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SUMMARY 

Malaria is endemic in many parts of the world, including regions of sub-Saharan 

Africa, South America, and parts of Asia. Currently, there are five species known to cause 

malaria in humans: P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi. Among 

them, P. knowlesi is a zoonotic parasite restricted to mostly South East Asia. According to 

the World Malaria Report from 2018 1, these five species were responsible for nearly 219 

million infections, resulting in an estimated 435,000 deaths related to malaria in 2017. One 

of the milestones set by the World Health Organization (WHO) Global Technical Strategy 

is the elimination of malaria in at least ten countries that were malaria endemic in 20151. 

 Malaria control strategies still rely on traditional vector control efforts, such as 

indoor residual spraying and the use of insecticide-treated bednets along with case 

management, using proper diagnosis and treatment. However, there has been an increase 

in the number of malaria infections that are resistant to first-line therapies, such as 

artemisinin combination therapies (ACT) 1. Reports of resistance are especially high in 

parts of South East Asia 1. In order to combat the spread of resistance, it is essential to 

monitor the movement of drug-resistant parasites using molecular markers of resistance 

and adopt appropriate treatment strategies. Recent progress in genomics research has 

helped to identify genetic markers associated with resistance and use them to understand 

the molecular mechanisms involved in the development of resistance, study the 

evolutionary dynamics of resistance, and track the spread of resistance. 

 The increasing throughput and decreasing costs of Next Generation Sequencing 

(NGS) technologies enable large-scale surveillance of outbreaks and spread of drug 
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resistance. However, there is a lack of standardized tools for the analysis of the large 

amounts of data produced from NGS sequencers, especially in a public health context. The 

work presented in this thesis describes solutions for the surveillance of outbreaks of 

infectious diseases and the spread of drug resistance on a global scale. The goal of this 

dissertation is to develop fast and efficient algorithms that can be scaled according to the 

computational resources available. 

 Genomic clustering is a commonly used technique to understand the relatedness of 

isolates from outbreaks of infectious diseases. Traditional methods used to estimate genetic 

distances between organisms use pairwise or multiple sequence alignment to identify 

regions of similarity. Significant advances have been made in alignment-based genomic 

clustering techniques over the past decade, however, they still rely on computationally 

intensive processes. In an effort to overcome this challenge, I explored the use of 

alignment-free methods for genomic clustering, which often improves the performance of 

an algorithm by an order of magnitude. 

 Alignment free methods usually start with breaking genomic sequences into 

overlapping fragments of the same length, called k-mers. For example, if the size of the 

fragment (k) is 31, we would identify and store all substrings of length 31 from the genomic 

data. Each substring and its corresponding frequency in the genome can be used as a proxy 

for genomic diversity. The method I propose in Chapter 3, Gentoo, uses the overlap of k-

mer sets from sequencing read data of two organisms to estimate their relatedness. This 

information can be used to cluster isolates in an outbreak. This new method provides a 

more scalable and accurate platform for genomic clustering as compared to other 

established techniques and can significantly impacts genetic epidemiology in public health. 
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Working with the Malaria Branch at the Centers for Disease Control and Prevention 

(CDC), I realized the need for more robust methods to track the spread of drug resistance. 

The development of drug resistance in a pathogen is usually a result of the selective 

pressure due to treatment. Ineffective or incomplete treatment and control strategies end 

up selecting pathogens that have developed mutations conferring resistance to that drug 

treatment. Drug resistance can severely affect the epidemiological effort to contain the 

spread of infectious diseases such as malaria. 

Through treatment efficacy studies (TES) and genome-wide association studies 

(GWAS), molecular markers associated with resistance to antimalarial drugs have been 

identified. These markers are generally Single Nucleotide Polymorphisms (SNPs) in 

essential genes involved with binding or efflux of drug molecules. Considering this, I 

developed a framework to identify the prevalence of SNPs associated with drug resistance 

from NGS data. This framework was adopted by The Malaria Branch at CDC for the 

surveillance of antimalarial drug resistance. 

Identifying SNPs from sequencing reads involves aligning the reads against a 

reference genome and calling SNPs from the alignment using variant calling algorithms. 

In the past decade, many different algorithms have been developed for the identification of 

SNPs from sequencing data. However, recent publications have shown that variant calls 

made by different algorithms on the same dataset are not always the same. Relying on a 

single variant calling methodology makes it hard to distinguish between true variants and 

sequencing errors. Commonly used variant call filtering techniques rely on organism-

specific, population-scale databases to identify true variant calls. Population level 

information, however, is not available for all organisms. To address this concern, in 
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Chapter 4, I describe a consensus-based variant calling framework called NeST, which 

implements multiple standard variant calling pipelines and generates a consensus variant 

call. NeST provides a framework enabling the identification of high confidence variant 

calls and overcomes the inherent biases of the statistical models implemented in existing 

methodologies. The consensus framework also provides a metric to identify true variants 

from sequencing reads when standard variant filtration techniques cannot be utilized. 

NeST implements a scalable consensus variant calling framework that accurately 

identifies high confidence variant calls associated with drug resistance. NeST forms the 

foundation for the development of a surveillance system to track the global spread of drug 

resistance in malaria at the CDC. 

The following chapters will describe the current state-of-the-art and the novel 

improvements developed through this research towards improving genetic epidemiology 

in public health. 
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CHAPTER 1. AN INTRODUCTION TO GENOMICS IN MALARIA EPIDEMIOLOGY 

1.1 Abstract 

Malaria is endemic in many parts of the world, including regions of sub-Saharan 

Africa, South America, South Asia, and South East Asia. Currently, five known species 

cause malaria in humans: P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi. 

Among them, P. knowlesi is a zoonotic malaria parasite with transmission localized to 

South East Asia. According to a World Health Organization (WHO) report from 2018 1, 

these five species were responsible for nearly 219 million infections, resulting in an 

estimated 435,000 deaths related to malaria in 2017. One of the 2020 milestones for the 

WHO Global technical strategy for malaria 2016-2030, is the elimination of malaria in at 

least ten countries that were malaria endemic in 2015 1. The development of novel 

molecular tools that can improve the detection of various Plasmodium species and monitor 

the spread of drug resistance in P. falciparum, will help to improve surveillance, and 

facilitate malaria control and elimination goals. The advances of Next Generation 

Sequencing provides a cost-effective solution for large-scale surveillance of drug 

resistance using molecular markers of resistance. However, there is a need for standardized, 

scalable frameworks for analysis of the vast amount of information generated from NGS 

studies. The methods described in this work propose two novel algorithms for the accurate 

and scalable analysis of genomic data in a public health setting. 
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1.2 Malaria parasites and their life cycle 

Malaria is a disease caused by infections from parasites of the Plasmodium genus. 

Five species of the Plasmodium genus are known to cause malaria in humans, namely 

Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and 

Plasmodium knowlesi. Malaria due to P. knowlesi is a zoonotic form of malaria and is 

known to be an important contributor to malaria in humans living in South East Asia. 

Being a vector borne disease, malaria infections spread through bites from female 

Anopheline mosquitoes. The sporozoite is released into the human blood stream when the 

female Anopheles mosquitoes take a blood meal. The sporozoites then make their way to 

the liver, where they infect the hepatocytes. The transport of the sporozoites to the liver 

takes about 1-3 hours. The sporozoites that fail to enter the bloodstream are destroyed by 

the host immune system 2. Once the sporozoites have infected the hepatocytes, they start 

to divide mitotically and transform into a schizont. This process takes about 2-10 days. At 

the end of the liver stage, up to 40,000 merozoites per infected hepatocyte are released into 

the bloodstream. 

In cases of malaria caused by P. vivax and P. ovale infections, some parasites enter 

a dormant phase during the liver stage of infection to form a hypnozoite. They can remain 

in this dormant stage for years. Thus, for infections caused by P. vivax and P. ovale, there 

can be a recrudescence of the disease years after the first infection. 

The release of the merozoites into the bloodstream marks the start of the asexual 

blood stage of the parasite life cycle. These merozoites quickly invade erythrocytes. Upon 

invading the erythrocyte, merozoites undergo several rounds of asexual reproduction to 
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form 16-32 merozoites over a period of 48 hours, especially with P. falciparum and P. 

vivax infections. The maturation cycle varies from 24 hours (P. knowlesi) to 72 hours (P. 

malariae). When the mature schizonts rupture, newly formed merozoites are released to 

infect more red blood cells.  

Some of the asexual blood-stage parasites differentiate into the male and female 

sexual stages of the parasite development called gametocytes. The gametocytes have 

varying times of maturation, based on the species of Plasmodium involved. In P. 

falciparum infections, the gametocyte takes about 8-10 days for maturation. The mosquito 

ingests gametocytes during the blood meal. The ingestion of the gametocytes marks the 

beginning of the sexual reproduction stage of the parasite's development in the vector. 

Male and female gametocytes fuse and undergo fertilization to form a diploid zygote. 

The zygote then develops into ookinetes and then into oocysts in the mosquito midgut. 

Oocysts maturation again varies in time between different species of Plasmodium family. 

In P. falciparum, this period spans about 11-16 days, at which point the oocysts burst, 

releasing infectious sporozoites that travel to the salivary gland of the mosquito. 

Sporozoites from the salivary glands can re-infect human hosts during a blood meal and 

thus continuing the cycle of infection 2–4. 

 



4 

 

  

Figure 1.1: Stages of the Plasmodium life cycle. Human infection begins with the delivery of 

sporozoites by the bite of an infected female Anopheles mosquito during a blood meal. These sporozoites 

migrate to the liver, via the bloodstream and infect hepatocytes. Following a phase of asexual replication, 

they develop into merozoites. Merozoites are released into the blood and invade the red blood cells. The 

parasite forms the ring stage and subsequently develops into trophozoite and schizont stages. The 

schizont burst to release more merozoites, and this forms the asexual blood stages of the parasite. A 

small percentage of the ring form parasites differentiate into gametocytes and taken up by the mosquito 

during a blood meal. The gametocytes travel to the midgut of the mosquito and undergo sexual 

reproduction to form a zygote, which matures into an oocyst. The oocysts burst to release sporozoites 

that travel to the salivary gland of the mosquito ready to infect the next host. 
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1.3  Burden of Malaria 

The World Malaria Report of 2018 estimated that there are 219 million annual cases 

of malaria worldwide. Though there was a reduction in the number of cases of malaria 

reported in 2017, as compared to 2010, data between 2015 and 2017 show that there has 

not been a significant reduction in the number of cases reported worldwide 1. 

The majority of cases reported in 2017 were from the African region (92% of 

reported cases), with the South East Asia region accounting for 5% of the cases and the 

Eastern Mediterranean region accounting for about 2% of the cases. Nearly half of the 

malaria burden in the world is borne by five countries, namely, Nigeria, the Democratic 

Republic of the Congo, Mozambique, India, and Uganda. While India saw a 24% decrease 

in the rate of incidence over since 2016, Nigeria, Madagascar and the Democratic Republic 

of the Congo, all reported an increase in the number of cases reported by over half a million 

cases across each country. 

Transmission rates of malaria vary across the world due to many different factors. 

Transmission intensity ranges from a few infectious bites/year (low transmission areas) to 

several hundred infectious bites/year (holoendemic areas). The transmission rates play a 

crucial role in the manifestation of the disease and the development of natural immunity. 

In regions with high transmission, immunity to clinical malaria develops typically in the 

first five years of life. The most common manifestations of severe malaria include cerebral 

malaria, severe malarial anemia and respiratory distress in high endemic areas 2. 

In regions of low transmission rates, such as South East Asia, severe malaria is not 

restricted to children. In low transmission areas, the development of host immunity takes a 
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long time (until adulthood), and therefore severe malaria can be observed in children and 

adults. In addition to cerebral malaria and severe malarial anemia, malaria complications 

may include renal and hepatic dysfunction and multiple system disorders contributing to 

death5. 

Furthermore, pregnant women are more vulnerable to malaria than their non-

pregnant counterparts. The principal manifestation of malaria during pregnancy can vary 

depending upon the pre-existing immunity. In low transmission regions with limited 

immunity against malaria, pregnant women can experience severe consequences due to 

malaria, including cerebral malaria, severe anemia, hypoglycemia, abortion, and stillbirth. 

On the other hand, in areas with high transmission of malaria, pregnant women rarely 

experience the severe complication of malaria due to pre-existing immunity. However, in 

this region malaria infection in pregnant women leads to the development of anemia and 

low birth weight babies2. 

The number of deaths due to malaria have decreased from 451,000 deaths in 2016 to 

435,000 deaths in 2017. It is important to note that young children (under the age of 5) 

especially in Africa, remain a major susceptible group accounting for 266,000 deaths 

(61%) associated with malaria1. 

As there are no highly efficacious vaccines against malaria, vector control and case 

management, through accurate diagnosis of malaria and drug treatment, remain major 

pillars of malaria control strategy as discussed in the next section. 
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1.4 Vector Control  

Vector control mainly focuses on the mosquito, Anopheles species, that are involved 

in the spread of the parasite. The most widely adopted method for vector control across the 

world has been Insecticide Treated Nets (ITN). According to WHO, half of the population 

at risk of malaria infections had access to ITNs in the year 2017. Another standard method 

for vector control is Indoor Residual Spraying (IRS), which involves spraying insecticides 

indoors 1. Studies have shown that both of these preventive methods have been highly 

effective at reducing the risk of malaria infections in regions with endemic malaria 6,7. 

With the advent of gene-editing technologies such as CRISPR-Cas9, researchers 

have also been working on introducing “gene drives” into mosquitoes to prevent the 

proliferation of the vector, and in turn, control the spread of malaria. In brief, these methods 

rely on identifying regions in the mosquito genome that confer sterility; a CRISPR-Cas9 

gene drive is introduced in these regions to modify the gene conferring sterility in the 

mosquito8,9. Another candidate target for the gene drive is the mechanisms that allow for 

the parasite to complete its life cycle within the mosquito10. The mechanism to modify the 

gene associated with sterility or parasite uptake is built into the mosquito genome through 

the gene drive; this method can ensure that these genetic modification are carried across 

many generations, with the potential to cause the extinction of the species capable of 

harboring the malaria parasite10,11. While this approach provides an interesting mechanism 

for vector control, the efficacy and ethics involved in vector control are beyond the scope 

of this thesis. 
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Figure 1.2: Countries with indigenous cases of malaria in 2000 and their status in 2017. Countries that reported no indigenous cases in the past 

three consecutive years are classified as malaria free. All WHO countries in the European Region report zero indigenous cases in 2016 and 2017. 

China and El Salvador report no indigenous cases in 2017. Source: World Malaria Report 2018. 
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1.5 Malaria vaccines 

Another major area of research for the prevention of malaria is the development of 

vaccines. With significant investments in malaria vaccine development research in the past 

several decades, a recombinant vaccine that incorporates immunogenic epitopes of the 

circumsporozoite protein, a sporozoite surface protein, called RTS,S vaccine has been 

developed and tested extensively in clinical trials against P. falciparum infection. The 

vaccine efficacy report for RTS,S is 39%. Although the efficacy of this vaccine is low, it 

is argued that combining the partial protective effect of this vaccine along with traditional 

malaria control methods can reduce the adverse effects of malaria12. Another vaccine that 

involves the use of attenuated sporozoites against P. falciparum is in clinical trials12. In 

experimental studies, including human volunteer studies, attenuated sporozoites have 

shown higher efficacy of protection when compared to the RTS,S vaccine. However, the 

success of this vaccine remains to be tested in future clinical trials. 

 

1.6 Case management methodologies for malaria 

1.6.1 Diagnosis of Malaria 

Malaria infection status can be diagnosed using various methods. The microscopic 

examination of Giemsa stained blood smears for the presence of blood-stage parasites is 

one of the most widely adopted methods for malaria diagnosis13. Microscopic diagnostic 

capacity is limited, especially in Africa. Therefore, immunochromatographic commercial 

tests that detect one or more of the three parasite antigens, histidine rich protein 2 (HRP2), 
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aldolase, and parasite lactate dehydrogenase (pLDH), have been widely used for 

diagnosis14. Molecular tests that use PCR based methods are also available, but their use is 

restricted to research purposes and in reference laboratories for confirmation of diagnosis 

when required. The WHO policy requires confirmation of malaria diagnosis before 

treatments can be administered. 

1.6.2 Drug treatment 

Quinine was one of the first antimalarial drugs used for treatment. Subsequently, at the end 

of World War II, chloroquine became available for malaria treatment15. This was one of 

the cheapest and most effective drugs used against malaria for many years. As widespread 

resistance to chloroquine became established globally, sulphadoxine-pyrimethamine (SP) 

was introduced for primary treatment of malaria. Unfortunately, resistance to SP developed 

faster than chloroquine, and it became ineffective for the primary treatment of malaria4. 

However, this drug is still widely used for the prevention of malaria in pregnant women 

and seasonal malaria prevention15. When it became clear that widespread resistance to both 

chloroquine and SP had been established in most endemic countries, the WHO introduced 

artemisinin combination therapy (ACT) for malaria treatment15. This new drug policy was 

implemented first in Cambodia in 2000 and Peru and Venezuela in 2001. Subsequently, 

from 2004, other African countries adopted ACT for primary treatment of malaria. 

 The ACT combines a short-acting drug (half-life 1-2h) and a partner drug with a 

long half-life. Artemisinin reduces the initial parasite biomass by 95% in 2 days after 

treatment, and the partner drug eliminates any remaining parasites4. Monitoring for the 

continued efficacy of antimalarial drugs is a key strategy for making sure ACTs are 
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working as expected in clearing parasites in infected people. There are currently five 

different ACT combinations, such as artemisinin plus lumefantrine, amodiaquine, 

piperaquine, mefloquine, SP, and pyronaridine. Although it was hoped that the emergence 

of resistance to ACT would take longer as two drugs are used, partial resistance to 

artemisinin was reported as early as 2008 in Cambodia16. Recent studies indicate the 

development of resistance to artemisinin as well as for partner drugs leading to ACT 

resistance in Cambodia17. These developments highlight the importance of continued 

monitoring of drug resistance in all malaria endemic countries. 

1.6.3 Monitoring drug resistance in malaria 

The WHO recommends conducting periodic drug therapeutic efficacy studies (TES) in 

endemic countries, every 2-3 years, to confirm the efficacy of ACTs. The guidelines 

recommend that drug treatment must lead to the clearance of parasites and no 

recrudescence (90% or more patients enrolled must remain parasite free) within the 

observation period (day 28 for most ACTs and day 42 for dihydroartemisinin plus 

piperaquine).  When there is less than 90% efficacy of treatment, resistance is suspected, 

and further studies must be performed to confirm the resistance. The WHO recommends a 

change of drugs when resistance is confirmed18. 

 In addition to TESs, in vitro drug sensitivity of parasites has been used as a 

complementary method for confirming resistance. This assay is performed by culturing P. 

falciparum parasites in the presence of a varying concentration of drugs for 2 to 3 days and 

determines the minimum concentration of drug required to kill 50% of the parasites (IC50). 

The IC50 of drugs increases several-fold when parasites develop drug resistance. It has 
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been found that resistance to artemisinin leads to the arrest of P. falciparum parasites in 

the early ring stage and this phenotype is referred to as ring-stage survival assay (RSA) 

which has been found to correlate with drug resistance17. This type of assay requires 

extensive laboratory capacity in drug trial sites, and it is performed only in some countries5. 

1.6.4 Molecular markers of drug resistance 

Development of drug resistance leads to genetic changes in one or more genes that are 

involved in drug killing pathways (Table 1.1). Identification of these mutations can help 

identify resistant parasites and can be used as a tool for monitoring the spread of drug 

resistant parasites. 

The Plasmodium falciparum Chloroquine-Resistance Transporter gene (PfCRT), 

located on chromosome 7, plays a crucial role in the development of resistance to 

Chloroquine and Piperaquine. The gene encodes for a drug effluxor protein located on the 

food vacuole. Chloroquine disrupts the mechanisms through which free haem in the food 

vacuole is converted to the polymer hemozoin. Mutations in codon 76 (K to T) of the 

PfCRT have been known to confer resistance to chloroquine15,19–22. 

While structurally piperaquine is similar to chloroquine, it has been reported to 

work against parasites that have PfCRT mutations that confer resistance to chloroquine. 

There have also been studies which report that the presence of the mutations PfCRT: C101F 

in a chloroquine-resistant population, can lead to piperaquine resistance while rendering 

the parasite susceptible to chloroquine treatment23–25. Therefore, different mutations in 

PfCRT regulate resistance to chloroquine and piperaquine.
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Table 1.1: Common antimalarial drug and genetic markers associated with drug resistance in P. falciparum. crt, chloroquine-resistance 

transporter; cytb, cytochrome b; dhfr, dihydrofolate reductase; dhps, dihydropteroate synthase; mdr1, multidrug resistance protein; pfkelch13, P. 

falciparum Kelch 13; plm2, plasmepsin 2. * Drug used in artemisinin-based combination therapy; Ψ Antimalarial drug used alone or in combination 

with molecules other than artemisinin derivatives.  

Chemical  

 class 
Common name Targeted parasite stage 

Genetic marker for drug 

resistance in P. falciparum 

Sesquiterpene lactone 

endoperoxide 

Artemisinin* All parasite stages pfkelch13 

Artesunate* All parasite stages pfkelch13 

Artemether* All parasite stages pfkelch13 

Dihydroartemisinin* All parasite stages pfkelch13 

4 - Aminoquinolines 

Chloroquine ψ Blood stages (trophozoite and schizont) pfcrt 

Amodiaquine* Blood stages (trophozoite and schizont) pfcrt, pfmdr1 

Piperaquine* Blood stages (trophozoite and schizont) pfplm2, pfcrt 

Pyronaridine Blood stages (ring, trophozoite and schizont) pfcrt 

Naphthoquine* Blood stages (trophozoite and schizont) Unknown 

Amino alcohols 

Quinine ψ Blood stages (trophozoite and stage I to III gametocytes) pfcrt, pfmdr1 

Mefloquine* Blood stages (trophozoite and schizont) pfcrt 

Lumefantrine * Blood stages (trophozoite and schizont) pfcrt, pfmdr1 

Halofantrine ψ Blood stages (trophozoite and schizont) pfcrt, pfmdr1 

8 – Aminoquinoline Primaquine* Blood (gametocyte) and liver (schizont) forms Unknown 

Antifolates 

Pyrimethamine* Blood and liver schizont and mosquito stage (oocysts) pfdhfr 

Sulfadoxine * Blood and liver schizont pfdhps 

Proguanil* Blood stages (schizont and gametocyte) and liver schizont pfdhfr 

Naphthoquinone Atovaquone ψ Blood stage (schizont and gametocyte) and liver schizont pfcytb 

Antibiotics 

Clindamycin ψ Blood stages Apicoplast target 

Doxycycline ψ Blood stages Apicoplast target 

Tetracycline ψ Blood stages Apicoplast target 
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 The antimalarial drugs sulfadoxine and pyrimethamine affect the folate pathway in 

the parasite, by inhibiting two enzymes, Plasmodium falciparum dihydropteroate synthase 

and Plasmodium falciparum dihydrofolate reductase, encoded by the gene PfDHPS and 

PfDHFR present on chromosome 4 and 8 respectively of the P.  falciparum genome (Figure 

1.3). Mutations in the catalytic sites of these enzymes, and amplification of the two genes 

have been known to confer resistance to sulfadoxine-pyrimethamine in endemic 

regions15,26–30.  

The naphthoquinone drug atovaquone, in combination with the proguanil, is 

administered to people traveling to malaria-endemic countries. The drug combination 

works by disrupting the mitochondrial membrane potential by targeting the mitochondrial 

gene PfCYTb. Mutations in PfCYTb have been found to be associated with resistance to 

atovaquone31,32. Resistance to proguanil has been associated with some mutations in 

PfDHFR15,31–33. 

Figure 1.3: The pathways involved in the action of anti-malarial drugs and the molecular 

markers that affect the resistance. Source: Blasco et al. 2017. 
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The Plasmodium falciparum multidrug resistance (PfMDR1) protein is a xenobiotic 

drug efflux protein that is associated with resistance to many classes of antimalarial drugs 

(Table 1.1). The gene encoding the food vacuole protein, PfMDR1, is present on 

chromosome 5, and the primary mechanism involved with resistance is through 

amplification and mutations within the coding region of the gene5. Copy number variations 

associated with PfMDR1 have been known to confer resistance to many antimalarial drugs 

including mefloquine, lumefantrine, quinine, and artemisinins34–37. Coding mutations in 

PfMDR1 such as N86Y, Y184F, C0134S, N1042D, and D1246Y have also been associated 

with drug resistance38–40. 

Table 1.2: Candidate and validated resistance mutations in the K13 BTB/POZ and propeller 

domain. 

Validated Candidates/ Associated 

F446I P553L P441L G538V 

N458Y R561H G449A V568G 

M476I C580Y C469F P574L 

Y493H  A481V F673I 

R539T  P527H A675V 

I543T  N537I  

The main gene associated with resistance to artemisinin compounds is the PfK13 

gene. The gene is located on chromosome 13. This gene is composed of six kelch domains, 
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and mutations in this region has been found to be associated with delayed parasite 

clearance15. Table 1.2 lists some of the confirmed resistance markers found in PfK13. 

Presence of these mutations at allele frequency > 10% in a given geographical site is 

considered to be indicative of suspected artemisinin resistance and WHO recommends 

further investigation to confirm resistance41. The exact mechanism by which PfK13 

influences resistances against artemisinins remains elusive.  

Molecular markers associated with resistance are useful for tracking drug-resistant 

parasite populations. Moreover, by studying the genetic variations around drug-resistant 

markers, one can understand the evolutionary history of drug-resistant parasites. Figure 1.4 

shows how resistance to chloroquine (Red arrows), and pyrimethamine (Black arrows) 

spread globally and describes how ACT resistance is evolving (box) in South East Asia4. 

From microsatellite-based haplotypes alleles flanking resistant genes, it was found that 

there were only 4 to 5 founding populations of chloroquine-resistant PfCRT and they 

contributed to the global spread of chloroquine resistance. Two such lineages originated in 

South America, and they spread across the continent. Two lineages from South East Asia 

contributed to the spread across Asia as well as Africa. Similarly, pyrimethamine resistant 

PfDHFR alleles also spread across the globe. 

 

1.7 Progression from Sanger sequencing to Next Generation Sequencing (NGS) for 

molecular surveillance 

As described in the previous section, molecular characterization of resistance 

markers is crucial for monitoring resistant parasites as well as for understanding various 
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aspects of resistance, including evolutionary history and the spread of resistant parasites. 

Sanger sequencing is the most widely adopted method across public health labs for the 

characterization of resistant parasites. The cost of analysis using Sanger sequencing, 

coupled with low throughput and reduced sensitivity at detecting sequence variations at 

low frequency in mixed infections, make it unsuitable for large-scale surveillance of drug 

resistance. Advances in NGS methods and the use of targeted genome sequencing 

approaches has made it very cost-effective to sequence multiple resistance genetic markers 

in a multiplexed manner, allowing for the identification of minor allele mutations in the 

population at very low frequency. In this thesis, I develop NGS methods for characterizing 

six primary P. falciparum drug-resistant genes and develop a bioinformatics pipeline to 

identify well-characterized mutations as well as new mutations in test samples. 

 

1.8 Next Generation Sequencing (NGS) solutions for malaria epidemiology 

The improvements in the accuracy of NGS technologies have enabled the use of genomics 

in better understanding the epidemiology of malaria. In the early days of sequencing, 

assessments of molecular markers for malaria relied on low-throughput Sanger 

sequencing-based or array-based protocols to identify specific mutations within samples42–

44. The decreasing cost of NGS analysis enables large-scale genomic studies to understand 

linkage disequilibrium, identification of markers involved in pathogenesis, and 

surveillance of drug resistance45.
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Figure 1.4: Emergence and spread of P. falciparum resistance to chloroquine, pyrimethamine, and artemisinin derivatives. Resistance to 

chloroquine emerged at multiple sites and spread across the world (black arrows), due to the selective pressure on PfCRT mutant alleles. Resistance to 

pyrimethamine emerged in South East Asia and South America. Resistance to pyrimethamine due to a triple mutation in PfDHFR spread to Africa (red 

arrows). Pyrimethamine-resistant PfDHFR mutations independently emerged in Africa. Resistance to artemisinin derivatives were driven by mutant 

PfK13 alleles and were first detected in South East Asia. Source: Blasco et al., 2017 
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 A robust infrastructure needs to be established, one that allows researchers to access 

and explore these datasets. The malaria research community has been very active at 

establishing frameworks for malaria data exploration through the concentrated efforts of 

various consortiums. The Worldwide Antimalarial Resistance Network (WWARN) 

consortium, established with the support of the Bill and Melinda Gates Foundation in 2009, 

has developed an online framework to evaluate the efficacy of treatment regimens against 

malaria, track the prevalence of antimalarial drug resistance, and provide a framework to 

inform research on the development of new drugs to combat malaria46. 

Another essential resource for malaria genomics has been PlasmoDB47. PlasmoDB 

is a functional database for genomic data, transcript and protein expression data, functional 

annotation, population genetics, and evolutionary information for Plasmodium spp. The 

information made available to the public through databases like PlasmoDB enable 

researchers to access to up to date annotations, and reference sequences. Thus, enabling 

the standardization of large-scale GWAS studies for the evaluation markers associated with 

the spread of antimalarial drug resistance, as well as the generation of accurate reference 

genomes through sequence assembly projects. 

The MalariaGen consortium provided a significant push towards adopting NGS in 

malaria epidemiology. With projects such as the Pf3k Project and the Ag100P project, 

among many others, the consortium aims to utilize Whole Genome Sequencing of Human, 

Mosquitoes and Plasmodium parasites to understand the genetic epidemiology of malaria 

better. Approaching the same problem from a different angle, investigators in the malaria 
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branch at the Centers for Disease Control and Prevention (CDC), as a part of the Malaria 

Resistance Surveillance (MaRS) project, developed an amplicon sequencing protocol, to 

track molecular markers for drug resistance. The protocol described in Figure 1.5 relies on 

Target Amplicon Deep Sequencing (TADS) to identify the presence of variants associated 

with drug resistance across five genes in P. falciparum as well as the mitochondrial 

genome. The goal of the MaRS project is to build a database of variants to study the 

prevalence of mutations conferring drug resistance, and to identify new molecular markers 

associated with drug resistance. Chapter 4 of this thesis details the NGS analysis platform, 

NeST, which is currently being used by the CDC to analyze the data generated from the 

MaRS protocol48. 

 

1.9 Algorithms to monitor outbreaks and molecular surveillance of drug resistance 

using Next Generation Sequencing (NGS). 

Building on the established frameworks for epidemiology and molecular surveillance in 

public health, in this work, I describe two novel algorithms for genomic clustering and 

molecular surveillance of drug resistance from next generation sequencing data. The two 

specific aims of the present research are: 

1. Development of algorithms for genomic clustering of NGS datasets using an 

alignment free k-mer based approach. 

2. Development of algorithms for the molecular surveillance of drug resistance from 

NGS datasets in a public health setting. 
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In the previous sections, the biological mechanisms that govern the spread of drug-

resistance in malaria were reviewed. We briefly discussed the molecular markers for drug-

resistance, including variants in key genes associated with resistance. Finally, we discussed 

the tools available for molecular surveillance in malaria.  

Chapter 2 reviews existing methods for the identification of Single Nucleotide 

Polymorphisms (SNP) from sequencing reads and proposes a new consensus-based variant 

calling framework to overcome the pitfalls of existing methods. State-of-the-art for 

genomic clustering from NGS data are also discussed here. The basis and advantages of 

using alignment-free algorithms for genomic clustering is highlighted. 

To address the first aim of this thesis, Chapter 3 outlines the alignment-free k-mer 

based algorithm, Gentoo, for genomic clustering from NGS data in a public health setting. 

The new algorithm utilizes k-mer frequencies from isolates to calculate an exact measure 

of genomic distance. Comparison against the state-of-the-art clustering algorithms 

highlights the improved resolution of genomic clustering offered by Gentoo. The utility of 

the method in understanding relatedness of isolates in a public health setting is 

demonstrated using NGS datasets from Plasmodium species and Candida auris. 

Chapter 4 describes a consensus-based variant calling framework, NeST, to address 

the second aim of this thesis. The design principles for developing a modular, scalable, 

standardized framework are described in detail here. The improved precision offered by 

the consensus framework is evaluated using in-silico datasets generated from Plasmodium 

falciparum genes. The applicability of the framework in molecular surveillance of drug 

resistance is demonstrated using P. falciparum samples isolated from imported cases of 
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malaria in the United States. Finally, the scalability of the frameworks is evaluated by 

analyzing 8,351 Mycobacterium tuberculosis isolates to identify genotypic markers for 

drug-resistance.  

Chapter V concludes this dissertation and summarizes my contributions to 

computational genomics research in a public health setting. 
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Figure 1.5: MaRS protocol workflow overview with steps indicated, along with reagents 

needed, total time, and hands-on time for each procedure. 
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CHAPTER 2. VARIANT CALLING AND GENOMIC CLUSTERING 

2.1 Abstract 

DNA sequencing is the process of identifying the order of nucleotides (A, C, G, T) in a 

molecule of DNA. Knowledge of the sequence of a DNA molecule plays a crucial role in 

medical diagnosis and epidemiology. The past decade has seen a rapid evolution of DNA 

sequencing technologies from second-generation high-throughput short-read sequencing 

to third-generation long-read sequencing methods. The cost of DNA sequencing has been 

decreasing at a rate much faster than Moore’s Law (Figure 2.1). With such rapid progress, 

the incorporation of sequencing in biological sciences has been increasing rapidly. 

Figure 1.1: Cost per MB of DNA sequenced. To highlight the improvements in sequencing 

technology, the graph shows a line reflecting Moore’s Law, which states that “compute power” 

doubles every two years. Technologies that keep up with Moore’s Law are considered to be doing 

exceedingly well. The y-axis uses a logarithmic scale. The sudden drop in the cost of sequencing 

in 2008, corresponds to the switch from Sanger-based to second-generation sequencing 

technologies. 
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  This trend extends to public health as well; an increasing number of studies have 

been adopting Next Generation Sequencing (NGS) technologies to understand the 

molecular epidemiology of infectious diseases. A quick search of NCBI’s Sequence Read 

Archive shows that there have been over 70,000 submissions of NGS datasets just for the 

human malaria parasite Plasmodium falciparum to date. With short-read sequencing being 

the most widely used technology in malaria genomics. 

 Given the popularity of NGS, the need to develop tools and frameworks that can 

efficiently and accurately analyze sequencing data is increasing. This chapter outlines two 

methodologies frequently used in surveillance of infectious diseases, genomic clustering 

and variant calling from NGS data. The standard protocols and algorithms for each of the 

methods, their advantages and disadvantages are described in detail. Finally, the underlying 

principles behind the two new algorithms developed in this thesis and the advances offered 

by the new methods are discussed here. 

 

2.2 Variant calling from Next Generation Sequencing (NGS) data 

Variant calling is the process of identifying Single Nucleotide Polymorphisms (SNPs), and 

short Insertions and deletions (InDels) in sequencing data based on alignment of sequence 

reads to the reference genome for that species. Biologists have long relied on sequence 

variations to understand the factors that are associated with or causative of a disease 

condition. 
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 As discussed in the previous chapter, the identification of antimalarial drug 

resistance has long relied on identifying sequence variation. Before the advent of NGS, 

clinical blood samples containing parasites that displayed antimalarial drug resistance were 

inoculated into culture to isolate the resistant strain. The resistant strains were then 

sequenced at the locus associated with resistance using Sanger sequencing techniques to 

explore the genetic basis of the observed phenotype. 

 The advent of NGS technologies has enabled the surveillance of antimalarial drug 

resistance on a much larger scale and with greater accuracy. The ability to multiplex 

samples on a single sequencing run has drastically reduced the price of sequencing, making 

NGS based identification of resistance markers more accessible across the world. The main 

bottleneck is the bioinformatics frameworks available for variant calling. 

 While there are many methods available for calling variants from sequencing data, 

most of the methods developed are for model organisms, such as humans and mice. The 

error correction and filtering of erroneous variant calls rely on large-scale population 

databases that are not available for most organisms. Due to this, standard tools for filtering 

low-quality variant calls cannot be used in the context of non-model organisms. Relying 

on hard filters, based on quality and coverage of sequencing reads for the variant calls, 

makes it difficult to standardize variant calling pipelines across different studies. 

 To overcome the drawbacks associated with hard filters, it is proposed here that 

while the complexity of genomes, the presence of sequencing errors, and algorithmic biases 

from different methods can lead to erroneous variant calls, true variants in the data should 

be detected by all variant calling models given high-quality sequence data. Before the 
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methodology implemented to test this hypothesis is described, it is essential to understand 

the different steps involved in variant calling as well as understanding the models that are 

employed to detect active regions and variations using different variant calling 

methodologies. 

 The critical steps for pre-processing sequencing reads and variant calling from NGS 

datasets are described here and three widely used models for the identification of SNPs and 

InDels are discussed in detail. The methodology implemented in the current research 

project to overcome the biases of these standard models, is also described. 

2.2.1 Steps involved in variant calling 

Variant calling from raw sequencing data involves multiple steps to ensure the quality of 

the data that is being analyzed as well as the accuracy of the alignments being used to detect 

variants. 

2.2.1.1 Quality assessment and control 

Base-calling methodologies employed by sequencing platforms rely on signal processing 

to generate sequencing reads from a DNA template. The accuracy of the base call from 

sequencing is recorded as a PHRED based quality score and stored in the FASTQ files 

containing the sequencing reads. 

 The PHRED score is the negative log-score of the likelihood that the base call is 

erroneous49. The base quality score in the FASTQ files can be used to identify low-quality 

sequences and filter out sequences that do not meet a necessary threshold for analysis. A 

commonly used threshold used for quality in short-read data is Q30, or a PHRED score of 
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30, indicating a 1 in 1000 chance that the base call is erroneous — conferring a 99.9% 

accuracy for that base call. 

 Adapter contamination can be another source of sequencing error, which arises 

when the sequencer reads into the adapter sequence ligated to the DNA fragment that binds 

to the flow-cell. Adapter contamination usually occurs towards the ends of the sequencing 

reads. 

 Quality control tools trim reads with low quality regions and adapter contamination. 

If reads are trimmed beyond the acceptable length, they are discarded to prevent erroneous 

alignments or variant calls. If the sequence library is paired-ended, the corresponding 

paired reads are also discarded. The cleaned reads are ready for the next step of the analysis; 

alignment against a reference genome. 

2.2.1.2 Sequence alignment 

A crucial step in variant calling is the alignment of cleaned sequencing reads against a 

reference genome. The sequence alignment problem is well established, with multiple 

optimal solutions developed for pairwise sequence alignment. The most popular alignment 

algorithms are the Needleman-Wunsch50 for global alignment and the Smith-Watermann 

algorithm51 for local alignment. The throughput of NGS data, however, makes it inefficient 

to use these methodologies for aligning sequencing reads to a reference genome. 

 Modern sequence aligners rely on seed extension methods to identify the origin of 

a sequence read and align them accurately, introducing mismatches and gaps when 

necessary. Most aligners implement an affine gap penalty model that penalizes the 
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introduction of gaps more than the extension of gap and mismatch penalties to ensure that 

there is high confidence in any SNPs and InDels identified through sequence alignment. 

Algorithmic performance is optimized by indexing the reference genome using the 

Burrow-Wheeler Transform that allows quick access to the reference genome with minimal 

memory overhead, thus making modern read aligners highly accurate and fast52,53. 

 Each aligned read is given a mapping quality score based on the sequence quality, 

mismatches and gaps introduced, and the number of places the read mapped to, within the 

reference. A CIGAR string is used to denote the matches, mismatches, and gaps introduced 

in the sequence. Depending on the aligner used, the user can decide whether local or global 

alignment of reads is preferred, as well as how many multiple mapping instances are 

allowed for any given read. 

2.2.1.3 PCR de-duplication 

One of the steps in library preparation for many sequencing experiments is a PCR 

amplification step. This can lead to PCR-induced errors in sequence reads where the same 

fragment is over-represented in the sequence data. This exaggerates the evidence present 

for a variant or in some cases and causes over-representation of sequencing errors leading 

to erroneous variant calls. A common approach to resolve this problem is to mark or 

remove PCR duplicates from the sequence alignment files. Methods that detect PCR 

duplicates usually identify if the starts and the ends of the sequences are the same. If that 

is the case, the sequences are marked or removed from the downstream analysis. 

2.2.1.4 InDel realignment 
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Sequence aligners align reads independent of each other. Depending on sequence 

composition and sequence quality, erroneous gaps can be introduced in low complexity 

regions. InDel realignment methods overcome this bias by using the alignment of all reads 

in a given region to assess the placement of a read within the region of interest and realign 

it based on the evidence found across all alignments in that region. 

2.2.2 Variant calling 

Variant calling involves the determination of mutations, be it SNPs or short InDels from 

NGS data from any given sample. Many tools have been developed to perform variant 

calling on NGS datasets; and they can be broadly classified into three categories. 

2.2.2.1 Heuristic models for variant calling 

Variant callers implementing heuristic models rely on setting hard thresholds to filter out 

regions of low-quality or higher noise from NGS data. These thresholds need to be tuned 

for each dataset, though each tool recommends a default value accounting for the standard 

error rate from sequencing studies. Following the filtering of low-quality reads, the 

remaining read evidence is used to identify variants by means of a statistical test, such as a 

Fisher exact test (used by VarScan2, Shimmer, SOAP-snv), based on the evidence of 

reference to non-reference bases found in the samples53–55. 

 Heuristic models rely heavily on the selection of the right threshold for the filtering 

of noise from NGS data. When the appropriate thresholds are selected, these methods can 

be highly accurate at detecting low-frequency variants from NGS data. However, the 
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reliance on these threshold makes it harder to standardize across sample sets and can lead 

to erroneous calls when working with low depth datasets56,57. 

 

2.2.2.2 Probabilistic methods for variant calling 

Probabilistic variant calling methods like SAMtools58, identify the likelihood of each 

genotype combination based on the sequence evidence present. A likelihood of each 

genotype is calculated using allele counts, quality scores of each base, and alignment 

quality at each base in the genome58. A posterior probability of each genotype is calculated 

using the likelihood estimates and an established prior. Either a uniform prior can be used, 

or a prior can be determined using known population databases such as the dbSNP59. 

 The likelihood model is more accurate than heuristic methods when working with 

low depth samples. The drawback is that probabilistic perform poorly at detecting low-

frequency variants. Probabilistic methods also make assumptions of the number of possible 

genotypes in a given sample, usually assuming a bi-allelic state. The assumption of just 

two allele states, while simplifying the problem, may lead to a loss of accuracy while 

making variant calls60. Another shortcoming of the position or pileup based probabilistic 

methods is that they assume independence of bases, leading to erroneous calls when it 

comes to identifying InDels56,57,61. 

2.2.2.3 Haplotype-based methods for variant calling 

Haplotype based variant calling algorithms primarily rely on the same probabilistic 

framework as the methods mentioned earlier. However, these tools perform a local 
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assembly around regions of interest to identify SNPs and InDels. Read alignments are used 

to identify active regions with an increased likelihood of containing a mutation. Reads in 

and around the active regions are broken into substrings of length "k" or k-mers. These k-

mers are used to assemble over the active regions using a De Bruijn graph-like data 

structure. The assembled haplotypes are then used to determine the likelihood of each 

genotype within the active regions. 

 By using local assemblies over alignments, haplotype-based methods such as 

FreeBayes60 and GATK HaplotypeCaller61 can overcome errors in variant calls due to 

misalignment of reads in low complexity repeat regions in a genome. Since active regions 

or regions of interest are locally assembled into haplotypes, these methods, in theory, do 

not need to assume the ploidy or number of copies of DNA for the sample. Haplotype-

based callers also enable calling InDels with high accuracy, without the need of the InDel 

realignment step listed in the previous section56,57,61. 

2.2.3 Consensus-based variant calling 

While there are many different methodologies available for variant calling, each method 

has drawbacks and limitations when it comes to identifying variants from NGS datasets. 

The degree to which these limitations affect the sensitivity and specificity of the method 

depends on the quality of the data provided, the genomic complexity of the organism in 

question, the methodology used for sequencing, sample pre-processing, and downstream 

filtering of variant calls implemented62–64. 

 There has been extensive research done to understand and evaluate the accuracy of 

the various variant calling pipelines available62,63,65. Justin Zook et al. conducted a study 
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in which they sequenced a sample from the 1000 genomes dataset using different 

sequencing strategies and analyzed the resulting data using multiple variant calling 

pipelines to identify high-quality consensus variant calls that can be used to validate any 

given bioinformatic pipeline66. Many studies have shown the variance in the calls made by 

different variant calling algorithms, and conclude that a consensus call using the different 

algorithms can provide more accurate results60,61,63,65. 

 Considering the variance in results from the different algorithms, it is inadvisable 

to rely on a single variant calling methodology for the identification of mutations from 

NGS datasets. Moreover, since variant filtering techniques such as Variant Quality Score 

Recalibrator (VQSR) rely on the availability of population-level databases to identify the 

accuracy of variant calls, when working with lesser studied organisms such as P. 

falciparum, identification of high-quality variants depends on setting hard thresholds based 

on sequence abundance, sequence quality, and known error rates of sequencing platforms. 

Hard thresholds on sequencing characteristics, however, leads to difficulties in 

standardizing methodologies across different studies since hard thresholds need to be study 

specific. 

 An alternative method is to identify high-quality variants using consensus calls 

from multiple different methodologies. The biases built into each of the different methods 

can be reduced by considering variant calls that show consensus between different variant 

calling pipelines. In Chapter 4, a framework that incorporates three different variant calling 

algorithms is implemented and the accuracy of consensus calls at identifying high-quality 

variants associated with drug resistance in P. falciparum and Mycobacterium tuberculosis, 

is evaluated. Additionally, the design principles that go into building a scalable framework 
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for consensus calling and the impact it can have in monitoring the spread of drug resistance, 

are discussed. 

 

2.3 Genomic clustering 

The determination of the genomic similarity and transmission history of organisms has 

been a critical field of research in public health. Originally, the field relied on DNA 

hybridization techniques to identify similarities between two isolates. However, with the 

advent of sequencing technologies, new methods were developed to identify relatedness 

from sequencing data. While evolutionary analysis relies on substitution models to 

determine the evolutionary distance between organisms, methods for genomic clustering 

rely on sequence similarity to estimate the pairwise distance between two isolates. 

2.3.1 Alignment based genomic clustering 

Average nuclear identity (ANI) is the most widely accepted pairwise distance estimation 

technique for genomic data. Though there have been many implementations proposed to 

calculate ANI between two organisms67–69. The basic concept across all the implementation 

remains the same. Pairwise sequence alignment is used to identify regions of similarity 

between a reference and a query given a sequence identity threshold. ANI is calculated as 

the mean identity of all the similar fragments from the pairwise comparison of the reference 

and the query69. 

 The most commonly used alignment tools to identify pairwise sequence similarity 

has been BLASTN70. Faster algorithms such as Mummer71, BLAT72, and DIAMOND73 
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can also be used to determine sequence similarity. ANI has the advantage of being able to 

estimate relatedness from draft genomes and assembled genomes. However, the reliance 

on assembled genomes and sequence alignment reduces the scalability of ANI to large-

scale genome analysis. 

2.3.2 SNP based genomic clustering 

A commonly used alternative to ANI for the estimation of the pairwise distance between 

isolates is SNP based phylogenetic analysis. Here raw NGS data from isolates are aligned 

to a reference genome, and variant calling is performed on each isolate using methods 

described earlier in this chapter. Pairwise distance between the organisms is estimated 

based on the number of SNPs that are shared by the isolates. From the variant calling data, 

a distance matrix is generated based on the number of variants shared by two samples. This 

distance matrix can then be used to analyze how these samples cluster, using a neighbor-

joining tree74. 

 Alignment algorithms for NGS data are much faster as well as much more scalable 

than pairwise sequence alignment algorithms used for ANI. These algorithms also possess 

the added benefit of skipping sequence assembly, which can significantly reduce the time 

taken for the analysis. However, the main drawback of this method is its reliance on a well-

established reference sequence, which may not be available in many scenarios. 

2.3.3 k-mer based genomic clustering 

Many of the drawbacks of alignment-based methods can be mitigated by using alignment-

free, k-mer based techniques for estimating pairwise distance. Alignment free algorithms 
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rely on splitting up the sequencing data in overlapping fragments of the length “k” called 

k-mers. The overlapping k-mers can then be used to assess the relatedness of samples by 

considering the extent of shared k-mers between two samples. 

 Mash75 and Finch76, are both alignment-free k-mer based algorithms for the 

estimation of pairwise distance from raw NGS data. Finch used an XOR Boolean function 

to measure the pairwise distance from a k-mer occupancy matrix from the two samples. 

The determination of overlap between samples is done in memory, thus making it a 

resource-heavy process. Mash, on the other hand, utilizes a MinHash algorithm to calculate 

a Jaccard similarity score for a given sketch size and k-mer size. The sketch size determines 

how many k-mers are used to compute the overlap between the organisms. Sampling of k-

mers in MinHash based algorithms drastically reduces the memory footprint of the 

algorithm. Since the distance estimation relies on the sketch size, the Mash distance is an 

approximate value; an increased sketch size decreases the likelihood of erroneous distance 

estimation. However, this results in increased memory footprint and run time. Thus, it 

becomes necessary to find the right compromise for sketch size and resource cost. 

 Recently Jain et al.77 published a method that uses MinHash to estimate ANI 

through their implementation of FastANI. The method relies on using MinHash to enable 

the rapid alignment of sequences as previously implemented in MashMap78. The sequence 

alignments are then used to estimate ANI as per the previously discussed protocol. By 

speeding up the bottleneck of sequence alignment, FastANI provides a scalable solution 

for the estimation of ANI from assembled and draft genomes. 
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In Chapter 3, I introduce a novel alignment-free, k-mer based algorithm, Gentoo, 

for the estimation of genomic similarity of organisms. The method accepts assembled or 

draft genomes as well as raw NGS data in FASTQ format. Pairwise distance is calculated 

using the frequencies or counts of k-mers shared between the sequence datasets of an 

organism of interest. Having the ability to use raw sequencing data demonstrates its 

improved utility compared to methods like FastANI79 and ANI69. The utilization of k-mer 

counts in the estimation of pairwise distance provides a more exact estimate of distance 

compared to methods like Mash75 and Finch76. The scalability and memory efficiency of 

the algorithm to accurately cluster isolates is demonstrated using NGS data from 

Plasmodium spp. and C. auris samples.  
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CHAPTER 3. K-MER BASED CLUSTERING ALGORITHMS TO IDENTIFY 

RELATEDNESS OF SPECIES FROM WHOLE GENOME SEUQENCING DATA 

3.1 Abstract 

Improvements in short- and long-read sequencing technologies have enabled the use of 

NGS to determine the relatedness of isolates and species identification in epidemiological 

settings. Current methods for the determination of relatedness of microorganisms such as 

ANI69 and SNP-based clustering methods rely on pairwise alignments of assembled 

genomes or SNP differences between isolates when compared against a reference genome. 

While these methods are well-established, they are hard to scale and rely on well-

assembled genomes or the availability of high-quality references. While methods like 

MaSH75 and FastANI77 provide faster, scalable alternatives, they rely on probabilistic 

methods and lose sensitivity when it comes to distinguishing isolates at the species level. 

Here we propose a k-mer based reference free algorithm, Gentoo, to identify the relatedness 

of isolates from raw NGS data. In the next few sections, we will describe in detail the 

algorithm used for the pairwise distance estimation. The accuracy of clustering provided 

by Gentoo, in comparison with state-of-the-art methods, will be done using NGS datasets 

from Plasmodium spp. genomes. Finally, the utility of Gentoo in the identification of 

genomic clustering from a real-world outbreak will be evaluated using NGS samples from 

a C. auris outbreak in Colombia. Memory profiling metrics are captured to show the 

scalability and efficiency of the new method. 

 



39 

 

3.2 Introduction 

In the previous chapter, we discussed in detail the different methodologies available for 

genomic clustering. The pros and cons of each method were presented, and we touched 

upon the idea of a reference free, k-mer based scalable tool for genomic clustering and the 

considerations that go in developing such a system. In this section we detail the 

implementation of the system and its application in public health. Genomics in public 

health, especially DNA sequencing, has been mainly used to explore the diversity of 

infectious species80,81, explore sequence variations that can be beneficial or harmful to the 

organism48,82–84 and use genomic clustering to understand the epidemiological structure of 

an outbreak74,85,86. 

 Improvements in short- and long-read sequencing technologies have enabled the 

generation of well-annotated complete genome references. Recently, three large-scale 

genome projects generated complete references for different Plasmodium species and 

strains80,81,87. In each case, the knowledge of the closest known species with a complete 

genome helped with the improvement of genome assembly and annotations produced. 

While it is easy to establish the closest known relative of well-studied species from their 

phylogeny, this is a harder proposition for previously unknown or lesser studied organisms. 

The ability to generate a guide tree from NGS data could help with the identification of the 

closest known relative of any given isolate and help with the generation of complete 

genomes. 

 For evolutionary analysis, phylogenetic techniques usually consider conserved 

orthologs found across species and apply complex evolutionary substitution models to 
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arrive at the phylogeny. When dealing with epidemiological studies, looking at outbreaks 

of infectious diseases, researchers use simpler genomic clustering algorithms to quickly 

identify the species composition of a group of isolates. The most widely used method for 

grouping samples by sequence similarity is ANI69. The extent of similarity between shared 

sequences is used to estimate pairwise distance in ANI. Due to its reliance on alignments, 

ANI is hard to scale to NGS datasets. Other methods such as Mash75, use probabilistic data 

structures such as MinHash on sketches of k-mers from the genome, which serve as an 

approximate representation of the sequence content of an isolate, and estimate distance by 

calculating the extent of overlap of the k-mer sketches between two organisms. More 

recently, probabilistic data structures are being used to speed up pairwise alignments, 

allowing for the use of ANI at a larger scale77. 

 SNP-based phylogenetic methods are also commonly used to identify clusters of 

similar isolates in outbreak scenarios. The distance between samples is estimated by the 

number of SNPs that are shared by isolates against reference used74. While they can provide 

an effective assessment of the relatedness between isolates, the accuracy of the method is 

highly dependent on the presence of a complete reference. Here we propose a k-mer based 

reference-free clustering algorithm, Gentoo, to generate genetic distances from reference 

genomes, genome assemblies as well as raw FASTQ files from outbreak isolates. The 

proposed algorithm will calculate pairwise genetic distances from k-mer counts, derived 

from reference genomes as well as raw NGS data from any sequencing platform. In the 

following sections, we will highlight the accuracy of Gentoo in building the evolutionary 

tree of the Plasmodium spp. We will evaluate the effect of sequencing errors on clustering 

accuracy by generating in-silico datasets for all the 20 Plasmodium genomes. We will 
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demonstrate the scalability and utility of Gentoo in other outbreak scenarios by clustering 

isolates from a C. auris outbreak in Colombia. 

3.3 k-mer based clustering algorithm to identify the relatedness of species from 

NGS data 

Previous work at the Vannberg Lab (Finch) had evaluated the use of k-mer occupancy and 

Boolean algorithms to estimate the distances between organisms76. The previous method 

accounts for the presence or absence of a k-mer set to evaluate the relatedness. Here we 

propose a highly parallelized, low memory footprint algorithm that accounts for k-mer 

frequencies to assess the similarity between two given sets of genomic sequences. 

 Gentoo accepts reference genome FASTA files, assemblies, and raw FASTQ files. 

When provided with FASTA files, the k-mers in each contig are counted using KAnalyze88, 

by default the k-mer size is set to 31. When working with FASTQ data, the k-mer counting 

is performed with a filter to remove any k-mer with a count of less than 4. This is set to 

remove any k-mer generated from sequencing errors. 

Following k-mer counting, the files containing the list of k-mers and their counts, 

k-mer count (KC) files, can be used to calculate the similarity between samples. Given that 

the count files are numerically sorted, the algorithm scans through two KC files using a 

merge algorithm. This reduces the comparison problem to an O (N + M) problem, allowing 

us to maintain a low memory footprint. Gentoo uses the multiprocessing capability of most 

modern-day computers to spawn multiple threads of pairwise comparisons, thus reducing 

the overall run-time of analysis. 
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The metric implemented in Gentoo to evaluate the similarity of organisms is a 

weighted Jaccard distance (3.1). For each k-mer that is found in both samples, the minimum 

k-mer count is added towards the intersection set of the organisms. The maximum k-mer 

count towards the union between the two sets. If a k-mer is only found in one of the two 

organisms, the count is added towards just the union set. 

 

𝑑𝑊(𝑥,𝑦)  = 1 −  
∑ min(𝑥𝑖, 𝑦𝑖)

𝑛
𝑖

∑ max(𝑥𝑖 , 𝑦𝑖)
𝑛
𝑖

 (3.1) 

Finch, on the other hand, relied on k-mer occupancy to determine relatedness, i.e., 

if a k-mer is present in two genomes, it would affect the similarity index for the genomes. 

Utilizing the k-mer counts as weights will overcome the biases of considering occupancy. 

It provides a method that is aware of variation in k-mer counts (or coverage at similar 

regions) and inherently corrects for these biases by assigning a lower weight. In k-mer 

space variations such as SNPs, InDels, duplications and low-complexity repeats 

differences between organisms are also represented as differences in k-mer counts of k-

mers from the region. Gentoo uses this feature to derive a higher resolution compared to 

the previously used occupancy method while estimating the similarity between closely 

related sequences. 

All pairwise distances are stored in a distance matrix in memory. Using scikit-bio 

a neighbor-joining tree is constructed from the distance matrix. The neighbor joining tree 

is plotted using ete3 toolkit for phylogenetic analysis89. 
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The algorithm mentioned above uses a KC (k-mer count) file as input. As 

mentioned earlier, in Gentoo, we use KAnalyze88 to generate k-mer counts from FASTA 

and FASTQ files. k-mers, as the word indicates, are fragments of a genome sequence of 

length k. The process of k-mer counting involves breaking a given sequence into fragments 

using a sliding window across a genomic sequence and counting the occurrence of each k-

mer. Since NGS data can have millions of reads, this process can be highly memory 

intensive and slow. KAnalyze tries to overcome these barriers by using a divide and 

conquer method. Fundamentally, sequences are first broken into k-mers and stored in 

segment files of a pre-defined size. Once all the sequences have been broken into k-mers, 
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the segment files recursively merged and each k-mer is counted along the way. By setting 

the size of the segment file, one can control the number of k-mers that can be stored in 

memory at any given point of time and optimize for the runtime of the tool. 

 

Figure 3.1 Overview of the steps involved in k-mer counting. a) Raw DNA sequences from 

FASTA or FASTQ files. b) k-mer count tables at 4-mers for the sequence from (a) in string 

representation. c) 2-bit encoding scheme for DNA sequences. d) Integer representation of k-mer 

count tables. d) Conversion of string representation of k-mer to integer representation. 

KAnalyze also implements an integer hashing function (Figure 3.1) where each base 

of the DNA is encoded as two-bit integers. Leveraging the fact that with every k-mer we 

read, only one new base is added, KAnalyze uses a sliding window to scan across a 

sequence and generate 2-bit encoded k-mers from the sequence data. In most programming 

languages, integers occupy a fixed amount of memory, the memory footprint of strings, 

however, varies with the number of characters in the string, the total memory of a string is 

always the sum of the memory used by each character. Thus, integer encoded strings 

further reduce the memory footprint of downstream processes. While merging the 

individual k-mer segment files, KAnalyze implements a merge sort that efficiently counts 
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and sorts the numerical or lexicographically based on the output format selected. Algorithm 

1 can be applied only to sorted datasets, the sorted output from KAnalyze allows for the 

implementation of a memory-efficient algorithm for downstream processing of k-mer 

counts. 

3.4 Evaluating the accuracy of Gentoo in comparison to ANI as a methodology to 

identify relatedness of Plasmodium spp. 

3.4.1 Materials and methods 

ANI has long been the accepted standard for the determination of relatedness of organisms 

from Next Generation Sequencing data, but the reliance on completed assemblies and 

annotation hinders the scalability of the method. Probabilistic methods like Mash75 and 

FastANI77 on the other hand improve the scalability of the analysis by employing a k-mer 

based method, MinHash methodology, to speed up the analysis.  

 To evaluate the accuracy of Gentoo against these methods, 20 genomes from 10 

different species of Plasmodium studied by Rutledge et al.81 for the phylogenetic analysis 

of Plasmodium malariae were download from PlasmoDB. Nine of the twenty genomes 

were various strains of Plasmodium falciparum.  

 Further evaluation of Gentoo at estimating pairwise distances from raw NGS data, 

was done on in-silico datasets generated from the Plasmodium genomes using DWGSIM90. 

MiSeq paired-end data was simulated for all genomes with error rates of 0.01 and 0.05 

(Table 3.1), with a coverage of 30x across the genome. Since Mash and Gentoo were the 

only tools capable of estimating distances from raw FASTQ files, the trees generated by 
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Mash and Gentoo from this analysis were compared with the published Plasmodium to 

determine how the methods were able to recreate the ground truth.  

ANI values were calculated from the 20 genome FASTA files using PyANI91, a 

wrapper around the different steps involved in calculating ANI. Internally, PyANI 

implements Mummer71 to identify sequence similarity between the FASTA sequences and 

calculates ANI from sequences meeting the minimum identity threshold of 90% as 

described by Goris et al.69. 

 Mash was run using the default sketch size of 1000 and k-mer size of 21. Mash was 

run separately on the FASTA and in-silico generated FASTQ files. To generate the sketch 

from FASTQ files, the paired-end sequences for each sample were combined and a sketch 

was generated using default settings. Pairwise distances between sequences were 

calculated using Mash dist feature. 

 Gentoo index was run to generate k-mer counts from FASTA and FASTQ data. K-

mer counting on raw FASTQ files was done using KAnalyze88. All k-mers of length 31 

with counts less than 4 and lowest base quality of less than 20 were discarded. Gentoo 

cluster was run using the resulting KC (k-mer count) files as input, as described in the 

previous study, and a neighbor joining tree was generated from the pairwise distances. 

Since Finch uses the same KC files for clustering, Finch was run on the Plasmodium dataset 

using a k-mer size of 31, as well. A memory profiler was used to record run-time and 

memory utilization of each of the tools.  
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Table 3.1: In-silico datasets generated from each of the Plasmodium spp., genomes. 

Sample name Read count Error rate 

Pbrasilianum 1884594 0.01 

PlasmoDB-44_PreichenowiCDC_Genome 1446111 0.01 

PlasmoDB-44_Pfalciparum7G8_Genome 1370010 0.01 

PlasmoDB-44_PfalciparumGN01_Genome 1422907 0.01 

PlasmoDB-44_Pfalciparum3D7_Genome 1400069 0.01 

PlasmoDB-44_PvivaxP01_Genome 1744686 0.01 

PlasmoDB-44_PmalariaeUG01_Genome 2017480 0.01 

Pbrasilianum_draft 1810942 0.01 

PlasmoDB-44_PfalciparumHB3_Genome 1368882 0.01 

PlasmoDB-44_Pchabaudichabaudi_Genome 1138527 0.01 

PlasmoDB-44_PfalciparumCD01_Genome 1412870 0.01 

PlasmoDB-44_PfalciparumGB4_Genome 1409521 0.01 

PlasmoDB-44_PbergheiANKA_Genome 1126968 0.01 

PlasmoDB-44_PknowlesiH_Genome 1464970 0.01 

PlasmoDB-44_PfalciparumIT_Genome 1391017 0.01 

PlasmoDB-44_PfalciparumGA01_Genome 1388948 0.01 

PlasmoDB-44_PfalciparumDd2_Genome 1361026 0.01 

PlasmoDB-44_PovalecurtisiGH01_Genome 2013168 0.01 

PlasmoDB-44_Pgallinaceum8A_Genome 1503140 0.01 

PlasmoDB-44_PcynomolgiB_Genome 1580960 0.01 

Pbrasilianum 1884594 0.05 

PlasmoDB-44_PreichenowiCDC_Genome 1446111 0.05 

PlasmoDB-44_Pfalciparum7G8_Genome 1370010 0.05 

PlasmoDB-44_PfalciparumGN01_Genome 1422907 0.05 

PlasmoDB-44_Pfalciparum3D7_Genome 1400069 0.05 

PlasmoDB-44_PvivaxP01_Genome 1744686 0.05 

PlasmoDB-44_PmalariaeUG01_Genome 2017480 0.05 

Pbrasilianum_draft 1810942 0.05 

PlasmoDB-44_PfalciparumHB3_Genome 1368882 0.05 

PlasmoDB-44_Pchabaudichabaudi_Genome 1138527 0.05 

PlasmoDB-44_PfalciparumCD01_Genome 1412870 0.05 

PlasmoDB-44_PfalciparumGB4_Genome 1409521 0.05 

PlasmoDB-44_PbergheiANKA_Genome 1126968 0.05 

PlasmoDB-44_PknowlesiH_Genome 1464970 0.05 

PlasmoDB-44_PfalciparumIT_Genome 1391017 0.05 

PlasmoDB-44_PfalciparumGA01_Genome 1388948 0.05 

PlasmoDB-44_PfalciparumDd2_Genome 1361026 0.05 

PlasmoDB-44_PovalecurtisiGH01_Genome 2013168 0.05 

PlasmoDB-44_Pgallinaceum8A_Genome 1503140 0.05 

PlasmoDB-44_PcynomolgiB_Genome 1580960 0.05 
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3.4.2 Results 

Since the completion of the Plasmodium falciparum 3D7 genome, there have been 

complete genomes generated for 11 other Plasmodium spp. Recently, a large-scale 

sequencing study used PacBio sequencing to assemble 11 strains of P. falciparum80. For 

all these genomes, extensive evolutionary analysis has been performed to determine the 

phylogeny for the Plasmodium spp. as shown in Figure 3.2a. This provides us with a 

ground truth state to evaluate the different clustering algorithms. 

The neighbor joining tree generated from the distance matrix produced by the three 

methods from genome FASTA files is shown below in Figure 3.2b, 3.2c, and 3.2d. Gen- 

too, Figure 3.2b, appears to recreate the expected phylogeny from the genome FASTA 

files, with the exception of the branch point corresponding to P. ovale curtisi. In 

comparison, both trees generated using the distance estimations from ANIm and Mash 

show erroneous branch points with respect to the expected tree. ANIm places P. malaria 

and P. brasilianum in a separate clade as compared to the rest of the species and indicates 

that P. knowlesi and P. vivax are closer to P. falciparum than to P. cynomolgi, contrary to 

what we observe from the Plasmodium spp. evolutionary tree. 

Mash on the other hand, correctly places P. vivax, P. cynomolgi, and P. knowlesi as 

closely related. However, P. berghei and P. chabaudi chabaudi are grouped with the same 

clade as P. falciparum and P. reichnowi, rather than P. ovale curtisi, as expected from the 

Plasmodium spp. evolutionary tree. 

One possible reason for the difference between the expected phylogenetic tree and 

the trees generated from Mash and ANIm could be the low complexity of the Plasmodium 
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genomes. The genomes from Plasmodium spp. are highly AT rich and contain many low 

complexity repeat regions within the genome. Since there are highly similar repeat regions 

present across the genomes, pairwise alignments can identify many regions of sequence 

similarity, but the average nucleotide identity of all the fragments can be low. When it 

comes to Mash, due to the probabilistic nature of MinHash, the sketch generated for each 

sample might have a skewed representation of fragments from the genomes due to the 

increased likelihood encountering a low complexity region in the genome. Since Gentoo 

uses k-mer counts, overlap of low complexity, high-count k-mers between the weighted 

Jaccard score, accounts for the abundance of the k-mer, thus normalizing its effect on the 

estimated distance. 

The effect of coverage and error rates on estimation of pairwise distance, was 

evaluated by running Gentoo and Mash on Illumina MiSeq paired-end data, simulated 

using DWGSIM90. Figures 3.2e and 3.2f show the neighbor joining tree generated from the 

genomic clustering of the simulated FASTQ datasets from Gentoo and Mash. Here again 

we observe that Gentoo is able to correctly reproduce the expected phylogeny, with the 

exception of the branch point corresponding to P. ovale curtisi. Since Gentoo utilizes the 

counts, as well, for the estimation of distances, the resolution of the estimated distances is 

lower than Mash, but the branch points are mainly as expected for the evolutionary 

analysis. Mash, however, places P. berghei and P. chabaudi chabaudi in a separate clade 

as compared to the other species and places P. ovale curtisi closer to P. brasilianum than 

P. vivax, contrary to the expected evolutionary tree. 
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3.2a) Phylogenetic tree for Plasmodium genomes.                           3.2b) Gentoo on 20 Plasmodium species FASTA files. 
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3.2c) Mash on 20 Plasmodium species FASTA files.                                      3.2d) ANI on 20 Plasmodium species FASTA files.                 
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3.2 e) Gentoo on in-silico simulated reads from Plasmodium                3.2 f) Mash on in-silico simulated reads from Plasmodium 

Genomes.                                                                                                       genomes. 
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                       3.2 g) Finch on 20 Plasmodium species FASTA files. 

 

Figure 3.2: Comparison of neighbor-joining trees generated from pairwise distance 

estimation made using Gentoo (3.2b, e), Mash (3.2c, f), ANI (3.2d), and Finch (3.2g). Accuracy 

of the branch points was determined using the Plasmodium evolutionary tree (3.2a) published by 

Rutledge et al.,81. Branching point comparison shows that the neighbor-joining tree generated by 

Gentoo is the closest to the Plasmodium evolutionary tree, with the exception being the branch 

point for P. ovale curtisi. This hold true even when estimating distances from in-silico simulated 

FASTQ files (3.2e). Tree generated using ANI, Mash and Finch showed at least two branching 

point errors. 
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The computational resources (i.e., memory, processing time) required for genome 

clustering were mapped using a memory profiling toolkit 

(https://pypi.org/project/memory-profiler). The memory usage was plotted as a function of 

time, as seen in Figure 3.3. As expected, Mash is the fastest and most memory efficient 

technique when it comes to clustering FASTA and raw FASTQ data. Though the 

calculation of ANI from assembled genomes has a low memory footprint, the process of 

generating assemblies from raw FASTQ data for a large number of samples is a memory 

intensive process. 

Although Gentoo is the slowest among the k-mer based methods in this comparison, 

it has a very low memory footprint. Considering the low memory footprint, the speed of 

Figure 3.3: Memory utilization by ANIm, Mash, Finch and Gentoo as a functional of time. 

Memory used by each tool for the clustering of 20 Plasmodium genomes was recorded. ANI, Mash 

and Gentoo were run using 30 concurrent processes. Finch does not allow for the user to specify 

number of concurrent processes. 
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the analysis can be optimized by adjusting the number of concurrent processes used for the 

pairwise comparison, in this study we used 30 concurrent processes. Finch on the other 

hand was the most resource intensive method, as expected, since it loads all the k-mers 

from each sample into memory for the pairwise comparisons. While this is possible while 

working with smaller FASTA files, the method is not scalable to larger FASTQ datasets. 

For these comparisons, all tools were run with 30 threads and 90 GB of RAM92. 

3.5 Clustering outbreaks of Candida auris infections in Colombia 

3.5.1 Materials and methods 

To evaluate the ability of Gentoo to cluster real-world outbreak isolates, we used whole 

genome sequencing data from Candida auris outbreaks in Colombia between 2015-201674. 

In the study, the authors isolated and sequenced C. auris from blood of infected patients. 

The samples were collected from three hospitals in Bogota, Cartagena and Barranquilla. 

The samples were sequenced using the Illumina HiSeq 2500. Illumina reads were 

aligned to a draft reference previously assembled using PacBio data, and variant calling 

was performed on the samples. The SNPs were used to construct a maximum parsimony 

tree. Here, we use these 33 samples to evaluate the ability of Gentoo to recapitulate the 

epidemiological data from74. FASTQ files were indexed using KAnalyze93 with a k-mer 

size of 31. A neighbor joining tree was generated from the indexed FASTQ files. 
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3.5.2 Results 

We downloaded 33 C. auris isolate that were sequenced from blood samples of patients at 

three hospitals in Bogota, Cartagena, and Barranquilla during a suspected Candida auris 

outbreak74. The raw data for these samples was downloaded from the NCBI Bioproject 

PRJNA470683. 

 K-mer counting on the raw FASTQ files was done using KAnalyze88. All k-mers 

of length 31 with count less than 5 and lowest base quality of less than 20 were discarded. 

Gentoo was run using the resulting KC (k-mer count) files as input. Pairwise comparisons 

between all 33 samples were performed using the algorithm described in Algorithm 1. A 

distance matrix was created from the weighted Jaccard scores, and a neighbor-joining 

phylogenetic tree was constructed for the outbreak isolates (Figure 3.3a). The results from 

Gentoo were compared with the published phylogenetic tree from74 (Figure 3.3a). In Figure 

3.3a we see that isolates from hospital A cluster together; however, isolates from hospitals 

B and D form two distinct clades. 

 The phylogenetic tree generated using Gentoo (Figure 3.3b), however, groups 

almost all the samples specific to their corresponding geographic origin, with the exception 

of samples B1156D (hospital D) and B11846A (hospital A). Though Gentoo is able to 

group isolates from each hospital correctly, the placement of samples from hospital A with 

samples from hospital D is at odds with the fact that hospital A is in northern Colombia 

and hospital D is in central Colombia. This discrepancy could be due to the noise arising 

from using k-mer profiles of the raw FASTQ files. Optimizing for k-mer size and minimum 

base quality of k-mers used for the analysis might resolve this discrepancy. The major 
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advantage of using an alignment free method, such as Gentoo, over a SNP-based distance 

estimation technique, is the significant gain in speed. Moreover, an alignment free 

approach allows for clustering sequences without the need of a reference genome. 

 

3.6 Discussion 

Estimated distances calculated between any two genomes may be skewed by depth of 

coverage when using raw NGS data versus assembled genomes. Here we demonstrate that 

using k-mer counts while clustering NGS datasets can overcome the effects of depth and 

sequence complexity in the calculation of pairwise distances. We demonstrated this by 

comparing Gentoo with other state-of-the-art methods for genomic clustering, such as ANI, 

Mash, and Finch to recreate the evolutionary tree for Plasmodium spp.  

Considering the AT-rich nature of the genome and high frequency of repeat 

sequences, percent identity-based methods, such as ANI, and k-mer occupancy-based 

methods, such as Finch and Mash, can produce results inconsistent with the expected 

phylogeny. The use of count information in the calculation of pairwise distance, as 

implemented by Gentoo, genomic difference and repeat composition between species to 

provide a better estimation of the phylogeny. We further showed that the count-based 

distance allows for accurate clustering from raw FASTQ data, without any prior error 

correction or assembly. This can prove extremely useful since genome assembly of large 

genomes is still a time and resource intensive process. 
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Figure 3.4: Tree generated from C. auris outbreak isolates from Colombian and Venezuelan isolates (BioProject ID: PRJNA470683).  Clades are 

shaded based on the geographical locations from which the samples within the clade were isolated. Samples shaded in red were isolated from Hospital A 

in Cartagena, those shaded in blue were isolated from Hospital B in Barranquilla, and those in purple were isolated from Hospital D in Bogota. a) Maximum 

parsimony tree of C. auris isolates. b) Neighbor-joining tree generated using Gentoo. 

a b 
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 The applicability of using Gentoo in a real-world outbreak setting was evaluated by 

clustering C. auris isolates from an outbreak in northern and central Colombia. While Gen- 

too was able to cluster isolates from the same hospital more accurately in comparison to 

SNP based phylogeny, both SNP based phylogeny and Gentoo failed to cluster the samples 

by their geographic distribution.  

While this can be a comment towards the accuracy of the method, real world 

samples have a level of noise associated with each sample in terms of parasitemia (i.e., the 

admixture within the sample), and clustering algorithms may not be able to provide clear 

resolution at a geographic scale. Sequencing data from isolates cultured prior to sequencing 

can provide greater resolution as we see with C. auris isolates; however, complete 

geographic resolution is very difficult to achieve.  

Resolving the admixture in samples before clustering might achieve a better 

resolution. While there have been methods proposed for de-convolution of infection 

isolates from NGS data94,95, there is a long way to go before NGS data can be used to 

achieve perfect resolution of genomic clustering from blood isolates in outbreak scenarios. 

Additionally, when considering isolates from cases involving inadvertent contamination of 

biologics or in the case of bioterrorism, isolates are much more likely to show a greater 

level of clustering due to the clonal nature of the population, demonstrating the potential 

use of genomic clustering in outbreak and bioterrorism scenarios. 
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CHAPTER 4. NEXT GENERATION SEQUENCING AND BIOINFORMATICS 

PROTOCOL FOR MALARIA DRUG RESISTANCE MARKER SURVEILLANCE 

4.1 Abstract 

Recent advancements in Next Generation Sequencing (NGS) and bioinformatics along 

with decreasing costs per base sequenced have led to wider adoption of these methods in 

public health settings. While there is an abundance of protocols for NGS and 

bioinformatics analysis, many are tailored for research purposes and model organisms with 

extensive population-level data. These protocols are now being evaluated, modified, and 

standardized for routine use in public health laboratories. The vast majority of public health 

laboratories utilize the Illumina short-read sequencing technology and various different 

algorithms or variant callers for Single Nucleotide Polymorphisms (SNPs) based data 

analysis. In an effort to standardize SNP based analysis and overcome the inherent biases 

of any individual SNP based variant caller, a Next-generation Sequence analysis Toolkit 

(NeST) was developed. NeST provides a modular consensus-based variant calling 

framework for the identification of SNPs and short Insertions and Deletions (InDels). NeST 

uses a combination of variant callers that provide metrics to assess the accuracy of a variant 

found in a sample. NeST consists of four distinct modules: (1) PrepInputs, (2) 

VarCallEngine, (3) VCFToolkit, (4) Summarize. The utility and scalability of NeST is 

demonstrated by its recent adoption at the CDC for the molecular surveillance of malaria 

parasites48. In addition, using in silico data sets and Mycobacterium tuberculosis whole 

genome sequencing (WGS) data, we assess NeST’s accuracy, sensitivity, and specificity 

as compared to other SNP based algorithms. 
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4.2 Introduction 

The spread of antimalarial drug resistance is a major threat to controlling and eradicating 

malaria. As described in Chapter 1, antimalarial drug resistance can be linked to mutations 

in crucial genetic markers in Plasmodium falciparum. Molecular surveillance of drug 

resistance relies on tracking the prevalence of these mutations in a given population. 

 Next Generation Sequencing (NGS) has had an enormous impact on molecular 

surveillance of drug resistance. With the improvement in second-generation NGS 

technologies, including throughput and reduced cost of sequencing, routine NGS based 

molecular surveillance of drug resistance in malaria is becoming more widely adopted. 

Second-generation Illumina short-read NGS is now one of the most widely used 

sequencing techniques in both research and public health sector. Short-read sequencers 

generate a large amount of high-quality sequencing data and can provide a cost-effective 

method for the surveillance of drug resistance for hundreds of samples by taking advantage 

of the ability to multiplex samples in a single run. The major bottleneck, however, is the 

availability of standardized, consensus-based bioinformatics tools to analyze this data. 

 Genotypic determination of drug resistance mainly relies on the identification of 

Single Nucleotide Polymorphisms (SNPs) and short Insertions and Deletions (InDels) in 

genes identified as key markers for drug resistance15,84,85. Accuracy of the predicted 

genotypic markers for resistance is contingent on the accuracy of the variant calls made 

from NGS data. 

 A large number of tools and pipelines have been developed for variant calling from 

NGS data60,64,65,96–98. Studies have shown that there is a considerable amount of 
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discrepancy in the variant calls made from different algorithms63, leading to is an 

increasing reliance on variant filtration algorithms to select high-quality variants. Variant 

filtration algorithms utilize true variant calls from the population and apply machine 

learning to identify high-quality calls from the sample data98. For most organisms, 

however, population-level information is not available. 

 Hard filters on variant calls have been suggested to circumvent the lack of 

population-level information, but they are hard to standardize across sequencing 

protocols84. Having a consensus variant call that relies on different algorithms can provide 

an alternate discrete metric to determine the quality of the calls made. 

 In this chapter, we introduced a novel Next Generation Sequencing analysis toolkit 

(NeST) for the identification of high-quality consensus calls from NGS datasets. First, we 

will describe in detail four key modules that make up the framework and detail the 

standardization of inputs and results generated by NeST. 

 Next, we will demonstrate the advantages of using a consensus framework over 

individual pipelines by studying the variability of the results produced by different variant 

calling methods using in-silico datasets. Third, we will describe the utility of the framework 

by highlight the implementation of NeST as a framework for the surveillance of 

antimalarial drug resistance at the Centers for Disease Control and Prevention (CDC). 

Finally, will show the scalability and adaptability of the framework to other outbreak 

scenarios by evaluating its accuracy at identifying mutations conferring drug resistance in 

Mycobacterium tuberculosis. 
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4.3 NeST variant calling framework 

Next-generation Sequence analysis Toolkit (NeST) (https://github.com/shashidhar22/ 

NeST), is a modular consensus-based SNP calling framework for variant calling that 

integrates open-source bioinformatics tools for quality correction, alignment, and SNP 

calling using NGS data. The key design consideration made during the development are i) 

Reproducibility, ii) Cross platform compatibility, iii) Usability, iv) Modularity, and v) 

Scalability. These principles are implemented through four key modules in NeST.  

4.3.1 PrepInputs Module 

To improve reproducibility and usability, for each study NeST generates a study object 

containing all the information regarding the samples, the reference genome, gene 

boundaries, and variants of interest for the study provided by the user. The sample data can 

be provided to NeST in three formats: a path to the folder containing the raw FASTQ files, 

an SRA accession list or a tab-delimited list with sample names and associated FASTQ 

files or SRA accession number. The module downloads the FASTQ files using 

SRAToolkit99, merges technical replicates and collects all the files required for the 

processing of samples in a study. The module parses each FASTQ file associated with a 

sample and uses the FASTQ headers to retrieve the relevant sequencing run information, 

including sample name, library type, and sequence length. FASTQ-files are grouped by 

sample name in a run dictionary before initiation of the analysis. 

 

 

https://github.com/shashidhar22/NeST
https://github.com/shashidhar22/NeST
https://github.com/shashidhar22/NeST
https://github.com/shashidhar22/NeST
https://github.com/shashidhar22/NeST
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4.3.2 VarCallEngine Module 

Three sets of SNP calls are generated for each sample by the VarCallEngine module. 

Sequencing reads are first trimmed and cleaned based on pre-defined quality thresholds, 

and adapters removed using BBDuk100. Cleaned reads are then aligned to a reference 

genome using one of the four included aligners (BWA53, Bowtie252, BBMap100, SNAP101). 

If none are specified, BWA is run using default settings. The alignments are then sorted, 

de-duplicated, and read group information added using SAMTools58 and Picard 

(https://broadinstitute.github.io/picard). The de-duplicated BAM files are then used for 

SNP (Single Nucleotide Polymorphism) calling using Freebayes60, GATK61 and 

SAMtools-BCFtools58. Due to variation in the representation of InDel by different tools, 

as of the current version, NeST performs a consensus variant calling only on SNPs. InDels 

are however reported as they are found in each of the callers. 

  



65 

 

 

Figure 4.1: NeST flowchart detailing the four main modules. PrepInputs consolidates all 

user inputs. VarCallEngine executes three variant calling pipelines. VCFToolkit annotates the 

variant calls and merges VCF files to provide a consensus variant call. Summarizer generates 

human readable reports and figures from the NGS analysis. 



66 

 

4.3.3 VCFToolkit Module 

The VCFToolkit Module is a custom Variant Call Format (VCF) file parser used to filter, 

merge, and annotate variant calls from the different variant calling algorithms implemented 

in NeST. The parser is composed of sub-modules, allowing for further customization. 

 The filter module allows the user to filter SNPs by standard VCF fields. The VCF 

files are then annotated using a BED file, with designated gene boundaries, provided by 

the user. BED files are easy to modify and allow for easy annotation of VCF files for 

organisms that lack an annotated gene or genome database. 

 The variant calls are then combined using the merge module. This module 

sequentially parses through the VCF files and merges all headers, INFO, and FORMAT 

field values in the VCF file. The INFO field called Confidence is added, which indicates 

the number of variant callers that identified a SNP. An additional Sources field is added to 

indicate the callers that identified each variant. A list of VCF files are provided to the merge 

module and are split into pairs and recursively merged. Thus, allowing for easy merging of 

results from multiple variant callers. 

4.3.4 Summarize Module 

The summarize module combines and compares the annotated SNPs for each sample from 

the VCF files. A data-frame is created showing the presence of known SNPs (i.e., user-

defined via the reportable SNPs document) across all samples. Non-user defined novel 

exonic and intronic SNPs are grouped into two separate tables (Table 4.4). Custom R 
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scripts then automatically generate figures summarizing the sequencing depth (Figure 4.3) 

and allele frequency (Figure 4.4). 

4.3.5 Accessibility and cross platform compatibility 

As we have seen in the previous section, NeST stitches together various open-source tools, 

threading the results from one tool to the next, and automating the whole process. The 

increased number of dependencies creates multiple failure points within the framework. It 

is essential to keep this in mind while designing any bioinformatics framework, that most 

of the tools used are open source in nature. The dependencies usually also vary in the 

language used to develop the tool, the dependencies used by the tools, as well as the 

frequency with which the tools are updated or maintained. Table 4.1 lists the various design 

considerations that went into the evolution of the NeST variant calling framework. In this 

section, we will focus on virtual environments and cross-platform compatibility of the 

framework. 

NeST relies on the Anaconda virtual environment to ensure version control of the 

tools used within. The Anaconda installation provides a framework to maintain exact 

versions of dependencies required for any analysis. Installation of most tools requires either 

admin or superuser privileges depending on the platform being used. Virtual environments, 

as the name suggests, create a virtual space within the users' profile. Here the user can 

install, modify, and delete any package without affecting the system environment that is 

shared by all the users. This allows the user to maintain many different versions of 

dependencies and software stacks without needing admin privileges. 
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Table 4.1: Comparison of usability features available across open-source variant calling 

platforms. 

 

 

 

Feature NeST v2 NeST 

v1/MaRS 
CoVaCS Omics Pipe NARWHAL 

Consensus variant calling ✓ ✓ ✓ 
  

Open source ✓ ✓ 
 

✓ ✓ 

Multi-sample analysis ✓ ✓ ✓ ✓ ✓ 

Automated FASTQ retrieval from SRA ✓ ✓ ✓ 
  

Amplicon Sequencing Data ✓ ✓ 
 

✓ ✓ 

Automated figure generation ✓ ✓ 
   

Summarization reports ✓ ✓ 
   

Cross platform compatible (Linux, OSX, 

WSL) 
✓ ✓ 

 
✓ ✓ 

Local installation ✓ ✓ 
 

✓ ✓ 

Cloud deployable ✓ ✓ ✓ 
  

Whole Genome Sequencing Data ✓ 
 

✓ 
 

✓ 

Pathogen agnostic ✓ 
  

✓ ✓ 

Modular variant annotation toolkit ✓ 
    

HPC deployable ✓ 
  

✓ 
 

Automated installation ✓ 
  

✓ 
 

Virtual environment with version-controlled 

dependencies 
✓ 
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Figure 2.2: NeST virtual environment. 
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The virtual environment is usually controlled using a YAML file. Figure 4.2 shows 

the YAML file used to generate the NeST virtual environment. The channels mentioned in 

the YAML file maintain the version of the dependencies listed. Miniconda downloads the 

required version of each of the dependencies and installs them to the local virtual 

environment. The bioinformatics tools used in NeST are maintained by BioConda102. The 

advantage of using a virtual environment is the cross-platform compatibility that is offered. 

Miniconda can be deployed on Linux and OSX frameworks, as well as The Linux 

subsystem for Windows. Thus, allowing users on all platform access to the framework. 

4.3.6 Input and Result standardization 

In this section, we will describe the various inputs that NeST requires for any analysis as 

well as describe the outputs generated from the analysis. NeST is designed to reduce the 

amount of user intervention with regards to inputs that the user needs to provide. However, 

to enable standardization of inputs across all organisms, we require that a particular file 

format be followed for the three inputs listed below: 

1. FASTQ files: 

The PrepInputs module in NeST highly simplifies the management of FASTQ files. The 

module accepts two input formats. 

a. Input directory path: 

The user provides the path to a folder containing FASTQ files. The files with the path are 

recognized by the file extension. The allowed extensions include fq, fq.gz, fastq or fastq.gz. 

The naming convention followed for paired sequencing read files must be _1, _r1 or _R1. 
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b. SRA accession list: 

The user also has the option to provide a text file with a list of SRA experiments, with one 

SRA number per line of the file. This can be exported from the SRA run selector tool. An 

example SRA accession file is provided with the NeST installation. 

2. BED format: 

The BED (Browser Extensible Data) is an easy and lightweight format to list annotations 

for a genome. NeST uses a full BED or BED 12 column format file as a guide to annotate 

variants with codon and amino acid changes. The separation of contig, gene and exon level 

information make this format highly portable across genomes. The BED 12 column format 

for most organisms can be export from the UCSC table browser. 

3. Variants of Interest: 

The Summarize module in NeST allows for collates all the variants (SNPs and InDels) 

called from all the samples in the study. If a user specifies a list of variants of interest, a 

separate table will be created for these variants. The variants can be in comma separated, 

tab separated or excel format. Table 4.2 provides an example of the variant of interest file. 
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Table 4.2: Variants of interest table. Each row should contain the Chromosome, Gene name, 

reference amino acid, alternate amino acid and the amino acid location for the variant of interest. 

Chrom Gene RefAA AAPos AltAA 

PfCRT PfCRT C 72 S 

PfCRT PfCRT V 73 V 

PfMDR1 PfMDR1 N 86 Y 

PfMDR1 PfMDR1 Y 184 F 

MT CYTOb I 258 M 

 

Each NeST analysis produces a standard list of tables and figures that summarize the data 

from the variant calling experiment. Below we describe the different output that are 

generated by NeST. 

1. Report files: 

NeST generates tables that summarize the different types of variants found in the samples. 

All the tables will be stored under the Reports folder inside the output directory. Table 4.3 

describes the different files that are generated by NeST.  

Table 4.3: List of summary files generated by NeST. 

File  Description 

Study known variants This file contains the calls for each of the variants of interest, for each of the 

samples. The table also lists the variant call metrics for the variants 

Study known variants allele 

frequency 

This file lists the allele frequency for each of the variants of interest, for each 

of the samples in the study 

Study known variants depth This file lists the depth for each of the variants of interest, for each of the 

samples in the study 

Study novel exonic variants  This file lists all the novel exonic variants found in all the samples in the 

study along with the variant call metrics 

Study novel intronic variants This file lists all intronic variants found in all the samples in the study along 

with the variant call metrics 

Study novel variants allele 

frequency 

This file lists the allele frequency for each of the novel variants, for each of 

the samples in the study 

Study novel variants depth This file lists the depth for each of the novel variants, for each of the samples 

in the study 

2. Figures: 
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a. Study Depth: 

Read depth of coverage for SNPs associated with drug resistance. SNP loci are shown on 

the on the x- axis, and the read depth of coverage on the y-axis. The colors indicate the 

genes that were amplified during sequencing (Figure 4.3). 

b. Reportable SNPs: 

Bar graph depicting the wild type, major and minor allele frequencies of associated and/or 

confirmed resistance SNPs. Allele frequencies are indicated on the x-axis, and the variants 

of interest are listed along the y-axis (left). The number of samples that had a particular 

mutation is indicated on the y-axis (right). The color coding indicates the type of mutation 

found in the samples; blue is for wild type, green for minor allele mutation and red for 

major allele mutation (Figure 4.4). 

c. Novel Intronic SNPs: 

The figure follows the same format as Figure 4.4. The mutations indicated on the y-axis 

are any mutation that did not lie within the gene boundaries defined in the BED file, i.e., 

intronic and intergenic mutations. 

d. Novel Synonymous Exonic SNPs: 

Novel synonymous exonic SNPs are also reported in the same format as Figure 4.4. The 

mutations indicated on the y-axis are synonymous SNPs that lie within the exons of the 

genes of interest and have not been specified in the variants of interest file, provided by the 

user. 
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e. Novel Non-Synonymous Exonic SNPs: 

Following a similar format to Figure 4.4, the graph catalogs the non-synonymous mutations 

found in the exonic regions of the genes of interest, which were not previously listed as 

variants of interest by the user.  

The modularity of the NeST framework and standardization of results generated 

from the framework allow users not only to identify high-quality variants but also allow 

for the benchmarking of commonly used algorithms for variant calling. In the next section, 

the accuracy of standard variant calling algorithms using in-silico datasets from 

Plasmodium genes is evaluated. 

4.4 In-silico evaluation of variant calling accuracy from NGS datasets 

4.4.1 Materials and methods: 

To evaluate the accuracy of each methodology implemented in NeST and added value of 

consensus variant calling, 108 in-silico MiSeq dataset with varying coverage and sequence 

error rates were compared. Complete gene sequences for PfCRT, PfMDR1, PfK13, 

PfDHPS, PfDHFR, and the complete mitochondrial genome from Plasmodium falciparum 

3D7 genome were used as the reference. The mutation rate for the in-silico samples was 

set to 0.001%, with 10% of the in-silico mutations generated as InDels using DWGSIM90 

as described in Table 4.1. The specificity and sensitivity of each variant caller was assessed 

using the variant call files generated by DWGSIM as a truth set.  
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Figure 4.3: Depth of sequencing coverage across regions of interest. The y-axis indicates the sequencing read depth; the x-axis lists the variants of interest as 

specified by the user. Here, the variants of interest are mutations conferring antimalarial drug resistance. 
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Figure 4.4: Allele frequency distribution across variant of interest. The y-axis lists variants of interest 

as specified by the user. The x-axis indicates the allele frequency in the sample set. The color of the 

indicate the allele balance for the variant. Blue indicates wild type, green indicates variant in the minor 

allele, and red indicates presence of major allele variant. 
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Table 4.4: Characteristics of in-silico amplicon data set generated. 

 

 

  

Set# Coverage Read count Error rate MAF 

1 100 4010 0.001 0.5 

2 500 20051 0.001 0.5 

3 1000 40102 0.001 0.5 

4 100 4010 0.001 0.25 

5 500 20051 0.001 0.25 

6 1000 40102 0.001 0.25 

7 100 4010 0.001 0.1 

8 500 20051 0.001 0.1 

9 1000 40102 0.001 0.1 

10 100 4010 0.001 0.05 

11 500 20051 0.001 0.05 

12 1000 40102 0.001 0.05 

13 100 4010 0.005 0.5 

14 500 20051 0.005 0.5 

15 1000 40102 0.005 0.5 

16 100 4010 0.005 0.25 

17 500 20051 0.005 0.25 

18 1000 40102 0.005 0.25 

19 100 4010 0.005 0.1 

20 500 20051 0.005 0.1 

21 1000 40102 0.005 0.1 

22 100 4010 0.005 0.05 

23 500 20051 0.005 0.05 

24 1000 40102 0.005 0.05 

25 100 4010 0.01 0.5 

26 500 20051 0.01 0.5 

27 1000 40102 0.01 0.5 

28 100 4010 0.01 0.25 

29 500 20051 0.01 0.25 

30 1000 40102 0.01 0.25 

31 100 4010 0.01 0.1 

32 500 20051 0.01 0.1 

33 1000 40102 0.01 0.1 

34 100 4010 0.01 0.05 

35 500 20051 0.01 0.05 

36 1000 40102 0.01 0.05 
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4.4.2 Results: 

The accuracy of the different variant calling algorithms was evaluated using, 108 paired-

ended in-silico datasets were following the coverage, error rate, and minor allele frequency 

combination listed in Table 4.4. The maximum error rate for samples generated was limited 

to 1% since any error rate higher than 1% resulted in all reads being discarded during the 

QC step, thus not resembling any real-world situation which would be encountered. For 

each of the samples the mutation rate was set to 0.001% and rate of InDels was set to 10% 

of all mutations simulated. 

Table 4.5: Precision and recall values for SNPs and InDel calls made by standard variant 

callers against in-silico datasets from Plasmodium falciparum genes.  

Variant caller All variant calls (2241) SNPs (2043) InDels (198) 

 Precision Recall Support Precision Recall Support Precision Recall Support 

NeST 61.88 87.50 3169 63.36 94.66 3052 23.07 13.63 117 

NeST (Conf=2) 99.88 77.10 1730 99.94 84.53 1728 50 0.50 2 

HaplotypeCaller 98.04 78.40 1792 99.94 84.67 1731 44.26 13.63 61 

Samtools 97.83 70.72 1620 99.81 77.53 1587 3.03 0.55 33 

Freebayes 62.72 85.58 3058 63.23 93.88 3033 0 0 25 

The variant calls made with NeST, Freebayes, Samtools, GATK HaplotypeCaller 

and NeST calls which were made by at least two of three variant callers present in the 

framework were compared with the mutation list generated for each sample by 

DWGSIM90. Precision and Recall was calculated by measuring the number of instances 

where the calls made through the different protocols exact matched in-silico mutations 

generated.  

 Table 4.5 shows the precision and recall of the different protocols broken down by 

the type of variant call. From the table, we can see that relying on the simple comparison 
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of InDel calls to arrive at a consensus variant call is not a viable option. Primarily due to 

the differences in the representation of InDels by different variant calling algorithms. 

Precision values for InDel calling are greatly improved if InDels are unfurled by base 

location and then compared, as suggested by Krusche et al.103. The current version of NeST 

is primarily aimed at identifying SNPs conferring antimalarial drug resistance. InDels are 

just reported as is, giving the user the option to consider InDels for their downstream 

analysis. 

 

Figure 4.5: Distribution of false positive and false negative calls made by the different variant 

calling methods as a function of sequencing depth and error rates. The swarm plot shows the 

density of false positive and false negative calls for each condition. 

With SNP calling, however, HaplotypeCaller and Samtools show high precision 

and recall. Freebayes, on the other hand, shows significantly lower precision but high recall 

when compared to the other two callers, as well as NeST (Confidence =2). To investigate 
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this further, the variance in error in the variant calls w.r.t coverage, sequence error rate, 

and MAF were assessed. From Figure 4.5, the precision of Freebayes is affected to a more 

significant extent by sequence error rate than the other methods implemented. It is 

interesting to see that with an increase in coverage, the number of false-positive calls made 

by Freebayes significantly decreases. Samtools and GATK seem to take a more 

conservative approach while calling variants, thus showing greater precision, and 

consistent recall across the different scenarios described here. 

 From the data it’s clear that NeST results filtered on at least two variant callers 

detecting the variant, shows higher precision than using any of the methods on their own. 

When it comes to consensus InDel calling, the biggest bottleneck is the differing 

representations of InDels by the different methods implemented. Though decomposing the 

InDel into its constituent bases can enable consensus InDel calling, the current 

implementation of NeST reports InDels in the native forms as called by the different variant 

caller.  

4.5 Identifying variants conferring antimalarial drug resistance in Plasmodium 

falciparum from Targeted Amplicon Deep Sequencing datasets 

4.5.1 Materials and methods 

Amplicon sequencing is a targeted sequencing approach where PCR products or amplicons 

from a specific region in the genome are sequenced to a very high depth of coverage. This 

enables the accurate characterization of the genomic variants. Multiplexing of these 

amplicons allows for a large number of samples to be sequenced in a single sequencing 

run. Using the targeted amplicon deep sequencing protocol developed for eight genetic 
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markers for drug resistance in Plasmodium falciparum48, NeST was used to identify 

variants associated with drug resistance from these samples. 

 A total of 1,081 Plasmodium falciparum samples from more than 28 different 

regions (NCBI BioProject PRJNA428490) have been sequenced till date. From this larger 

dataset, 243 isolates were sequenced using Sanger sequencing (Figure 4.1). Using these 

243 samples the accuracy of the variant calls from NeST were evaluated by comparing the 

Sanger and NGS variant calls. 

 The accuracy of NeST was determined by its ability to identify 29 SNPs associated 

with drug resistance that were amplified in the Sanger sequencing runs. The results from 

NeST were compared with variant calls from Geneious98, a commercial off the shelf 

(COTS) bioinformatics toolkit for Sanger and NGS data analysis. 

 Leveraging the HPC compatibility of NeST, the framework was made available to 

all the groups at the CDC through their internal HPC framework. In collaboration with the 

Office of Advanced Molecular Detection (OAMD) at the CDC, a cloud-based web version 

of NeST was deployed on the CDC OAMD portal, accessible by all collaborating public 

health laboratories across the world (Figure 4.10). 
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Figure 4.6: Summary of the geographical location of all 243 P. falciparum samples. Legend 

indicates the number of samples from each region. 

  

4.5.2 Results 

The Malaria Resistance Surveillance (MaRS) amplicon sequencing protocol developed by 

the Malaria Branch at the CDC currently uses PCR primers to amplify out whole gene 

sequences for these eight markers (PfCRT, PfMDR1, PfDHPS, PfDHFR, PfK13, PfCOXIII, 

PfCOL, and PfCYTb). These eight markers were amplified in the 243 samples of imported 

malaria cases into the United States, using the MaRS protocol. NeST was used to identify 

mutations conferring drug resistance. The results were validated using variant calls from 

Sanger sequencing data available for all 243 samples. 

 As indicated in Figure 4.7, NeST was able to detect 444 variants in the 243 samples, 

that were previously missed by Sanger sequencing and Geneious. Six hundred three 
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variants were only detected through NGS data. When compared to Geneious, NeST and 

Sanger were able to identify 129 SNPs that were missed by Geneious. Only 21 variants 

from all 243 samples were missed by NeST but detected either with Sanger (20 variants) 

or Geneious. 

 Figure 4.8 shows the overlap of variant calls made by the different tools used within 

NeST. From the figure we see that 1566 variant calls detected from the Sanger, 1543 were 

found by at least two variant callers implemented in NeST. Of 603 variants only identified 

from NGS data, 577 were identified by at least two variant callers in NeST. Freebayes 

detected the largest number of variant calls that could not be corroborated with the other 

methods. 

Samtools detected the greatest number of variant calls, which could only be 

corroborated with sanger data. All variant calls made by GATK, on the other hand, could 

be verified by at least one of the variant callers used in the comparison or sanger sequencing 

data. Thus, GATK again shows that while being conservative in the number of calls made, 

the accuracy of the calls made by the tools is the highest amongst the tools compared here. 

Apart from the variants of interest, any other variant called by NeST will be stored 

in separate outputs as novel intronic or novel exonic variants while novel exonic variants 

are only reported if at least two out of the three callers found the variant. Novel intronic 

calls are reported even when just one of the callers found the variant. This separation and 

subsequent reporting of novel variants can help with the discovery of potential markers for 

drug resistance. 
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Figure 4.7: The overlap of variant calls made by NeST, Geneious, and Sanger sequencing calls. The bar graph on the left 

shows the total number of variant calls made by the different methods. The graph on the right shows the extent of overlap of variant 

calls made by NeST, Geneious, and Sanger calls. 
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Figure 4.8:  The overlap of variant calls made by NeST, Geneious, and Sanger sequencing calls. The bar graph on the left shows the total 

number of variant calls made by the different methods. The graph on the right shows the extent of overlap of variant calls made by Samtools, GATK 

HaplotypeCaller, Freebayes, Geneious, and Sanger calls. Vertical bars are colored by the methods that identified the variant. 

.
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Figure 4.9 shows novel non-synonymous exonic mutations in the PfK13 gene. From 

the figure, we can see that 115 of the 243 samples analyzed had the PfK13: K189T 

mutation. While it is difficult to arrive at any conclusion about the significance of this 

mutation toward drug resistance with the current sample set. Capturing this information 

can help with future inquiries. 

 

Figure 4.9: Frequency of novel non-synonymous mutations in the exonic region PfK13 that 

were found by at least two variant callers. 

Our analysis of the 243 P. falciparum isolates shows the advantage of using a consensus-

based variant calling system like NeST for tracking resistance in malaria. To ensure that 

NeST can be deployed quickly across different platforms with varying resources available, 

NeST using the BioConda framework to setup necessary dependencies. It is also structured 



87 

 

such that the user requires a minimum of 4GB of RAM for analysis, which is commonplace 

in most modern-day computers. For situations where adequate resources to run NeST are 

not available, a web-based version of the framework was also made available to all 

collaborating public health labs at CDC, through the Office of Advanced Molecular 

Detection (OAMD) web-portal (Figure 4.10) as the MaRS pipeline. 

 

Figure 4.10: NeST/ MaRS app available on the OAMD Bioinformatics platform. 

 

4.6 Evaluating accuracy of variant calling derived genotypes at predicting 

phenotypic drug resistance in Mycobacterium tuberculosis 

4.6.1 Material and methods 

To test the utility of NeST for a bacterial pathogen, the performance of NeST at predicting 

drug resistance in Mycobacterium tuberculosis isolates from the CRyPTIC consortium 
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study83 was evaluated. From the CRyPTIC consortium study, 8351 samples along with 

their corresponding SRA accession numbers were collected. NeST was used to identify 

mutations conferring drug resistance to four drugs Rifampicin, Isoniazid, Ethambutol, and 

Pyrazinamide. We looked at mutations in 9 genes katG, embA, embB, embC, ahpC, pncA, 

inhA, fabG1 and rpoB. 

 The study presented 10210 Mycobacterium tuberculosis isolates with associated 

phenotypic resistance information for five anti-biotics lists of anti-biotics. They tested the 

accuracy of genotypic variant calling markers from NGS datasets at predicting phenotypic 

resistance by implementing a Standard variant calling a pipeline. However, of the 10210, 

only 8351 samples available from NCBI’s Sequence Read Archive (SRA) could be 

associated with the phenotypic associations. Only these 8351 samples were considered for 

further analysis. 

 Here we evaluate the accuracy of NeST at predicting phenotypic resistance to these 

drugs using resistance variant markers for these five drugs. The sensitivity and specificity 

of predicting phenotypic resistance using a single variant caller as performed in the 

CRyPTIC consortium study and a consensus variant calling approach implemented in 

NeST, was tested. Samples were analyzed using the NeST variant calling framework and 

classified as resistant or susceptible based on presence or absence of variants known to 

confer drug resistance to four first line treatments against M. tuberculosis infections.  

4.6.2 Results: 

To test the utility of NeST in different public health settings, we evaluated the performance 

of NeST at predicting drug resistance in Mycobacterium tuberculosis isolates from the 
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CRyPTIC consortium study83. From the CRyPTIC consortium study, we were able to 

gather samples and their corresponding SRA accession numbers for 8351 samples. We 

used to NeST to identify mutations conferring drug resistance to four drugs Rifampicin, 

Isoniazid, Ethambutol, and Pyrazinamide. In particular, we looked at mutations in 9 genes 

katG, embA, embB, embC, ahpC, pncA, inhA, fabG1 and rpoB. 

 The current implementation of NeST leverages the Python multiprocessing 

framework. This allows the distribution of the analysis across multiple threads to achieve 

the parallelization of the process. While multiprocessing is suitable for small studies, as we 

saw with the Plasmodium dataset, it is not efficient when working with a large number of 

samples. Leveraging the multi-node structure of an HPC environment can drastically speed 

up the analysis. To this end, we developed a recipe for NeST to utilize the multi-node 

architecture of the HPC system, PACE92, offered at the Georgia Institute of Technology. 

Since the MOAB scheduler used by PACE, is a commonly used scheduler for HPC 

clusters, the same recipe can be used across any cluster implementing a MOAB scheduler. 

Leveraging this architecture, we were able to analyze the 8351 WGS samples in 40 hours. 

The samples were classified as resistant to the drugs if an SNP known to confer drug 

resistance was found in the sample. 

 For comparison, the convention set by the published study of classifying a sample 

to be susceptible to drugs was followed; if it lacked any of the SNPs known to confer drug 

resistance. Precision and recall values were calculated for each of the labels (Resistant, 

Susceptible). Table 4.6 shows the conditions under which a true positive, false positive and 

false negative call would be made for both the resistant and susceptible label.  
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Table 4.6: Truth table for genotypic and phenotypic resistance or susceptibility. 

 Genotypic resistance Genotypic susceptibility 

Phenotypic resistance True positive resistance False negative resistance 

False positive susceptibility 

Phenotypic susceptibility False negative resistance 

False positive susceptibility 

True positive susceptibility 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∪ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (4.2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∪ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (4.2) 

As per the definition of precision and recall, Eq (4.1) (4.2), low precision for resistance 

would imply that more samples were predicted to be resistant from the NGS data, than 

what was observed from the clinical phenotype. A low value for recall would imply fewer 

samples were predicted to be resistant from the NGS data, than what was observed from 

clinical phenotype. By the same logic, a low precision value corresponding to susceptibility 

to a drug would imply that there were a greater number of samples that were labeled 

susceptible than observed through phenotypic data. Moreover, low values of recall would 

indicate that a greater number of samples were labeled resistant than expected as per the 

phenotypic information. 
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Table 4.7: Precision and recall values for the genotypic prediction of phenotypic resistance 

or susceptibility against anti-TB drugs. 

Drug Label NeST CRyPTIC consortium Support 

Precision Recall Precision Recall 
 

Rifampicin Resistant 0.94 0.96 0.96 0.95 2659 

Susceptible 0.98 0.97 0.98 0.98 5692 

Pyrazinamide Resistant 0.46 0.43 0.59 0.75 1016 

Susceptible 0.92 0.93 0.96 0.93 7335 

Ethambutol Resistant 0.66 0.83 0.66 0.86 1488 

Susceptible 0.96 0.91 0.97 0.91 6863 

Isoniazid Resistant 0.93 0.93 0.94 0.93 2884 

Susceptible 0.97 0.96 0.96 0.97 5467 

 Table 4.7 shows the precision and recall corresponding to resistant and susceptible 

calls from NEST and the CRyPTIC consortium pipeline. Based on the interpretations of 

precision and recall for the different scenarios, we can say that NeST classifies a lot more 

samples as resistant to the four drugs, than the Samtools pipeline used by the CRyPTIC 

consortium. However, it would be unwise to conclude that NeST is better at detecting 

phenotypic resistance than a single pipeline method or vice versa. While from the previous 

sections we see that the consensus framework can achieve higher accuracy of variant calls, 

there are many factors involved with phenotypic resistance than cannot be accounted for 

by a naive classification of resistance based on presence or absence of variants in the 

samples. 

 From the data provided in Table 4.7, however, the precision and recall associated 

with the phenotypic prediction of susceptibility to a drug was above 90% for both 

CRyPTIC consortium pipeline and NeST. It might be tempting to conclude here that, 



92 

 

absence of the mutation associated with resistance can imply phenotypic susceptibility. 

The absence of a variant call from NGS data is dependent on many factors. Such as the 

purity of DNA extracted, the precision of the library prep, the error rates associated with 

the sequencing technology used, and finally, the sensitivity of the NGS analysis framework 

used. More evidence is needed before any conclusion can be made on the accuracy of 

genotypic predictions of phenotypic resistant. Based on the analysis presented herein, 

NeST provides a scalable framework to analyze NGS data from large-scale studies. The 

consensus framework offered provides a metric to assess high confidence variant calls. 

These two features can significantly improve the utilization of NGS data towards molecular 

surveillance of drug resistance. 

 

4.7 Discussion 

Though variant calling from NGS data has been an established technique for some time 

now, there is ample evidence to show that variant calls made by different tools are not 

always consistent with each other63,65. From the analysis using in-silico datasets generated 

from genes associated with drug resistance in Plasmodium falciparum, its clear that 

variance in results will occur with different variant calling algorithms and that some of this 

variance can be overcome by using a consensus based variant calling method. 

 NeST is already being used for routine molecular surveillance of antimalarial drug 

resistance at the CDC. Based on the analysis presented earlier, NeST also performs better 

than commercial toolkits such as Geneious at identifying genetic markers for antimalarial 

drug resistance. The scalability of NeST is demonstrated by its availability through the 
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CDC HPC web portal. Furthermore, NeST is easily scalable for large datasets, as 

demonstrated by the analysis of the 8,351 NGS samples from the CRyPTIC 

Mycobacterium tuberculosis consortium study.  While most of the variant calls associated 

with drug resistance were able to predict phenotypic resistance to a drug, some drugs, such 

as Pyrazinamide and Ethambutol, the SNP calls were not good predictor of phenotypic 

resistance. The SNP calls predicted a lot more samples to be resistant to a drug than 

phenotypically observed. This may be due to the various factors that can affect variant 

calling from NGS data, such as coverage, error rate, and genomic complexity. Additionally, 

the mechanisms that govern resistance to a drug are complex and thus are not easily 

predicted by naive presence or absence test of variants associated with drug resistance – 

genotypic resistance is not phenotypic resistance and vice versa. 

 In summary, the consensus-based variant calling framework can overcome the 

biases of any individual bioinformatic algorithm and provides a metric to assess the quality 

of mutations detected from NGS datasets. Though by its nature, a consensus-based system 

will be more conservative in calling variations from the sample data, consensus-based 

methods can reduce the likelihood of erroneous calls, which is crucial for molecular 

surveillance in public health settings. NeST was able to identify more variants associated 

with drug resistance, than other commercial NGS analysis platforms. The scalability and 

modular nature of NeST make it an ideal tool for the large-scale molecular surveillance of 

drug resistance. 
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CHAPTER 5. CONCLUDING REMARKS 

The work described in this thesis highlights the challenges faced in genetic epidemiology 

of malaria and proposes methods to address these challenges given the current technology. 

 In Chapter 2, we describe the existing methodologies for variant calling and 

genomic clustering from NGS data. The advantages and disadvantages of state-of-the-art 

genomic clustering and variant calling algorithms were discussed. The underlying principle 

for two new methodologies, NeST and Gentoo, introduced through this work to overcome 

the pitfalls of existing solutions in variant calling and genomic clustering when applied to 

NGS data in a public health setting.  

 In Chapter 3, I further expanded on the k-mer based alignment-free clustering 

algorithm, Gentoo. The improved accuracy of Gentoo over existing methods for genomic 

clustering of NGS data from Plasmodium spp., was demonstrated. I further showed that 

Gentoo was able to cluster better genomes from Candida auris outbreaks in Colombia, 

based on local similarities between isolates from a given outbreak, when compared to SNP 

based phylogeny techniques. 

 Memory profiling of Gentoo shows a significant reduction in the time of execution 

and resources required for pairwise distance estimation that can be achieved with Gentoo. 

Gentoo required 121 MB of RAM and took 10 minutes to cluster all 20 genomes from the 

Plasmodium study. While our previously developed method, Finch, required 10 GB of 

RAM and took 30 minutes to perform all 210 pairwise comparisons. The time of analysis 

went up to 60 minutes when Gentoo used FASTQ files directly, but the memory utilization 
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remained the same. While Mash was the most efficient algorithm, in terms of runtime and 

memory utilization, Gentoo was more accurate at reproducing the Plasmodium 

evolutionary tree. 

 Chapter 4 describes a modular, scalable, consensus-based framework, NeST, for 

the molecular surveillance of drug resistance using variant calling from NGS datasets. 

There has been enough evidence to show that variant calling methodologies are not 

consistent with each other, though methods do exist to filter low-quality variants. These 

variant filtration techniques are not applicable for smaller organisms such as Plasmodium 

falciparum or Mycobacterium. tuberculosis. 

 NeST generates a consensus call using multiple variant calling algorithms to 

overcome the potential bias associated with each method on its own. We evaluated the 

benefits of a consensus caller, using in-silico datasets generated from molecular markers 

associated with drug resistance in P. falciparum as well as the amplicon sequencing data 

from blood spots of samples infected with P. falciparum. We demonstrated the scalability 

of the framework by analyzing 8351 M. tuberculosis on an HPC cluster, with an average 

time of analysis of 4 hours for 100 WGS samples of M. tuberculosis. 

 We show that there is a consistency in the precision when calling variants using a 

consensus-based approach as compared to each method separately. However, there is drop 

in the recall, up to 8% drop when compared to the variant caller with the highest recall. 

The trade-off between precision and recall, however, needs to be evaluated on a case-by-

case basis. We offer a confidence metric for each variant call that assists in decision making 

downstream. 
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 Future versions of NeST, however, need to address the issue of consensus InDel 

calling. The main bottleneck with regard is the difference in the representation of InDels 

by the various methods. One possible solution discussed in the previous section was 

unfurling InDel calls and locally assembling the consensus calls, the computational burden 

of this proposed solution needs to be evaluated further.  

 Through my Ph.D. thesis work, I aimed to advance the utilization of NGS 

technology in the public health sector. The solutions offered in this thesis provide an 

efficient and scalable framework for genomic clustering and molecular surveillance of drug 

resistance in malaria. The utility of NGS analysis methods that I developed is demonstrated 

by their adaptation as standard protocols by the Malaria Branch at the Centers for Disease 

Control and Prevention. Considering the standardization and improved accuracy, I hope 

that public health labs across the world adopt the solutions described in the present work 

for the surveillance of other infectious diseases. 
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