1 (I −Q)∂bDF(2, 0)v.

Now using the values found in Lemma A.1.7, we can obtain the derivatives of Fred.

Proposition 5.2.5. Let Fred be defined as in (Equation 5.2.7). Then it holds that

∂bFred(2, 0) = 0, (5.2.8)

∂tFred(2, 0) = 0. (5.2.9)

∂bbFred(2, 0) = 2w, (5.2.10)

∂ttFred(2, 0) = −8w, (5.2.11)

∂tbFred(2, 0) = 0. (5.2.12)

Proof. (Equation 5.2.8) follows immediately from (Equation 5.2.2) and (Equation A.1.14).

For (Equation 5.2.9), we use (Equation A.1.15) and the orthogonality of the Fourier

modes. (Equation 5.2.10) follows from (Equation A.1.23). (Equation 5.2.11) follows

from (Equation A.1.19) and (Equation A.1.20). Lastly, (Equation 5.2.12) follows from

(Equation A.1.16), (Equation A.1.21) and (Equation A.1.22).
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5.2.5 Proof of Theorem 5.1.2

Now we are ready to prove the main theorem of this section.

Proof. From (Equation 5.2.7), it suffices to show that there exist (b, t) such that t 6= 0 and

Fred(b, t) = 0. To do so, we expand Fred up to quadratic terms and obtain that for all (b, t)

near (2, 0),

Fred(b, t) = [Fred(2, 0) + ∂bFred(2, 0)(b− 2) + ∂tFred(2, 0)t

+
1

2
∂bbFred(2, 0)(b− 2)2 +

1

2
∂ttFred(2, 0)t2 + ∂tbFred(2, 0)(b− 2)t+

(
(b− 2)2 + t2

)
ε(b, t)

]
w,

where ε(b, t) is a continuous function such that lim(b,t)→(2,0) ε(b, t) = ε(2, 0) = 0. From Proposi-

tion 5.2.5, it follows that (we drop w for simplicity)

Fred(b, t) = (b− 2)2 − 4t2 +
(
(b− 2)2 + t2

)
ε(b, t).

Now we use the change of variables b := x+ 2 and t = xy, so that

F̂ (x, y) :=
Fred(x+ 2, xy)

x2
=
(
1− 4y2

)
+ (1 + y2)ε(x+ 2, xy). (5.2.13)

Clearly, F̂
(
0, 1

2

)
= 0 and ∂yF̂

(
0, 1

2

)
= −4 6= 0. Therefore the implicit function theorem implies

that there exists a continuous function φ near 0 such that F̂ (x, φ(x)) = 0 and φ(0) = 1
2
. Therefore

it follows from (Equation 5.2.13) that there exists a pair (b, t) such that t 6= 0 and Fred(b, t) = 0.

This finishes the proof.
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Figure 5.1: Plot of the bifurcation diagram of the solutions given by Theorem 5.1.2. The dotted
red lines correspond to the linear expansion (Equation 5.2.13) around the bifurcation point (2, 0).
See Figure Figure 5.2 for a numerical plot of the solutions at the points A, B, C, D. The branches
continue beyond what is calculated.

5.3 Numerical results

In this section, we describe how to compute numerically the branches of solutions emanating from

the disk, previously proved (locally) in Theorem 5.1.2. See Figure Figure 5.1. To do so, we

calculate solutions of the form

R(θ) = 1 +
N∑
k=1

rk cos(2kθ), γ(θ) =
N∑
k=0

γk cos(2kθ)

with γ0 = b. We first employed continuation in b, in increments of ∆b = 0.001, starting from

b = 1.8 and b = 2.1 and using as initial guess for the starting b the solution given by the linear

theory and for the subsequent b the solution found in the previous iteration. After discovering a fold

at approximately b ∼ 1.68, we switched variables and instead we recalculated using continuation

in r1, which appears to be monotonic along the branches. As before, we start at r1 = ±0.125 and

take an increment ∆r1 = 0.001.
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To compute a solution for a fixed r1 we use the Levenberg-Marquardt algorithm. We aim to find

a zero of the system of equations F(b, g, r)(θj), with θj = jπ
Nθ
, j = 1, . . . , Nθ and Nθ = 1024

with variables rk, k 6= 1 (recall that r1 is fixed at each iteration since it is the continuation param-

eter) and γk. We take N = 160. In order to perform the integration in space, we desingularize the

principal value at η = θ by subtracting 1
2
H(γ) to F1, whereH denotes the Hilbert transform, com-

puted explicitly since we have the Fourier expansion of γ, and perform a trapezoidal integration on

the rest (for which the integrand is smooth), with step h = 2π
Nθ

. We remark that the integrand of F2

has a removable singularity (thus no principal value integration is needed) and can be integrated

using the trapezoidal integration if the limit at η = θ is taken properly.
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Figure 5.2: Panels (a)-(d): γ(θ) and z(θ) at the points A–D highlighted in Figure Figure 5.1.
In panel (b), γ appears to tend to be concentrated only on the horizontal parts of z, leading to a
possible solution consisting only of two symmetric curves (cf. [93, Figure 1]) and a change of
topology.
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CHAPTER 6

QUANTITATIVE ESTIMATES FOR UNIFORMLY ROTATING VORTEX PATCHES

6.1 Quantitative estimates for small Ω

This section is devoted to the proof of Theorem G. Throughout this section, we will always assume

that |D| = |B| = π. We begin this section by proving two identities for simply-connected rotating

patches.

Lemma 6.1.1. Let (D,Ω) be a solution to (Equation 1.2.4). Then it holds that

Ω

(ˆ
D

|x|2dx− |D|
2

2π

)
= (1− 2Ω)

(
|D|2

4π
−
ˆ
D

pdx

)
, (6.1.1)(

1

2
− Ω

)(ˆ
D

|x|2dx− |D|
2

2π

)
=

1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx. (6.1.2)

where p is the unique solution to (Equation 1.2.7).

Proof. The proof of (Equation 6.1.1) can be found in [50, Theorem 2.2]. For the sake of complete-

ness, we give a proof below.

In order to prove (Equation 6.1.1), we plug ~v = x+∇p into (Equation 1.2.6) to get

0 =

ˆ
D

(x+∇p) · ∇
(

1D ∗ N −
Ω

2
|x|2
)
dx

=

ˆ
D

x · ∇ (1D ∗ N )− Ω

ˆ
D

|x|2dx+

ˆ
D

∇p · ∇
(

1D ∗ N −
Ω

2
|x|2
)
dx

=

ˆ
D

x · ∇ (1D ∗ N )− Ω

ˆ
D

|x|2dx− (1− 2Ω)

ˆ
D

pdx, (6.1.3)

where we used divergence theorem for the last equality. Note that the first integral can be computed
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as

ˆ
D

x · ∇ (1D ∗ N ) dx =
1

2π

ˆ
D

ˆ
D

x · (x− y)

|x− y|2
dydx =

|D|2

4π
, (6.1.4)

where the last equality is obtained by exchanging x and y in the double integral, and then taking

the average with the original integral. Therefore (Equation 6.1.3) and (Equation 6.1.4) yield

0 =
|D|2

4π
− Ω

ˆ
D

|x|2dx− (1− 2Ω)

ˆ
D

pdx,

which is equivalent to (Equation 6.1.1).

For (Equation 6.1.2), we choose ~v = x− 2∇ (1D ∗ N ) in (Equation 1.2.6) and obtain

0 =

ˆ
D

(x− 2∇(1D ∗ N )) · ∇
(

1D ∗ N −
Ω

2
|x|2
)
dx

= (1 + 2Ω)
|D|2

4π
− 2

ˆ
D

|∇ (1D ∗ N ) |2dx− Ω

ˆ
D

|x|2dx, (6.1.5)

where we used (Equation 6.1.4). Since
´
D
|∇ (1D ∗ N ) |2dx can be computed as

2

ˆ
D

|∇ (1D ∗ N ) |2dx =
1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx+ 2

ˆ
D

x · ∇ (1D ∗ N ) dx− 1

2

ˆ
D

|x|2dx

=
1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx+
|D|2

2π
− 1

2

ˆ
D

|x|2dx,

plugging it into (Equation 6.1.5) yields (Equation 6.1.2).

Thanks to Lemma 6.1.1, the angular velocity can be estimated by comparing the quantities,
´
D
|x|2dx− |D|

2

2π
, |D|

2

4π
−
´
D
pdx and

´
D
|x−2∇ (1D ∗ N ) |2dx, which vanish if and only if D = B.

To estimate those quantities for non-radial patches, we use the following notion of asymmetry.

Definition 6.1.2. [42, Section 1.1] For a bounded domain D ⊆ R2, the Fraenkel asymmetryA(D)
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is defined by

A(D) := inf
x∈R2

{
|D4Br(x)|
|D|

: πr2 = |D|
}
.

If A(D) is not small, then we can find a lower bound of the right-hand side in (Equation 6.1.1)

by using the following result:

Proposition 6.1.3. [10, Proposition 2.1] Let p be as in (Equation 1.2.7) and |D| = π. Then there

exists a constant σ > 0 such that

|D|2

4π
−
ˆ
D

pdx ≥ σA(D)2. (6.1.6)

Using the above proposition and the identity (Equation 6.1.1), one can easily show that

supx∈∂D |x| &
√
A(D)Ω−

1
2 . Therefore Theorem G can be proved if we can show A(D) is al-

ways bounded below by a strict positive constant. In other words, we will aim to prove in the next

lemmas that if A(D) and Ω are sufficiently small, then D must be a disk.

In the following lemma, we will estimate the boundedness of rotating patches in a crude way

but this will be improved later.

Lemma 6.1.4. There exist positive constants Ω1 and α1 <
1
2

such that if Ω < Ω1 and A(D) < α1,

then

D ⊂ B2(x0), (6.1.7)

|x0| ≤ 4A(D), (6.1.8)

where x0 is a point such that |D4B(x0)|
π

= A(D).
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Proof. Let us pick Ω1 and α1 so that for all Ω < Ω1 and α < α1 <
1
2
, it holds that

1

2
log 2 ≥ Ω

10 +
4α(

1−
√

2α
)2

(
1 +

√
1

4Ω

)2
+ 3

√
2α. (6.1.9)

We will first show that if (D,Ω) satisfies Ω < Ω1 and A(D) < α1, then (Equation 6.1.7) holds.

Note that the center of mass of D is necessarily the origin ([64, Proposition 3]). Therefore we

have

0 =
1

π

ˆ
x1D(x)dx =

1

π

ˆ
x
(
1D(x)− 1B(x0)(x)

)
dx+ x0. (6.1.10)

Hence it follows from Cauchy-Schwarz inequality that

|x0| ≤
1

π

ˆ
|x|
∣∣1D(x)− 1B(x0)(x)

∣∣ dx ≤ 1

π

(√
|D4B(x0)|

√ˆ
D

|x|2dx+

ˆ
B(x0)

|x|2dx

)

≤
√
A(D)

π

√ˆ
D

|x|2dx+

√
A(D)

π

√ˆ
B(x0)

|x|2dx.

(6.1.11)

Since
√´

B(x0)
|x|2dx ≤

√´
B(x0)

2|x− x0|2dx+ 2
´
B(x0)

|x0|2dx =
√
π + 2|x0|2π ≤

√
π +

√
2π|x0|, (Equation 6.1.11) yields that

(
1−

√
2A(D)

)
|x0| <

√
A(D) +

√
A(D)

π

√ˆ
D

|x|2dx. (6.1.12)

In addition, it follows from (Equation 6.1.1) that

Ω

ˆ
D

|x|2dx =
|D|2

4π
− (1− 2Ω)

ˆ
D

pdx <
π

4
,

where we used Ω < 1
2
, p ≥ 0 in D and |D| = π to get the last inequality. Plugging this into
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(Equation 6.1.12), we obtain

(
1−

√
2A(D)

)
|x0| <

√
A(D)

(
1 +

√
1

4Ω

)
,

hence,

|x0| <
√
A(D)

1−
√

2A(D)

(
1 +

√
1

4Ω

)
. (6.1.13)

To prove (Equation 6.1.7), let us suppose to the contrary that there exist x1 ∈ ∂B(x0) ∩ ∂D

and x2 ∈ ∂B2(x0)∩ ∂D. Then it follows from (Equation 1.2.4) that 0 = Ψ(x1)−Ψ(x2), therefore

1B(x0) ∗ N (x2)− 1B(x0) ∗ N (x1) = Ω(|x2|2 − |x1|2) + h(x1)− h(x2), (6.1.14)

where h(x) :=
(
1D − 1B(x0)

)
∗ N . For the left-hand side, we use

1B(x0) ∗ N =


1
4
|x− x0|2 − 1

4
if |x− x0| < 1,

1
2

log |x− x0| otherwise,

and obtain

1B(x0) ∗ N (x2)− 1B(x0) ∗ N (x1) =
1

2
log 2. (6.1.15)

For Ω (|x2|2 − |x1|2) in the right-hand side of (Equation 6.1.14), we use the triangular inequality
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and (Equation 6.1.13) to obtain

|x1|2 < 2|x1 − x0|2 + 2|x0|2 < 2 +
2A(D)(

1−
√

2A(D)
)2

(
1 +

√
1

4Ω

)2

, (6.1.16)

|x2|2 < 2|x2 − x0|2 + 2|x0|2 < 8 +
2A(D)(

1−
√

2A(D)
)2

(
1 +

√
1

4Ω

)2

. (6.1.17)

To estimate h(x1)− h(x2), we use the fact that

‖∇f ∗ N‖L∞ ≤
√

2

π

√
‖f‖L1‖f‖L∞ for any f ∈ L1 ∩ L∞(R2). (6.1.18)

Indeed, one can compute with a :=

√
‖f‖L1 (R2)

2π‖f‖L∞(R2)
,

|∇f ∗ N (x)| ≤ 1

2π

ˆ
|x−y|>a

1

|x− y|
|f(y)| dy +

1

2π

ˆ
|x−y|≤a

1

|x− y|
|f(y)| dy ≤

‖f‖L1(R2)

2πa
+ a‖f‖L∞(R2),

which yields (Equation 6.1.18). Thus we have

|h(x1)− h(x2)| < |∇h|L∞|x1 − x2| <
√

2

π

√
|D4B(x0)||x1 − x2| = 3

√
2A(D). (6.1.19)

Hence it follows from (Equation 6.1.14), (Equation 6.1.15), (Equation 6.1.16), (Equation 6.1.17)

and (Equation 6.1.19) that

1

2
log 2 < Ω

10 +
4A(D)(

1−
√

2A(D)
)2

(
1 +

√
1

4Ω

)2
+ 3

√
2A(D), (6.1.20)

which contradicts our choice of Ω1 and α1 for (Equation 6.1.9). This proves the

claim (Equation 6.1.7).

To prove (Equation 6.1.8), let us fix Ω1 and α1 < 1
2

so that the claim (Equation 6.1.7)
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holds. Then for all uniformly-rotating patches with Ω < Ω1 and A(D) < α1, it follows from

(Equation 6.1.10) that

|x0| ≤
1

π
|D4B(x0)| sup

x∈D∪B(x0)

|x| ≤ A(D) (|x0|+ 2) ,

where we used (Equation 6.1.7) to get the last inequality. Therefore

|x0| <
2A(D)

1−A(D)
< 4A(D),

where we used A(D) ≤ α1 <
1
2

for the last inequality. Hence (Equation 6.1.8) is proved.

Since we are interested in patches that rotate about the origin, let us consider the asymmetry

between D and the unit disk centered at the origin:

A0(D) :=
|D4B|
|D|

=
|D4B|
π

.

Tautologically, it holds that A(D) ≤ A0(D). For rotating patches, we have the following

lemma:

Lemma 6.1.5. There exist positive constants Ω1 and c1 such that if (D,Ω) is a solution to

(Equation 1.2.4) with Ω < Ω1, then

A0(D) ≤ c1A(D). (6.1.21)

Proof. Let x0 be a point in R2 such that |D∩B(x0)|
π

= A(D). By Lemma 6.1.4, we can pick Ω1 and

α1 <
1
2

such that if Ω < Ω1 and A(D) < α1, then

|x0| ≤ 4A(D). (6.1.22)
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Let us assume for a moment that the claim is true. IfA(D) ≥ α1, then it follows from the definition

of A0 that

A0(D) ≤ |D|+ |B|
π

= 2 ≤ 2

α1

A(D). (6.1.23)

Now let us assume that A(D) < α1. For a constant c > 0 such that |B4B(x0)| ≤ c|x0|, we can

compute

A0(D) =
|D4B|
π

≤ |D4B(x0)|+ |B4B(x0)|
π

≤ A(D) +
c|x0|
π
≤
(

1 +
4c

π

)
A(D),

(6.1.24)

where the last inequality follows from (Equation 6.1.22). Therefore (Equation 6.1.21) follows from

(Equation 6.1.23) and (Equation 6.1.24) by choosing c1 := max
{

2
α1
,
(
1 + 4c

π

)}
.

In the next lemma, we will prove that if A0(D) is sufficiently small, then D is necessarily

star-shaped.

Lemma 6.1.6. There exist positive constants Ω2, α2 and c2 such that if (D,Ω) is a solution to

(Equation 1.2.4) with Ω < Ω2 and A0(D) < α2, then there exists u ∈ C1(T) such that

∂D = {(1 + u(θ))(cos θ, sin θ) : θ ∈ T} , (6.1.25)

and

‖u‖L∞ ≤ c2A0(D) |logA0(D)| . (6.1.26)

Proof. Without loss of generality, we assume that D 6= B. The key observation is that if Ω and

A0(D) are sufficiently small, then the radial derivative of the relative stream function Ψ is strictly

positive near ∂B, while ∂D is a connected level set of Ψ.
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To prove the lemma, let us consider the following decomposition of Ψ:

Ψ(x) := 1D ∗ N −
Ω

2
|x|2 = 1B ∗ N −

Ω

2
|x|2︸ ︷︷ ︸

=:Ψrad(x)

+ (1D − 1B) ∗ N (x)︸ ︷︷ ︸
=:Ψe(x)

.

We claim that there exist positive constants Ω1 and α1 such that if (D,Ω) is a solution to

(Equation 1.2.4) with Ω < Ω1 and A0(D) < α1, then it holds for some c, C > 0 that

∂rΨ
rad(x) > c for |x| ∈

(
7

8
,
9

8

)
(6.1.27)

|Ψe(x)| < CA0(D) |logA0(D)| for x ∈ R2. (6.1.28)

Let us assume for a moment that (Equation 6.1.27) and (Equation 6.1.28) are true. Then we set

Ω2 := Ω1 and α2 := {α1, α
∗} ,

where α∗ = min
{
α > 0 : C

c
α log 1

α
= 1

16

}
. If Ω < Ω2 and A0(D) < α2, then for any x1 and x2

such that

x1 ∈ ∂D ∩ ∂B, and |x2| = 1− 2C

c
A0(D) |logA0(D)| > 7

8
,

we have

Ψ(x1)−Ψ(x2) =
(
Ψrad(x1)−Ψrad(x2)

)
+ (Ψe(x1)−Ψe(x2))

> c (|x1| − |x2|) + (Ψe(x2)−Ψe(x1))

> 0, (6.1.29)

where the first and the second inequalities follow from (Equation 6.1.27) and (Equation 6.1.28)
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respectively. In the same way, one can easily show that for any x3 such that |x3| = 1 +

2C
c
A0(D) log 1

A0(D)
< 9

8
, we have Ψ(x3) − Ψ(x1) > 0. Since ∂D is a connected level set of

Ψ and ∂B ∩ ∂D 6= ∅, we get

∂D ⊂
{
x ∈ R2 : 1− 2C

c
A0(D) log

1

A0(D)
< |x| < 1 +

2C

c
A0(D) log

1

A0(D)

}
. (6.1.30)

Hence the implicit function theorem with (Equation 6.1.27) and (Equation 6.1.30) yields that there

exists u ∈ C1(T) such that (Equation 6.1.25) holds. Furthermore, (Equation 6.1.30) immediately

implies (Equation 6.1.26).

To complete the proof, we need to prove the claims. To prove (Equation 6.1.27), note that

∂rΨ
rad(r) is explicit and given by

∂rΨ
r(r) =


(

1
2
− Ω

)
r if r ≤ 1

1
2r
− Ωr if r > 1.

Then (Equation 6.1.27) follows immediately by choosing sufficiently small Ω1. For

(Equation 6.1.28), note that Lemma 6.1.4 implies that we can choose Ω1 and α1 so that D ⊂ B3.

Then we have for any x ∈ R2 that

|Ψe(x)| =
∣∣∣∣ ˆ

y∈B3

(1D(y)− 1B(y)) log |x− y|dy
∣∣∣∣

.

∣∣∣∣ ˆ
y∈B3,|x−y|<10

(1D(y)− 1B(y)) log |x− y|dy
∣∣∣∣+

∣∣∣∣ˆ
y∈B3,|x−y|>10

(1D(y)− 1B(y)) log |x− y|dy
∣∣∣∣

.
ˆ
y∈B3,|x−y|<10

|1D(y)− 1B(y)|
∣∣∣∣ log |x− y|

∣∣∣∣dy +

∣∣∣∣ ˆ
y∈B3,|x−y|>10

(1D(y)− 1B(y))
log |x− y|

log x
dy

∣∣∣∣
. |D4B|

∣∣∣∣ log |D4B|
∣∣∣∣

. A0(D)

∣∣∣∣ logA0(D)

∣∣∣∣,
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where we used
´

1D(y)−1B(y)dx = 0 to get the second inequality. This proves (Equation 6.1.28).

The proof of the following proposition will be postponed to the next subsection.

Proposition 6.1.7. There exist positive constants Ω3 and α3 such that if (D,Ω) is a solution to

(Equation 1.2.4) with Ω < Ω3 and D is a star-shaped domain with A0(D) ≤ α3, then D = B.

Now we are ready to prove Theorem G.

Proof of Theorem G: We will choose Ω0 and α0 so small that all the previous lemmas are appli-

cable. Let us set Ω0 := min
{

Ω1,Ω2,Ω3,
1
4

}
and α0 := min

{
α2

c1
, α3

c1

}
, where α′is and c1 are as in

Lemma 6.1.5, 6.1.6 and Proposition 6.1.7. Moreover, let σ be as described in Proposition 6.1.3.

We assume that (D,Ω) is a solution to (Equation 1.2.4) with Ω < Ω0 and D 6= B. Then we will

prove

√
σ

2π
α0Ω−

1
2 < sup

x∈∂D
|x|. (6.1.31)

Since D 6= B, we have A(D) ≥ α0. Indeed, if A(D) < α0, then Lemma 6.1.5 and

Lemma 6.1.6 imply that D is star-shaped and A0(D) < c1α0 < α3. Therefore, Proposi-

tion 6.1.7 yields that D = B, which is a contradiction. Thus it follows from (Equation 6.1.1)

and (Equation 6.1.6) that

Ω

ˆ
D

|x|2dx ≥ (1− 2Ω)

(
|D|2

4π
−
ˆ
D

pdx

)
>

1

2
σα2

0,

where we used Ω < 1
4
. It is clear that Ω

´
D
|x|2dx ≤ πΩ (supx∈∂D |x|)

2, hence the above inequality

yields (Equation 6.1.31). �
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6.1.1 Proof of Proposition 6.1.7

In this subsection, we aim to prove Proposition 6.1.7. We say a simply-connected bounded domain

is star-shaped if there exist u : T 7→ (−1,∞) such that

∂D =
{

(1 + u(θ))(cos θ, sin θ) ∈ R2 : θ ∈ T
}
.

If |D| = π, we have that

π =

ˆ
R2

1D(x)dx =

ˆ
T

ˆ (1+u(θ))

0

rdrdθ = π +
1

2

ˆ
T
u(θ)2 + 2u(θ)dθ,

thus

ˆ
T
u(θ)2dθ = −

ˆ
T

2u(θ)dθ. (6.1.32)

Furthermore A0(D) and the difference of second moments of 1Ddx and 1Bdx can be written in

terms of u as

A0(D) =
1

π

ˆ
T
|u(θ)|+ sgn(u(θ))

u(θ)2

2
dθ, (6.1.33)

ˆ
D

|x|2dx− |D|
2

2π
=

ˆ
T
|u(θ)|2 + u(θ)3 +

1

4
u(θ)4dθ, (6.1.34)

where

sgn(x) =


1 if x ≥ 0

−1 otherwise.
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Note that if ‖u‖L∞(T) <
1
2
, then (Equation 6.1.33) and (Equation 6.1.34) imply that there exists

c3 > 0 such that

1

c3

ˆ
T
|u(θ)|dθ ≤ A0(D) ≤ c3

ˆ
T
|u(θ)|dθ, (6.1.35)

1

c3

ˆ
T
|u(θ)|2dθ ≤

ˆ
D

|x|2

2
dx− |D|

2

4π
≤ c3

ˆ
T
|u(θ)|2dθ. (6.1.36)

The proof of Proposition 6.1.7 is based on the identity (Equation 6.1.2). We will estimate the

right-hand side of (Equation 6.1.2) in the following proposition.

Proposition 6.1.8. Let D be a star-shaped domain parametrized by u : T 7→ R with ‖u‖L∞ < 1
2
.

Then there exists δ > 0 such that for any a ∈
(
2‖u‖L∞(T), 1

)
, it holds that

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx ≤ δ

(
a

ˆ
T
|u|2dθ +

1

a

ˆ
T
f(θ)2dθ

)
, (6.1.37)

where f(θ) :=
´ θ

0
u(s)2 + 2u(s)ds.

The above proposition will play a key role in the proofs of Proposition 6.1.7 and Theorem The-

orem H. In the proof of Proposition 6.1.7, we simply use |f(θ)| .‖u‖L1(T), so that the left-hand

side can be almost bounded by L1-norm of u. Note that if we can choose a small enough, then the

proposition, together with (Equation 6.1.1) and (Equation 6.1.36) will give ‖u‖L2(T) .‖u‖L1(T).

In section section 6.2, we will use the fact that if u(θ) is 2π
m

periodic, then f(θ) is also 2π
m

-

periodic, which follows from (Equation 6.1.32). This will be used for the proof of Theorem Theo-

rem H.
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Proof. Using Cauchy-Schwarz inequality, we obtain that

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx .
ˆ
D

|x− 2∇ (1B ∗ N ) |2dx+

ˆ
D

|∇N ∗ (1B − 1D) |2dx =: H1 +H2

(6.1.38)

To estimate H1, note that

∇ (1B ∗ N ) =


x
2

if |x| ≤ 1

x
2|x|2 if |x| > 1.

Therefore we can compute

ˆ
D

|x− 2∇ (1B ∗ N ) |2dx =

ˆ
D\B

∣∣∣∣x− x

|x|2

∣∣∣∣2dx
=

ˆ
D\B
|x|2 − 2 +

1

|x|2
dx

=

ˆ
T∩{u>0}

ˆ 1+u(θ)

1

.

(
r2 − 2 +

1

r2

)
rdrdθ

However, we have that for u(θ) > 0,

ˆ 1+u(θ)

1

r3 − 2r +
1

r
dr =

1

4
u(θ)4 + u(θ)3 +

1

2
u(θ)2 − u(θ) + log(1 + u(θ))

≤ 1

4
u(θ)4 +

4

3
u(θ)3

.‖u‖L∞(T)|u(θ)|2

. a|u(θ)|2,

where we used log(1 + x) ≤ x− 1
2
x2 + 1

3
x3 for x ≥ 0 and 0 ≤ u(θ) < 1

2
. Hence it follows that

H1 . a

ˆ
T
|u|2dθ. (6.1.39)
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In order to estimate H2, we recall the following result:

Proposition 6.1.9. [79, Proposition 3.1] Let ρ1 and ρ2 be two probability measures on Rd with

L∞ densities with respect to Lebesgue measure. Then

‖∇(N ∗ (ρ1 − ρ2))‖2
L2(Rd) ≤ max(‖ρ1‖L∞ , ‖ρ2‖L∞)W 2

2 (ρ1, ρ2),

where W2(ρ1, ρ2) denotes 2-Wasserstein distance between ρ1 and ρ2 defined by

W 2
2 (ρ1, ρ2) := inf

{ˆ
|T (x)− x|2dρ1(x) : T#ρ1 = ρ2

}
.

Thanks to Proposition 6.1.9, it follows that

H2 =‖∇(N ∗ (1D − 1B))‖2
L2(R2) ≤

ˆ
D

|T (x)− x|2dx, (6.1.40)

for any T : D 7→ B such that

T# (1D(x)dx) = 1B(x)dx, (6.1.41)

where T#ρ denotes the pushforward measure of ρ by T . Note that in polar coordinates,

(Equation 6.1.41) is equivalent to

T# (1D̃(r, θ)rdrdθ) = 1B̃(r, θ)rdrdθ, (6.1.42)

where D̃ := {(r, θ) ∈ [0, 1)× T : 0 ≤ r < 1 + u(θ)} and B̃ := {(r, θ) ∈ [0, 1)× T : 0 ≤ r < 1} .

Hence it suffices to find a transport map T which gives the desired estimate.
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Let us define T : D̃ 7→ B̃ by,

T (r, θ) :=
(
T r(r, θ), T θ(θ)

)
:=


(√

a(2−a)(r2−(1+u(θ))2)
(u(θ)+a)(u(θ)+2−a)

+ 1, f(θ)
a(2−a)

+ θ
)

if r > 1− a

(r, θ) if r ≤ 1− a.

(6.1.43)

for a ∈ (2‖u‖L∞ , 1), where f(θ) :=
´ θ

0
u(η)2 + 2u(η)dη.

a

θ T θ(θ)

T

D
B

Figure 6.1: Illustration of the transport map T that pushes forwards D to B.

Our motivation for the transport map T is the following: We first choose T θ so that T θ is indepen-
dent of r and preserves the area in the sense that (see Figure Figure 6.1 for the illustration)

ˆ θ

0

ˆ 1+u(s)

1−a
rdrds =

ˆ T θ(θ)

0

ˆ 1

1−a
rdrds.

And then, we choose T r(r, θ) so that (Equation 6.1.42) is satisfied. Note that in order to check the

condition (Equation 6.1.42) for T , it suffices to show that

1D̃(r, θ)r = 1B̃(T (r, θ))T r(r, θ)|det(∇T )|, (6.1.44)

almost everywhere with respect to the measure 1D̃rdrdθ (see [104]). Then it is clear that θ 7→
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T θ(θ) and r 7→ T r(r, θ) are increasing for fixed r and θ respectively. Indeed,

d

dθ
T θ(θ) = 1 +

u(θ)2 + 2u(θ)

a(2− a)
≥

2a− a2 + a2

4
− a

a(2− a)
≥

a− 3
4
a2

a(2− a)
> 0,

where the first inequality follows from that ‖u‖L∞(T) < 1
2
a and x 7→ x2 + 2x is increasing

for x ≥ −1 thus u(θ)2 + 2u(θ) ≥ a2

4
− a. Since T maps {(r, θ) : r = 1− a or 1 + u(θ)} to

{(r, θ) : r = 1− a or r = 1} continuously, T is bijective and therefore 1D̃(r, θ) = 1B̃ ◦ T (r, θ).

Furthermore, the Jacobian matrix of T can be computed as

∇T (r, θ) =



 1
T r(r,θ)

a(2−a)r
(u(θ)+a)(u(θ)+2−a)

∂θT
r(r, θ)

0 (u(θ)+a)(u(θ)+2−a)
a(2−a)

 if 1− a < r < 1 + u(θ),

1 0

0 1

 otherwise,

therefore

T r(r, θ)|det(∇T )| = r,

almost everywhere. This implies that T satisfies (Equation 6.1.44) and thus (Equation 6.1.42)

holds. Then it follows from (Equation 6.1.40) that

H2 ≤
ˆ
T

ˆ 1+u(θ)

1−a
|T r(r, θ) cos(T θ)− r cos θ|2 + |T r(r, θ) sin(T θ)− r sin θ|2rdrdθ.
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The cosine term in the integrand can be estimated as

|T r(r, θ) cos(T θ)− r cos θ|2 = |(T r(r, θ)− r) cos(T θ(θ)) + r(cos(T θ(θ))− cos θ)|2

. |T r(r, θ)− r|2 + | cos(T θ(θ))− cos θ|2

. |T r(r, θ)− r|2 + |T θ(θ)− θ|2.

In the same way, the sine term can be bounded as |T r sin(T θ)− r sin θ|2 . |T r − r|2 + |T θ − θ|2,

thus we have

H2 .
ˆ
T

ˆ 1+u(θ)

1−a
|T r(r, θ)− r|2rdrdθ +

ˆ
T

ˆ 1+u(θ)

1−a
|T θ(θ)− θ|2rdrdθ =: A1 + A2. (6.1.45)

A2 is bounded by

A2 ≤
ˆ
T

ˆ 1+u(θ)

1−a

f(θ)2

a2
rdrdθ .

ˆ
T
f(θ)2 |u(θ)|+ a

a2
.

1

a

ˆ
T
f(θ)2dθ, (6.1.46)

where we used ‖u‖L∞(T) < a to get the first and the last inequalities.

For A1, we assume for a momoent that for r ∈ (1− a, 1 + u(θ)),

|T r(r, θ)− r| . |u(θ)|. (6.1.47)

From (Equation 6.1.47), we obtain

A1 .
ˆ
T

ˆ 1+u(θ)

1−a
|u(θ)|2rdrdθ =

ˆ
T
|u(θ)|2

ˆ 1+u(θ)

1−a
rdrdθ . a

ˆ
T
|u(θ)|2dθ, (6.1.48)

where the last inequality follows from a >‖u‖L∞(T). Therefore, it follows from (Equation 6.1.45),
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(Equation 6.1.46) and (Equation 6.1.48) that

H2 . a

ˆ
T
|u|2dθ +

1

a

ˆ
T
|f |2dθ. (6.1.49)

Thus (Equation 6.1.37) follows from (Equation 6.1.38), (Equation 6.1.39) and (Equation 6.1.49).

To check (Equation 6.1.47), let g(a, r, x) :=

√
a(2−a)(r2−(1+x)2)

(x+a)(x+2−a)
+1−r

x
so that

T r(r,θ)−r
u(θ)

= g(a, r, u(θ)). Then it suffices to show that |g(a, r, x)| . 1 in

{(a, r, x) : (1− a) < r < 1 + x, 2|x| < a < 1}. Since g(a, r, x) is continuous everywhere

except for x = 0, we only need to check |g(a, r, x)| . 1 when 0 < x � 1. Taking the limit, we

obtain

lim
x→0+

g(a, r, x) =

∂
∂x

(√
a(2−a)(r2−(1+x)2)

(x+a)(x+2−a)
+ 1− r

) ∣∣∣∣
x=0

1
=

(1− r2)− a(2− a)

ra(2− a)
.

If r < 1
2
, then a > 1

2
therefore it follows from r > 1− a > 0 that

lim
x→0
|g(a, r, x)| = |r

2 − (a− 1)2|
ra(2− a)

≤ r

a(2− a)
+

(a− 1)2

ra(2− a)
≤ 2r

a(2− a)
. 1,

where the second inequality follows from (1− a) < r. If r > 1
2
, then it follows from |r − 1| < a

that

lim
x→0
|g(a, r, x)| ≤ |1− r2|

ra(2− a)
+

(2− a)

r(2− a)
<

1 + r

r(2− a)
+

2− a
r(2− a)

. 1.

This proves (Equation 6.1.47) and finishes the proof.

Now we are ready to prove Proposition 6.1.7.

Proof of Proposition 6.1.7: We will fix Ω3 and α3 so small that all the lemmas are applicable. To

do so, let us denote h(x) := −x log x. Also we denote by α∗ > 0 the smallest positive number
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such that

(h(α∗))3 > (α∗)2. (6.1.50)

Furthermore, let Ω′is, α
′
is and c′is for i = 1, 2 be as in Lemma 6.1.5 and Lemma 6.1.6, let c3

be as in (Equation 6.1.35) and (Equation 6.1.36) and let δ be as in Proposition 6.1.8. Lastly, let

c4 := 18πc3
3δ

2. Then let us fix

Ω3 := min

{
Ω1,Ω2,

1

4
,

σ

16c2
1c

2
3c4

}
and α3 :=

{
α∗, α1, α2,

(
1

2c2

) 3
2

,

(
1

4c2c3δ

) 3
2

}
.

(6.1.51)

Then our goal is to show that if (D,Ω) is a solution to (Equation 1.2.4) with Ω < Ω3 andA0(D) <

α3, then D = B.

Step 1. Let us claim that

A0(D) ≤ c1A(D). (6.1.52)

‖u‖L∞(T) ≤ c2A0(D)
2
3 ≤ 1

2
. (6.1.53)

Since Ω3 < Ω1 and A(D) ≤ A0(D) < α3 ≤ α1, it follows from Lemma 6.1.5 that A0(D) <

c1A(D). In addition, Ω3 < Ω2, A0(D) < α3 ≤ α2 and Lemma 6.1.6 imply that

‖u‖L∞(T) ≤ c2h(A0(D)) ≤ c2A0(D)
2
3 ,

where the last inequality follows from α3 ≤ α∗. Since A0(D) < α3 ≤
(

1
2c2

) 3
2
, we have

c2A0(D)
2
3 ≤ 1

2
, which proves (Equation 6.1.53).
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Step 2. In this step, we will show that

1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx ≤ 1

4c3

ˆ
T
|u|2dθ + c4A0(D)2, (6.1.54)

where c4 := 18πc3
3δ

2. Since ‖u‖L∞((T )) <
1
2
, we will apply Proposition 6.1.8 with a := 1

2c3δ
. Note

that

2‖u‖L∞(T) ≤ 2c2A0(D)
2
3 < 2c2α

2
3
3 ≤ a,

where the first inequality follows from (Equation 6.1.53), the second follows from the assump-

tion that A0(D) < α3 and the last inequality follows from (Equation 6.1.51), which says α3 ≤(
1

4c2c3δ

) 3
2
. Thus we can obtain by using Proposition 6.1.8 that

1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx ≤ 1

4c3

ˆ
T
|u|2dθ + c3δ

2

ˆ
T
f(θ)2dθ, (6.1.55)

where f(θ) =
´ θ

0
u(s)2 + 2u(s)ds. Moreover, we have

|f(θ)| ≤
ˆ θ

0

3|u(s)|ds <
ˆ
T

3|u(s)|ds ≤ 3c3A0(D), (6.1.56)

where the last inequality follows from (Equation 6.1.35). Therefore it follows from

(Equation 6.1.55) and (Equation 6.1.56) that

1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx ≤ 1

4c3

ˆ
T
|u|2dθ + 18πc3

3δ
2A0(D)2,

which proves the claim (Equation 6.1.54).

186



Step 3. Now we will prove that

ˆ
T
|u(θ)|2dθ ≤ 4c3c4A0(D)2. (6.1.57)

Since Ω < Ω3 ≤ 1
4
, it follows from (Equation 6.1.36) that

(1− 2Ω)

(ˆ
D

|x|2

2
dx− |D|

2

4π

)
>

1

2c3

ˆ
T
|u(θ)|2dθ. (6.1.58)

Thus it follows from (Equation 6.1.2) and (Equation 6.1.54) that

1

2c3

ˆ
T
|u(θ)|2dθ < 1

4c3

ˆ
T
|u(θ)|2dθ + c4A0(D)2,

which proves (Equation 6.1.57).

Step 4. Finally, we will prove D = B by showing that A0(D) = 0. This will be done

by estimating the left/right-hand side in (Equation 6.1.1). It follows from Proposition 6.1.3 and

(Equation 6.1.52) that

(1− 2Ω)

(
|D|2

4π
−
ˆ
D

pdx

)
≥ 1

2
σA(D)2 ≥ 1

2c2
1

σA0(D)2, (6.1.59)

where we used Ω < 1
4
. Moreover, it follows from (Equation 6.1.36) and (Equation 6.1.57) that

2Ω

(ˆ
D

|x|2

2
dx− |D|

2

4π

)
≤ 2Ωc3

ˆ
T
|u(θ)|2dθ ≤ 8Ωc2

3c4A0(D)2. (6.1.60)

Therefore (Equation 6.1.1) yields that

(
8Ωc2

3c4 −
σ

2c2
1

)
A0(D)2 ≥ 0.

This implies A0(D) = 0, since 8Ωc2
3c4 − σ

2c21
< 8Ω3c

2
3c4 − σ

2c21
≤ 0, which follows from
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(Equation 6.1.51) and Ω < Ω3. This proves that D = B.

�

6.2 Rotating patches with m-fold symmetry

We now move on to the quantitative estimates for m-fold symmetric rotating patches. We say a

domain D is m-fold symmetric, if D is invariant under rotation by 2π
m

. We divide this section

into two subsections: The first subsection is devoted to the proof of Theorem H and the second

subsection is devoted to the proof of Theorem I.

6.2.1 Proof of Theorem H

The goal of this subsection is to prove Theorem H. As explained in Remark 1.2.1, angular velocity

Ω is independent of radial dilation, thus we will assume that |D| = |B| = π throughout this

subsection.

For a simply-connected and m-fold symmetric patch D, we denote rmin := infx∈∂D |x|, and

rmax := supx∈∂D |x|. Note that the origin is necessarily contained in D since D is simply-

connected and m-fold symmetric, therefore rmin > 0. Furthermore, since we are assuming

|D| = π, it is necessarily rmin < 1 and rmax > 1 if D is not a disk.

We will prove the theorem by contrapositive. We suppose to the contrary that (D,Ω) is an

m-fold symmetric solution with sufficiently large m and λ := 1
2
− Ω is sufficient large compared

to 1
m

. Then Lemma 6.2.2 tells us that the patch is necessarily star-shaped and the polar graph

that parametrizes ∂D must be small. With this fact, we will apply the identity (Equation 6.1.2)

and Proposition 6.1.8 to derive an upper bound of λ, which we expect to contradict our initial

assumption on λ.

Now we introduce a decomposition of the stream function 1D ∗N . We define a radial function
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g : R2 7→ R as follows (where we denote it by g(r) by slight abuse of nontation):

g(r) :=
1

2πr
H1 (∂Br ∩D) ,

whereH1 denotes the 1-dimensional Hausdorff measure. Then we shall write, in polar coordinates,

(1D ∗ N ) (r, θ) = (g ∗ N ) (r) + (1D − g) ∗ N (r, θ) =: ϕr(r) + ϕm(r, θ). (6.2.1)

Therefore the relative stream function can be written as Ψ(r, θ) = ϕr(r)− Ω
2
r2 + ϕm(r, θ).

Note that g is a radial function with the same integral as 1D on each ∂Br. If D is m-fold

symmetric for large m, we would expect that the velocity field generated by the vorticity 1D must

be very close to the velocity field generated by g, that is, we expect that |∇ϕm| � 1 if m � 1.

Below we will give a quantitative proof of this fact in Lemma 6.2.1.

Lemma 6.2.1. Let D be an m-fold symmetric bounded domain for m ≥ 3. Then

∂rϕ
r(r) =

|D ∩Br|
2πr

, (6.2.2)

|∇ϕm(r, θ)| . r

m
. (6.2.3)

Proof. Let us prove (Equation 6.2.2) first. Obviously, (Equation 6.2.2) is equivalent to

2πr∂rϕ
r(r) = |D ∩Br|. (6.2.4)

Clearly both sides of (Equation 6.2.4) are zero at r = 0. Also we have that

∂r (|D ∩Br|) = H1 (D ∩ ∂Br) = 2πrg(r) = 2πr∆ (ϕr(r)) = ∂r (2πr∂rϕ
r(r)) ,

where we used ∆ = 1
r
∂r (r∂r) + 1

r2∂θθ. This proves (Equation 6.2.4), thus (Equation 6.2.2).
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We will prove (Equation 6.2.3) by using the formula for the stream function given in

Lemma B.1.2. Let h(r, θ) := 1D(r cos θ, r sin θ) − g(r). We apply (Equation B.2.3) and

(Equation B.2.4) to (Equation B.1.2) and (Equation B.1.3) respectively, and obtain

∂rϕm(r, θ) =
1

2π

ˆ
T

ˆ r

0

h(ρ, η + θ)

( (
ρ
r

)m+1 (
cos(mη)−

(
ρ
r

)m)(
1−

(
ρ
r

)m)2
+ 2

(
ρ
r

)m
(1− cos (mη))

)
dρdη

− 1

2π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)


(
r
ρ

)m−1

(cos(mη)−
(
r
ρ

)m
)(

1−
(
r
ρ

)m)2

+ 2
(
r
ρ

)m
(1− cos (mη))

 dρdη

=: A1 − A2, (6.2.5)

∂θϕm(r, θ) = −r 1

2π

ˆ
T

ˆ r

0

h(ρ, η + θ)

( (
ρ
r

)m+1
sin(mη)(

1−
(
ρ
r

)m)2
+ 2

(
ρ
r

)m
(1− cos(mη))

)
dρdη

− r 1

2π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)


(
r
ρ

)m−1

sin(mη)(
1−

(
r
ρ

)m)2

+ 2
(
r
ρ

)m
(1− cos(mη))

 dρdη

=: −rA3 − rA4 (6.2.6)

We claim that

|Ai| .
r

m
for i = 1, 2, 3 and 4. (6.2.7)

Let us assume for a moment that the claim is true. Then (Equation 6.2.5) and (Equation 6.2.6)

yield that |∇ϕm(r, θ)| ∼ |∂rϕm(r, θ)|+ |∂θϕm(r,θ)
r
| . r

m
, which finishes the proof. We give a proof

of (Equation 6.2.7) for only A2 since the other terms can be proved in the same way. Note that in

the proof, we will see that the assumption m ≥ 3 is crucial to estimate A2 and A4.

From the change of the variables,
(
r
ρ

)m
7→ x and 2π

m
-periodicity of the integrand in the angular
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variable, it follows that

|A2| ≤
ˆ
T

ˆ 1

0

∣∣∣∣h(rx−
1
m , η + θ)

(
x1− 1

m (cos(mη)− x)

(1− x)2 + 2x(1− cos(mη))

)
r

m
x−1− 1

m

∣∣∣∣dxdη
≤ r

m

ˆ
T

ˆ 1

0

∣∣∣∣ x−
2
m (cos(mη)− x)

(1− x)2 + 2x(1− cos(mη))

∣∣∣∣dxdη
≤ r

ˆ 2π
m

0

ˆ 1

0

x−
2
m ((1− x) + (1− cos(mη)))

(1− x)2 + 2x(1− cos(mη))
dxdη

=
r

m

ˆ
T

ˆ 1

0

x−
2
m ((1− x) + (1− cos η))

(1− x)2 + 2x(1− cos η)
dxdη

=
2r

m

ˆ π

0

ˆ 1

0

x−
2
m ((1− x) + (1− cos η))

(1− x)2 + 2x(1− cos η)
dxdη

=
2r

m

(ˆ π

0

ˆ 1
2

0

x−
2
m ((1− x) + (1− cos η))

(1− x)2 + 2x(1− cos η)
dxdη +

ˆ π

0

ˆ 1

1
2

x−
2
m ((1− x) + (1− cos η))

(1− x)2 + 2x(1− cos η)
dxdη

)

=
2r

m
(A21 + A22)

where we used 2π
m

-periodicity of the integrand to get the third inequality, the change of variables,

η 7→ 1
m
η to get the first equality, and the evenness of the integrand in η to get the second equal-

ity. Note that the denominator of the integrand A21 is bounded from below by a strictly positive

number, therefore

A21 .
ˆ π

0

ˆ 1
2

0

x−
2
mdxdη .

m

m− 2
. 1,

for m ≥ 3. For A22, we use that (1 − cos η) ∼ η2 for η ∈ (0, π) and the change of variables,

x 7→ 1− x, to obtain

A22 .
ˆ π

0

ˆ 1
2

0

x+ η2

x2 + η2
dxdη =

ˆ π

0

ˆ 1
2

0

1{x<η}
x+ η2

x2 + η2
dxdη +

ˆ π

0

ˆ 1
2

0

1{x≥η}
x+ η2

x2 + η2
dxdη

≤
ˆ π

0

ˆ η

0

η + η2

η2
dxdη +

ˆ 1
2

0

ˆ x

0

x+ x2

x2
dηdx

. 1.
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This proves |A2| . r
m

. As mentioned, the same argument applies to A1, A3 and A4 to prove

(Equation 6.2.7). This completes the proof.

From (Equation 6.2.2) and (Equation 6.2.3) in the above lemma, it is clear that ∂rΨ(rmin, θ) =

rmin

(
1
2
− Ω− ∂rϕm(rmin,θ)

rmin

)
and

∣∣∣∣∂rϕm(rmin,θ)
rmin

∣∣∣∣ ∼ 1
m

. Thus one can expect that if 1
2
− Ω is suffi-

ciently large compared to 1
m

, then the level set ∂D cannot be too far from the a circle. We give a

detailed proof for this in the following lemma.

Lemma 6.2.2. Assume that (D,Ω) is a solution to (Equation 1.2.4). Then there exist constants

c1, c2 > 0 and m1 ≥ 3 such that if D is m-fold symmetric for some m ≥ m1 and λ = 1
2
−Ω > c1

m
,

then D is star-shaped and |rmax − rmin| < c2
m

. Hence there exist u ∈ C1(T) such that

∂D = {(1 + u(θ))(cos θ, sin θ) : θ ∈ T} and ‖u‖L∞(T) <
c2

m
.

Proof. Thanks to (Equation 6.2.3) in Lemma 6.2.1, we can find a constant C > 0 (which we can

also assume to be larger then 1) such that

|∇xϕm(r, θ)| < C
r

m
, (6.2.8)

where ∇x denotes the gradient in Cartesian coordinates, that is, ∇x := ∂r + 1
r
∂θ. We will first

prove the bound for rmax − rmin and show star-shapeness of ∂D afterwards. Let

c1 := max
{

6C,
√

48πC
}

+ 1, c2 :=
c1

4
and m1 := max

{
3C

2
,
c1

4
, 3

}
+ 1. (6.2.9)

We will show that if λ > c1
m

and m ≥ m1, then rmax − rmin < c2
m

.

Let q(r) := |D∩Br|
2πr2 − Ω. Since 1

r2 > 1
r2
min
− 2

r3
min

(r − rmin) for r > rmin, and |D ∩ Br| is
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increasing in r, we have that

q(r) >
1

2
λ, for r ∈

(
rmin, rmin

(
1 +

1

4
λ

))
,

which implies that

∂r

(
ϕr(r)− Ω

2
r2

)
= rq(r) >

rmin
2
λ, for r ∈

(
rmin, rmin

(
1 +

1

4
λ

))
, (6.2.10)

where the equality follows from (Equation 6.2.2) in Lemma 6.2.1. Let ε := rminc1
4m

. By the

assumption λ > c1
m

, we have

ε <
rmin

4
λ. (6.2.11)

We choose x1, x2 ∈ R2 such that for some θ1, θ2 ∈ T,

x1 = rmin(cos(θ1), sin(θ1)), x2 = (rmin + ε)(cos(θ2), sin(θ2)) and |θ1 − θ2| ≤
2π

m
.

We claim that

Ψ(x2)−Ψ(x1) > 0. (6.2.12)

Let us assume that the claim is true for a moment. Then from m-fold symmetry of D and the fact

that ∂D is a level set of Ψ, it follows that rmax ≤ rmin + ε. Thus it follows from (Equation 6.2.9),

(Equation 6.2.11) and rmin < 1 that

rmax − rmin ≤ ε =
c2rmin
m

<
c2

m
. (6.2.13)
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Furthermore, for all x ∈ ∂D, it follows from (Equation 6.2.8) and (Equation 6.2.10) that ∂rΨ(x) >

rmin
2
λ− Crmax

m
. Hence

∂rΨ(x) >
rminc1

2m
− Crmax

m
≥ c1

2m
(rmax −

c2

m
)− Crmax

m
=

(
c1rmax

4m
− Crmax

m

)
+

c1

2m

(rmax
2
− c2

m

)
> 0,

where the first inequality follows from λ > c1
m

, the second inequality follows from

(Equation 6.2.13) and the last inequality follows from (Equation 6.2.9) and rmax ≥ 1, which say

c1
4
> C and rmax

2
> 1

2
> c2

m
. Therefore the implicit function theorem yields that there exists

u ∈ C1(T) such that ∂D = {(1 + u(θ))(cos θ, sin θ) : θ ∈ T}. This proved star-shapeness of D

and the desired L∞-norm bound for u.

Now it suffices to prove (Equation 6.2.12). We compute

Ψ(x2)−Ψ(x1) =

(
ϕr(|x2|)−

Ω

2
|x2|2

)
−
(
ϕr(|x1|)−

Ω

2
|x1|2

)
︸ ︷︷ ︸

=:L1

+ϕm(x2)− ϕm(x1)︸ ︷︷ ︸
L2

.

Thanks to (Equation 6.2.10), we have

L1 >
rmin

2
λ (|x2| − |x1|) =

rminλε

2
. (6.2.14)

To estimate L2, let us pick x′1 = rmin(cos(θ2), sin(θ2)). Then it follows from (Equation 6.2.8) that

L2 = (ϕm(x2)− ϕm(x′1)) + (ϕm(x′1)− ϕm(x1))

> −C |x2|
m

(|x2| − |x1|)− C
r2
min

m

2π

m

= −Crminε
m

− Cε2

m
− 2πCr2

min

m2
. (6.2.15)

Hence it follows from (Equation 6.2.14) and (Equation 6.2.15) that (we split rminλε
2

into three
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pieces evenly)

Ψ(x2)−Ψ(x1) >

(
rminλε

6
− Crminε

m

)
+

(
rminλε

6
− Cε2

m

)
+

(
rminλε

6
− 2πCr2

min

m2

)
=: L3 + L4 + L5.

(6.2.16)

From λ > c1
m

and (Equation 6.2.9), which says c1 ≥ 6C, we have L3 = rminε
6

(
λ− 6C

m

)
≥ 0. For

L4, it follows from that

L4 = ε

(
rminλ

6
− Cε

m

)
> ε

(
rminλ

6
− Crminλ

4m

)
= ε

rminλ

6

(
1− 3C

2m

)
> 0,

where the first inequality follows from (Equation 6.2.11) and the last inequality follows from

(Equation 6.2.9), which says m ≥ m1 >
3C
2

. Finally,

L5 =
r2
minc1λ

24m
− 2πCr2

min

m2
=
r2
min

24m

(
c1λ−

48πC

m

)
>
r2
min

24m

(
c2

1

m
− 48πC

m

)
> 0,

where the first equality follows from the definition of ε, the first inequality follows from λ > c1
m

and

the last inequality follows from (Equation 6.2.9), which says c1 ≥
√

48πC. Therefore it follows

from (Equation 6.2.16) that

Ψ(x2)−Ψ(x1) > 0, (6.2.17)

which finishes the proof.

Now we are ready to prove Theorem H.

Proof of Theorem H: Let c1, c2 and m1 be constants in Lemma 6.2.2 and δ be as in Proposi-
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tion 6.1.8. Lastly, let c3 be the constant in (Equation 6.1.36). Now we set

c := max

{
c1,

c3

2

(
c2δ +

9π2δ

c2

)}
and m0 := max {2c2,m1}+ 1. (6.2.18)

We will prove that if (D,Ω) is a solution to (Equation 1.2.4) such that D is m-fold symmetric for

m ≥ m0 and simply-connected, then

λ :=
1

2
− Ω ≤ c

m
. (6.2.19)

Towards a contradiction, let us suppose that there exists (D,Ω) such that

λ >
c

m
. (6.2.20)

It is clear that (Equation 6.2.18) implies λ > c1
m

and m ≥ m1. Thus Lemma 6.2.2 implies that

there exists u ∈ C1(T) such that

∂D = {(1 + u(θ))(cos θ, sin θ) : θ ∈ T} and ‖u‖L∞(T) <
c2

m
. (6.2.21)

Since m ≥ m0 > 2c2, which follows from (Equation 6.2.18), we have that ‖u‖L∞(T) <
1
2
.

To derive a contradiction, we will use the identity (Equation 6.1.2). To estimate the right-hand

side of it, we apply Proposition 6.1.8 with a := 2c2
m
∈
(
2‖u‖L∞(T), 1

)
and obtain

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx ≤ 2c2δ

m

ˆ
T
|u|2dθ +

δm

2c2

ˆ
T
f(θ)2dθ

≤ 2c2δ

m

ˆ
T
|u|2dθ +

πδm

c2

‖f‖2
L∞(T), (6.2.22)

where f(θ) =
´ θ

0
u(s)2 + 2u(s)ds. Using (Equation 6.1.32) and 2π

m
-periodicity of u, it is clear that
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f is also 2π
m

-periodic. Furthermore, for θ ∈ (0, 2π
m

), we have that (recall that ‖u‖L∞(T) <
1
2
),

|f(θ)| =
∣∣∣∣ ˆ θ

0

u(s)2 + 2u(s)ds

∣∣∣∣ ≤ ˆ θ

0

3|u(s)|ds ≤ 3

√ˆ θ

0

|u(s)|2ds
√
θ < 3

√ˆ 2π
m

0

|u(s)|2ds
√

2π

m

≤ 3

√
2π

m

√ˆ
T
|u(s)|2ds.

Thus, (Equation 6.2.22) yields that

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx ≤ 2c2δ

m

ˆ
T
|u|2dθ +

18π2δ

c2m

ˆ
T
|u|2dθ =

1

m

(
2c2δ +

18π2δ

c2

) ˆ
T
|u|2dθ.

(6.2.23)

For the left-hand side of (Equation 6.1.2), we use (Equation 6.1.36) to obtain

2

c3

ˆ
T
|u|2dθ ≤

ˆ
D

|x|2dx− |D|
2

2π
. (6.2.24)

Hence it follows from (Equation 6.2.23), (Equation 6.2.24) and (Equation 6.1.2) that

2λ

c3

ˆ
T
|u|2dθ ≤ λ

(ˆ
D

|x|2dx− |D|
2

2π

)
=

1

2

ˆ
D

|x− 2∇ (1D ∗ N ) |2dx ≤ 1

m

(
c2δ +

9π2δ

c2

) ˆ
T
|u|2dθ.

Therefore we have

λ ≤ c3

2

(
c2δ +

9π2δ

c2

)
1

m
≤ c

m
,

where the last inequality follows from our choice for c in (Equation 6.2.18). This contradicts our

assumption (Equation 6.2.20), thus completes the proof. �

By simple maximum principle type argument, Theorem H gives a upper bound for rmax.

Corollary 6.2.3. There exist constants c > 0 and m1 ≥ 3 such that if (D,Ω) is a solution to
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(Equation 1.2.4) that is simply-connected, m-fold symmetric for some m ≥ m1 and |D| = π, then

rmax − 1 ≤ c
m

.

Proof. Thanks to Theorem H, we can pick a constants C1 and m0 such that if m ≥ m0, then λ <

C1

m
. Moreover, it follows from Lemma 6.2.1 that there exists C2 > 0 such that |∇ϕm(r, θ)| ≤ C2r

m
.

Now, let us choose

m1 := max {m0, 2 (C1 + C2)}+ 1.

Since ∆Ψ = 2λ > 0 in D, the maximum principle for subharmonic functions implies that

∂rΨ(rmax, 0) > 0. Thus it follows from Lemma 6.2.1 that

0 < ∂rϕ
r(rmax) + C2

rmax
m
− Ωrmax

=
|D ∩Brmax |

2πrmax
+ C2

rmax
m
− Ωrmax

=
1

2rmax
+

(
C2

m
− 1

2
+ λ

)
rmax

≤ 1

2rmax
+

(
C1 + C2

m
− 1

2

)
rmax,

where we used |D ∩ Brmax| = |D| = π to get the second equality and the last inequality follows

from λ ≤ C1

m
. Since C1+C2

m
< 1

2
, we obtain,

rmax − 1 ≤

√
1
2

1
2
− C1+C2

m

− 1 .
1

m
.

6.2.2 Patches along bifurcation curves

This subsection is devoted to the proof of Theorem I. Since we are interested in a curve Cm

that satisfies (A1)-(A4), we will make the following assumptions for the patches throughout this
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subsection.

(a) D is star-shaped, that is ∂D = {(1 + u(θ))(cos θ, sin θ) : θ ∈ T} for some u ∈ C2(T).

(b) u is even and 2π
m

-periodic for some m ≥ 3, that is, u(−θ) = u(θ) and u(θ + 2π
m

) = u(θ).

(c) ∂θu(θ) < 0 for all θ ∈ (0, π
m

).

For such a patch, we denote rmin := minx∈∂D |x| = u( π
m

) and rmax := maxx∈∂D |x| = u(0).

Furthermore, we denote η := (1 + u)−1 : (rmin, rmax) 7→ (0, π
m

). By the symmetry, we only need

to focus on the fundamental sector S :=
{

(r, θ) : r ≥ 0, θ ∈ (0, π
m

)
}

. See Figure Figure 6.2 for

an illustration of these definitions.

η(ρ)
ρ

D

(rmax, 0)

(rmin,
π
m)

S

Figure 6.2: Illustration of the definitions of rmin, rmax, η(ρ) and S on a 6-fold vortex patch

Note that we will establish several lemmas with assuming |D| = |B| = π. Certainly this is not

satisfied by the solutions on the curve Cm but we will resolve this issue in the proof of the theorem

.

Our proof for Theorem I relies on Theorem H. Roughly speaking, we will show that if ‖u‖L∞(T)

is large compared to 1
m

, then λ (= 1
2
− Ω) must be large enough to contradict Theorem H. How-

ever, the main difficulty comes from the fact that lower bounds for λ that we can derive from the

identities (Equation 1.2.8) and (Equation 1.2.9) are not comparable with ‖u‖L∞ (Lemma 6.2.4).
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Thus, the scenario that we want to rule out is that for largem, ∂D is so spiky that
´
T |u|

2dθ is small

while ‖u‖L∞ is relatively large.

Since rmax can be estimated as in Corollary 6.2.3, we will mainly focus on estimating rmin.

Using the identity (Equation 6.1.1), we derive a lower bound for λ in the next lemma.

Lemma 6.2.4. If (D,Ω) is a solution to (Equation 1.2.4) with |D| = π then

λ &

´
T |u|

2dθ

rmax‖u‖L∞(T)

.

Proof. we use (Equation 6.1.1) in Lemma 6.1.1 to obtain

λ

(ˆ
D

|x|2 − 2p(x)dx

)
=

(ˆ
D

|x|2

2
dx− |D|

2

4π

)
.

For a moment, let us assume that

ˆ
D

|x|2 − 2p(x)dx . rmax‖u‖L∞(T). (6.2.25)

Then it follows from (Equation 6.1.36) that

λ =

´
D
|x|2
2
dx− |D|

2

4π´
D
|x|2 − 2p(x)dx

&

´
T |u|

2dθ

rmax‖u‖L∞(T)
,

which implies the desired result.

Now let us prove (Equation 6.2.25). Note that p(x) ≥ r2
min−|x|2

2
in Brmin . Indeed, p− r2

min−|x|2
2

is harmonic in Brmin and non-negative on ∂Brmin since p is non-negative in D. Therefore the

inequality follows from the maximum principle. From this, we obtain

ˆ
D

2p(x)dx ≥
ˆ
Brmin

r2
min − |x|2dx =

|Brmin|2

2π
.
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Since
´
D
|x|2dx <

´
Brmax

|x|2dx = |Brmax |2
2π

, it follows that

ˆ
D

|x|2 − 2p(x)dx =
1

2π

(
|Brmax|2 − |Brmin |2

)
. rmax‖u‖L∞(T),

which proves (Equation 6.2.25).

Thanks to Lemma 6.2.4, we only need to rule out the case where
´
T |u|

2dθ is too small,

compared to ‖u‖L∞ . To this end, we will pick r1, and r2 so that rmin < r1 < r2 < 1 and

find a lower bound for π
m
− η(r2) by showing that |u′(θ)| is bounded from above for 1 + u(θ) ∈

(rmin, r1). Since the relative stream function Ψ is constant on ∂D, we have d
dθ

(Ψ((1 + u(θ)), θ)) =

0. Therefore (Equation 6.2.1) yields that

u′(θ) = −∂θΨ(r, θ)

∂rΨ(r, θ)
= − ∂θϕm(r, θ)

(∂rϕr(r)− Ωr) + ∂rϕm(r, θ)
, where r = 1 + u(θ). (6.2.26)

In the next two lemmas, we will estimate the denominator and numerator in (Equation 6.2.26) but

the proofs will be postponed to the end of this subsection.

Lemma 6.2.5. Let (D,Ω) be a solution to (Equation 1.2.4) that satisfies the assumptions (a)-(c) for

some m ≥ 3 and |D| = π. Let r1, r2 > 0 be such that rmin < r1 < r2 < 1 and let δ := π
m
− η(r2).

Then there exist constants c, C > 0 such that if ‖u‖L∞(T) ≤ 1
2
, it holds that

∂rϕ
r(r)− Ωr ≥ mδ

(
c
(1− r2)2

‖u‖L∞(T)

− C (r1 − rmin)

)
,

for all r ∈ (rmin, r1).

Lemma 6.2.6. Let D be a patch that satisfies the assumptions (a)-(c) for some m ≥ 3. Let us pick
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r1, r2 > 0 so that rmin < r1 < r2 < 1 and r2
1 ≤ rminr2. If δ := π

m
− η(r2) < π

4m
, then it holds that

∂rϕm(r, η(r)) ≥ − cr

1−
(
r1
r2

)m δ (6.2.27)

∂θϕm(r, η(r)) ≤ cr2

1−
(
r1
r2

)m δ. (6.2.28)

for all r ∈ (rmin, r1), where c is a universal constant that does not depend on any variables..

Note that the linear dependence on δ in (Equation 6.2.27) and (Equation 6.2.28) is crucial in

the proof of the next lemma, since this allows us to bound u′ independently of δ when we plug the

above bounds into (Equation 6.2.26).

Now we can rule out the scenario that ∂D is too spiky inwards.

Lemma 6.2.7. There exist c, C > 0 andm1 ≥ 3 such that if (D,Ω) is a solution to (Equation 1.2.4)

that satisfies the assumptions (a)-(c) for some m ≥ m1, |D| = π and ‖u‖L∞(T) ≤ 1
2
, then

1− rmin ≤
c

m
or

ˆ
T
|u|2dθ ≥ C (1− rmin)2 .

Proof. Thanks to Lemma 6.2.5 and 6.2.6, we can choose c1 and c2 > 0 such that if rmin < r1 <

r2 < 1 and r2
1 ≤ rminr2, then

∂rϕr(r)− Ωr ≥ mδ

(
c1

(1− r2)2

‖u‖L∞(T)

− c2 (r1 − rmin)

)
, (6.2.29a)

∂rϕm(r, η(r)) ≥ − c2

1−
(
r1
r2

)m δ, (6.2.29b)

∂θϕm(r, η(r)) ≤ c2

1−
(
r1
r2

)m δ, (6.2.29c)
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for r ∈ (rmin, r1). We will pick

c := max

{
12,

24c2

c1

}
, C :=

π

18
and m1 := 2c (6.2.30)

Now let us assume that D is a solution to (Equation 1.2.4) that satisfies the assumptions (a)-(c) for

some m ≥ m1, |D| = π and 1 − rmin =‖u‖L∞(T) <
1
2
. If 1 − rmin ≤ c

m
, then there is nothing to

prove, thus let us assume that

1− rmin >
c

m
. (6.2.31)

Let c̃ := m(1− rmin) so that 1− rmin = c̃
m

. From (Equation 6.2.31), we have

c̃ > c. (6.2.32)

We choose

r1 := 1− c̃− 2

m
and r2 := 1− c̃

3m
. (6.2.33)

And we consider two cases: π
m
− η(r2) ≥ π

4m
and π

m
− η(r2) < π

4m
.

Case1. Let us assume that π
m
− η(r2) ≥ π

4m
.

Since π
m
− η(r2) ≥ π

4m
, it follows from the monotonicity of u that u(θ) < r2 − 1 = − c̃

3m
for

θ ∈
(

3π
4m
, π
m

)
. Using m-fold symmetry of u, we obtain

ˆ
T
|u|2dθ ≥ 2m

ˆ π
m

0

|u|2dθ > 2m

ˆ π
m

3π
4m

|u|2dθ ≥ πc̃2

18m2
= C(1− rmin)2, (6.2.34)

where the last equality follows from (Equation 6.2.30), which says C = π
18

.

Case2. Now we assume π
m
− η(r2) < π

4m
.

We first check whether r1 and r2 in (Equation 6.2.33) satisfy the hypotheses in Lemma 6.2.6.
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Clearly rmin < r1 < r2 < 1, since c̃ > c ≥ 4, which follows from (Equation 6.2.30) and

(Equation 6.2.32). To show r2
1 ≤ rminr2, we compute

r2
1 − rminr2 =

(
1− c̃− 2

m

)2

−
(

1− c̃

m

)(
1− c̃

3m

)
= − 2c̃

3m
+

4

m
+

2c̃2 − 12c̃+ 12

3m2

≤ − c̃

3m
+

4

m
+
−12c̃+ 12

3m2

≤ 0,

where the first ineqiality follows from c̃
m

= 1 − rmin =‖u‖L∞(T) ≤ 1
2
, and the last inequality

follows from c̃ > 12.

Since ∂D is a level set of Ψ, Ψ(1 + u(θ), θ) = does not depend on θ. Therefore,

−u′(θ) =
∂θΨ(1 + u(θ), θ)

∂rΨ(1 + u(θ), θ)
=

∂θϕm(1 + u(θ), θ)

∂rϕr(1 + u(θ))− Ωr + ∂rϕm(1 + u(θ), θ)
.

Hence, it follows from (Equation 6.2.29) that

−u′(θ) ≤

1

1−
(
r1
r2

)m
c1
c2
m (1−r2)2

‖u‖L∞(T)
−m (r1 − rmin)− 1

1−
(
r1
r2

)m for (1 + u(θ)) < r1. (6.2.35)

Now we assume for a moment that

c1
c2
m(1− r2)2

3‖u‖L∞
≥ max

m(r1 − rmin),
1

1−
(
r1
r2

)m
 . (6.2.36)

Then (Equation 6.2.35) yields that

0 ≤ −u′(θ) ≤ 1 for (1 + u(θ)) < r1,
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which implies that

2

m
= r1 − rmin =

ˆ π
m

η(r1)

−u′(θ)dθ ≤ π

m
− η(r1). (6.2.37)

Furthermore, monotonicity of u implies that |u(θ)| > |r1 − 1| > |r2 − 1| for θ ∈
(
η(r1), π

m

)
.

Therefore we obtain that

ˆ
T
|u|2dθ > 2m

ˆ π
m

η(r1)

|u|2dθ ≥ 2m
( π
m
− η(r1)

)
(1− r2)2 ≥ 4c̃2

9m2
=

4

9
(1− rmin)2 ≥ C(1− rmin)2,

(6.2.38)

where the third inequality follows from (Equation 6.2.33) and (Equation 6.2.37) and the last in-

equality follows from C = π
18
< 4

9
. Thus the desired result follows from (Equation 6.2.34) and

(Equation 6.2.38).

To complete the proof, we need to show (Equation 6.2.36). It follows from (Equation 6.2.33)

that

c1
c2
m (1− r2)2

3‖u‖L∞(T)

=
c1
c2
m (1− r2)2

3(1− rmin)
=

c1c̃

12c2

≥ 2, (6.2.39)

where the last inequality follows from (Equation 6.2.30) and (Equation 6.2.32) which imply that

c̃ ≥ 24c2
c1

. We also have

m (r1 − rmin) = 2, (6.2.40)

which follows from (Equation 6.2.33). To estimate 1

1−
(
r1
r2

)m , let us use an elementary inequality

that for any 0 < b < a < m, it holds that

(
1− a

m

1− b
m

)m

≤ e−(a−b). (6.2.41)
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Indeed, by taking logarithm in the left-hand side, we can compute,

log

((
1− a

m

1− b
m

)m)
= m log

(
1− a− b

m− b

)
≤ m log

(
1− a− b

m

)
≤ −(a− b),

where the last inequality follows from log(1 − x) < −x for all x > 0. This proves

(Equation 6.2.41). Then we use (Equation 6.2.33) and obtain

1

1−
(
r1
r2

)m =
1

1−
(

1− c̃−2
m

1− c̃
3m

)m ≤ 1

1− e−( 2c̃
3
−2)
≤ 2, (6.2.42)

where the last inequality follows from (Equation 6.2.30) and (Equation 6.2.32), which imply c̃ ≥

12.

Thus (Equation 6.2.39), (Equation 6.2.40) and (Equation 6.2.42) yield

c1
c2
m (1− r2)2

3‖u‖L∞(T)

≥ 2 ≥ max

m (r1 − rmin) ,
1

1−
(
r1
r2

)m
 . (6.2.43)

This proves (Equation 6.2.36) and finishes the proof.

Now we can estimate ‖u‖L∞(T) whose corresponding patch has area π, that is, |D| = π.

Proposition 6.2.8. There exist constants c > 0 and m0 ≥ 3 such that if (D,Ω) is a solution to

(Equation 1.2.4) that satisfies assumptions (a)-(c) for some m ≥ m0, |D| = π and ‖u‖L∞(T) ≤ 1
2
,

then

‖u‖L∞(T) ≤
c

m
.

Proof. In order to use the previous lemmas, let us fix some constants. We fix constants c′is and

m1 so that if (D,Ω) is a solution to (Equation 1.2.4) that satisfies the assumptions (a)-(c) for some

m ≥ m1 and |D| = π, then
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(B1) (From Theorem H) λ ≤ c1
m

.

(B2) (From Corollary 6.2.3) rmax − 1 ≤ c2
m

.

(B3) (From Lemma 6.2.4) λ ≥ c3

´
T |u|

2dθ

rmax‖u‖L∞(T)
.

(B4) (From Lemma 6.2.7) if 1− rmin =‖u‖L∞(T) ≤ 1
2

then

1− rmin ≤
c4

m
or

ˆ
T
|u|2dθ ≥ c5(1− rmin)2.

Let us set

c := max

{
c2, c4,

2c1

c3c5

}
+ 1, and m0 := max {m1, 2c}+ 1. (6.2.44)

Then we will prove that if (D,Ω) is a solution to (Equation 1.2.4) and satisfies the assumptions

(a)-(c) for some m ≥ m0, then

‖u‖L∞(T) ≤
c

m
. (6.2.45)

Let us assume for a contradiction that

‖u‖L∞(T) >
c

m
. (6.2.46)

Then we have that

ˆ
T
|u|2dθ ≥ c5(1− rmin)2. (6.2.47)
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Indeed,

‖u‖L∞(T) >
c

m
>
c2

m
≥ rmax − 1,

where we used (Equation 6.2.44), (Equation 6.2.46) and (B2), therefore ‖u‖L∞(T) = 1−rmin. Thus

(B4) and (Equation 6.2.46) imply (Equation 6.2.47). Furthermore (B2) and (Equation 6.2.44) also

imply that

rmax ≤ 1 +
c2

m
≤ 2.

Thus we use (B3) and (Equation 6.2.47) to obtain

λ ≥ c3
c5(1− rmin)2

2‖u‖L∞(T)

≥
c3c5‖u‖L∞(T)

2
≥ cc3c5

2m
>
c1

m
,

where the third inequality follows from (Equation 6.2.46) and the last inequality follows from

(Equation 6.2.44). However this contradicts (B1).

Now we are ready to prove the main theorem of this subsection

Proof of Theorem I: Thanks to Proposition 6.2.8, we can pick c1 and m1 so that 2c1 < m1 and

if (D,Ω) is a solution to (Equation 1.2.4), that satisfies the assumptions (a)-(c) for some m ≥ m1

and ‖u‖L∞(T) ≤ 1
2
, then

‖u‖L∞(T) ≤
c1

m
. (6.2.48)

Now let us consider a curve Cm, that satisfies the properties (A1)-(A4) for some m ≥ m1. We will
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show that

sup
s∈[0,∞)

‖ũm(s)‖L∞(T) .
1

m
. (6.2.49)

To do so, let us define ûm(s) so that,

1 + ûm(s) =

√
π√

|Dũm(s)|
(1 + ũm(s)), (6.2.50)

where the definition of Dũm(s) is as in (A2). Clearly, s 7→ ûm(s) is a continuous curve in C2(T)

such that
∣∣Dûm(s)

∣∣ = π. Since ûm(0) = 0, it follows from the continuity of the curve and

(Equation 6.2.48) that

sup
s∈[0,∞)

‖ûm(s)‖L∞(T) ≤
c1

m
. (6.2.51)

Now let us pick an arbitrary s ∈ [0,∞) and denote ũ := ũm(s) and û := ûm(s). Then it follows

from (A1) and (Equation 6.2.50) that

0 =

ˆ
T
ũ(θ)dθ = 2π

(√
|Dũ|√
π
− 1

)
+

√
|Dũ|√
π

ˆ
T
û(θ)dθ

= 2π

(√
|Dũ|√
π
− 1

)
− 1

2

√
|Dũ|√
π

ˆ
T
û(θ)2dθ,

where the last equality follows from (Equation 6.1.32). Hence (Equation 6.2.51) implies that
√
|Dũ|
√
π

= 1 +O
(

1
m2

)
. Therefore (Equation 6.2.50) and (Equation 6.2.51) yield that

‖ũ‖L∞(T) =

√
|Dũ|√
π

(1+‖û‖L∞(T))− 1 =‖û‖L∞(T) +O

(
1

m2

)
.

1

m
,

where the last equality follows from (Equation 6.2.51). This proves (Equation 6.2.49) and the

theorem. �
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Proofs of Lemma 6.2.5 and 6.2.6

Proof of Lemma 6.2.5: From Lemma 6.2.1, it follows that

∂rϕ
r(r)− Ωr = r

(
1

2
− Ω

)
− |Br\D|

2πr
= rλ− |Br\D|

2πr
=: J1 − J2, (6.2.52)

where we used λ = 1
2
− Ω. Note that we have ‖u‖L∞(T) ≤ 1

2
, therefore J1 ∼ λ and J2 ∼ |Br\D|.

Let us estimate J2 first. Since u is even and m-periodic, we have that for all r ∈ (rmin, r1),

|Br\D| = 2m

ˆ r

rmin

( π
m
− η(ρ)

)
ρdρ . mrδ(r − rmin) ≤ mrδ(r1 − rmin),

where we used π
m
− η(ρ) < δ for ρ < r < r2 to get the first inequality. Hence we obtain

J2 . mδ (r1 − rmin) . (6.2.53)

To estimate J1, we use Lemma 6.2.4 and obtain

λ &

´
T |u|

2dθ

rmax‖u‖L∞
&

´
T |u|

2dθ

‖u‖L∞
, (6.2.54)

where we we used rmax ≤ 1+‖u‖L∞(T) . 1 to get the last inequality. From periodicity of u, it

follows that

ˆ
T
|u|2dθ = 2m

ˆ π
m

0

|u|2dθ ≥ 2m

ˆ π
m

η(r2)

|u|2dθ ≥ 2m(1− r2)2
( π
m
− η(r2)

)
= 2mδ(1− r2)2,

(6.2.55)

where we used 1 +u(θ) < r2 for θ ∈ (η(r2), π
m

) by monotonicity of u to get the second inequality.
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Hence it follows from (Equation 6.2.54) and (Equation 6.2.55) that

J1 & λ &
mδ(1− r2)2

‖u‖L∞(T)

. (6.2.56)

Thus the desired result follows from (Equation 6.2.52), (Equation 6.2.53) and (Equation 6.2.56).

�

Now we prove Lemma 6.2.6. The proof is based on the formulae given in ( B.1.3).

Proof of Lemma 6.2.6: Let us assume that δ < π
4m

. We will prove (Equation 6.2.27) first. By

monotonicity of η (assumption (c)), it follows from Lemma B.1.3 that for all r ∈ (rmin, r1),

∂rϕm(r, η(r)) ≥ 1

2π

ˆ r

rmin

ρ

r
arctan

(
(ρ
r
)m sin (m(η(r) + η(ρ)))

1−
(
ρ
r

)m
cos (m(η(r) + η(ρ)))

)
dρ

+
1

2π

ˆ rmax

r

ρ

r

arctan

 ( r
ρ
)m sin (m(η(r)− η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r)− η(ρ)))


− arctan

 ( r
ρ
)m sin (m(η(r) + η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r) + η(ρ)))

 dρ,

where we used that sin(m(η(r)−η(ρ))) ≤ 0 for ρ < r so we can drop one of the integrands for free.

Note that the integrand in the second integral is positive for ρ ∈ (r, r2), since sin(m(η(r)−η(ρ))) >

0 and sin(m(η(r) + η(ρ))) < 0 for r < ρ < r2, which follows from π
m
− η(r2) < π

4m
. We will use

the second integrand in the second integral to cancel the first integral, that is, we have that

∂rϕm(r, η(r)) ≥ 1

2π

(ˆ r

rmin

ρ

r
arctan

(
(ρ
r
)m sin (m(η(r) + η(ρ)))

1−
(
ρ
r

)m
cos (m(η(r) + η(ρ)))

)
dρ

−
ˆ r2

r

ρ

r
arctan

 ( r
ρ
)m sin (m(η(r) + η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r) + η(ρ)))

dρ


+
1

2π

ˆ rmax

r2

ρ

r

arctan

 ( r
ρ
)m sin (m(η(r)− η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r)− η(ρ)))


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− arctan

 ( r
ρ
)m sin (m(η(r) + η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r) + η(ρ)))

 dρ

=:
1

2π
K1 +

1

2π
K2. (6.2.57)

To estimate K1, we use that (note that π
m
− η(r) < π

4m
for r ≤ r2)


sin(m(η(r) + η(ρ))) ≥ sin(2mη(r)) and cos(m(η(r) + η(ρ))) ≤ 1 for ρ ∈ (rmin, r)

sin(m(η(r) + η(ρ))) ≤ sin(2mη(r)) and cos(m(η(r) + η(ρ))) ≥ cos(2mδ) for ρ ∈ (r, r2),

and obtain

K1 ≥
ˆ r

rmin

ρ

r
arctan

(
(ρ
r
)m sin (2mη(r))

1−
(
ρ
r

)m
)
dρ−

ˆ r2

r

ρ

r
arctan

 ( r
ρ
)m sin (2mη(r))

1−
(
r
ρ

)m
cos (2mδ)

dρ.
From the change of variables

(
ρ
r

)m 7→ x for the first integral and
(
r
ρ

)m
7→ x for the second

integral, it follows that

K1 ≥
r

m

(ˆ 1

(
rmin
r

)m
x−1+ 2

m arctan

(
x sin(2mη(r))

1− x

)
dx−

ˆ 1

(
r
r2

)m x−1− 2
m arctan

(
x sin(2mη(r))

1− x cos(2mδ)

)
dx

)

≥ r

m

ˆ 1

(
r
r2

)m x−1− 2
m

(
arctan

(
x sin(2mη(r))

1− x

)
− arctan

(
x sin(2mη(r))

1− x cos(2mδ)

))
dx.

where we used rmin
r

> r
r2

for r ∈ (rmin, r1), which follows from r2
1 < rminr2, and x−1− 2

m >

x−1+ 2
m for 0 < x < 1 to get the second inequality (note that the first integrand is negative).

Therefore it follows from Lemma B.2.2 that (note that sin (2mη(r)) < 0 for r < r1),

K1 & −
r

m
(1− cos(2mδ)) & − r

m
sin(2mδ) & −rδ, (6.2.58)

where the second inequality is due to 1− cos(2mδ) < sin(2mδ) for δ < π
4m

.
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Now let us estimate K2. Note that the integrand in K2 is non-negative if η(ρ) > π
m
− η(r).

Indeed, by monotonicity of η, we have η(r) > η(ρ) for any ρ ≥ r2 > r, which implies the first

integrand in K2 is positive for all ρ ∈ (r2, rmax). Thus, if we choose r3 := η−1( π
m
− η(r)) > r2

then the integrand in K2 is strictly positive for ρ ∈ (r2, r3). Hence we have

K2 ≥
ˆ rmax

r3

ρ

r

arctan

 ( r
ρ
)m sin (m(η(r)− η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r)− η(ρ))


− arctan

 ( r
ρ
)m sin (m(η(r) + η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r) + η(ρ)))

 dρ.

Note that
∣∣∣∣∂θ (arctan

(
x sin(mθ)

1−x cos(mθ)

)) ∣∣∣∣ . mx
1−x for all 0 ≤ x < 1 and θ ∈ [− π

m
, π
m

]. Indeed,

∂θ

(
arctan

(
x sin(mθ)

1− x cos(mθ)

))
=
mx(cos(mθ)− 1 + (1− x))

(x− 1)2 + 2x(1− cos(mθ))
.

Hence either (1 − x) ≤ 1 − cos(mθ) or (1 − x) > 1 − cos(mθ), one can easily see that∣∣∣∣mx(cos(mθ)−1+(1−x))
(x−1)2+2x(1−cos(mθ))

∣∣∣∣ . mx
1−x . Since we also have r

ρ
< r1

r3
< r1

r2
for ρ > r3, and it follows from

the mean-value theorem that the integrand can be bounded as

∣∣∣∣ arctan

 ( r
ρ
)m sin (m(η(r)− η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r)− η(ρ))

− arctan

 ( r
ρ
)m sin (m(η(r) + η(ρ)))

1−
(
r
ρ

)m
cos (m(η(r) + η(ρ)))

∣∣∣∣
.
mη(ρ)

(
r
ρ

)m
1−

(
r
ρ

)m
<
mη(ρ)

(
r
ρ

)m
1−

(
r1
r2

)m .
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Therefore we obtain

K2 & −
1

1−
(
r1
r2

)m ˆ rmax

r3

(
r

ρ

)m−1

mη(ρ)dρ & −m
(
π
m
− η(r)

)
1−

(
r1
r2

)m ˆ rmax

r3

(
r

ρ

)m−1

dρ

& − rm

(m− 2)

(
π
m
− η(r)

)
1−

(
r1
r2

)m ,
where we used η(ρ) < π

m
− η(r) for ρ > r3 to get the second inequality. Since m ≥ 3 and

π
m
− η(r) < π

m
− η(r2) = δ, the above inequality implies

K2 & −
r

1−
(
r1
r2

)m ( π
m
− η(r)

)
& − r

1−
(
r1
r2

)m δ. (6.2.59)

Thus, (Equation 6.2.57), (Equation 6.2.58) and (Equation 6.2.59) yield (Equation 6.2.27).

Now, let us prove (Equation 6.2.28). Since sin(mη(ρ)) < sin(mδ) for all ρ < r2, it follows

from Lemma B.1.3 that

∂θϕm(r, η(r)) <
1

4π

ˆ r

rmin

ρ log

(
1 +

4(ρ
r
)m sin2(mδ)

(1− (ρ
r
)m)2

)
dρ︸ ︷︷ ︸

=:K3

+
1

4π

ˆ r2

r

ρ log

(
1 +

4( r
ρ
)m sin2(mδ)

(1− ( r
ρ
)m)2

)
dρ︸ ︷︷ ︸

=:K4

+
1

4π

ˆ rmax

r2

ρ log

(
1 +

4( r
ρ
)m sin(mη(ρ)) sin(mδ)

(1− ( r
ρ
)m)2

)
dρ︸ ︷︷ ︸

=:K5

.

Again, the change of variables,
(
ρ
r

)m 7→ x and
(
r
ρ

)m
7→ x yields that

K3 .
r2

m

ˆ 1

0

x−1+ 2
m log

(
1 +

4x sin2(mδ)

(1− x)2

)
dx,

K4 .
r2

m

ˆ 1

0

x−1− 2
m log

(
1 +

4x sin2(mδ)

(1− x)2

)
dx.
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Thus it follows from Lemma B.2.3 that

K3, K4 .
r2

m
|sin(mδ)| < r2δ. (6.2.60)

To estimate K5, recall that r < r1 and log(1 + x) ≤ x, which yields that

K5 .
ˆ rmax

r2

ρ


(
r
ρ

)m
sin(mη(ρ)) sin(mδ)(
1−

(
r
ρ

)m)2

 dρ

=
r2

m

ˆ (
r
r2

)m
( r
rmax

)
m
x−1− 2

m

(
x sin(mη(ρ)) sin(mδ))

(1− x)2

)
dx

.
r2

m

ˆ (
r1
r2

)m
0

x−
2
m

sin(mδ)

(1− x)2
dx

=
r2

m

(ˆ min
{

1
2
,
(
r1
r2

)m}
0

x−
2
m

sin(mδ)

(1− x)2
dx+

ˆ (
r1
r2

)m
min

{
1
2
,
(
r1
r2

)m} x− 2
m

sin(mδ)

(1− x)2
dx

)

.
r2

m

mδ +
sin(mδ)(

1−
(
r1
r2

)m)


.
δ

1−
(
r1
r2

)m (6.2.61)

Therefore (Equation 6.2.60) and (Equation 6.2.61) yield (Equation 6.2.28). This finishes the proof.

�
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Appendices



APPENDIX A

FUNTIONAL DERIVATIVES AND SOME BASIC INTEGRALS

A.1 Derivatives of the Functional

A.1.1 Functional derivatives

Recall that F(b, g, r) = (F1,F2) is given in (Equation 5.1.4). For simplicity, we denote

A1 := (b+ g(η)),

A2 := (r′(θ) cos(θ − η)− (1 + r(θ)) sin(θ − η)) (1 + r(η))− (1 + r(θ))r′(θ),

A3 :=
1

(1 + r(θ))2 + (1 + r(η))2 − 2(1 + r(θ))(1 + r(η)) cos(θ − η)
,

A4 := r′(θ)(1 + r(θ)),

A5 := (b+ g(η))(b+ g(θ)),

A6 := (1 + r(θ))2 − (r′(θ) sin(θ − η) + (1 + r(θ)) cos(θ − η))(1 + r(η)),

A7 :=
1

r′(θ)2 + (1 + r(θ))2
,

A8 :=
(1 + r(θ))2(b+ g(θ))

r′(θ)2 + (1 + r(θ))2
.

We also denote the average integral by
ffl
f(θ)dθ := 1

2π

´ π
−π f(θ)dθ. Therefore the functional F

can be written as

F1 =

 
A1A2A3dη + ΩA4, (A.1.1)

F̃2 =

 
A5A6A7A3dη − ΩA8. (A.1.2)

We will expand Ai(g, θ, η) and Ai(r, θ, η) up to quadratic/cubic order in g and r.
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Lemma A.1.1. Let A′is be as above. We have

A1 = b+ g(η),

A2 = − sin(θ − η) + [r′(θ)(cos(θ − η)− 1)− (r(θ) + r(η)) sin(θ − η)]

+ [r′(θ)r(η)(cos(θ − η)− 1)− r′(θ)(r(θ)− r(η))− r(θ)r(η) sin(θ − η)] ,

A3 =
1

2− 2 cos(θ − η)
− r(θ) + r(η)

2− 2 cos(θ − η)

+
1

2− 2 cos(θ − η)

[
r(θ)2 + r(θ)r(η) + r(η)2 − (r(θ)− r(η))2

2− 2 cos(θ − η)

]
+

1

2− 2 cos(θ − η)

[
(r(θ) + r(η))(r(θ)− r(η))2

1− cos(θ − η)
−
[
r(θ)3 + r(θ)2r(η) + r(θ)r(η)2 + r(η)3

]]
+O(r4),

A4 = r′(θ) + r(θ)r′(θ),

A5 = b2 + b(g(θ) + g(η)) + g(θ)g(η),

A6 = (1− cos(θ − η)) + [(r(θ) + r(η))(1− cos(θ − η)) + (r(θ)− r(η))− r′(θ) sin(θ − η)]

+ [r(θ)(r(θ)− r(η)) + r(θ)r(η)(1− cos(θ − η))− r′(θ)r(η) sin(θ − η)] ,

A7 = 1− 2r(θ) +
[
3r(θ)2 − r′(θ)2

]
+
[
4r(θ)r′(θ)2 − 4r(θ)3

]
+O(r4),

A8 = b+ g(θ)− br′(θ)2 +
[
2br(θ)r′(θ)2 − g(θ)r′(θ)2

]
+O(r4 + g4).

Proof. Straightforward.

Linear parts

We denote by Aji the jth order term in Ai. For example, A1
3 = − r(θ)+r(η)

2−2 cos(θ−η)
.

Lemma A.1.2. Let Fi’s and Ai’s be defined as before. Then

d

dt
F1(b, tg, tr)

∣∣∣∣
t=0

= −
 

g(η) sin(θ − η)

2− 2 cos(θ − η)
dη +

(
Ω− b

2

)
r′(θ), (A.1.3)

d

dt
F̃2(b, tg, tr)

∣∣∣∣
t=0

=

(
b

2
− Ω

)
g(θ) + b2

( 
r(θ)− r(η)

2− 2 cos(θ − η)
dη − r(θ)

)
. (A.1.4)
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Proof. We compute F1 first. In view of (Equation A.1.1), we collect the linear terms in A1A2A3 +

ΩA4 from Lemma A.1.1. Hence we have

F1(b, tg, tr) =

 
− tg(η) sin(θ − η)

2− 2 cos(θ − η)
+ bt

r′(θ)(cos(θ − η)− 1)− (r(θ) + r(η)) sin(θ − η)

2− 2 cos(θ − η)

+
bt sin(θ − η)(r(θ) + r(η))

2− 2 cos(θ − η)
dη + tΩr′(θ) +O(t2)

= −
 

tg(η) sin(θ − η)

2− 2 cos(θ − η)
dη + t

(
Ω− b

2

)
r′(θ) +O(t2).

Thus we obtain (Equation A.1.3) by differentiating with respect to t.

In order to compute the derivative of F̃2, we collect the linear terms in (Equation A.1.2) from

Lemma A.1.1 and obtain

F̃2(b, tg, tr) =

 
bt(g(θ) + g(η))

2

+ tb2

[
(r(θ) + r(η))

2
+

(r(θ)− r(η))

2− 2 cos(θ − η)
− r′(θ) sin(θ − η)

2− 2 cos(θ − η)

]
− tb2r(θ)− tb2

2
(r(θ) + r(η))− tΩg(θ)dη +O(t2)

= t

(
b

2
− Ω

)
g(θ) + tb2

( 
r(θ)− r(η)

2− 2 cos(θ − η)
dη − r(θ)

)
+O(t2),

where we used
ffl
g(η)dη =

ffl
r(η)dη = 0 and

ffl sin(θ−η)
2−2 cos(θ−η)

dη = 0. By differentiating in t, we

obtain the desired result (Equation A.1.4).

Quadratic parts

Now we compute the quadratic expansion of F1 and F̃2.
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Lemma A.1.3. Let Fi’s and Ai’s be defined as before. Then

F1 =

(
b

2
+ Ω

)
r(θ)r′(θ)− b

 
r′(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
dη + b

 
(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη

+ linear terms +O(r3 + g3), (A.1.5)

F̃2 =
3b2

2
r(θ)2 − bg(θ)r(θ) + b

(
Ω− b

2

)
r′(θ)2

− b2

2

 
(r(θ)− r(η))(5r(θ) + r(η))

2− 2 cos(θ − η)
dη + b

 
(g(θ) + g(η))(r(θ)− r(η))

2− 2 cos(θ − η)
dη

− b
 
g(η)r′(θ) sin(θ − η)

2− 2 cos(θ − η)
dη + linear terms +O(r3 + g3). (A.1.6)

Proof. We compute F1 first. By collecting quadratic terms in (Equation A.1.1) from

Lemma A.1.1, we have (we will have, for example, A2
1A

0
2A

0
3 + A0

1A
2
2A

0
3 + A0

1A
0
2A

2
3 + A1

1A
1
2A

0
3 +

A1
1A

0
2A

1
3 + A0

1A
1
2A

1
3 + ΩA2

4).

F1 =

 
b

[
−1

2
r′(θ)r(η)− r′(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
− r(θ)r(η) sin(θ − η)

2− 2 cos(θ − η)

]
− b sin(θ − η)

2− 2 cos(θ − η)

[
r(θ)2 + r(θ)r(η) + r(η)2 − (r(θ)− r(η))2

2− 2 cos(θ − η)

]
+

[
−g(η)r′(θ)

2
− g(η)(r(θ) + r(η)) sin(θ − η)

2− 2 cos(θ − η)

]
+
g(η)(r(θ) + r(η)) sin(θ − η)

2− 2 cos(θ − η)

+

[
br′(θ)(r(θ) + r(η))

2
+
b(r(θ) + r(η))2 sin(θ − η)

2− 2 cos(θ − η)

]
+ Ωr(θ)r′(θ)dη +O(r3 + g3)

=

 (
b

2
+ Ω

)
r(θ)r′(θ)− br′(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
+
b(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη

+ linear terms +O(r3 + g3),

which yields (Equation A.1.5). Now we will expand F̃2 up to the quadratic order. By collecting

all quadratic terms in (Equation A.1.2) from Lemma A.1.1, we obtain (we will have A2
5A

0
6A

0
7A

0
3 +

A0
5A

2
6A

0
7A

0
3 +A0

5A
0
6A

2
7A

0
3 +A0

5A
0
6A

0
7A

2
3 +A1

5A
1
6A

0
7A

0
3 +A1

5A
0
6A

1
7A

0
3 +A1

5A
0
6A

0
7A

1
3 +A0

5A
1
6A

1
7A

0
3 +
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A0
5A

1
6A

0
7A

1
3 + A0

5A
0
6A

1
7A

1
3 − ΩA2

8),

F̃2 =

 
g(θ)g(η)

2
+

[
b2 r(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
+ b2 r(θ)r(η)

2
− b2 r

′(θ)r(η) sin(θ − η)

2− 2 cos(θ − η)

]
+ b2 (3r(θ)2 − r′(θ)2)

2
+

[
b2(r(θ)2 + r(θ)r(η) + r(η)2)

2
− b2

2

(r(θ)− r(η))2

2− 2 cos(θ − η)

]
+

[
b
(g(θ) + g(η))(r(θ) + r(η))

2
+ b

(g(θ) + g(η))(r(θ)− r(η))

2− 2 cos(θ − η)
− b(g(θ) + g(η))r′(θ) sin(θ − η)

2− 2 cos(θ − η)

]
− b((g(θ) + g(η)))r(θ)− b(g(θ) + g(η))(r(θ) + r(η))

2

+

[
−b2r(θ)(r(θ) + r(η))− 2b2 r(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
+ 2b2 r(θ)r

′(θ) sin(θ − η)

2− 2 cos(θ − η)

]
+

[
−b2 (r(θ) + r(η))2

2
− b2 (r(θ)2 − r(η)2)

2− 2 cos(θ − η)
+ b2 r

′(θ)(r(θ) + r(η)) sin(θ − η)

2− 2 cos(θ − η)

]
+ b2r(θ)(r(θ) + r(η)) + bΩr′(θ)2dη +O(r3 + g3)

=

 
b2 (3r(θ)2 − r′(θ)2)

2
− bg(θ)r(θ) + bΩr′(θ)2

+
1

2− 2 cos(θ − η)

(
−b

2

2
(r(θ)− r(η))(5r(θ) + r(η)) + b(g(θ) + g(η))(r(θ)− r(η))

)
− bg(η)r′(θ) sin(θ − η)

2− 2 cos(θ − η)
dη + linear terms +O(r3 + g3),

where we used
ffl
g(η)dη =

ffl
r(η)dη =

ffl sin(θ−η)
2−2 cos(θ−η)

dη = 0. This yields the desired result

(Equation A.1.6).

Lemma A.1.4. Let Fi’s and Ai’s be defined as before. Then

d2

dtds
F1(b, tg + sg̃, tr + sr̃)

∣∣∣∣
t=s=0

=

(
b

2
+ Ω

)
(r(θ)r̃′(θ) + r̃(θ)r′(θ))

− b
 
r′(θ)(r̃(θ)− r̃(η))

2− 2 cos(θ − η)
dη − b

 
r̃′(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
dη

+ 2b

 
(r(θ)− r(η))(r̃(θ)− r̃(η)) sin(θ − η)

(2− 2 cos(θ − η))2
, (A.1.7)
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and

d2

dtds
F̃2(b, tg + sg̃, tr + sr̃)

∣∣∣∣
t=s=0

= 3b2r(θ)r̃(θ)− b(g(θ)r̃(θ) + g̃(θ)r(θ)) + 2b

(
Ω− b

2

)
r′(θ)r̃′(θ)

− b2

2

 
(r(θ)− r(η))(5r̃(θ) + r̃(η))

2− 2 cos(θ − η)
dη − b2

2

 
(r̃(θ)− r̃(η))(5r(θ) + r(η))

2− 2 cos(θ − η)
dη

+ b

 
(g(θ) + g(η))(r̃(θ)− r̃(η))

2− 2 cos(θ − η)
dη + b

 
(g̃(θ) + g̃(η))(r(θ)− r(η))

2− 2 cos(θ − η)
dη

− b
 
g(η)r̃′(θ) sin(θ − η)

2− 2 cos(θ − η)
dη − b

 
g̃(η)r′(θ) sin(θ − η)

2− 2 cos(θ − η)
dη. (A.1.8)

Proof. We compute F1 first. From (Equation A.1.5) in Lemma A.1.3, we collect all st terms and

obtain

F1(b, tg + sg̃, tr + sr̃) = st

[(
b

2
+ Ω

)
(r(θ)r̃′(θ) + r̃(θ)r′(θ))

−b
 
r′(θ)(r̃(θ)− r̃(η))

2− 2 cos(θ − η)
dη − b

 
r̃′(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
dη

+2b

 
(r(θ)− r(η))(r̃(θ)− r̃(η))

(2− 2 cos(θ − η))2

]
+ linear terms +O(t2 + s2).

Once we differentiate the above equation with respect to t and s, the desired result (Equation A.1.7)

follows immediately. Similarly, we collect all st terms from (Equation A.1.6) and obtain

F̃2(b, tg + sg̃, tr + sr̃) = st

[
3b2r(θ)r̃(θ)− b(g(θ)r̃(θ) + g̃(θ)r(θ)) + 2b

(
Ω− b

2

)
r′(θ)r̃′(θ)

−b
2

2

 
(r(θ)− r(η))(5r̃(θ) + r̃(η))

2− 2 cos(θ − η)
dη − b2

2

 
(r̃(θ)− r̃(η))(5r(θ) + r(η))

2− 2 cos(θ − η)
dη

+b

 
(g(θ) + g(η))(r̃(θ)− r̃(η))

2− 2 cos(θ − η)
dη + b

 
(g̃(θ) + g̃(η))(r(θ)− r(η))

2− 2 cos(θ − η)
dη

−b
 
g(η)r̃′(θ) sin(θ − η)

2− 2 cos(θ − η)
dη − b

 
g̃(η)r′(θ) sin(θ − η)

2− 2 cos(θ − η)
dη

]
+ linear terms +O(t2 + s2).

Once we differentiate the above equation with respect to t and s, the desired result (Equation A.1.8)
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follows immediately.

Cubic parts

We will expand F̃2 up to cubic order with respect to the r variable (we fix g = 0). We denote

B := A3A6 so that (Equation A.1.2) can be written as (with g = 0)

F̃2 = b2

 
BdηA7 − ΩA8. (A.1.9)

We will first expand B up to cubic order.

Lemma A.1.5. Let F̃2, Ai and B be as defined as before. Then

 
Bdη =

1

2
+

 
r(θ)− r(η)

2− 2 cos(θ − η)
dη − 1

2

 
r(θ)2 − r(η)2

2− 2 cos(θ − η)
dη

+

[
1

2

 
(r(θ)− r(η))(r(θ)2 + r(η)2)

2− 2 cos(θ − η)
dη −

 
(r(θ)− r(η))3

(2− 2 cos(θ − η))2
dη

+

 
r′(θ)(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη

]
+O(r4).

Proof. Using ( A.1.1), we will compute the constant (=: B0), linear (=: B1), quadratic (=: B2)

and cubic (=: B3) terms of B = A3A6 separately. It is straightforward that

 
B0dη =

1

2
. (A.1.10)

For B1, we compute B1(= A1
3A

0
6 + A0

3A
1
6),

 
B1dη =

 
r(θ)− r(η)

2− 2 cos(θ − η)
− r′(θ) sin(θ − η)

2− 2 cos(θ − η)
dη =

 
r(θ)− r(η)

2− 2 cos(θ − η)
dη, (A.1.11)
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where we used
ffl sin(θ−η)

2−2 cos(θ−η)
dη = 0. For B2, we compute A2

3A
0
6 + A0

3A
2
6 + A1

3A
1
6, hence

 
B2dη =

[
r(θ)2 + r(θ)r(η) + r(η)2

2
− 1

2

 
(r(θ)− r(η))2

2− 2 cos(θ − η)
dη

]
+

[ 
r(θ)(r(θ)− r(η))

2− 2 cos(θ − η)
+
r(θ)r(η)

2
− r′(θ)r(η) sin(θ − η)

2− 2 cos(θ − η)
dη

]
+

[ 
−1

2
(r(θ) + r(η))2 − r(θ)2 − r(η)2

2− 2 cos(θ − η)
+
r′(θ)(r(θ) + r(η)) sin(θ − η)

2− 2 cos(θ − η)
dη

]
= −1

2

 
(r(θ)2 − r(η)2)

2− 2 cos(θ − η)
dη, (A.1.12)

where we used
ffl sin(θ−η)

2−2 cos(θ−η)
dη = 0. For B3, we compute B3(= A3

3A
0
6 + A2

3A
1
6 + A1

3A
2
6 + A0

3A
3
6),

 
B3dη =

[ 
(r(θ) + r(η))(r(θ)− r(η))2

2− 2 cos(θ − η)
dη − 1

2

 
r(θ)3 + r(θ)2r(η) + r(θ)r(η)2 + r(η)3dη

]
+

[ 
(r(θ) + r(η))(r(θ)2 + r(θ)r(η) + r(η)2)

2
dη − 1

2

 
(r(θ) + r(η))(r(θ)− r(η))2

2− 2 cos(θ − η)
dη

+

 
r(θ)3 − r(η)3

2− 2 cos(θ − η)
dη −

 
(r(θ)− r(η))3

(2− 2 cos(θ − η))2
dη

−
 
r′(θ)(r(θ)2 + r(θ)r(η) + r(η)2) sin(θ − η)

2− 2 cos(θ − η)
dη +

 
r′(θ)(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη

]
+

[
−
 
r(θ)(r(θ)2 − r(η)2)

2− 2 cos(θ − η)
dη −

 
r(θ)r(η)(r(θ) + r(η))

2
dη

+

 
r′(θ)r(η)(r(θ) + r(η)) sin(θ − η)

2− 2 cos(θ − η)
dη

]
=

1

2

 
(r(θ)− r(η))(r(θ)2 + r(η)2)

2− 2 cos(θ − η)
dη −

 
(r(θ)− r(η))3

(2− 2 cos(θ − η))2
dη

+

 
r′(θ)(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
. (A.1.13)

Thus the desired result follows from (Equation A.1.10), (Equation A.1.11), (Equation A.1.12) and

(Equation A.1.13).
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Lemma A.1.6. Let F̃2, Ai’s and B be as defined as before. Then

1

6

d3

dt3
F̃2(b, 0, tr)

∣∣∣∣
t=0

=
b2

2

 
(r(θ)− r(η))(3r(θ)2 + 2r(θ)r(η) + r(η)2)

2− 2 cos(θ − η)
dη − b2

 
(r(θ)− r(η))3

(2− 2 cos(θ − η))2
dη

+ b2

 
r′(θ)(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
η + b2

 
(3r(θ)2 − r′(θ)2)(r(θ)− r(η))

2− 2 cos(θ − η)
dη

+ 2b(b− Ω)r(θ)r′(θ)2 − 2b2r(θ)3

Proof. We first collect all cubic terms of F̃2(b, 0, r) in r. From (Equation A.1.9), we have that the

cubic terms consist of b2(B3A0
7 +B2A1

7 +B1A2
7 +B0A3

7)−ΩA3
8. Using Lemma A.1.1 and A.1.5

and the fact that A7 does not depend on η, we obtain

F̃2(b, 0, r) = b2

[
1

2

 
(r(θ)− r(η))(r(θ)2 + r(η)2)

2− 2 cos(θ − η)
dη −

 
(r(θ)− r(η))3

(2− 2 cos(θ − η))2
dη

+

 
r′(θ)(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη

]
+ b2

 
r(θ)(r(θ)2 − r(η)2)

2− 2 cos(θ − η)
dη

+ b2

 
(3r(θ)2 − r′(θ)2)(r(θ)− r(η))

2− 2 cos(θ − η)
dη + b2

[
2r(θ)r′(θ)2 − 2r(θ)3

]
− 2bΩr(θ)r′(θ)2 + lower order terms +O(r4)

=
b2

2

 
(r(θ)− r(η))(3r(θ)2 + 2r(θ)r(η) + r(η)2)

2− 2 cos(θ − η)
dη − b2

 
(r(θ)− r(η))3

(2− 2 cos(θ − η))2
dη

+ b2

 
r′(θ)(r(θ)− r(η))2 sin(θ − η)

(2− 2 cos(θ − η))2
η + b2

 
(3r(θ)2 − r′(θ)2)(r(θ)− r(η))

2− 2 cos(θ − η)
dη

+ 2b(b− Ω)r(θ)r′(θ)2 − 2b2r(θ)3 + lower order terms +O(r4).

Therefore, the desired result follows immediately.

A.1.2 Derivatives of the reduced functional

We denote v := (0, cos(2θ)). Given a pair of functions (g, r), we denote Q be the projection to the

second mode of r, that is, Q(g, r) :=
(

1
π

´
r(θ) cos(2θ)dθ

)
cos(2θ).
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Lemma A.1.7. Let F , v, Q be defined as before. We fix b = 2 and Ω = 1. Then,

∂bDF(2, 0)v = (sin(2θ), 0), (A.1.14)

1

2

d2

dt2
F(2, tv)

∣∣∣∣
t=0

= (−2 sin(4θ),−3 cos(4θ)), (A.1.15)

∂bQ
d2

dt2
F(b, tv)

∣∣∣∣
b=2,t=0

= (0, 0), (A.1.16)

ṽ := − [DF(2, 0)]−1 (I −Q)∂bDF(2, 0)v = (2 cos(2θ), 0), (A.1.17)

v̂ := − [DF(2, 0)]−1 d
2

dt2
[(I −Q)F(2, tv)]

∣∣∣∣
t=0

=

(
−8 cos(4θ),

3

2
cos(4θ)

)
, (A.1.18)

d2

dtds
QF(2, tv + sv̂)

∣∣∣∣
t=s=0

= (0,−12 cos(2θ)), (A.1.19)

1

3

d3

dt3
QF(2, tv)

∣∣∣∣
t=0

= (0, 4 cos(2θ)) , (A.1.20)

Q
d2

dtds
F(2, tv + sṽ) = (0, 0), (A.1.21)

1

2
Q∂bDF(2, 0)v̂ = (0, 0), (A.1.22)

2Q∂bDF(2, 0)ṽ = (0, 2 cos(2θ)). (A.1.23)

Proof. To prove (Equation A.1.14), it follows from Lemma A.1.2 that

∂bDF(b, 0)v =

(
sin(2θ), 2b

( 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη − cos(2θ)

))
= (sin(2θ), 0) ,

where the last equality follows from (Equation A.1.30).

To prove (Equation A.1.15), note that 1
2
d2

dt2
F(2, tv)

∣∣∣∣
t=0

=
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(
1
2
d2

dt2
F1(2, tv)

∣∣∣∣
t=0

, 1
2
(I − P0) d

2

dt2
F̃2(2, tv)

∣∣∣∣
t=0

)
. Hence it follows from Lemma A.1.3 that

1

2

d2

dt2
F1(2, tv)

∣∣∣∣
t=0

= −4 cos(2θ) sin(2θ) + 4 sin(2θ)

 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη

+ 2

 
(cos(2θ)− cos(2η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη

= −4 cos(2θ) sin(2θ) + 4 sin(2θ) cos(2θ)− 2 sin(4θ)

= −2 sin(4θ),

where the second equality follows from (Equation A.1.30) and Lemma A.1.11. Also,

Lemma A.1.3 gives

1

2
(I − P0)

d2

dt2
F̃2(2, tv)

∣∣∣∣
t=0

= (I − P0)
[
6 cos2(2θ)

]
− 2(I − P0)

 
(cos(2θ)− cos(2η))(5 cos(2θ) + cos(2η))

2− 2 cos(θ − η)
dη

= −4(I − P0) cos2(2θ)− 2(I − P0)

 
(cos(2θ)− cos(2η)) cos(2η)

2− 2 cos(θ − η)
dη

= −3 cos(4θ),

where the second equality follows from (Equation A.1.30) and the last equality follows from

Lemma A.1.9. Therefore we obtain (Equation A.1.15).

To prove (Equation A.1.16), we can repeat the above computation and find that d2

dt2
F̃2(b, tv) ∈

span {cos(4θ)}, independently of b. By projecting it to the space of the second mode, we obtain

(Equation A.1.16).

To prove (Equation A.1.17), note that (I−Q)∂bDF(2, 0)v = (sin(2θ), 0), which follows from

(Equation A.1.14). Also, it follows from Lemma A.1.2 and (Equation A.1.29) that

DF(2, 0)(−2 cos(2θ), 0) = (sin(2θ), 0) = (I −Q)∂bDF(2, 0)v.
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This immediately implies (Equation A.1.17).

To prove (Equation A.1.18), we use Lemma A.1.2 and (Equation A.1.30) and

(Equation A.1.29) to obtain

DF(2, 0)

(
8 cos(4θ),−3

2
cos(4θ)

)
= (−4 sin(4θ),−6 cos(4θ)) =

d2

dt2
F(2, tv)

∣∣∣∣
t=0

,

where the last equality follows from (Equation A.1.15). Therefore we obtain

− [DF(2, 0)]−1 d
2

dt2
[(I −Q)F(2, tv)]

∣∣∣∣
t=0

=

(
−8 cos(4θ),

3

2
cos(4θ)

)
,

which proves (Equation A.1.18).

To prove (Equation A.1.19), note that d2

dtds
QF =

(
0, P2

d2

dtds
F̃2

)
. Therefore, it follows

from (Equation A.1.18) and (Equation A.1.8) in Lemma A.1.4 that (plugging g = 0, g̃ =

−8 cos(4θ), r = cos(2θ), and r̃ = 3
2

cos(4θ))

d2

dtds
P2F2(2, tv + sṽ) = P2 [(18 cos(2θ) cos(4θ) + 16 cos(2θ) cos(4θ))

−2

 
(cos(2θ)− cos(2η))(15

2
cos(4θ) + 3

2
cos(4η))

2− 2 cos(θ − η)
dη

−3

 
(cos(4θ)− cos(4η))(5 cos(2θ) + cos(2η))

2− 2 cos(θ − η)
dη

−16

 
(cos(4θ) + cos(4η))(cos(2θ)− cos(2η))

2− 2 cos(θ − η)
dη

−32

 
cos(4η) sin(2θ) sin(θ − η)

2− 2 cos(θ − η)
dη

]
=: P2K1 + P2K2 + P2K3 + P2K4 + P2K5.

For K1, we compute

P2K1 = P2(34 cos(2θ) cos(4θ)) = 17P2(cos(2θ) + cos(6θ)) = 17 cos(2θ). (A.1.24)
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For K2 we compute

P2K2 = P2

(
−15 cos(4θ)

 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη − 3

 
(cos(2θ)− cos(2η)) cos(4η)

2− 2 cos(θ − η)
dη

)
= P2

(
−15 cos(2θ) cos(4θ) +

3

2
(cos(2θ)− cos(6θ))

)
= P2(−6 cos(2θ)− 9 cos(6θ))

= −6 cos(2θ), (A.1.25)

where the second equality follows from (Equation A.1.30) and Lemma A.1.9. ForK3, we compute

P2K3 = P2

(
−15 cos(2θ)

 
cos(4θ)− cos(4η)

2− 2 cos(θ − η)
dη − 3

 
(cos(4θ)− cos(4η)) cos(2η)

2− 2 cos(θ − η)
dη

)
= P2 (−30 cos(2θ) cos(4θ)− 3 cos(6θ))

= P2 (−15 cos(2θ)− 18 cos(6θ))

= −15 cos(2θ), (A.1.26)

where the second equality follows from (Equation A.1.30) and Lemma A.1.9. ForK4, we compute

P2K4 = P2

(
−16 cos(4θ)

 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη − 16

 
(cos(2θ)− cos(2η)) cos(4η)

2− 2− cos(θ − η)
dη

)
= P2 (−16 cos(2θ) cos(4θ) + 8 cos(2θ)− 8 cos(6θ))

= P2 (−16 cos(6θ))

= 0, (A.1.27)
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where the second equality follows from (Equation A.1.30) and Lemma A.1.9. ForK5, we compute

P2K5 = −16P2(sin(2θ) sin(4θ))

= −8P2 (cos(2θ)− cos(6θ))

= −8 cos(2θ), (A.1.28)

where the first equality follows from (Equation A.1.29). Hence it follows from (Equation A.1.24),

(Equation A.1.25), (Equation A.1.26), (Equation A.1.27) and (Equation A.1.28) that

d2

dtds
QF =

(
0, P2

d2

dtds
F̃2

)
= (0,−12 cos(2θ)),

which proves (Equation A.1.19).

To prove (Equation A.1.20), note that 1
3
Q d3

dt3
F =

(
0, 1

3
P2

d3

dt3
F̃2

)
. We use Lemma A.1.6 with

r = cos(2θ) and obtain

1

3
P2

d3

dt3
F̃2(2, tv) =P2

[
4

 
(cos(2θ)− cos(2η))(3 cos2(2θ) + 2 cos(2θ) cos(2η) + cos2(2η))

2− 2 cos(θ − η)
dη

−8

 
(cos(2θ)− cos(2η))3

(2− 2 cos(θ − η))2
dη

−16 sin(2θ)

 
(cos(2θ)− cos(2η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη

+8

 
(3 cos2(2θ)− 4 sin2(2θ))(cos(2θ)− cos(2η))

2− 2 cos(θ − η)
dη

+
(
32 cos(2θ) sin2(2θ)− 16 cos3(2θ)

)]
= P2L1 + P2L2 + P2L3 + P2L4 + P2L5.
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For L1, we compute

P2L1 = P2

(
12 cos2(2θ)

 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη + 8 cos(2θ)

 
(cos(2θ)− cos(2η)) cos(2η)

2− 2 cos(θ − η)
dη

+2

 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη + 2

 
(cos(2θ)− cos(2η)) cos(4η)

2− 2 cos(θ − η)
dη

)
= P2

(
12 cos3(2θ) + 8 cos(2θ)

(
−1

2
+

1

2
cos(4θ)

)
+ 2 cos(2θ) + (− cos(2θ) + cos(6θ))

)
= P2(8 cos(2θ) + 6 cos(6θ))

= 8 cos(2θ),

where the second equality follows from (Equation A.1.30) and A.1.9. For L2, we use

Lemma A.1.10 and obtain

P2L2 = −8P2

(
9

4
cos(2θ)− cos(6θ)

)
= −18 cos(2θ).

For L3, we use Lemma A.1.11 and obtain

P2L3 = 16P2 sin(2θ) sin(4θ) = 8P2(cos(2θ)− cos(6θ)) = 8 cos(2θ).

For L4, we compute

P2L4 = P2

(
24 cos2(2θ)

 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη − 32 sin2(2θ)

 
cos(2θ)− cos(2η)

2− 2 cos(θ − η)
dη

)
= P2(24 cos3(2θ)− 32 sin2(2θ) cos(2θ))

= P2(10 cos(2θ) + 14 cos(6θ))

= 10 cos(2θ),
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where the second equality follows from (Equation A.1.30). For L5, it follows immediately that

P2L5 = P2 (−4 cos(2θ)− 12 cos(6θ)) = −4 cos(2θ).

Collecting the above results, we obtain

1

3
P2

d3

dt3
F̃2(2, tv) = 4 cos(2θ),

which implies (Equation A.1.20).

To prove (Equation A.1.21), we use (Equation A.1.17) and (Equation A.1.8) in Lemma A.1.4

with g = 0, g̃ = 2 cos(2θ), r = cos(2θ) and r̃ = 0 and obtain

P2
d2

dtds
F̃2(2, tv + sṽ) = P2

(
−4 cos2(2θ) + 4

 
(cos(2θ) + cos(2η))(cos(2θ)− cos(2η))

2− 2 cos(θ − η)
dη

+8

 
cos(2η) sin(2θ) sin(θ − η)

2− 2 cos(θ − η)
dη

)
= P2

(
−4 cos2(2θ) + 4 cos2(2θ) + 4

(
−1

2
+

1

2
cos(4θ)

)
+ 4 sin2(2θ)

)
= 0,

where the second equality follows from (Equation A.1.30), (Equation A.1.29) and ( A.1.9). This

implies (Equation A.1.21).

To prove (Equation A.1.22), it follows from (Equation A.1.18) and Lemma A.1.2 that

∂bDF(2, 0)

(
−8 cos(4θ),

3

2
cos(4θ)

)
= (3 sin(4θ), 2 cos(4θ)).

By projecting it to the image of Q, we obtain (Equation A.1.22).

To prove (Equation A.1.23), we note thatQ∂bDF(2, 0)ṽ =
(

0, P2∂b
d
dt
F̃2(2, tṽ)

) ∣∣∣∣
t=0

. Hence it

follows from (Equation A.1.4) in Lemma A.1.2 and (Equation A.1.17) that P2∂b
d
dt
F̃2(2, tṽ)

∣∣∣∣
t=0

=

232



cos(2θ). This implies (Equation A.1.23).

A.1.3 Basic Integrals

Lemma A.1.8. For N 3 m ≥ 1, it holds that

 
cos(mη) sin(θ − η)

2− 2 cos(θ − η)
dη =

1

2
sin(mθ), (A.1.29)

 
cos(mθ)− cos(mη)

2− 2 cos(θ − η)
dη =

m

2
cos(mθ). (A.1.30)

Proof. For (Equation A.1.29), it is clear that
ffl cos(mη) sin(θ−η)

2−2 cos(θ−η)
dη = 1

2

ffl
cos(mη) cot

(
θ−η

2

)
dη =

1
2
H(cos(mθ))(θ), where H denotes the Hilbert transform in the periodic domain. Therefore the

result follows immediately since H(cos(mθ))(θ) = sin(mθ).

For (Equation A.1.30), we recall that
ffl f(θ)−f(η)

1−cos(θ−η)
dη = Λf(θ) =: (−∆)

1
2f(θ). Thus

(Equation A.1.30) follows immediately.

Lemma A.1.9.

 
(cos(2θ)− cos(2η)) cos(4η)

2− 2 cos(θ − η)
dη = −1

2
cos(2θ) +

1

2
cos(6θ), (A.1.31)

 
(cos(2θ)− cos(2η)) cos(2η)

2− 2 cos(θ − η)
dη = −1

2
+

1

2
cos(4θ), (A.1.32)

 
(cos(4θ)− cos(4η)) cos(2η)

2− 2 cos(θ − η)
dη = cos(6θ), (A.1.33)

 
(cos(2θ)− cos(2η)) sin(2η)

2− 2 cos(θ − η)
dη =

1

2
sin(4θ). (A.1.34)

Proof. We will show (Equation A.1.31) only. (Equation A.1.32), (Equation A.1.33) and
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(Equation A.1.34) can be proved in the same way. For (Equation A.1.31), one can write

 
(cos(2θ)− cos(2η)) cos(4η)

2− 2 cos(θ − η)
dη =

1

2
Λ(cos(2θ) cos(4θ))(θ)− 1

2
cos(2θ)Λ(cos(4θ))(θ)

= −1

2
cos(2θ) +

1

2
cos(6θ),

where the last equality follows from (Equation A.1.30).

Lemma A.1.10.

 
(cos(2θ)− cos(2η))3

(2− 2 cos(θ − η))2
dη =

9

4
cos(2θ)− cos(6θ).

Proof. We compute

 
(cos(2θ)− cos(2η))3

(2− 2 cos(θ − η))2
dη =

 
(−2 sin(θ − η) sin(θ + η))3(

4 sin2
(
θ−η

2

))2 dη = 4

 
−

cos3
(
θ−η

2

)
sin3(θ + η)

sin
(
θ−η

2

) dη

= 4

 
cos3 η

2
sin3(2θ + η)

sin η
2

dη = 4

 
cos3 η

2

sin η
2

(
3 sin2(2θ) cos(2θ) cos2 η sin η + cos3(2θ) sin3 η

)
dη

= 12 sin2(2θ) cos(2θ)

 
cos3 η

2
cos2 η sin η

sin η
2

dη + 4 cos3(2θ)

 
cos3 η

2
sin3 η

sin η
2

dη

=
21

4
sin2(2θ) cos(2θ) +

5

4
cos3(2θ)

=
9

4
cos(2θ)− cos(6θ),

which proves the lemma.

Lemma A.1.11.

 
(cos(2θ)− cos(2η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη = − sin(4θ).
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Proof. Using the integration by parts, we compute

 
(cos(2θ)− cos(2η))2 sin(θ − η)

(2− 2 cos(θ − η))2
dη = −2

 
(cos(2θ)− cos(2η)) sin(2η)

2− 2 cos(θ − η)
dη.

Therefore the result follows from (Equation A.1.34).
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APPENDIX B

DERIVATIVES OF STREAM FUNCTION

B.1 Derivatives of the stream function

In this appendix, we will derive some formulae for zero-mean stream function by using Fourier

series.

Lemma B.1.1. For ρ > 0, let h ∈ L2(∂Bρ) such that
´
|y|=ρ h(y)dH1(y) = 0. Then it holds that

for x = (r cos θ, r sin θ),

1

2π

ˆ
|y|=ρ

h(y) log |x− y|dH1(y) =


−
∑∞

n=−∞n6=0
ρ

2|n| ĥ(ρ, n)
(
r
ρ

)|n|
einθ if ρ ≥ r,

−
∑∞

n=−∞n6=0
ρ

2|n| ĥ(ρ, n)
(
ρ
r

)|n|
einθ if ρ < r,

where ĥ(ρ, n) = 1
2π

´
∂B
h(ρy)e−inydH1(y).

Proof. By adapting the abuse of notation h(y) = h(ρ, η), for y = (ρ cos η, ρ sin η), we have that

1

2π

ˆ
|y|=ρ

h(y) log |x− y|dH1(y) =
ρ

4π

ˆ
T
h(ρ, η) log |(r cos θ, r sin θ)− (ρ cos η, ρ sin η)|2dη

=
ρ

4π

ˆ
T
h(ρ, η) log(r2 + ρ2 − 2rρ cos(θ − η))dη.

Using the Fourier expansion h(ρ, η) :=
∑∞

n=−∞,n 6=0 ĥ(ρ, n)einη where ĥ(ρ, n) :=

1
2π

´
T h(ρ, η)e−inηdη, we have

ρ

4π

ˆ
T
h(ρ, η) log(r2 + ρ2 − 2rρ cos(θ − η))dη

=
∞∑

n=−∞,n 6=0

ρ

4π
ĥ(ρ, n)

ˆ
T
einη log(r2 + ρ2 − 2rρ cos(θ − η))dη︸ ︷︷ ︸

=:An(r,ρ,θ)

,
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where we used ĥ(ρ, 0) = 0 since h has zero mean on ∂Bρ. To compute An, we recall from [24,

Lemma A.1] that for 0 ≤ x ≤ 1 and Z 3 n 6= 0, it holds that

ˆ
T
einη log(1 + x2 − 2x cos(θ − η))dη = −2π

|n|
einθx|n|. (B.1.1)

Then it directly follows from (Equation B.1.1) that

An(r, ρ, θ) =


− 2π
|n|e

inθ
(
r
ρ

)|n|
if ρ ≥ r

− 2π
|n|e

inθ
(
ρ
r

)|n| if ρ < r.

Plugging this into the above equation, the desired result follows immediately.

Lemma B.1.2. For a bounded m-fold symmetric domain D in R2, let us consider a decomposition

of 1D ∗ N ,

1D ∗ N (r, θ) = g ∗ N (r) + (1D − g) ∗ N (r, θ) =: ϕr(r) + ϕm(r, θ),

where g(r) := 1
2πr
H1 (∂Br ∩D). Then,

∂rϕm(r, θ) =
1

2π

ˆ
T

ˆ r

0

h(ρ, η + θ)

(
∞∑
n=1

(ρ
r

)nm+1

cos(nmη)

)
dρdη

− 1

2π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)

(
∞∑
n=1

(
r

ρ

)nm−1

cos(nmη)

)
dρdη (B.1.2)

∂θϕm(r, θ) = − r

2π

ˆ
T

ˆ r

0

h(ρ, η + θ)

(
∞∑
n=1

(ρ
r

)nm+1

sin(nmη)

)
dρdη

− r

2π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)

(
∞∑
n=1

(
r

ρ

)nm−1

sin(nmη)

)
dρdη, (B.1.3)

where h(ρ, θ) := 1D(ρ(cos θ, sin θ))− g(ρ).
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Proof. We compute that for x := (r cos θ, r sin θ),

ϕm(r, θ) =
1

2π

ˆ
R2

(1D(y)− g(|y|)) log |x− y|dy

=

ˆ ∞
0

 1

2π

ˆ
|y|=ρ

(1D(y)− g(|y|))︸ ︷︷ ︸
=:h(y)

log |x− y|dH1(y)

 dρ.

By adapting the abuse of notation h(y) = h(ρ, η) for y = (ρ cos η, ρ sin η), we have
´
T h(ρ, η)dη =

0 for all ρ > 0. SinceD ism-fold symmetric, we also have that η 7→ h(ρ, η) is 2π
m

-periodic function

for each fixed ρ. Therefore, it follows from Lemma B.1.1 that

ϕm(r, θ) := −
∞∑

n=−∞,n6=0

1

2|nm|

(ˆ r

0

ρĥ(ρ, nm)
(ρ
r

)|nm|
einmθdρ+

ˆ ∞
r

ρĥ(ρ, nm)

(
r

ρ

)|nm|
einmθdρ

)
,

where ĥ(ρ, nm) := 1
2π

´
T h(ρ, η)e−inmηdη. Therefore we have

∂rϕm(r, θ) = −
∞∑

n=−∞,n 6=0

1

2

(
−
ˆ r

0

ĥ(ρ, nm)
(ρ
r

)|nm|+1

einmθdρ+

ˆ ∞
r

ĥ(ρ, nm)

(
r

ρ

)|nm|−1

einmθdρ

)
,

(B.1.4)

∂θϕm(r, θ) = −
∞∑

n=−∞,n6=0

in

2|n|
r

(ˆ r

0

ĥ(ρ, nm)
(ρ
r

)|nm|+1

einmθdρ+

ˆ ∞
r

ĥ(ρ, nm)

(
r

ρ

)|nm|−1

einmθdρ

)
.

(B.1.5)

To simplify the radial derivative, we use the definition of ĥ and (Equation B.1.4) to obtain

∂rϕm(r, θ) =
1

4π

ˆ
T

ˆ r

0

h(ρ, η)

(∑
n 6=0

(ρ
r

)|nm|+1

einm(θ−η)

)
dρdη

− 1

4π

ˆ
T

ˆ ∞
r

h(ρ, η)

(∑
n6=0

(
r

ρ

)|nm|−1

einm(θ−η)

)
dρdη
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=
1

4π

ˆ
T

ˆ r

0

h(ρ, η + θ)

(∑
n6=0

(ρ
r

)|nm|+1

e−inmη

)
dρdη

− 1

4π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)

(∑
n6=0

(
r

ρ

)|nm|−1

e−inmη

)
dρdη

=
1

2π

ˆ
T

ˆ r

0

h(ρ, η + θ)

(
∞∑
n=1

(ρ
r

)nm+1

cos(nmη)

)
dρdη

− 1

2π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)

(
∞∑
n=1

(
r

ρ

)nm−1

cos(nmη)

)
dρdη,

where we used the change of variables, η 7→ η + θ to get the second inequality. This proves

(Equation B.1.2). In the same way, we use (Equation B.1.5) and the change of variables to obtain

∂θϕm(r, θ) = − r

4π

ˆ
T

ˆ r

0

h(ρ, η)

(∑
n 6=0

in

|n|

(ρ
r

)|nm|+1

einm(θ−η)

)
dρdη

− r

4π

ˆ
T

ˆ ∞
r

h(ρ, η)

(∑
n6=0

in

|n|

(
r

ρ

)|nm|−1

einm(θ−η)

)
dρdη

= − r

4π

ˆ
T

ˆ r

0

h(ρ, η + θ)

(∑
n6=0

in

|n|

(ρ
r

)|nm|+1

e−inmη

)
dρdη

− r

4π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)

(∑
n6=0

in

|n|

(
r

ρ

)|nm|−1

e−inmη

)
dρdη

= − r

2π

ˆ
T

ˆ r

0

h(ρ, η + θ)

(
∞∑
n=1

(ρ
r

)nm+1

sin(nmη)

)
dρdη

− r

2π

ˆ
T

ˆ ∞
r

h(ρ, η + θ)

(
∞∑
n=1

(
r

ρ

)nm−1

sin(nmη)

)
dρdη,

which proves (Equation B.1.3).

Lemma B.1.3. For a patch D that satisfies the assumptions (a)-(c) in subsection subsection 6.2.2,

239



it holds that for r ∈ (rmin, rmax) and η := u−1,

∂rϕm(r, θ) =

ˆ rmax

rmin

f1(ρ, r, θ)dρ

∂θϕm(r, θ) =

ˆ rmax

rmin

f2(ρ, r, θ)dρ,

where

f1(ρ, r, θ) =


1

2π
ρ
r

(
arctan

(
( r
ρ

)m sin (m(θ−η(ρ)))

1−( rρ)
m

cos (m(θ−η(ρ)))

)
− arctan

(
( r
ρ

)m sin (m(θ+η(ρ)))

1−( rρ)
m

cos (m(θ+η(ρ)))

))
if ρ ≥ r

1
2π

ρ
r

(
arctan

(
( ρ
r

)m sin (m(θ+η(ρ)))

1−( ρr )
m

cos (m(θ+η(ρ)))

)
− arctan

(
( ρ
r

)m sin (m(θ−η(ρ)))

1−( ρr )
m

cos (m(θ−η(ρ)))

))
if ρ < r,

(B.1.6)

f2(ρ, r, θ) =


ρ

4π
log
(

1 +
4( r
ρ

)m sin(mη(ρ)) sin(mθ)

1+( r
ρ

)2m−2( r
ρ

)m cos(m(θ−η(ρ)))

)
if ρ ≥ r

ρ
4π

log
(

1 +
4( ρ
r

)m sin(mη(ρ)) sin(mθ)

1+( ρ
r

)2m−2( ρ
r

)m cos(m(θ−η(ρ)))

)
if ρ < r.

(B.1.7)

Proof. The proof is based on Lemma B.1.2. Using m-fold symmetry and evenness of the patch,

we will compute the series.

From Lemma B.1.2 and Fubini theorem, it follows that

∂rϕm(r, θ) =
1

2π

∞∑
n=1

ˆ r

0

(ρ
r

)nm+1
(ˆ

T
h(ρ, s+ θ) cos(nms)ds

)
dρ

− 1

2π

∞∑
n=1

ˆ ∞
r

(
r

ρ

)nm−1(ˆ
T
h(ρ, s+ θ) cos(nms)ds

)
dρ, (B.1.8)

and

∂θϕm(r, θ) = − r

2π

∞∑
n=1

ˆ r

0

(ρ
r

)nm+1
(ˆ

T
h(ρ, s+ θ) sin(nms)ds

)
dρ

− r

2π

∞∑
n=1

ˆ ∞
r

(
r

ρ

)nm−1(ˆ
T
h(ρ, s+ θ) sin(nms)ds

)
dρ, (B.1.9)
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where h(ρ, s) := 1D(ρ cos s, ρ sin s)− g(ρ). Using the definition of η = u−1, the following holds

for s ∈ [− π
m
, π
m

]:

h(ρ, s) =


1− g(ρ) if s ∈ (−η(ρ), η(ρ)),

−g(ρ) if s ∈ [− π
m
, π
m

]\(−η(ρ), η(ρ)).

Therefore m-fold symmetry of D yields that

ˆ
T
h(ρ, s+ θ) cos(nms)ds = m

ˆ π
m

− π
m

h(ρ, s) cos(nm(s− θ))ds

= m

ˆ η(ρ)

−η(ρ)

cos(nm(s− θ))ds

=
1

n
(sin(nm(η(ρ)− θ)) + sin(nm(η(ρ) + θ))) . (B.1.10)

Similarly, we have

ˆ
T
h(ρ, s+ θ) sin(nms)ds = − 1

n
(cos(nm(η(ρ)− θ))− cos(nm(η(ρ) + θ))) (B.1.11)

Hence (Equation B.1.8) and (Equation B.1.10) yield that

∂rϕm(r, θ)

=
1

2π

ˆ r

0

∞∑
n=1

(
1

n

(ρ
r

)nm+1

(sin(nm(η(ρ)− θ)) + sin(nm(η(ρ) + θ)))

)
dρ

− 1

2π

ˆ ∞
r

∞∑
n=1

(
1

n

(
r

ρ

)nm−1

(sin(nm(η(ρ)− θ)) + sin(nm(η(ρ) + θ)))

)
dρ

=
1

2π

ˆ r

0

ρ

r

(
arctan

( (
ρ
r

)m
sin(m(η(ρ)− θ))

1−
(
ρ
r

)m
cos(m(η(ρ)− θ))

)
+ arctan

( (
ρ
r

)m
sin(m(η(ρ) + θ))

1−
(
ρ
r

)m
cos(m(η(ρ) + θ))

))
dρ

− 1

2π

ˆ ∞
r

ρ

r

arctan


(
r
ρ

)m
sin(m(η(ρ)− θ))

1−
(
r
ρ

)m
cos(m(η(ρ)− θ))


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+ arctan


(
r
ρ

)m
sin(m(η(ρ) + θ))

1−
(
r
ρ

)m
cos(m(η(ρ) + θ))

 dρ,

where the last equality follows from (Equation B.2.2) in Lemma B.2.1. Since the integrands in

the above integrals are zero if ρ < rmin or ρ > rmax, we can replace 0 and∞ in integration limits

by rmin and rmax, respectively. This proves (Equation B.1.6). To prove (Equation B.1.7), we use

(Equation B.1.9),(Equation B.1.11) and (Equation B.2.1) to obtain

∂θϕm(r, θ)

=
r

2π

ˆ r

0

∞∑
n=1

(
1

n

(ρ
r

)nm+1

(cos(nm(η(ρ)− θ))− cos(nm(η(ρ) + θ)))

)
dρ

+
r

2π

ˆ ∞
r

∞∑
n=1

(
1

n

(
r

ρ

)nm−1

(cos(nm(η(ρ)− θ))− cos(nm(η(ρ) + θ)))

)
dρ

=
r

4π

ˆ r

0

ρ

r
log

(
1 +

(
ρ
r

)2m − 2
(
ρ
r

)m
cos(m(η(ρ) + θ))

1 +
(
ρ
r

)2m − 2
(
ρ
r

)m
cos(m(η(ρ)− θ))

)
dρ

+
r

4π

ˆ ∞
r

ρ

r
log

1 +
(
r
ρ

)2m

− 2
(
r
ρ

)m
cos(m(η(ρ) + θ))

1 +
(
r
ρ

)2m

− 2
(
r
ρ

)m
cos(m(η(ρ)− θ))

 dρ

=
1

4π

ˆ r

0

ρ log

(
1 +

2
(
ρ
r

)m
(cos(m(η(ρ)− θ))− cos(m(η(ρ) + θ)))

1 +
(
ρ
r

)2m − 2
(
ρ
r

)m
cos(m(η(ρ)− θ))

)
dρ

+
1

4π

ˆ ∞
r

ρ log

1 +
2
(
r
ρ

)m
(cos(m(η(ρ)− θ))− cos(m(η(ρ) + θ)))

1 +
(
r
ρ

)2m

− 2
(
r
ρ

)m
cos(m(η(ρ)− θ))

 dρ

=
1

4π

ˆ r

0

ρ log

(
1 +

4(ρ
r
)m sin(mη(ρ)) sin(mθ)

1 + (ρ
r
)2m − 2(ρ

r
)m cos(m(θ − η(ρ)))

)
dρ

+
1

4π

ˆ ∞
r

ρ log

(
1 +

4( r
ρ
)m sin(mη(ρ)) sin(mθ)

1 + ( r
ρ
)2m − 2( r

ρ
)m cos(m(θ − η(ρ)))

)
dρ,

where the last equality follows from cos(x − y) − cos(x + y) = 2 sinx sin y. This proves

(Equation B.1.7).
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B.2 Helpful lemmas

Lemma B.2.1. For |x| < 1 and y ∈ (−π, π), it holds that

∞∑
n=1

1

n
xn cos(ny) = −1

2
log(1 + x2 − 2x cos y), (B.2.1)

∞∑
n=1

1

n
xn sin(ny) = arctan

(
x sin y

1− x cos y

)
. (B.2.2)

Consequently, we have

∞∑
n=1

xn cos(ny) =
x(cos y − x)

(1− x)2 + 2x(1− cos y)
, (B.2.3)

∞∑
n=1

xn sin(ny) =
x sin y

(1− x)2 + 2x(1− cos y)
. (B.2.4)

Proof. Let f(x, y) :=
∑∞

n=1
1
n
xneiny. Then we compute

∂xf(x, y) =
1

x

∞∑
n=1

(
xeiy

)n
=

eiy

1− xeiy
=

(cos y − x) + i sin y

(1− x cos y)2 + x2 sin2 y

= ∂x

(
−1

2
log(1 + x2 − 2x cos y) + i arctan

(
x sin y

1− x cos y

))
.

Since f(0, y) = 0, we have f(x, y) = −1
2

log(1 + x2 − 2x cos y) + i arctan
(

x sin y
1−x cos y

)
. Equating

the real and imaginary parts separately, we can obtain (Equation B.2.1) and (Equation B.2.2). By

differentiating (Equation B.2.1) and (Equation B.2.2) and multiplying by x, one can easily obtain

(Equation B.2.3) and (Equation B.2.4).

Lemma B.2.2. For m ≥ 3 and a, b ∈ (0, 1), it holds that

ˆ 1

0

x−1− 2
m

(
arctan

(
ax

1− x

)
− arctan

(
ax

1− bx

))
dx . 1− b
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Proof. By the change of variables, bx 7→ x, we have

ˆ 1

0

x−1− 2
m arctan

(
ax

1− bx

)
dx =

ˆ b

0

b
2
mx−1− 2

m arctan

( ax
b

1− x

)
dx

≥
ˆ b

0

bx−1− 2
m arctan

(
ax

1− x

)
dx,

where we used b
2
m ≥ b for 0 < b < 1 and m ≥ 3. Therefore it follows that

ˆ 1

0

x−1− 2
m

(
arctan

(
ax

1− x

)
− arctan

(
ax

1− bx

))
dx ≤

ˆ 1

b

x−1− 2
m arctan

(
ax

1− x

)
dx

+ (1− b)
ˆ b

0

x−1− 2
m arctan

(
ax

1− x

)
dx

. 1− b,

which proves the desired inequality.

Lemma B.2.3. For m ≥ 3 and a ∈ (0, 1), it holds that

ˆ 1

0

x−1− 2
m log

(
1 +

ax

(1− x)2

)
dx .

√
a. (B.2.5)

Proof. If x < 1
2
, then log(1 + ax

(1−x)2 ) . ax. Therefore,

ˆ 1

0

x−1− 2
m log

(
1 +

ax

(1− x)2

)
dx .

ˆ 1
2

0

ax−
2
mdx+

ˆ 1

1
2

log

(
1 +

ax

(1− x)2

)
dx

. a+

ˆ 1

1
2

log

(
1 +

a

(1− x)2

)
dx, (B.2.6)

where we used m ≥ 3 to estimate the first integral and x ∈ (1
2
, 1) for the second integral. To
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estimate the second integral, we compute

ˆ 1

1
2

log

(
1 +

a

(1− x)2

)
dx =

ˆ 1

1
2

d

dx
(x− 1) log

(
1 +

a

(1− x)2

)
dx

=
1

2
log(1 + 4a) +

ˆ 1

1
2

2a

(1− x)2 + a
dx

. a+

ˆ 1−
√
a

1
2

a

(1− x)2
dx+

ˆ 1

1−
√
a

1dx

.
√
a. (B.2.7)

Thus the desired result follows from (Equation B.2.6) and (Equation B.2.7).
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