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SUMMARY 

 

The rapid growth in the interest to explore new synthetic crystalline organic 

semiconductors and their subsequent device characterization has revived the debate on 

the development of theoretical models to better understand the intrinsic charge transport 

mechanisms in organic materials. At the moment, several charge-transport theories for 

organic molecular crystals have been proposed and have observed a comparable 

agreement with experimental results. However, these models are limited in scope and 

restricted to specific ranges of microscopic parameters and temperatures. A general 

description that is applicable in all parameter regimes is still unavailable. The first step 

towards a complete understanding of the problem associated with the charge transport in 

organic molecular crystals includes the development of a first-principles theoretical 

methodology to evaluate with high accuracy the main microscopic charge-transport 

parameters and their respective couplings with intra- and intermolecular vibrational 

degrees of freedom.  

 

In this thesis, we have developed a first-principles methodology to investigate the 

impact of electron-phonon interactions on the charge-carrier mobilities in organic 

molecular crystals. Well-known organic materials such as oligoacene and 

oligothienoacene derivatives were studied in detail. To predict the charge-transport 

phenomena in organic materials, we rely on the Marcus theory of electron-transfer 

reactions. Within this context, the nature of the intramolecular vibronic coupling in 

oligoacenes was studied using an approach that combines high-resolution gas-phase 
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photo-electron spectroscopy measurements with first-principles quantum-mechanical 

calculations. This further led to investigation of the electron interactions with optical 

phonons in oligoacene single crystals. The lattice phonon modes were computed at both 

density functional theory (DFT) and empirical force field levels. The low-frequency 

optical modes are found to play a significant role in dictating the temperature dependence 

of the charge-transport properties in the oligoacene crystals. A combined classical 

molecular dynamics and quantum-chemical study on organic molecular crystals revealed 

that the lattice vibrations are a key component to be taken into account when designing 

organic materials with improved charge mobilities.  

 

Finally, we investigated the microscopic charge-transport parameters in the 

pentathienoacene, 1,4-diiodobenzene, and 2,6-diiodo-dithieno[3,2-b:2’,3’-d]thiophene 

crystals. In the first case, a combined DFT and gas-phase ultraviolet photoelectron 

spectroscopy approach revealed that the intrinsic charge transport properties in the 

pentathienoacene crystal might be higher than that in two benchmark high-mobility 

organic crystals, i.e., pentacene and sexithienyl. For 1,4-diiodobenzene crystal, a detailed 

quantum-mechanical study of the electronic and vibrational couplings indicated that its 

high mobility is primarily associated with the iodine atoms. In the 2,6-diiodo-

dithieno[3,2-b:3’,2’-d]thiophene crystal, the main source of electronic interactions were 

found along the π-stacking direction. For negatively charged carriers, these two halogen-

functionalized molecular crystals show a very large polaron binding energy, which 

suggests significantly low charge-transport mobility for electrons. 

 



 

1 

CHAPTER 1 
 

INTRODUCTION 

 

1.1 Organic semiconductors 

 

Technologies based on organic semiconductors may answer the always increasing 

demand that consumers have for large-area electronics, lightweight displays, and portable 

computing. Advances in scientific understanding, technology, and device performance of 

organic semiconductors have reached a point where molecular crystals of pentacene1, 2 

and rubrene3, 4 have surpassed amorphous Si in performance. Organic materials are 

therefore of great interest for the new generation of thinner, lighter and higher resolution 

electronic applications. The market for organic electronics-based products is now 

projected to reach over $30 billion by 2015.5 Needless to say, organic semiconductors 

have captured the interest of both chemical and electronics industries worldwide for good 

reasons. Importantly, a wide range of properties, such as solubility in different organic 

solvents and the color of the light emission can be fine-tuned via chemical synthesis.6, 7 

Another feature of interest includes the ease in processing, and the potential for low-cost 

fabrication. The combination of these attributes has fueled research and development in 

organic electronics in both academia and industry.  

 

On the basic research side, organic materials represent systems in which the 

subtle interplay between their π-electronic structure and geometric structure has unveiled 
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extraordinary properties, leading to the establishment of new research areas for materials 

scientists.8-10 On the applied research side, organic semiconductors have the potential to 

facilitate the development of large-area displays, solid-state lightening, radio frequency 

identification tags, or solar cells. It is expected that, one day, fascinating applications 

would be realized, such as wallpapers whose patterns and colors can change at the click 

of a switch; newspapers and books whose contents automatically update daily or on 

request;11, 12 or television sets so thin and flexible that they can be rolled up and carried in 

a briefcase.13 The maturity of these and other futuristic applications is not as far off as 

one might initially think. The Sony Corporation is now selling a television, called XEL-1, 

that is only about one-eighth of an inch thick; it owes its saturated colors and superlative 

slimness to the emerging technology of organic light-emitting diodes (OLEDs). 

 

 
 

Figure 1.1 Side and front views of the XEL-1 Sony television with a screen one-eighth of 
an inch thick.14 
 

The development of organic semiconductors, central to the aforementioned 

applications, was pioneered in the 1950s by Martin Pope and colleagues, who performed 

seminal studies of the ground- and excited-state electronic structure of model molecules 

and crystals, such as anthracene.15 The field of organic electronics has also its root in the 
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1977 discovery of the conducting properties of doped polyacetylene.16 This breakthrough 

earned Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa the 2000 Nobel Prize in 

Chemistry for their “discovery and development of conductive polymers” and opened an 

entire new field of research. These conducting polymers have unique properties, in the 

way that they can combine the electrical properties of metals with the mechanical 

properties of polymers.  

 

To date, a number of organic semiconductor families have been investigated; the 

data generated on these systems have allowed researchers around the world to draw 

important relations between molecular structure and structural organization in the solid 

state, film morphology, and electrical performance. Figure 1.2 collects the chemical 

structures of representative organic semiconductors. Some of these materials belonging to 

the oligoacenes or oligothiophene families have received much attention since single 

crystals with limited number of impurities can be obtained through repeated sublimation 

steps.1, 3 In principle, these materials can be used to develop single-crystal organic 

transistors,17-19 providing the opportunity to explore fundamental processes that 

determine the operation and reliability of organic electronic devices. Topics of current 

interest include investigating the role of the electronic interactions with vibrations and the 

induced electronic polarization and electrostatic effects in organic single crystals. Work 

along these lines is necessary to be able to estimate carrier mobilities accurately. 

However, the lack of processability of crystalline organic semiconductors prevents them 

from being easily integrated in industrial processes. For industrial applications, solution-

process-able organic semiconductors are required. Therefore, to truly realize the low-cost 
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aspects of organic electronics, organic semiconductors should be deposited from solution 

via more versatile and economic techniques, such as spin coating, drop casting, or inkjet 

printing.20, 21 

 

Despite the current progress in crystalline organic semiconductors, the promise of 

organic thin-film transistors (OTFTs) as to low-cost materials for disruptive technologies 

has triggered the production of vast libraries of synthetic organic semiconductors. OTFTs 

are the fundamental unit for backplane driving circuits in flexible displays and low-cost 

memory applications. In order for OTFTs to be successfully incorporated as driving 

circuits in display applications, they need to exhibit high current output, good switching 

speeds, and high contrast between the “on” and “off” states. These requirements are 

intrinsically correlated to the parameters used to characterize OTFTs, such as mobility 

(this quantity measures the average charge-carrier drift velocity per unit of electric field; 

it is usually given in units of ܿ݉ଶ ܸ ·⁄  the threshold voltage (which measures the ,(ݏ

voltage required to turn “on” the transistor), and on/off current ratio (a measure of 

contrast between the device “on” and “off” states). In section 1.1.2, a brief description of 

the structural design and operation of an OTFT is presented. 
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Figure 1.2 Representative organic semiconductors (those with p-channel characteristics 
are colored in blue, while those that exhibit n-channel characteristics are colored in red): 
(a) pentacene, (b) copper phthalocyanine, (c) fluorinated copper phthalocyanine, (d) 
fluorinated naphthalene diimide, (e) poly(3-hexyl thiophene), (f) poly(2,5-bis(3-
alkylthiophen-2-yl)thieno[3,2-b]thiophene), and (g) triethylsilylethynyl 
anthradithiophene. (Figure adapted from Reference 22). 
 

1.1.1 Molecular packing in organic molecules 

 

A key factor that influences the charge mobility and the overall performance in all 

organic electronic devices is the intermolecular ordering of the molecules in the solid 

state. In general, it has been demonstrated that good electrical performance requires 

strong electronic coupling (a quantity that measures the strength of the electronic 

interactions) between adjacent molecules in the solid.23 For example, extensive prior 

work in our research group has shown that the intermolecular electronic coupling is 

extremely sensitive to molecular packing,23, 24 in a way that closely depends on the 

bonding-antibonding pattern of the frontier molecular orbitals (HOMO, highest occupied 
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molecular orbital, or LUMO, lowest unoccupied molecular orbital). Two common 

packing motifs adopted by organic molecular crystals in the solid state can yield strong 

intermolecular wavefunction overlap, namely, the herringbone and π-stacking 

arrangements (Figure 1.3). Interactions with adjacent stacks can lead to two- or three-

dimensional electronic coupling in the solid. 

 

 

Figure 1.3 Illustration of packing arrangements for anthracene: herringbone (top) and π-
stacking (bottom) (only HOMO orbital interactions are shown). 
 

1.1.2 OTFT geometry and operation 

 

Figure 1.4 shows two common device geometry configurations used for OTFTs. 

In both cases, an organic semiconductor film is deposited on a gate/insulator substrate 

and is contacted with metallic source and drain electrodes. The voltage applied between 
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the source and drain is referred to as the source-drain voltage, ஽ܸ. For a given ஽ܸ, the 

amount of current that flows through the semiconductor film from source to drain is a 

function of the voltage, ܸீ , applied to the gate electrode. The application of a bias on the 

gate induces the injection of charges into the semiconductor film. When these charges are 

mobile, they can move in response to the applied source-drain voltage, ஽ܸ. Under ideal 

conditions, if no gate voltage is applied, the conductance of the semiconductor is 

negligible, and the device is “off” due to lack of mobile charge carriers. On the other 

hand, if a gate voltage is applied, mobile charges are induced, and the transistor is “on”. 

 

 
 
Figure 1.4 Schematic of top (a) and bottom (b) contact organic OTFTs. (c) Relevant 
voltages and geometry for an OTFT, ܮ represents the source-drain channel length and ܹ 
the channel width. (Figure adapted from Reference 25). 
 

In order to understand the origin of the gate-induced charging process, a 

schematic electronic energy level diagram is shown in Figure 1.5. The positions of the 

HOMO and LUMO of the semiconductor relative to the Fermi energy ሺܧிሻ of the source 

and drain contacts are illustrated in Figure 1.5 (A). In the absence of gate voltage, there is 

no significant conduction since there are no mobile charges injected into the 

semiconductor. The left part of Figure 1.5 (B and D) shows the application of a positive 

gate voltage, which produces a strong electric field at the organic/insulator interface. The 

presence of this field causes the HOMO and LUMO levels of the semiconductor to shift 
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down in energy with respect to the Fermi levels of the metal contacts. In the particular 

case of a large enough gate field, electrons can flow from the metallic contacts to the 

LUMO level of the semiconductor; electrons are injected at the semiconductor/insulator 

interface. Under the application of a drain voltage, ஽ܸ, this results in an electrical current 

between source and drain. The same reasoning can be used to understand the effect of a 

negative bias in an OTFT (Figures 1.5 C and 1.5 E). Negative gate bias, ܸீ , causes the 

HOMO and LUMO levels to shift up in energy, allowing the HOMO of the 

semiconductor to become resonant with the contact Fermi levels. Electrons can jump 

from the semiconductor to the metallic contacts, leaving behind positively charged holes. 

These holes are able to move in response to the applied drain voltage, ஽ܸ, Figure 1.5 E. 
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Figure 1.5 (A) Idealized energy level diagram of an OTFT at ܸீ  = 0 and ஽ܸ = 0. (B and 
D) Electron accumulation and electron transport in the OTFT. (C and E) Hole 
accumulation and hole transport in the OTFT. (Figure adapted from Reference 25). 
 

1.1.3 OTFT applications 

 

Organic thin films have long been attractive for use in electronics because of their 

light weight, large-area applications, and a less complex fabrication process compared 

with their inorganic counterparts. Recent developments in device performance have 

rapidly expanded organic electronics niche markets, making them targets for a wider 

range of applications. OTFTs have been proposed for applications such as display 
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switches,26 display drivers,27 radio-frequency identification (RFID) tags,28  and  

sensors.29, 30 In the following, a brief description of some (potential) applications of 

OTFTs is presented. 

 

1.1.3.1 Electronic paper 

 

One of the earliest examples of organic semiconductor applications that was 

realized was active-matrix electronic paper. Organic transistors can be manufactured 

directly at low (ambient) temperature onto plastic films, which are mechanically flexible, 

lightweight, and thin. In such systems, an organic or polymer transistor backplane drives 

elements such as electrophoretic cells. The display elements have a memory effect and 

are often electric-field driven. The current drive requirements are much less than those 

required for an active-matrix OLED display. Electronic paper is often required to be 

flexible and processed over relatively large areas. In the first report on organic transistor-

based electronic paper, pentacene transistors were printed on low-cost, mechanically 

flexible polymer substrates.12 Although that early prototype did not display the number of 

pixels required for most customer applications, it set the foundations for companies to 

commercialize electronic paper based on polymer electronics. Companies such as E Ink, 

SiPix, and Polymervision, as well as such giants as Sony, IBM, Hewlett-Packard, Philips, 

Fujitsu, Hitachi, and many others, are continuing to develop electronic paper 

technology.31, 32 The backplane for a 256-element electronic paper is shown in Figure 1.6 

(a). 
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1.1.3.2 RFID tags 

 

Another major application area for OTFTs is that of RFID tags. The primary 

driver for consideration of this application is cost; it is expected that the cost of an RFID 

tag fabricated using organic-printed transistors will be substantially lower than that of Si-

based tags. Upon the assumption that a fully printed process is realized, it is likely that a 

cost advantage for printed RFIDs will exist over conventional Si chip technologies. If so, 

organic-based RFIDs tags can be used in the identification of individual retail goods in 

much the same way as barcodes are presently employed. The realization of this 

technology undoubtedly represents an opportunity for organic- and polymer-transistor-

based components. A photo of a flexible circuit based on pentacene transistors is shown 

in Figure 1.6 (b). 

 

 
 
Figure 1.6 (a) A 256-element electronic paper system, each pixel consists of an organic 
transistor with channel length < 20 μ݉. Details are described elsewhere.12 (b) Photo of an 
RFID tag component circuit. (Figure adapted from Reference 11). 
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1.1.3.3 Chemical sensors 

 

The usage of organic and polymeric transistors for sensor applications emerges 

from the chemical nature of these materials and the fact that they can form weak 

chemical interactions with a variety of analytes.33, 34 The semiconductor characteristics of 

organic materials enables the transfer of chemical information into electronic information 

in the solid state. A large number of organic semiconductors will permit the identification 

of several analytes through fingerprinting, in which a particular analyte produces a 

unique pattern of responses with different semiconductors. Despite the availability of 

chemical sensors, implementing a relatively inexpensive and highly selective portable 

system for detecting volatile analytes is still a challenge. Thus, OTFTs appear promising 

in this sense because they have demonstrated to operate as multiparametric sensors35 and 

have shown a remarkable response reproducibility.36 

 

1.2 Charge transport 

 

After several decades of intensive research, the understanding of the basic charge 

transport mechanism in organic semiconductors remains incomplete. The complexity of 

the transport phenomena is generally associated with the polaronic nature of charge 

carriers and the strong electron-vibration interactions; in such a case, the coupling 

between electrons and vibrations cannot be simply treated as a perturbation.15, 37 A 

challenge for theoreticians is to develop an adequate model that describes transport as a 

function of temperature. The time-of-flight experiments with ultrapure crystals of 
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naphthalene and anthracene carried out by Karl and co-workers38, 39 have demonstrated 

that charge transport in organic crystals is characterized by a rapid decrease of the carrier 

mobility with increasing temperature and a pronounced anisotropy of the mobility along 

different crystallographic directions. This is illustrated in Figure 1.7 for the case of 

electron and hole transport along the ܽ crystal axis of ultrapure crystals of naphthalene.38 

Similar evolution is observed along specific directions for a large number of crystals. 

This decrease in mobility originates from enhanced scattering processes by lattice 

phonons. Transport measurements on molecular single crystals indicate that charge 

mobilities as high as a few hundred ܿ݉ଶ ܸ · ⁄ݏ  can be obtained at low temperature (up to 

300 ܿ݉ଶ ܸ · ⁄ݏ  for holes in naphthalene at 10 38.(ܭ 

 

In the past, conjugated polymers and charge-transfer complexes were the main 

focus of charge transport studies in organic materials. For an extensive review on the 

topic, see for example the monographs by Pope and Swenberg15 and Silinsh and Capek.37 

As previously mentioned, significant attention is now paid to highly ordered 

semiconductors, of particular interest for their high mobilities and their potential 

applications in molecular electronic devices.1-4 In principle, large mobility values are 

associated with the improved purity of molecular crystals, which represents a drawback 

for large-scale applications because of the relatively high cost and complexity of the 

vacuum fabrication technique.1 However, highly ordered molecular crystals provide a 

unique opportunity to explore the basic charge-transport processes that determine the 

operation and reliability of organic electronic devices. Since the key quantity that 

characterizes charge transport is the carrier mobility, this section starts with the definition 
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of the carrier mobility and is followed by the description of a theoretical model for charge 

transport in ordered molecular materials. 

 

 
 

Figure 1.7 Electron and hole mobilities in the a-direction of a highly purified naphthalene 
crystal as a function of temperature. (Figure adapted from Reference 38). 
 

1.2.1 Definition of charge carrier mobility 

 

 The mobility, ߤ, is related to the conductivity, ߪ, according to: 

ߪ ൌ ߤ݊݁ (1.1)

where ݊ indicates the density of the charge carriers and ݁ is the elementary charge. The 

mobility of the charge carriers in solids is often described in terms of the linear response 

formalism. In this case, the Kubo formula provides a general starting point for a 

semiclassical or fully quantum-mechanical description of the mobility. For charge 

carriers at thermal equilibrium moving in an electric field, the mobility is, according to 

Kubo’s formula, given by: 
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ሺ߱ሻߤ ൌ െ
݁߱ଶ

2݇஻ܶ
න

ሻݐሺݎ|ۃ െ ۄሺ0ሻ|ଶݎ
݀ ݁ି௜ఠ௧݀ݐ

ஶ

଴

(1.2)

with ݇஻ Boltzmann’s constant, ܶ the temperature, ݐ the time, ߱ the radial frequency (that 

accounts for the possible oscillating behavior of the electric field), ݎ the total 

displacement vector, and ݀ ൌ 1, 2, 3 the dimensionality of the system. The brackets 

imply averaging over a large number of charge carriers at thermal equilibrium. 

Calculation of the charge carrier mobility on the basis of Equation 1.2 requires an 

evaluation of the average of the square displacement for all the charge carriers 

contributing to the conductivity. This averaging involves taking into account the 

contribution of all states of the charge carriers. The charge carrier states can be obtained 

from the Hamiltonian of the system, given by: 

ܪ ൌ ௘ܪ ൅ ௣௛ܪ ൅ ௘ି௣௛ܪ (1.3)

In Equation 1.3, ܪ௘ is the electronic Hamiltonian and ܪ௣௛ is the phonon Hamiltonian. 

The ܪ௘ି௣௛ term describes the interactions between electrons and phonons, which are 

associated with the dynamic fluctuations of the material. Such fluctuations correspond to 

nuclear vibrations of the molecule or to motions of the entire molecular unit.  

 

 In the case of normal Gaussian diffusion, the mean square displacement of a 

charge eventually increases with time according to: 

ሻݐሺݎ|ۃ െ ۄሺ0ሻ|ଶݎ ൌ ݐܦ2݀ (1.4)

with D representing the diffusion constant, d the dimensionality of the system, and ݐ the 

time. Substitution of Equation 1.4 into Equation 1.2 gives the Einstein relation for the 

mobility: 



 16

μൌ
e
kBT

D (1.5)

 
The mobility in Equation 1.5 is frequency independent and the imaginary component is 

zero.  

 

1.2.2 Theory of charge carrier mobility 

 

The most detailed transport theories in ultrapure organic crystals are still those 

based on the 1D Holstein molecular model.40, 41 According to this model, the total 

mobility can be expressed to a good approximation as a sum of two contributions: 

ߤ ൌ tunߤ ൅ hopߤ (1.6)

Here, the first term is due to electron tunneling (coherent electron transfer) and dominates 

transport at low temperatures; the second term is related to hopping motion (incoherent 

electron transfer) and becomes dominant at higher temperatures. The relative contribution 

of each mechanism is associated with the actual values of the microscopic parameters, 

such as electron-phonon coupling, electronic and phonon bandwidths, and phonon 

energy. An illustrative example of the temperature dependence of the mobility for large 

(݃ଶ and weak (݃ଶ (1 ب  electron-phonon couplings is shown in Figure 1.8. In the (1 ا

case of weak electron-phonon coupling, the mobility is dominated by tunneling and 

displays a band-like temperature dependence in the whole range of temperatures. For the 

strong couplings, three different temperatures regimes are observed: (i) at low 

temperature, the mobility is band-like; (ii) as temperature increases, the hopping term 

becomes dominant, and the mobility is associated with a temperature-activated process; 

(iii) if the system can reach very high temperatures (where thermal energy overcomes the 
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polaron binding energy), the residual electron is scattered by thermal phonons and the 

mobility decreases again with temperature. In the next sections, the analytical results for 

the tunneling and hopping mobilities derived from Holstein’s seminal work40,41 are 

described for the case of wide- and narrow-band materials. 

 

 
 
Figure 1.8 Temperature dependence of the mobility for the limiting cases of strong and 
weak electron-phonon couplings, ݃. (Figure adapted from Reference 23). 
 

1.2.2.1 Wide-band materials 

 

In the following, the band model for a metal will be discussed. Conceptually, this 

model is an important basis for understanding the band conductivity in wide-band organic 

semiconductors. According to band theory, all the energy states ܧሺ݇ሻ of the electrons 
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below the Fermi energy ܧி are occupied and those lying at higher energies (ܧ  ൐  ி) areܧ 

empty when the temperature is low, i.e., ݇஻ܶ ا  ,ி; ݇ represents the electron wavevectorܧ

with a linear momentum defined as follows: ԰݇ ൌ  In the ݇-space (reciprocal space) .ݒ݉

of a simple metal, the occupied states are described by a sphere centered on the origin in 

the absence of any electric field ܨ. If an electric field is applied, ܨ ൌ  ௫, the electronsܨ

within the Fermi sphere can take up energy. In this case, the whole Fermi sphere shifts 

from the stationary equilibrium by the amount: 

௫݇ߜ ൌ െ
݁߬
԰ ௫ܨ (1.7) 

Here, τ ൌ τሺܧிሻ is the relaxation time of those conduction electrons which have acquired 

the additional momentum ԰݇ߜ௫ on the Fermi surface and relax back to thermal 

equilibrium after the electrical field is switched off. This relaxation process can be 

considered as an inelastic process, in which the electrons that occupy a state ܣ are 

scattered into unoccupied states ܤ on the Fermi surface (see Figure 1.9). This scattering 

process can take place with a phonon, with a lattice defect, or with an impurity. 
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Figure 1.9 A schematic representation of the shift of the Fermi distribution of the 
conduction electrons in the ݇-space of a metal under the action of an electric field ܨ௫ and 
the scattering processes during the relaxation after switching off ܨ௫. (Figure adapted from 
Reference 42). 
 

 For the sake of clarity, the energy states (or band energies), ܧሺ݇ሻ, are now 

considered for a one-dimensional structure of molecular units with mutual spacing ܽ. In a 

simple tight-binding approach, the energy at the bottom of the conduction band can be 

written as: 

ሺ݇ሻܧ ൌ ߳ ൅ ݐ2 · ሺ݇ܽሻݏ݋ܿ (1.8) 

where ߳ is the electron site energy and ݐ is the charge transfer integral (also referred to as 

electronic coupling or hopping integral).  

 

When the width ܹ of the energy band in Equation 1.8 is much larger than the 

thermal energy, ݇஻ܶ, excess electrons will occupy states near the bottom of the 

conduction band, while holes will remain close to the top of the valence band. Near these 

band extrema, the energies in Equation 1.8 can be approximated via a parabolic 

expression with respect to ݇, giving:  
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ሺ݇ሻܧ ൌ
԰ଶ൫݇௫ଶ ൅ ݇௬ଶ ൅ ݇௭ଶ൯

כ2݉ ൌ
԰ଶ݇ଶ

כ2݉

(1.9) 

with the effective mass ݉כ of the charge carriers equal to: 

1
כ݉ ൌ

1
԰ଶ ·

݀ଶܧ
݀݇ଶ ൌ

2ܽଶ|ݐ|
԰ଶ

(1.10)

 

Once the effective mass, ݉כ, has been defined, it is useful to make a few more 

remarks with respect to Figure 1.9. First, an additional momentum transferred by the 

electric field Fx to the whole Fermi sphere is defined as: 

ிሻܧሺݒߜכ݉ ൌ ԰݇ߜ௫ (1.11)

Secondly, the stationary additional velocity of the electrons then becomes with Equation 

1.7: 

௫ݒߜ ൌ െ
݁߬ሺܧிሻ
כ݉ · ௫ܨ

(1.12)

Therefore, in the band model, the charge carrier mobility µ and the conductivity σ are: 

tunߤ ൌ
݁߬ሺܧிሻ
כ݉ ൌ

2݁ܽଶ|ݐ|
԰ଶ ߬ሺܧிሻ

(1.13)

and 

ߪ ൌ
݁ଶ߬ሺܧிሻ
כ݉ · ݊

(1.14)

Note, that the mobility expression in Equation 1.13 is only valid in the case where the 

energy of the charge carriers depends quadratically on their wavevector ݇ according to 

Equation 1.9. This condition is not fulfilled when charge carriers undergo strong 

interactions with phonons or scattering on structural imperfections. This restricts the 

applicability of the band-like mobility expression to structurally ordered systems where 

the charges undergo weak scattering. Weak scattering implies that the bandwidth, ܹ, 
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should be equal to 4|ݐ| and that the relaxation time largely exceeds the ԰ ܹ⁄  ratio, i.e., 

߬ ب ԰ ܹ⁄ . In this context, ݐ is thus a key factor to understand the charge transport 

properties in organic molecular crystals at low temperature, when the charges adopt a 

band-like motion. 

 

1.2.2.2 Narrow-band materials 

 

In the narrow band limit, when a strong vibrational coupling exists (݃ଶ  the ,(1ب

mobility is given as a sum of coherent (ߤtun) and incoherent (ߤhop) contributions. First the 

hopping part of the mobility is considered. In this case, ߤhop, can be obtained from 

Equation 1.5, where ܦ ൌ ܽଶߢET; ߢET is the hopping rate between adjacent sites. 

According to the 1D Holstein model,41 the hopping rate is given by: 

ETߢ ൌ
ଶݐ

԰ଶ߱଴
൦

ߨ

݃ଶcsch ൬ ԰߱଴
2݇஻ܶ

൰
൪

ଵ ଶ⁄

݌ݔ݁ ൤െ2݃ଶtanh ൬
԰߱଴

4݇஻ܶ
൰൨ 

(1.15)

where ԰߱଴ represents the energy of an optical phonon and is characterized by a coupling 

constant ݃. In the classical limit for which ԰߱଴ ا ݇஻ܶ, the hyperbolic tangents get 

replaced by their argument, and ߢET assumes a standard Arrhenius type expression: 

ETߢ ൌ
ଶݐ

԰ ቈ
ߨ

௣௢௟݇஻ܶܧ2
቉
ଵ ଶ⁄

௣௢௟ܧ൫െ݌ݔ݁ 2݇஻ܶ⁄ ൯
(1.16)

where ܧ௣௢௟, the polaron binding energy, is equal to ԰߱଴݃ଶ. By substituting Equations 

1.15 and 1.16 into Equation 1.5, the analytical expressions for the general and classical 

mobilities in the hopping mechanism are obtained. They write, respectively: 
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hopߤ ൌ
݁ܽଶݐଶ

݇஻ܶ԰ଶ߱଴
൦

ߨ

݃ଶcsch ൬ ԰߱଴
2݇஻ܶ

൰
൪

ଵ ଶ⁄

݌ݔ݁ ൤െ2݃ଶtanh ൬
԰߱଴

4݇஻ܶ
൰൨ 

(1.17)

and 

hopߤ ൌ
݁ܽଶݐଶ

݇஻ܶ԰
ቈ

ߨ
௣௢௟݇஻ܶܧ2

቉
ଵ ଶ⁄

௣௢௟ܧ൫െ݌ݔ݁ 2݇஻ܶ⁄ ൯
(1.18)

 

 The coherent part of the mobility at low temperatures and in the narrow band limit 

(i.e., ݐ~݇஻ܶ) is given by (compare with Equation 1.13): 

tunߤ ൌ
2݁ܽଶ

݇஻ܶ
߬ሺܶሻ
԰ଶ ଶሺܶሻݐ

(1.19)

with 

ሺܶሻݐ ൌ ݐ · ݌ݔ݁ ൤െ݃ଶcoth ൬
԰߱଴

2݇஻ܶ
൰൨

(1.20)

By inserting Equation 1.15 into Equation 1.19 and by defining ݐሺܶሻ in terms of the 

hopping rate ߢET, i.e., 1 ⁄ሺܶሻݐ ൌ  ET, the general expression of the tunneling mobility isߢ2

obtained: 

tunߤ ൌ
݁ܽଶ߱଴

݇஻ܶ
൦
݃ଶcsch ൬ ԰߱଴

2݇஻ܶ
൰

ߨ ൪

ଵ ଶ⁄

݌ݔ݁ ൤െ2݃ଶcsch ൬
԰߱଴

2݇஻ܶ
൰൨ 

(1.21)

Note that, because of the assumption that the band is narrow, Equation 1.21 does not 

depend on ݐ, and its application is restricted to temperatures such that ݇஻ܶ ൐  .ሺܶሻݐ4
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1.3 Thesis objective and outline 

 

Despite the extensive use of the Holstein molecular model to derive qualitative 

interpretations of experimental data, their model cannot fully describe the charge 

transport mechanisms in organic materials. In fact, it has been demonstrated that in 

organic crystals the modulations of the transfer integral with acoustic and optical phonons 

can be of the same order of magnitude as the value of the transfer integral itself.43, 44 

Thus, more general models need to be considered. Recently, Coropceanu et al.23 

reviewed extensions of the 1D Holstein molecular model to charge transport theory in 

organic materials. This review clearly shows that a full knowledge of the microscopic 

charge transport parameters is the first step toward the development of a comprehensive 

understanding of transport in organic semiconductors. Under this theoretical approach, 

the primary emphasis of this thesis includes the development of a first-principles 

theoretical methodology to evaluate with high accuracy the main microscopic charge-

transport parameters and their respective couplings with intra- and intermolecular 

vibrational degrees of freedom (electron-phonon interactions). This molecular approach 

contrasts with many models developed earlier for organic materials where the electronic 

and electron-phonon (vibration) interactions have been described on a phenomenological 

basis and from a macroscopic perspective, thereby masking the impact of the actual 

chemical/molecular structures of the systems on charge transport.  

 

In Chapter 2, a brief review of the electronic structure methods essential in the 

understanding of the physics of molecular solids is presented. The discussion starts with 
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the theoretical basis of a single-particle description of the molecular crystal. This will be 

done by starting with the exact Hamiltonian for a solid and introducing approximations in 

its solution. This is followed by a description of the tools used for understanding the 

motion of atoms in crystals through the language of phonons. The dynamical matrix is 

introduced; it is shown that the frequencies are obtained from the eigenvalues of the 

dynamical matrix and that the atomic motions are given by the eigenvectors. Finally, a 

discussion on the role of electron-phonon interactions and their impact on the 

microscopic charge transport parameters is presented. 

 

In Chapters 3 and 4, the local and nonlocal electron-phonon interactions in 

oligoacene crystals are addressed using an approach based on density functional theory. 

Within this framework, a description of the vibronic coupling interactions in oligoacene 

cations and the electron-phonon coupling in organic molecular crystals is investigated. It 

was found that the description of charge transport in organic semiconductors requires that 

both local and nonlocal electron-phonon couplings be considered. 

 

Chapter 5 is devoted to the electronic and vibronic coupling in oligothienoacenes 

with a focus on the pentathienocene crystal. In Chapter 6, a detailed quantum-mechanical 

study of the electronic and vibrational couplings in crystals of small iodine-substituted 

organic molecules is reported. In both cases, it was found that either the iodine atoms or 

π-π interactions play a significant role in dictating the charge transport properties of these 

crystalline systems.  
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Finally, in Chapter 7, a comprehensive summary of the first-principles 

methodology that was developed to characterize the intra- and intermolecular electron-

phonon interactions is presented. Its scope and current applications are also described. 
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CHAPTER 2 
 

THEORETICAL METHODS FOR ELECTRONIC STRUCTURE 
AND LATTICE DYNAMICS CALCULATIONS  

IN MOLECULAR SOLIDS 
 

In this chapter, a brief review of the electronic structure methods essential in the 

understanding of the physics of molecular solids is presented. The discussion starts with 

the exact Hamiltonian for a solid and introducing approximations in its solution. This is 

followed by a description of the tools used for understanding the motion of atoms in 

crystals through the language of phonons. Finally, the computational methodologies used 

to investigate the impact of the electron-vibration interactions on charge transport are 

presented. 

 

2.1 Electronic structure calculations 

 

2.1.1 The Hamiltonian of a molecular solid 

 
A theory for a stationary system of nuclei and interacting electrons is intrinsically 

quantum-mechanical, and is based on solving the time-independent Schrödinger equation 

of the form: 

;Ψሺሾܴ߅ ሿሻݎ ൌ ;Ψሺሾܴܧ ሿሻ (2.1)ݎ

where ܪ is the Hamiltonian of the system, containing the kinetic and potential energy 

operators; ܧ is the energy of the system; Ψሺሾܴ;  ሿሻ is the wavefunction of the system; ሾܴሿݎ
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are the positions of the nuclei, and ሾݎሿ are the variables that describe the coordinates of 

the electrons. Two electrons at ݎ௜, ݎ௝ repel one another, producing a potential energy term: 

݁ଶ

หݎ௜ െ ௝หݎ
 

(2.2)

where ݁ is the electronic charge. An electron at ݎ is attracted to each positively charged 

nucleus at ܴ, producing a potential energy term: 

ܼ݁ଶ

|ܴ െ  |ݎ
(2.3)

where ܼ is the charge of the nucleus. The total external potential experienced by an 

electron due to the presence of the nuclei is: 

ܸሺݎሻ ൌ െ ෍
ܼூ݁ଶ

|ܴூ െ |ݎ
ூ

 
(2.4)

Two nuclei at positions ܴ௜ and ௝ܴ also repel one another giving rise to a potential energy 

term: 

ܼ௜ ௝ܼ݁ଶ

หܴ௜ െ ௝ܴห
 

(2.5)

Typically, it can be assumed that the nuclei move more slowly in space than the 

electrons, so that Ψ has a dependence on the electronic degrees of freedom alone. This is 

known as the Born-Oppenheimer approximation. Its validity rests on the huge difference 

of mass between nuclei and electrons, making the former behave like classical particles. 

In this case, the quantum-mechanical term for the kinetic energy of the nuclei can be 

omitted and their kinetic energy can be taken into account as a classical contribution. If 

the nuclei are considered to be at rest, the Hamiltonian of the system becomes (note that 

in the following equations 4ߝߨ଴ = 1): 
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߅ ൌ െ ෍
԰ଶ

2݉௘
௥೔ߘ

ଶ

௜

െ ෍
ܼூ݁ଶ

|ܴூ െ |௜ݎ
௜ூ

൅
1
2 ෍

݁ଶ

หݎ௜ െ ௝หݎ
௜ஷ௝

൅
1
2 ෍

ܼூ ௃ܼ݁ଶ

หܴூ െ ௃ܴห
ூஷ௃

 
(2.6)

The last term in the previous equation is a constant and the electronic Hamiltonian writes: 

௘߅ ൌ െ ෍
԰ଶ

2݉௘
௥೔ߘ

ଶ

௜

െ ෍
ܼூ݁ଶ

|ܴூ െ |௜ݎ
ூ௝

൅
݁ଶ

2 ෍
1

หݎ௜ െ ௝หݎ
௜ஷ௝

 
(2.7)

Even with the proposed Born-Oppenheimer approximation, solving for Ψሺሾݎሿሻ remains 

an extremely difficult task, due to the many body nature of the electronic interactions. 

Each electron is affected by the motion of every other electron in the system; this is 

known as the “correlation” of their motion. In addition, two electrons of the same spin 

can exchange their positions, in which case Ψ must change sign. It is possible to produce 

a simpler picture by describing the system as a collection of classical nuclei and single 

quantum-mechanical particles that reproduce the behavior of the electrons: this is the 

single particle picture. In the following sections, the equations for the equivalent one-

electron picture will be derived. 

 

2.1.2 The Hartree and Hartree-Fock approximations 

 

In the Hartree approximation, the electrons are considered as non-interacting 

particles, and the total wavefunction can be approximated by a product of orthonormal 

wavefunctions, namely: 

Ψுሺሾݎ௜ሿሻ ൌ ߶ଵሺݎଵሻ߶ଶሺݎଶሻ ڮ ߶ேሺݎேሻ (2.8)

Such an expression is known as the Hartree product. Unfortunately, this total 

wavefunction does not satisfy the antisymmetry principle with respect to the exchange of 

two electron coordinates. Therefore, the next level of sophistication is to try to 



 32

incorporate the half-integer spin nature of electrons into the wavefunction Ψሺሾݎሿሻ. This is 

known as the Hartree-Fock (HF) approximation. Combining then Hartree-type 

wavefunctions to form a properly antisymmetrized wavefunction for the system, the 

following determinant, first introduced by Slater1, is obtained: 

Ψுிሺሾݎ௜ሿሻ ൌ
1

√ܰ! ተ

ተ

߶ଵሺݎଵሻ ߶ଵሺݎଶሻ ·
߶ଶሺݎଵሻ ߶ଶሺݎଶሻ ·

· ·  

· · ߶ଵሺݎேሻ
· · ߶ଶሺݎேሻ
  ·

· ·  
· ·  

߶ேሺݎଵሻ ߶ேሺݎଶሻ ·

  ·
  ·
· · ߶ேሺݎேሻ

ተ

ተ
 

(2.9)

where ܰ is the total number of electrons. This determinant has the desired property, since 

interchanging the position of two electrons is equivalent to interchanging the 

corresponding columns in the determinant, which in turn changes its sign. 

 

The total energy of the HF wavefunction is: 

ுி߃ ൌ ۄΨுி|߅|Ψுிۃ

ൌ ෍ ௜߶ۃ ቤ
െ԰ଶߘ௥

ଶ

2݉௘
൅

ܼ݁ଶ

|ܴ െ ቤ|ݎ ߶௜ۄ
௜

൅
݁ଶ

2 ෍ ௜߶௝߶ۃ ฬ
1

ݎ| െ ฬ|′ݎ ߶௜߶௝ۄ
௜ஷ௝

െ
݁ଶ

2 ෍ ௜߶௝߶ۃ ฬ
1

ݎ| െ ฬ|′ݎ ߶௝߶௜ۄ
௜ஷ௝

 

(2.10)

The last term on the right hand side of Equation 2.10 represents the “exchange” term, 

which describes the effects of exchange between electrons. 

 

Then, the single-particle HF equations take the form: 

ቈ
െ԰ଶߘ௥

ଶ

2݉௘
൅

ܼ݁ଶ

|ܴ െ |ݎ ൅ ௜ܸ
ுሺݎሻ ൅ ௜ܸ

௑ሺݎሻ቉ ߶௜ሺݎሻ ൌ ߳௜߶௜ሺݎሻ 
(2.11)
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The Hartree ௜ܸ
ுሺݎሻ and exchange ௜ܸ

௑ሺݎሻ potentials give the electron-electron interaction 

௜ܸ
ுிሺݎሻ in the Hartree-Fock approximation: 

௜ܸ
ுிሺݎሻ ൌ ௜ܸ

ுሺݎሻ ൅ ௜ܸ
௑ሺݎሻ (2.12)

The first term in the previous equation is the total Coulomb operator and represents the 

electrostatic interaction of an electron in a spatially-averaged one-electron potential of all 

other electrons. The second term is the exchange operator; it has a pure quantum origin 

and prevents two electrons with parallel spins to be at the same position in space. 

 

2.1.3 Density Functional Theory 

 

Density Functional Theory (DFT) provides a general framework to deal with the 

ground-state energy of the electrons in many-atom systems. The basic ideas of DFT are 

contained in a series of seminal papers of Hohenberg, Kohn, and Sham;2, 3 these authors 

showed that the density of particles in the ground-state of a quantum many-body system 

can be considered as a “basic variable”, and that all properties of the system can be 

considered to be a unique functional of the ground-state density (it is important to note 

that a function generates a number from a set of variables; a functional produces a 

number from a function, which in turn depends on variables). 

 

Conceptually, the focus changes in DFT from a many-body Schrödinger Equation 

2.1, which involves a many-body wavefunction Ψ, to one that focuses on the single 

particle density ߩሺݎሻ, a quantity that is related to Ψ via the following equation: 
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ሻݎሺߩ ൌ ܰ න ଶݎଵ݀ݎ݀ ڮ ,ݎሺߖ|ேିଵݎ݀ ,ଵݎ ,ଶݎ ڮ , ேିଵሻ|ଶ (2.13)ݎ

The density ρ in this case is a much simpler quantity than Ψ because it depends on three 

spatial coordinates (ݔ, ,ݕ ,ݎ) or (ݖ ,ߠ ߶). In other words, the numerical complexity of a 

calculation that uses ρ as the basic variable depends only linearly on the number of grid 

points that are needed to represent the density ρ. Ultimately this number is expected to 

increase linearly with system size, thus the computational cost of calculations based on ρ 

should depend only linearly on system size. 

 

2.1.3.1 The Hohenberg-Kohn theorems 

 

The first Hohenberg-Kohn theorem states that: for any system of interacting 

particles in an external potential ௘ܸ௫௧ሺݎሻ, the potential ௘ܸ௫௧ሺݎሻ is determined uniquely, 

except for a constant, by the ground-state particle density ߩሺݎሻ. To prove this theorem, 

two different external potentials ௘ܸ௫௧ሺݎሻ and ௘ܸ௫௧
′ ሺݎሻ, which lead to the same electron 

density ߩሺݎሻ are considered. The two external potentials lead to two different 

Hamiltonians, ܪ and ܪ′, which have different ground-state wavefunctions, Ψ and Ψ′, and 

different ground-state energies, ܧ଴ and ܧ଴
′ , with ܧ଴ ് ଴ܧ

′ . However, it is hypothesized 

that both wavefunctions give rise to the same electron density. Since Ψ and Ψ′ are 

different, Ψ′ can be used as a trial wavefunction for ܪ, and the virtue of the variational 

principle, it follows that: 

଴ܧ ൌ ۄΨ|ܪ|Ψۃ ൏ (2.14) ۄ′Ψ|ܪ|′Ψۃ
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This inequality follows in the case of non-degenerate ground state. The last term in 

Equation 2.14 can be written as: 

଴ܧ ൏ ۄ′Ψ|ܪ|′Ψۃ ൌ ۄ′หΨ′ܪΨ′หۃ ൅ ܪΨ′หۃ െ (2.15) ۄ′หΨ′ܪ

or, because the two Hamiltonian operators differ only in the external potential: 

଴ܧ ൏ ଴ܧ
′ ൅ න ሻሼݎሺߩ ௘ܸ௫௧ െ ௘ܸ௫௧

′ ሽ (2.16) ݎ݀

On the other hand if ܧ଴
′  is considered exactly in the same way, the same equation is found 

with the unprimed and primed quantities being interchanged: 

଴ܧ
′ ൏ ଴ܧ ൅ න ሻሼݎሺߩ ௘ܸ௫௧

′ െ ௘ܸ௫௧ሽ (2.17) ݎ݀

Adding Equations 2.16 and 2.17 yields a contradictory inequality:  

଴ܧ ൅ ଴ܧ
′ ൏ ଴ܧ

′ ൅ ଴ (2.18)ܧ

This establishes the desired result: there cannot be two different external potentials which 

give rise to the same non-degenerate ground-state charge density.  

 

Since the complete ground-state energy is in principle (as shown above) a 

functional of the ground-state electron density, so must be its individual components: 

଴ሿߩ଴ሾܧ ൌ ܶሾߩ଴ሿ ൅ ଴ሿߩ௘௘ሾܧ ൅ ଴ሿ (2.19)ߩே௘ሾܧ

where ܶሾߩ଴ሿ represents the kinetic energy of the system, and ܧ௘௘ሾߩ଴ሿ and ܧே௘ሾߩ଴ሿ are the 

electron-electron and nuclear-electron electrostatic interactions, respectively. The sum of 

the kinetic and electron-electron terms represents the Hohenberg-Kohn functional: 

଴ሿߩு௄ሾܨ ൌ ܶሾߩ଴ሿ ൅ ଴ሿ (2.20)ߩ௘௘ሾܧ
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In this case, if an arbitrary density ߩሺݎሻ is given, one can obtain the sum of the kinetic 

energy and the electron-electron interaction by means of the ground-state wavefunction 

Ψ and the density ߩሺݎሻ, that is: 

ሿߩு௄ሾܨ ൌ ܶሾߩሿ ൅ ሿߩ௘௘ሾܧ ൌ ܶ|Ψۃ ൅ ௘ܸ௘|Ψ(2.21) ۄ

Equation 2.21 is the most important equation in DFT; if ܨு௄ሾߩሿ were known, the 

Schrödinger equation could be solved exactly. 

 

The second Hohenberg-Kohn theorem states that ܨு௄ሾߩሿ, the functional that is 

used to calculate the ground-state energy of the system, will generate the lowest energy if 

and only if the input density is the true ground-state density, ߩ଴. In the present context, 

this theorem can be expressed as: 

଴ܧ ൑ ෤ሿߩሾܧ ൌ ܶሾߩ෤ሿ ൅ ෤ሿߩே௘ሾܧ ൅ ෤ሿ (2.22)ߩ௘௘ሾܧ

This means that for any trial density ߩ෤ሺݎሻ the energy obtained from the functional given 

in Equation 2.19 represents an upper bound to the true ground-state energy ܧ଴. The proof 

for this inequality can be demonstrated by means of the variational principle, i.e., any 

trial density ߩ෤ሺݎሻ defines its own Hamiltonian and wavefunction, ܪ෩ and Ψ෩ , respectively. 

This wavefunction is now used as the trial wavefunction for the Hamiltonian generated 

from the true external potential ௘ܸ௫௧. Therefore, 

ۄΨ෩|ܪ|Ψ෩ۃ ൌ ܶሾߩ෤ሿ ൅ ௘ܸ௘ሾߩ෤ሿ ൅ න ෤ߩ ሺݎሻ ௘ܸ௫௧݀ݎ ൌ ෤ሿߩሾܧ ൒ ଴ሿߩ଴ሾܧ ൌ (2.23) ۄΨ|ܪ|Ψۃ

which is the desired result for this second theorem. 
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2.1.3.2 The Kohn-Sham equations 

 

Kohn and Sham proposed that the ground-state density of the original interacting 

system is equal to that of some chosen non-interacting system. This leads to independent-

particle equations for the non-interacting system than can be considered as soluble, if all 

the difficult many-body terms are incorporated into an exchange-correlation functional of 

the density. For such a system of non-interacting electrons, the kinetic energy is defined 

as follows: 

ௌܶ ൌ െ
1
2 ෍߮ۃ௜|ߘଶ|߮௜ۄ

ே

௜

 
(2.24)

This kinetic energy term forms part of the Hamiltonian operator that does not contain any 

electron-electron interactions, which writes: 

ௌܪ ൌ െ
1
2 ෍ ௜ߘ

ଶ ൅ ෍ ௦ܸሺݎ௜ሻ
ே

௜

ே

௜

 
(2.25)

where ௦ܸሺݎሻ represents an effective local potential. Accordingly, the ground-state 

wavefunction associated with this Hamiltonian is represented by a Slater determinant: 

Θௌ ൌ
1

√ܰ! ተ

ተ

߮ଵሺݔଵሻ ߮ଵሺݔଶሻ ·
߮ଶሺݔଵሻ ߮ଶሺݔଶሻ ·

· ·  

· · ߮ଵሺݔேሻ
· · ߮ଶሺݔேሻ
  ·

· ·  
· ·  

߮ேሺݔଵሻ ߮ேሺݔଶሻ ·

  ·
  ·
· · ߮ேሺݔேሻ

ተ

ተ
 

(2.26)

where the orbitals ߮௜ are usually termed Kohn-Sham orbitals, or KS orbitals. In this case, 

the non-interacting kinetic energy is not equal to the true kinetic energy of the interacting 

system. Kohn and Sham accounted for that difference by defining the following 

functional ܨሺߩሻ: 
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ሻሿݎሺߩሾܨ ൌ ௌܶሾߩሺݎሻሿ ൅ ሻሿݎሺߩሾܬ ൅ ሻሿ (2.27)ݎሺߩ௑஼ሾܧ

where ܬሾߩሺݎሻሿ represents the classical Coulomb integral of the electron-electron term and 

 :ሻሿ is the exchange-correlation energy defined asݎሺߩ௑஼ሾܧ

ሿߩ௑஼ሾܧ ൌ ሺܶሾߩሿ െ ௌܶሾߩሿሻ ൅ ሺܧ௘௘ሾߩሿ െ ሿሻߩሾܬ ൌ ஼ܶሾߩሿ ൅ ሿ (2.28)ߩ௡௖௟ሾܧ

The residual part of the true kinetic energy, ஼ܶ is simply added to the non-classical 

electrostatic contributions, ܧ௡௖௟. The exchange-correlation energy ܧ௑஼ is the functional 

that contains everything that is unknown, i.e., the non-classical effects of self-interaction 

correction, exchange and correlation, and a portion belonging to the kinetic energy. 

 

Thus, the total energy for the system can be expressed as: 

ሻሿݎሺߩሾܧ ൌ ௌܶሾߩሿ ൅ ሿߩሾܬ ൅ ሿߩ௑஼ሾܧ ൅ ሿ (2.29)ߩே௘ሾܧ

In this expression, the only term for which no explicit form can be given is ܧ௑஼; if it were 

known, the exact ground-state energy and density of the many-body electron problem 

could be found by solving the KS equations for independent particles. If an approximate 

form for ܧ௑஼ is derived, the KS method provides in this case a practical approach to 

calculating the ground-state properties of the many-body electron system. 

 

2.1.3.3 Functionals for exchange and correlation 

 

The crucial quantity in the KS approach is the exchange-correlation energy, which 

is expressed as a functional of the density, ܧ௑஼ሾߩሿ. In practice, approximations are 

necessary to specify ܧ௑஼. The first approximation that has been extensively used is the 

local density approximation (LDA); central to this model is the concept of a hypothetical 
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uniform electron gas, extensively used to describe metals in the solid-state physics 

community. In such a system, the electrons move on a positive background charge 

distribution so that the ensemble is electrically neutral. The exchange-correlation energy, 

 :௑஼ is expressed in the following formܧ

௑஼ܧ
௅஽஺ሾߩሿ ൌ න (2.30) ݎሻ൯݀ݎሺߩ௑஼൫ߝሻݎሺߩ

where ߝ௑஼൫ߩሺݎሻ൯ represents the exchange-correlation energy per particle of a uniform 

electron gas of density ߩሺݎሻ. The unrestricted case can be developed through the 

incorporation of spin into Equation 2.30; this is known as the local spin-density 

approximation (LSDA).  

 

Extensions to the purely local approximation have included the consideration of 

the gradient of the charge density, ߩ׏ሺݎሻ, in order to account for the non-homogeneity of 

the true electron density. In other words, the LDA formalism is represented by the first 

term of a Taylor expansion of the uniform density; a better approximation to the 

exchange-correlation functional is expected by extending the series with the next lowest 

term. Functionals that include the gradients of the charge density are known as GGAs 

(gradient generalized approximations). These functionals represent the current machinery 

of density functional theory and can be written as: 

௑஼ܧ
ீீ஺ൣߩఈ, ఉ൧ߩ ൌ න ݂൫ߩఈ, ,ఉߩ ,ఈߩߘ (2.31) ݎఉ൯݀ߩߘ

with α and β indicating the electronic spin. The most popular GGA exchange functional 

was developed by Becke (B88),4 and the popular ones for the correlation functional 

include: Perdew(P86),5 Perdew and Wang (PW91),6 and Lee, Yang, and Parr (LYP).7 
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How to improve on current approximations for the exchange and correlation 

functional is an area of intense research. Many variants of the GGA functional have been 

proposed, sometimes including empirical fitting. Also, the so-called hybrid functionals 

that incorporate both HF and DFT energies have been proposed as an alternative to obtain 

a more accurate expression for the exchange-correlation energy. The derivation of the 

hybrid functionals can be understood by looking at an equivalent expression for the 

exchange-correlation energy of the KS scheme as shown in Equation 2.32. The equation 

describes the non-classical contribution of the electron-electron interactions for different 

values of λ (where λ represents a coupling constant): 

௑஼ܧ ൌ න ௡௖௟ܧ
ఒ ߣ݀

ଵ

଴

 
(2.32)

The ߣ ൌ 0 case, ܧ௡௖௟
ఒୀ଴, corresponds to exchange only (no correlation) and can be 

computed exactly, if the KS orbitals are available. In the ߣ ൌ 1 case, the non-classical 

contributions are those of a fully interacting system, containing exchange and correlation 

contributions. To evaluate the integral exactly, intermediate values of λ are needed. This 

information is not available, and approximations are required. The simplest way to solve 

the integrand ܧ௡௖௟
ఒ  is to assume that it is a linear function of λ. That is: 

௑஼ܧ
ுு ൌ

1
2 ௑஼ܧ

ఒୀ଴ ൅
1
2 ௑஼ܧ

ఒୀଵ (2.33)

If one uses the LDA exchange-correlation functional for the second right-hand-side term 

in Equation 2.33, it represents the half-and-half combination of exact exchange and 

density functional exchange-correlation as introduced by Becke.8 The next step taken by 

Becke9 was to introduce semiempirical coefficients to determine the weight of the various 
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components of the exchange-correlation energy expression. This description is 

implemented in the following equation: 

௑஼ܧ
஻ଷ ൌ ௑஼ܧ

௅ௌ஽஺ ൅ ܽ൫ܧ௑஼
ఒୀ଴ െ ௑ܧ

௅ௌ஽஺൯ ൅ ௑ܧܾ
஻ ൅ ஼ܧܿ

௉ௐଽଵ (2.34)

In this equation, there are three parameters: a specifies the amount of exact exchange in 

the functional, while b and c control the contributions of exchange and correlation 

gradient corrections to the local density approximation. In the given equation, Becke’s4 

1988 exchange functional and Perdew and Wang’s6 1991 correlation functional are 

employed. These three empirical parameters were chosen such that the atomization and 

ionization energies as well as the proton affinities included in the G2 data base10 were 

optimally reproduced (note that the G2 data base consists of 55 experimentally well-

characterized molecules). The values are: a=0.20, b=0.72, and c=0.81. Currently, the 

most popular hybrid functional is known as B3LYP.11 While being very similar in nature 

to the one previously discussed (Equation 2.34), in B3LYP, the PW91 is replaced by the 

LYP functional. The B3LYP exchange-correlation energy expression is defined as 

follows (with a, b, and c as indicated above): 

௑஼ܧ
஻ଷ௅௒௉ ൌ ሺ1 െ ܽሻܧ௑

௅ௌ஽஺ ൅ ௑஼ܧܽ
ఒୀ଴ ൅ ௑ܧܾ

஻଼଼ ൅ ஼ܧܿ
௅௒௉ ൅ ሺ1 െ ܿሻܧ஼

௅ௌ஽஺ (2.35)

 

2.1.4 Quantum-mechanical methods for the solid state 

 

The quantum-mechanical methods used to model the behavior of solid-state 

systems are somewhat differ from those used to investigate individual molecules. First, it 

is important to define the crystalline system. A perfect crystal is constructed by stacking 

copies of a repeating unit (the unit cell) in a systematic way (according to translational 
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symmetry elements) without overlapping and without gaps. Therefore, the structure of a 

crystal can be defined by specifying the size and shape of the unit cell and the positions 

of the atoms within it. The unit cell is mainly characterized by three lattice vectors ܽ, ܾ, 

and ܿ and the angles between them. There are fourteen different types of basic unit cells; 

these are named the Bravais lattices. Common Bravais lattices include the simple cubic, 

body-centered cubic and face-centered cubic lattices. In addition, the unit cell is 

characterized by the symmetric arrangements of the atoms. The particular combination of 

the symmetry elements within the crystal defines its space group. There are 230 different 

space groups. If there is symmetry within the unit cell, then it is only necessary to specify 

the asymmetric unit, which represents the unique part of the crystalline structure; the 

positions of the remaining atoms are then generated using the appropriate symmetry 

operators.  

 

The foundation for describing the electronic structure of a crystal is the use of the 

reciprocal lattice, which is the inverse of the real lattice. The reciprocal lattice vectors are 

defined by: 

כܽ ൌ
ሺܾߨ2 ൈ ܿሻ
ܽ · ሺܾ ൈ ܿሻ כܾ     ; ൌ

ሺܽߨ2 ൈ ܿሻ
ܾ · ሺܽ ൈ ܿሻ כܿ     ; ൌ

ሺܽߨ2 ൈ ܾሻ
ܿ · ሺܽ ൈ ܾሻ 

(2.36)

Note that the denominator in each case is equal to the volume of the unit cell. It is the fact 

that ܽ*, ܾ*, and ܿ* have units of 1/length that gives rise to the terms “reciprocal space” 

and “reciprocal lattice”. A simple illustrative example of reciprocal space is that of a 2D 

square lattice where the two vectors ܽ and ܾ are orthogonal and of length equal to the 

lattice spacing, ܽ. The reciprocal vectors ܽ* and ܾ* are directed along the same directions 

as ܽ and ܾ, respectively, and have a length 1 ܽ⁄  (see Figure 2.1). 
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Figure 2.1 Real space arrangements for a 2D square lattice and its corresponding 
reciprocal space lattice. 
 

Similarly, as in the real-space lattice, where the lattice is constructed from the unit 

cells, the reciprocal lattice can be constructed form a series of primitive cells, which 

completely fill the space without any gaps or overlapping. These primitive cells, called 

Wigner-Seitz cells, play the same role in the reciprocal space as does the unit cell in the 

real-space lattice. In an electronic structure setting, the Wigner-Seitz cell of a reciprocal 

lattice is more commonly referred to as the first Brillouin zone (BZ). The reciprocal 

lattice vectors that connect all equivalent points in reciprocal space are defined by: 

ܩ ൌ ݉ଵܽכ ൅ ݉ଶܾכ ൅ ݉ଷܿכ; ݉ଵ, ݉ଶ, ݉ଷ are integers (2.37)

 

2.1.4.1 Band theory of crystals 

 

Solid-state materials have a variety of electronic, chemical and physical 

properties. Therefore, a variety of methods have been developed to study these materials. 

One of them is band theory. In this method atomic orbitals are combined to give the 
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equivalent of molecular orbitals, under the assumption that the effect of orbital overlap is 

to modulate but not change completely the initial atomic levels. In order to describe band 

theory, a 1D lattice will be considered. The periodicity of the lattice means that the 

electronic density has to be identical at equivalent points on the lattice. Thus, there must 

be a relationship between the wavefunction at point ݔ and at an equivalent point 

elsewhere in the lattice, ݔ ൅  ݊ܽ, where ݊ is an integer. For systems with one-

dimensional periodicity, the following relationship is observed: 

|߰௞ሺݔሻ|ଶ ൌ |߰௞ሺݔ ൅ ܽሻ|ଶ (2.38)

where ܽ is the length of the unit cell in direct space. In this case, Bloch’s theorem 

provides the phase relation of the wavefunctions at periodically related points: 

߰௞ሺݔ ൅ ܽሻ ൌ ݁௜௞௔߰௞ሺݔሻ (2.39)

In this equation, ݇ actually represents the electron wavevector (and is a vector in 

reciprocal space). By taking into account the Tight-Binding Approximation (TBA), 

orbitals that are very similar to atomic levels (i.e., wavefunctions that are tightly bound to 

the atoms, hence the term “tight-binding”) can be used as a basis for expanding the 

crystal wavefunctions. For example, suppose that the s orbitals in a given 1D lattice are 

labeled by ߯௡, where the ݊th orbital is located at the position ݔ ൌ ݊ܽ; then, an acceptable 

crystal wavefunction that satisfies the Bloch requirement is: 

߰௞ ൌ ෍ ݁௜௞௔߯௡
௡

 (2.40)
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2.1.4.1.1 Band structure 

 

Now, it is important to evaluate the form of the crystal wavefunction as it varies 

with the reciprocal-space vector ݇. The first scenario corresponds to ݇ ൌ 0 (center of the 

first BZ), where all the exponential terms are equal to 1 and the overall wavefunction 

becomes a simple additive linear combination of the atomic orbitals: 

߰௞ୀ଴ ൌ ෍ ߯௡ ൌ ߯଴ ൅ ߯ଵ ൅ ߯ଶ ൅ ڮ
௡

 (2.41)

Another situation to consider is when ݇ ൌ ߨ ܽ⁄  (edge of the first BZ). The expሺ݅ݔሻ term 

can be written as ܿݏ݋ሺݔሻ ൅ ݇ ሻ. Whenݔሺ݊݅ݏ݅ ൌ ߨ ܽ⁄ , the sine terms are zero, leaving only 

the ܿݏ݋ሺ݊ߨሻ terms, which can be expressed more generally as ሺെ1ሻ௡. Therefore, the 

wavefunction is: 

߰௞ୀగ ௔⁄ ൌ ෍ሺെ1ሻ௡߯௡
௡

ൌ ߯଴ െ ߯ଵ ൅ ߯ଶ െ (2.42) ڮ

The energy varies in a cosine-like manner as shown by Figure 2.2. Wavefunctions for 

values of 0 ൑ ݇ ൑ ߨ ܽ⁄  have energies intermediate between those of the ݇ ൌ 0 and 

݇ ൌ ߨ ܽ⁄  situations. 

 



 46

 
 
Figure 2.2 Variation of the energy with respect to k for a 1D lattice of s orbitals (left) and 
px orbitals (right). The corresponding arrangement of the orbitals is also shown. 
 

The plot of energy versus ݇ is named the band structure; the bandwidth (ܹ) is the 

difference in energy between the lowest and highest levels in the band. A very common 

way to represent the band structure for lattice structures is to plot how the energy evolves 

as a function of ݇ along certain directions of high symmetry within the first BZ. In such a 

diagram, Roman or Greek capital letters are used to label specific values of ݇, which have 

a particular symmetry. In principle, the calculation needs to be performed for all ݇ 

vectors in the BZ. However, in practice, a discrete sampling over the BZ is used. 

Obviously, the denser the set of ݇ vectors, the more accurate the calculation. Various 

schemes have been suggested for selecting suitable sets of ݇ vectors, which can give 

excellent approximations to properties like charge density and total electronic energies. 

Among the different methodologies, the ݇-sampling method of Monkhorst and Pack is 

particularly popular.12  

 



 47

2.1.4.1.2 Transfer integrals (electronic coupling) 

 

The electronic properties of solid-state materials are in general associated with the 

study of intermolecular transfer integrals and bandwidths. Within a simple TBA, the total 

bandwidth (ܹ) results from the interaction of the frontier molecular orbitals (HOMO or 

LUMO) of all molecules within a molecular crystal. For instance, in the case of an 

infinite one-dimensional stack of molecules, ܹ ൌ  represents the transfer ݐ where ,ݐ4

integral (electronic coupling).13, 14 A number of computational methods15-17 have been 

developed to estimate the transfer integrals. This parameter can be defined by the matrix 

element ݐ ൌ  is the electronic Hamiltonian of the system and Ψ௜ and ߅ where ,ۄΨ௝|߅|Ψ௜ۃ

Ψ௝ are the unperturbed HOMOs (LUMOs) of the individual molecular units. Another 

approach is to use Koopman’s theorem (KT),18 that is to rely on the one-electron 

approximation. In this context, the absolute value of the transfer integral for electron 

[hole] transfer can be obtained from the energy difference:  

ݐ ൌ
߳௅ାଵሾுሿ െ ߳௅ሾுିଵሿ

2  (2.43)

where ߳௅ሾுሿ and ߳௅ାଵሾுିଵሿ are the energies of the LUMO and LUMO+1 [HOMO and 

HOMO-1] levels taken from the closed-shell configurations of the neutral state of a 

dimer. Figure 2.3 shows an isolated ethylene molecule, and a cofacial ethylene dimer 

along with their respective HOMO and LUMO electronic splittings. Finally, another 

useful method to calculate transfer integrals is the band-fitting method which is based on 

the TBA. In this case, the transfer integrals are obtained by fitting the energy bands to a 

tight-binding function of the type: ܧሺ݇ሻ ൌ ଴ܧ ൅ ∑ ൫െ݅݇݌ݔ௜௝݁ܧ · ܴ௜௝൯௜௝ , which is a ݇ 

dependent function with several adjacent transfer integrals as band-dependent parameters. 
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Figure 2.3 Illustration of the electronic splittings between the HOMO/LUMO levels of 
two ethylene molecules superimposed in a cofacial configuration. 
 

2.1.4.1.3 Density of states 

 

A useful concept in analyzing the band structure of solids is the evolution of 

density of electronic states as a function of energy. For example, the integral of the 

density of states up to the Fermi level (energy level of the highest occupied state) is equal 

to the number of electrons and the integral of the density of states multiplied by the 

energy is the total electronic energy: 
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௘ܰ௟௘௖௧௥௢௡௦ ൌ න ܧሻ݀ܧሺܦ

ாಷ

ିஶ

 
(2.44)

 

௧௢௧ܧ ൌ න (2.45) ܧ݀ܧሻܧሺܦ

 

 
 
Figure 2.4 Representation of the density of states ܦሺܧሻ for a 1D lattice. 
 

Figure 2.4 shows a 1D situation where the energy varies in cosine-like manner 

with ݇, the density of states is greatest at the top and bottom of the band. The density of 

states is inversely proportional to the slope of the energy versus ݇ curve; the flatter the 

band, the greater the density of states at that particular energy. To some extent, the 

density of states can be considered as an orbital energy diagram, but it does not provide a 

well-defined individual energy level description. Nevertheless, it is often possible to 

determine from which atomic orbitals a particular section of the DOS is mainly derived.  
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2.1.4.1.4 Effective mass 

 

Another useful concept in analyzing the band structure of solids is the effective 

mass. The relation between the charge carrier energy, ܧሺ݇ሻ, and the wavevector ݇ is 

known as the “dispersion relation”. Near the minima and maxima in the band structure, 

this relationship tends to be approximately parabolic, i.e., ܧሺ݇ሻ ן   ݇ଶ (see Equation 1.9). 

By taking into account Equation 1.9, the second derivative of ܧሺ݇ሻ with respect to 

components of the vector ݇, denoted by ݇௜ and ௝݇, can be written as follows: 

1
כ݉ ൌ

1
݉௜௝ሺ݇ሻ ൌ

1
԰ଶ

߲ଶܧሺ݇ሻ
߲݇௜߲ ௝݇

 
(2.46)

This expression indicates that the effective mass ݉כ is inversely proportional to the 

curvature of the band, with a steeply curved band having a small mass, hence the 

reference to heavy or light bands and effective masses. The dimensions of this expression 

are 1/mass. Since the curvature of the bands will be different in different directions, the 

effective mass represents a second-rank tensor given by: 

1
כ݉ ൌ

ۉ

ۈ
ۈ
ۈ
ۈ
ۇ

߲ଶܧ
߲݇௜

ଶ
߲ଶܧ

߲݇௜߲ ௝݇

߲ଶܧ
߲݇௜߲݇௞

߲ଶܧ
߲ ௝߲݇݇௜

߲ଶܧ
߲ ௝݇

ଶ
߲ଶܧ

߲ ௝߲݇݇௞

߲ଶܧ
߲݇௞߲݇௜

߲ଶܧ
߲݇௞߲ ௝݇

߲ଶܧ
߲݇௞

ଶ ی

ۋ
ۋ
ۋ
ۋ
ۊ

 

(2.47)
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2.2 Lattice dynamics calculations 

 

In all molecular crystals, there are two types of vibrations which can be 

distinguished: the intramolecular vibrations, also known as internal modes, and the 

external vibrations (lattice vibrations), where the molecules as a whole oscillate around 

their equilibrium positions. Usually, only the external vibrations are called phonons. In 

the case of external vibrations, the molecules (treated as rigid bodies) experience either 

translational or librational (slow oscillation) motions, or mixed translation-libration 

oscillations. The frequency, ߱ሺ݇ሻ, of these vibrations can be represented as a function of 

wavevector ݇ due to crystal symmetry. The phonon frequencies in organic molecular 

crystals are typically lower than the energies of the internal modes, and also significantly 

smaller than the phonon energies in covalently-bonded inorganic crystals such as Si. This 

is a direct result of both the large masses and the large moments of inertia of the organic 

molecules. An important consequence of the small frequency value for the phonons in 

molecular crystals is their thermal excitation: in thermal equilibrium at room temperature, 

the probability that the phonon states are occupied in organic molecular crystals is larger 

than in covalently bound inorganic crystals. Therefore, thermally-excited phonons play 

an important role in describing the interaction of charge carriers in molecular solids. Note 

that in some instances internal and external modes can mix, making the overall 

description more complex. 
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2.2.1 Phonons 

 

Phonons in organic materials are generally described as oscillatory displacements 

of the molecules from their equilibrium positions in the periodic crystal lattice. In 

molecular crystals, there exists 6ܼ intermolecular modes and (3ܰ-6ܼ) intramolecular 

modes, where ܰ indicates the number of atoms and ܼ the number of molecules in the 

primitive unit cell. Thus, there are 3 translational and 3 rotational degrees of freedom (6ܼ 

degrees of freedom) per molecule. Every phonon is characterized by the eigenvector of 

the displacement of the molecules and its frequency ߱ሺ݇ሻ. 

 

2.2.1.1 The eigenvector 

 

The eigenvector of the displacement defines the direction of the translation or the 

direction of the axis of rotation of the molecules. The eigenvectors must obey the 

symmetry of the crystal. There exist four possible symmetries for the eigenvectors in 

organic molecular crystals: Ag, Bg, Au, and Bu. Eigenvectors are of type A if they are self-

identical under a C2 (180° rotation) symmetry operation, and are termed symmetric; those 

of type B reverse their signs under C2 and are called antisymmetric (Figure 2.5). 

Eigenvectors are denoted by an index g when they are self-identical under inversion (i), 

while those with index u change their sign under i. 
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Figure 2.5 Schematic representation of the Ag and Bg phonons. For Ag phonons the axes 
of rotational symmetry of the two molecules in the unit cell are antiparallel, while for the 
Bg phonons, they are oriented parallel. (Figure adapted from Reference 19). 
 

2.2.1.2 The frequencies ωሺ݇ሻ  

 

At each point ߱ሺ݇ሻ along a dispersion relation curve, all the molecules oscillate 

with the same frequency ߱ and with the same amplitude, but with phase differences that 

are defined by the wavevector ݇. For example, at the Γ point ሺ݇ ൌ 0ሻ, the molecules with 

the same orientation oscillate in phase in all the unit cells. 

 

2.2.2 Lattice dynamics for phonon calculations 

 

For the formulation of the lattice dynamics in a molecular crystal, only six 

equations of motion per single molecule are required (if all the molecules in the unit cell 

are connected by symmetry operations): three for translation and three for rotation. The 

translational-rotational displacements ݑ ቀ݈
 th molecule in the ݈th unit cell areߢ ቁ of theߢ

given by propagating plane waves:  

ݑ ቀ݈
ቁߢ ൌ ܷ ቀ ݈

ቁߢ ሼ݅ሾ݇݌ݔ݁ · ݎ െ ߱ሺ݇ሻݐሿሽ (2.48)
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where ߱ሺ݇ሻ is the frequency of the phonon with wavevector ݇; ݑ is a vector with six 

components ݑ௜, and ݎ is the position of the ݈th unit cell. Here, the ݑ௜ terms for ݅ = 1, 2, 3 

refer to the translational displacements and for ݅ = 4, 5, 6 refer to the rotational 

displacements. For the formulation of the equations of motion, the “force constants” are 

required. They can be derived from the overall lattice energy Φ. Within the harmonic 

approximation, Φ is given by: 

Φ ൌ
1
2 ෍ ෍ Φఈఉ ቀ ݈݈ᇱ

ᇱቁߢߢ ఈݑ ቀ݈
ቁߢ ఉݑ ቀ ݈ᇱ

ᇱቁߢ
௟ᇲ఑ᇲఉ௟఑ఈ

 (2.49)

where the coefficients Φαβ ቀ ݈݈ᇱ

 ᇱቁ represent the force constants, i.e., the second derivativeߢߢ

with respect to a displacement of molecule ߢ or ߢᇱ in unit cell ݈ in the Cartesian directions 

α and β, evaluated at the equilibrium lattice geometry: 

Φఈఉ ቀ ݈݈ᇱ

ᇱቁߢߢ ൌ ቎
߲ଶΦ

ఈݑ߲ ቀ݈
ቁߢ ఉݑ߲ ቀ ݈ᇱ

ᇱቁߢ
቏

଴

 
(2.50)

With these expressions, the equations of motion for molecule ቀ݈
 :ቁ becomeߢ

ሷݑ఑ܯ ఈ ቀ݈
ቁߢ ൌ െ ෍ Φఈఉ ቀ ݈݈ᇱ

ᇱቁߢߢ ఉݑ ቀ ݈ᇱ

ᇱቁߢ
௟ᇲ఑ᇲ௝

 (2.51)

Here, the ܯ఑ term for 3 ,2 ,1 = ߢ refers to the masses of the molecules and for 6 ,5 ,4 = ߢ 

to their moments of inertia up on rotation around the principal axes of the inertial tensor. 

 

Writing Equation 2.51 in terms of the proposed solution (Equation 2.48) and 

simplifying yields: 



 55

߱ଶሺ݇ሻݓఈሺߢሻ ൌ ෍ ఈఉܦ ቀ ݇
ᇱቁߢߢ ᇱሻߢఉሺݓ

ఉ఑

 (2.52)

Here, ݓఈሺߢሻ is a reduced displacement, ݓఈሺߢሻ ൌ ඥܯ఑ݑఈሺߢሻ, and ܦఈఉ ቀ ݇
 ᇱቁ is theߢߢ

dynamical matrix, whose elements are defined as: 

ఈఉܦ ቀ ݇
ᇱቁߢߢ ൌ

1
ඥܯ఑ܯ఑ᇲ

෍ Φఈఉ ቀ 0݈ᇱ

ᇱቁߢߢ ൫݅݇݌ݔ݁ · ሺ݈ᇱሻ൯ݎ
௟ᇲ

 (2.53)

Equation 2.52 generates a set of equations that are linear and homogeneous; it follows 

from a well-known theorem in algebra that, for the equations to be soluble, the 

determinant formed from the coefficients must vanish: 

ቚܦఈఉ ቀ ݇
ᇱቁߢߢ െ ߱ଶሺ݇ሻߜఈఉߜ఑఑ᇲቚ ൌ 0 (2.54)

Equation 2.54 allows the evaluation of the modes of vibration for a particular molecular 

crystal, i.e., the eigenvalues of the dynamical matrix are the squares of the phonon 

frequencies for a particular wavevector. 

 

2.2.3 Optical and acoustic phonon modes  

 

As |݇| ՜ 0, the exponential term in Equation 2.53 becomes unity; then the 

dynamical matrix writes: 

ఈఉܦ ቀ݇ ൌ 0
ᇱߢߢ ቁ ൌ

1
ඥܯ఑ܯ఑ᇲ

෍ Φఈఉ ቀ 0݈ᇱ

ᇱቁߢߢ
௟ᇲ

 (2.55)

The matrix defined by Equation 2.55 is singular and three of the eigenvalues, ߱ଶ, are 

zero. These are the acoustic modes, which for ݇ ൌ 0 correspond to translations of the 

crystal in the directions α = x, y, z (it is because of their relation to the velocity of the 
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sound through a crystal that these modes are referred to as acoustic). The remaining 

3݊ െ3 (݊, number of molecules in the primitive unit cell) are the optical modes, since as 

|݇| ՜ 0, the frequencies are in the optical (infrared) part of the spectrum. 

 

 
 
Figure 2.6 Optical and acoustic modes as |݇| ՜ 0. (Figure adapted from Reference 20). 
 

Because of the presence of weak intermolecular interactions, calculating the 

vibrational modes (i.e., determining the phonon frequencies ߱ሺ݇ሻ in Equation 2.54) by 

means of quantum-chemical methods in organic molecular crystals is a rather difficult 

proposition. The reason is that conventional first-principles methods fail to predict 

noncovalent interactions adequately.21, 22 Current investigations on the lattice dynamics of 

organic molecules are mainly based on force-field methods (also known as molecular 

mechanics), in which the electronic motions are ignored and the lattice energy term Φ 

(essential for lattice dynamics calculations) is calculated as a function of the nuclear 

positions only. In this thesis, lattice dynamics studies were performed at both DFT and 

empirical force-field levels. For the latter approach, the rigid-body approximation, in 

which the intramolecular geometries are frozen, was used. In the following section, a 
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brief description of the force-field method is presented. A particular emphasis is paid to 

the description of the intermolecular energy terms (i.e., non-bonded interactions), which 

reproduce the intermolecular interactions in the crystal. 

 

2.2.4 General features of molecular mechanics force fields 

 

In MM methods, the energy of the system is described via a force field, an 

expression made of a sum of energetic terms involving bonded and non-bonded 

interactions. Bonded interactions include bond stretching, angle bending, and torsional 

terms, while the non-bonded interactions contain the van der Waals and electrostatic 

terms (see Figure 2.7). All of the energetic terms involved in the force field depend on 

constants that have been derived from experiments or parameterized via quantum-

mechanics calculations to reproduce selected features of a set of molecules.23,24  

 

 
 
Figure 2.7 Schematic representation of the most important energetic terms of an 
elementary force field. (Figure adapted from Reference 25). 
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2.2.4.1 The force field energy  

 

The force field energy is written as a sum of Taylor series expansions for stretches 

for every pair of bonded atoms, and adds additional potential energy terms coming from 

bending, torsional energy, van der Waals energy, electrostatics, and cross terms: 

ܧ ൌ ௦௧௥ܧ ൅ ௕௘௡ௗܧ ൅ ௧௢௥௦ܧ ൅ ௩ௗ௪ܧ ൅ ௘௟ܧ ൅ ௖௥௢௦௦ (2.56)ܧ

 

2.2.4.2 Stretch energy  

 

 .௦௧௥ is the energy function for stretching a bond between two atom types A and Bܧ 

The stretching potential for a bond between atoms A and B is given by a Taylor series 

around an equilibrium bond length, ܴ଴: 

௦௧௥ሺܴ஺஻ܧ െ ܴ଴
஺஻ሻ ൌ ሺ0ሻܧ ൅

ܧ݀
ܴ݀

ሺܴ஺஻ െ ܴ଴
஺஻ሻ ൅

1
2

݀ଶܧ
ܴ݀ଶ ሺܴ஺஻ െ ܴ଴

஺஻ሻଶ 
(2.57)

However, this expansion has an incorrect limiting behavior: at large distances, higher 

powers of ሺܴ஺஻ െ ܴ଴
஺஻ሻ dominate, leading ܧ௦௧௥ሺܴ஺஻ െ ܴ଴

஺஻ሻ to go to positive or negative 

infinity. A function with a correct limiting behavior is the Morse potential: 

௦௧௥ሺܴܧ െ ܴ଴ሻ ൌ ܦ ቂ1 െ ݁ିඥ௞ ଶ஽⁄ ሺோିோబሻቃ
ଶ
 (2.58)

where ܦ is the dissociation energy and ݇ the stretching constant of the bond. This 

potential shows a very slow convergence in the geometry optimization; therefore the 

Taylor expression (Equation 2.57) is usually preferred. 
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2.2.4.3 Bend energy  

 

-௕௘௡ௗ is the energy required for bending the bond angle formed by three atoms Aܧ 

B-C, where there is a bond between A and B, and between B and C. Similarly to ܧ௦௧௥, 

 ௕௘௡ௗ is usually expanded as a Taylor series around an equilibrium bond angle andܧ

terminated at second order, giving the harmonic approximation: 

஺஻஼ߠ௕௘௡ௗሺܧ െ ଴ߠ
஺஻஼ሻ ൌ ݇஺஻஼ሺߠ஺஻஼ െ ଴ߠ

஺஻஼ሻଶ (2.59)

 

2.2.4.4 Torsional energy  

 

 ௧௢௥௦ is the energy change associated with rotation around a B-C bond in a fourܧ 

atom sequence A-B-C-D. The torsional angle ߬ is shown in Figure 2.8. It is the angle 

between two planes defined by atoms A, B, and C and by B, C, and D. The expression for 

the torsional energy is not expanded in a Taylor series (as done for the ܧ௦௧௥ and ܧ௕௘௡ௗ) 

because ߬ can go far from equilibrium. Fourier series are used instead: 

௧௢௥௦ሺ߬஺஻஼஽ሻܧ ൌ ෍ ௡ܸ
஺஻஼஽ܿݏ݋ሺ݊߬஺஻஼஽ሻ

௡ୀଵ

 (2.60)

The ݊ ൌ 1 term describes a rotation which is periodic by 360°, the ݊ ൌ 2 term is periodic 

by 180°, the ݊ ൌ 3 term is periodic by 120° and so on. The ௡ܸ constants determine the 

size of the barrier for rotation around the B-C bond. 
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Figure 2.8 Torsional angle definition. 

 

2.2.4.5 Cross terms  

 

The presence of cross terms in a force field reflects coupling between the internal 

coordinates. The components in ܧ௖௥௢௦௦ are usually written as products of Taylor-like 

expansions in the individual coordinates. The most important among the cross terms is 

the stretch/bend term which for an A-B-C sequence may be written as: 

௦௧௥/௕௘௡ௗܧ ൌ ݇஺஻஼ሺߠ஺஻஼ െ ଴ߠ
஺஻஼ሻሾሺܴ஺஻ െ ܴ଴

஺஻ሻ ൅ ሺܴ஻஼ െ ܴ଴
஻஼ሻሿ (2.61)

Other cross terms might include stretch-stretch, bend-bend, stretch-torsion, bend-torsion, 

etc. Force fields models vary depending on what cross terms they use. 

 

2.2.4.6 van der Waals energy  

 

 ௩ௗ௪ describes the repulsion or attraction between atoms that are not directlyܧ 

bonded. At short range, this interaction is strongly repulsive, while at intermediate range 

the interaction is attractive. At large interatomic distances ܧ௩ௗ௪ is zero. The attraction 

part of this potential can be understood in terms of the quantum-mechanical electron 

correlation effect, in which a fluctuation of the electrons on one atom produces a 
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temporary dipole that induces a complementary dipole on the other atom. The attractive 

force associated with this potential is commonly referred to as dispersion or London 

force. In general, van der Waals energies are computed for atoms which are connected by 

no less than two atoms. Interactions between closer atoms are already taking into account 

by the stretching and/or bending terms.  

 

 ௩ௗ௪ is very positive at small distances, close to an exponential function, and atܧ 

intermediate to long ranges, the attraction is proportional to 1 ܴ଺⁄ . One of the models 

which obey these general requirements is the Lennard-Jones (LJ) potential, which takes 

the following form between two atoms: 

௅௃ሺܴሻܧ ൌ ߝ4 ൤ቀ
ߪ
ܴቁ

ଵଶ
െ ቀ

ߪ
ܴቁ

଺
൨ 

(2.62)

The LJ potential contains just two adjustable parameters: the collision diameter ߪ (the 

separation for which the energy is zero) and the well depth ߝ. From electronic structure 

theory it is known that the repulsion is due to the overlap of the electronic wavefunctions, 

and that the electron density dies off approximately exponentially with the distance from 

the nucleus. Therefore the ܴିଵଶ term in the LJ potential can be appropriately replaced by 

an exponential expression giving rise to a new ܧ௩ௗ௪ function, also known as Buckingham 

potential: 

௩௪ௗሺܴሻܧ ൌ ܣ · ሻܴܤሺെ݌ݔ݁ െ
ܥ

ܴ଺ (2.63)

where A, B, and C are adjustable parameters of the Buckingham potential. 
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2.2.4.7 Electrostatic energy  

 

Electronegative elements tend to attract charge density, giving rise to an unequal 

distribution of charge in a molecule. This charge distribution can be represented in a 

number of ways; one common approach is to represent the charge distribution as an 

arrangement of fractional point charges throughout the molecule. If the charges are 

restricted to occupy the nuclear centers, they are referred to as partial atomic charges. The 

electrostatic interaction between two molecules is then calculated as a sum of interactions 

between pairs of point charges, and this can be described using Coulomb’s law: 

௜௝൯ݎ௘௟൫ܧ ൌ ෍ ෍
௝ݍ௜ݍ

௜௝ݎ଴ߝߨ4

ேಳ

௝ୀଵ

ேಲ

௜ୀଵ

 
(2.64)

஺ܰ and ஻ܰ are the numbers of point charges in the two molecules. Since the electrostatic 

potential is an observable quantity that can be determined from a wavefunction, then the 

objective is to derive the set of partial atomic charges that best reproduces the quantum-

mechanical electrostatic potential at a series of points surrounding the molecule. The 

points ݅ (1, 2,…, ௣ܰ௢௜௡௧௦) where the potential is fitted should be taken from the region 

where it is most important, that is, the region just beyond the van der Waals radii of the 

atoms involved. For example, in the CHelpG algorithm26 (used in this thesis) a cubic grid 

of points is used and all grid points that lie within the van der Waals radius of any atom 

are discarded, together with those that lie further than 2.8 Հ away from any atom. While 

the atom-centered charge models present many advantages, they are based on the 

assumption that the charge density about each atom is spherically symmetrical. However, 

an atom’s valence electrons are often distributed in a manner that is far from spherical, 
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especially in molecules that contain π electron clouds above aromatic rings. One way to 

represent such an anisotropy of the molecular charge includes the use of distributed 

multipoles. In this model, point charges, dipoles, quadrupoles and higher multipoles are 

distributed through the molecule. The distributed multipoles can be determined in several 

ways; one of the best-known examples is the distributed multipole analysis (DMA)27, 28 of 

the charge density. The DMA method calculates the multipoles from a quantum-

mechanics wavefunction defined in terms of Gaussian basis functions.  

 

2.3 Electron-phonon interactions 

 

The origin and physical consequences of electronic and electron-phonon 

interactions can be easily understood on the basis of the TBA. In this case, the 

corresponding Hamiltonian writes in second quantization form:29,30  

௘ܪ ൌ ෍ ߳௠ܽ௠
ା ܽ௠ ൅ ෍ ௠௡ܽ௠ݐ

ା ܽ௡
௠௡௠

 (2.65)

Here, ܽ௠
ା  and ܽ௠ are the creation and annihilation operators, respectively, for an electron 

on lattice site ݉; ߳௠ is the electron site energy, and ݐ௠௡ the transfer integral. In this case, 

the site energy and transfer integral are defined by the following equations: 

߳௠ ൌ ݎ௠ሺ߮ۃ െ ܴ௠ሻ|ܪ௘|߮௠ሺݎ െ ܴ௠ሻ(2.66) ۄ

 

௠௡ݐ ൌ ݎ௠ሺ߮ۃ െ ܴ௠ሻ|ܪ௘|߮௡ሺݎ െ ܴ௡ሻ(2.67) ۄ

where vector ܴ௠ሺܴ௡ሻ represents the position of site ݉ሺ݊ሻ. In equations 2.65, 2.66, and 

2.67, a single localized molecular orbital has been considered on each site, corresponding 

to the HOMO or LUMO for hole or electron transport, respectively.  
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Based on the well-defined sensitiveness of the molecular system to the 

surrounding environment,15 the electron-phonon coupling can be defined as the 

dependence of the system parameters on vibration (phonon) coordinates. That is, any 

small displacement of the atoms from their equilibrium positions affects the microscopic 

parameters. In organic molecular crystals, two distinct sources of electron-phonon 

interactions can be found. First, the site energy ߳௠ is modulated by intramolecular 

(internal) vibrations, leading to electron-vibration interactions with such modes. The 

electron-vibration coupling that arises from the overall modulations of the site energy is 

termed local coupling; it is the main interaction present in Holstein’s molecular crystal 

model.31, 32 The second source of electron-phonon interactions is related to the 

dependence of the transfer integral, ݐ௠௡, on the spacing and relative orientations of 

adjacent molecules. The modulation of the transfer integral by lattice phonons is referred 

to as the nonlocal coupling;16, 33-35 this constitutes the major interaction in Peierls-type 

models.36  

 

The Hamiltonian that includes the electron-phonon interactions is obtained by 

expanding ߳௠ and ݐ௠௡ in a power series of phonon coordinates. Therefore, the system 

Hamiltonian is given by: 

ܪ ൌ ௘ܪ ൅ ௣௛ܪ ൅ ௘ି௣௛ܪ
௟௢௖௔௟ ൅ ௘ି௣௛ܪ

௡௢௡௟௢௖௔௟ (2.68)

Here, ܪ௣௛ is the Hamiltonian of the phonon subsystem and the electron-phonon 

interaction ൫ܪ௘ି௣௛൯ has been split into local and nonlocal contributions. 
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Currently, quantum-chemical approaches allow for a very accurate description of 

some of the main microscopic charge-transport parameters, in particular the 

intramolecular reorganization energy (see Chapter 3) and the electronic coupling (vide 

supra). However, the analysis has to date been mainly restricted to “frozen” systems, in 

which there is no coupling to the lattice dynamics. As previously mentioned, a main point 

of this thesis is the investigation of the coupling between the electronic and (lattice) 

vibrational degrees of freedom in organic materials. To evaluate the role of such electron-

vibration interactions and their impact on charge-transport properties, a combined 

approach that uses classical molecular dynamics simulations (MDS) and quantum-

mechanical calculations of the transfer integrals has been used. The main advantage of 

MDS is to encompass all vibrational modes of the system instead of few effective modes, 

as is typically done in phenomenological models.16, 33 In the following, some basic 

remarks with respect to the MDS technique are presented to enable the reader to 

understand how the transfer integrals in organic solids are modulated by classical lattice 

vibrations. Further reviews on the MDS technique are given by Leach (2001)25 and 

Frenkel and Smit (2002).37 

 

2.3.1 Molecular dynamics simulations 

 

The essence of MDS is to solve Newton’s equations of motion for a set of atoms 

which are assumed to interact via a model interatomic anharmonic potential. The 

solutions for the equations of motion involve the use of small discrete steps, with an 

algorithm to generate the atomic positions and velocities at a given time step from the 
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positions and velocities of the previous time steps. The MDS method then generates the 

classical trajectories of the collection of atoms over a period of time that is long enough 

to be able to analyze the system with an adequate accuracy. Thus, the MDS method 

consists of the numerical, step by step, solution of Newton’s equations of motion, which 

for a simple atomic system can be written as: 

݀ଶݎ௜ሺݐሻ
ଶݐ݀ ൌ

௜ܨ

݉௜
௜ܨ ൌ െ

߲ܸሺݎ௜, ڮ ேሻݎ
௜ݎ߲

 
(2.69)

where the force on atom ݅ is denoted by ܨ௜, time is denoted by ݐ, and the mass of the ݅-th 

atom is expressed by ݉௜. MDS requires a calculation of the gradient of the potential 

energy ܸሺݎሻ, which therefore must be a differentiable function of the atomic coordinates 

 ,ݐ∆ ௜. The integration of the left part of Equation 2.69 is performed in small time stepsݎ

typically 1-10 ݂ݏ for molecular systems. Upon the calculation of all the forces between 

the atoms, Newton’s equations of motion can be integrated. Algorithms have been 

designed for this purpose; one of those is the so-called Verlet algorithm.38 In this 

algorithm, the atomic positions ݎ and velocities ݒ are calculated by the following 

equations: 

ݐሺݎ ൅ ሻݐ∆ ൌ ሻݐሺݎ2 െ ݐሺݎ െ ሻݐ∆ ൅
ሻݐሺܨ

݉  ଶݐ∆
(2.70)

 

ሻݐሺݒ ൌ
ݐሺݎ ൅ ሻݐ∆ െ ݐሺݎ െ ሻݐ∆

ݐ∆2  
(2.71)

Although this algorithm might appear to be a simplistic way of integrating the equations 

of motion, it turns out to give solutions that are sufficiently stable and accurate for routine 

use. Alternatives to the Verlet algorithm include the Leap-Frog algorithm.39 This 
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algorithm evaluates the velocities at half-integer time steps and uses these velocities to 

compute new positions. The following relationships are used: 

ݐሺݎ ൅ ሻݐ∆ ൌ ሻݐሺݎ ൅ ݒݐ∆ ൬ݐ ൅
ݐ∆
2 ൰ (2.72)

 

ݒ ൬ݐ ൅
ݐ∆
2 ൰ ൌ ݒ ൬ݐ െ

ݐ∆
2 ൰ ൅ ݐ∆

ሻݐሺܨ
݉  

(2.73)

Leap-Frog has two advantages over the standard Verlet algorithm: it explicitly includes 

the velocity and does not require the calculation of differences of large numbers. 

However, it has the obvious disadvantage that the positions and velocities are not 

synchronized. This means that it is not possible to calculate the kinetic and potential 

energy at the same time, and therefore the total energy cannot be computed in the Leap-

Frog scheme. Another method is the Beeman’s algorithm,40 which yields the same 

trajectories as the Verlet algorithm, but provides better estimates of the velocity. The 

velocities and positions are calculated from: 

ݐሺݎ ൅ ሻݐ∆ ൌ ሻݐሺݎ ൅ ݐ∆ሻݐሺݒ ൅
ሻݐሺܨ4 െ ݐሺܨ െ ሻݐ∆

6݉  ଶݐ∆
(2.74)

 

ݐሺݒ ൅ ሻݐ∆ ൌ ሻݐሺݒ ൅
ݐሺܨ2 ൅ ሻݐ∆ ൅ ሻݐሺܨ5 െ ݐሺܨ െ ሻݐ∆

6݉  ݐ∆
(2.75)

As a consequence of a more accurate expression for the velocity, the total energy 

conservation is better described under this approach, in which the kinetic energy is 

calculated directly from the velocities. 
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2.3.1.1 Different types of MDS 

 

The MDS technique discussed in the previous section is a scheme for describing 

the natural time evolution of a classical system of ܰ particles in volume ܸ. In such 

simulations the total energy ܧ is conserved, and it will generate a microcanonical 

(constant-NVE) ensemble. Many experimental measurements are made under conditions 

of constant temperature and pressure, and so simulations in the isothermal-isobaric 

ensemble are most directly relevant to experimental data. Therefore, a brief explanation 

on how to perform MDS under conditions of constant temperature NVT and constant 

pressure NVP is presented below.  

 

2.3.1.1.1 Constant-temperature MDS 

 

The temperature of a system is related to the time average of the kinetic energy by 

means of the following equation: 

ሻݐ௞௜௡ሺܧ ൌ
3
2 ܰ݇஻ܶሺݐሻ (2.76)

where, 

ܶሺݐሻ ൌ
1

3݇஻ܰ ෍ ݉௜ݒ௜
ଶ

ே

௜ୀଵ

 
(2.77)

A simple way to alter the temperature of the system is thus to scale the velocities. In this 

case, the velocities are multiplied at each time step by the factor ሾ ଴ܶ ܶሺݐሻ⁄ ሿଵ ଶ⁄  where ܶሺݐሻ 

is the temperature calculated from the kinetic energy and ଴ܶ is the desired temperature. 

An alternative way to maintain the temperature is to couple the system to an external heat 
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bath that is fixed at the desired temperature.41 The velocities are scaled at each step, such 

that the rate of change of temperature is proportional to the difference in temperature 

between the bath and the system: 

݀ܶሺݐሻ
ݐ݀ ൌ

1
߬ ൫ ௕ܶ௔௧௛ െ ܶሺݐሻ൯ 

(2.78)

߬ is a coupling parameter whose magnitude determines how tightly the bath and the 

system are coupled together. 

 

2.3.1.1.2 Constant-pressure MDS 

 

Many of the methods used for pressure control are similar to those used for 

temperature control. For example, the pressure can be maintained at a constant value by 

simply scaling the volume. An alternative is to couple the system to a pressure bath, as 

done before for the temperature bath. The rate of change of pressure is given by: 

݀ܲሺݐሻ
ݐ݀ ൌ

1
߬௉

൫ ௕ܲ௔௧௛ െ ܲሺݐሻ൯ 
(2.79)

߬௉ is the coupling constant, ௕ܲ௔௧௛ is the pressure of the bath and ܲሺݐሻ is the actual 

pressure at the time ݐ. 

 

2.4 Software 

 

The electronic-structure and atomistic modeling methods discussed throughout 

the remainder of this dissertation are used as implemented in the following software 

packages: 
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2.4.1 Gaussian03 

 

The Gaussian42 series of electronic structure programs provide the energies, 

molecular structures, and vibrational frequencies of molecular systems, along with 

molecular properties derived from these basic computation types. It can be used to study 

molecules and reactions under a wide range of conditions, including both stable species 

and compounds which are difficult to observe experimentally such as short-lived 

intermediates and transition structures. 

 

2.4.2 ADF 

 

The Amsterdam Density Functional (ADF)43 package is a software for first-

principles electronic-structure calculations via DFT. The code uses Slater-type orbital 

(STO) basis functions and has been parallelized for calculating large chemical systems. 

 

2.4.3 VASP 

 

The Vienna Ab-initio Simulation Package (VASP)44-46 allows one to perform ab 

initio quantum-mechanical molecular dynamics using pseudopotentials and a plane wave 

basis set. VASP is based on a finite-temperature, local-density approximation and an 

exact evaluation of the instantaneous electronic ground-state at each molecular dynamics 

step using matrix diagonalization schemes and Pulay mixing.47, 48 
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2.4.4 CPMD 

 

CPMD (Car-Parrinello Molecular Dynamics) is a program for ab initio molecular 

dynamics. It uses a density functional method to speed up quantum-chemical 

computations.49 Plane waves are used as the basis set for the valence electron wave 

functions and pseudo-potentials to describe the interaction between the valence electrons 

and the ionic cores. 

 

2.4.5 CRYSTAL06 

 

The CRYSTAL50 package performs ab initio calculations of the ground-state 

energy, energy gradient, electronic wave function and properties of periodic systems. 

Hartree-Fock or Kohn-Sham Hamiltonians can be used. The fundamental approximation 

includes expanding the single-particle wave functions (crystalline orbitals) as a linear 

combination of Bloch functions defined in terms of local functions, which are linear 

combinations of Gaussian-type functions. 

 

2.4.6 TINKER 

 

The TINKER51 molecular modeling software is a general package for molecular 

mechanics and dynamics, with some special features for biopolymers. TINKER has the 

ability to use any of several force fields, such as Amber, CHARMM, Allinger MM, 

OPLS, Liam Dang's polarizable potentials, and AMOEBA.  
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2.4.7 DMAREL 

 

DMAREL52, 53 is a lattice energy minimization program for molecular structures, 

using a realistic anisotropic atom-atom model for the intermolecular forces, an 

electrostatic model, along with anisotropic repulsion and simple dispersion models. 
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CHAPTER 3  
 

LOCAL ELECTRON-PHONON COUPLING 

 

In this chapter, the vibrational coupling in the ground and excited states of 

positively charged naphthalene, anthracene, tetracene, and pentacene molecules is 

studied. This investigation is based on a joint experimental and theoretical analysis of 

ionization spectra using high-resolution gas-phase photoelectron spectroscopy and first-

principles correlated quantum-mechanical calculations. The discussion starts with the 

definition of the polaron binding energy, ܧ௣௢௟, a parameter that measures the strength of 

the local vibration coupling (as mentioned in the previous chapter, the local coupling 

essentially arises from the modulation of the site energy by intramolecular vibrations). 

This is followed by a brief description of the vibronic coupling in oligoacene cations. In 

this case, the previously used approach to calculate the vibrational couplings for the 

radical-cation1 and the radical-anion2 ground states in oligoacenes was extended to 

investigate their vibrational coupling in the radical-cation excited states. Theoretical and 

experimental results reveal that, while the main contribution to the polaron binding 

energy in the ground state of oligoacene systems is coming from high-energy vibrations, 

the excited-state relaxation energies show a significant redistribution towards lower-

frequency vibrations. A direct correlation is found between the nature of the vibronic 

interaction and the pattern of the state electronic structure. 
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3.1 Introduction 

 

3.1.1 Polaron binding energy 

 

When only the local electron-phonon coupling in Equation 2.68 is used, the 

standard Holstein-type polaron model is obtained. In this case, the Hamiltonian for a 

single charge carrier in the lattice can be diagonalized and the resulting energy is given 

by: 

௠ܧ ൌ ߳௠
ሺ଴ሻ െ

1
ܰ ෍ ԰߱௞௝|݃௠ሺ݇, ݆ሻ|ଶ ൅

௞௝

෍ ԰߱௞௝ ൬݊௞௝ ൅
1
2൰

௞௝

 (3.1) 

where ܰ denotes the total number of unit cells, and ݃௠ሺ݇, ݆ሻ the corresponding local 

electron-phonon coupling constant for a phonon of branch ݆ and wavevector ݇. The 

electron (hole) is localized on a single lattice site with a stabilization energy known as the 

polaron binding energy, ܧ௣௢௟: 

௣௢௟ܧ ൌ
1
ܰ ෍ ԰߱௞௝|݃௠ሺ݇, ݆ሻ|ଶ

௞௝

 (3.2) 

The polaron binding energy results from the deformations in molecular and lattice 

geometries that occur as the carrier localizes on a given site. This quantity is thus closely 

related to the reorganization energy in electron-transfer theories (vide infra). The 

contribution to the polaron binding energy arising from the internal degrees of freedom 

can be obtained by expanding the site energy ߳௠ in powers of molecular nomal-mode 

coordinates, ܳ௠ሺ݆ሻ. In the harmonic approximation, it writes: 
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߳௠ሺܳሻ ൌ ߳௠
ሺ଴ሻ ൅ ෍ ௠ܸሺ݆ሻܳ௠ሺ݆ሻ

௝

൅
1
2 ෍ ௝ܯ ௝߱

ଶܳ௠
ଶ ሺ݆ሻ

௝

 (3.3) 

where ܯ௝ represents the molecular mass and ௠ܸሺ݆ሻ is defined as follows:  

௠ܸሺ݆ሻ ൌ ൬
߲߳௠

߲ܳ௠ሺ݆ሻ൰
ொୀ଴

 
(3.4) 

Since ߳௠ is the energy of a frontier molecular orbital, Equation 3.3 represents the 

adiabatic potential surface of the charged molecule obtained in the one-electron picture. 

Figure 3.1 shows the potential energy surfaces for electronic states 1 and 2 corresponding 

to the neutral state and the ground state of the charged molecule; the geometry relaxation 

energies upon vertical transition from the neutral state to a charged state and vice versa 

௥௘௟ߣ)
ሺଵሻ ௥௘௟ߣ  ,

ሺଶሻ) are given by: 

௥௘௟ߣ ൌ ෍ ௝ߣ ൌ ෍
ܸଶሺ݆ሻ

௝ܯ2 ௝߱
ଶ

௝௝

 
(3.5) 
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Figure 3.1 Sketch of the potential energy surfaces for the neutral state 1 and charged state 
2, showing the vertical transitions, the normal-mode displacement ΔQ, and the relaxation 
energies ߣ௥௘௟

ሺଵሻ  and  ߣ௥௘௟
ሺଶሻ . 

 

In this case, ܧ௣௢௟ ൌ  ௣௢௟ is equal to theܧ ௥௘௟, where the intramolecular contribution toߣ

geometry relaxation upon charging a molecule. As well, it is useful to point out that when 

the coupling constant ݃௠ሺ݇, ݆ሻ in Equation 3.2 does not depend on the phonon 

wavevector ݇, that is, ݃௠ሺ݇, ݆ሻ ൌ ݃௠ሺ݆ሻ, then ݃௠ሺ݆ሻ or simply ݃ሺ݆ሻ is directly related to 

the Huang-Rhys factor ௝ܵ ൌ ݃ଶሺ݆ሻ. This dimensionless factor is commonly used in 

molecular spectroscopy and electron transfer theory.  

 

In general, the reorganization energy is expressed as the sum of inner and outer 

contributions. The inner (intramolecular) reorganization energy represents the change in 

equilibrium geometry of the donor and acceptor sites after the gain or loss of an 
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electronic charge upon an electron transfer (ET) process. The outer reorganization energy 

arises from the electronic and nuclear polarization of the surrounding medium. To a good 

approximation, it is possible to separate the reorganization energy into its inter- and 

intramolecular contributions in molecular systems due to the weakness of the van der 

Waals interactions. The intramolecular reorganization energy (ߣ௥௘௢௥௚) associated with an 

intermolecular ET reaction of the type ܯ௔
ି െ ௕ܯ ՜ ௔ܯ െ ௕ܯ

ି, is given by: 

௥௘௢௥௚ߣ ൌ ௥௘௟ߣ
ሺଵሻ ൅ ௥௘௟ߣ

ሺଶሻ  (3.6) 

Thus, within the approximation described above, the polaron binding energy is equal to 

half the reorganization energy, i.e., ܧ௣௢௟ ൌ ௥௘௢௥௚ߣ 2⁄ . 

 

 An alternative approach to calculate the intramolecular reorganization energy and 

the contribution of vibrational modes to ߣ௥௘௟ can be obtained by expanding the potential 

energies of the neutral and cation states in power series of normal-mode coordinates. 

Within the harmonic oscillator approach, the relaxation (polaron) energy ߣ௥௘௟ is written as 

follows: 

௣௢௟ܧ ൌ ௥௘௟ߣ ൌ ෍ ௝ߣ
௝

ൌ ෍
௝ܯ ௝߱

ଶܳ߂௝
ଶ

2  
(3.7) 

 

௝ߣ ൌ ௝݇

2 ௝ܳ߂
ଶ, ௝ܵ ൌ ௝ߣ ԰ ௝߱⁄  

(3.8) 

where Δܳ௝ represents the displacement along normal-mode ݆ between the equilibrium 

geometries of the neutral and charged molecules. ௝݇ and ௝߱ are the corresponding force 

constants and vibrational frequencies; and ௝ܵ denotes the Huang-Rhys factor. The ߣ௝ term 
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is commonly used to estimate the electron-vibration coupling constant of a particular 

normal-mode. The addition of all coupling constants for a given molecular system 

represents the so-called vibronic coupling.  

 

3.1.2 Vibronic coupling in oligoacene cations 

 

Oligoacenes play an important role in many areas of chemistry, materials science, 

and astrophysics. For instance, oligoacene radical-cations are thought to be responsible 

for interstellar infrared emission features and diffuse interstellar visible absorption 

bands.3-8 Oligoacenes are also among the most studied organic materials9-15  used as 

active elements in new generations of organic (opto)electronic devices. A detailed 

understanding of the properties of oligoacenes and their derivatives is thus of interest 

from both fundamental and practical points of view. 

 

Vibronic coupling represents a key interaction that can control to a large extent 

many system properties such as the profile of the optical bands, superconductivity, or the 

efficiency of charge and energy transport.10 Vibronic coupling in oligoacenes has been 

previously addressed in several theoretical and experimental studies.1, 2, 6, 10, 16-34 The 

relaxation processes in the radical-cation ground state upon positive ionization of 

anthracene, tetracene, and pentacene have been recently investigated by using an 

approach that combines high-resolution gas-phase photoelectron (PE) spectroscopy 

measurements with first-principles quantum-mechanical calculations.1, 2, 24 In a more 

recent communication,21 it was shown that this approach can be applied as well to study 
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the vibronic interaction in the excited states; up to now, however, these investigations 

have been limited to naphthalene.  

 

Based on results obtained for naphthalene, anthracene, tetracene, and pentacene, 

the dependence of the hole-vibrational interaction on the molecular size in both ground 

and excited states is discussed in this chapter. We also investigate how the amount of 

“exact” Hartree-Fock exchange (EEX)23 included in hybrid functionals affects DFT 

results and the reliability of DFT calculations to reproduce experimental findings. 

 

3.2 Theoretical methodology 

 
Geometry optimizations for the neutral and radical-cation states of naphthalene, 

anthracene, tetracene, and pentacene were performed, followed by calculation of 

harmonic vibrational frequencies and normal modes. The calculations were achieved at 

the DFT level using the 6-31G** basis set, and the BLYP, B3LYP, and BHandHLYP 

functionals as implemented in the Gaussian 98 program.35 For the sake of comparison, 

calculations have been also performed at the Hartree-Fock (HF) level with the same basis 

set. Spin-unrestricted wave functions were used for the investigation of the radical-cation 

states. All excited state calculations have been achieved by applying symmetry 

constraints on the wave functions. 

 

The normal modes ܳଵሺଶሻ were obtained as a linear combination of Cartesian 

displacements: 
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ܳଵሺଶሻ௝ ൌ ෍ ଵሺଶሻ௞ݍଵሺଶሻ௞௝൫ܮ െ ଵሺଶሻ௞ݍ
଴ ൯

௞

 (3.9) 

Here, the matrix ܮଵሺଶሻ connects the 3 ݊ െ6 (݊ is the number of atoms) normal coordinates 

with the set of 3݊ mass-weighted Cartesian coordinates ݍଵሺଶሻ; the vectors ݍଵ
ሺ଴ሻ and ݍଶ

ሺ଴ሻ 

correspond to the stationary points on the adiabatic potential surfaces of states 1 and 2, 

respectively. Then, the normal-mode displacements Δܳଵሺଶሻ are obtained by projecting the 

displacements Δݍ ൌ ଵݍ
ሺ଴ሻ െ ଶݍ

ሺ଴ሻ onto the normal vectors. The Huang-Rhys factors and 

the total relaxation energy are obtained by using Equations 3.8 and 3.9. It is important to 

note that the normal modes of the neutral and cation states, ܳଵ and ܳଶ, are in general 

different and are related by the Duschinsky matrix, ܬ, as:36 

ܳଵ ൌ ଶܳܬ ൅ (3.10) ܳ߂

The calculations of the Huang-Rhys factors and Duschinsky matrices have been carried 

out with the DUSHIN program developed by Reimers.36 For the present system the 

Duschinsky mixing is found to be minor, and this effect was neglected in the following 

analyses. 

 
The simulation of the ionization bands has been performed in the framework of 

the Born-Oppenheimer and Franck-Condon ሺܥܨሻ approximations.1 In cases where 

Duschinsky mixing can be neglected, the relative intensity of a multi-dimensional 

vibrational transition, involving ݌ vibrational modes, is obtained as a simple product of 

one-dimensional ܥܨ integrals, ܫܥܨሺ݉, ݊ሻ  ൌ  Φ௠ሺܳሻ|Φ௡ ሺܳሻۧ (where Φ௠ሺܳሻ andۦ

Φ௡ሺܳሻ are the vibrational functions corresponding to the neutral and cation electronic 

states):  
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,൫݉ଵܫ ݊ଵ, … , ݉௣, ݊௣൯ ൌ ෑ ,ሺ݉ଵܫܥܨ ݊ଵሻଶ݁݌ݔ ൬
െ԰݉ଵ߱௜

݇஻ܶ ൰
௣

௜ୀଵ

 
(3.11)

 

,ሺ݉ଵܫܥܨ ݊ଵሻଶ ൌ ሼെܵሽܵሺ௡ି௠ሻ݌ݔ݁ ݉!
݊! ቂܮ௠

ሺ௡ି௠ሻሺܵሻቃ
ଶ
 (3.12)

 
where ݉௜  and ݊௜ are the initial and final vibrational quantum numbers of mode ܳ௜, and 

௡ܮ
ሺ௠ሻ is a Laguerre polynomial. 

 

3.3 Results and discussion 

 

3.3.1 Photoelectron spectroscopy 

 

The gas-phase photoelectron spectra of naphthalene and anthracene are shown in 

Figures 3.2 and 3.3, respectively. In general, the spectra are similar to those previously 

reported;2, 37-41 however, the use of synchrotron sources allows the individual peaks in the 

vibrational fine structure to have a better resolution. The first ionization band of both 

naphthalene and anthracene exhibits a high-frequency progression of about 1500 ܿ݉ିଵ, 

which lies in the region expected for CെC stretching modes. However, in contrast to 

anthracene, a contribution from a second vibration at about 500 ܿ݉ିଵ is also clearly 

resolved21 in naphthalene. In addition, as seen from the profile of the third ionization, the 

interaction with this mode completely dominates the geometrical relaxation of the 2B2g 

state of naphthalene upon ionization. In striking contrast to the first and third ionization 

bands, the second PE band in naphthalene is rather structureless. The second ionization of 
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anthracene, however, exhibits a well-resolved frequency progression of about 750 ܿ݉ିଵ. 

A vibrational structure, although less resolved, is also seen in the third PE band of 

anthracene. 

 

 

Figure 3.2 Gas-phase photoelectron emission spectrum of naphthalene.37, 41 
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Figure 3.3 Gas-phase photoelectron emission spectrum of anthracene.2, 38, 41 
 

3.3.2 Electronic structure 

 

The vertical ionization energies of the first three photoelectron bands obtained 

within the framework of Koopmans’ theorem42 (KT) and at the ΔSCF (self-consistent 

field) level are collected in Table 3.1. The KT/HF calculations yield better absolute 

values for the ionization energies. However, the relative positions of the ionization peaks 

are better described at the KT/B3LYP level. The B3LYP molecular orbitals (MO) 

associated with the first three PE bands are shown in Figure 3.4. 
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Figure 3.4 Orbital energies (DFT/B3LYP) of the first three frontier occupied MO in 
naphthalene, anthracene, tetracene and pentacene. The blue, green and red colors are used 
to group the MOs by their type I, II and  III, respectively (see text). 
 

The inspection of Figure 3.4 reveals that the electron density pattern for the 

highest occupied MO (HOMO) is the same (denoted here as type I) for all four 

molecules. The electronic structure of the HOMO-1 and HOMO-2 levels with either b3u 

or b1g symmetry also share a common pattern (type II) along the series. The HOMO-1 

and HOMO-2 levels with b2g and au symmetries are denoted as a type III. Each group of 

orbitals, as clearly seen from Figure 3.4, shows a characteristic dependence of their 

energies on the system size. The second and third ionizations in naphthalene and 

anthracene, according to the KT calculations, are of type II and type III, respectively; this 

sequence is inverted in pentacene. The KT results are conflicting for tetracene; while the 

KT/BLYP and KT/B3LYP calculations yield the 2B2g and 2B3u states (type III and type II) 

as second and third PE bands, respectively, the KT/BHandLYP and KT/HF calculations 

give the opposite ordering. At the ΔSCF level, the B3LYP and BHandLYP calculations 
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give almost identical results for the first ionization. B3LYP, however, better describes the 

energy spacing between the excited states. In the case of naphthalene, anthracene, and 

pentacene, all three functionals yield the same ordering of the cation states. For tetracene, 

however, as in the case of the KT calculations, the situation is less clear: the B3LYP 

calculations yield the 2B2g and 2B3u sequence for the second and third ionizations while 

the reverse ordering is obtained at the BHandLYP level. Furthermore, the results of the 

normal-mode calculations reveal that the optimized geometries of the 2B3u state obtained 

at both B3LYP and BHandLYP levels correspond to a transition state, which suggests a 

broken-symmetry effect. In contrast, the BLYP and HF calculations yield a minimum for 

this state. Further calculations would therefore be needed to shed more light on the 

ordering of the second and third radical-cation states in tetracene and on the shape of 

their adiabatic potential surfaces. Finally, the results clearly indicate that ΔSCF/HF 

calculations, in contrast to DFT calculations, totally fail to describe the PE spectra. This 

failure is more likely related to large spin contaminations observed in the (unrestricted) 

HF calculations of the radical-cation states, in particular the excited states. 
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Table 3.1 First three ionization energies in naphthalene, anthracene, tetracene and 
pentacene obtained from ΔSCF and KT (between parentheses) calculations. All energies 
are given in ܸ݁. 
 

 BLYP B3LYP BHandHLYP HF Experiment 
Naphthalene      

D0 (2Au) 7.39 (4.89) 7.70 (5.80) 7.68 (6.75) 6.92 (7.81) 8.15b 
D1 (2B3u) 8.16 (5.59) 8.46 (6.55) 8.39 (7.53) 7.33 (8.54) 8.87b

D2 (2B2g) 9.11 (6.51) 9.61 (7.66) 9.86 (8.92) 9.49 (10.32) 10.08b

      
Anthracene      

      
D0 (2B2g) 6.58 (4.40) 6.89 (5.24) 6.87 (6.08) 6.14 (7.01) 7.42c

D1 (2B1g) 7.78 (5.55) 8.13 (6.46) 8.10 (7.38) 7.03 (8.29) 8.53c

D0 (2Au) 8.05 (5.86) 8.59 (6.92) 8.91 (8.06) 8.72 (9.35) 9.17c

      
Tetracene      

      
D0 (2Au) 6.04 (4.09) 6.34 (4.87) 6.31 (5.63) 5.58 (6.47) 6.94c 
D1 (2B2g) 7.28 (5.35) 7.82 (6.34) 8.15 (7.37a) 8.01 (8.52)a 8.30 -8.40c 
D2 (2B3u) 7.52 (5.53) -      (6.42)   -      (7.29a) 6.83 (8.13)a 8.40 -8.60 c 

      
Pentacene      

      
D0 (2B2g) 5.65 (3.88) 5.95 (4.61) 5.91 (5.31) 5.18 (6.08) 6.59c 
D1 (2Au) 6.72 (4.97) 7.23 (5.89) 7.54 (6.84) 7.39a (7.88) 7.89c 
D2 (2B1g) 7.32 (5.52) 7.74 (6.39) 7.78 (7.23) 6.67a (8.03) 8.27c 

 
aIn these results the ordering of D1 and D2 states (or/and of the respective MOs) is 
inversed. bTaken from Reference 41. cDerived from the data published in Reference 2. 
 

3.3.3 Relaxation energy 

 

The results of the DFT and HF calculations of the relaxation energies in 

naphthalene, anthracene, tetracene, and pentacene related to the first three PE bands, i.e., 

the geometry relaxations in the radical-cation states D0, D1, and D2, are reported in Table 

3.2 for both the adiabatic potential (AP) surface and normal-mode (NM) approaches. The 
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partition of the reorganization energy into the contributions of each normal-mode for 

naphthalene, anthracene, tetracene, and pentacene are given in Tables 3.3-3.6. 

 

Table 3.2 Adiabatic potential surfaces (AP) and normal-mode (NM) estimates of the 
relaxation energies ߣ௥௘௟ (ܸ݉݁) of the cation states D0, D1, and D2 of naphthalene, 
anthracene, tetracene, and pentacene, related to ionization processes.  
 

 
 

BLYP B3LYP BHandHLYP HF 
 (AP) (NM) (AP) (NM) (AP) (NM)  (AP) (NM) 

Naphthalene 
 

        

D0 72 
 

70 
 

91 
 

91 
 

133 
 

130 
 

243 
 

236 
 

D1 98 
 

92 
 

110 
 

103 
 

127 
 

119 
 

152 
 

141 
 

D2 126 
 

122 
 

133 
 

128 
 

144 
 

141 
 

168 
 

165 
 

Anthracene         
 

D0 50 
 

49 
 

68 
 

68 
 

110 
 

112 
 

222 
 

223 
 

D1 76 
 

73 
 

88 
 

85 
 

107 
 

102 
 

138 
 

130 
 

D2 68 
 

67 
 

77 
 

75 
 

91 
 

90 
 

126 
 

125 
 

Tetracene         
 

D0 38 
 

37 
 

56 
 

57 
 

97 
 

93 
 

217 
 

211 
 

D1 49 
 

50 
 

59 
 

59 
 

- - 132 
 

124 
 

D2 63 
 

61 
 

- - 78 77 128 
 

125 
 

Pentacene         
 

D0 30 
 

31 
 

48 
 

48 
 

88 
 

90 
 

229 
 

228 
 

D1 39 
 

38 
 

49 
 

47 
 

66 
 

65 
 

112 
 

110 
 

D2 53 
 

52 
 

64 
 

63 
 

84 
 

81 
 

134 
 

128 
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The calculated results are in line with recent findings by Dierkesen and Grimme23 

and indicate that the calculated value of ߣ௥௘௟ crucially depends on the amount of EEX 

included in the hybrid functionals. As seen from Table 3.2, the values of ߣ௥௘௟ derived at 

the DFT level are much smaller than the values obtained at the HF level. The DFT 

estimates of ߣ௥௘௟ increase with the increase in EEX contribution to the hybrid functionals:  

 ௥௘௟(BHandHLYP, 50% EEX). Theߣ > ௥௘௟(B3LYP, 20% EEX)ߣ > ௥௘௟(BLYP, 0% EEX)ߣ

results show that the dependence of ߣ௥௘௟  on the EEX amount is state dependent. For 

instance, the ratio ߣ௥௘௟(HF)/ ߣ௥௘௟(BLYP) is at least twice as large for the D0 state than for 

the first two excited radical-cations states D1 and D2. Moreover, as seen from Table 3.3 

and Table 3.4 (see also Figures 3.5 and 3.6 for naphthalene and anthracene, respectively), 

the contributions of each vibration to ߣ௥௘௟ do not scale in the same way for all vibrations 

when going from one functional to another but are rather mode-dependent.  
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Table 3.3 DFT and HF estimates of frequencies, ω and relaxation energies, ߣ௥௘௟ of the 
cation states D0, D1, and D2, related to the ionization of naphthalene. 
 

 BLYP B3LYP BHandHLYP HF 
Vibrational 

Mode 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 

D0 
1 501 4 515 3 532 3 548 2 
2 752 0 777 0 806 0 821 0 
3 1039 2 1072 2 1111 2 1143 4 
4 1176 3 1207 4 1248 7 1296 14 
5 1366 26 1420 40 1478 68 1507 148 
6 1465 4 1509 4 1567 4 1627 6 
7 1569 31 1635 39 1712 46 1779 61 
8 3151 0 3232 0 3331 0 3399 0 

D1 
1 503 14 517 16 533 19 545 18 
2 708 30 734 35 763 41 783 55 
3 967 19 998 19 1033 20 1045 27 
4 1164 6 1197 7 1239 7 1286 6 
5 1362 0 1418 1 1482 1 1526 7 
6 1439 5 1482 5 1536 5 1585 2 
7 1535 16 1602 20 1681 25 1740 24 
8 3150 1 3231 1 3330 1 3399 1 

D2 
1 492 59 506 61 522 65 535 71 
2 748 4 774 4 804 4 826 3 
3 1035 0 1067 0 1105 0 1131 0 
4 1176 3 1207 3 1248 3 1296 5 
5 1410 24 1471 21 1538 16 1587 9 
6 1465 0 1510 0 1568 0 1629 0 
7 1587 31 1655 39 1738 51 1815 74 
8 3153 1 3235 0 3333 0 3403 1 
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Table 3.4 DFT and HF estimates of frequencies, ω and relaxation energies, ߣ௥௘௟ of the 
cation states D0, D1, and D2, related to the ionization of anthracene. 
 

 BLYP B3LYP BHandHLYP HF 
Vibrational 

Mode 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 

D0 
1 385 0 396 0 408 0 416 0 
2 612 0 626 0 644 0 661 0 
3 741 0 766 0 795 0 813 0 
4 1025 0 1057 0 1096 0 1125 1 
5 1177 3 1207 4 1245 6 1285 19 
6 1254 1 1291 3 1332 7 1352 22 
7 1377 16 1426 27 1473 51 1466 111 
8 1495 7 1545 9 1607 15 1665 32 
9 1546 21 1611 25 1689 32 1756 37 
10 3147 0 3228 0 3327 0 3395 0 

D1 
1 387 7 398 8 411 10 419 7 
2 614 2 629 2 648 2 667 3 
3 706 32 730 39 759 49 777 66 
4 966 12 996 11 1028 11 1023 19 
5 1174 3 1206 4 1247 4 1293 3 
6 1274 0 1315 0 1362 0 1385 2 
7 1390 2 1453 3 1526 7 1566 12 
8 1455 3 1499 2 1554 0 1607 1 
9 1523 11 1591 14 1673 18 1734 17 
10 3147 0 3229 0 3328 0 3396 1 

D2 
1 383 11 394 11 407 12 417 14 
2 617 7 633 8 653 9 674 10 
3 746 0 772 0 803 0 828 0 
4 1023 1 1055 1 1091 1 1113 1 
5 1176 4 1207 4 1247 5 1294 10 
6 1251 18 1291 19 1338 20 1369 21 
7 1406 0 1465 0 1531 1 1587 7 
8 1487 4 1538 6 1601 10 1659 17 
9 1551 21 1618 25 1698 31 1771 43 
10 3150 0 3232 0 3330 0 3399 1 
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Table 3.5 DFT and HF estimates of frequencies, ω and relaxation energies, ߣ௥௘௟ of the 
cation states D0, D1, and D2, related to the ionization of tetracene. 
 

 BLYP B3LYP BHandHLYP HF 
Vibrational 

Mode 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 

D0 
1 308 0 318 0 327 0 334 0 
2 612 0 634 0 649 0 671 0 
3 740 0 766 0 795 0 812 0 
4 851 0 872 0 914 0 937 3 
5 1018 0 1030 1 1087 1 1113 5 
6 1172 2 1190 2 1241 7 1279 34 
7 1213 4 1235 7 1290 14 1324 36 
8 1372 1 1426 9 1467 9 1455 7 
9 1388 10 1438 6 1499 30 1535 79 
10 1449 0 1492 2 1547 0 1610 0 
11 1504 8 1571 5 1621 13 1677 24 
12 1532 12 1591 22 1675 18 1745 22 
13 3112 0 3174 0 3294 0 3363 0 
14 3121 0 3180 0 3302 0 3369 0 
15 3144 0 3205 0 3325 0 3392 0 

D1 
1 306 3 315 3 - - 334 4 
2 603 2 617 2 - - 661 4 
3 745 0 771 0 - - 780 68 
4 839 0 867 0 - - 894 2 
5 1016 0 1048 0 - - 1014 12 
6 1164 1 1196 2 - - 1284 2 
7 1199 0 1232 0 - - 1320 1 
8 1373 14 1425 15 - - 1544 3 
9 1398 0 1453 1 - - 1557 11 
10 1452 2 1496 2 - - 1575 0 
11 1521 22 1578 26 - - 1677 5 
12 1537 4 1604 8 - - 1732 11 
13 3115 0 3197 0 - - 3372 0 
14 3121 0 3204 0 - - 3378 1 
15 3146 0 3228 0 - - 3393 1 

D2 
1 309 5 - - 325 3 331 5 
2 609 3 - - 634 1 642 0 
3 711 29 - - 801 0 824 0 
4 819 1 - - 898 0 913 1 
5 965 7 - - 1084 0 1105 0 
6 1167 2 - - 1235 2 1264 1 
7 1211 0 - - 1273 0 1308 4 
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8 1379 0 - - 1480 16 1511 21 
9 1391 1 - - 1518 4 1576 16 
10 1437 3 - - 1554 3 1614 5 
11 1493 1 - - 1646 34 1696 52 
12 1516 8 - - 1686 11 1763 20 
13 3118 0 - - 3296 0 3366 0 
14 3125 0 - - 3303 0 3373 0 
15 3145 0 - - 3327 0 3395 1 
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Table 3.6 DFT and HF estimates of frequencies, ω and relaxation energies, ߣ௥௘௟ of the 
cation states D0, D1, and D2, related to the ionization of pentacene. 
 

 BLYP B3LYP BHandHLYP HF 
Vibrational 

Mode 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 
ω  

(ܿ݉ିଵ) 
  ௥௘௟ߣ

(ܸ݉݁) 

D0 
1 256 1 263 1 272 1 277 1 
2 597 0 613 0 633 0 650 0 
3 739 0 764 0 793 0 808 1 
4 780 0 807 0 837 1 855 5 
5 1015 0 1046 0 1081 1 1099 6 
6 1169 1 1200 2 1237 8 1269 56 
7 1197 4 1227 7 1266 13 1303 17 
8 1297 0 1339 1 1382 2 1385 0 
9 1374 0 1425 1 1478 4 1497 0 
10 1392 9 1440 18 1493 37 1525 98 
11 1470 0 1516 0 1572 1 1626 5 
12 1503 11 1560 11 1627 14 1682 27 
13 1526 4 1590 7 1668 8 1739 9 
14 3119 0 3201 0 3300 0 3368 0 
15 3142 0 3224 0 3322 0 3390 0 

D1 
1 255 1 262 1 270 1 276 2 
2 592 0 607 0 626 0 644 0 
3 743 0 770 0 800 0 820 0 
4 778 0 805 0 835 0 854 1 
5 1014 0 1045 0 1079 0 1096 1 
6 1167 1 1198 1 1237 1 1280 1 
7 1196 0 1228 0 1268 0 1309 2 
8 1278 3 1318 4 1363 7 1378 17 
9 1391 7 1446 2 1506 1 1558 28 
10 1397 2 1452 10 1520 15 1567 0 
11 1467 2 1514 2 1573 3 1629 6 
12 1519 13 1578 17 1643 21 1690 26 
13 1522 9 1586 9 1668 13 1746 24 
14 3119 0 3201 0 3302 0 3371 0 
15 3145 0 3226 0 3325 0 3392 0 

D2 
1 257 4 264 6 273 6 277 3 
2 595 3 610 3 629 2 645 3 
3 713 24 738 31 766 44 781 73 
4 753 2 778 2 805 2 808 1 
5 969 5 999 4 1031 3 1002 10 
6 1165 1 1198 1 1239 1 1280 3 
7 1197 0 1229 0 1270 0 1302 2 
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8 1309 0 1354 0 1406 0 1425 0 
9 1380 0 1440 0 1510 1 1543 13 
10 1399 2 1456 3 1517 3 1552 2 
11 1447 2 1490 2 1544 1 1588 0 
12 1484 3 1545 5 1623 10 1685 11 
13 1522 4 1588 5 1669 6 1736 6 
14 3122 0 3204 0 3305 0 3376 1 
15 3144 0 3225 0 3324 0 3391 1 
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Figure 3.5 HF and DFT estimates of Huang-Rhys factors, ܵ, related to the first three 
ionizations bands (D0, D1, and D2) of naphthalene (see Table 3.3 for the energy of the 
vibrational modes). 
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Figure 3.6 HF and DFT estimates of Huang-Rhys factors, ܵ, related to the first three 
ionizations bands (D0, D1, and D2) of anthracene (see Table 3.4 for the energy of the 
vibrational modes). 
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going from naphthalene to pentacene. The variation of ߣ௥௘௟ becomes smaller, however, as 

the amount of the EEX included in hybrid functionals increases; at the HF level, ߣ௥௘௟ is 

practically independent of molecular size. This trend shown by the HF estimates is 

clearly in contradiction with the experimental data.2 The simulations of the PE spectra 

indicate that the best agreement between theory and experiment is obtained at the B3LYP 

level. As an illustrative example, Figures 3.7-3.9 show the simulated spectrum for the D0 

D1 and D2 states of anthracene using the results derived from HF and DFT methods.  

 

 
Figure 3.7 DFT and HF simulations of the vibrational structure of the first ionization 
band of anthracene. In the DFT simulations, the BHandHLYP, B3LYP, and BLYP 
functionals were used. 
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Figure 3.8 DFT and HF simulations of the vibrational structure of the second ionization 
band of anthracene. In the DFT simulations, the BHandHLYP, B3LYP, and BLYP 
functionals were used. 

 

Figure 3.9 DFT and HF simulations of the vibrational structure of the third ionization 
band of anthracene. In the DFT simulations, the BHandHLYP, B3LYP, and BLYP 
functionals were used. 
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As seen from Figure 3.7, DFT/BHandHLYP overestimates the intensity of the high-

energy vibrational peaks, meaning that BHandHLYP overestimates the hole-vibration 

coupling constants (and consequently ߣ௥௘௟); in contrast, BLYP functional underestimates 

 ௥௘௟. The vibrational couplings derived at HF level completely fail to describe the shapeߣ

of the experimental band. While the results obtained at the B3LYP level reproduce well 

the shape of the PE band, the intensity of the second peak is also slightly underestimated. 

These results suggest that an increase of EEX amount could lead to more accurate 

description of the vibrational couplings. Indeed our calculations indicate that increasing 

the EEX admixture into the B3LYP functional from 20% to 30% leads to a better 

agreement between the simulated and the experimental bands (see Figure 3.10). 

Unfortunately, this modification to the functional does not generally lead to an improved 

description of the excited states. Therefore, further discussions are limited to the B3LYP 

results. 

 

 
Figure 3.10 DFT/(B3LYP with 30% EEX) simulations of the vibrational structure of the 
first ionization band of anthracene. 
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The results of the Frank-Condon simulations of the shape of first three PE bands 

in naphthalene and anthracene using DFT/B3LYP frequencies and Huang-Rhys factors 

are shown in Figures 3.11 and 3.12, respectively. In general, the positions and shapes of 

the peaks are very well reproduced. The overall agreement between the simulated and 

experimental spectra increases the confidence in the reliability of DFT/B3LYP-derived 

vibronic constants and relaxation energies. The hole-vibrational coupling constants 

(Huang-Rhys factors) related to the first three PE bands in naphthalene, anthracene, 

tetracene, and pentacene are shown in Figures 3.13-3.16, respectively.  
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Figure 3.11 DFT/B3LYP simulations of the vibrational structure of the first three PE 
bands of naphthalene. 
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Figure 3.12 DFT/B3LYP simulations of the vibrational structure of the first three PE 
bands of anthracene. 
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symmetric mode at 500 ܿ݉ିଵ, in agreement with the experimental observations, is 

predicted to be particularly active, accounting for about 50% of ߣ௥௘௟ in the D2 state.  

 

 
Figure 3.13 DFT/B3LYP estimates of Huang-Rhys factors, ܵ, related to the first three 
ionizations bands of naphthalene. 
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Figure 3.14 DFT/B3LYP estimates of Huang-Rhys factors, ܵ, related to the first three 
ionizations bands of anthracene. 
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Figure 3.15 DFT/B3LYP estimates of Huang-Rhys factors, ܵ, related to the first two 
ionizations bands of tetracene. 
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Figure 3.16 DFT/B3LYP estimates of Huang-Rhys factors, ܵ, related to the first three 
ionization bands of pentacene. 
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The inspection of Figures 3.13-3.16 points to a direct correspondence between the 

nature of vibronic interaction and (vide supra) the electronic-structure pattern of the state. 

First, as already mentioned, the hole-vibrational interactions related to the first ionization 

bands (D0 radical-cation state, i.e., the type-I states) are dominated by high-energy 

vibrations. As seen from Figure 3.18, ߣ௥௘௟ for this group exhibits a linear evolution versus 

the inverse number of carbon atoms. The ߣ௥௘௟ of the type-II group of states (2B3u and 2B1g 

states) exhibits the same linear dependence. As seen from Figures 3.13-3.16, the main 

contribution to the vibrational coupling in this group of states arises from a medium-

frequency vibration (see Figure 3.17). The energy of this mode and the corresponding 

Huang-Rhys factor are comparable along the series (ω=734 ܿ݉ିଵ, ܵ=0.38 in 

naphthalene; ω=730 ܿ݉ିଵ, ܵ=0.44 in anthracene; ω=738 ܿ݉ିଵ, ܵ=0.34 in pentacene). 

The vibronic interactions in the third set of states (excited 2B2g and 2Au states) come from 

both low-energy and high-energy vibrations; as the size of the system increases, the 

relative contribution of the low-frequency modes drops drastically. The evolution of the 

relaxation energy of these states as a function of molecular size therefore differs from the 

linear dependence observed for the other two sets of states. 
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Figure 3.17 Sketch of the normal-mode that yields the largest vibrational coupling for 
type-II electronic states. 
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Figure 3.18 DFT/B3LYP estimates of the relaxation energies, ߣ௥௘௟, of the first three 
cation states D0, D1, and D2 upon ionization versus the inverse of the number of carbon 
atoms in naphthalene, anthracene, tetracene and pentacene. As in Figure 3.4, the blue, 
green and red colors are used to specify the three groups of states according to their type 
(I, II and III, respectively). 
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interactions with the 1420 and 1635 ܿ݉ିଵ vibrational modes in the D0 state of 

naphthalene can be explained in the following way. A distortion following the 1420 and 

1635 ܿ݉ିଵ modes (in the opposite direction or in the same direction as in Figure 3.19 for 

the 1420 and 1635 ܿ݉ିଵ modes, respectively) increases all bonding interactions (C2-C3, 

C4-C5, C7-C8 and C9-C10) and decreases all antibonding interactions (C3-C4 and C8-C9) in 

the HOMO, thus leading to a significant stabilization of the HOMO orbital energy.  A 

distortion along these two high-energy modes also lead to a significant perturbation of the 

C8-C9, C6-C1, and C4-C3 bonding interactions present in HOMO-1. However, while the 

distortion along the 1635 ܿ݉ିଵ (1602 ܿ݉ିଵ in D1) mode leads to in-phase changes of all 

three bonding interactions, in the case of the 1420 ܿ݉ିଵ (1418 ܿ݉ିଵ in D1) mode, the 

change in the bonding interaction between the C6 and C1 carbons is in opposite phase to 

those in the C8-C9 and C4-C3 pairs. As a result, the Huang-Rhys factor for the 1602 ܿ݉ିଵ 

mode in the D1 state (see Figure 3.13) is significantly larger than that of the 1418 ܿ݉ିଵ 

mode. Both high-frequency modes are also significantly coupled to the HOMO-2; this is 

in particular due to the strong impact of these modes on the antibonding interaction 

between the C6 and C1 atoms. As seen from Figures 3.4 and 3.19, the 515 and 777 ܿ݉ିଵ 

modes do not interact with the HOMO; however, there is a strong coupling between the 

mode at 777 ܿ݉ିଵ (734 ܿ݉ିଵ in D1) and HOMO-1, and the mode at 515 ܿ݉ିଵ (506 

ܿ݉ିଵ in D2) and HOMO-2. The patterns of vibronic interactions in anthracene, tetracene, 

and pentacene can be rationalized in the same way. 
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Figure 3.19 Sketch of the normal modes that yield the largest vibrational couplings in 
naphthalene. 
 

3.4 Conclusions 

 

The structural relaxations in the ground and excited states of naphthalene, 

anthracene, tetracene, and pentacene that appear after ionization have been investigated. 

The photoelectron measurements and DFT calculations show that there is a direct 

dependence between the nature of the vibronic interaction and the pattern of the 

electronic structure. The results reveal that while in the case of ground cation states the 

main contribution to relaxation energy is coming from high-energy vibrations, the 

excited-state relaxation energies show a significant redistribution towards lower-

frequency vibrations. 
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Also, we have evaluated how the amount of “exact” Hartree-Fock exchange 

included in the hybrid functionals affect the DFT results. It was shown that, among the 

standard functionals, B3LYP provides the best description of geometry modifications 

upon ionization in oligoacenes for both ground and excided states.  
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CHAPTER 4  
 

NONLOCAL ELECTRON-PHONON COUPLING 

 

In this chapter, DFT and empirical MM calculations are used to derive the 

nonlocal electron-phonon coupling constants arising from the interaction of charge 

carriers with the optical phonons in oligoacene crystals (naphthalene through pentacene). 

This chapter begins with a brief introduction to the nonlocal electron-phonon coupling 

and is followed by a discussion, from a molecular standpoint, of the parameters that 

impact charge carrier mobilities in ordered systems. It is found that the DFT and force 

field results for phonon frequencies and the hole- and electron-phonon coupling constants 

compare very well. Additionally, electronic band structure calculations were performed 

for the four molecular crystals; the respective effective masses for both holes and 

electrons were calculated as well. At the end of the chapter, a comparison of the standard 

deviations (σ) obtained from a quantum-mechanical treatment of the vibrational modes 

and from classical MDS is presented.  

 

4.1 Introduction 

 

As discussed in Chapter 2 (section 2.3), the nonlocal electron-phonon coupling 

represents the modulation of the transfer integrals by lattice phonons. Within the tight-

binding approximation (Equation 2.65), the nonlocal electron-phonon interactions can be 

obtained by expanding the transfer integrals, ݐ௠௡, into a power series of the phonon 
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coordinates. In this representation, the potential energy ( ௅ܸ) of the lattice vibrations and 

the dependence of the transfer integrals on the normal-mode coordinates are given by: 

௅ܸ ൌ ෍
԰ ௝߱ܳ௝

ଶ

2
௝

 
(4.1) 

 

௠௡ݐ ൌ ௠௡ݐ
ሺ଴ሻ ൅ ෍ ௝߭௠௡ܳ௝

௝

 (4.2) 

Here, ௝߱ is the frequency of ݆ vibrational mode; ݐ௠௡
ሺ଴ሻ  are the transfer integrals obtained at 

the equilibrium geometry; ܳ is the normal-mode coordinate; and ௝߭௠௡ are the nonlocal 

electron-phonon coupling constants. The systematic determination of the coupling 

constants ௝߭௠௡ represents the main focus of the present chapter. As in previous 

investigations,1, 2 the dispersion of the vibrations was neglected and the strength of the 

nonlocal electron-phonon interaction for phonon frequencies was calculated at the Γ-

point. 

 

4.2 Theoretical methodology 

 
The geometric and electronic-structure calculations of the oligoacene crystals 

were performed using DFT with the PBE3 (Perdew-Burke-Ernzerhof) exchange-

correlation functional and plane wave basis set as implemented in the VASP code.4-6 

Electron-ion interactions were described using the projector augmented wave (PAW) 

method.7, 8 The kinetic energy cutoff on the wave function expansion was 300 ܸ݁. The 

self-consistent calculations were carried out with an 8ൈ8ൈ8 ݇-point mesh. The inverse 

effective mass tensor was calculated using Sperling’s centered difference method at the 
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band edges with ݀݇ = 0.02 (2ߨ Հ⁄ ) for monoclinic crystals and ݀݇ = 0.025 (2ߨ Հ⁄ ) for 

triclinic crystals. The Γ-point lattice phonons were obtained by means of numerical 

derivation using a 0.03 Å atomic displacement step.  

 

The lattice dynamics at the Γ-point was also investigated by means of MM 

simulations using the DMAREL program.9 An empirical Buckingham (exp-6) model10 

was used for the repulsion-dispersion interactions and the atomic point charges were 

determined from the B3LYP/6-31G** calculations, using the CHelpG algorithm as 

implemented in the Gaussian03 package.11 The MM calculations were carried out in the 

framework of the rigid-body approximation.12, 13 

 

Transfer integrals for selected nearest-neighbor pairs of molecules were evaluated 

at both DFT and MM optimized crystal geometries by using a fragment orbital approach 

in combination with a basis set orthogonalization procedure.14 These calculations were 

performed with the PW91 functional and Slater-type triple-ߞ plus polarization basis sets 

for all atoms using the ADF package.15 

 

Finally, MDS were carried out for the naphthalene crystal. The unit cell was 

replicated to build a 4ൈ4ൈ3 supercell containing 96 molecules. The dynamics of the 

system was studied with periodic boundary conditions employing the MM3 force field.16 

MDS were run at 300 ܭ in the canonical NVT ensemble with a timestep of 1 ݂ݏ, using 

the computer code TINKER.17 A cutoff of 10 Հ was adopted when evaluating both van 

der Waals and electrostatic interactions. The simulations lasted for 150 ݏ݌ and atomic 
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coordinates were saved every 30 ݂ݏ (i.e., 5000 snapshots). For each snapshot, hole and 

electron transfer integrals were calculated for two distinctive molecular pairs (resulting in 

20,000 electronic coupling evaluations for each molecular crystal). Due to the large 

number of required transfer integral evaluations, the transfer integrals were calculated at 

the semi-empirical Hartree-Fock INDO (Intermediate Neglect of Differential Overlap) 

level. Note that for this type of calculations the INDO method generally yields a good 

quantitative agreement when compared with results derived from more rigorous DFT 

approaches.18 

 

4.3 Results and discussion 

 

4.3.1 Crystallographic information 

 

In fixed-cell periodic DFT calculations used to determine the vibrational modes of 

an oligoacene crystal at the Γ-point, the only required input is the measured crystal 

structure. For naphthalene19 and anthracene,20 the structure has been determined to be 

monoclinic in the space group ܲ2ଵ ܽ⁄ , while tetracene21 and pentacene21 crystallize in the 

triclinic space ܲ1ത. Despite this difference, the arrangement of the molecules within the 

unit cell is very similar among the series of oligoacene single crystals. Two 

translationally inequivalent molecules per unit cell (ܼ ൌ 2) are always present at 

positions (0,0,0) and (½, ½, 0). The crystallographic data used in the normal-mode 

calculations are listed in Table 4.1. 
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Table 4.1 Crystal constants and structures for oligoacenes. 
 

Crystal 
constants 

Naphthalene 
Monoclinic19 

Anthracene 
Monoclinic20 

Tetracene 
Triclinic21 

Pentacene 
Triclinic21 

ܽ 8.098 8.414 6.057 6.275 
ܾ 5.953 5.990 7.838 7.714 
ܿ 8.652 11.095 13.010 14.442 
 76.8 77.1 90.0 90.0 ߙ
 88.0 72.1 125.3 124.4 ߚ
 84.5 85.8 90.0 90.0 ߛ

     
a Units in Հ 
b Units in degrees 

   

 

4.3.2 Vibrational modes in oligoacene crystals 

 

In this section, the lattice dynamical properties of the naphthalene crystal (which 

can be dubbed as the “hydrogen atom” of molecular crystals) are presented as computed 

at the Γ-point of the Brillouin zone. For the larger oligoacene members, only a few 

distinctive remarks with respect to their lattice dynamical properties will be discussed 

since there exist overall similarities in the frequencies and phonon eigenvectors at the Γ-

point among the four molecular crystals studied here.  

 

In the naphthalene crystal, there are two molecules in the primitive unit cell  

(ܼ ൌ 2); this is also the case in the anthracene, tetracene, and pentacene crystals. 

Therefore, in these crystals, there are 12 degrees of freedom and thus 12 intermolecular 

modes (normal vibrations). Among these modes, three are acoustic modes and the other 

nine modes (i.e., 6ܼ–3) are optical. The intermolecular modes are well described by the 

rigid-body approximation in which the intramolecular geometries are frozen; such 

theoretical calculations are based on empirical potential energy models (force fields), in 
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which the intermolecular interactions are described by empirical atom-atom potentials. In 

this study, the intermolecular phonon frequencies at the Γ-point in oligoacenes were 

calculated using both a DFT approach and a rigid-molecule approximation.  

 

The characteristics of the 9 intermolecular optical modes in the naphthalene 

crystal as derived from DFT and force field methods are collected in Table 4.2. 

Additionally, in Figure 4.1, the molecular motions of the 2 translationally inequivalent 

molecules in the unit cell are shown. A close inspection of Figure 4.1 shows that the 

intermolecular vibrations in naphthalene (and as well in anthracene, tetracene, and 

pentacene) correspond to 3 translational modes and 6 librational modes; the latter can be 

further categorized into 2 librations along the short molecular axes, 2 librations along the 

long molecular axes, and 2 librations about an axis approximately perpendicular to the 

molecular plane. The two lowest-frequency translational modes are characterized by a 

motion that shears the CെHڮπ interactions, while the highest-frequency translational 

modes present a continuous stretching of the edge-to-face contacts. Turning to librations, 

the two lowest-frequency librational modes (about an axis perpendicular to the molecular 

plane) present a continuous stretching of the edge-to-face contacts. The normal modes 

with frequency values of ߱ ൌ 97 ܿ݉ିଵ and ߱ ൌ 102 ܿ݉ିଵ show anti-symmetric and 

symmetric librations along the short molecular axis; these vibrations lead to a combined 

stretching and shearing effect of the CെHڮπ interactions. Finally, the two highest-

frequency librational modes represent librations along the long molecular axis, 

decreasing or increasing the contact angle between the molecular planes of the two 

molecules.  
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Table 4.2 Phonon frequencies of the intermolecular optical modes in the naphthalene 
(C10H8) crystal obtained from DFT and MM calculations. Experimental results are 
included for comparison.22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Mode Type DFT 
 (ܿ݉ିଵ) 

MM
 (ܿ݉ିଵ) 

Expt (77 °K) 

 (ܿ݉ିଵ) 
ν1(Au) translation 51 50 44 
ν2 (Bg) libration 56 54 56 
ν3 (Ag) libration 63 59 67 
ν4 (Bu) translation 76 63 75 
ν5 (Bg) libration 97 82 83 
ν6 (Ag) libration 102 99 88 
ν7 (Au) translation 121 117 106 
ν8 (Ag) libration 126 152 121 
ν9 (Bg) libration 150 153 141 
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Figure 4.1 DFT calculated eigenvectors for the nine (݇ ൌ 0) optical phonon modes in 
naphthalene. The phonon frequencies are also given. 
 

In Tables 4.3-4.5 the characteristics of the 9 intermolecular optical modes in the 

anthracene, tetracene, and pentacene crystals derived from DFT and force field methods 

are displayed. It is important to note that for the larger oligoacenes, the qualitative 

description of the intermolecular modes becomes more complex than in naphthalene due 

to mixing among intermolecular and intramolecular modes. In principle, if a substantial 

frequency gap exists between the inter- and intramolecular motions, the two classes of 
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vibrations can be studied quite independently. In naphthalene, a clear but small frequency 

(~30 ܿ݉ିଵ) gap exists, with the lowest frequency for an intramolecular vibration at 

around 170 ܿ݉ିଵ.23 This situation is different already in the anthracene crystal, for which 

there is no frequency gap between the inter- and intramolecular vibrations; the spectrum 

of the intramolecular vibrations in the anthracene crystal includes the region from 111 

ܿ݉ିଵ to 3108 ܿ݉ିଵ.23 DFT calculations show that two intramolecular modes for the 

isolated molecule of anthracene, two for tetracene, and several (more than five) for 

pentacene have lower frequencies than some of the intermolecular vibrations of their 

respective crystals. An example of such intramolecular modes (consistently found along 

the series of larger oligoacenes) includes the butterfly vibration, in which for the case of 

anthracene the outer benzene rings vibrate both above or both below the plane of the 

central ring. Such intramolecular vibrations are neither included in Tables 4.3-4.5 nor 

shown in Figures 4.2-4.4, but where explicitly included in the calculation of the electron-

phonon coupling constants in the pentacene crystal (vide infra). In tetracene and 

pentacene crystals, the mixing of intermolecular and intramolecular modes is more 

evident leading to low-frequency (൏ 150 ܿ݉ିଵ) vibrations with a modest to significant 

intramolecular contribution. This behavior confirms that the interactions between inter- 

and intramolecular vibrations are important when describing the lattice dynamical 

properties of highly flexible molecules such as tetracene and pentacene (or even 

anthracene). Therefore, approaches that go beyond the rigid-body approximation might 

be more suitable for these types of molecular crystals; as observed from Tables 4.3-4.5, 

DFT calculations are in better (quantitative) agreement with the experimental phonon 

frequencies than results derived from MM calculations.  
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Table 4.3 Phonon frequencies of the intermolecular optical modes in the anthracene 
(C14H10) crystal obtained from DFT and MM calculations. Experimental results from 
deuterated anthracene are included for comparison.24  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.4 Phonon frequencies of the intermolecular optical modes in the tetracene 
(C18H12) crystal obtained from DFT and MM calculations. The calculated data are 
compared with the corresponding experimental lattice frequencies (where available)25, 26 
and with data obtained from an atom-atom intermolecular potential.27 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a Calculated using an atom-atom intermolecular potential. 
 

 
 
 
 
 
 
 

Mode Type DFT 
 (ܿ݉ିଵ) 

MM
 (ܿ݉ିଵ) 

Expt (12 °K) 

 (ܿ݉ିଵ) 
ν1(Au) translation 44 43 47 
ν2 (Ag) libration 46 47 48 
ν3 (Bg) libration 54 55 54 
ν4 (Bu) translation 73 59 69 
ν5 (Bg) libration 90 78 70 
ν6 (Ag) libration 97 91 77 
ν7 (Au) translation 120 120 106 
ν8 (Ag) libration 133 158 122 
ν9 (Bg) libration 149 161 130 

Mode Type DFT 
 (ܿ݉ିଵ) 

MM
 (ܿ݉ିଵ) 

Expt (296 °K) 

 (ܿ݉ିଵ) 
ν1(Au) translation 37 30 26a 
ν2 (Ag) libration 48 46 44-45 
ν3 (Ag) libration 52 50 49 
ν4 (Au) translation 72 55 48a 
ν5 (Ag) libration 81 73 61 
ν6 (Ag) libration 110 102 94 
ν7 (Au) translation 119 120 87a 
ν8 (Ag) libration 132 153 120 
ν9 (Ag) libration 146 161 132 
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Table 4.5 Phonon frequencies of the intermolecular optical modes in the pentacene 
(C22H14) crystal obtained from DFT and MM calculations. The calculated data are 
compared with the corresponding experimental lattice frequencies (where available)28 
and with data derived from an atom-atom intermolecular potential.29 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a Calculated using an atom-atom intermolecular potential. 
 

Figures 4.2-4.4 show the molecular motions of the two translationally non-

equivalent molecules in the unit cell of anthracene, tetracene, and pentacene, 

respectively. In general, the qualitative description of the intermolecular modes is similar 

to that found in the naphthalene crystal, for which 3 translational and 6 librational modes 

were identified. However, the qualitative description of the normal modes is somewhat 

more complex for the larger oligoacenes, especially in the pentacene crystal. In this case, 

the lowest-frequency molecular librations do not occur along a single molecular axis, but 

involve librations along the molecular plane as well as librations along the short 

molecular axis. This situation is observed with both DFT and MM methods. It is 

important to note that in the monoclinic ܲ2ଵ ܽ⁄  space group, since the molecules lie on 

the crystallographic inversion centers, the translational and librational modes do not 

mix.12, 13  

Mode Type DFT 
 (ܿ݉ିଵ) 

MM
 (ܿ݉ିଵ) 

Expt (79 °K) 

 (ܿ݉ିଵ) 
ν1(Au) translation 45 20 21a 
ν2 (Ag) libration 48 35 45 
ν3 (Ag) libration 63 57 66 
ν4 (Au) translation 74 53 61a 
ν5 (Ag) libration 85 68 84 
ν6 (Ag) libration 112 102 99 
ν7 (Au) translation 125 123 131a 
ν8 (Ag) libration 139 156 144 
ν9 (Ag) libration 153 162 150 
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Figure 4.2 DFT calculated eigenvectors for the nine (݇ ൌ 0) optical phonon modes in 
anthracene. The phonon frequencies are also given. 
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Figure 4.3 DFT calculated eigenvectors for the nine (݇ ൌ 0) optical phonon modes in 
tetracene. The phonon frequencies are also given. 
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Figure 4.4 DFT calculated eigenvectors for the nine (݇ ൌ 0) optical phonon modes in 
pentacene. The phonon frequencies are also given. 
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4.3.3 Electronic structure calculations 

 

4.3.3.1 Transfer integrals 

 

Table 4.5 reports the calculated transfer integrals for three different dimers in the 

naphthalene and anthracene crystals (see Figure 4.5 for definition of used molecular 

dimers). Table 4.6 contains the calculated transfer integrals in the tetracene and pentacene 

crystals for four different dimers (see Figure 4.6). As described elsewhere,30, 31 significant 

hole and electrons interactions are found not only along the short crystal axis (ܾ for 

monoclinic molecular crystals and ܽ for triclinic ones) but also along the diagonal axes 

(pair 2 for naphthalene and anthracene and pair 3 and pair 4 for tetracene and pentacene). 

For the larger oligoacenes (tetracene and pentacene), vanishingly small transfer integrals 

are obtained from interactions among molecules located in adjacent layers (along ܿ). For 

the smaller oligoacenes (naphthalene and anthracene), a medium-range coupling hole 

coupling is observed along the ܿ axis; larger electronic interactions for both holes and 

electrons are only observed along the ܾܽ plane. This confirms that transport in oligoacene 

single crystals is mostly two-dimensional.32 Therefore, the total bandwidths, ܹ, of the 

valence and conduction bands in oligoacenes (especially in tetracene and pentacene) can 

be expressed from the transfer integrals calculated from the molecular dimers found in 

the ܾܽ crystallographic plane. 
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Figure 4.5 Illustration of the naphthalene (anthracene) molecular pairs with the largest 
transfer integrals as reported by Cheng et al.31  
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Figure 4.6 Definition of the tetracene and pentacene molecular pairs used to compute 
transfer integrals.  
 

If the edge-to-face interactions are considered (i.e., pair 2 for the smaller 

oligoacenes and pair 3(4) for the larger ones), an increase in transfer integrals (for both 

holes and electrons) is observed with the size of the oligoacene molecules. However, for 

cofacial dimers (i.e., pair 1 for the smaller oligoacenes and pair 1(2) for the larger ones), 

the electronic coupling for holes is larger in the monoclinic molecular crystals than in the 

triclinic ones. This indicates that the size of the conjugated π system and the structure of 

the crystal are both important factors in determining the strength of the electronic 

interactions.30  

 

Due to the subtle interplay between crystal packing and electronic couplings, the 

latter cannot be simply evaluated by only investigating the crystallographic interactions 

in the molecular crystal. Their determination (and impact on the hole and electron 

mobilities) requires investigating the three-dimensional band structure of the oligoacene 

crystals. As mentioned earlier in Chapters 1 and 2, the curvature at the top of the valence 
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band and at the bottom of the conduction can be used to calculate the effective mass, 

which is commonly used in band-like transport theories to estimate the relative 

magnitude of the mobility for holes and electrons. In the next section, the three-

dimensional band structures of oligoacenes are discussed. 

 

Table 4.6 DFT-calculated transfer integrals in naphthalene and anthracene (ܸ݉݁). 
 

 Naphthalene Anthracene 
 hole electron hole Electron 

Pair 1 -35.6 14.1 -44.9 36.9 
Pair 2 -12.0 -35.3 -18.6 61.6 
Pair 3 17.9 -5.7 18.6 -2.6 

 

Table 4.7 DFT-calculated transfer integrals in tetracene and pentacene (ܸ݉݁). 
 

 Tetracene Pentacene 
 hole electron hole electron 

Pair 1 -5.1 -12.6 33.8 -43.1 
Pair 2 13.2 -32.8 35.7 -44.8 
Pair 3 17.1 63.9 47.3 -82.5 
Pair 4 -69.5 -67.3 -85.2 83.5 

 

4.3.3.2 Band structures 

 

The electronic band structures and density of states spectra (DOS) for the 

naphthalene, anthracene, tetracene, and pentacene single crystals are shown in Figures 

4.7-4.10. Since the effective mass can easily be computed from the band structures (see 

section 2.1.4), the calculated effective masses for the oligoacene series are also reported 

in Tables 4.8-4.11. The electronic bands were calculated along the standard Brillouin 

zone directions in the reciprocal space. Both the valence and conduction bands are 

composed of two sub-bands, which are well separated from the other bands and are due 
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to the presence of two inequivalent molecules per unit cell. A close look at the electronic 

band structure reveals that the band structures of naphthalene and anthracene are similar, 

but distinct from those of tetracene and pentacene, which are alike. The differences can 

be ascribed to the different crystal structures (monoclinic versus triclinic). All four 

compounds investigated here have continuous bandwidths, ܹ, ranging from 300 to 700 

ܸ݉݁ for both holes and electrons. In this case, ܹ is defined as the energy range covered 

by the continuous region in the DOS of the two uppermost and lowermost bands for the 

valence ( ௏ܹ஻) and conduction bands ( ஼ܹ஻), respectively. Along the oligoacene series 

from naphthalene to pentacene, the calculated bandwidths are 368, 347, 347, and 538 

ܸ݉݁ for ௏ܹ஻ and 326, 558, 531, and 694 for ஼ܹ஻. While a clear trend cannot be defined 

for ௏ܹ஻ within the series, ஼ܹ஻ tends to increase; the pentacene single crystal displays the 

largest bandwidths for both holes and electrons. 

 

 The band dispersions (determined by a single sub-band) in oligoacenes were 

previously discussed using both semi-empirical31 and ab initio33 quantum-chemical 

methods. Therefore, in the following, we focus on the effective carrier masses. To 

estimate the effective masses, it is necessary to identify the band edges. In general, the 

valence and conduction band edges were found on the high symmetry points in the first 

Brillouin zone. The exception is pentacene whose valence band edge occurs at ΔV (0.375, 

0.5, 0.075); this contrasts with the tetracene crystal, in which the valence band edge is 

located at ܸ (0.5, 0.5, 0.0), but it is clear from Figure 4.10 that the band near ܸ (in 

pentacene) does not have a parabolic shape. However, the deviations between the two 

triclinic crystals are small.  
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The quantitative results in Tables 4.8-4.11 indicate that the effective masses for 

the electrons are smaller than those for the holes (at least along the ܾܽ plane), in 

agreement with the calculations reported in Reference 33. The smallest hole effective 

masses in naphthalene and anthracene are found along the short molecular axis, where 

cofacial interactions between molecules are favored. This result is consistent with the 

previously calculated transfer integrals (see Table 4.6). The smallest electron effective 

masses are found along the ܽ-axis. This finding implies that the herringbone interactions 

(i.e., pair 2 in monoclinic crystals) provide a path for electrons to move effectively along 

the ܽ direction in spite of relatively large intermolecular distances (> 8 Հ). For the 

tetracene and pentacene crystals, the smallest effective masses for both holes and 

electrons are found in the herringbone plane with the ones for pentacene smaller than 

those of tetracene (2.59 versus 1.94 and 2.04 versus 1.85 for holes and electrons, 

respectively). Heavier effective carrier masses are observed in the ܿ direction for 

tetracene, but pentacene shows slightly lighter masses along this direction.  
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Figure 4.7 The band structure of crystalline naphthalene and density of states (DOS) 
spectrum. The energy is set to be zero at the top of the valence band. The energies are 
plotted along the directions in the first Brillouin zone, connecting the points Γ=(0,0,0), 
 .and ܼ=(0,0,0.5). DOS in states/ܸ݁ per cell (0.5,0,0)=ܤ ,(0.5,0.5,0)=ܣ ,(0,0.5,0)=ܻ
 

Table 4.8 Hole and electron effective masses ݉ (in units of the free electron mass at rest, 
݉଴ሻ calculated at the band edges of the naphthalene crystal. 
 

 ݉ ݉଴⁄ parallel to 
holes at 2.86 ܣ ܽ ൅ 0.57ܿ 

2.11 ܾ 
9.63  ܿ ൅ 0.09ܽ 

  
electrons at Γ 1.70 ܽ ൅ 0.27ܿ 

17.19 a ܾ 
7.56 ܿ ൅ 0.27ܽ 

a Due to the flatness of the band, it was not possible to derive an accurate value of the 
effective mass along this direction. 
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Figure 4.8 The band structure of single anthracene and density of states (DOS) spectrum. 
The energy is set to be zero at the top of the valence band. The energies are plotted along 
the directions in the first Brillouin zone, connecting the points Γ=(0,0,0), ܻ=(0,0.5,0), 
 .and ܼ=(0,0,0.5). DOS in states/ܸ݁ per cell (0.5,0,0)=ܤ ,(0.5,0.5,0)=ܣ
 

Table 4.9 Hole and electron effective masses ݉ (in units of the free electron mass at rest, 
݉଴ሻ calculated at the band edges of the anthracene crystal. 
 

 ݉ ݉଴⁄ parallel to 
holes at ܴ 3.33 ܽ ൅ 0.43ܿ 

1.97 ܾ 
10.18  ܿ ൅ 0.26ܽ 

  
electrons at ܼ 1.48 ܽ ൅ 0.58ܿ 

60.19 a ܾ 
8.06 ܿ ൅ 0.10ܽ 

a Due to the flatness of the band, it was not possible to derive an accurate value of the 
effective mass along this direction. 
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Figure 4.9 The band structure of crystalline tetracene and density of states (DOS) 
spectrum. The energy is set to be zero at the top of the valence band. The energies are 
plotted along the direction in the first Brillouin zone, connecting the points Γ=(0,0,0), 
ܴ=(0.5,0.5,0.5), ܸ=(0.5,0.5,0), ܺ=(0.5,0,0), and ܻ=(0,0.5,0), all in crystallographic 
coordinates. DOS in states/ܸ݁ per cell. 
 
Table 4.10 Hole and electron effective masses ݉ (in units of the free electron mass at 
rest, ݉଴ሻ calculated at the band edges of the tetracene crystal. 
 

 ݉ ݉଴⁄ parallel to 
holes at ܸ 6.84 ܽ ൅ 0.194ܾ – 0.055ܿ 

2.59 ܾ – 0.413ܽ – 0.096ܿ 
15.19  ܿ – 0.814ܽ – 0.120ܾ 

  
electrons at ܴ 6.79 ܽ – 0.108ܾ – 0.476ܿ 

2.04 ܾ ൅ 0.083ܽ – 0.205ܿ 
15.22 ܿ ൅ 0.820ܽ – 0.212ܾ 
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Figure 4.10 The band structure of crystalline pentacene and density of states (DOS) 
spectrum. The energy is set to be zero at the top of the valence band. The energies are 
plotted along the directions in the first Brillouin zone, connecting the points Γ=(0,0,0), 
ܴ=(0.5,0.5,0.5), ܸ=(0.5,0.5,0), ܺ=(0.5,0,0), and ܻ=(0,0.5,0), all in crystallographic 
coordinates. DOS in states/ܸ݁ per cell. 
 

Table 4.11 Hole and electron effective masses ݉ (in units of the electron mass at rest, 
݉଴ሻ calculated at the band edges of the pentacene crystal. 
 

 ݉ ݉଴⁄ parallel to 
holes at ΔV a 8.92 ܽ – 0.017ܾ ൅ 0.042ܿ 

1.94 ܾ – 0.114ܽ – 0.238ܿ 
7.06  ܿ – 0.369ܽ ൅ 0.037ܾ 

  
electrons at ܴ 29.08 ܽ – 0.084ܾ – 0.052ܿ 

1.85 ܾ – 0.007ܽ – 0.176ܿ 
6.88 ܿ ൅ 0.174ܽ – 0.200ܾ 

a ΔV (0.375, 0.5, 0.075). 
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4.3.4 Hole- and electron-phonon coupling 

 

As discussed above, the nonlocal electron-phonon coupling is related to the 

variations in transfer integrals due to modulations in the distances and relative 

orientations between molecules. In the rigid-body approximation, this mechanism is 

entirely due to interactions with the intermolecular (external) vibration modes. The 

nonlocal electron-phonon coupling constants were evaluated by computing the 

derivatives, ݒ୨୫୬ ൌ ௠௡ݐ߲ ߲ܳ௝⁄ . This was achieved first by distorting the crystal along all 

normal coordinates (ܳ௝) and computing the related transfer integrals at each distorted 

geometry; then, the derivatives of the transfer integrals with respect to normal 

coordinates were calculated numerically. This approach is similar to that used earlier to 

derive the local electron-phonon coupling constants in naphthalene.34 

 

In order to quantify the effect of all modes, it is useful to introduce the following 

parameters ܩ and ܮ:  

௠௡ܩ ൌ ෍
௝௠௡ݒ

ଶ

2
௝

 
(4.3) 

 

௠௡ܮ ൌ ෍
௝௠௡ݒ

ଶ

2԰ ௝߱௝

 
(4.4) 
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 define the degree of thermal fluctuations in the related transfer integrals ܮ and ܩ

at low and high temperatures, respectively. The quantity ܮ௠௡ represents as well the 

intermolecular relaxation energy that arises upon injecting a charge on a molecule in the 

crystal. 

 

4.3.4.1 Nonlocal electron-phonon coupling constants derived from force field methods 

 

The results obtained using MM normal modes are given in Tables 4.12-4.15 for 

naphthalene through pentacene. From Tables 4.12 and 4.13, it is clear that the coupling of 

the charge carriers in the naphthalene and anthracene crystals occurs mainly in the ܾܽ 

crystallographic plane, while along the ܿ-axis the nonlocal coupling constants are rather 

modest. Interestingly, the electrons are more strongly coupled to the 9 normal modes 

derived from MM approaches than holes in all four molecular crystals. This finding is in 

agreement with recently published results by Wang et al.35 for the naphthalene crystal. 

This observation can be rationalized by considering the differences in electronic 

interactions of the frontier molecular orbitals. That is, librations along an axis 

perpendicular to the molecular plane can result in a change in the relative phase (or sign 

of the molecular orbital) of the two interacting LUMO wavefunctions (electrons) when 

distorted along the normal mode; such modification is not observed for the HOMO 

wavefunctions (holes).  

 

 

 



146 
 

It is also evident that molecular dimers with a herringbone arrangement (that is, 

pair 2 in monoclinic crystals and pairs 3 and 4 in triclinic crystals) are more sensitive to 

the intermolecular vibrations than any of the other molecular pairs investigated in this 

study. Indeed, both charge carriers in such herringbone dimers are strongly coupled to the 

lowest-frequency vibrations in all four crystals. Relatively large nonlocal coupling 

constants are obtained for interactions of the carrier with the lowest-frequency 

translational vibration (50, 43, 30, and 20 ܿ݉ିଵ for naphthalene, anthracene, tetracene, 

and pentacene, respectively). This molecular vibration shears the CെHڮπ interactions 

because the molecules move in opposite directions along their long molecular axis, which 

in turn induces significant changes in the overlap of the frontier molecular orbitals. 

Finally, it is observed that the intermolecular relaxation energy (ܮ) for both holes and 

electrons decreases with molecular size, the effect being more pronounced in the electron 

case. A similar behavior is found when including both inter- and intramolecular 

vibrations (vide infra). These findings suggest that the modulation of the transfer 

integrals by normal-mode vibrations (i.e., ܮ) can be considered to be a molecular size-

dependent property, which is in agreement with the size dependence correlation of the 

intramolecular relaxation energies in oligoacene molecules.36 
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Table 4.12 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 9 
optical modes in the naphthalene crystal based on MM normal-mode calculations (see 
Figure 4.5 for a definition of pair 1, pair 2, and pair 3). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 1 ߭ pair 2 ߭ pair 3 

50 0.0 10.0 3.3 0.0 11.8 -1.2 
54 6.8 -6.2 -0.4 -14.0 -9.9 3.2 
59 8.9 -6.1 1.0 -17.0 4.7 0.3 
63 0.0 0.1 -1.0 0.0 -5.7 -2.2 
82 -4.8 2.9 -0.1 8.9 4.4 -2.4 
99 -0.8 -4.7 0.2 3.0 -12.9 2.5 
117 0.0 -2.3 0.8 0.0 4.3 1.1 
152 4.9 3.4 0.4 -1.8 0.0 -1.1 
153 -5.2 4.2 -0.3 1.8 2.0 -0.5 

 ሺܸ݉݁ሻ 11.3 15.8 1.1 38.8 30.6 1.8 ܮ
 ሺܸ݉݁ሻ 10.0 11.0 2.7 17.0 15.8 4.0 ܩ√

 

Table 4.13 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 9 
optical modes in the anthracene crystal based on MM normal-mode calculations (see 
Figure 4.5 for a definition of pair 1, pair 2, and pair 3). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 1 ߭ pair 2 ߭ pair 3 

43 0.0 9.3 2.9 0.0 -7.2 -1.4 
47 5.4 1.4 -0.9 9.4 1.0 -0.2 
55 4.5 5.1 0.0 8.2 -6.0 -2.6 
59 0.0 1.3 -0.8 0.0 4.7 -1.0 
78 1.2 0.4 -0.4 2.3 -0.1 -0.6 
91 -0.6 6.5 -0.6 -1.4 -6.9 -1.6 
120 0.0 3.9 0.8 0.0 -6.1 0.5 
158 3.0 -5.4 -0.3 0.2 3.2 0.1 
161 2.3 -3.5 0.5 -0.6 -3.3 0.7 

 ሺܸ݉݁ሻ 4.4 13.8 0.9 12.8 13.0 0.9 ܮ
 ሺܸ݉݁ሻ 5.7 10.4 2.4 9.0 10.4 2.6 ܩ√
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Table 4.14 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 9 
optical modes in the tetracene crystal based on MM normal-mode calculations (see 
Figure 4.6 for a definition of pair 1, pair 2, pair 3, and pair 4). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4 ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4

30 0.0 0.0 8.5 4.1 0.0 0.0 -6.7 2.4 
46 4.7 4.0 2.2 -2.2 -5.8 -4.3 -2.1 -0.5 
50 -2.3 4.7 1.1 0.3 2.9 -4.8 0.5 -0.9 
55 0.0 0.0 -1.2 -1.9 0.0 0.0 -2.7 2.9 
73 -2.1 -0.1 4.5 -0.2 2.4 0.3 5.2 -0.7 
102 0.3 0.8 -0.5 0.0 -0.2 -0.7 0.1 -0.2 
120 0.0 0.0 -0.9 8.0 0.0 0.0 4.9 5.5 
153 1.4 0.5 -0.8 6.4 -0.2 0.2 -3.6 -0.6 
161 0.4 -2.1 1.7 10.1 -0.1 -0.3 -1.6 4.9 

 ሺܸ݉݁ሻ 2.7 3.3 11.5 8.7 3.9 3.4 9.6 3.1 ܮ
 ሺܸ݉݁ሻ 4.1 4.7 7.2 10.8 4.9 4.6 7.9 5.9 ܩ√

 

Table 4.15 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 9 
optical modes in the pentacene crystal based on MM normal-mode calculations (see 
Figure 4.6 for a definition of pair 1, pair 2, pair 3, and pair 4). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4 ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4

20 0.0 0.0 8.7 5.7 0.0 0.0 0.8 0.5 
35 -1.5 -2.4 1.5 3.0 1.7 2.1 1.5 -0.2 
57 0.0 0.0 1.7 1.6 0.0 0.0 -3.2 -2.7 
53 0.1 2.8 3.2 -0.3 0.0 -2.5 1.0 0.0 
68 3.0 -0.8 2.0 0.1 -2.6 0.8 1.7 0.0 
102 0.2 0.3 -0.9 0.4 -0.1 -0.1 0.1 0.0 
123 0.0 0.0 -2.1 7.1 0.0 0.0 -5.8 5.4 
156 -1.1 -1.1 -0.3 -2.5 -0.2 0.2 -4.0 1.9 
162 -0.9 1.2 -4.5 -10.1 0.1 0.1 -3.2 -4.1 

 ሺܸ݉݁ሻ 0.8 1.3 17.1 12.1 0.7 1.0 3.2 2.1 ܮ
 ሺܸ݉݁ሻ 2.6 2.9 7.7 10.1 2.2 2.4 6.2 5.4 ܩ√
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4.3.4.2 Nonlocal electron-phonon coupling constants derived from ab initio methods 

 

The results derived from DFT calculations provide comparable trends to those 

obtained from MM calculations. However, it is important to note that since DFT 

calculations go beyond the rigid-body approximation an evaluation of the coupling to 

intramolecular vibrations is also available. The nonlocal coupling constants derived from 

DFT calculations are summarized in Tables 4.16-4.19; the nonlocal coupling constants in 

the naphthalene crystal (with at least one value larger than 1.0 ܸ݉݁ in any of three 

molecular pairs) are plotted in Figure 4.11. Due to the computationally demanding 

quantum-chemical evaluation of the transfer integrals, the nonlocal couplings with all the 

optical modes were only calculated for one representative system of the monoclinic and 

triclinic crystals (i.e., naphthalene and pentacene, respectively). The results shown in 

Figure 4.11 reveal a significant coupling to intramolecular vibrations in the naphthalene 

crystal. The coupling of the carriers to the intermolecular vibrations is again more evident 

for the molecular pair that shows a herringbone pattern (i.e., pair 2 in naphthalene) and is 

mainly observed in the ܾܽ crystallographic plane; coupling with high-frequency 

vibrations that would not be thermally activated at room temperature (modes at around 

1600 ܿ݉ିଵ) was also found. These modes symmetrically stretch the CെC bonds, which 

in turn distort the HOMO and LUMO wavefuctions, leading to substantial modifications 

in the energy of the respective frontier molecular orbitals. 
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Table 4.16 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 
105 optical modes in the naphthalene crystal based on DFT normal-mode calculations 
(see Figure 4.5 for a definition of pair 1, pair 2, and pair 3). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 1 ߭ pair 2 ߭ pair 3 

51 0.1 6.1 2.4 -0.4 -6.4 1.4 
56 -2.8 -2.0 -0.1 7.0 4.0 -1.6 
63 5.3 4.0 -0.5 -10.8 1.2 0.6 
75 -0.1 -0.2 -0.7 0.3 3.0 0.9 
97 1.5 -0.8 0.3 -4.7 3.6 -0.6 
102 1.5 3.0 -0.5 -0.8 -7.8 2.4 
121 0.0 -0.2 1.0 0.0 -2.9 -1.0 
126 -2.9 1.9 0.2 0.9 0.8 0.8 
150 2.3 1.3 -0.3 -0.5 0.0 0.6 
180 0.0 2.1 0.1 0.0 4.6 -1.4 
200 0.0 -1.7 -0.6 0.0 0.4 -2.3 
215 0.0 -0.9 -0.1 0.0 -1.4 -0.3 
220 0.0 -5.4 0.0 0.0 3.2 0.3 
355 0.0 -0.5 0.2 0.0 -0.1 0.4 
358 0.0 0.0 0.0 0.0 -0.2 0.1 
386 3.1 1.5 -0.5 -1.9 -1.5 0.8 
391 -2.3 -4.1 1.6 1.5 1.4 0.4 
462 -0.3 2.3 0.1 -0.6 0.4 -2.1 
467 0.0 -2.9 -1.4 0.0 -0.9 -0.1 
469 -0.3 2.2 1.2 -0.5 -1.3 -1.0 
477 0.0 -2.2 -0.6 0.0 -4.4 0.1 
503 1.9 5.2 1.0 -0.1 -0.4 0.3 
504 -1.6 0.4 0.0 0.1 -0.3 -0.2 
510 -0.2 -0.3 0.0 0.1 2.3 0.1 
511 0.2 0.4 -0.7 0.0 0.6 0.1 
609 0.0 0.9 -0.1 0.0 -1.5 0.2 
611 0.0 2.4 -0.5 0.0 -0.8 -0.2 
621 0.0 -3.0 0.5 0.0 1.4 -2.0 
626 0.0 4.4 -2.0 0.0 -1.8 1.2 
715 -3.7 2.0 -1.1 4.5 -0.5 -0.5 
717 1.9 -0.5 -1.3 -2.4 -0.8 -0.2 
766 -0.4 1.6 0.9 -0.6 2.0 -1.0 
768 -1.4 2.4 0.2 0.0 1.0 -1.8 
768 -0.6 -0.3 0.8 0.1 1.7 0.1 
768 1.9 -0.4 -0.2 -1.5 -0.9 0.1 
772 -2.4 2.2 1.3 1.0 -0.4 -1.4 
785 0.0 -0.2 -2.7 0.0 2.5 0.7 
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789 0.0 0.1 -0.3 0.0 -0.3 0.3 
792 0.0 -0.6 0.7 0.0 -0.9 -0.1 
837 0.0 2.3 -1.3 0.0 -0.1 0.3 
843 0.0 -0.1 1.1 0.0 -1.2 -0.4 
875 -1.9 0.7 0.8 0.2 -0.4 0.1 
890 2.5 -1.1 0.2 -0.1 -1.1 0.0 
920 1.4 1.5 -0.3 2.9 -1.6 -0.3 
925 0.0 0.0 -0.1 -2.8 -4.3 1.5 
938 3.3 1.1 -0.6 1.1 1.0 0.3 
944 -2.8 0.9 1.5 -0.6 0.4 -1.1 
952 0.0 1.6 0.6 0.0 -2.5 -0.2 
954 0.0 -0.4 -1.3 0.0 0.0 0.6 
971 0.0 -2.1 -0.2 0.0 0.5 -0.9 
976 1.7 -1.8 0.0 -1.6 1.0 1.3 
979 0.0 0.6 -2.0 0.0 -1.5 1.6 
980 -1.1 1.2 1.9 1.1 -0.4 -1.5 
1026 0.0 -0.8 0.2 0.0 0.1 -0.2 
1026 0.0 0.9 -0.8 0.0 -1.0 0.8 
1031 -0.2 -0.3 0.5 -0.6 -0.4 -0.6 
1035 0.3 -0.2 0.1 0.5 0.3 -0.1 
1118 0.0 -0.5 0.3 0.0 -0.2 0.0 
1118 0.0 0.6 -0.2 0.0 1.1 0.1 
1141 -0.2 0.3 0.0 -3.6 0.9 0.3 
1144 0.0 2.4 1.1 3.8 4.1 -1.0 
1145 0.0 -2.2 -0.1 1.2 -1.8 0.2 
1145 0.0 0.4 0.2 4.3 0.0 -0.8 
1154 0.0 -0.2 0.2 -0.2 -1.1 0.0 
1154 0.5 1.1 0.3 2.1 2.5 -0.6 
1227 0.0 2.5 -0.9 0.0 -1.1 0.3 
1227 0.0 -1.9 0.9 0.0 1.6 -0.2 
1238 1.1 3.9 0.3 1.3 1.2 -0.5 
1241 -1.1 1.3 0.0 -1.2 0.6 0.1 
1259 0.0 -0.2 0.2 0.0 -0.2 0.1 
1264 0.0 -0.1 0.2 0.0 0.4 0.2 
1374 0.0 0.3 -0.1 0.0 -0.4 -0.1 
1374 0.0 0.5 -0.3 0.0 0.3 -0.3 
1401 0.0 5.5 0.5 0.0 4.8 -0.9 
1402 0.0 -0.2 -0.2 0.0 -3.6 0.2 
1414 0.0 0.1 0.0 -0.1 -0.7 0.0 
1416 0.0 0.2 -0.1 0.0 -0.2 0.5 
1445 -0.2 -0.1 0.0 -0.6 0.5 0.0 
1450 1.4 3.0 -0.6 0.2 1.1 -0.3 
1451 0.3 -1.4 -0.1 0.5 -0.4 0.4 
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1454 1.0 -0.9 -0.1 -0.2 -0.5 -0.2 
1514 0.0 -0.5 0.2 0.0 1.9 -0.2 
1516 0.0 4.4 -0.7 0.0 1.5 -0.6 
1579 -1.0 0.1 0.1 1.0 -0.3 0.8 
1581 1.1 0.4 0.0 -0.8 -0.1 0.0 
1600 0.0 -0.4 0.4 0.0 -0.3 -0.3 
1600 0.0 2.0 -1.3 0.0 2.2 0.5 
1634 -3.6 -11.7 -3.2 -8.6 -10.4 3.5 
1635 -3.6 3.3 -0.3 -8.8 3.8 1.0 
3110 0.0 0.0 0.1 -0.1 0.0 0.0 
3111 0.0 -0.2 0.0 -1.4 0.5 0.2 
3112 0.0 0.2 0.0 0.1 0.5 0.0 
3113 0.0 0.2 0.1 -1.4 -1.6 0.5 
3123 0.0 0.1 0.0 0.0 -0.3 0.0 
3124 0.0 0.1 0.1 0.0 0.3 -0.1 
3124 0.0 0.0 -0.1 0.1 0.6 -0.1 
3124 0.0 -0.1 0.0 0.0 -0.3 -0.1 
3133 -0.2 -0.5 0.0 0.7 0.9 -0.2 
3134 0.0 -0.2 0.1 0.1 -0.5 -0.1 
3134 0.2 0.3 -0.1 -0.6 0.1 0.1 
3134 0.0 -0.1 -0.1 0.0 0.2 0.1 
3137 0.0 0.3 -0.1 0.0 -0.3 0.1 
3138 0.0 0.6 -0.2 0.0 0.1 0.0 
3139 0.2 -0.1 0.0 -0.2 0.1 0.0 
3141 -0.2 -0.1 0.1 0.2 0.0 0.0 

 ሺܸ݉݁ሻ 3.6 7.3 0.8 12.9 10.0 1.1 ܮ
 ሺܸ݉݁ሻ 9.3 16.0 5.8 15.2 15.6 6.0 ܩ√
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Table 4.17 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 9 
optical modes in the anthracene crystal based on DFT normal-mode calculations (see 
Figure 4.5 for a definition of pair 1, pair 2, and pair 3). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 1 ߭ pair 2 ߭ pair 3 

44 -0.4 -5.5 2.0 0.6 3.4 1.2 
46 3.4 -1.4 -0.4 -5.1 0.5 0.3 
54 -2.2 2.5 0.2 3.9 -2.6 -1.6 
73 0.0 1.5 0.7 -0.1 2.4 -0.7 
90 1.0 1.9 0.1 -1.7 -1.7 0.1 
97 0.4 -3.8 -0.9 0.1 4.4 1.1 
120 0.0 -2.8 0.9 0.0 4.5 -0.3 
133 -1.5 -1.8 0.0 0.1 -2.1 0.3 
149 1.2 3.7 -0.3 -0.2 -2.3 0.0 

 ሺܸ݉݁ሻ 1.6 5.1 0.5 3.6 3.8 0.4 ܮ
 ሺܸ݉݁ሻ 3.3 6.5 1.8 4.7 6.2 1.8 ܩ√

 

Table 4.18 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 9 
optical modes in the tetracene crystal based on DFT normal-mode calculations (see 
Figure 4.6 for a definition of pair 1, pair 2, pair 3, and pair 4). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4 ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4

45 -0.2 0.1 5.3 2.2 0.2 -0.1 4.4 4.3 
48 4.3 4.6 1.4 0.0 -5.1 -5.0 1.4 -1.2 
63 -3.1 4.7 1.4 1.8 3.7 -5.2 0.3 -0.5 
74 0.0 -0.1 1.5 1.2 0.0 0.1 -2.2 -2.5 
85 -2.3 0.9 -3.1 1.0 2.7 -1.2 -4.1 -0.8 
112 -0.6 -1.2 0.2 -0.4 0.6 1.2 -0.4 0.3 
125 0.0 0.0 2.6 -6.5 0.0 0.0 4.2 -5.2 
139 -0.9 -1.1 -0.1 -0.6 -0.4 0.1 -1.9 2.2 
153 -0.7 1.2 -3.1 -9.1 -0.1 -0.2 -1.6 -2.6 

 ሺܸ݉݁ሻ 2.5 3.3 3.8 4.4 3.4 4.0 3.7 3.3 ܮ
 ሺܸ݉݁ሻ 4.2 4.9 5.5 8.3 4.9 5.2 5.8 5.7 ܩ√
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Table 4.19 Estimates of the electron (hole)-phonon coupling constants (in ܸ݉݁ሻ of the 
213 optical modes in the pentacene crystal based on DFT normal-mode calculations (see 
Figure 4.6 for a definition of pair 1, pair 2, pair 3, and pair 4). 
 

Holes Electrons 
ω (ܿ݉ିଵ) ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4 ߭ pair 1 ߭ pair 2 ߭ pair 3 ߭ pair 4

45 -0.2 -0.1 -4.1 -0.8 0.1 0.1 1.6 -1.7 
48 -3.2 -2.1 1.1 0.2 2.7 1.7 -0.5 0.5 
63 0.1 3.2 2.5 0.2 -0.3 -2.8 -1.5 0.1 
74 0.0 0.0 -1.4 -0.8 0.0 0.0 -2.8 3.4 
77 0.1 -0.1 1.2 0.3 0.0 0.1 0.7 -2.0 
85 2.6 -1.8 1.2 -1.3 -2.2 1.4 -2.1 -0.2 
111 0.1 0.0 -2.7 3.2 0.0 0.0 3.0 3.6 
112 -0.9 -0.7 0.2 0.8 0.6 0.4 0.7 0.4 
125 0.0 0.0 3.0 -5.8 0.0 0.0 -3.8 -3.5 
126 0.0 0.0 -0.5 2.4 0.0 0.0 0.9 0.7 
130 0.0 0.0 -2.2 2.7 0.0 0.0 1.9 2.5 
134 0.5 -0.3 -0.1 0.6 -0.3 -0.4 0.3 0.7 
139 0.5 0.5 -0.3 -1.6 0.1 0.1 -1.5 -2.6 
142 0.0 0.0 -3.8 0.8 0.0 0.0 1.0 -0.1 
148 0.3 0.0 0.2 -1.1 -0.1 0.2 1.7 0.7 
153 0.5 -0.3 5.2 8.4 0.2 0.0 -2.2 2.0 
159 0.0 0.0 0.8 0.5 0.0 0.0 0.0 0.0 
188 -0.5 -1.0 -1.5 0.5 -0.5 -0.7 -0.1 -1.3 
195 -0.9 0.5 3.7 4.2 -0.8 0.5 -2.2 2.3 
202 0.0 0.0 0.3 0.1 0.0 0.0 -0.1 0.0 
212 0.0 0.0 0.1 -0.5 0.0 0.0 -0.2 0.0 
239 0.9 0.6 0.5 -0.1 -0.3 -0.2 0.2 0.1 
240 0.6 -0.9 0.1 0.3 -0.3 0.4 -0.3 0.2 
253 0.0 0.0 -0.9 0.2 0.0 0.0 0.4 0.0 
259 0.0 0.0 0.9 0.1 0.0 0.0 0.2 -0.1 
265 -0.3 0.4 -0.1 -0.2 0.4 -0.5 -1.2 1.5 
267 0.4 0.3 0.2 0.1 -0.5 -0.4 0.1 0.2 
298 0.0 -0.3 -0.3 -0.1 0.0 -0.1 -0.2 0.2 
300 -0.3 -0.1 0.0 0.1 0.0 0.0 -0.1 0.0 
350 0.0 -0.2 -0.2 0.3 -0.1 -0.3 0.1 0.0 
351 0.0 0.0 -0.2 -0.3 0.0 0.0 -0.1 0.2 
351 0.0 0.0 -0.4 -0.4 0.0 0.0 -0.2 0.0 
353 0.1 0.0 -0.3 -0.1 0.3 -0.1 0.2 -0.5 
385 0.0 0.0 0.3 -0.1 0.0 0.0 -0.5 0.1 
386 0.0 0.0 0.1 -0.1 0.0 0.0 0.2 -0.4 
437 -0.1 -0.1 -0.2 0.1 -0.1 -0.2 -0.2 -0.2 
438 0.1 -0.1 0.2 0.0 0.2 -0.1 -0.1 0.1 
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452 0.0 0.0 2.9 -4.0 0.0 0.0 0.1 -0.5 
460 -1.8 -2.3 -1.4 0.1 0.9 1.1 -0.2 0.2 
464 0.0 0.0 -1.4 -2.8 0.0 0.0 -2.8 3.2 
470 -2.2 1.6 1.9 0.4 1.1 -0.8 0.2 0.0 
470 0.0 0.0 1.2 -1.0 0.0 0.0 -0.7 -1.0 
473 0.0 0.6 0.6 0.1 0.1 -0.2 0.2 0.0 
475 0.0 0.0 0.7 0.6 0.0 0.0 -0.4 0.4 
478 -0.8 0.7 0.8 0.1 0.3 -0.3 0.1 -0.1 
481 0.0 0.0 -0.2 0.2 0.0 0.0 0.2 0.0 
483 0.0 0.0 -0.3 0.3 0.0 0.0 0.6 0.0 
493 0.0 0.1 -0.1 0.2 0.0 -0.4 -0.1 -0.2 
494 -0.1 -0.1 0.4 0.0 0.4 0.0 0.1 0.2 
509 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 
513 0.0 0.0 -0.6 -0.2 0.0 0.0 -0.2 0.0 
543 0.0 -0.1 0.1 0.6 0.0 -0.3 0.2 -0.2 
546 -0.2 0.0 -0.2 -0.1 -0.3 0.0 -0.1 0.7 
566 0.0 0.0 -0.5 0.3 0.0 0.0 -0.3 -0.3 
566 0.0 0.0 -1.3 -1.9 0.0 0.0 -0.8 0.9 
594 -0.2 0.2 0.0 0.0 0.2 -0.2 0.0 0.1 
596 0.1 0.2 -0.1 -0.1 -0.2 -0.2 0.0 -0.2 
613 0.0 0.0 0.4 0.0 0.0 0.0 -0.2 -0.1 
614 0.0 0.0 0.0 -0.1 0.0 0.0 -0.2 -0.1 
618 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.1 
618 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 
696 0.0 0.0 -0.3 0.0 0.0 0.0 0.2 0.0 
696 0.0 0.0 -0.2 -0.1 0.0 0.0 0.0 0.0 
710 -0.2 0.0 -0.6 0.0 -0.8 -0.1 -0.4 -0.2 
710 0.0 -0.2 -0.2 0.0 0.1 -0.8 0.0 -0.1 
725 0.0 0.0 0.2 -0.2 0.0 0.0 -0.9 0.6 
731 -0.1 -0.4 -0.1 -0.3 0.1 0.9 0.0 -0.1 
737 -0.4 -0.1 0.3 0.2 0.6 0.1 0.0 -0.4 
738 -0.1 0.2 0.7 1.2 0.2 -0.2 -0.1 -0.2 
738 0.0 0.0 -0.3 -0.4 0.0 0.0 -1.1 -1.0 
742 -0.2 0.1 -0.2 -0.2 0.7 -0.1 0.1 0.2 
742 0.1 0.0 0.7 0.0 -0.2 0.0 -0.1 -0.4 
743 0.0 0.0 0.7 0.1 0.0 0.0 0.3 0.0 
753 -1.7 -1.5 -0.3 0.7 2.3 2.0 -0.2 -0.1 
756 1.0 -1.2 -0.4 -0.5 -1.3 1.7 2.1 -2.0 
757 0.0 0.0 -1.4 0.2 0.0 0.0 -0.2 -0.2 
760 0.0 0.0 0.1 0.0 0.0 0.0 0.1 -0.1 
765 1.0 1.2 0.5 -0.7 -1.3 -1.5 2.0 1.8 
770 1.4 -1.5 -1.1 -1.2 -1.8 1.9 -0.9 0.7 
791 0.2 -0.1 -0.1 -0.1 0.0 -0.1 -0.4 0.3 
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792 -0.2 -0.2 -0.1 0.1 0.0 0.0 -0.3 0.0 
818 0.0 0.0 -0.2 -0.2 0.0 0.0 0.1 -0.2 
818 0.0 0.0 0.1 0.2 0.0 0.0 -0.3 0.0 
829 0.0 0.0 -0.2 0.0 0.0 0.0 0.1 0.1 
831 -0.2 -0.4 -0.2 -0.2 0.0 -0.1 0.3 0.1 
832 0.4 -0.2 0.1 -0.3 0.1 -0.1 0.2 -0.3 
833 0.0 0.0 0.1 0.0 0.0 0.0 -0.1 -0.1 
840 0.0 0.0 -0.3 0.0 0.0 0.0 -0.1 -0.1 
841 0.0 0.0 0.3 -0.1 0.0 0.0 -0.1 0.2 
860 0.1 0.0 0.0 0.1 -0.1 -0.2 0.2 0.1 
862 0.0 -0.1 -0.2 0.0 -0.1 0.1 -0.2 -0.1 
874 0.0 0.0 -0.1 0.0 0.0 0.0 0.1 0.0 
875 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 
881 1.0 0.9 0.3 0.0 -0.2 -0.2 0.1 -0.1 
883 1.0 -1.0 0.4 -0.2 -0.2 0.3 -0.3 -0.4 
887 0.0 0.0 1.4 -0.5 0.0 0.0 -0.9 -0.5 
891 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.2 
896 0.0 0.0 0.4 -0.3 0.0 0.0 -0.5 -0.6 
897 0.0 0.0 0.4 0.4 0.0 0.0 1.0 -1.3 
905 0.1 0.1 0.7 -1.0 -0.1 -0.1 -1.8 -2.2 
906 1.3 1.3 0.1 0.0 -1.7 -1.5 0.5 0.8 
907 0.9 0.6 0.2 -0.2 0.0 -0.5 0.7 0.2 
907 0.0 0.0 0.5 1.2 0.1 0.2 0.3 0.5 
908 0.0 -0.4 -0.3 -0.1 0.2 -0.7 -0.1 -0.2 
913 -1.5 1.5 -1.2 -2.1 1.6 -1.7 2.6 -2.9 
949 0.5 2.2 0.1 -0.3 0.1 -0.2 0.0 -0.1 
952 0.0 0.0 -0.2 0.1 0.0 0.0 0.1 0.5 
953 -2.1 0.6 -0.6 -0.1 0.1 -0.1 0.0 -0.1 
955 -0.1 0.0 -0.3 -0.2 0.0 0.0 0.5 -0.7 
964 0.0 0.0 -0.3 0.0 0.0 0.0 0.4 0.1 
967 -0.3 -0.6 0.0 -0.2 0.1 0.3 -0.3 0.3 
969 0.0 0.0 -0.6 -0.1 0.0 0.0 0.0 -0.1 
970 -0.6 0.3 -0.4 0.4 0.3 -0.2 0.6 -0.2 
1015 0.0 0.0 0.5 0.1 0.0 0.0 0.3 -0.2 
1016 0.0 0.0 0.5 0.1 0.0 0.0 0.2 0.0 
1016 0.0 -0.2 -0.1 0.0 0.0 -0.2 -0.2 0.2 
1019 -0.3 0.0 -0.2 -0.1 0.0 0.0 0.2 -0.5 
1116 0.0 0.0 -0.4 -0.3 0.0 0.0 -0.2 0.1 
1117 0.0 0.0 -0.3 -0.9 0.0 0.0 0.1 0.3 
1132 -0.8 -0.3 -0.4 0.1 0.3 0.1 -0.2 -0.1 
1135 0.3 -0.8 -0.4 -0.1 -0.1 0.4 -0.2 0.0 
1142 0.0 0.0 0.9 0.1 0.0 0.0 0.6 -0.1 
1144 0.0 0.0 -0.8 -0.1 0.0 0.0 -0.4 0.4 
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1151 0.2 0.2 0.1 -0.1 -0.1 -0.1 -0.2 -0.2 
1155 0.0 -0.3 -0.2 0.1 0.0 0.1 0.1 0.2 
1160 0.0 0.0 0.3 -0.2 0.0 0.0 0.6 0.3 
1161 0.0 0.0 0.1 0.1 0.0 0.0 1.5 -0.2 
1171 -0.2 -0.8 -1.1 0.4 -0.1 -0.5 -0.6 -0.3 
1173 -0.8 0.2 -1.3 0.1 -0.6 0.1 -0.4 -0.4 
1182 0.0 0.0 0.3 1.0 0.0 0.0 -1.3 0.9 
1183 0.0 0.0 0.1 0.4 0.0 0.0 -0.3 1.4 
1189 0.2 0.5 0.3 -0.2 -0.2 -0.4 -0.3 -0.5 
1191 0.5 -0.2 0.0 -0.2 -0.4 0.2 -0.1 -0.2 
1226 0.0 0.1 0.0 0.0 0.1 0.2 0.3 0.0 
1227 0.1 -0.1 0.0 0.0 0.2 -0.1 0.0 0.0 
1235 0.0 0.0 0.3 0.0 0.0 0.0 -0.1 0.0 
1236 0.0 0.0 -1.2 -0.2 0.0 0.0 0.4 0.2 
1264 0.0 0.0 0.2 0.6 0.0 0.0 0.2 -0.2 
1265 0.0 0.0 -0.4 -0.2 0.0 0.0 -0.2 0.2 
1266 0.1 0.3 -0.2 0.1 0.0 -0.3 0.1 0.0 
1267 0.3 0.0 -0.6 0.0 -0.3 0.0 0.0 0.0 
1277 -0.2 -0.3 0.3 -0.1 0.1 0.2 -0.2 -0.1 
1278 -0.3 0.2 0.5 0.1 0.2 -0.1 0.0 -0.1 
1285 0.0 0.0 -0.5 0.3 0.0 0.0 0.6 0.3 
1289 0.0 0.0 -0.4 0.1 0.0 0.0 -1.2 1.1 
1321 0.0 -0.1 -0.1 0.1 0.0 0.1 0.0 0.1 
1321 -0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 
1337 0.0 0.0 -0.1 -0.2 0.0 0.0 -0.2 0.0 
1339 0.0 0.0 -0.3 -0.7 0.0 0.0 0.1 0.1 
1377 0.0 0.0 -1.4 -0.4 0.0 0.0 -2.3 0.9 
1381 -0.3 0.0 0.1 0.0 0.0 0.0 -0.2 -0.1 
1382 0.0 0.0 -0.3 0.2 0.0 0.0 -1.5 -0.4 
1384 0.0 0.3 0.1 0.1 0.0 0.0 0.3 0.1 
1410 0.0 0.0 -0.6 0.1 0.0 0.0 -0.2 0.0 
1411 0.0 0.0 1.4 0.2 0.0 0.0 -0.4 -0.2 
1415 0.4 0.4 0.5 -0.4 0.3 0.3 -0.1 -0.3 
1418 0.4 -0.4 0.2 0.0 0.3 -0.3 -0.5 0.8 
1419 0.0 0.0 0.6 0.3 0.0 0.0 -0.5 -0.1 
1420 0.0 0.0 -1.9 -0.1 0.0 0.0 0.4 0.3 
1424 -0.1 -0.2 -0.3 -0.2 0.1 0.2 -0.4 -0.2 
1425 -0.1 0.1 -0.2 -0.1 0.3 -0.1 -0.3 0.2 
1442 0.0 0.0 -1.8 0.0 0.0 0.0 0.1 0.2 
1443 0.0 0.0 -1.0 -0.3 0.0 0.0 0.0 0.1 
1447 0.0 0.0 0.1 0.0 0.0 0.0 -0.1 0.0 
1447 0.0 0.0 -0.4 -0.2 0.0 0.0 0.1 0.3 
1462 -0.1 -0.1 -0.2 -0.1 0.2 0.2 0.2 0.0 
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1462 0.1 -0.1 -0.1 -0.1 -0.2 0.2 0.4 -0.1 
1511 0.0 0.0 -0.6 0.0 0.0 0.0 0.3 0.0 
1512 0.0 0.0 1.1 0.2 0.0 0.0 -0.3 -0.1 
1521 1.1 1.3 1.1 -0.8 -0.5 -0.6 -0.2 -0.7 
1526 1.3 -1.1 0.0 -0.4 -0.6 0.5 -0.1 0.2 
1545 0.0 0.1 -0.3 -0.2 -0.1 -0.5 -0.8 -0.4 
1547 0.0 0.0 -2.0 0.2 0.0 0.0 -0.3 0.1 
1548 0.1 -0.1 -0.3 -0.2 -0.4 0.2 -0.1 0.1 
1549 0.0 0.0 -4.5 -0.7 0.0 0.0 0.6 0.6 
1553 0.0 -0.2 -0.1 0.0 0.0 0.2 -0.1 0.0 
1554 -0.2 0.0 -0.2 0.1 0.2 0.0 0.0 0.0 
1597 1.8 2.4 5.0 -1.2 0.6 0.6 1.7 1.1 
1598 -2.4 1.8 -2.4 -0.3 -0.7 0.5 -0.3 -0.2 
1602 0.0 0.0 -0.2 -0.3 0.0 0.0 0.0 -0.1 
1603 0.0 0.0 0.6 0.2 0.0 0.0 -0.1 0.2 
1629 -0.1 -0.3 -0.5 0.0 0.2 0.7 0.7 0.1 
1631 0.3 -0.1 0.4 -0.1 -0.8 0.3 -0.4 0.0 
1631 0.0 0.0 -0.2 -2.8 0.0 0.0 1.5 -0.6 
1632 0.0 0.0 -1.2 -3.0 0.0 0.0 2.3 -3.3 
3110 0.0 0.0 0.2 0.2 0.0 0.0 0.2 -0.3 
3112 0.0 0.0 -0.1 -0.2 0.0 0.0 -0.2 0.2 
3112 -0.1 0.1 0.1 0.0 -0.2 0.0 0.0 -0.1 
3113 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 
3115 0.0 0.0 0.3 0.6 0.0 0.0 0.0 0.1 
3116 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 
3116 0.0 0.0 0.1 0.2 0.0 0.0 0.1 0.0 
3117 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 
3117 0.0 0.1 0.2 -0.1 0.0 -0.1 0.0 0.0 
3117 0.0 0.0 0.3 -0.1 0.0 0.0 -0.1 -0.1 
3118 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
3119 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 
3120 0.0 0.2 0.1 0.0 0.0 0.0 -0.1 0.1 
3120 0.0 0.1 0.2 0.1 0.0 0.0 0.2 -0.1 
3121 -0.2 0.0 0.0 0.2 0.3 0.1 0.0 0.1 
3122 -0.1 0.1 0.0 0.1 0.1 -0.2 -0.2 0.1 
3122 0.0 0.0 -0.2 0.1 0.0 0.0 -0.1 0.3 
3122 0.2 0.1 0.1 -0.3 -0.1 -0.1 0.2 -0.1 
3123 0.0 0.0 0.1 0.1 0.0 0.0 0.2 -0.1 
3124 0.0 -0.3 -0.2 0.0 0.0 0.2 0.2 -0.3 
3128 -0.1 0.0 0.1 -0.1 0.1 0.0 0.0 -0.1 
3128 0.2 0.0 0.1 -0.1 -0.1 0.0 0.0 -0.1 
3130 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.1 
3131 0.0 -0.2 -0.2 0.0 0.0 0.2 0.1 0.0 
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3139 -0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 
3141 0.0 0.0 -0.2 -0.1 0.0 0.0 0.2 -0.1 
3141 0.0 -0.1 -0.1 0.1 0.0 0.1 0.1 0.0 
3143 0.0 0.0 0.3 0.0 0.0 0.0 -0.1 0.1 

 ሺܸ݉݁ሻ 1.5 1.5 4.9 4.8 1.0 1.0 2.7 3.1 ܮ
 ሺܸ݉݁ሻ 5.6 5.7 10.7 10.5 4.5 4.5 8.0 8.2 ܩ√

 

 

Figure 4.11 DFT estimates of the hole-phonon and electron-phonon couplings in the 
naphthalene crystal as a function of phonon energy. 
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Figures 4.12-4.14 show the contribution of each phonon frequency to the total 

intermolecular relaxation energy in the naphthalene and pentacene crystals, respectively. 

In naphthalene 83% and 93% of the total hole and electron intermolecular relaxation 

energies for pair 1 come from vibrational modes with phonon frequencies below 150 

ܿ݉ିଵ. In pair 2, redistribution to normal modes with phonon frequencies in the range of 

200-600 ܿ݉ିଵ is observed for both holes and electrons. In this case, such a redistribution 

reduces the contribution of the intermolecular vibrations (67% and 82% of the total 

coupling for holes and electrons, respectively). These findings again confirm the 

importance of including intramolecular vibrations in the investigation nonlocal coupling 

constants in organic molecular crystals. In pair 3, the values for the hole- and electron-

phonon coupling are at least one order of magnitude smaller than those derived for pair 1 

and pair 2. In pair 3, the intramolecular vibrations of the crystal have the largest 

contribution among the three pairs, reducing the contribution of the intermolecular modes 

to 65% for both holes and electrons. As shown by Figures 4.13 and 4.14, a similar picture 

holds in the pentacene crystal. Here, the contributions of the normal modes with phonon 

frequencies below 150 ܿ݉ିଵ to the total intermolecular relaxation energy for both holes 

and electrons are large for pair 1 and pair 2 (~80%) and decrease for pair 3 and pair 4 

(~70%), due to a rather modest redistribution towards normal modes with larger phonon 

frequencies. 
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Figure 4.12 DFT estimates of the intermolecular relaxation energy (ܮ) in the naphthalene 
crystal. 
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Figure 4.13 DFT estimates of the intermolecular relaxation energy (ܮ) for holes in the 
pentacene crystal. 
 

 
 
Figure 4.14 DFT estimates of the intermolecular relaxation energy (ܮ) for electrons in the 
pentacene crystal. 
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4.3.4.3 Classical and quantum-mechanical distributions of the transfer integrals 

 

In order to determine the dependence of the amplitude of a given normal mode by 

the temperature and its effect on the modulation of the transfer integral, classical (CM) 

and quantum-mechanical (QM) methods were used to sample the nuclear fluctuations. In 

classical dynamics, the potential energy of any normal mode is ԰ఠೕ

ଶ
ܳ௝

ଶ (where ԰ ௝߱ 

represents the energy of a phonon). In equilibrium at temperature ܶ, the averages of the 

potential and kinetic energies are both equal to ௞ಳ்
ଶ

; they depend only on temperature and 

not on the frequency of the motions. Thus, the classical mean-square fluctuation of ܳ௝ is: 

௝ܳۃ
ଶۄ஼ெ ൌ

݇஻ܶ
԰ ௝߱

 
(4.5) 

  

 In a quantum-mechanical dynamics context each normal mode will behaves as an 

harmonic oscillator with energy levels equally separated by ԰ ௝߱. The mean-square 

fluctuation of normal-mode ܳ௝ is related to temperature via: 

௝ܳۃ
ଶۄொெ ൌ

1
2 ݄ݐ݋ܿ ቆ

԰ ௝߱

2݇஻ܶቇ 
(4.6) 

At 300 ܳۃ ,ܭ௝
ଶۄொெ tends to ௞ಳ்

ଶ
, which is the classical value. By using ݄ܿݐ݋ሺݕሻ ൌ

ሺ݁௬ ൅ ݁ି௬ሻ/ሺ݁௬ െ ݁ି௬ሻ, ܳۃ௝
ଶۄொெ can be rewritten as follows: 

௝ܳۃ
ଶۄொெ ൌ

1

݁
԰ఠೕ
௞ಳ் െ 1

൅
1
2 (4.7) 
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Note also that the thermal energy of normal mode ݆ is given by: 

௝ܧ
௧௛ ൌ ൬ ௝߭

௧௛ ൅
1
2൰ ԰ ௝߱ (4.8) 

where ௝߭
௧௛ is the average number of excited quanta in the oscillator and is given by the 

usual Bose-Einstein distribution, that is: 

௝߭
௧௛ ൌ

1

݁
԰ഘೕ
ೖಳ೅ െ 1

 (4.9) 

It is worth recalling that even at 0 ܧ ,ܭ௝
௧௛= ଵ

ଶ
԰ ௝߱; it is not zero as in the classical limit. 

This energy corresponds to the zero-point energy of the harmonic oscillator and is a 

direct result of the Uncertainty Principle.37  

 

 Here, the formalism discussed above is used to define the classical (ߪ஼ெ
ଶ ) and 

quantum-mechanical (ߪொெ
ଶ ) variance of the transfer integrals as a function the 

temperature. The variance is represented by the square of the standard deviation, ߪ: 

ଶߪ ൌ ௠௡ݐሺۃ െ ۄሻଶۄ௠௡ݐۃ ൌ ௠௡ݐۃ
ଶ ۄ െ ଶ (4.10)ۄ௠௡ݐۃ

By using Equation 4.2, the terms in this expression can be defined as follows: 

ۄ௠௡ݐۃ ൌ ௠௡ݐ
ሺ଴ሻ  (4.11)

 

௠௡ݐۃ
ଶ ۄ ൌ ቀݐ௠௡

ሺ଴ሻ ቁ
ଶ

൅ ቌ෍ ௝߭௠௡ܳ௝
௝

ቍ

ଶ

 
(4.12)

The substitution of Equations 4.11 and 4.12 into Equation 4.10 leads to the following 

expression: 
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ଶߪ ൌ ቌ෍ ௝߭௠௡ܳ௝
௝

ቍ

ଶ

 
(4.13)

The subsequent substitution of ܳ௝
ଶ in Equation 4.13 by Equations 4.5 and 4.7 leads to the 

analytical expressions of the classical and quantum-mechanical variance: 

஼ெߪ
ଶ ൌ ෍ ௝߭௠௡

ଶ ݇஻ܶ
԰ ௝߱௝

 
(4.14)

 

ொெߪ
ଶ ൌ ෍ ௝߭௠௡

ଶ ቌ
1

݁
԰ఠೕ
௞ಳ் െ 1

൅
1
2ቍ

௝

 
(4.15)

 

4.3.4.4 Temperature dependence of the hole- and electron-phonon interactions 

 

Equations 4.14 and 4.15 and the nonlocal hole- and electron-phonon couplings 

constants reported in Tables 4.16 and 4.19 were used to investigate the interaction 

between the thermally-activated normal-mode vibrations and the charge carriers in the 

naphthalene and pentacene crystals. The calculated classical and quantum-mechanical 

standard deviations for the two molecular crystals are shown in Figures 4.15 and 4.16. 

We start our discussion with the naphthalene crystal. 

 

As shown in Figure 4.15, the dependence of the vibronic couplings on the 

temperature is stronger for the case of the electrons and this effect is mainly observed 

along the ܾܽ plane (pairs 1 and 2). At room temperature, the differences between the 

classical and quantum-mechanical samplings are less than 3 ܸ݉݁ for both holes and 
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electrons for the three pairs. It is also important to note that the quantum-mechanically 

calculated zero-point fluctuations are large when compared to those derived at room 

temperature. In fact, ߪொெ at 300 ܭ is on average 1.4 times larger than the deviation 

obtained at 0 ܭ for the case of holes and 1.6 times larger for the electrons. From Figure 

4.15, it is clear that a purely classical approach (ߪ஼ெ) would tend to overestimate the 

temperature dependence of the normal-mode vibrations and its effect on the modulation 

of the transfer integral.  

 

The plots of the standard deviations as a function of the temperature for the 

pentacene crystal are shown in Figure 4.16. In the pentacene crystal, the ߪ஼ெ and ߪொெ 

values show the largest temperature dependence for the edge-to-face molecular dimers 

(i.e., pair 3 and pair 4). However, in this molecular crystal the temperature has a stronger 

effect on the holes than on the electrons (in contrast to the naphthalene case). At room 

temperature the differences between ߪ஼ெ and ߪொெ are less than 1 ܸ݉݁. The zero-point 

fluctuations  have  a  similar  effect as in the naphthalene crystal; in pentacene, ߪொெ at 

  .for both electrons and holes ܭ is on average 1.6 times larger than that at 0 ܭ 300

 

 



167 
 

 

 
Figure 4.15 Classical and quantum-mechanical standard deviations of the hole-phonon 
coupling (top) and electron-phonon coupling (bottom) as a function of temperature for 
pair 1 (black), pair 2 (red), and pair 3 (blue) in the naphthalene crystal.  
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Figure 4.16 Classical and quantum-mechanical standard deviations of the hole-phonon 
coupling (top) and electron-phonon coupling (bottom) as a function of temperature for 
pair 1 (black), pair 2 (red), pair 3 (blue), and pair 4 (green) in the pentacene crystal. Note: 
the standard deviations for holes and electrons in pairs 1 and 2 display the same evolution 
as a function of the temperature; therefore, the red curves appear on top of the black ones.  
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4.3.4.5 Intermolecular relaxation energies from MDS 

 

Inspection of Figures 4.15 and 4.16 reveals a close agreement between the 

classical and quantum-mechanical standard deviations at 300 ߪ) ܭ஼ெ and ߪொெ, 

respectively) for the naphthalene and pentacene crystals. This finding suggests that, in 

principle, simulation techniques that use a classical dynamics approach should be 

appropriate to investigate the modulation of transfer integrals by thermally-activated 

vibrations in organic molecular crystals. In this context, a mixed quantum-chemical and 

MDS methodology was used to provide further computational evidence of the role played 

by normal-mode vibrations in defining the charge-transport properties in organic 

molecular crystals; note that the main advantage of MDS is to encompass all vibrational 

modes of the system instead of a few effective modes, as is typically done in 

phenomenological models.1, 2 The combined methodology used here represents an 

extension of the work reported by Troisi and co-workers, in which it was demonstrated 

that the transfer integrals are strongly modulated by thermal vibrations at room 

temperature.38, 39 When applied to molecular crystals of pentacene and rubrene,38, 40 this 

approach yields a quasi-Gaussian distribution of the transfer integrals for holes and, in a 

number of instances, the standard deviation is found to be as large as the value of the 

transfer integral obtained from undistorted molecular dimers. More importantly, the 

combination of Equations 4.4 and 4.14 leads to an expression that correlates the standard 

deviation (ߪ) with the intermolecular relaxation energy (ܮ), that is: 

ߪ ൌ ඥ2 · ܮ · ݇஻ܶ (4.16)
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By using Equation 4.16 and the fact that transfer integrals for holes and electrons have a 

nearly Gaussian distribution, a comparison between the values of ܮ derived from DFT 

approaches and from MDS can be established.  

 

In Figure 4.17, the distributions for the transfer integrals of holes and electrons in 

pair 1 and pair 2 of the naphthalene crystal are presented. The standard deviations of the 

transfer integrals are also indicated (assuming a complete Gaussian distribution) as inset 

in the figure. In the case of DFT, the standard deviations are derived from Equation 4.16 

and values of ܮ reported in Table 4.16. A reasonable correspondence in the standard 

deviations of the transfer integrals for holes in pairs 1 and 2 is found between the DFT 

and  MDS  methods, i.e., in pair 1 ߪெ஽ௌ ൌ 23.9  ܸ݉݁ versus ߪ஽ி் ൌ 13.4 ܸ݉݁ and in 

pair 2 ߪெ஽ௌ ൌ 23.1  ܸ݉݁ versus ߪ஽ி் ൌ 19.1 ܸ݉݁. The validity of the comparison can 

be understood upon the assumption that in DFT methods, only optical vibrations at the Γ-

point are considered while in MDS dispersive vibrations both acoustic and optical are 

present (i.e., the standard deviation obtained from MDS should be larger than that of 

DFT). For electrons, the situation is different since the standard deviations derived from 

DFT methods are on average 5 ܸ݉݁ larger than those derived with MDS approaches. A 

reason for that discrepancy can be attributed to the lesser ability of the semi-empirical 

methods to estimate transfer integrals for electrons. In this study, it was observed that in 

case of the naphthalene crystal the transfer integral values for holes calculated using 

semi-empirical methods are in good agreement with those obtained from ab initio 

methods (see Table 4.6); however, the transfer integrals for electrons do not present the 

same agreement, especially for pair 2 where  ݐ௣௔௜௥ଶ
௘௟ ൌ -14  ܸ݉݁ versus ݐ௣௔௜௥ଶ

௘௟ ൌ 35  ܸ݉݁ 
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for semi-empirical and ab initio methods, respectively. At this point, a clear 

correspondence between DFT and MDS methods to estimate the values of intermolecular 

relaxation energy cannot be established yet. To achieve a better understanding of the 

respective merits of the two proposed methods, it will be helpful to evaluate the transfer 

integrals at a high level of theory for the molecular configurations obtained from MDS. 

While this clearly represents a computationally demanding task, it can be planned at least 

for the naphthalene crystal and on those dimers that show significant coupling with lattice 

vibrations (i.e., pair 1 and pair 2). 

 

 
 
Figure 4.17 Normalized probability distribution of the transfer integrals for holes and 
electrons in pair 1 and pair 2 of the naphthalene crystal. The average value ߤ and the 
standard deviation ߪ are also reported. The vertical lines (in red) correspond to the 
transfer integrals of the two molecular dimers obtained from the optimized geometry at 
the MM3 force field level. 
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4.4 Conclusions 

 

In this study, a first-principles methodology to characterize the interaction 

between holes/electrons and the low-frequency optical phonons at the Γ-point has been 

developed. It was found that holes and electrons in oligoacenes are substantially affected 

by both intermolecular and intramolecular vibrations. This vibronic coupling effect, 

quantified in terms of the intermolecular relaxation energy ܮ, is more significant in 

naphthalene than in pentacene and is mainly dominated by intermolecular vibrations. In 

addition, it was also observed that the contributions of zero-point vibrations are larger in 

small organic molecular crystals. The electronic-structure calculations performed in this 

study further confirm that transport in oligoacene single crystals is mostly two-

dimensional. Also, standard deviations of the transfer integrals in the naphthalene crystal 

were obtained from both DFT and MDS methods. Our preliminary results open the 

possibility of evaluations of the transfer integrals at a high level of theory in studies that 

evaluate the effect of nuclear dynamics on the modulation of the transfer integrals 

between neighboring molecules. Finally, it is our aim to extend this fully integrated 

methodology to other organic molecular crystals in order to more completely characterize 

the charge-transport properties of organic semiconductors. 
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CHAPTER 5  
 

CHARGE TRANSPORT PARAMETERS OF THE 
PENTATHIENOACENE CRYSTAL 

 

In this chapter, the focus of the discussion is shifted to the description of the 

charge transport properties in organic molecular crystals. By using DFT, the microscopic 

charge-transport parameters of the pentathienoacene crystal are investigated. It is 

observed that the valence band exhibits a stronger dispersion than in the pentacene and 

rubrene single crystals with marked uniaxial characteristics within the molecular layer 

due to the presence of one-dimensional π-stacks; a small hole effective mass is also found 

along the direction perpendicular to the molecular layers. In the conduction band, strong 

intermolecular sulfur–sulfur interactions give rise to a significant inter-stack electronic 

coupling whereas the intra-stack dispersion is greatly reduced. The intramolecular 

vibronic coupling (reorganization energy) is stronger than in pentacene but comparable to 

that in sexithienyl; it is larger for holes than for electrons, as a result of low-frequency 

modes induced by the sulfur atoms. Charge transport is discussed in the framework of 

both band and hopping models. 

 

5.1 Introduction 

 

Oligothiophenes and oligoacenes are two prototypical organic semiconductors 

actively pursued for use in thin film transistors (TFTs).1-3 Well-defined crystal structures, 

combined with improved purification and film deposition techniques, have made these 
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oligomers and their derivatives the most studied classes of organic semiconductors (see 

Figure 5.1). As indicated earlier, recent breakthroughs in solution processing that enable 

roll-to-roll printing now place small-molecule-based devices close to commercialization 

for low-cost, large-area electronic and optoelectronic applications.4, 5 

 

 
 

Figure 5.1 Chemical structures of actively investigated π-conjugated organic 
semiconductors: (a) sexithienyl (6T), (b) bisdithienothiophene (BDT), (c) pentacene, (d) 
syn-anthradithiophene (syn-ADT), (e) syn-thienobisbenzothiophene (syn-TBBT), and (f) 
pentathienoacene (5TA). 

 

Efforts have been directed toward enhancing intramolecular π-conjugation in 

oligothiophenes by bridging adjacent β-carbon atoms with a sulfur linkage, thereby 

fusing the rings; this is the case, for example, in bisdithienothiophene (BDT: 

quaterthiophene with two bridges)6 and oligothienoacenes (nTA: fully fused 

oligothiophenes).7-11 The ring fusion can also be accompanied by changes in molecular 

packing, for instance, from a less favorable herringbone packing to the desired π-

stacking. Numerous attempts have also been made to overcome the shortcomings of 

pentacene, the five-ring member of the oligoacene family that presents among the highest 

hole mobilities for organic crystals.12 These approaches include a functionalization of the 

molecular backbone with sulfur, as in anthradithiophene (ADT: the end benzene rings are 
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each replaced with a thiophene ring)13, 14 and thienobisbenzothiophene (TBBT: the 

central and two end rings are replaced);15-17 these compounds display improved 

environmental stability and solubility, and modified crystal packing. It is therefore no 

surprise that pentathienoacene (5TA), which can be viewed either as a thiophene 

equivalent of pentacene or as a fully fused terthiophene, has received special attention. It 

has recently become even more appealing, as new synthetic routes are now available10, 11 

and 5TA-based TFTs have promising characteristics11 (the thin-film field-effect mobility 

of 0.045 ܿ݉ଶ ܸ · ⁄ݏ  can be compared to the reported value of 0.02 ܿ݉ଶ ܸ · ⁄ݏ  for 

sexithienyl (6T)18, 19).  

 

Here, a series of oligothienoacenes with a focus on 5TA were investigated by 

using DFT methods. In particular, the electronic and vibronic couplings in these systems 

were examined; these electron-vibration interactions dictate the charge transport 

properties in the crystal.20  

 

5.2 Theoretical methodology 

 

Geometry optimizations and normal-mode calculations of isolated nTA molecules 

(n = 3–7) were performed at the B3LYP/6-31G(d,p) level using the Gaussian package.21 

The normal-mode frequencies and Huang–Rhys factors were obtained with the DUSHIN 

code22 and used to simulate the vibrational structure of the first ionization peak within the 

framework of the Born–Oppenheimer and Franck–Condon approximations (see Chapter 
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3, section 3.2). The frequencies were scaled down by a factor of 0.9613, which has been 

shown to reproduce very well the experimental IR frequencies.23  

 

The calculations on the 5TA crystal were performed on an orthorhombic unit cell 

containing four molecules. The molecular coordinates determined by X-ray diffraction on 

the single crystal11 were used with and without further geometry optimization (the cell 

constants were fixed at the experimental values during optimization). The wavefunctions 

were obtained using plane waves via a direct inversion in the iterative subspace (DIIS) 

method24 at special ݇-points with a Monkhorst–Pack mesh25 of 4ൈ2ൈ12. The electronic 

band structure was constructed in a non-self-consistent manner from the optimized 

electron density with an iterative Lanczos diagonalization method.26  The inverse 

effective mass tensor was calculated using Sperling’s centered difference method at the 

band edges with ݀݇ = 0.0017 (2π/Bohr). Norm-conserving numerical pseudopotentials 

generated with the procedure of Troullier and Martins27 were used for C and S, and a 

local analytic pseudopotential for H, with a plane-wave energy cutoff of 70 ܴݕ. The 

plane wave DFT calculations reported here were carried out at the BLYP level with the 

CPMD (Car–Parrinello Molecular Dynamics) code.28 In addition, the transfer integrals 

for nearest-neighbor pairs of molecules in the geometry-optimized crystal were calculated 

by using a fragment orbital approach29 in combination with a basis set orthogonalization 

procedure.30 Transfer integrals for the diagonal pair in the 6T crystal31 were computed for 

comparison. These calculations were performed with the PW91 functional and Slater-

type triple-ζ plus polarization (TZP) basis sets, using the ADF (Amsterdam Density 

Functional) package.32  
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5.3 Results and discussion 

 

5.3.1 Geometric structure 

 

The optimized geometries of the isolated nTA molecules in the neutral state show 

that the C=C bonds lengthen and the CെC bonds shorten in going from the periphery to 

the center (see Figure 5.2, top panel for the CെC bonds). The gradual evolution of the 

bond lengths is still visible all the way to the molecular center even in 7TA. On the other 

hand, the CെS bond lengths alternate and converge already at the fourth bond from the 

periphery. Similar trends are found in the experimental crystal structures of 3TA34 and 

4TA8 for the C=C and CെS bonds. 

 

The optimized molecular geometry of 5TA in the crystal indicates that the spatial 

evolution of the bond lengths remains unaffected by intermolecular interactions with the 

exception of the CെC bond lengths. The calculated CെC bond lengths increase sharply in 

the first inner thiophene ring before heading down to follow the evolution of the isolated 

case. The experimental crystal data, on the other hand, show the opposite trend (see 

Figure 5.2, bottom panel). This apparent discrepancy is believed to be due to the 

uncertainty in the X-ray data of 5TA as a result of polycrystallinity in the sample.11 

Indeed, the sharp increase in CെC bond length in going from the outer ring to the next is 

clearly seen experimentally in the better resolved crystal structures of 3TA32 and 4TA;8 

the standard deviation there is less than 0.004 Հ whereas it is as large as 0.02 Հ (i.e., the 

full axis length in the figure) in the case of 5TA11 (see also Figure 5.2, bottom panel). The 
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trend calculated with DFT is also seen in the experimental crystal structures of TIPS-5TA 

and TIPS-7TA11 (both ends are substituted by triisopropylsilyl groups at the α-positions). 

It is worth mentioning that, despite the inability of DFT to describe van der Waals 

interactions,33 a number of studies have shown that constraining the lattice constants to 

experimental values effectively compensates the missing attractive interactions so that 

such DFT calculations reproduce not only the geometry of the molecules in the unit cell, 

but also their pressure-dependent molecular orientation34 and vibrational properties.35, 36 

It is important to note that recent studies have demonstrated that when DFT is modified 

with an empirical interatomic dispersion term (the so-called DFT-D method), it leads to 

an accurate description of the intermolecular interactions; results are even comparable to 

those derived from high level ab initio methods.37, 38 It is also observed that (i) the 

geometry optimization of the 5TA crystal leads to a slight change in the stacking distance 

from 3.517 to 3.527 Հ (both values are smaller than the experimental stacking distance of 

3.576 Հ for 4TA); and (ii) the crystal packing of 5TA is similar to that of α-terthiophene 

(3T)39 in having a double-layered unit cell. 
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Figure 5.2 Evolutions of the CെC bond lengths in going from the end to the center of the 
molecule: (top panel) DFT calculations on isolated molecules and (bottom panel) 
experimental crystal data. In the top panel, three data points of 6TA overlap with those of 
7TA. In the bottom panel, DFT values are also given for the 5TA crystal. 

 

In the following, the geometric relaxation upon oxidation or reduction of an 

isolated molecule (see Figure 5.3 for the case of 5TA) is discussed. The C=C and CെC 

bonds undergo geometric changes to a greater extent in the cationic state than in the 

anionic state; the bond relaxations occur over the entire molecule and are more 

pronounced toward the molecular center. For the CെS bond, on the other hand, the 

geometric relaxations are more pronounced toward the molecular periphery and occur 
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predominantly upon reduction (as seen below in Figure 5.4, the HOMO wavefunctions 

have nodes on the sulfur atoms); the weak geometric changes in the cationic state are 

localized to the molecular ends (1.5 thiophene rings at each end). The role of the sulfur 

atoms in transport will be discussed further when the electronic structure and vibronic 

coupling is examined in the following subsections. 
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Figure 5.3 Calculated bond length changes in isolated 5TA upon oxidation (open 
symbols) and reduction (filled symbols). 

 

 

Figure 5.4 Wavefunctions of the frontier molecular orbitals in isolated 5TA and 7TA. 
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5.3.2 Crystal electronic structure 

 

Figure 5.5 illustrates the X-ray crystal structure of 5TA obtained by Zhang et al.11 

A displacement of 1.650 Հ [1.629 Հ as calculated with DFT] along the short molecular 

axis (or a roll according to the terminology of Curtis et al.40) and a small stacking 

distance of 3.517 [3.527] Հ are indicative of π-stacks along the c-axis. This one-

dimensional π-stacking is in contrast to the herringbone packing found in pentacene. The 

“rolled” π-stacks in the 5TA crystal can be compared to the “pitched” π-stacks found in 

the rubrene crystal41 that also exhibits very high mobilities42 (the pitch is defined by 

Curtis et al.40 as the displacement along the long molecular axis). The crystal unit cell of 

5TA consists of four translationally inequivalent molecules. 

 

 
 

Figure 5.5 Crystal structure of 5TA.10 The experimental lattice constants of the 
orthorhombic unit cell (Pnma) are ܽ = 11.171, ܾ = 25.098, and ܿ = 3.8852 Հ. Shown in 
(b) is a view from the bottom along the ܾ-axis, where the molecules in gray belong to the 
top layer of the double-layered unit cell. Rolled π-stacks (displaced along the short 
molecular axis) are clearly seen along the ܿ-axis. Values in parentheses refer to the DFT-
optimized structure. The nearest-neighbor pairs A, B, and C considered for calculation of 
the transfer integrals are indicated by arrows. 
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The electronic band structure of the 5TA crystal is shown in Figure 5.6 along 

various orientations in reciprocal space. The valence band consists of four nearly 

degenerate π-subbands and has a width ܹ of 0.77 ܸ݁. Importantly, when comparison is 

made among DFT results, this valence bandwidth is larger than that of pentacene43, 44 and 

almost twice as large as that of rubrene.45 The strongest dispersion responsible for the 

large bandwidth is found along the ܿ-axis (in the Γ ܼ  section of the Brillouin zone), as 

expected from the π-stacking in this direction. A flat band is observed along the ܽ-axis 

( Γܺ); in rubrene, by contrast, a moderate dispersion was observed along the other in-layer 

crystal axis. A weakly dispersive band is found along the ܾ-axis (Γܻ), that is, in the 

direction perpendicular to the molecular layers. 

 

The quasi-degeneracy of the valence band indicates that interactions at the 

HOMO level among the translationally inequivalent molecules are very weak. This 

conclusion, obvious from the strong orientational anisotropy of the band dispersion, is 

also supported by direct calculations of the transfer integrals; among the three molecular 

pairs highlighted in Figure 5.5, a significant electronic coupling only occurs for pair C, 

i.e., along the ܿ-axis (note that the nearest neighbors in pair C are translationally 

equivalent whereas those in pairs A and B are not). The transfer integral for pair C, ݐ௛
஼, is 

179 ܸ݉݁, to be compared to ݐ௛
஺ ൌ 2 ܸ݉݁ for pair A and ݐ௛

஻ ൌ 6  ܸ݉݁ for pair B. The 

valence band can therefore be represented by a superposition of four weakly interacting 

subbands that are one-dimensional in character, and it is not surprising that the bandwidth 

from the band structure (0.77 ܸ݁) is in good agreement with the value derived from a 

one-dimensional tight-binding model (4ݐ௛
஼ ൌ 0.72 ܸ݁). 
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Figure 5.6 Electronic band structure of the geometry-optimized 5TA crystal. Points of 
high symmetry in the first Brillouin zone  are  Γ=(0, 0, 0);  ܺ=(0.5, 0, 0);  ܻ=(0, 0.5, 0);  
ܼ=(0, 0, 0.5); ܵ=(0.5, 0.5, 0); ܶ=(0, 0.5, 0.5); and ܷ=(0.5, 0, 0.5), all in crystallographic 
coordinates. The energy levels are shifted such that the valence band edge at the Γ-point 
aligns at 0 ܸ݁. The conduction band edge denoted by Λ௓ (0, 0, 0.337) is located 59 ܸ݉݁ 
below the Γ-point. The wavefunctions of the crystal orbitals at the Γ -point (for the 
bottom molecular layer) are shown on the right, with each corresponding to a labeled 
arrow in the band structure plot. 
 

The very weak dispersion along the a-axis occurs despite the close proximity of 

the neighboring molecules; SڮS distances in pair A are only ~3.55 Հ, less than the sum 

of the van der Waals radii, whereas CڮC distances are > 4.9 Հ. This is due to the 

presence of nodes on the sulfur atoms in the HOMO, which effectively decouples the 

HOMOs from one another along the ܽ-axis (see Figure 5.6c for the crystal wavefunction 

of the topmost π-subband). 

 

The conduction band, like the valence band, arises from the interactions of only 

one type  of molecular orbitals, the LUMOs in this case. A reduced full bandwidth of 

0.51 ܸ݁ for the four subbands but with a significant subband splitting indicates that the 
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pattern of electronic coupling is markedly different in the conduction states. (Actually, 

the shape of the conduction band is similar to that of the valence band; the notable 

difference is due to the strong subband splitting in the former). As expected from the 

band dispersion in Γܼ, the transfer integral calculations give again the largest value for 

pair C (ݐ௘
஼ ൌ 63 ܸ݉݁); this value, however, is nearly three times as small as that for 

holes. The major reduction results from a mutual cancellation of bonding and antibonding 

interactions of the LUMO wavefunctions between the molecules in the pair (see Figure 

5.7 for the interplay between the roll in the stack and the wavefunction pattern that 

changes, or does not change, phase across the short molecular axis). 

 

 

 

Figure 5.7 Illustration of rolled π-stacking and of the HOMO and LUMO interaction 
patterns: (b) two adjacent molecules from the unit cell along the ܿ-axis as viewed down 
the molecular plane normal; and (a) the HOMO and (c) LUMO wavefunctions of isolated 
5TA from Figure 5.4 laid over each of the molecules in (b). The wavefunction overlap 
between the two molecules is significant; however, the LUMO electronic coupling is 
greatly reduced by the roll in the stack which, in combination with the alternating LUMO 
phase along the short molecular axis, creates both in-phase and out-of-phase interaction 
patterns. 

 

Another feature, which is directly relevant to the subband splitting, is the 

significant electronic coupling between translationally inequivalent molecules along the 
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a-axis, as manifested by the splitting in Γܺ; the electronic coupling in pair A (ݐ௘
஺ ൌ 42 

ܸ݉݁) is now comparable to that in pair C. The difference in electronic interactions 

between the LUMO and HOMO levels for pair A can be explained by their charge 

density patterns; unlike the latter, the former carries a significant charge density on the 

sulfur atoms, which promotes effective electronic interactions through short SڮS 

contacts spaced at about 3.55 Հ (see Figure 5.4 and compare 5.6b and 5.6c). On the other 

hand, the electronic coupling between adjacent molecular layers (or in pair B) remains 

very small (ݐ௘
஻ ൌ 7 ܸ݉݁) and similar to that found for holes. 

 

Importantly, the LUMO interactions along the ܽ- and ܿ-axes do not work in a 

constructive manner. That is, the splitting via pair A separates the subbands along Γܼ at 

Γ, so that the top two subbands become more dispersive and the bottom two become less 

dispersive. As will be discussed below, it is the bottommost subbands that are of interest 

with regard to charge transport. The conduction band edge is shifted away from the zone 

boundary ܼ to Λ௓ (0, 0, 0.337); the energy at Λ௓ is 59 ܸ݉݁ lower than at Γ, making the 

states around Γ less accessible (see Figure 5.6). 

 

The theoretical derivation of the crystal properties requires, in general, an 

integration over the entire Brillouin zone. In the case of wide bands (or at low 

temperature), where the only populated states are those around the band edges, the 

description of many properties including charge transport can be simplified by using the 

effective mass approximation. The calculated effective masses are reported in Table 5.1. 

Holes in 5TA are light with the smallest hole effective mass equal to 1.26 m0, a value 
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smaller than in pentacene43, 44 (for comparison, the effective masses in silicon are 0.69 m0 

for a hole and 0.26 m0 for an electron46). Electrons are much heavier than the holes; the 

smallest electron effective mass at the band edge is 3.15 m0. 

 

Table 5.1 Hole and electron effective masses ݉ (in units of the electron mass at rest, ݉଴) 
at the band edges of the 5TA crystal. 
 

 ݉/ ݉଴ parallel to 
holes at Γ 1.26 ܿ 

1.78 ܾ 
38.5 ܽ 

  
electrons at Λ௓ 3.15 ܾ 

 7.46 ܽ െ 0.176ܿ 
 8.26 0.021ܽ ൅ ܿ 
   

electrons at ܷb 1.42 ܾ 
 4.44 0.133ܽ ൅ ܿ 
 7.14 0.912ܽ െ ܿ 
   

electrons at Γ 1.01 ܽ 
 1.85 ܾ 
 -10.8c ܿ 

 
a Taken from the diagonal components of the inverse effective mass tensors in principal 
axis coordinates and normalized by the free electron mass at rest ݉଴. b ܷ located 10 ܸ݉݁ 
above the conduction band edge Λ௓. c The negative value reflects that the Γ-point is not a 
local energy minimum. 

 

Interestingly, the effective mass displays a less pronounced orientational 

anisotropy than the band dispersion. That is, the hole effective mass along the ܾ-axis 

(1.78 m0), despite the very flat band along this direction, is a mere 40 % larger than that 

along the ܿ-axis (1.26 m0). The unexpected hole behavior arises from the fact that the 

effective mass not only depends on the band dispersion but also scales with the unit cell 
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dimensions in reciprocal space. This dependence can be illustrated by a one-dimensional 

tight-binding model, where the effective mass is given by:51 

݉ ൌ
԰ଶ

 ଶ݀ݐ2
(5.1) 

That is, the effective mass decreases linearly with the electronic coupling ݐ and 

quadratically with the intermolecular distance (or cell length) ݀. Similar behavior can be 

expected for electrons and the effect is more dramatic. At the conduction band edge and a 

higher energy valley at ܷ (10 ܸ݉݁ above the band edge), an electron attains the smallest 

effective mass along the ܾ-axis. 

 

5.3.3 Local vibronic coupling 

 

As mentioned before (see Chapter 3), the strength of the local vibronic coupling is 

measured by the polaron binding energy ܧ௣௢௟ or, in the context of electron transfer 

theory, by the reorganization energy ߣ௥௘௢௥௚ ൫ൎ  ௣௢௟൯. In Table 5.2, the intramolecularܧ2

reorganization energies for the nTA series are presented. The results were obtained from 

adiabatic potential energy surfaces and from normal-mode calculations.20 The hole 

reorganization energy of 5TA is slightly larger than that of 6T (301 and 255 ܸ݉݁ for the 

non-planar and planar neutral geometries, respectively),47 about twice as large as that of 

syn-TBBT (148 ܸ݉݁),15 and three times as large as that of pentacene (97 ܸ݉݁).48 5TA, 

like 6T, shows a stronger vibronic coupling for holes than for electrons, in contrast to 

TBBT and pentacene. 
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Table 5.2 Calculated intramolecular reorganization energies for hole ሺߣ௛ሻ and electron 
ሺߣ௘ሻ transfer in the nTA series (energies in ܸ݉݁). 
 

௛ߣ  ௘ߣ
 APa (NM)b AP (NM) 

3TA 352 (352) 324 (325) 
4TA 325 (325) 293 (292) 
5TA 306 (308) 270 (270) 
6TA 291 (292) 252 (252) 
7TA 279 (279) 237 (237) 

 
a From adiabatic potential energy surfaces. b From normal-mode analysis. 

 

Decomposition of the intramolecular reorganization energy into individual 

contributions from the relevant vibrational modes shows that large values of the Huang–

Rhys factor for hole transfer are found mostly at low frequencies (see Figure 5.8). In fact, 

41 % of the relaxation energy in 5TA (44 % in 7TA) originates from low-frequency 

modes below 500 ܿ݉ିଵ (~2.5 times the thermal energy).  This is in marked contrast to 

the pentacene case, where there is almost no contribution from low-frequency 

vibrations.48 

 

 
 

Figure 5.8 Huang–Rhys factors ௜ܵ of 5TA and 7TA. The relaxation energy ߣ௥௘௟ 
contributed by each normal mode at frequency ߱௜ is obtained by ߣ௥௘௟ ൌ ԰߱௜ ௜ܵ. 
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For electron transfer, on the other hand, 73 % [78 % for 7TA] of the total 

relaxation  involves vibrational modes at about 1200 ܿ݉ିଵ or higher, and less than 7 % 

[7 %] comes from modes below 500 ܿ݉ିଵ. A similarly large contribution of high-

frequency vibrations was found in TBBTs (over 70 %);15 the corresponding value in 

pentacene is about 61 %.13 

 
 

Figure 5.9 Normal modes with strong vibronic coupling in cationic 5TA. The low-
frequency modes at 239 and 489 ܿ݉ିଵ involve mostly sulfur atoms whereas the high-
frequency modes at 1261 and 1535 ܿ݉ିଵ involve carbon atoms. All modes are in-plane. 

 

Further comparison of 5TA with TBBTs15 indicates that the low-frequency 

vibronic coupling for holes grows with increasing sulfur content, although in TBBTs the 

low-frequency coupling is not strong enough to result in a larger reorganization energy 

for holes than for electrons. The most strongly coupled modes are illustrated in Figure 

5.9. The 239 ܿ݉ିଵ mode is characterized by CെSെC bending in the three inner 

thiophene rings, which leads to a stretching motion of the 5TA cation as a whole along 

the long molecular axis (the two outer rings move more or less as a rigid body). The 489 

ܿ݉ିଵ mode stretches the molecule along the short axis via CെSെC bending in the inner 

rings. The high-frequency modes with strong vibronic coupling for holes involve carbon 

atoms only. The 1261 ܿ݉ିଵ mode consists of C=C stretching in the central ring (and two 
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adjacent rings in the case of 7TA), and the 1535 ܿ݉ିଵ mode represents CെC stretching 

within the three inner rings. The latter mode is also found in the 5TA anion at 1531 ܿ݉ିଵ 

and provides the largest Huang–Rhys factor. 

 

5.3.4 Band-like versus hopping transport 

 

Using Equation 1.13 and the effective masses from Table 5.1, it is found that the 

hole mobility of 5TA is two-dimensional in the ܾܿ-plane with the highest along the ܿ-axis 

and the lowest along the ܾ-axis. The hole mobility of 5TA is greater than that of 

pentacene, if it is assumed that both have the same ߬ (where ߬ represents the carrier 

relaxation time). The fact that the mobility plane is perpendicular to the molecular layer 

may have implications for TFT applications. The intrinsic hole mobility may be much 

greater than the reported value of 0.045 ܿ݉ଶ ܸ · ⁄ݏ  measured on thin films on the ܽ-SiO2 

surface, in which the molecular layer is parallel to the substrate10 and thus the conduction 

is an average over the randomly oriented c-axes of individual grains. The orientation of 

the molecular layer relative to the substrate depends on the substrate material and/or 

deposition method (for example, pentacene on Ag49 and graphite50 forms molecular 

layers perpendicular to the substrate). Therefore, growing a thin film of 5TA with the ܾܿ-

plane, instead of the ܽܿ-plane, parallel to the substrate could improve the field-effect 

mobility, which would then correspond to an average of biaxial grain mobilities. 

 

The complex behavior of the conduction band allows no easy prediction for the 

electrons in the band regime. There are additional energy levels close to the conduction 
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band edge (ܷ and Γ) which can be populated even at moderate temperature. All these 

contributions are to be taken into account to calculate the conductivity effective mass 

tensor, which is beyond the scope of this investigation. However, it seems reasonable to 

conclude that the electron mobility is uniaxial along the ܾ-axis. Since the highest electron 

mobility is found perpendicular to the transport direction probed in TFTs, this may 

explain, at least partly, the experimental observation of p-channel-only field-effect 

behavior.10 

 

When vibronic coupling becomes comparable to or stronger than electronic 

coupling, band-like transport is expected to take place only in perfectly ordered systems 

at very low temperature. Increasing temperature gradually reduces the bandwidth, leading 

to an increase in effective mass and subsequently to localization of the charge. Motion of 

the charge carrier can then be modeled by a sequence of uncorrelated hops.51, 52 The 

hopping transport can be described as a self-exchange electron transfer from a charged 

molecule to a nearby neutral molecule. The carrier mobility is then expressed by means 

of Equation 1.18. At high temperature, the electron transfer or hopping rate takes its 

semiclassical form of Marcus theory given by:  

݇ா் ൌ ܣ · ݌ݔ݁ ൤െ
௔ܧ

݇஻ܶ൨ ൌ ܣ · ݌ݔ݁ ቈെ
ሺߣ െ ሻଶݐ2

஻ܶ݇ߣ4 ቉ 
(5.2) 

This expression represents a simplified version of Equation 1.16. Here, the prefactor ܣ 

depends on the strength of the electronic coupling; that is, in the case of weak coupling, 

 is equal to the frequency of the nuclear motion ܣ ,ଶ; in the case of strong couplingݐ~ܣ

along the reaction coordinate. ܧ௔ is the activation energy barrier; this parameter is used in 

the next paragraph to understand the hole and electron mobility in 5TA. 
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In the hopping regime, the hole mobility of 5TA becomes uniaxial along the ܿ-

axis; the large transfer integral leads to a negligibly small activation energy barrier of less 

than 10 ܸ݉݁ (ݐ ൌ 179 and λ ൌ 460 ܸ݉݁). The other two axes are close to the classical 

limit for weak electronic coupling with an energy barrier ሺൎ  4ሻ of 110 ܸ݉݁. Also, the/ߣ

highest hole mobility in 5TA is expected to be greater than that of 6T, the energy barrier 

of which is estimated to be 60 ܸ݉݁ (ݐ ൌ 35 and ߣ ൌ 370 ܸ݉݁). Additionally, the 

hopping model predicts the electron mobility to be much smaller than the hole mobility. 

The largest electron mobility is found along the ܿ-axis with an energy barrier of 50 ܸ݉݁, 

and the next along the ܽ-axis (70 ܸ݉݁).  

 

5.4 Conclusions 

 

The key molecular parameters governing charge transport in the 5TA crystal have 

been identified by using DFT calculations. The main results can be summarized as 

follows. The 5TA crystal presents: (i) an exceptionally strong dispersion in the valence 

band (ܹ = 0.77 ܸ݁, 1.26 = ݉ ,ܸ݁݉ 179 = ݐ ݉଴) due to one-dimensional π-stacks; (ii) a 

much reduced dispersion in the conduction band (ܹ = 0.51 ܸ݁, 63 = ݐ ܸ݉݁) due to 

cancellation of bonding and antibonding interactions by the roll in the π-stacks; (iii) a 

significant electronic coupling between π-stacks in the conduction band (42 = ݐ ܸ݉݁) via 

intermolecular SڮS interactions; (iv) a very small hole effective mass (1.78 ݉଴) in the 

direction perpendicular to the molecular layers; and (v) larger intramolecular 

reorganization energy for holes (306 ܸ݉݁) than for electrons (270 ܸ݉݁) due to low-

frequency vibrations induced by sulfur atoms. Interestingly, the transport parameters 
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calculated here in the context of both the band and hopping models suggest that the 

intrinsic hole mobility in the 5TA crystal might be higher than in two benchmark high-

mobility organic crystals in their representative transport regimes: larger than pentacene 

in the band regime and larger than sexithienyl in the hopping regime. 
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CHAPTER 6  
 

CHARGE TRANSPORT PARAMETERS IN IODO-
FUNCTIONALIZED ORGANIC MOLECULAR CRYSTALS 

 

In this chapter, on the basis of a DFT study, the electronic and charge transport 

properties of the crystals of 1,4-diiodobenzene (DIB), dithieno[3,2-b:2’,3’-d]thiophene 

(DTT), and 2,6-diiodo-dithieno[3,2-b:2’,3’-d]thiophene (DTT-2I) are investigated. In the 

case of the DIB crystal (room-temperature hole mobility > 10 ܿ݉ଶ/ܸ ·  the high ,(ݏ

mobility is primarily associated with the heavy iodine atoms. In the DTT and DTT-2I 

crystals, the dominant charge-transport properties are determined by π-π interactions 

along their respective molecular plane. Interestingly, the presence of iodine atoms in DIB 

and DTT-2I leads to a significant decrease in the local hole-vibration coupling compared 

to benzene and DTT, respectively. In marked contrast, the polaron binding energy in the 

case of electrons is found to be significantly higher than the electronic coupling; this 

implies that electrons in DIB and DTT-2I are strongly localized even at room 

temperature. 

 

6.1 Introduction 

 

Recently, many attempts have been made to enhance the charge-transport 

properties of oligoacenes via substitution or functionalization.1-5 Following this strategy, 

several halogen-substituted6-9 systems have been prepared and investigated. For instance, 

the chlorosubstitution of tetracene to obtain 5,11-dichlorotetracene, transforms the 
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characteristic herringbone packing motif of tetracene into a slipped π-stacking motif9 and 

leads to a slightly larger field-effect mobility (1.6 versus 1.3 ܿ݉ଶ/ܸ ·  ,As well .(ݏ

perfluorination  can  convert pentacene from a p-channel to an n-channel 

semiconductor.6, 7 More importantly, the largest impact of  halogenation on charge-

transport properties has been reported over four decades ago for 1,4-diiodobenzene (DIB, 

see Figure 6.1),10 a derivative of benzene (the building unit of the acenes). 

Photoconductivity measurements10 revealed that DIB exhibits a room-temperature hole 

mobility as large as 12 ܿ݉ଶ/ܸ ·  In spite of this promising finding,10 charge transport in .ݏ

DIB was revisited only very recently by Ellman et al.11, 12 These authors confirmed the 

earlier data regarding large hole mobility. In addition, the analysis of the electronic 

density of states derived from band-structure calculations11 underlined the role played by 

the iodine atoms in the charge transport. Here, a detailed quantum-mechanical study of 

the electronic and vibrational couplings in DIB demonstrates that the iodine atoms have a 

strong effect on the transfer integrals and that there is a marked difference between the 

electron-vibration and hole-vibration couplings.  

 

Additionally, in order to obtain a more comprehensive picture on the role of 

halogenations on the charge-transport properties, similar quantum-mechanical studies 

were performed on 2,6-diiodo-dithieno[3,2-b:2’,3’-d]thiophene (DTT-2I) crystal. This 

molecular crystal represents an important addition to the family of ambient stable and 

easy to functionalize oligothienoacene semiconductors. DTT-2I combines the π-stacking 

properties13 of its building block, dithieno[3,2-b:2’,3’-d]thiophene (DTT), with a halogen 

substitution of two of the thiophene peripheral protons, which promotes extended 
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wavefunctions.11 In this study, these two structural features were investigated by 

performing a systematic comparison of the electronic properties in DTT and DTT-2I 

molecular crystals. This investigation represents an extension of the work on the DIB 

crystal; comparisons between the DIB and DTT-2I crystals are made where possible. 

 

6.2 Theoretical methodology 

 

The geometric and electronic structure of the isolated DIB and benzene molecules 

were obtained at the density functional theory (DFT) level by performing geometry 

optimizations with the B3LYP functional and the 6-31G(d,p) basis set for the carbon and 

hydrogen atoms and the 3-21G(d,p) basis set for the iodine atoms, as implemented in the 

Gaussian package.14 Additional calculations, using the 6-311++G(d,p) diffuse functions 

for C and H atoms and the 6-311G basis set augmented15 by two polarization (d and f) 

and two (s and p) diffuse functions for the iodine atoms, were also carried out in the case 

of the radical-anion states. The results of vibration calculations, performed at the 

B3LYP/6-31G(d,p) level of theory, were used to calculate the relaxation energy with the 

DUSHIN code.16  

 

The geometry optimization and the derivation of the crystal electronic band 

structure of the α and β crystalline structures in DIB (with the lattice constants fixed at 

the experimental values) were performed using the CRYSTAL06 package.17 The 

calculation of the optical vibrations at the Γ−point for the crystal structure of the α-phase 

of DIB was performed with the same computational package. In these calculations, the 
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B3LYP functional, the 6-31G basis set (3-21G for the iodine atoms), and a uniform 

4ൈ6ൈ8 Monkhost-Pack ݇-point mesh were employed. Additional DFT/BLYP 

calculations using the Troullier-Martins pseudopotentials and plane wave basis sets with 

an energy cutoff of 70 ܴݕ were also performed on the α-phase with the CPMD (Car–

Parrinello Molecular Dynamics) code.18 The inverse effective mass tensor was calculated 

by means of a numerical differentiation approach.  

 

 The electronic-structure calculations of the DTT and DTT-2I crystals were 

performed using DFT with the PBE19 (Perdew-Burke-Ernzerhof) exchange-correlation 

functional and plane-wave basis set as implemented in the VASP code.20-22 Electron-ion 

interactions were described using the projector augmented wave (PAW) method.23, 24 The 

kinetic energy cutoff on the wave function expansion was 300 ܸ݁. The self-consistent 

calculations were carried out with a 6ൈ6ൈ12 ݇-point and a 6ൈ14ൈ4 ݇-point meshes for 

DTT and DTT-2I, respectively. The inverse effective mass tensor was calculated using 

Sperling’s centered difference method at the band edges with ݀݇ = 0.02 (2ߨ ⁄ Հ) in both 

molecular crystals. 

 

Finally, the transfer integrals for nearest-neighbor pairs of molecules at the 

optimized crystal geometry were evaluated by using a fragment-orbital approach25 in 

combination with a basis set orthogonalization procedure.26 These calculations were 

performed with the PW91 functional and Slater-type triple-ζ plus polarization (TZP) 

basis sets for all atoms, using the ADF (Amsterdam Density Functional) package.27 
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6.3 Results and discussion 

 

6.3.1 Crystallographic information 

 

DIB forms two orthorhombic crystalline phases, denoted α and β, which belong 

to space groups Pbca and Pccn, respectively,28 and contain four molecules per unit cell 

(see Figure 6.1). The α phase (with lattice parameters28  ܽ = 16.9697 Հ, ܾ = 7.3242 Հ, 

and ܿ = 6.156 Հ) is stable up to 326 ܭ, where a transition to the β phase (ܽ = 17.047 Հ, ܾ 

= 7.4370 Հ, and ܿ = 6.1548 Հ) occurs. Figure 6.2 illustrates the crystalline structure of 

DTT29 and DTT-2I.30 The crystallographic data for DTT are as follows: ܲ 2ଵ/݊ space 

group, ܽ=12.746, ܾ=10.614, ܿ=6.005 Հ, and β=97.53°; the crystallographic data for 

DTT-2I are: ܲ 2ଵ/݊ space group, ܽ=13.200, ܾ=4.140, ܿ=19.760 Հ, and β=96.354°. Both 

crystalline unit cells consist of four translationally inequivalent molecules. In DTT, 

identical π-stacking dimers are found along two different reciprocal lattice vectors, i.e., 

ܾ* and ܿ*, respectively. These dimers show the shortest distance (3.773 Հ) between 

sulfur atoms in the DTT crystal. In the DTT-2I crystal significant π-stacking is also 

observed along the ܾ(ܾ*)-axis. The shortest SڮS distances are found along this direction 

(4.140 Հ). As a comparison, in the pentathienoacene crystal the shortest SڮS distance is 

3.527 Հ.31 
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Figure 6.1 a) Chemical structure of DIB. b) Crystal structure of the α-phase of DIB28 
(Pbca space group, ܽ=16.9697, ܾ=7.3242, and ܿ=6.156 Հ; the labeling of the DIB 
molecules as used in the calculations of the transfer integrals is also shown). c) Crystal 
structure of the β-phase of DIB28 (Pccn space group, ܽ=17.047, ܾ=7.4370, and ܿ=6.1548 
Հ).  
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Figure 6.2 (top) Crystal structure of DTT (ܲ 2ଵ/݊ space group, ܽ=12.746, ܾ=10.614, 
ܿ=6.005 Հ, and β=97.53°. (bottom) Crystal structure of DTT-2I (ܲ 2ଵ/݊ space group, 
ܽ=13.200, ܾ=4.140, ܿ=19.760 Հ, and β=96.354°. Chemical structures of the DTT and 
DTT-2I molecules are drawn in the top right corner of each crystal structure, 
respectively. The labeling of the DTT and DTT-2I molecules as used in the calculations 
of the transfer integrals is also shown. The reciprocal lattice vectors for each crystal are 
included as well. 
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6.3.2 Molecular electronic structure 

 

The frontier molecular orbitals (MOs) of DIB along with those of benzene are 

shown in Figure 6.3. As a result of iodine substitution, the D6h symmetry of benzene is 

reduced to D2h in DIB, which lifts the two-fold orbital degeneracy of the frontier orbitals 

found in the parent benzene. The calculations show that while the HOMO level in the 

DIB molecule is well separated (by about 0.8 ܸ݁) from the lower-lying MOs levels, the 

energy difference between the LUMO and higher unoccupied MO levels is only  about 

0.3 ܸ݁. As seen from Figure 6.3, the wave functions of the frontier levels all display a 

significant electronic density on the iodine atoms; this suggests that the iodine atoms 

should contribute significantly to intermolecular electronic interactions for both electrons 

and holes. The HOMO–LUMO gap in DIB is reduced with respect to benzene by 1.4 ܸ݁, 

which is mainly due to the stabilization of the LUMO level.  

 

 
 

Figure 6.3 Illustration of the frontier molecular orbitals of benzene and DIB. 
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The frontier MOs of DTT and DTT-2I are shown in Figure 6.4. The substitution 

of the thiophene peripheral protons with iodine induces a slight decrease between the 

HOMO and LUMO energy levels. The HOMO-LUMO gap in DTT-2I is reduced with 

respect to that of DTT by 0.4 ܸ݁, which results from the stabilization of the LUMO level 

due to the presence of electron-withdrawing substituents. As observed from Figure 6.4, 

the presence of iodine atoms in the molecular backbone results in an extended HOMO 

wavefunction with significant electron density on the halogen atoms. It is important to 

note that electronic density of the iodine atoms in DTT-2I molecule is less pronounced 

than that found in DIB molecule. 

 

 
 
Figure 6.4 Illustration of the frontier molecular orbitals of DTT and DTT-2I. 
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6.3.3 Electronic-structure calculations 

 

6.3.3.1 The DIB crystal 

 

The results of the band-structure calculations along various directions in the α and 

β crystalline phases of DIB are shown in Figures 6.5 and 6.6, respectively. In both cases, 

the valence band consists of four sub-bands arising primarily from the interactions among 

the HOMO levels of the four translationally inequivalent molecules present in the unit 

cell. This is confirmed by a comparison of Figures 6.5 and 6.7, which shows that the 

electron density of the four sub-bands at the Γ-point resembles that of the HOMO level. 

The upper valence sub-band has nearly the same structure in both crystalline phases. Its 

maximum is located at the Γ-point and the largest dispersion is observed along the a-axis 

(along Γܺ) followed by a relatively weaker dispersion along the ܾ-axis (Γܻ), while the 

dispersion along the ܿ-axis (Γܼ), albeit smaller, remains significant.  

 

Interestingly, the largest dispersion is observed along the direction where the 

intermolecular distance between adjacent molecules along the crystal axis is about 17 Հ. 

Since such a large intermolecular distance precludes any direct electronic coupling,26 it is 

clear that the significant band dispersion seen along the ܽ-axis is due to mediation of the 

electronic coupling by other molecules located in the ܾܽ and/or ܽܿ crystal planes. In 

order to shed more light on this issue, transfer integrals between all relevant neighboring 

molecules were computed; the calculations were limited to the transfer integrals 

involving only the HOMO’s for holes and the LUMO’s for electrons. The results 
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obtained for the α crystalline phase are collected in Table 6.1. As expected, the coupling 

between two consecutive molecules along the ܽ-axis (molecules 1 and 7 in Figure 6.1) is 

zero. The transfer integrals along other two crystallographic directions are also very 

small. However, moderate coupling was found between adjacent molecules along the 

diagonal directions of both ܾܽ and ܽܿ planes, 46 and 33 ܸ݉݁, respectively. If a DIB 

molecule is replaced with a benzene one while keeping the same intermolecular 

distances, the transfer integrals would decrease by at least one order of magnitude; this 

confirms that the electronic coupling in DIB is largely dominated by iodine-iodine 

interactions. 

 

 

Figure 6.5 Electronic band structure of the α-phase of DIB. Points of high symmetry in 
the first Brillouin zone are labeled as follows: Γ=(0,0,0), ܺ=(0.5,0,0), ܻ=(0,0.5,0), 
ܼ=(0,0,0.5), ܵ=(0.5,0.5,0), and ܴ=(0.5,0.5,0.5), all in crystallographic coordinates. The 
zero of energy levels corresponds to the valence band edge. The conduction band edge 
denoted by ΔY=(0,0.25,0) is located about 4 ܸ݉݁ below the Γ-point. The right panel 
illustrates the corresponding density of states. 
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Figure 6.6 Electronic band structure of the β-phase of DIB. The labeling scheme for the 
points of high symmetry is the same as in Figure 6.5. The conduction band edge denoted 
by ΛZ=(0,0,0.125) is located about 7 ܸ݉݁ below the Γ-point. 
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Figure 6.7 Wavefunctions of (a) the four valence sub-bands; and (b) the four lowest 
conduction sub-bands at the Γ-point. in the α-crystalline phase (the frontier orbitals are 
denoted as 1). Due to the periodic boundary conditions, portions of the electron density 
appear as fragmented throughout the unit cell. 
 

Table 6.1 DFT Estimates of the transfer integral for molecular pairs in the α-phase of 
DIB. 
 

 hole (ܸ݉݁) electron (ܸ݉݁) 
 ଵ,ଶ -5 10ݐ
 ଵ,ଷ 3 -5ݐ
 ଵ,଻ 0 0ݐ

 ସ,ହ -12 -20ݐ ;ଵ,ହݐ
 ଽ,ଵ଴ 46 9ݐ ;ଶ,ଵ଴ݐ
 ଺,଼ -33 -104ݐ ;଼,ଵݐ
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As in the case of the valence band, the structure of the conduction band is very 

similar for both crystalline phases. The conduction band is in general more complex than 

the valence band. As discussed above, the LUMO level in DIB is separated from the next 

molecular levels by a very small energy gap; as a result, these upper-lying states are also 

expected to contribute to the conduction band. This is confirmed by the comparison of 

Figures 6.3 and 6.7, which indicates a significant contribution of the LUMO+2 state to 

the lower two conduction sub-bands. Furthermore, inspection of Figures 6.5 and 6.6 

reveals that the conduction band consists of a larger number of sub-bands than the 

valence band. The conduction band minimum in both crystalline phases is shifted from 

the Γ-point and is located at ΔY=(0,0.25,0) and ΛZ=(0,0,0.125) for the α- and β-phases, 

respectively. 

 

The dispersion of the lowest conduction sub-band is largest along the a-axis 

where its bandwidth is comparable to that of the highest valence sub-band (165 versus 

235 ܸ݉݁). At first glance, this would appear to contradict the results obtained for the 

transfer integrals in Table 6.1. Indeed, the largest transfer integrals coming from the 

LUMO interactions are at least twice as large as those derived for the HOMO’s; one 

would then expect the conduction band to be significantly wider than the valence band. 

However, as was already mentioned, the conduction band arises from interactions among 

several molecular levels. Thus, the transfer integrals related to the LUMO’s are not 

sufficient to rationalize the dispersion of the conduction band (this result again warns 

against a naive use of just HOMO’s and LUMO’s for the interpretation of charge-

transport properties).  
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In the case of wide bands where the thermally populated levels remain close to the 

band edges, the description of charge transport can be simplified by using the electron 

effective mass approximation. The calculated effective masses along the principal axes 

are shown in Table 6.2 and Table 6.3 for the α and β crystalline phases, respectively. As 

expected, the holes are found to be very light along the a-axis, with an effective mass of 

about 0.6 ݉଴ in both crystalline phases. The hole effective mass is about four times larger 

for the α phase and three times larger for the β phases along the ܾ axis, and is very large 

along the ܿ-axis (8 ݉଴ and 14 ݉଴, for the α and β phases, respectively). For the sake of 

comparison, it was observed that the rubrene crystal (about 0.8 ݉଴)32 has the smallest 

effective mass for holes among the members of the oligoacenes family. 

 

Table 6.2 Hole and electron effective masses ݉ (in units of the electron mass at rest, ݉଴) 
calculated at the band edges of the α-phase of DIB. 
 

 ݉/ ݉଴ parallel to 
holes at Γ 0.56 ܽ 

2.55 ܾ 
8.07 ܿ 

  
electrons at ΔY 0.50 ܽ 

 6.06 ܾ 
 0.96 ܿ 
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Table 6.3 Hole and electron effective masses ݉ (in units of the electron mass at rest, ݉଴) 
calculated at the band edges of the β-phase of DIB. 
 

 ݉/ ݉଴ parallel to 
holes at Γ 0.58 ܽ 

1.73 ܾ 
13.83 ܿ 

  
electrons at ΛZ 0.79 ܽ 

 4.57 ܾ 
 >10a ܿ 

 
aDue to the flatness of the band, it was not possible to derive an accurate value of the 
effective mass along this direction. 
 

According to band-like charge transport theory (see Chapter 1) the orientational 

anisotropy of the mobility is governed by that of the effective mass. In this context, it is 

interesting to note that the measured anisotropy of the hole mobility in DIB (the 

experimental hole mobilities at room temperature along the a, b and c-axes are reported 

to be 12, 4 and 1.7 ܿ݉ଶ/ܸ ·   respectively10) follows the same pattern as the calculated ,ݏ

anisotropy of the hole effective mass. 

 

The temperature dependence of mobility is determined (in the absence of 

chemical and physical defects) by the nature and strength of the electron-phonon 

(vibration) interactions. In the general case of the band model, mobility decreases as 

temperature increases. In the case of DIB, temperature-dependent measurements were 

performed only at elevated temperatures (above 200 ܭ)12 ,10 and the hole mobility was 

observed to decrease with increasing temperature. This feature does not prove that charge 

transport in DIB is band-like since at high temperatures a decrease in mobility with 

temperature could also take place in the hopping regime (in the so-called residual 
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scattering limit where thermal energy exceeds the energy of the activation barrier33). 

However, this temperature dependence, taken together with the similarity between the 

orientational anisotropy of the mobility and the anisotropy of the effective mass, strongly 

points towards the band-like nature of hole transport in DIB.  

 

As in the case of holes, the smallest effective mass for electrons is obtained along 

the a-axis (0.5 ݉଴ and 0.8 ݉଴ for the α and β phases, respectively). Thus, the effective 

mass for electrons in the α phase is even slightly smaller than that for holes. This result 

suggests that if the relaxation time of electrons were to be comparable to that of holes, 

their charge-transport properties should be also comparable, in particular along the a-

axis. However, as described in section 6.3.4, the electron transport in DIB is expected to 

suffer from strong polaronic effects, which might explain why no charge transport has 

been observed or reported for electrons.  

 

6.3.3.2 The DTT and DTT-2I crystals 

 

Considering the high-symmetry reciprocal space directions illustrated in Figure 

6.8, the electronic band structures of DTT and DTT-2I are presented in Figures 6.9 and 

6.10. The high-symmetry points in units of (2ߨ ܽ⁄ ߨ2, ܾ⁄ ߨ2, ܿ⁄ ) are Γ=(0,0,0), 

 ,Γܻ ,ܤand ܼ=(0,0,0.5). Note that Γ ,(0,0.5,0)=ܻ ,(0,0.5,0.5)=ܥ ,(0.5,0,0)=ܤ ,(0.5,0.5,0)=ܣ

and Γܼ are parallel to the reciprocal crystalline axes ܽ*, ܾ*, and ܿ*, respectively. The Γܣ 

and Γܥ correspond to the ܽ*+ ܾ* and ܾ*+ ܿ* directions, respectively. The energy zero is 

set to the valence-band maximum. In both crystals, the conduction bands are less 
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dispersive than the valence bands. This indicates that hole transport should be favored as 

compared to electron transport. Therefore, the main focus of our discussion is oriented 

towards a theoretical understanding of the hole-transport properties in these molecular 

crystals. 

 

 
 
Figure 6.8 Illustration of the standard Brillouin zone directions used to generate the band 
structure plots of Figures 6.9 and 6.10. 

 

In the DTT crystal, the four uppermost valence bands have a bandwidth ܹ of 

0.43 ܸ݁; when compared with other DFT results, this valence bandwidth is smaller than 

that of pentathienoacene crystal, where ܹ ൌ 0.77 ܸ݁ (see Chapter 5 or Reference 34). 

The valence-band dispersion (determined by a single band) along the reciprocal axes 

shows the following trend: ܿ* ሺΓܼ) ൐ ܾ* (Γܻ) ൐ ܽ* (Γܤ). Note that along the ܿ* 

direction the intermolecular distance between DTT molecules is 6 Հ; this might a priori 

preclude any significant orbital interaction, and therefore any band dispersion. In this 

case, the observed band dispersion is attributed to the presence of an intermediate layer of 

molecules along the ܿ* axis. As seen in Figure 6.2, the molecules 1, 2, 11, and 12 are 

sandwiched by two layers of molecules; one layer is formed by molecules 4, 6, 8, and 10 
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and the second layer is formed by molecules 3, 5, 7, and 9. Large band dispersions for the 

uppermost valence band in DTT are found along the ܾ*+ܿ* and ܽ*+ܾ* directions. Along 

the ܾ*+ܿ* direction, short interatomic distances between carbon atoms are present 

(~3.5 Հ) and along the ܽ*+ܾ* direction π-stacking interactions are observed; these two 

crystallographic features are thought to be responsible for the moderate dispersion (as 

compared with larger oligothienoacene family members) in the valence band of the DTT 

crystal. 

 

 
 
Figure 6.9 Electronic band structure of the DTT crystal. The valence band edge is located 
at the Γ-point. The right panel illustrates the corresponding density of states (see text for 
definition of the high-symmetry ݇-points in the first Brillouin zone). 

 

The electronic characteristics discussed above are also supported by direct 

calculations of the transfer integrals between all relevant neighboring molecules. The 

DFT-calculated transfer integrals for DTT are presented in Table 6.4. As expected, the 



 221

coupling between molecules that lead to π-stacking interactions (for example, dimers 

composed of molecules 1 and 2 or 6 and 10) or that favor CڮC interactions (i.e., dimers 

formed by molecules 2 and 3 or 10 and 11) show the largest  HOMO  transfer  integrals  

(-138 ܸ݉݁ and 54 ܸ݉݁, respectively). Also, it is important to note that the large values 

of the transfer integral for dimers composed of molecules 2 and 3 (10 and 11) provide 

another evidence for the valence band dispersion found along the ܿ*-axis.  

 

Table 6.4 DFT estimates of the transfer integral for molecular pairs in the DTT crystal 
(see Figure 6.2 for labeling). 
 

 hole (ܸ݉݁) electron (ܸ݉݁) 
 ଵଵ,ଵଶ -138 18ݐ ;଺,ଵ଴ݐ ;ହ,ଽݐ ;଼,ସݐ ;ଷ,଻ݐ ;ଵ,ଶݐ

 ଵ,ସ 19 39ݐ
 ଵ଴,ଵଵ; 54 21ݐ ;ଶ,ଷݐ

 ଶ,ଵଵ -1 3ݐ
 ଽ,ଵ଴ 6 1ݐ ;଼,଻ݐ ;ହ,଺ݐ ;ଷ,ସݐ

 

In the DTT-2I crystal, the situation is more simple than in the DTT crystal 

because the characteristics of its electronic band structure involve fewer crystallographic 

coordinates. The valence band consists of four nearly degenerated sub-bands and has a 

bandwidth ܹ of 0.47 ܸ݁. The width results from a strong wavevector dispersion  along 

π-stacking directions, i.e., the ܽ*+ܾ* and ܾ*+ܿ* directions or the ܾ*-axis. A flat band is 

observed along the ܽ*-axis (Γܤ); along this direction, the molecules are packed in a 

sidewise arrangement with respect to their short molecular axis, leading to relatively 

large distances (൐ 4.0 Հ) between the atoms that carry significant electron density in the 

HOMO wavefunctions of DTT-2I molecule. The flattest band is found along the ܿ*-axis 

(Γܼ). In this case, neither π-stacking nor IڮI interactions are favored. In complete 
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contrast, we recall that the DIB crystal shows the largest valence-band dispersion along 

this crystallographic direction (i.e., along the long molecular axis).  

 

 
 
Figure 6.10 Electronic band structure of the DTT-2I crystal. The valence band edge is 
located at (0.5,0.5,0)=ܣ. The right panel illustrates the corresponding density of states 
(see text for definition of the high-symmetry ݇-points in the first Brillouin zone). 
 

The DFT-calculated transfer integrals for molecular dimers of the DTT-2I crystal 

are collected in Table 6.5. We note that the bandwidth obtained from the band-structure 

calculation (ܹ ൌ 0.47 ܸ݁) is fully consistent with the value derived from a one-

dimensional tight-binding model (4ݐଷ,ସ ൌ ହ,଺ݐ4 ൌ 0.47 ܸ݁) taking into account the π-

stacking direction. In this case, the transfer integral for holes is 122 ܸ݉݁, which is much 

larger than that for neighboring dimers (less than 10 ܸ݉݁). Such a disparity in the values 

of the transfer integrals opens the possibility to perform systematic modifications of the 

crystalline packing to enhance other types of intermolecular interactions in DTT-2I, 



 223

namely halogen interactions. Interestingly, it is found that a small rotation (൏ 15°) along 

the short molecular axis of molecule 7 in a dimer formed by molecules 5 and 7, leads to a 

significant increase (over two orders of magnitude, ݐହ,଻  ൐  100 ܸ݉݁) in the transfer 

integral for holes of this dimer (see Figure 6.11). This finding indicates that the 

functionalization of the molecular backbone to maximize the SڮS interactions or/and 

IڮI interactions is a rational step towards the production of organic materials with 

enhanced charge-transport properties. 

 

Table 6.5 DFT estimates of the transfer integral for molecular pairs in the DTT-2I crystal. 
 

 hole (ܸ݉݁) electron (ܸ݉݁) 
 ଻,଼ -7 1ݐ ;ଵ,ଶݐ
 ଺,଻ 5 -4ݐ ;ଵ,ଷݐ
 ହ,଻ -1 10ݐ ;ଵ,ସݐ
 ଺,଼ -1 5ݐ ;ଶ,ସݐ
 ହ,଺ -122 1ݐ ;ଷ,ସݐ

 ସ,଻ -7 -1ݐ
 

 
 

Figure 6.11 Illustration of the rotation of molecule 7 along its short molecular axis in a 
dimer formed by molecules 5 and 7 (see Figure 6.2 for a definition of the given molecule 
numbers). 
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The calculated effective masses for the DTT and DTT-2I crystals are shown in 

Table 6.6 and Table 6.7, respectively. The lightest hole in DTT, with an effective mass of 

about 3.7 ݉଴, is found along the ܽܿ plane in which π-stacking interactions are observed. 

This effective mass is heavier than that of other organic molecular crystals used in 

semiconducting applications, such as the pentathienoacene34 or pentacene35 crystals. 

Also, relatively large hole effective masses are observed along the ܾ(ܾ*)-axis, but they 

are not as large as to preclude any charge-carrier transport; this finding is supported by 

the band dispersions and transfer integrals of the DTT crystal along the ܾ(ܾ*)-axis (vide 

supra). As a comparison, in the pentathienoacene crystal (see Chapter 5 or Reference 34), 

hole effective masses along the ܽ-axis are in the order of 35 ݉଴ and the calculated hole 

transfer integral values are equal to 2 ܸ݉݁; in this case, it is more clear that hole 

transport is hindered. In the DTT-2I crystal, the lightest holes (2.0 ݉଴) are found as 

expected along the ܾ-axis. Heavy charge carriers are calculated for the ܿ-axis; however, 

as previously discussed small rotations along the short molecular axis in one of the DTT-

2I molecules decrease the distance between the halogen moieties and enhance the HOMO 

wavefunctions overlap. Calculations of the phonon modes would be useful to determine 

whether such vibrations might be presented and potentially lead to lighter hole effective 

masses. 

 

Table 6.6 Hole effective masses ݉ (in units of the electron mass at rest, ݉଴) calculated at 
the band edges of the DTT crystal. 
 

 ݉/ ݉଴ parallel to 
holes at Γ 3.73 ܽ ൅ 0.813ܿ 

7.16 ܾ 
12.10 ܿ െ 0.152ܽ 
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Table 6.7 Hole effective masses ݉ (in units of the electron mass at rest, ݉଴) calculated at 
the band edges of the DTT-2I crystal. 
 

 ݉/ ݉଴ parallel to 
holes at 8.47 ܣ ܽ ൅ 0.095ܿ 

1.99 ܾ 
75.52 ܿ ൅ 0.035ܽ 

 

6.3.4 Electron-vibration coupling  

 

6.3.4.1 DIB 

 

In this section, a discussion of electron-vibration interactions is presented. The 

DFT estimates for hole-vibration coupling in DIB are collected in Table 6.8. For the sake 

of comparison, the hole-vibration coupling in benzene was also calculated; the benzene 

and DIB results are illustrated in Figure 6.12. The intramolecular polaron binding energy 

calculated for DIB is about 88 ܸ݉݁, which is nearly 40% smaller than that in benzene 

(143 ܸ݉݁). The estimate for ܧ௣௢௟ in benzene is in good agreement with the value of 122 

ܸ݉݁ derived by Kato and Yamabe in the framework of the one-electron approximation.36  

 

As seen from Figure 6.12, the decrease of ܧ௣௢௟ in DIB versus benzene results 

mostly from a significant drop in hole-vibration interaction for the high-frequency mode 

at 1600 ܿ݉ିଵ; the coupling with all other modes is also reduced to some extent. The 

significant decrease in hole-vibration interaction with the 1600 ܿ݉ିଵ mode can be 

rationalized in terms of orbital vibronic coupling constants.37, 38 According to this model, 

the hole-vibration coupling is large when the molecular deformation along the 

corresponding normal coordinate considerably distorts the electron density of the related 
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MO (HOMO in the present case), leading to a large variation in the MO energy. The 

inspection of the normal coordinate for the 1600 ܿ݉ିଵ mode shows that the iodine atoms 

are not involved in this vibration (they stay motionless). Since part of the electron density 

in the case of the diiodobenzene HOMO is located on the iodine atoms, the energy of this 

molecular state is comparatively less affected by this vibration than for benzene; thus, the 

hole-vibrational coupling constant is smaller in the case of DIB.  

 

In general, the charge-transport properties of a particular system results from the 

interplay between a charge localization effect due to electron-phonon coupling and a 

charge delocalization effect due to the electronic coupling. We point out that in the case 

of complex systems, it is incorrect to take the bandwidth of the entire valence or 

conduction band as a measure of the delocalization energy; rather, only those sub-bands 

that are thermally populated and contribute to charge transport should be considered. For 

the understanding of hole transport in DIB only the upper valence sub-band is relevant; in 

the α-crystalline phase (the results for the β-phase are similar), the related bandwidths are 

218, 235 and 141 ܸ݉݁ for the ܽ-, ܾ-, and ܿ- directions, respectively. All these values are 

significantly larger than the polaron binding energy (88 ܸ݉݁). Thus, it can be concluded 

that at low temperature local electron-vibration coupling would not lead to the formation 

of molecular-type (localized) polarons in DIB. However, it is important to bear in mind 

that even if charge transport in DIB falls in a band-like regime at low temperature, the 

local hole-phonon coupling is large enough to result in substantial polaronic effects 

which can lead to a renormalization of the effective mass. A complete description of this 

issue can be obtained only in the framework of a microscopic approach that treats the 
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whole Hamiltonian self-consistently (i.e., including first-principles calculations of the 

electronic and electron-phonon interactions); this challenging task is beyond the scope of 

our thesis. 

 

Table 6.8 B3LYP/6-31G(d,p) (B3LYP/3-21G(d,p) for iodine) estimates of intramolecular 
frequencies (߱) and polaron binding energy (relaxation energy) related to hole transport 
in DIB. 
 

 Neutral  Cation  
߱ (ܿ݉ିଵ)  ܧ௣௢௟ (ܸ݉݁) ߱ (ܿ݉ିଵ)  ܧ௣௢௟ (ܸ݉݁) 

 159  33.2  165  35.6 
 700   0.3  710   0.1 
1074  23.9 1054  31.6 
1217   8.4 1231    4.3 
1614  21.8 1605  15.8 
3226   0.1 3238    0.0 

 total 87.6  total  87.5 
 

 
 
Figure 6.12 Contributions of the vibrational modes to the polaron binding energy 
(relaxation energy) in DIB and benzene. 
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As discussed before, there is growing consensus in the literature33, 39-41 that both 

local and nonlocal couplings should be taken into account in order to obtain a coherent 

description of charge transport in organic molecular crystals. In the case of DIB, the 

preliminary results suggest that nonlocal interactions are weak. This is consistent with the 

fact that, since the iodine atoms are heavy, the amplitudes of DIB molecular motions are 

in general very small and the modulation of the transfer integrals due to intermolecular 

vibrations can be expected to be small as well. The only modes characterized by large 

displacements correspond to librations around the IെI axis. Since the electronic coupling 

in DIB is dominated by iodine-iodine interactions, these modes are also expected to have 

only a small impact on the transfer integrals.12 An example of the dependence of the 

transfer integral on the coordinate of the libration mode at 110 ܿ݉ିଵ is shown in Figure 

6.13. For a geometric distortion of the dimer along this mode corresponding to the mean-

squared displacement (ܳ ൌ  േ 2) at room temperature, the transfer integral varies just by 

10%, which supports the above arguments. Thus, nonlocal vibrational coupling appears 

not to be strong enough to lead to radical changes in the nature of hole transport in DIB, 

even if this term is expected to affect the relaxation time and consequently the 

temperature dependence of the mobility.  
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Figure 6.13 Evolution of the HOMO transfer integral for a DIB dimer composed of 
molecules 1 and 8, as a function of the dimensionless normal coordinate of the ω ൌ 110 
ܿ݉ିଵ libration mode (here, the mean-square displacement at room temperature 
approximately  corresponds to ܳ ൌ  േ 2 since thermal energy at room temperature is 
~200 ܿ݉ିଵ). 
 

While the iodine substitution of benzene results in a significant reduction in hole 

polaron binding energy, the situation is markedly different for electrons. It is well 

established that the electrochemical reduction of aromatic halides can cause the cleavage 

of the carbon-halogen bonds in the generated radical-anions.42, 43 Electronic-structure 

calculations on mono-iodobenzene have shown that the lowest potential surface exhibits 

a minimum along the CെI dissociation coordinate characterized by a very elongated CെI 

bond and with the negative charge localized on the halogen atom.44 Similar results for the 

radical-anion of DIB (see Figure 6.14) were obtained. As seen from Figure 6.14, in 

contrast to the oxidized (radical-cation) state where the symmetric geometry of the 
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neutral state is preserved, the reduction of DIB results in extreme elongation (by about 

0.8 Հ) of one of the CെI bonds (a broken-symmetry effect). Such a large geometry 

deformation results in a very large polaron binding energy for electrons, 1.3 ܸ݁ versus 

0.088 ܸ݁ for holes (in comparison, the polaron binding energy for electrons in benzene is 

about 0.2 ܸ݁).  

 

The calculated electron-polaron binding energy in DIB is much larger than the 

bandwidth of the lowest conduction sub-band. This result strongly suggests that in this 

case electron-phonon coupling leads to the formation of localized molecular polarons. In 

such an instance, charge transport can be described as a sequence of uncorrelated hops. 

The corresponding activation energy is very large (half the polaron binding energy,45, 46 

i.e., about 0.6 ܸ݁); according to the hopping model, the electron mobility in DIB should 

be vanishingly small even at room temperature. It would also be of interest to find out 

whether, upon electron injection, molecular fragmentation of DIB takes place in the solid 

state as well; such a fragmentation would obviously lead to the formation of chemical 

defects. 
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Figure 6.14 DFT geometries (bond lengths are given in Հ) for the neutral, radical-cation, 
and radical-anion states of DIB.  
 

6.3.4.2 DTT and DTT-2I 

 

Tables 6.9 and 6.10 collect the DFT estimates for the hole-vibration coupling in 

DTT and DTT-2I, respectively. The intramolecular polaron binding energy calculated for 

DTT-2I is about 134 ܸ݉݁, which is nearly 20% smaller than that in DTT (174 ܸ݉݁). 

The decrease of ܧ௣௢௟ in DTT-2I versus DTT comes mainly from a drop in hole-vibration 

interaction for the low-frequency mode at around 480 ܿ݉ିଵ; the coupling with all other 

modes is also somewhat reduced. The decrease in hole-vibration interaction with the 481 

ܿ݉ିଵ mode can be understood in terms of the orbital vibronic coupling constants, as 

discussed for the case of DIB in the previous section. A close inspection of the 481 ܿ݉ିଵ 

normal mode in DTT reveals pronounced geometry distortions along the short molecular 

axis, which distorts the electron-density pattern of the HOMO. This low-frequency mode 

stretches the molecule via CെSെC bending in the inner rings. Also, in DTT-2I, a normal-

mode that stretches the short molecular axis is found at 474 ܿ݉ିଵ (see Figure 6.15); 



 232

however, in this case, the iodine atoms remain motionless. Since part of the electron 

density of the HOMO wavefunction of DTT-2I is located on the iodine atoms, the energy 

of this molecular level is less affected by this vibration, leading to a smaller hole-

vibration coupling constant in the DTT-2I molecule as compared to the DTT molecule. 

 

Table 6.9 B3LYP/6-31G(d,p) estimates of intramolecular frequencies (߱) and polaron 
binding energy (relaxation energy) related to hole transport in DTT. 
 

 Neutral  Cation  
߱ (ܿ݉ିଵ)  ܧ௣௢௟ (ܸ݉݁) ߱ (ܿ݉ିଵ)  ܧ௣௢௟ (ܸ݉݁) 

195  2.1 201  2.2 
439  16.2 445  13.6 
485  44.2 481  47.1 
656  2.5 667  3.3 
793  13.1 773  9.7 
906  5.6 899  7.1 
1115  1.3 1107  1.7 
1201  2.3 1199  11.6 
1343  29.8 1318  29.0 
1402  0.0 1431  2.6 
1487  45.8 1480  3.8 
1531  15.8 1555  42.3 
3232  0.1 3246  0.1 
3268  0.1 3259  0.1 

 total 178.7  total 174.2 
 

 

 

 

 

 

 



 233

Table 6.10 B3LYP/6-31G(d,p) (B3LYP/3-21G(d,p)  for iodine) estimates of 
intramolecular frequencies (߱) and polaron binding energy (relaxation energy) related to 
hole transport in DTT-2I. 
 

 Neutral   Cation  
߱ (ܿ݉ିଵ)  ܧ௣௢௟ (ܸ݉݁) ߱ (ܿ݉ିଵ)  ܧ௣௢௟ (ܸ݉݁) 

151  32.0 153  32.6 
477  9.5 474  10.7 
537  9.6 542  7.9 
659  1.2 664  1.2 
832  0.0 816  0.1 
962  0.0 968  0.1 
1317  28.8 1173  0.3 
1388  3.2 1271  40.3 
1479  35.5 1418  0.3 
1517  17.6 1470  7.8 
3248  0.0 1526  32.1 

 total 137.4  total 133.5 
 

 
 
Figure 6.15 Low-frequency normal modes involving sulfur atoms in cationic DTT and 
DTT-2I, respectively.  
 

As shown in Tables 6.9 and 6.10, the peripheral halogen substitution of DTT 

reduces the hole polaron binding energy by 40 meV. However, this situation is markedly 

different for the case of electrons, where a notably large polaron binding energy is found. 

As in the case of DIB (see previous section). Recent theoretical calculations demonstrate 

that peripheral halogen substitution of DTT significantly elevates the polaron binding 

energy for electrons.47 Here, DFT calculations show an elongation (by about 0.7 Հ) for 
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one of the CെI bonds (a broken-symmetry effect) upon reduction of the DTT-2I molecule 

(see Figure 6.16). Such large geometry deformation results in a very large polaron 

binding energy for electrons, 1.7 ܸ݁ vs. 0.134 ܸ݁ for holes, which will prevent any 

significant charge-transport activity for electrons. 

 

 
 
Figure 6.16 DFT geometries (bond lengths are given in Հ) for the neutral, radical-cation, 
and radical-anion states of DTT-2I.  
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6.4 Conclusions 

 

The electronic and electron/hole-vibration interactions in the crystals of 1,4-

diiodobenzene, dithieno[3,2-b:2’,3’-d]thiophene, and 2,6-diiodo-dithieno[3,2-b:2’,3’-

d]thiophene were investigated. In the 1,4-diiodobenzene crystal, transfer-integral and 

band-structure calculations confirm that the electronic coupling for both holes and 

electrons is dominated by iodine-iodine interactions. It was found that both types of 

charge carriers are characterized by a very small effective mass of about 0.5 ݉଴ (along 

the ܽ-axis). On the other hand, the calculations of the band structure and transfer integrals 

for hole transport in the dithieno[3,2-b:2’,3’-d]thiophene and 2,6-diiodo-dithieno[3,2-

b:2’,3’-d]thiophene crystals show that the π-π interactions determine the dominant 

transport direction.  

 

Interestingly our results indicate that the iodine substitution of both benzene and 

dithieno[3,2-b:2’,3’-d]thiophene leads to a significant decrease in the local hole-vibration 

coupling. Estimates of the electron-phonon coupling in DIB suggest that the transfer 

integrals for holes are only moderately affected by intermolecular vibrations. This finding 

and the estimated values for bandwidth along with the results from effective mass 

calculations and temperature-dependent measurements all concur to suggest a band-like 

transport regime for holes in DIB. However, low-temperature mobility measurements and 

additional theoretical investigations would be useful to reach a more complete description 

of hole transport in DIB. In the DTT-2I crystal, the situation appears to be different since 

the intermolecular interactions (i.e., I-I or π-π interactions) that determine the main 
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transport direction are sensitive to phonon-assisted mechanisms, as indicated by the 

preliminary investigation of vibrations such as the one described in section 6.3.3.2. 

However, in order to confirm this conclusion, further theoretical calculations to 

investigate the role of the lattice vibrations and experimental measurements of the 

mobilities in the DTT-2I crystal are required. 

 

For the case of electron transport, DFT calculations for both the DIB and DTT-2I 

molecules point to a very large polaron binding energy, suggesting that electrons would 

be completely localized even at room temperature. The large relaxation energy (local 

electron-vibration coupling) calculated for the radical-anion of DIB and DTT-2I is 

consistent with the previous findings that upon reduction iodobenzenes43 are prone to 

cleavage of the carbon-iodine bonds. Recent theoretical calculations on halogen-

substituted oligothienoacenes have shown a similar trend.47 

 

To summarize, quantum-chemical calculations on DIB indicate that iodine 

substitution could yield new organic semiconductors with large hole mobilities; however, 

these materials are likely to be less suitable as electron transport materials. The 

theoretical work done on DTT-2I opens the route for new synthetic efforts to 

systematically control halogen interactions, which could lead to a new generation of 

organic semiconductors. 
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CHAPTER 7  
 

SUMMARY AND PERSPECTIVES 

 

7.1 Synopsis 

 

In this thesis, a theoretical investigation of the major microscopic parameters 

involved in the description of charge-transport processes in organic semiconductors has 

been presented. The results of our calculations reveal that the theoretical description of 

the electronic and transport properties of organic materials requires the inclusion of both 

electron-electron and electron-phonon interactions. This generalized picture is more 

complex than in conventional inorganic materials, in which the transport properties are 

well described via one-electron (band-like model) approaches. 

 

The results presented in Chapters 3 and 4 indicate that the local and nonlocal 

electron-phonon couplings are system- and size-dependent parameters that need to be 

incorporated in theoretical models whose goal is to predict the transport properties in 

organic semiconductors. More specifically, in Chapter 3, the structural relaxations in the 

ground and excited states of oligoacene molecules showed that: (i) the intramolecular 

vibronic coupling (local coupling) evolves with system size; and (ii) while the hole 

coupling constant in the ground cation states is dominated by high-frequency vibrations, 

the coupling constants of the excited states tend to redistribute towards low-frequency 

vibrations. In Chapter 4, a combined DFT and MM investigation of the nonlocal electron-
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phonon interactions in the oligoacene crystals revealed that the electronic couplings for 

both holes and electrons are significantly affected by intermolecular- and intramolecular 

lattice vibrations, with the major contribution coming from intermolecular vibrations. The 

coupling of the charge carriers with lattice vibrations was estimated by means of the 

intermolecular relaxation energy, . In the oligoacene crystals,  decreases with system 

size and is larger in the case of electrons with respect to holes. To study the role of the 

nonlocal coupling mechanism on the charge transport, the variance of the electronic 

couplings due to thermal fluctuations was systematically investigated. The results 

underline that thermal vibrations (even the zero-point vibrations at 0 ) significantly 

modulate the hole- and electron-phonon coupling constants; the contribution of low-

temperature vibrations to the respective charge-carrier coupling constants is larger in the 

molecular crystal of naphthalene than in pentacene. 

 

In Chapters 5 and 6, the focus of our studies shifted towards systematic 

investigations of the microscopic charge-transport parameters in a series of organic 

molecular crystals functionalized with sulfur and/or iodine atoms. In Chapter 5, the key 

molecular parameters that govern charge transport in the pentathienoacene crystal (the 

thiophene equivalent of pentacene) were investigated. It was found that the main charge-

transport properties can be associated to the nature of the intermolecular interactions 

present in this molecular crystal, i.e., the π-stacking and S S interactions for holes and 

electrons, respectively. Estimated hole mobilities in the band and hopping regimes for the 

pentathienoacene crystal are comparable to those obtained for the pentacene and 

sexithienyl crystals. 
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In Chapter 6, on the basis of electronic-structure calculations, it was demonstrated 

that the high hole mobility in the 1,4-diiodobenzene (DIB) crystal is associated with the 

iodine atoms. Similar theoretical calculations were performed on the 2,6-diiodo-

dithieno[3,2-b:3’,2’-d]thiophene (DTT-2I) crystal, a new addition to the family of 

thiophene organic semiconductors. In contrast to the DIB case, the intermolecular π-π 

interactions in DTT-2I have precedence over the I-I interactions; our results suggest 

negligible hole transport along the direction where the I-I interactions are dominant. 

However, it remains to be seen whether lattice vibrations could provide a path for hole 

transport along the long molecular axis, where the iodine atoms are located. In the case of 

electron transport, our calculations for both the DIB and DTT-2I molecules point to a 

very large polaron binding energy and, as a result, insignificant charge mobility for 

electrons. 

 

7.2 Future considerations 

 

In the past, the nature of the local electron-vibration coupling and its impact on 

charge-transport processes in organic materials (at a molecular level) has been 

extensively characterized. This is in part related to the reliability of current quantum-

chemical methods to accurately describe the vibrational spectra of organic molecules of 

medium to relatively large size. However, the description of the vibrational modes in 

organic molecular crystals, a key element in the analysis of the role of the nonlocal 

coupling in charge-transport processes, is a much more complicated proposition. This is 

mainly due to the fact that first-principles methods fail to adequately describe weak 
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intermolecular interactions. In the near future, it can be expected that the inclusion of 

non-covalent interactions into DFT methodologies (for example, DTF-D methods) will 

stimulate the accurate prediction of the vibrational modes over a much larger range of 

systems than those investigated in this thesis. Therefore, a rapid and a reliable description 

of the vibrational properties in a series of organic molecular crystals represents the first 

step towards the calculation of the vibrational couplings and subsequently towards a 

better understanding of the role of nonlocal electron-phonon interactions and their impact 

on charge transport. Once this first step is completed and on the basis of our theoretical 

calculations, it will be important to develop new polaron models that explicitly take into 

account the impact of lattice vibrations on the description of charge-carrier dynamics in 

organic materials. A more comprehensive approach will come with the development of 

models that allow the inclusion of the vibrational couplings with all the modes, optical 

and acoustical, and at different -points in the reciprocal space.  

 

On a separate basis, high-level ab initio calculations of the electronic couplings 

(i.e., transfer integrals) can be used to benchmark results obtained from semi-empirical 

methods on a variety of crystals. If significant agreement is found, the calculation of the 

nonlocal electron-phonon coupling constants can be substantially accelerated. In the same 

context, the quality of the correspondence between DFT and MDS methods to estimate 

the intermolecular relaxation energy, , remains to be assessed. It will be helpful to 

evaluate the transfer integrals at a high-level of theory for those molecular configurations 

obtained from MDS. While we are aware that this represents a computationally 

demanding task, we believe that it can be carried out at least for the naphthalene crystal 
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and on those dimers that show significant coupling with lattice vibrations (e.g., 

interactions along the  plane in the naphthalene crystal).  

 

Finally, it is expected that future theoretical characterizations (at the molecular 

level) of the microscopic charge-transport parameters in organic semiconductors will 

fully include the nonlocal coupling constants in their derivation. It is worth noting that 

the magnitude of the nonlocal electron-phonon coupling in naphthalene is comparable ot 

that of the electronic coupling, which illustrates its importance in further theoretical 

studies which aim at predicting new materials with high carrier mobility. In principle, the 

methodology used to estimate the nonlocal coupling in oligoacenes can be extended to 

members of the oligothienoacene family (i.e., the pentathienoacene crystal) or, as an 

extension to Chapter 6, the effect of the lattice vibrations can be also investigated in the 

2,6-diiodo-dithieno[3,2-b:3’,2’-d]thiophene crystal. The theoretical work on the 1,4-

diiodobenzene crystal, which attributes the high mobility in this crystal to the heavy 

iodine atoms, opens the route for new synthetic efforts to systematically control the 

intermolecular halogen interactions, in addition to the well-known π-π interactions. This 

could potentially lead to a new generation of organic semiconductors. 
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