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SUMMARY

In this thesis, we study a series of closely related multi-stage stochastic programming

models in production planning, from both a modelling and an algorithmic point of view.

We first consider a very simple multi-stage stochastic lot-sizing problem, involving a single

item with no fixed charge and capacity constraint. Although a multi-stage stochastic integer

program, this problem can be shown to have a totally unimodular constraint matrix. We

develop primal and dual algorithms by exploiting the problem structure. Both algorithms

are strongly polynomial, and therefore much more efficient than the Simplex method. Next,

motivated by applications in semiconductor tool planning, we develop a general capacity

planning problem under uncertainty. Using a scenario tree to model the evolution of the

uncertainties, we present a multi-stage stochastic integer programming formulation for the

problem. In contrast to earlier two-stage approaches, the multi-stage model allows for

revision of the capacity expansion plan as more information regarding the uncertainties is

revealed. We provide analytical bounds for the value of multi-stage stochastic programming

over the two-stage approach. By exploiting the special simple stochastic lot-sizing substruc-

ture inherent in the problem, we design an efficient approximation scheme and show that

the proposed scheme is asymptotically optimal. We conduct a computational study with

respect to a semiconductor-tool-planning problem. Numerical results indicate that even an

approximate solution to the multi-stage model is far superior to any optimal solution to the

two-stage model. These results show that the value of multi-stage stochastic programming

for this class of problem is extremely high. Next, we extend the simple stochastic lot-sizing

model to an infinite horizon problem to study the planning horizon of this problem. We

show that an optimal solution of the infinite horizon problem can be approximated by opti-

mal solutions of a series of finite horizon problems, which implies the existence of a planning

horizon. We also provide a useful upper bound for the planning horizon.

ix



CHAPTER I

INTRODUCTION

1.1 Background and motivation

Production planning is a key area of operations management. An important methodology

for production planning is mathematical programming. Traditional mathematical program-

ming models for production planning are deterministic, and cannot provide robust produc-

tion plans in the presence of uncertainty. As such, deterministic planning models may yield

unsatisfactory decisions. To motivate our research, consider the following capacity and

production planning problem arising in the semiconductor industry. In a semiconductor

wafer fab, one must determine the number of machine tools required for manufacturing the

appropriate product mix. However, the tools are highly customized and expensive, and the

lead time for tool manufacturing can be up to 18 months. Moreover, the demand for the

products is highly volatile. In this application, there is a clear need for explicitly addressing

uncertainty, and optimization models dealing with uncertainty are greatly needed.

Stochastic programming [14, 31, 49], an active branch of mathematical programming

dealing with optimization problems involving uncertain data, has seen several successful

applications in production planning [10, 22, 23, 55]. Unlike alternative approaches to deci-

sion making under uncertainty, such as Markov decision processes, stochastic programming

requires few assumptions on the underlying stochastic processes and allows for modelling

of complicated decision structures. On the other hand, stochastic programming assumes

a finite number of stages and exogenous uncertainties. With recent increase in compu-

tational power and algorithmic developments, the limitations of stochastic programming

arising from computational difficulties have been relieved to a large extent. In recent years,

a variety of algorithms for various classes of stochastic programs have been developed and

used for solving realistic problems [49]. In multi-period production planning, most existing

stochastic programming models adopt a two-stage approach. For the semiconductor tool
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planning example discussed above, a number of such two-stage stochastic programming

models have been proposed [5, 22, 28, 55, 45]. In a two-stage approach, the plan for the

entire multi-period planning horizon is determined before the uncertainty is realized, and

only a limited number of recourse actions can be taken afterwards. In contrast, a multi-

stage approach allows revision of the planning decisions as more information regarding the

uncertainties is revealed. Consequently, the multi-stage model is a better characterization

of the dynamic planning process, and provides more flexibility than does the two-stage

model. However, very few multi-stage stochastic programming models have been developed

and actually solved in applications [2, 3, 32, 35, 44, 57]. Two reasons can be identified.

First, multi-stage models are much more difficult to solve than two-stage models. This is

particularly true when integer variables are involved [47, 58]. Second, even though multi-

stage models allow for superior solutions, the actual improvement in quality may be small

and may not justify the added computational difficulties. Unfortunately, no quantitative

analysis of solution quality of multi-stage models has been reported in the literature.

The goal of this thesis is to study multi-stage stochastic programming models in pro-

duction planning applications with a view to exploit special structures and develop efficient

solution algorithms. A related goal is to understand the value of multi-stage models over

two-stage models in certain applications. Finally, we investigate the approximation of a cer-

tain class of infinite-horizon stochastic production planning problems using finite-horizon

problems.

1.2 Outline of the thesis

The lot-sizing problem is a basic component of many production planning models. As in

the deterministic case, to study production planning problems under uncertainty, we first

study a simple stochastic lot-sizing problem. In Chapter II, we study a stochastic lot-

sizing problem involving a single item, linear cost structures, and finite distributions for

the stochastic cost and demand parameters. We represent the stochastic data as a scenario

tree. In a scenario tree, each node n represents a possible state of the world, associated with

a set of data (stochastic demand, stochastic cost, probability, etc.). The root node of the
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tree represents the current state of the world. Node a(n) is the direct ancestor of node n.

The direct descendants of node n are called the children of node n. The subtree with root

node n is denoted by T (n). Since the root node is usually indexed as node 1, the whole

scenario tree can be denoted as T (1). A path from the root node to a node n describes one

realization of the stochastic process from the present to the period where node n appears.

The set of all the nodes on this path is denoted as P(n). A full evolvement of the stochastic

process over the entire planning horizon, i.e., the path from the root node to a leaf node,

is called a scenario. Note the cardinality of P(n) represents the time period when node n

appears, which is denoted by t(n); and the set of all the nodes in a period t is represented

by St. An illustration of the scenario tree model is provided in Figure 1:

Figure 1: The scenario tree model

The scenario tree model provides an explicit description of the stochastic data. It has few

assumptions on the underlying stochastic process. However, it does simplify the stochastic

process by assuming a finite number of possible states in each period. On the other hand,

if each non-leaf node has a fixed number of children, or a fixed number of branches, then

the scale of scenario tree increases exponentially with increasing time horizon, which is a
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disadvantage. With the scenario tree model, we formulate a multi-stage stochastic linear

program of the simple stochastic lot-sizing problem. We develop primal and dual algorithms

for the problem. We prove that the complexity of the primal algorithm is O(N2), while

the complexity of the dual algorithm is O(N log N log (log N)), where N is the number of

nodes in the scenario tree used to model the stochastic parameters. Numerical experiences

further show the computational superiority of the two algorithms.

In Chapter III, we study a general class of capacity planning problems under uncertainty,

where the simple stochastic lot-sizing problem is an inherent substructure. The model

proposed is a multi-stage stochastic integer program. To evaluate the advantage of this

model over two-stage models, the concept of value of multi-stage stochastic programming

over the two-stage approach is introduced in [1]. For the general model, we provide useful

analytical bounds for the value of multi-stage stochastic programming. Furthermore, by

exploiting the simple stochastic lot-sizing substructure, we design an efficient approximation

scheme, which is proven to produce asymptotically optimal solutions.

Chapter IV describes a computational study of a semiconductor tool planning problem

with industrial-size data. We test the value of multi-stage stochastic programming and

heuristic solution quality, with respect to an increasing number of stages and an increasing

number of branches in the scenario tree. The results show that the value of multi-stage

stochastic programming increases with increasing variability in stochastic data, while the

heuristic solution quality increases with an increasing number of stages. An exciting ob-

servation is that, in cases where the value of multi-stage stochastic programming is higher,

the performance of the approximation scheme is better.

We study an extension of the simple stochastic lot-sizing problem to an infinite horizon

in Chapter V. In the context of Markov decision processes, much research has focused on

using a finite-horizon problem to approximate the infinite-horizon problem. However, in the

field of stochastic programming, to the best of our knowledge, there is no such study. For

the infinite-horizon stochastic lot-sizing problem, we analyze finite-horizon approximation

problems. We show that one can find a length of planning horizon such that an optimal

4



first-stage solution to the finite-horizon approximation is the same as that of the infinite-

horizon problem. This length is called the planning horizon. We develop a useful formula

for calculating the planning horizon.

We summarize the major contributions of the thesis in Chapter VI, along with a dis-

cussion of possible future research directions.
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CHAPTER II

A SIMPLE STOCHASTIC LOT-SIZING PROBLEM

2.1 Introduction

This chapter considers a stochastic extension of the finite horizon, single item, uncapaci-

tated, dynamic lot-sizing problem with linear costs:

min
T∑

n=1

(αnxn + βnIn)

s.t. In−1 + xn = In + δn n = 1, . . . , T

xn, In ∈ Z+ n = 1, . . . , T,

(1)

where T is number of planning periods, xn and In denote the production and ending inven-

tory decisions for period n, respectively, and αn, βn and δn denote the per-unit production

cost, holding cost and demand for the period n. Note I0 is the initial inventory at the

beginning of the time horizon. We usually assume I0 = 0. It is well known that (1) can be

easily solved using simple greedy schemes (cf. [30, 60]).

Beginning with the seminal work of Arrow et al. [4], stochastic inventory problems have

been studied extensively (cf. [60]). Much of this work is based on specific assumptions

on the underlying stochastic processes, to allow for elegant analytical solutions. Here we

consider general, albeit finite, distributions for the stochastic parameters. In this situation,

by using a scenario tree to model the evolution of the stochastic parameters, a stochastic

extension of (1) can be formulated as a multi-stage stochastic program [14]. Such a stochas-

tic programming formulation has been considered in [21], where the author shows that the

problem can be transformed to a network flow problem by introducing additional variables.

In this chapter, we consider a slightly different version of the stochastic inventory problem

considered in [21], and develop a primal and a dual algorithm for the problem. We show

that the complexity of the proposed algorithms is O(N2), where N is the number of nodes

in the scenario tree used to model the stochastic parameters.
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2.2 Stochastic programming formulation

To extend (1) to a stochastic setting, we use a scenario tree with T stages to describe

the evolution of the uncertain data over the planning horizon. In this tree, the nodes in

stage (or level) t of the tree constitute the states of the world that can be distinguished

by information available up to time stage t. The probability associated with the state of

the world represented by node n is pn, and the time period corresponding to node n is tn.

Each node n has a unique direct ancestor a(n) except the root node. Each non-leaf node

n is the root of a non-trivial subtree denoted by T (n). We use T = {1, ..., N} to denote

the whole tree, where N is the total number of nodes in the tree. For node n, we define

P(n) as the set of all nodes on the path from the root of T to node n (including node n

and the root), and P̄(n) = P(n)\{n}. The stochastic problem parameters are then given

by the sequence {αn, βn, δn}n∈T . With an objective of minimizing the expected total costs,

a multi-stage stochastic programming extension of (1) is as follows:

min
∑

n∈T
pn(αnxn + βnIn)

s.t. Ia(n) + xn = In + δn ∀ n ∈ T
xn, In ∈ Z+ ∀ n ∈ T .

(2)

We can reformulate (2) by introducing cumulative demand dn =
∑

m∈P(n) δm and elimi-

nating the variables In using the identity In =
∑

m∈P(n) xm − dn (we assume the initial

inventory I0 = 0). The resulting formulation is:

min
∑

n∈T
cnxn − c̄

s.t.
∑

m∈P(n)

xm ≥ dn ∀ n ∈ T

xn ∈ Z+ ∀ n ∈ T ,

(3)

where cn = pn(αn +
∑

m∈T (n) pmβm

pn
) and c̄ =

∑
n∈T pnβndn. Note that cn is actually the

expected total cost of producing one unit at node n and carry it as inventory until the end

of time horizon. For each n, note that cn = pn(αn + βn) +
∑

m∈T :a(m)=n(cm − pmαm). So

the computation of cn is O(BN) where B is the maximum number of branches of non-

leaf nodes. Since B < N (in fact B << N), the complexity of the reformulation step is

7



within O(N2). The remainder of the chapter will be concerned with formulation (3). In

the following developments we drop the constant term c̄ from the objective function, and

assume cn > 0 and dn > 0 for all n ∈ T :

min
∑

n∈T
cnxn

s.t.
∑

m∈P(n)

xm ≥ dn ∀ n ∈ T

xn ∈ Z+ ∀ n ∈ T .

(4)

The first observation is that even though (4) is a multi-stage stochastic integer program,

the following advantageous property holds.

THEOREM 1 With integer demand parameters {dn}n∈T , the LP relaxation of (4) yields

integral solutions.

PROOF. Note that the constraint matrix of (4) is a N × N 0-1 matrix. Let us denote

this matrix as U = [uij ], where uij = 1 if j ∈ P(i) in the scenario tree T , and uij = 0

otherwise. Let J be any subset of the columns of U , i.e., a subset of the nodes in T . Let

{t1, . . . , tK} be the indices of time stages corresponding to the nodes in J , and suppose that

t1 < t2 < · · · < tK . Let St = St∩J , i.e., the set of nodes in time stage t included in J . We

can then create a partitioning of the nodes (columns) in J as follows J1 = ∪K
i=1, i is oddSti

and J2 = ∪K
i=1, i is evenSti . It is immediately verified that

|
∑

j∈J1

uij −
∑

j∈J2

uij |≤ 1 ∀ i = 1, . . . , NT .

Thus for any subset of the columns in U , we can create a bi-partition such that the differ-

ence in the sum of coefficients of each partition along every row of U is at most 1. It then

follows (cf. [40]) that U is totally unimodular, and the claim holds. 2

According to Theorem 1, we can rewrite (4) as follows when the dn’s are integers:

min
∑

n∈T
cnxn

s.t.
∑

m∈P(n)

xm ≥ dn ∀ n ∈ T

xn ∈ R+ ∀ n ∈ T .

(5)
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Although (4) is quite a simple problem, it often arises as the key substructure in more

complicated planning problems, such as the capacity planning problem considered in Chap-

ter III. This structure also arises in stochastic extensions of some classes of joint pricing-

inventory problems (cf. [16]), whose deterministic versions involve the classical lot-sizing

structure (1). The algorithms proposed next can be very effective within decomposition

based methods for the problems mentioned above.

2.3 Algorithms

In this section, we propose a primal and a dual algorithm for the stochastic lot-sizing prob-

lem (5). Our exposition relies on two different indexing systems for the nodes in the scenario

tree T .

Indexing scheme 1. The nodes in T are indexed 1, 2, . . . , N in increasing order of their time

stage, i.e., t1 ≤ t2 ≤ · · · ≤ tN . No particular ordering is imposed on the indices of the nodes

in the same time stage. Thus the root node has an index of 1.

Indexing scheme 2. The nodes in T are indexed 1, 2, . . . , N in decreasing order of the cor-

responding cumulative demand, i.e., d1 ≥ d2 ≥ · · · ≥ dN . If dm = dn, then m < n if tm < tn.

The two indexing schemes corresponding to an example scenario tree are illustrated in

Figure 2.

2.3.1 The primal algorithm

We assume that the nodes are labelled according to indexing scheme 1. Note that we can

construct a solution x0 = (x0
1, x

0
2, ..., x

0
N ) for (5) by setting

x0
n = max{0, dn − max

m∈P̄(n)
dm}

for all n = 1, . . . , N . It is easily verified that

∑

m∈P(n)

x0
m = max

m∈P(n)
dm ≥ dn,

9



(2,5)

(4,3) (7,4)

(7,4) (9,1) (6,2) (8,6)

1

2 3

4 5 6 7

Index System 1

(2,5)

(4,3) (7,4)

(7,4) (9,1) (6,2) (8,6)

7

6 3

4 1 5 2

Index System 2

(2,5)

(4,3) (7,4)

(7,4) (9,1) (6,2) (8,6)

1

2 3

4 5 6 7

Index System 1

(2,5)

(4,3) (7,4)

(7,4) (9,1) (6,2) (8,6)

7

6 3

4 1 5 2

Index System 2

Figure 2: Indexing schemes (the numbers in parenthesis indicate (dn, cn))

and therefore x0 is a feasible solution to (5). The key idea of our primal algorithm is to start

from node production levels given by the solution x0, and then to shift some production

from a group of nodes to their common ancestor, whenever the sum of the unit costs of

this node group is larger than that of the common ancestor. This operation will be called

“shifting-up.” In each shifting-up operation, we will shift as much as possible to make at

least one variable (node production level) change from positive to zero. With respect to a

certain solution x = (x1, x2, ..., xN ), we shall need the following notations to describe the

algorithm:

A(n) = {m ∈ T (n)\{n} : xm > 0, xk = 0 ∀ k ∈ P̄(m)\P(n)},
sn =

∑

m∈A(n)

cm, and

∆n = min
m∈A(n)

xm.

Note that A(n) is the set of closest descendants of n with positive production levels. This

is the set of nodes from which production may be shifted up to node n. The primal scheme

is detailed in Algorithm 1.

The algorithm first initializes the solution to x0. Then, starting from a non-leaf node

k with the largest index, the algorithm first compares the total production cost sk of the

nodes in A(k) with the production cost ck of node k; then, if sk > ck, the algorithm shifts

the minimum production ∆k amongst the nodes in A(k) to node k. Figure 3 illustrates

the primal algorithm for the example scenario tree in Figure 2. The first scenario tree in

10



Algorithm 1 The primal algorithm
1: set x∗n = max{0, dn −

∑
m∈P̄(n) x∗m} for all n = 1, . . . , N

2: set k = max{n ∈ T : T (n)\{n} 6= ∅}.
3: while k ≥ 1 do
4: compute A(k), sk and ∆k.
5: if ck < sk then
6: update the solution corresponding to the nodes in A(k) ∪ {k} as follows:

x∗m =
{

x∗k + ∆k if m = k
x∗m −∆k for all m ∈ A(k)

7: else
8: set k = k − 1
9: end if

10: end while
11: return x∗

Figure 3 illustrates the initial solution. The next tree illustrates the iteration corresponding

to node k = 3 (the non-leaf node with the largest index). Here A(3) = {7}, s3 = 6, c3 = 4,

and ∆3 = 1. Thus 1 unit of production is shifted up from node 7 to node 3. The next

iteration considers node k = 2. Here A(2) = {4, 5}, s2 = 5, c2 = 3, and ∆2 = 3. Thus 3

units of production are shifted from node 4 and node 5 to node 2. The remaining iterations

are similar.
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Figure 3: The primal algorithm (the numbers in parenthesis indicate (dn, cn, xn))
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2.3.2 The dual algorithm

Consider the dual of (5):

max
∑

n∈T
dnπn

s.t.
∑

m∈T (n)

πm ≤ cn ∀ n ∈ T

πn ∈ R+ ∀ n ∈ T .

(6)

Here we propose an algorithm for solving (6). The algorithm is based on the following

observation.

LEMMA 1 A solution π = (π1, π2, ..., πN ) is feasible to (6) if and only if:

0 ≤ πn ≤ min
m∈P(n)

{cm −
∑

k∈T (m)\{n}
πk} ∀ n ∈ T . (7)

Furthermore, the second inequality is tight when π is optimal.

PROOF. Note that for every m ∈ P(n), the corresponding row in (6) is
∑

k∈T (m) πk ≤ cm,

i.e., πn +
∑

k∈T (m)\{n} πk ≤ cm. So we require that πn ≤ cm − ∑
k∈T (m)\{n} πk for all

m ∈ P(n). If we have a strict inequality for some n such that πn < minm∈P(n){cm −
∑

k∈T (m)\{n} πk}, then all the constraints in which πn appears are not tight and we can

increase πn to get a new feasible solution with greater objective value. 2

The dual algorithm is a greedy scheme, where we sort the dual variables according to

decreasing objective function coefficients {dn}n∈T , i.e., indexing scheme 2, and then set

their values sequentially to make (7) tight. The scheme is detailed in Algorithm 2.

Figure 4 illustrates the dual algorithm for the example in Figure 2. Note that the nodes

are indexed according to scheme 2. The first tree illustrates the initial dual solution. The

next tree illustrates the first iteration, where k = 1, and we set π∗1 = 1. The costs on the

nodes on P̄(1) = {6, 7} are reduced to c1
6 = c0

6−π∗1 = 3−1 = 2 and c1
7 = c0

7−π∗1 = 5−1 = 4.

The remaining iterations proceed similarly.
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Algorithm 2 The dual algorithm
1: label the nodes of T according to the indexing scheme 2
2: set π∗n = 0 for all n = 1, . . . , N
3: set c0

n = cn for all n = 1, . . . , N
4: for k = 1, ..., N do
5: set π∗k = min

n∈P(k)
{ck−1

n }
6: set

ck
n =

{
ck−1
n − π∗k for all n ∈ P(k)

ck−1
n otherwise

7: end for
8: return π∗
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Figure 4: The dual algorithm (the numbers in parenthesis indicate (dn, cn, πn))

2.4 Validity and complexity

2.4.1 Proof of validity

The following results establish the correctness of the proposed algorithms. We assume that

the nodes are indexed according to scheme 2.

LEMMA 2 At any iteration k ∈ {1, . . . , N} of the dual algorithm, the dual solution π∗

satisfies

∑

m∈T k(n)

π∗m ≤ cn ∀ n ∈ T , and (8)

∑

m∈T k(n)

π∗m =
∑

m∈T (n)

π∗m = cn ∀ n ∈ argminm∈P(k){ck−1
m }, (9)

where T k(n) = T (n) ∩ {1, 2, ..., k}.

13



PROOF. By induction on k, it is easy to see that ck
n = cn −

∑
m∈T k(n) π∗m for all n. Also,

since n ∈ P(k) if and only if k ∈ T (n), we have π∗k ≤ ck−1
n for all n ∈ P(k). Therefore,

ck
n ≥ 0 for any n ∈ T , and (8) follows. Furthermore, by construction, the algorithm en-

sures
∑

m∈T k(n) π∗m = cn for all n ∈ argminm∈P(k){ck−1
m }. Since the feasibility constraints

demand
∑

m∈T (n) π∗m ≤ cn, equation (9) then follows. 2

In the following result we shall make use of the following notation. At any iteration k

of the dual algorithm, let

mk ∈ argminm∈P(k){ck−1
m }

such that

ck−1
n > ck−1

mk
∀ n ∈ P(k)\P(mk).

That is, mk is the closest node to k (on P(k)) that minimizes ck−1
m . Correspondingly, (9)

holds for the node n = mk.

THEOREM 2 The solution x∗ = (x∗1, x
∗
2, ...x

∗
N ) returned by the primal algorithm and the

solution π∗ = (π∗1, π
∗
2, ..., π

∗
N ) returned by the dual algorithm are optimal for (5) and (6),

respectively.

PROOF. First note that x∗ is a feasible solution to (5). This is because the initial solution

x0 is feasible, and by construction, each shifting-up operation preserves feasibility by only

shifting 4k = minm∈A(k) x∗m units. Lemma 2 guarantees the feasibility of the dual solution

π∗ (let k = N in (8)). It remains to show that x∗ and π∗ satisfy complementary slackness,

i.e., for all n ∈ T :

π∗n > 0 ⇒ ∑
m∈P(n) x∗m = dn

∑
m∈T (n) π∗m < cn ⇒ x∗n = 0

(10)

We shall show that the above conditions hold by induction. We assume that the nodes are

indexed according to scheme 2.

The base case: Consider node 1. We show that (10) holds for all nodes n ∈ T (m1).

By the definition of m1, we have that π∗1 = cm1 . The dual constraint corresponding to
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node m1 in (6) requires
∑

m∈T (m1) π∗m ≤ cm1 . Therefore, for all n ∈ T (m1)\{1}, we

have π∗n = 0 and mn = m1. Also, by our assumption of index system, we have d1 > dn

for all n ∈ P̄(1) (otherwise n will be indexed 1). So in x0 we must have x0
1 > 0 and

∑
m∈P(1) x0

m = d1. Furthermore, for all n ∈ T (1)\{1}, x0
n = 0 since dn ≤ d1. According to

primal algorithm, we have
∑

m∈P(1) x0
m =

∑
m∈P(1) x∗m since we only shift quantity along

the tree towards the root. If m1 6= 1 (notice m1 ∈ P(1)), observe that cn > cm1 for all

n ∈ P(1)\P(m1). So in the primal algorithm, when we process node m1, all the productions

of nodes n ∈ P(1)\P(m1) will be shifted up, i.e., we must deplete any positive quantity

along the path from 1 to m1 (not including the latter). After we finish processing m1, we

have xn = 0 for all n ∈ P(1)\P(m1). Also, in the following iterations, the values of primal

variables in T (m1)\{m1} can not increase anymore (which are all zeroes). Therefore in

final solution we have:

∑
m∈P(m1) x∗m =

∑
m∈P(1) x0

m = d1

x∗m = 0 ∀m ∈ T (m1)\{m1}

The second equality comes from the first and the fact that dm ≤ d1 for all m ∈ T (m1)\{1}.
Now we can check condition (10). Note that the only positive dual variable in T (m1) is π∗1

and we have shown that
∑

m∈P(1) x∗m =
∑

m∈P(m1) x∗m = d1. Since
∑

m∈T (m1) π∗m = cm1 , we

claim that {n ∈ T (m1) :
∑

m∈T (n) π∗m < cn} ⊆ T (m1)\{m1}. The conclusion holds because

x∗n = 0 for all n ∈ T (m1)\{m1}.

The induction step: Assume that (10) holds for all nodes in T (m1)∪ T (m2)∪ · · · ∪ T (mk).

First, we define H(k) = {1, 2, ..., k}, R(k) = {mn : n ∈ H(k)} and F(k) = ∪{T (mn) : n ∈
H(k)}. If k + 1 ∈ T (mn) for some n ∈ H(k), then there is no need to check k + 1 since the

corresponding conditions are already satisfied. If this is not the case, i.e., k + 1 /∈ F(k), we

examine conditions (10) for nodes in T (mk+1)\F(k).

Note for any T (m) and T (n) (m 6= n), there are only three exclusive cases: T (m) ⊂
T (n), or T (m) ⊂ T (n), or T (m) ∩ T (n) = ∅. In the third case, T (m) and T (n) form

an independent pair. Without loss of generality, we can assume the trees T (m1), T (m2),

..., T (mk) are pairwise independent. Notice for all m ∈ P(k + 1) and n ∈ H(k), either
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T (mn) ∩ T (m) = ∅ or T (m) ⊃ T (mn) exclusively. Also, according to (8) and (9): cn ≥
∑

m∈T k(n) π∗m for all n ∈ P(k + 1), and
∑

m∈T k(n) π∗m =
∑

m∈T (n) π∗m = cn for all n ∈ R(k).

So:

∑

m∈T k(n)

π∗m =
∑

m∈T (n)∩F(k)

π∗m =
∑

m∈T (n)∩R(k)

cm ≤ cn ∀n ∈ P(k + 1) (11)

On the other hand, according to index system 2, we have dk+1 > dn for all n ∈ P̄(k + 1).

Therefore, x0
k+1 > 0 and

∑
m∈P(k+1) x0

m = dk+1. Furthermore, note for all n ∈ H(k)

such that mn ∈ T (k + 1), we have k + 1 ∈ P̄(n), so dn > dk+1 (otherwise k + 1 will

be checked before n). For all m ∈ T (k + 1)\F(k)\{k + 1}, x0
m = 0 since dm ≤ dk+1.

Therefore, according to the primal algorithm, we also have
∑

m∈P(k+1) x∗m = dk+1. If

mk+1 6= k + 1 (note mk+1 ∈ P(k + 1)), then according to the definition of mk+1, for all n ∈
P(k + 1)\P(mk+1) we have π∗k+1 = cmk+1

−∑
m∈T (mk+1)∩R(k) cm < cn −

∑
m∈T (n)∩R(k) cm.

Therefore:

cmk+1
<

∑

m∈(T (mk+1)\T (n))∩R(k)

cm + cn (12)

Combining (11) and (12), by the same reasoning as in the base case, we conclude that

when we are processing node mk+1 in the primal algorithm, we must deplete any positive

quantity along the path P(k + 1)\P(mk+1). That is, after we finish processing node mk+1,

we have xm = 0 for all m ∈ P(k + 1)\P(mk+1). In the final solution x∗, we have:

∑
m∈P(k+1) x∗m =

∑
m∈P(mk+1)

x∗m = dk+1

x∗m = 0 ∀m ∈ T (mk+1)\F(k)\{mk+1}

The second equality comes from the first and the fact that dk+1 ≥ dn for all node n in the

set T (mk+1)\F(k)\{mk+1}.
Note that T (mk+1)\F(k) is the collection of all nodes in T (mk+1) for which we need

to check complementary slackness (all other nodes in it have been checked before). To

verify condition (10), note that the only possible positive dual variable in this set is π∗k+1

and we have shown that
∑

m∈P(k+1) x∗m = dk+1. Also note
∑

m∈T (mk+1)
π∗m = cmk+1

, so

{n ∈ T (mk+1)\F(k) :
∑

m∈T (n) π∗m < cn} ⊆ T (mk+1)\F(k)\{mk+1}. The conclusion then

holds since x∗n = 0 for all n ∈ T (mk+1)\F(k)\{mk+1}. 2

16



2.4.2 Complexity

To compute the complexity of the proposed algorithms, we assume that the scenario tree is

complete with T levels and B branches per non-leaf node.

THEOREM 3 The complexity of the dual algorithm is O(N log N log (log N)).

PROOF. First, we sort the demands of N nodes, whose complexity is N log N . Second,

we have at most N minimization procedures. Each minimization will concern at most T

numbers, whose complexity is T log T . The updating will cost us at most T operations.

Therefore, the total number of operations will be no more than N log N + N(T log T +

T ). Notice the total number of nodes in the tree is N =
∑T−1

t=0 Bt = BT−1
B−1 . So T ∼

O(log N) and O(N log N) ≤ O(NT log T ). The complexity of the algorithm is no greater

than O(NT log T ), or O(N log N log (log N)). 2

Before we can compute the complexity of the primal algorithm , we need to describe

in detail how to compute and update A, s and ∆. Given any solution x∗ at a particular

iteration, let

S0(n) = {m ∈ T : a(m) = n, x∗m = 0}
S+(n) = {m ∈ T : a(m) = n, x∗m > 0}.

For the first time a node k is considered, A(k), sk and ∆k can be computed as follows:

A(k) = (∪m∈S0(k)A(m)) ∪ S+(k)

sk =
∑

m∈S+(k) cm +
∑

m∈S0(k) sm

∆k = min {min {xm : m ∈ S+(k)}, min {∆m : m ∈ S0(k)}}

Each time after we update the solution in node k, for each n in A(k) such that xn decreases

to 0, A(k), sk and ∆l for all l ∈ (P̄(n)\P(k)) ∪ {k} can be updated as follows:

A(k) = (A(k)\{n}) ∪ A(n)

sk = sk − cn + sn,

∆l = min {min {xm : m ∈ S+(l)}, min {∆m : m ∈ S0(l)}}.

Note that ∆l is updated according to the order of decreasing index:

THEOREM 4 The complexity of the primal algorithm is O(N2).
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PROOF. First, to compute x0, we need to consider N nodes, each of which needs at most

T operations. So the complexity is O(NT ). Second, in each iteration, the production in at

least one node will be depleted, so the algorithm will end in N iterations. Third, for each

iteration, if we compute A(k), sk and ∆k for the first time, the complexities are O(N), O(B)

and O(B log B), respectively. To update A(k) and sk, we need O(N) and O(B) operations.

To update the current solution, we need O(|A(k)|) operations, which has an upper bound of

O(N). Finally, we consider the effort in updating ∆. For each depleted node n in A(k), we

need to update all ∆l along the path from n to k, which has an upper bound of O(TBlogB).

In each iteration, there can be several nodes in A(k) that are depleted, however, then the

number of iterations will also decrease correspondingly. Therefore, the dominant operation

is constructing and updating A(k), whose total complexity is O(N2). 2

Therefore, the complexity of both algorithms is within O(N2). Since (2) can be trans-

formed to (3) in O(N2) operations. So we can also solve (2) in O(N2) operations (when we

have integer demands).

2.5 Computational results

Finally, we present some computational results using the primal and the dual algorithms.

We consider a total of 18 scenario trees with the number of stages (T ) varying from 5 to

13, and the number of branches (B) for each non-leaf node varying from 2 to 9. We use

uniform distributions to generate the parameters (δn, αn, βn, pn) for (2) corresponding to

each node of the tree. Then we transform these parameters to the parameters (dn, cn) for

(3). We generate 10 data sets corresponding to each of the 18 scenario trees. We compare

the running times of the proposed Primal and dual algorithms with that of the Simplex

solver in CPLEX 8.1. All numerical experiments are conducted on an IBM PC with 1024

MB RAM and a PENTIUM4 1.6GHz processor.

Table 1 presents the results. The columns in the table are arranged according to the

number of stages (T ), the number of branches (B), total number of nodes (N), the actual

running time of Simplex, the actual running time of the primal algorithm, the running

time of the primal algorithm as a % of the running time of Simplex, the actual running
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time of the dual algorithm, the running time of the dual algorithm as a % of the running

time of Simplex, respectively. The running times for a particular scenario tree are averages

over 10 instances, and are in units of 10−3 CPU seconds. We can observe that the dual

algorithm is the fastest algorithm, and the primal algorithm is the second. Both algorithms

are much faster than the Simplex. In the worst case, the running times of Primal and dual

algorithms are 18.8 % and 1.8 % of that of the Simplex algorithm, respectively. On average,

the running times of primal and dual algorithms are 10.8% and 0.4 % percent, respectively,

of that of the simplex algorithm.

Table 1: Comparison of CPU times (in seconds)
No. T B N Simplex Primal % Dual %
1 8 2 255 17.1 1.6 9.36 0 0
2 9 2 511 35.9 6.1 16.99 0 0
3 10 2 1023 114 14.1 12.37 0 0
4 11 2 2047 420.4 57.7 13.73 4.8 1.14
5 12 2 4095 1212.5 228.2 18.82 10.8 0.89
6 13 2 8191 8499.9 790.8 9.30 28.4 0.33
7 6 3 364 28 3.2 11.43 0 0
8 7 3 1093 186 20.1 10.81 1.6 0.86
9 8 3 3280 1161 154.5 13.31 6.3 0.54
10 5 4 341 26.5 0 0 0 0
11 6 4 1365 336.1 26.4 7.85 0 0
12 7 4 5461 5290.5 479.8 9.07 12.3 0.23
13 5 5 781 89 12.5 14.04 1.6 1.80
14 6 5 3906 3395.5 243.6 7.17 7.8 0.23
15 5 6 1555 318.8 35.8 11.23 1.6 0.50
16 5 7 2801 1173.2 117.4 10.01 4.7 0.40
17 5 8 4681 3159.2 368.8 11.67 11 0.35
18 5 9 7381 13000.1 925 7.12 23.6 0.18

2.6 Summary

In this chapter, we study a simple stochastic lot-sizing problem involving a single item, linear

cost structures, and finite distributions for the stochastic cost and demand parameters.

We develop a primal and a dual algorithm for a multi-stage stochastic linear programming

formulation of the problem, both of which are much more efficient than the simplex method.

This simple stochastic lot-sizing problem is a key substructure inherent in more general
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production planning problems dealing with uncertainty. Thus, the proposed algorithms can

be used within solution approaches for such general problems. The next chapter explores

this approach for a general capacity planning problem.
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CHAPTER III

THE VALUE OF MULTI-STAGE STOCHASTIC

PROGRAMMING IN CAPACITY PLANNING UNDER

UNCERTAINTY

3.1 Introduction

Capacity planning, i.e., deciding the optimal timing and level of capacity acquisition and

allocation, plays a crucial role in strategic level planning in a wide array of applications. This

activity involves substantial commitment of capital resources and is marred by uncertainties

in the long range forecasts, thereby making the associated decision problems very complex.

For example, the initial investment in building a cutting edge semiconductor wafer fab of

IBM is more than two and half billion dollars (cf. [42]), and every year the procurement

of new tools to accommodate the high volatility in demand, product mix and technology

could cost several million dollars (cf. [5, 28, 55, 56]).

Owing to the inherent complexities, quantitative models for economic capacity planning

under uncertainty have been the subject of intense research since the early 1960s (cf. [36]).

Early approaches for solving stochastic capacity expansion problems are restricted to a sin-

gle resource and based on simplifying assumptions on the underlying stochastic processes to

render analytical tractability (cf. [6, 19, 24, 37, 38]). More general stochastic programming

based approaches that use scenarios to model the uncertain parameters within large-scale

mathematical programs for multi-resource multi-item capacity planning have since been pro-

posed (cf. [10, 22, 23]). Most of these stochastic programming approaches are based on the

two-stage paradigm, wherein the capacity acquisition schedule for the entire (multi-period)

planning horizon is decided “here-and-now,” and capacity allocations are made on a period-

by-period basis based on realized uncertainties and acquired capacities. In the context of

semiconductor tool planning, such two-stage models are investigated in [5, 28, 33, 55, 56].
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Multi-stage stochastic programming models extend the two-stage paradigm by allowing re-

vised decisions in each time stage based upon the uncertainty realized so far (cf. [14, 49]).

A multi-stage stochastic capacity planning model involving continuous capacity allocation

decisions and fixed charge expansion costs is considered in [3]. The authors developed a

LP-relaxation based heuristic for this problem and proved, via a probabilistic analysis, that

the heuristic is asymptotically optimal in the number of planning stages.

Motivated by applications in semiconductor tool planning, we address a general multi-

stage stochastic capacity planning model involving discrete capacity acquisition decisions.

Our model generalizes earlier two-stage approaches considered in [5, 28, 55, 56], by allowing

for revision of the capacity expansion plan as more information regarding the uncertainties is

revealed. We provide analytical bounds for the value of multi-stage stochastic programming

afforded over two-stage approaches. By exploiting a special lot-sizing substructure inherent

in the problem, we develop an efficient approximation scheme for the multi-stage problem

and prove that the proposed scheme is asymptotically optimal. Our asymptotic analysis is

significantly different from that of [3], since we consider discrete capacity acquisition levels

and do not make any assumptions regarding the distributions of the underlying stochastic

parameters.

3.2 Model development

In this section we present a mathematical formulation for the stochastic capacity planning

problem under consideration. We first describe a specific deterministic capacity planning

formulation related to semiconductor tool planning, and then discuss deterministic and

stochastic generalizations of this model.

3.2.1 A deterministic model for semiconductor tool planning

Consider a wafer fab consisting of M tool types, that can process N types of wafers. Each

product (wafer type) goes through a subset of K processing steps, each of which can be

performed on one or more tool types. Let hijk denote the time (in hours) required by

processing step k (1, . . . , K) on wafer type j (1, . . . , N) on tool type i (1, . . . , M). We set

hijk = 0 if step k is not needed for wafer type j, and hijk = ∞ if step k is required for
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wafer type j but cannot be performed on tool type i. Consider now a planning horizon of

T periods. Let us use variables xit, ujt, vijkt, and wjt, to denote the number of tools of

type i purchased in period t (1, . . . , T ), the shortage (in units of wafer starts) of wafer type

j in period t, the allocation of processing step k of wafer type j to tool type i in period t,

and the production of wafer type j in period t, respectively. In addition to hijk, let us also

consider the problem parameters ait, bjt, ci, and djt corresponding to the (discounted) cost

of tool type i in period t, the penalty cost of unit shortage in wafer type j in period t, the

per-period capacity (in hours) of one tool of type i, and the per-period demand (in wafer

starts) of wafer type j in period t, respectively.

With the above notation, an optimization model for multi-period (deterministic) schedul-

ing of tool purchases and the allocation of tool capacity to production so as to minimize

total tool purchase costs and shortage penalties can be stated as follows:

min
∑T

t=1

[ ∑M
i=1 aitxit +

∑N
j=1 bjtujt

]

s.t.
∑N

j=1

∑K
k=1 hijkvijkt ≤ ci

(∑t
τ=1 xiτ

)
∀ i, t

∑M
i=1 vijkt ≥ wjt ∀ j, k, t

wjt + ujt ≥ djt ∀ j, t

ujt, vijkt, wjt ∈ R+ ∀ i, j, k, t

xit ∈ Z+ ∀ i, t.

(13)

For any period t, the first constraint in model (13) assures that the total processing require-

ment (in hrs) allocated to tool i cannot exceed the installed capacity. The second constraint

enforces that the actual production of wafer type j is equal to the number of wafers that

has completed all of the required K processing steps. The third constraint enforces that the

production and shortage together should exceed the demand. The fourth constraint enforces

non-negativity of the production-allocation-shortage variables. The fifth constraint enforces

the integrality of the tool purchase decisions. Model (13) is a multi-period extension of the

tool planning model described by [55, 56].
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3.2.2 A generic capacity planning model

The semiconductor tool planning model (13) is a special case of the following generic ca-

pacity acquisition and allocation model:

min
∑T

t=1

[
αtxt + βtyt

]

s.t. Atyt ≤
∑t

τ=1 xτ ∀ t

Btyt ≥ δt ∀ t

yt ∈ RJ
+, xt ∈ ZI

+ ∀ t.

(14)

In (14), the vector of decision variables xt represents the capacity acquisition decisions for

a set of I resources, and the vector of decision variables yt represents the operational level

allocation of capacity to a set of J tasks, in period t. The vectors αt, βt and δt represent

acquisition costs, allocation costs, and demands, respectively. The matrices At and Bt

represent resource-task utilization coefficients.

To see the connection between models (13) and (14), note that xt and yt correspond to

the tool purchase and production-allocation-shortage decision vectors for period t, respec-

tively; αt, βt, and δt correspond to the tool cost, shortage penalty, and demand vectors

for period t, respectively; the matrix At corresponds to the coefficients of the first set of

constraint in (13), and the matrix Bt corresponds to the coefficients of the second and third

set of constraint in (13).

3.2.3 Stochastic programming extensions

Let us now extend the deterministic capacity planning model (14) to a stochastic setting.

We assume that the uncertain problem parameters (αt, βt, δt, At, Bt) evolve as discrete time

stochastic processes with a finite probability space. This information structure can be

interpreted as a scenario tree where the nodes in stage (or level) t of the tree constitute the

states of the world that can be distinguished by information available up to time stage t.

There are a total T stages in the tree. Each node n of the scenario tree, except the root

(n = 1), has a unique parent a(n), and each non-terminal node n is the root of a sub-tree

T (n). The probability associated with the state of the world in node n is pn. The set St

denotes the nodes corresponding to time stage t, and tn is the time stage corresponding
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to node n. The path from the root node to a node n will be denoted by P(n). If n is a

terminal (leaf) node, i.e., n ∈ ST , then P(n) corresponds to a scenario, and represents a joint

realization of the problem parameters over all periods. There are S leaf nodes corresponding

to S scenarios, i.e., S = |ST |. We denote the whole tree T (1) by T . The number of nodes

in the whole tree is NT . In this chapter, we use the notation NT to emphasize the fact

that NT is a function of T . Usually NT increases exponentially with increasing T . The

stochastic problem parameters are given by the sequence {αn, βn, δn, An, Bn}n∈T .

Let us first consider a two-stage model where the first-stage involves deciding the capac-

ity acquisition plan for all periods, regardless of the state of the world, and the second-stage

consists of deciding on the capacity allocation plan subject to available capacity and the re-

alized state. Thus the capacity acquisition variables are only indexed by time periods (since

these do not change with the realized state) while the allocation decisions are indexed by

the nodes of the scenario tree. With an objective of minimizing the expected total costs, a

two-stage stochastic programming extension of (14) is as follows:

min
∑T

t=1 αtxt +
∑

n∈T pnβnyn

s.t. Anyn ≤
∑tn

τ=1 xτ ∀ n ∈ T
Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T
xt ∈ ZI

+ ∀ t,

(15)

where αt =
∑

n∈St
pnαn, i.e., the average capacity acquisition cost in period t. The stochas-

tic programming model considered in [55, 56] is a special case of the model (15) when the

number of periods T = 2. The model presented in [5, 28] is similar to (15), however, there

the uncertain parameters are defined over scenarios (paths in the scenario tree) rather than

nodes of the scenario tree. Note that (15) is a two-stage stochastic program with integer

variables in the first stage.

As mentioned earlier, the two-stage model (15) does not allow any flexibility in the

capacity acquisition plan with respect to the realized state of the world. To formulate

a multi-stage stochastic programming model, we need to have the capacity acquisition
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decisions to be dependent on the realized state, and hence the resulting model is as follows:

min
∑

n∈T pn

[
αnxn + βnyn

]

s.t. Anyn ≤
∑

m∈P(n) xm ∀ n ∈ T
Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T
xn ∈ ZI

+ ∀ n ∈ T .

(16)

This is a multi-stage stochastic integer program.

3.2.4 Stochastic lot-sizing substructure

The multi-stage capacity planning problem (16) can be restated as follows:

min
∑

n∈T pnβnyn +
∑I

i=1 Qi(y)

s.t. Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T ,

(17)

where

Qi(y) = min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ (Anyn)i ∀ n ∈ T
xin ∈ Z+ ∀ n ∈ T .

(18)

The above reformulation decomposes the problem into two separate problems, one (17)

involving the capacity allocation decisions, and the other (18) involving the capacity ac-

quisition decisions. Note that we have used y to collectively denote the capacity allocation

sequence {yn}n∈T , and (Anyn)i to denote the i-th component of the I dimensional vector

Anyn.

Observe that for a fixed sequence of capacity allocation decisions, the optimal capacity

acquisition decisions can be obtained via solving (18) independently for each resource i.

Key to the further developments in this chapter is the study of (18). Clearly, (18) belongs

to the type of simple stochastic lot-sizing problem we study in Chapter II. According to

Theorem 1, we have the following equation:

Qi(y) = min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ d(Anyn)ie ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T .

(19)
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3.3 Value of multi-stage stochastic programming

Let the vTS and vMS denote the optimal objective function values of the two-stage (15)

and multi-stage (16) models, respectively. For a given set of problem parameters, it is

easily verified that any solution to (15) is feasible to (16), and the objective function values

corresponding to this solution are equal in both problems, thus

vTS ≥ vMS .

That is, the overall cost of the multi-stage solution is smaller than that of the two-stage so-

lution. This should come as no surprise, since, the multi-stage solution offers more flexibility

in the capacity acquisition decisions with respect to the uncertain states of the world. We

refer to the difference between the optimal objective values of the two-stage and multi-stage

formulations as the value of multi-stage stochastic programming (VMS):

VMS = vTS − vMS .

Unfortunately, the value of multi-stage stochastic programming comes at the expense of

solving a much larger and difficult optimization model. Both (15) and (16) are stochastic

integer programs, and in general, can be extremely difficult to solve. For our particular

case, both models have the property that by fixing the capacity acquisition decisions (the x

variables), we can break the problem down to independent capacity allocation problems (in

the y variables) corresponding to each node of the scenario tree. Owing to this structure,

Benders decomposition (cf. [9]) is particularly attractive for these problems. In case of (15)

and (16), this would require us to solve master problems involving the integer variables x.

While the two-stage model (15) involves I×T integer variables, the multi-stage model (16)

involves I × NT integer variables (recall that NT = |T |), and for any non-trivial scenario

tree NT >> T . Consequently the computational difficulty of (16) is significantly more than

that of (15). If the VMS is small, then this additional computational effort may not be

worthwhile. However, we need a priori estimates of VMS to analyze this tradeoff. Next,

we first describe simple bounds on VMS for the stochastic lot-sizing problem (19) and then

use these to get bounds on the VMS for the capacity planning problem (16).
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3.3.1 VMS for the stochastic lot-sizing problem

Consider the linear relaxation of the multi-stage stochastic lot-sizing problem (18) and let

vM denote its optimal objective function value, i.e.,

vM = min
∑

n∈T pnαnxn

s.t.
∑

m∈P(n) xm ≥ dn ∀ n ∈ T
xn ∈ R+ ∀ n ∈ T .

(20)

Note that we have dropped the constant term C from the objective. A two-stage model for

the stochastic lot-sizing problem would require that the production decisions for each time

period be the same irrespective of the state realized, i.e.,

vT = min
∑

n∈T pnαnxn

s.t.
∑

m∈P(n) xm ≥ dn ∀ n ∈ T
xn ∈ R+ ∀ n ∈ T
xm = xn ∀ m,n ∈ St, ∀ t.

(21)

THEOREM 5 Let

α∗ = maxn∈T αn

α∗ = minn∈T αn

d∗T = maxn∈ST
(maxm∈P(n) dm)

dT =
∑

n∈ST
pn(maxm∈P(n) dm),

then

α∗d∗T − α∗dT ≤ VMS = vT − vM ≤ α∗d∗T − α∗dT .

PROOF. Note that any feasible solution x for (20) has to satisfy

∑
m∈P(n) xm ≥ maxm∈P(n) dm ∀ n ∈ ST

⇒ ∑
n∈ST

pn

(∑
m∈P(n) xm

)
≥ ∑

n∈ST
pn(maxm∈P(n) dm)

⇔ ∑T
t=1

∑
n∈St

(∑
m∈ST∩T (n) pm

)
xn ≥ dT

⇔ ∑
n∈T pnxn ≥ dT ,

where the last step follows from the fact that

∑

m∈ST∩T (n)

pm = pn ∀ n ∈ T .
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Then if x∗ is an optimal solution for (20), we have

vM =
∑

n∈T
pnαnx∗n ≥ α∗

∑

n∈T
pnx∗n ≥ α∗dT . (22)

Next, consider a feasible solution x̂ to (20), such that x̂n = maxm∈P(n) dm−maxm∈P(a(n)) dm

for all n ∈ T , and maxm∈P(a(1)) dm = 0. Then

vM ≤ ∑
n∈T pnαnx̂n

≤ α∗
∑T

t=1

∑
n∈St

pn(maxm∈P(n) dm −maxm∈P(a(n)) dm)

= α∗
∑

n∈ST
pn(maxm∈P(n) dm)

= α∗dT ,

(23)

where the third step follows the fact that

∑

m∈St+1∩T (n)

pm = pn ∀ t, n ∈ St.

In the two-stage model (21), since the production decision is identical for all nodes in

any stage, it has to satisfy the largest possible cumulative demand in that stage, i.e., dn

can be replaced with d̃n = maxm∈Stn
dm in (21). Then, by applying the same analysis used

for problem (20) to problem (21) with d̃n replacing dn, it can be shown that

α∗d∗T ≤ vT ≤ α∗d∗T . (24)

Combining (22), (23), and (24), the claim follows. 2

In Theorem 5, α∗ is maximum cost in the whole scenario tree; α∗ is the minimum cost

in the whole scenario tree; d∗T is in fact the maximum demand in the whole scenario tree;

and d̄T is the expected value of maximum demands in all the scenarios. Suppose that the

cost parameters αn are nearly constant, i.e., α∗ ≈ α∗ ≈ α, then by Theorem 5

VMS ≈ α(d∗T − dT ),

i.e., the value of the multi-stage model depends only on the difference between d∗T and

dT . Thus, if there is little variability in the demand data, then the multi-stage model

has little value. On the other hand, if there is large variability in the demand data, then

the multi-stage model has a high value, and the two-stage model may provide bad quality

decisions.
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3.3.2 VMS for the capacity planning problem

We shall now describe a lower bound on the VMS for the multi-stage capacity planning

model (16) based on the analysis in the previous section and an optimal solution to the LP

relaxation of the two-stage model (15). Since this LP relaxation can be solved fairly quickly,

we can use this lower bound estimate to justify additional computational effort required to

solve the difficult multi-stage model (16).

THEOREM 6 Let {yTLP
n }n∈T be the capacity allocation decisions in an optimal solution

to the linear relaxation of the two-stage model (15). Then for each resource i = 1, . . . , I,

let din = (AnyTLP
n )i, d∗iT = maxn∈ST

(maxm∈P(n) dim), diT =
∑

n∈ST
pn(maxm∈P(n) dim),

α∗i = maxn∈T αin, and αi∗ = minn∈T αin, we have

VMS ≥
I∑

i=1

(
αi∗d∗iT − α∗i diT

)
−

I∑

i=1

αi1.

PROOF. Note that

vTS ≥
∑

n∈T
pnβnyTLP

n +
I∑

i=1

vT
i

where

vT
i = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ din ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T
xim = xin ∀ m,n ∈ St, ∀ t.

Since {yTLP
n }n∈T is a feasible capacity allocation for the multi-stage problem (16), we have

vMS ≤
∑

n∈T
pnβnyTLP

n +
I∑

i=1

oM
i
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where

oM
i = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ din ∀ n ∈ T
xin ∈ Z+ ∀ n ∈ T

= min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ ddine ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= max
∑

n∈T [din + (ddine − din)]πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T ,

in which the second equality comes from Theorem 1 and the third equality comes from

linear program duality. We can further define:

vM
i = min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ din ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= max
∑

n∈T dinπin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T ,

Therefore,

oM
i ≤ vM

i + max
∑

n∈T (ddine − din)πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

≤ vM
i + max

∑
n∈T πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

= vM
i + min

∑
n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ 1 ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= vM
i + αi1,
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where the second inequality comes from ddine − din ≤ 1, the third equality comes from

duality, the fourth equality comes from the fact that p1 = 1 and an optimal solution to a

stochastic lot-sizing problem with a cumulative demand of 1 unit in every node is to produce

1 unit in the root node. Therefore, we have:

VMS ≥
I∑

i=1

(
vT
i − vM

i − αi1

)
,

and the result follows the bounds (23) and (24) derived in the proof of Theorem 5. 2

3.4 An approximation algorithm

In this section we develop an approximation algorithm for the multi-stage capacity planning

problem (16). To appreciate the computational complexity of this problem, it can be shown

that any instance of the NP-hard integer knapsack problem (cf. [25]) with I items can be

polynomially transformed to a single period instance of the deterministic capacity planning

problem (14). Since (14) is just a single scenario instance of the stochastic models (15) and

(16), we have the following result.

THEOREM 7 The deterministic capacity planning problem (14) and its stochastic coun-

terparts (15) and (16) are NP-hard.

PROOF. Consider (14). Let T = 1 and drop the subscript t. Let J = I > 1, δ be a

real number, β = 0, A be identity matrix, and the ith entry of B be γi in (14), we get the

following problem:

min αx

s.t.
∑I

i=1 γixi ≥ δ

x ∈ ZI
+

which is the NP-hard integer knapsack problem. 2

Motivated by this intractability, we propose the approximation scheme outlined in Al-

gorithm 3 for problem (16). The algorithm exploits the decomposable structure revealed

by the reformulation (17)-(18) of the problem.
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Algorithm 3 An approximation algorithm for (16)

1: Solve the LP relaxation of (16). Let {(xLP
n , yLP

n )}n∈T be an optimal solution and vLP
MS

be the optimal value. If xLP
n is integral for all n, stop and return {(xLP

n , yLP
n )}n∈T .

2: For each resource i = 1, 2, ..., I, solve independent capacity acquisition (or stochastic
lot-sizing) problems:

min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ d(AnyLP
n )ie ∀ n ∈ T

xin ∈ R+ ∀ n ∈ T ,

and let xH
in denote the corresponding solutions. Note that the integrality of the decision

variables allows for the rounding up of (AnyLP
n )i.

3: For each n ∈ T , solve independent capacity allocation problems:

min βnyn

s.t. Anyn ≤
∑

m∈P(n) xH
m

Bnyn ≥ δn, yn ∈ RJ
+,

and let yH
n denote the corresponding optimal solution.

4: Return {(xH
n , yH

n )}n∈T .

Step 1 of Algorithm 3 requires the solution of the LP relaxation of (16). This problem

is a multi-stage stochastic linear program which can, in general, be solved by the Nested

L-Shaped Decomposition algorithm (cf. [14, 49]). Step 2 requires the solution of I stochastic

lot-sizing problems (19) which are multi-stage stochastic linear programs. In Chapter II,

we have developed very efficient algorithms for this type of problems. In the following

part, we present an efficient algorithm which is a refinement of the dual algorithm proposed

in Chapter II. Finally, Step 3 requires the solution of independent simple linear capacity

allocation problems for each node in the tree.

3.4.1 An efficient algorithm for the stochastic lot-sizing problem (19)

By virtue of Theorem 1 and the fact that the right-hand-sides of the stochastic lot-sizing

problems solved in Step 2 of Algorithm 3 are integral, we only need to find an efficient

scheme for the linear program

min
∑

n∈T cnxn

s.t.
∑

m∈P(n) xm ≥ dn ∀ n ∈ T
xn ∈ R+ ∀ n ∈ T ,

(25)
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where we have used cn to succinctly denote pnαn. The dual of (25) is

max
∑

n∈T dnπn

s.t.
∑

m∈T (n) πm ≤ cn ∀ n ∈ T
πn ∈ R+ ∀ n ∈ T ,

(26)

Recall that we have developed very efficient primal and dual algorithms in Chapter II

for this type of stochastic lot-sizing problems. Our proposed algorithm in this chapter is

based on a refinement of the greedy dual algorithm for the dual problem (26) presented in

Chapter II. The scheme takes advantage of complementary slackness conditions to recover

primal optimal solutions. Algorithm 4 summarizes the proposed strategy. Here, we assume

that the parameters cn and dn are strictly positive for all n. As in Chapter II, we use two

different indexing schemes for the nodes in the tree T :

Indexing scheme 1. The nodes in T are indexed 1, 2, . . . , NT in increasing order of their

time stage, i.e., t1 ≤ t2 ≤ · · · ≤ tNT
. No particular ordering is imposed on the indices of

the nodes in the same time stage. Thus the root node has an index of 1.

Indexing scheme 2. The nodes in T are indexed 1, 2, . . . , NT in decreasing order of the

corresponding cumulative demand, i.e., d1 ≥ d2 ≥ · · · ≥ dNT
. If dm = dn, then m < n if

tm < tn.

The illustration of the two indexing schemes are shown in Figure 2 (Chapter II, page

10).

The greedy dual step first assigns the largest dual value (as permitted by the constraints)

to the node with the largest demand, and then considers the node with the next largest

demand, and so on. The marker mk is assigned the index of the node (closest on the path

P(k)) to k whose corresponding dual constraint becomes tight when the dual value for node

k is set. Note that once k has a positive dual value, no other nodes in T (mk) will be further

considered (any other node in T (mk) will satisfy the condition in line 4 of the dual step).

Thus all nodes in l ∈ T (mk) except for the ones with ml > 0, will have π∗l = 0. The marker
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Algorithm 4 An algorithm for stochastic lot-sizing primal-dual pair (25)-(26).

The dual step:
1: label the nodes in T according to indexing scheme 2
2: initialize π∗n = 0, c0

n = cn and mn = 0 for all n ∈ T
3: for k = 1, . . . , NT do
4: if there exists n ∈ P(k) such that n = ml for some l ∈ T (n) then
5: break
6: else
7: set π∗k = minn∈P(k){ck−1

n }
8: set mk = argminn∈P(k){ck−1

n } such that ck−1
l > ck−1

mk
for all l ∈ P(k) \ P(mk)

9: set ck
n = ck−1

n − π∗k if n ∈ P(k) and ck
n = ck−1

n otherwise
10: end if
11: end for

The primal step:
1: transform the node indices as well as mn to indexing scheme 1
2: initialize x∗n = 0 for all n ∈ T
3: for n = 1, . . . , NT do
4: if there exists l ∈ T (n) such that n = ml then
5: set x∗n = dl −

∑
k∈P(n)\{n} x∗k

6: end if
7: end for

mk is used in the primal step to set the primal variables such that complementary slackness

conditions are satisfied. Note that according to the algorithm, only a node k with mk > 0

could have a positive dual value, and a node n could have a positive primal value only if

n = ml for some node l ∈ T (n).

The following results establish the validity of Algorithm 4. For the remainder of this

section we use indexing scheme 2 for the node labels.

LEMMA 1 In each iteration k ∈ {1, . . . , NT } of the dual step of Algorithm 4, the dual

solution π∗ satisfies

∑

m∈T k(n)

π∗m ≤ cn for all n ∈ T , (27)

where T k(n) = T (n) ∩ {1, 2, . . . , k}.

PROOF. By induction on k, it can be seen that ck
n = cn −

∑
m∈T k(n) π∗m. Also, n ∈ P(k)

if and only if k ∈ T (n) and π∗k ≤ ck−1
n for all n ∈ P(k). Therefore, we always have ck

n ≥ 0

35



for any n ∈ T . 2

Lemma 1 guarantees the feasibility of the dual solution π∗ (let k = NT in (27)). Further-

more, we also have
∑

l∈T k(n) π∗l = cn for all n ∈ argminm∈P(k){ck−1
m }. Since dual feasibility

of π∗ implies
∑

l∈T (n) π∗l ≤ cn and π∗n ≥ 0, we also have:

∑

l∈T k(n)

π∗l =
∑

l∈T (n)

π∗l = cn ∀ n ∈ argminm∈P(k){ck−1
m }. (28)

That is, for any l ∈ T (n) such that l /∈ {1, . . . , k}, π∗l =0.

LEMMA 2 The primal solution x∗ = (x∗1, x
∗
2, . . . , x

∗
NT

) produced by the primal step of

Algorithm 4 is feasible.

PROOF. By construction, if a node n is such that mn > 0, then the following equalities

hold:

∑

m∈P(n)

x∗m =
∑

m∈P(mn)

x∗m = dn. (29)

Now consider a node n such that mn = 0. Let l ∈ P(n) be such that l = mk for some

node k ∈ T (mk). Note that such a node l must always exists, since the root node is one such

node. Suppose l be the closest (on the path P(n)) such node to n. Note that n, k ∈ T (l)

while mn = 0 and mk > 0, thus in the dual step node k must have been considered before

node n, i.e., dk ≥ dn. According to (29),
∑

m∈P(n) x∗m =
∑

m∈P(mk) x∗m =
∑

m∈P(k) x∗m =

dk ≥ dn (the first equality holds since x∗m = 0 for m ∈ P(n)\P(mk)). 2

THEOREM 8 The solutions x∗ and π∗ returned by Algorithm 4 are optimal solutions of

(25) and (26), respectively.

PROOF. Lemmas 1 and 2 have proven the feasibility of π∗ and x∗. Here we show that

π∗ and x∗ satisfies the complementary slackness conditions:

π∗n > 0 =⇒
∑

m∈P(n)

x∗m = dn (30)

∑

m∈T (n)

π∗m < cn =⇒ x∗n = 0. (31)
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We prove by induction on the nodes indexed according to scheme 2.

The base case: Consider node 1. Note that π∗1 = cm1 > 0, then (30) follows from (29).

For all other nodes n ∈ T (m1), π∗n = 0. On the other hand,
∑

m∈T (m1) π∗m = cm1 , thus

{n ∈ T (m1) :
∑

m∈T (n) π∗m < cn} ⊆ T (m1)\{m1}. Then (31) holds, since x∗n = 0 for all

n ∈ T (m1)\{m1}. Note that we have verified the complementary slackness conditions for

all nodes in T (m1), and not just node 1.

The induction step: Assume that we have checked nodes 1, ..., k, and now consider node k+1.

If mk+1 = 0, then this node has already been checked since then k + 1 ∈ T (mj) for some

j < k + 1. So we assume that mk+1 > 0. Denote {1, 2, ..., k} by H(k) and {m1,m2, ..., mk}
by R(k). Also define F(k) = ∪{T (mn) : n ∈ H(k),mn > 0}. We now examine the nodes

in T (mk+1)\F(k). Notice for all nodes n in T (mk+1)\F(k)\{k + 1}, π∗n = 0 since mn = 0.

Amongst the nodes in T (mk+1)\F(k), only node k + 1 could have a positive dual value.

For node k + 1, (30) then holds from (29). On the other hand,
∑

m∈T (mk+1)
π∗m = cmk+1

from (28), so {l ∈ T (mk+1)\F(k) :
∑

m∈T (l) π∗m < cl} ⊆ T (mk+1)\F(k)\{mk+1}. The

conclusion then holds since x∗m = 0 for all m ∈ T (mk+1)\F(k)\{mk+1}. 2

It is easy to see that Algorithm 4 is just a refined procedure of Algorithm 2. Therefore,

Algorithm 4 has the same complexity O(NT log NT log log NT ) as Algorithm 2.

3.5 Analysis of the approximation algorithm

This section analyzes the optimality gap of the approximate solution produced by Algo-

rithm 3. Given capacity acquisition-allocation solutions (x, y), let us denote the corre-

sponding objective function value as

f(x, y) =
∑

n∈T
pn

(
αnxn + βnyn

)
.

Recall that (xLP , yLP ) denotes the capacity acquisition-allocation solutions corresponding

to the LP relaxation of (16), and (xH , yH) denotes the capacity acquisition-allocation solu-

tions returned by Algorithm 3. Let (x∗, y∗) denote an optimal solution to (16). Then the
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optimality gap of (xH , yH) is

GAP = f(xH , yH)− f(x∗, y∗).

THEOREM 9 GAP ≤ ∑I
i=1 αi1, where 1 is the root node of the scenario tree.

Theorem 9 shows the surprising result that the optimality gap of Algorithm 3 is bounded

above by a factor that is independent of the number of time stages, number of branches in

the tree, number of tasks, or any problem data except for the sum of the capacity acquisi-

tion costs of the resources in the first stage. At the first sight, this is against our intuition.

However, through the following proof of Theorem 9, we can see that this is just a natural

result of the approximation algorithm design and the property of simple stochastic lot-sizing

problem. The basic observation is that we can produce a feasible solution of the original

multi-stage integer program from the optimal solution of its linear relaxation. The feasible

solution is just ”slightly different” from the linear relaxation solution, which is determined

by the approximation scheme. Note that in step 2 of Algorithm 3, we obtain xH by solv-

ing simple stochastic lot-sizing problems with rounded up right hand sides compared to

the linear relaxation problem. We can show that, comparing a simple stochastic lot-sizing

problem with fractional right hand side and its variant with rounded up right hand side,

the difference in the optimal objective values can be upper bounded by the cost of adding

just one more unit in the root node.

PROOF. Note that

GAP ≤ f(xH , yH)− f(xLP , yLP )

= f(xH , yH)− f(xH , yLP ) + f(xH , yLP )− f(xLP , yLP )

≤ f(xH , yLP )− f(xLP , yLP ),

where last inequality follows from the fact that f(xH , yH) ≤ f(xH , yLP ) (recall that yH is

an optimal capacity allocation corresponding to xH , i.e., an optimal solution to capacity

allocation problem solved in step 3 of Algorithm 3, whereas yLP is just a feasible capacity
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allocation solution). Next

f(xH , yLP )− f(xLP , yLP ) =
I∑

i=1

∑

n∈T
pnαin

(
xH

in − xLP
in

)
(32)

corresponding to step 2 of Algorithm 3. Note that

∑
n∈T pnαinxH

in = min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ d(AnyLP
n )ie ∀ n ∈ T

xin ∈ R+ ∀ n ∈ T
= max

∑
n∈T d(AnyLP

n )ieπin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T ,

(33)

and ∑
n∈T pnαinxLP

in = min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ (AnyLP
n )i ∀ n ∈ T

xin ∈ R+ ∀ n ∈ T
= max

∑
n∈T (AnyLP

n )iπin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T .

(34)

Thus

∑
n∈T pnαin

(
xH

in − xLP
in

)
= max

∑
n∈T

(
d(AnyLP

n )ie − (AnyLP
n )i

)
πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

≤ max
∑

n∈T πin

s.t.
∑

m∈T (n) πim ≤ pnαin ∀ n ∈ T
πin ∈ R+ ∀ n ∈ T

= min
∑

n∈T pnαinxin

s.t.
∑

m∈P(n) xim ≥ 1 ∀ n ∈ T
xin ∈ R+ ∀ n ∈ T

= αi1,

(35)
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where the first equality follows from (33) and (34), the next inequality follows from the

fact that d(AnyLP
n )ie − (AnyLP

n )i ≤ 1, the next equality follows from duality, and the last

equality follows from the fact that an optimal solution to a stochastic lot-sizing problem

with a cumulative demand of 1 unit in every node is to produce 1 unit in the root node.

The result then follows from incorporating (35) in (32). 2

If we consider instances of (16) that have the same first-stage acquisition costs, but differ-

ent topology of the scenario tree, then we have the following asymptotic quality guarantees

for Algorithm 3. The following corollary is immediate.

COROLLARY 1 limT→∞
f(xH ,yH)−f(x∗,y∗)

T = 0.

Under some very general positivity assumption, the relative gap between objective values

of heuristic solution and the optimal solution will also vanish as the planning horizon goes

to infinity.

COROLLARY 2 In (16), let δkn be an item in K×1 vector δn; bkjn be an item in K×J

matrix Bn. Assume there exists ε1 > 0, ε2 > 0 such that for any node n, δn 6= 0; and for

any positive item δkn > 0, we have δkn ≥ ε1; and for any nonzero item bkjn > 0, we have

βkn
bkjn

≥ ε2. Then the following limit holds:

lim
T→∞

f(xH , yH)− f(x∗, y∗)
f(x∗, y∗)

= 0.

PROOF. We only need to show that f(x∗, y∗) → ∞ as n → ∞. Since f(x∗, y∗) ≥
f(xLP , yLP ), we only need to show f(xLP , yLP ) → ∞ as n → ∞. For this purpose, we

rewrite the linear relaxation of (16) as follows:

min
∑

n∈T pn

[
αnxn + βnyn

]

s.t.
∑

m∈P(n) xm −Anyn ≥ 0 ∀ n ∈ T
Bnyn ≥ δn ∀ n ∈ T
yn ∈ RJ

+ ∀ n ∈ T
xn ∈ RI

+ ∀ n ∈ T ,
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whose dual program is:

max
∑

n∈T ηnδn

s.t.
∑

m∈T (n) γn ≤ pnαn ∀ n ∈ T
−γnAn + ηnBn ≤ pnβn ∀ n ∈ T
γn ∈ RI

+ ∀ n ∈ T
ηn ∈ RK

+ ∀ n ∈ T ,

where αn, βn, δn, γn, ηn are 1× I, 1×J,K × 1, 1× I, 1×K vectors, respectively; and An, Bn

are I × J and K × J matrices respectively. Let the objective function of the dual program

be g(γn, ηn). We will try to find a feasible solution (γ̃n, η̃n) such that g(γ̃n, η̃n) ≥ Tε for

some ε > 0. First, we assign γ̃n = 0. Second, note that when δk1n > 0 for some k1, δk1n is

the demand for some product or task. Then in (16), the corresponding row for this product

or task in constraint Bnyn ≥ δn will be
∑J

j=1 bk1jnyjn ≥ δk1n ≥ ε1. So we can find at least

one j1 such that bk1j1n > 0, otherwise (16) is not feasible (we can always make the problem

feasible by adding a very expensive artificial resource that can satisfy all the demands).

Now we assign η̃k1n = pnβk1n

bk1j1n
≥ pnε2 and η̃kn = 0 for all k 6= k1. For this solution (γ̃n, η̃n), it

is easy to see that
∑

n∈T ηnδn ≥
∑

n∈T pnε1ε2 = Tε1ε2, where the last equality comes from

the fact that
∑

n∈St
pn = 1 for all 1 ≤ t ≤ T . 2

Note the assumptions in Corollary 2 are very general. The condition δn 6= 0 is to

guarantee that there is always some positive demand (maybe for just one product); the

condition δkn ≥ ε1 > 0 is to guarantee that the positive demand of a product or task is

always no less than a small positive number; the condition βkn
bkjn

≥ ε2 > 0 is to guarantee that

no matter how to produce the product or how to realize the task by utilizing the resources,

the unit production cost of one product or task will always be no less than a small positive

number. All these conditions are clearly satisfied in any realistic setting.

3.6 Summary

In this chapter, we propose a generic multi-period capacity planning problem under uncer-

tainty involving multiple resources, tasks and products.
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First, we compare two-stage and multi-stage stochastic integer programming approaches

for this problem. The concept of value of multi-stage stochastic programming (VMS) is

discussed and informative analytical bounds are developed.

Second, by identifying and exploiting a key lot-sizing substructure in the problem, we

propose an efficient approximation scheme for the difficult multi-stage model. We show

that the absolute optimality gap of the approximation scheme is bounded above by a factor

that is independent of the number of time stages, number of branches in the scenario tree,

number of tasks, or any problem data except for the sum of the capacity acquisition costs

of the resources in the first stage. This leads to an asymptotic optimality guarantee of the

approximation scheme with respect to the number of planning stages.
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CHAPTER IV

APPLICATION: SEMICONDUCTOR TOOL PLANNING

4.1 Introduction

Most existing computational studies of stochastic programming models in semiconductor

tool planning are based on the two-stage approach (cf. [1, 5, 28, 54, 55, 56]), while few are

based on the multi-stage approach. In [1], a multi-stage stochastic programming model for

a very small exemplary problem is tested. This chapter describes a study of the multi-stage

stochastic programming model proposed in Chapter III, with industrial-size data, for a semi-

conductor tool planning problem. The objective is two-fold. First, the performances of the

two-stage and multi-stage approaches are compared; i.e., the value of multi-stage stochas-

tic programming, with respect to different scenario trees and random demand patterns, is

tested. Second, the solution quality of the approximation scheme proposed in Chapter III

with respect to different scenario trees and random demand patterns is tested.

4.2 Semiconductor tool planning

Modern semiconductor manufacturing is a complex and capital-intensive procedure [26, 41]

in which highly customized machine tools are needed for processing different products.

Machine tools are very expensive; in a typical wafer fab, the cost of machine tools every

year can range from several million dollars to tens of millions. Therefore, machine tool

purchase planning is of great interest to operations research and has been studied intensively.

However, this is a difficult problem due to the characteristics of the semiconductor industry.

The first difficulty derives from the fact that the capacity of semiconductor production

lines highly depends on the product mix. To see this, one needs to understand the com-

position of production lines. Semiconductor manufacturing comprises a large number of

processes, of which the major ones are: oxidation, where an insert layer of silicon dioxide

is formed on the surface of a silicon wafer; photo-lithography, where the circuit image on
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a mask is transferred to the surface of the silicon wafer; etching, where the unwanted sili-

con dioxide layer is removed from the wafer surface; resist stripping, where the unwanted

photoresist layer is removed from the wafer surface; ion implant, where the electrical con-

ductivity of the silicon is selectively modified; and layering, where another layer of silicon

is put on the wafer. Each major process may include a number of sub-processes. Further-

more, there may be multiple layers of circuits on a semiconductor chip, so a component

will undergo these processes one or more times before it is finished. Combining these facts,

one can see that the number of processes is very large. For each process, a set of machine

tools is used. Each type of tool may be used for multiple processes. Therefore, the re-

lationship between products, processes, and machine tools is very complicated; a detailed

description can be found in [5]. Moreover, the capacity requirements of machine tools for

different products can be very different. So it is not realistic to use an aggregate product

to make machine tool purchase plans. One must consider the product mix and incorporate

the complex relationship among products, processes and machine tools in the tool planning

model. In other words, one cannot extract the strategic/tactical level decisions (machine

tool purchase) from the operational level decisions (production arrangement).

The second difficulty derives from the lead time of machine tool manufacturing. Machine

tools are highly customized; the lead time for a tool can be as long as one and half year.

Therefore, to receive the appropriate machines at the time of manufacturing, one must make

the order long before that. As mentioned above, the capacity requirement for machine tools

highly depends on the product mix, which requires a good forecast of the product demand

long before the exact manufacturing time. However, it is well known that semiconductor

product demand is volatile and very hard to forecast. Therefore, a traditional deterministic

planning model does not perform well in this case.

An optimization model is needed which incorporates uncertainty as well as a complex

decision structure to model the relationship among products, processes and machine tools.

For this, stochastic programming is an appropriate methodology. It has been shown that

stochastic programming models can provide robust solutions to hedge against the uncer-

tainty in semiconductor tool planning [1, 5, 28, 54, 55, 56]. In the following, we use the
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model in [5, 28] to test the development proposed in Chapter III.

4.3 Model and data

The original model of our test problem is a multi-period semiconductor tool planning prob-

lem from [5, 28]. The deterministic tool planning model we use is as follows:

min
∑

p,t U+
p,t + q1

∑
i∈PT

∑
t Ni,t + q2

∑
i∈NP

∑
t Ni,t

s.t. γp,tWp,t + U+
p,t − U−

p,t = dp,t ∀p, t

∑
p bj,p,tWp,t =

∑
i∈I(j) Oj,i,t ∀j, t

µi,0 + ci
∑t

τ=1 Ni,τ −
∑

j∈J(i) hi,j,tOi,j,t ≥ 0 ∀i, t
∑

i mi,tNi,t ≤ βt ∀t
U+

p,t ≤ αp ∀p, t

Wp,t, U
+
p,t, U

−
p,t, Oi,j,t ∈ R+ ∀i, j, p, t

Ni,t ∈ Z+ ∀i, t

(36)

The following notation is used to describe the model:

Indices:

i : index for semiconductor machine tools

j : index for manufacturing operations

p : index for products

t : index for planning periods

Variables:

U+
p,t : unmet demand for product p in period t

U−
p,t : excess production for product p in period t

Wp,t : quantity of wafers for product p in period t

Oj,i,t : quantity of wafers that pass through operation j, on tool type i in period t

Ni,t : number of machine tool type i in period t
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Data:

γp,t : expected number of products completed per wafer for product p in period t

dp,t : demand for product p in period t

bj,p,t : number of passes of operation j on product p in period t

µi,0 : initial capacity for tool type i (measured in time)

ci : additional unit capacity for tool type i (measured in time)

hi,j,t : time to process one wafter through operation j on tool type i in period t

mi,t : unit cost of tool type i in period t

αp : upper bound of unmet demand for product p

βt : maximum budget in period t

I(j) : collection of tool groups that can perform operation j

J(i) : collection of operations that can be performed on tool type i

PT : collection of primary tool types

NT : collection of non-primary tool types

q1 : cost related coefficient of primary tool types

q2 : cost related coefficient of non-primary tool types

In this formulation, the tools are divided into primal and non-primal tools, i.e., I =

PT ∪ NP , where PT is the set of primal tools and NP is the set of non-primal tools.

Primal and non-primal tools have different weights in the objective function. The objec-

tive function is a sum of unmet customer demand U+
p,t and weighted number of tools. The

first constraint relates the demand dp,t to production variable Wp,t, unmet demand U+
p,t

and excess demand U−
p,t. The second constraint relates the production of wafers and the

manufacturing processes. The third constraint requires that the accumulated machine tool

capacity can satisfy the production requirements. The fourth constraint is a budget con-

straint. A more detailed explanation of the objective function and constraints can be found

in [5]. In this chapter, we extend this deterministic multi-period capacity planning model to

two-stage and multi-stage stochastic programming models by introducing stochastic data
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description. The original data from [5, 28] is for a two stage, two period stochastic pro-

gramming model. The data includes four scenarios. The authors in [5, 28] create a base

scenario consisting of two periods. The base scenario is considered as having the highest

probability to happen in the future. Based on this scenario, three other scenarios are devel-

oped corresponding to other possible outcomes of future demand evolvement with smaller

probabilities. In the original data, there are 306 machine tools, 40 wafer types (products)

and 2575 operations. To formulate one scenario, above 10000 variables and 6000 constraints

are needed. For one period, there are above 5000 variables and 3000 constraints.

4.4 Experimental environment

In our numerical experiments, we made two modifications to the original model (36). First,

we drop the budget constraint from the original model since this constraint will destroy the

decomposable structure that is required by our approximation algorithm. Moreover, in the

base scenario, this constraint is not tight. In other scenarios of original data, this constraint

is violated only when the demands are significantly higher than the base case. Second, we

consider discounted cost data, whereas the original data has the same cost for each period.

To generate the scenario tree for our stochastic program, we use the data of the first

period of the base scenario from [5, 28] as the root node. Based on this node, all the nodes

in future stages are generated by introducing random demand and discounted cost to the

root node data. In each node, we have about 5000 variables and 3000 constraints.

For discounted cost data, according to [5, 28], we assume the length of one planning

period is six months; and set the cost discounting factor for one planning period to 5%. For

random demand data, we use lognormal distribution λ(µ, σ), where µ is the expectation and

σ is the standard deviation. To describe the demand evolution along the planning horizon,

we consider four demand distributions of combinations of different expectation and standard

deviation (S.D.) trends as follows:

In Table 2, zn is the demand of one single product in node n, and z1 is the demand

of the product in the root node. Note sn is the stage number of node n (if n ∈ St, then

sn = t). So for all the nodes in the same stage, we will have the same demand distribution.
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Table 2: Demand distributions

Demand pattern Characteristic Distribution
1 constant mean, constant S.D. zn ∼ z1λ(1, 0.5)
2 constant mean, increasing S.D. zn ∼ z1λ(1, 0.5 + 0.1sn)
3 increasing mean, constant S.D. zn ∼ z1λ(1 + 0.5sn, 0.5)
4 increasing mean, increasing S.D. zn ∼ z1λ(1 + 0.5sn, 0.5 + 0.1sn)

In the numerical experiments, we consider scenario trees with the number of stages (T )

varying from 2 to 5, and the number of branches (B) for each non-leaf node varying from

2 to 5. We get a total number of 7 scenario trees. The nodes in these trees vary from 3

to 31. The stochastic data is generated by Monte-Carlo sampling. For each data point, we

conduct 5 independent experiments and use the average of 5 runs. Considering the different

demand patterns, scenario trees, and repetitive numerical experiments, we generate a total

number of 140 problems and solve them. All numerical experiments are conducted on an

IBM PC with 1024 MB RAM and a PENTIUM4 1.6GHz processor.

4.5 Computational results

4.5.1 Comparison of two-stage and multi-stage models

To compare two-stage and multi-stage models, we read the original data and generate the

scenario tree and stochastic programming formulations. In the following table, we compare

the number of all variables(No. var.), integer variables (No. int. var.) and constraints (No.

con.) for two-stage and multi-stage formulations. In the table, T is the number of stages

in the scenario tree and N is the total number of nodes. Note the number of branches of

non-leaf nodes is fixed at 2 for all the scenario trees generated in this section. From Table 3,

we can see the number of integer variables of multi-stage problem grows much faster than

the two-stage problem as the number of stages increases:

To compare two-stage and multi-stage model, we define the Relative Value of Multi-stage

Stochastic Programming as:

RV MS =
vTS − vMS

vTS
,
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Table 3: Comparison of two-stage and multi-stage formulations

T N Two-stage Multi-stage
No. var. No. int. var. No. con. No. var. No. int. var. No. con.

2 3 15315 612 8763 15621 918 8763
3 7 35225 918 20447 36449 2142 20447
4 15 74739 1224 43815 78105 4590 43815
5 31 153461 1530 90551 161417 9486 90551

where vTS , vMS are the optimal values of two-stage model and multi-stage model, respec-

tively. However, since it is hard to solve the two-stage and multi-stage models to optimality,

we only use a lower bound in our numerical experiments:

RV MS ≥ vTS
LP − vMS

HR

vTS
LP

,

where vTS
LP is the optimal value of the linear relaxation of two-stage model; vMS

HR is the

heuristic solution objective value of the multi-stage model.

In the experiments, we first solve the linear relaxation of the two-stage model and get its

objective value vTS
LP . For the multi-stage formulation, we also solve the linear relaxation and

get the objective value vMS
LP . Based on the multi-stage LP relaxation solution, we apply the

approximation scheme and obtain the heuristic solution and its objective value vMS
HR . Note

all the linear relaxation problems are solved using CPLEX9.0 primal simplex solver except

the simple stochastic lot-sizing subproblem. We test all the four demand patterns. For

each pattern, we draw the curve of RV MS lower bound with respect to the total number

of stages. In these experiments, we fix the number of branches for each non-leaf node to 2.

The results are shown in Figure 5. Notice that each data point is obtained by getting the

average value of 5 independent experiments.

Our first observation of Figure 5 is that for all the four demand patterns, the RV MS

lower bound increases as the number of stages increases. This implies that the value of

multi-stage stochastic programming becomes higher when the planning horizon becomes

longer, which agrees with our theoretical analysis. Recall the results for stochastic lot-

sizing problem. We show that the value of multi-stage stochastic programming increases

as the demand data variability increases under almost constant cost. When the number
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Figure 5: The value of multi-stage stochastic programming with increasing planning horizon

of stages is increasing, there is an increasing number of nodes in the tree. So it is more

likely for a very high demand to appear when we generate random demand data. This very

high demand will cause a large data variability, which leads to higher value of multi-stage

stochastic programming.

The second observation is that the pattern of demand distribution has an influence on

the magnitude of the RV MS lower bounds. For demand pattern 1, the RV MS lower bound

is less than 13% for all the four scenario trees. For demand pattern 2, all the RV MS lower

bounds are larger than 14%; and the RV SM becomes larger than 40% when the number

of stages is larger than 3. For demand pattern 3, the largest RV MS lower bound is less

than 25%. But for demand pattern 4, the RV MS lower bounds are above 28% when there

are larger than 2 stages; and the lower bounds are above 45% when there are 4 and 5

stages. Also, the growth of RV MS lower bounds with respect to the number of stages for

demand pattern 2 and 4 is faster than that for demand pattern 1 and 3. These differences

are caused by the setting of standard deviation. In demand pattern 2 and 4, the standard

deviation is increasing, while the standard deviation is constant in demand pattern 1 and

3. Since the increasing standard deviation will bring larger variability in the demand data,
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Figure 6: The value of multi-stage stochastic programming with increasing number of
branches

so the value of multi-stage stochastic programming will increase as the standard deviation

increases, which again conforms to our theoretical results.

In all the previous experiments, we fix the number of branches for non-leaf nodes to 2,

and increase the number of stages. In fact, we can also increase the scale of the scenario

tree by increasing the number of branches of non-leaf nodes. We would like to test the

performance of the stochastic programming models with respect to an increasing number of

branches. For this purpose, we fix the number of stages of scenario tree to 3, and increase

the number of branches for all the non-leaf nodes from 2 to 5. For a total number of 4

scenario trees, we run the numerical experiments and draw the curves of RV MS lower

bound against the number of branches. The results are shown in Figure 6.

In Figure 6, we can see that the RV MS lower bound is always increasing as the number

of branches increases, except that it dropped slightly under demand pattern 1 when the

number of branches increases from 4 to 5. This observation can be explained by our analysis

on V MS. When there are more branches, the scale of the scenario tree increases, i.e., there

are more nodes in the tree. This implies there is a higher probability for a very high
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demand to appear. Therefore, on average, the V MS will increase as the number of nodes

increases. Especially, when the standard deviation is larger, the V MS tends to be larger.

This is exactly what we find in Figure 6. We note that the V MS lower bounds for demand

pattern 2 and 4 are much higher than that for demand pattern 1 and 3. This is caused by

using increasing standard deviation in demand pattern 2 and 4, compared with the constant

standard deviation in demand pattern 1 and 3.

4.5.2 The quality of heuristic solutions

For all the test problems in our experiment, the heuristic solution can be obtained within

90 seconds. So the efficiency of the approximation scheme is satisfactory. To study the

solution quality, we define the relative gap between optimal objectives of heuristic solution

and optimal solution of multi-stage model as:

RGAP =
vMS
HR − vMS

vMS
.

Since it is difficult to solve the multi-stage model, we use an upper bound for RGAP :

RGAP ≤ vMS
HR − vMS

LP

vMS
LP

,

where vMS
LP is the optimal value of the linear relaxation of multi-stage model. We draw

the curves of RGAP upper bounds against the number of stages in the scenario tree. Note

in all these curves we fix the number of branches of non-leaf nodes to 2. The results are

shown in Figure 7.

In Figure 7, we first notice that all the curves are deceasing as the number of stages

increases, except that the RGAP increases slightly in demand patten 1 when the number of

stages increases from 4 to 5. This observation is compatible with our theoretical analysis.

Recall that the gap between the heuristic solution objective value and the optimal objective

value of the multi-stage model is bounded by the summation of all the resource costs in the

first stage (for our numerical experiment, it is the summation of all the tool costs in the

first stage), which is a constant number with respect to the increasing number of stages.

When the number of stages increase 1, we need to satisfy the added demands from the new

stage. So the optimal value of multi-stage model will increase on average. In other words,
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Figure 7: The heuristic solution quality of multi-stage stochastic programming with in-
creasing planning horizon

on an average basis the optimal objective value of the multi-stage model will increase as the

number of stages increases. Therefore, on an average basis the RGAP value will decrease

as the number of stages increases.

The other observation of the curves is that when the mean demand is increasing, the

quality of heuristic solution is better. For demand pattern 1, the heuristic solution quality

is not satisfactory. The lowest RGAP upper bound for all four scenarios trees is larger

than 14%. For demand pattern 2, RGAP lower bound is smaller compared to demand

pattern 1. However, the lowest RGAP value is still above 5%. Note demand pattern 1 and

demand pattern 2 both have distributions with constant mean. For the demand patterns

with increasing mean demand, i.e., demand pattern 3 and 4, the RGAP upper bound is

obviously smaller than that of demand pattern 1 and 2 for all the scenario trees. This

phenomenon is due to the increasing demand expectation, which will lead to faster increase

of the optimal objective value of the multi-stage model. With the same reasoning as in the

first observation, the RGAP will then tend to be smaller.

As in the last subsection, we are also interested in the heuristic solution quality when
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Figure 8: The heuristic solution quality of multi-stage stochastic programming with in-
creasing number of branches

we fix the number of stages and increase the number of branches of non-leaf nodes. For

this purpose, we test 4 scenario trees with the number of stages fixed at 3, and the number

of branches of non-leaf nodes increasing from 2 to 5. We draw the curves of RGAP upper

bound against the number of branches. The results are shown in Figure 8.

In Figure 8, we notice that all the curves are almost level. To explain this, we can use a

similar reasoning as before. Since the number of stages is fixed for all the scenario trees, on

average the optimal value of multi-stage model is almost constant. Therefore, increasing the

number of branches will not affect RGAP very much. However, the influence of different

distributions is still noticeable. The RGAP upper bound for demand pattern 3 and 4 is

much smaller than that of demand pattern 1 and 4. The reason is that demand pattern 3

and 4 use increasing mean while demand pattern 1 and 2 use constant mean.

Finally, compared with the running times of two-stage LP and multi-stage LP, the

heuristic for multi-stage model always consumes the least amount of time. Among all the

instances, the heuristic running time is always less than 2 minutes. As a comparison, we use

the CPLEX9.0 MIP solver to solve an instance with 3 nodes(T = 2, B = 2) in the scenario
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tree, both the two-stage model and multi-stage model take more than 1 hour to solve. In

another instance with 7 nodes(T = 3, B = 2) in the scenario tree, both the two-stage model

and multi-stage model cannot be solved after 2 hours. These results show that a good

heuristic is very necessary for this category of stochastic capacity planning problems; and

the heuristic proposed in this paper can provide satisfactory solutions in reasonable amount

of time.

4.6 Summary

In this chapter, we conduct a large-scale computational study, using realistic-scale problem

instances corresponding to semiconductor tool planning. Numerical results indicate that a

lower bound on the relative VMS can be as high as 70%. Recall that this lower bound is

obtained by comparing the cost of an approximate solution to the multi-stage model to that

of a lower bound on the cost of an optimal solution of the two-stage model. Therefore, this

suggests that even an approximate solution to the multi-stage model may be far superior

to any optimal solution to the two-stage model. These results confirm that the VMS for

these problems is quite high. Moreover, the quality and performance of the approximation

scheme is very satisfactory, more so for cases where the VMS is high.
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CHAPTER V

THE PLANNING HORIZON OF AN INFINITE HORIZON

STOCHASTIC LOT-SIZING PROBLEM

5.1 Introduction

A critical consideration in developing a multi-period production planning model is the

length of the planning horizon [20, 43, 60]. On one hand, the planning horizon should

be long enough to avoid myopic solutions; on the other hand, an excessively long horizon

requires an excessively large input data set which may render the problem intractable. In

the case where the planning horizon is very long or indefinite, a practical approach is to use

a finite horizon approximation, also called the rolling horizon approach. In this approach,

a planner solves the finite approximation problem and implements the solution for only the

first few periods, solving a new approximation problem with the same length of horizon when

in the next period. Theoretically, it is important to know the conditions under which the

finite horizon approximation problem generates a good approximate solution with respect

to the optimal solution of the original infinite horizon problem (cf. [11]). Under certain

conditions, one may be able to find a length of the planning horizon such that the finite

horizon approximation problem will have an optimal first-period solution the same as that

of the original infinite horizon problem. This length is called the planning horizon. In

the field of stochastic dynamic programming, there have been extensive studies for the

planning horizon problem. In [50, 51], a class of general infinite horizon discounted-cost

optimization problems is studied. Some sufficient conditions and necessary conditions are

given for the convergence of optimal solutions of finite horizon approximation problems to

the optimal solution of the original infinite horizon problem. In [6, 7, 8, 12], some general

infinite horizon optimization problems are studied and conditions for the existence of a

planning horizon are given. In [53], the authors consider a type of deterministic lot-sizing

56



problem with convex production and inventory costs, by using the monotonicity of the

finite horizon approximation problem. It is shown that under mild conditions there exists

a planning horizon. In an extension of this work, the authors in [17] study the stochastic

case and show that the planning horizon still exists under a linear cost structure and other

conditions.

However, all past studies of the planning horizon problem remain within a Markovian

decision analysis context. In other words, only feasible solutions or policies with the Marko-

vian property are considered. There exists very few studies of the planning horizon problem

within the stochastic programming context. In [34], a general approximation framework of

infinite horizon optimization problems based on stochastic programming is developed. The

research discusses approximation techniques for a general class of stationary infinite horizon

problems with discounted costs. In this chapter, a specific infinite horizon stochastic lot-

sizing model under the framework of stochastic programming is established. It is assumed

that the stochastic processes are discrete and can be represented by an infinite scenario tree.

Both cost and demand are random parameters and the underlying stochastic processes are

general. By studying the structure of optimal solutions of the finite horizon approximation

problem, it is shown that the optimal solution of the finite horizon approximation problem

has a non-decreasing property as the planning horizon increases. Moreover, it is shown

that when the demand and cost data are properly bounded, the finite horizon approxima-

tion problem converges to the original infinite horizon problem, both in optimal objective

value and in solution. Therefore, one can show the existence of a planning horizon under

the framework of stochastic programming. This result applies to non-stationary, arbitrary

random demand and cost parameters. One can also develop a useful formula to determine

a lower bound of the planning horizon.

5.2 The stochastic programming formulation

In this study, we consider a single item, uncapacitated, infinite horizon stochastic lot-sizing

problem in which the stochastic data is described by a scenario tree. The notations are as

follows:
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Scenario tree:

T ∞ : the set of all nodes in the infinite horizon scenario tree

P(n) : the set of nodes on the path from node n to the root node in T ∞

a(n) : the direct ancestor node of node n

t(n) : the stage of node n, i.e., the cardinality of P(n)

T T : the subtree composed of all nodes n with t(n) no greater than T

St : the set of all nodes n with t(n) = t, which is called the tth stage

B : the largest number of children of a node in T ∞ (note B ≥ 2)

Variables and input:

δn = the demand at node n of the scenario tree (δn ∈ Z+)

qn = the discounting factor at node n(0 < µ < 1)

I0 = the inventory at the present time (we usually assume I0 = 0)

αn = the unit production cost at node n

βn = the unit inventory holding cost at node n

xn = production level at node n

In = inventory level at node n

With these notations, the infinite horizon stochastic lot-sizing problem and its finite

approximation, denoted by (Q∞) and (QT ), respectively, are as follows:

(Q∞) : min
∑

n∈T∞ qn[αnxn + βnIn]

s.t. Ia(n) + xn = In + δn n ∈ T ∞

xn, In ∈ Z+ n ∈ T ∞
(37)
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(QT ) : min
∑

n∈T T qn[αnxn + βnIn]

s.t. Ia(n) + xn = In + δn n ∈ T T

xn, In ∈ Z+ n ∈ T T

(38)

To denote the objective values and solutions of (Q∞), we have the following notations:

X∞ : a feasible solution of (Q∞)

Π∞ : the set of all feasible solutions of (Q∞)

F (X∞) : the objective value of solution X∞

X∞∗ : the optimal solution of (Q∞)

F∞∗ : the optimal objective value of (Q∞)

Note X∞, X∞∗ are vectors in (Z2
+)∞. For example, X∞ = {X∞

n }n∈T∞ where X∞
n =

(x∞n , I∞n ) for all n in T ∞. The corresponding notations for finite horizon approximation

problem are XT , ΠT , F (XT ), XT∗ and F (XT∗), respectively. We treat XT and XT∗ as

vectors in (Z2
+)∞ such that all the entries corresponding to nodes after the T th stage are

zeroes, i.e., XT
n = (0, 0) for all n ∈ T ∞\T T . We also define Π = Π∞ ∪ (∪∞t=1Π

t), which

is called the solution space. An arbitrary element in Π is denoted as X = {Xn}n∈T∞ and

Xn = (xn, In) for all n ∈ T ∞. The corresponding objective value is:

F (X) =
∑

n∈T∞
qn[αnxn + βnIn] (39)

5.3 Value and optimal solution convergence

5.3.1 Assumptions

Before we discuss the convergence properties of the finite horizon approximation problem,

we adopt the following assumptions:

(A1) The discounting factors of nodes at each stage is uniformly bounded by an exponential

function of the stage number: There exists ε2 > 0 and 0 < µ < 1 such that for all

n ∈ T ∞,

0 < qn ≤ ε2µ
t(n). (40)

59



(A2) The demands of nodes in each stage is uniformly bounded by an exponential function

of the stage number: There exists ε3 > 0 and ν > 1 such that for all n ∈ T ∞,

0 < δn ≤ ε3ν
t(n). (41)

(A3) The unit production and inventory costs are strictly positive and uniformly bounded.

There exists M2 ≥ M1 > 0 such that for all n ∈ T ∞:

M1 ≤ αn, βn ≤ M2. (42)

(A4) We assume

µνB < 1. (43)

Notice that assumption (A1) is easy to satisfy. One sufficient condition is as follows.

Let qn = pnrt(n), where pn is the probability of node n and r is a uniform discounting factor

(0 < r < 1). If we assume that each node has exactly B children and all the nodes in the

same stage have the same probabilities (in other words, the probability distribution in each

stage is uniform). Then we have pn = B
Bt(n) . In this case, it is easy to see that µ = r

B and

ε2 = B. Furthermore, we can also assume that the probability distribution satisfies that

pn ≤ ε2
Bt(n) . Assumption (A2) is also not a very strong assumption. It only requires the

increasing demand be bounded by an exponential distribution. Assumption (A3) is easy to

satisfy for costs in real life. The last assumption (A4) is very important for the existence

of optimal solution, which can be seen in the following developments. The intuition behind

assumption (A4) is that the decreasing rate µ of discounting factors has to be small enough,

so that it can have a larger influence on the objective value than that of the increasing rate

ν of demand and increasing number of nodes (whose rate is controlled by the largest number

of branches B).

From the above assumptions, we can get some very useful properties of the problem

under study. First, note that for any sequence of demands {δn}n∈T∞ , XT
n = (δn, 0) for

all n ∈ T T constitutes a feasible solution XT for (QT ), and X∞
n = (δn, 0) for all n ∈ T ∞
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constitutes a feasible solution X∞ for (Q∞). For this solution, the objective value:

F1 =
∑

n∈T∞
qn[αnδn + βn0] ≤

∑

n∈T∞
ε2µ

t(n)M2ε3ν
t(n)

≤
∞∑

t=1

ε2ε3M2B
−1(µνB)t

< ∞

Note the second inequality comes from the fact that T ∞ = ∪∞t=1St, |St| ≤ Bt−1 and

t(n) = t for all n ∈ St. The last inequality is guaranteed by assumption (A4). Therefore,

without loss of generality, we can define the space Π∞ as the set of all the feasible solutions

of (Q∞) whose total cost is no greater than F1. Therefore, the objective value is finite for

each solution in Π.

Second, it is easy to see that for all the feasible solutions X = {(xn, In)}n∈T∞ in Π and

any fixed node n ∈ T ∞, we can find uniform finite upper bounds for xn and In. Otherwise

the maximum objective value of feasible solutions will go to infinity by assumption (A3).

Combining this fact with the integrality of xn and In, we conclude that for each fixed n,

there are only finitely many possible values of xn and In in any feasible solution. In fact,

xn and In can be uniformly bounded by an exponential function of t(n). Indeed, assume

that there is an unit produced in node n that will satisfy the demand at stage t(n) + K.

Then fix n, according to assumption (A1), we can further assume that ε1µ
t(n) < qn for

some 0 < ε1 < ε2. Combining this assumption and (A3), the inventory cost is at least
∑K−1

i=0 M1ε1µ
t(n)+i. Now consider the alternative to produce this unit at stage t(n) + K

directly so there is no inventory cost. Then the total cost is at most M2ε2µ
t(n)+K . Clearly,

∑K−1
i=0 M1ε1µ

i converges to a positive number as K goes to infinity, while M2ε2µ
K goes to

zero. Therefore, we can find a positive integer K1 such that
∑K−1

i=0 M1ε1µ
i > Mε2µ

K for all

K > K1, i.e., we would never produce an unit to satisfy the demand of a node more than

K1 stages from the current stage. Therefore, at one node n, the maximum number of units

61



we would produce is:

K1∑

i=0

Biε3ν
t(n)+i

= ε3ν
t(n) 1− (Bν)K1+1

1−Bν

= ε4ν
t(n),

where ε4 = ε3
1−(Bν)K1+1

1−Bν is a positive number. We also notice that the maximum number

of units that can be carried as inventory at node n is also bounded by ε4ν
t(n). Therefore,

we conclude that for any optimal solution we have xn, In ≤ ε4ν
t(n). We can further define

the feasible solutions as X = {(xn, In)}n∈T∞ such that F (X) ≤ F1 and xn, In ≤ ε4ν
t(n).

5.3.2 Existence of optimal solution

To study the existence of optimal solution of the infinite horizon problem, we need to discuss

the topology of the solution space first. By comments of the last section, there are only

finite possible choices of values for any entry in a feasible solution. So we can define a metric

ρ(·, ·) on the solution space such that ρ(X, X ′) =
∑

n∈T∞ 2−nφ(Xn, X ′
n) where:

φ(Xn, X ′
n) =





0 : Xn = X ′
n

1 : o.w.

Note φ(·, ·) itself corresponds to a metric defined on R2.

THEOREM 10 ρ is a metric and Π is compact with respect to this metric.

PROOF. The first half of the statement is clear from the definition of metric [15]. Clearly,

ρ(X, X) = 0 for all X ∈ Π; ρ(X, X ′) = ρ(X ′, X) ≥ 0 for all (X,X ′) ∈ Π × Π; and if

ρ(X, X ′) = 0 then X = X ′. For all X,Y, Z ∈ Π, we have ρ(X, Z) =
∑

n∈T∞ 2−nφ(Xn, Zn) ≤
∑

n∈T∞ 2−n[φ(Xn, Yn) + φ(Yn, Zn)] = ρ(X,Y ) + ρ(Y,Z). So the triangle inequality also

holds. To prove the compactness of Π, we only need to show Π is totally bounded and

complete. We first show that Π is totally bounded. Note that for any ε > 0, we can find

n1 such that 2−n1 < ε. Consider two solutions X and X ′. If Xn = X ′
n for all n ≤ n1, then

we have ρ(X,X ′) ≤ ∑∞
n=n1+1 2−n = 2−n1 < ε. On the other hand, recall that for a fixed
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n, there are only finitely many possible values of xn and In in any feasible solution. So we

can find a finite set of feasible solutions such that any solution X ∈ Π will have the same

values in the first n1 entries as one of the solutions in this set. Combining these results, it

is not hard to see that we can construct a finite cover of Π consisting of cells of radius ε.

Therefore, Π is totally bounded. Now let {Xi}∞i=1 be a Cauchy sequence in Π. Clearly, for

any fixed n, {Xi
n}∞i=1 is also a Cauchy sequence with respect to the metric implied by φ(·, ·).

Therefore, we can find X̂n such that Xi
n = X̂n when i is large enough by the definition of φ.

Define X̂ = (X̂1, X̂2, . . .). It is easy to see that limi→∞Xi = X̂. We only need to show that

X̂ is feasible, which is guaranteed by the feasibility of {Xi}∞i=1 and the fact that Xi
n = X̂n

when i is large enough. This proves the completeness of Π. 2

Next, we show the continuity of F (X) with respect to X.

THEOREM 11 Let {Xi}∞i=1 be a sequence in Π and limi→∞Xi = X where X ∈ Π. Then

limi→∞ F (Xi) = F (X).

PROOF. From the proof of last theorem, we know that for any fixed T , we can find K(T )

such that for all i > K(T ) and 1 ≤ n ≤ |T T |, Xi
n = Xn. Therefore, for i > K(T ):

|F (X)− F (Xi)|

= |
∑

n∈T∞\T T

qn[αn(xn − xi
n) + βn(In − Ii

n)]|

≤
∑

n∈T∞\T T

ε2µ
t(n)[αn|xn − xi

n|+ βn|In − Ii
n|]

≤
∑

n∈T∞\T T

4ε2µ
t(n)M2ε4ν

t(n)

Note
∑

n∈T∞\T T 4ε2ε4M2µ
t(n)νt(n) → 0 when T →∞ by assumption (A4). 2

Finally, we can show the existence of optimal solution of the infinite horizon problem:

COROLLARY 1 An optimal solution of the infinite horizon problem (Q∞) exists, i.e.,

∃X∞∗ such that F∞∗ = F (X∞∗) < ∞.
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PROOF. According to Theorem 10 and Theorem 11, Π is compact and F (X) is continu-

ous in X. Therefore, the image of Π under F is also compact. 2

5.3.3 Convergence results

First, we show a certain type of monotonicity of an optimal solution of the finite horizon

problem.

LEMMA 3 Let XT∗ = {(xT∗
n , IT∗

n )}n∈T∞ (note xT∗
n = IT∗

n = 0 for all n ∈ T ∞\T T ) be

any optimal solution of (QT ) with respect to a vector of demands DT = (δn)n∈T T . If the

demand at one leaf node of T T increases one unit, then there is a new optimal solution such

that the production in the root node of scenario tree is nondecreasing.

PROOF. According to Chapter II, we can reformulate (QT ) as follows:

(QT ) : min
∑

n∈T T cnxn

s.t.
∑

m∈P(n) xm ≥ dn n ∈ T T

xn ∈ R+ n ∈ T T ,

(44)

where dn =
∑

m∈P(n) δm and cn = qn(αn +
∑

m∈T T (n)
qmβm

qn
). Let (x∗n)n∈T T , (π∗n)n∈T T

be the optimal primal and dual solutions to (44), respectively. Clearly, (x∗n)n∈T T is primal

feasible, while (π∗n)n∈T T is dual feasible. The complementary slackness is satisfied:

x∗n > 0 =⇒ ∑
m∈T T (n) π∗m = cn, (45)

∑
m∈P(n) x∗m > dn =⇒ π∗n = 0. (46)

Assume (d′n)n∈T T is a new vector of demands such that d′n = dn for all n ∈ T T \{n1}
and d′n1

= dn1 + 1, where n1 is a leaf node of T T (n1 ∈ ST ). Note node 1 is the root node

and T T (n) denotes the subtree in T T with root n ∈ T T . To prove the result, we need to

show there exists an optimal solution (x′n)n∈T T for (d′n)n∈T T such that x′1 ≥ x∗1.

First, if
∑

m∈P(n1) x∗m ≥ dn1 + 1, then (x∗n)n∈T T and (π∗n)n∈T T are still feasible and

conform to complementary slackness. So they are still optimal for the demand sequence
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(d′n)n∈T T . Second, if
∑

m∈P(n1) x∗m = dn1 and x∗n1
> 0, then we let x′n = x∗n for all

n ∈ T T \{n1} and x′n1
= x∗n1

+ 1. Clearly, (x′n)n∈T T is primal feasible. It is also easy

to check (x′n)n∈T T , (π∗n)n∈T T still satisfy complementary slackness. Therefore, they are

still optimal for the demands (d′n)n∈T T . Third, if
∑

m∈P(n1) x∗m = dn1 and x∗n1
= 0, we

consider the nearest ancestor node n2 of n1 which has positive solution in (x∗n)n∈T T , i.e.,

x∗n2
> 0 and x∗n = 0 for all n ∈ P(n1)\P(n2). Then we let x′n = x∗n and π′n = π∗n for

all n ∈ T T \T T (n2). Now consider the problem with respect to scenario tree T T (n2) and

((dn −
∑

m∈P(n2)\{n2} x∗m)+)n∈T T (n2) (where (·)+ = max{·, 0}). Assume we can find a pair

of primal feasible and dual feasible solutions (x′n)n∈T T (n2), (π′n)n∈T T (n2) in T T (n2) such that

x
′
n2
≥ x∗n2

> 0 and the complementary slackness is satisfied, then it is easy to check that

(x′n)n∈T T and (π′n)n∈T T are optimal. Therefore, without loss of generality, we can assume

that n2 = 1, that is, we assume that x∗1 > 0, x∗n = 0 for all n ∈ P(n1)\{1} and x∗1 = dn1 .

We only need to show that we could find a pair of optimal solutions (x′n)n∈T T , (π′n)n∈T T

for (d′n)n∈T T such that x′1 ≥ x∗1 > 0.

To facilitate our proof, we define the following notations:

A∗+(n) = {m ∈ T T (n)\{n} : x∗m > 0, x∗i = 0 ∀i ∈ P(m)\{m}\P(n)}
A∗>1(n) = {m ∈ T T (n)\{n} : x∗m > 1, x∗i = 0 ∀i ∈ P(m)\{m}\P(n)}
A∗=1(n) = {m ∈ T T (n)\{n} : x∗m = 1, x∗i = 0 ∀i ∈ P(m)\{m}\P(n)}
A∗=(n) = {m ∈ T T (n) :

∑
i∈P(n) x∗i = dm, x∗i = 0 ∀i ∈ P(m)\P(n)}

A∗>(n) = {m ∈ T T (n) :
∑

i∈P(n) x∗i > dm, x∗i = 0 ∀i ∈ P(m)\P(n)}

Now let xn = x∗n for all n ∈ T T \{n1} and xn1 = 1, which constitutes a primal feasible

solution for (d′n)n∈T T . Then starting from this solution, we use the shifting up primal

algorithm proposed in Chapter II (page 11). We claim that when the algorithm ends, we

get a solution (x′n)n∈T T which is optimal. The basic idea is to construct a dual feasible

solution (π′n)n∈T T from (π∗n)n∈T T that satisfies the complementary slackness with respect

to (x′n)n∈T T .
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Case one: The shifting up algorithm ends at node n1, i.e., we have x′n = x∗n for all

n ∈ T T \{n1}, x′n1
= 1 and for all n ∈ P(n1)\{n1}:

cn ≥ cn1 +
∑

m∈A∗+(n)

cm (47)

In the original dual solution, we have
∑

m∈T T (n) π∗m = cn for all n ∈ A∗+(1) and π∗n = 0 for

all n ∈ A∗>(1) by complementary slackness. Notice T T = (∪m∈A∗+(1)T T (m))∪A∗>(1)∪A∗=(1).

We let π′n = π∗n for all n ∈ (∪m∈A∗+(1)T T (m)) ∪ A∗>(1); π′n = π∗n − θn (where 0 ≤ θn ≤ π∗n)

for all n ∈ A∗=(n)\{n1}; and π′n1
= cn1 . We also define θn1 = cn1−π∗n1

. Note θn is unknown

right now for all n ∈ A∗=(n)\{n1}, and θn1 is known. We need to show this set of dual

solution (π′n)n∈T T is dual feasible and satisfies complementary slackness with respect to

(x′n)n∈T T .

To check dual feasibility, note that for all n 6= n1, we have π′n ≤ π∗n. Only π′n1
> π∗n1

.

Therefore,
∑

m∈T T (n) π′m ≤ ∑
m∈T T (n) π∗m ≤ cn for all n ∈ T T except perhaps for n ∈ P(n1).

For complementary slackness ( 45) and (46), it is also easy to see that we only need to check

n ∈ P(n1). Note for n1, we have π′n1
= cn1 (so the complementary slackness and feasibility

constraint for node n1 are satisfied). Combining these observations, we need to check for

n ∈ P(n1)\{n1}:

cn ≥ cn1 +
∑

m∈A∗+(n) cm +
∑

m∈A∗=(n)\{n1}(π
∗
m − θm)

= θn1 + π∗n1
+

∑
m∈A∗+(n) cm +

∑
m∈A∗=(n)\{n1}(π

∗
m − θm) ∀n ∈ P(n1)\{n1}\{1},

c1 = cn1 +
∑

m∈A∗+(1) cm +
∑

m∈A∗=(1)\{n1}(π
∗
m − θm)

= θn1 + π∗n1
+

∑
m∈A∗+(1) cm +

∑
m∈A∗=(1)\{n1}(π

∗
m − θm) n = 1.

On the other hand, also by feasibility and complimentary slackness, in the original dual

solution (π∗n)n∈T T :

4n = cn − π∗n1
−∑

m∈A∗+(n) cm −∑
m∈A∗=(n)\{n1} π∗m ∀n ∈ P(n1)\{n1}\{1},

c1 = π∗n1
+

∑
m∈A∗+(1) cm +

∑
m∈A∗=(1)\{n1} π∗m n = 1,

where θn1 = cn − π∗n1
≥ 4n ≥ 0 by dual feasibility. So we require the existence of a

feasible solution to the following linear system:

4n ≥ θn1 −
∑

m∈A∗=(n)\{n1} θm ∀n ∈ P(n1)\{n1}\{1}
0 = θn1 −

∑
m∈A∗=(1)\{n1} θm

(48)
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where the unknowns are θm for all m ∈ A∗=(1)\{n1} (θn1 is known). Note now (47) becomes:

4n +
∑

m∈A∗=(n)\{n1} π∗m ≥ θn1 ∀n ∈ P(n1)\{n1}\{1}
∑

m∈A∗=(1)\{n1} π∗m ≥ θn1 n = 1
(49)

Note A∗=(n) ⊆ A∗=(a(n)) for all n ∈ P(n1)\{n1}\{1}. Therefore, according to (49),

(48) is obviously solvable, i.e., there exists a set of θm for all m ∈ A∗=(1)\{n1} such that

0 ≤ θm ≤ π∗m and (48) is satisfied.

Case two: The shifting up algorithm ends at node n3 ∈ P(n1)\{n1}. In this case,

x′n = x∗n for all n ∈ T T \T T (n3); x′n3
= x∗n3

+ 1; x′n = x∗n − 1 for all n ∈ A∗+(n3); x′n = x∗n

for all n ∈ ∪m∈A∗+(n3)(T T (m)\{m}); and x′n = x∗n = 0 for all n ∈ {m ∈ T T (n3)\{n3} :

x∗i = 0 ∀i ∈ P(m)\P(n3)}. Notice if n3 = 1, then x∗n3
> 0; otherwise x∗n3

= 0. Also

note that A∗+(n3) = A∗>1(n3) ∪ A∗=1(n3). So x′n > 0 for all n ∈ A∗>1(n3) and x′n = 0 for all

n ∈ A∗=1(n3).

According to our shifting up algorithm, we will have the following two types of inequal-

ities. One type of inequalities comes from the fact that the one unit production is shifted

up from node n1 to n3:

ca(n) < cn +
∑

m∈A∗+(a(n))\T T (n) cm ∀n ∈ P(n1)\P(n3)

which implies

cn3 < cn +
∑

m∈A∗+(n3)\T T (n) cm ∀n ∈ P(n1)\P(n3) (50)

To see this, just add the inequalities along the path from n to n3. The other type of

inequalities comes from the fact that this one unit can not be shifted up from n3 to one of

its ancestors any more:

cn ≥ cn3 +
∑

m∈A∗+(n)\T T (n3) cm ∀n ∈ P(n3)\{n3} (51)

Note if n3 = 1, then (51) does not exist. In the original dual solution, we have
∑

m∈T T (n) π∗m = cn for all n ∈ A∗+(1) and π∗n = 0 for all n ∈ A∗>(1) by complementary

slackness. To construct a new dual solution, first we let π′n = π∗n for all n ∈ ∪m∈A∗+(1)T T (m)

and n ∈ A∗>(1). Second, let π′n = 0 for all n ∈ A∗=(1) ∩ T T (n3)\{n1} and π′n = π∗n − θn

67



(where 0 ≤ θn ≤ π∗n) for all n ∈ A∗=(1)\T T (n3). Third, let π′n1
= cn3 −

∑
m∈A∗+(n3) cm. We

also define θn1 = cn3−
∑

m∈A∗+(n3) cm−π∗n1
−∑

m∈A∗=(n3)\{n1} π∗m = cn3−
∑

m∈T T (n3) π∗m. By

dual feasibility, we have
∑

m∈T T (n3) π∗m =
∑

m∈A∗+(n3) cm +π∗n1
+

∑
m∈A∗=(n3)\{n1} π∗m ≤ cn3 .

So θn1 ≥ 0. Note θn1 is known and θn is unknown for all n ∈ A∗=(1)\T T (n3).

We need to show this set of dual solution (π′n)n∈T T is feasible and satisfies comple-

mentary slackness with respect to (x′n)n∈T T . It is easy to see that for all n /∈ P(n1), we

have
∑

m∈T T (n) π′m ≤ ∑
m∈T T (n) π∗m ≤ cn; and x′n > 0 implies

∑
m∈T T (n) π′m = cn; and

∑
m∈P(n) x′m > dn implies π′n = 0. Therefore, we only need to check nodes n ∈ P(n1). For

all nodes in n ∈ P(n1)\P(n3), for dual feasibility we need:

cn ≥ π′n1
+

∑
m∈A∗+(n) cm

= cn3 −
∑

m∈A∗+(n3) cm +
∑

m∈A∗+(n) cm

= cn3 −
∑

m∈A∗+(n3)\T T (n) cm,

which is guaranteed by (50) already. For complimentary slackness at node n3 (x′n3
> 0), we

require that

cn3 = π′n1
+

∑
m∈A∗+(n3) cm,

which is guaranteed by the definition of π′n1
. For dual feasibility at node n ∈ P(n3)\{n3}\{1},

we require:

cn ≥ cn3 +
∑

m∈A∗+(n)\T T (n3) cm +
∑

m∈A∗=(n)\T T (n3)(π
∗
m − θm),

and for feasibility and complimentary slackness at node 1:

c1 = cn3 +
∑

m∈A∗+(1)\T T (n3) cm +
∑

m∈A∗=(1)\T T (n3)(π
∗
m − θm).

Using the notation θn1 , the above two conditions become:

cn ≥ θn1 +
∑

m∈T T (n3) π∗m +
∑

m∈A∗+(n)\T T (n3) cm

+
∑

m∈A∗=(n)\T T (n3)(π
∗
m − θm) ∀n ∈ P(n3)\{n3}\{1},

c1 = θn1 +
∑

m∈T T (n3) π∗m +
∑

m∈A∗+(1)\T T (n3) cm

+
∑

m∈A∗=(1)\T T (n3)(π
∗
m − θm) n = 1.
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On the other hand, in the original dual solution:

cn = 4n +
∑

m∈T T (n3) π∗m +
∑

m∈A∗+(n)\T T (n3) cm

+
∑

m∈A∗=(n)\T T (n3) π∗m ∀n ∈ P(n3)\{n3}\{1},
c1 =

∑
m∈T T (n3) π∗m +

∑
m∈A∗+(1)\T T (n3) cm

+
∑

m∈A∗=(1)\T T (n3) π∗m n = 1,

where 4n ≥ 0 by dual feasibility. So we require a solution of the following linear system

where the unknowns are θm for all m ∈ A∗=(1)\T T (n3) (θn1 is known):

4n ≥ θn1 −
∑

m∈A∗=(n)\T T (n3) θm ∀n ∈ P(n3)\{n3}\{1}
0 = θn1 −

∑
m∈A∗=(1)\T T (n3) θm n = 1.

(52)

Notice now (51) becomes:

4n +
∑

m∈A∗=(n)\T T (n3) π∗m ≥ θn1 ∀n ∈ P(n3)\{n3}\{1}
∑

m∈A∗=(1)\T T (n3) π∗m ≥ θn1 n = 1.
(53)

Therefore, (52) are obviously solvable, i.e., there exists a set of θm for all m ∈ A∗=(1)\T T (n3)

such that 0 ≤ δm ≤ π∗m and linear system (52) is satisfied. 2

According to this lemma, we have the following corollary:

COROLLARY 2 xT∗
1 is monotonically increasing in T .

PROOF. Consider the T + 1 horizon problem with demand vector DT+1 = (δn)n∈T T+1 .

We can obtain the optimal solution of this T + 1 horizon problem by the following way:

Solve the T horizon problem first and set xT+1
n = xT∗

n for all n ∈ T T and xT+1
n = 0 for

all n ∈ T T+1\T T . Notice that this solution (xT+1
n )n∈T T+1 is an optimal solution for the

T + 1 horizon problem with demand vector (δ̃n)n∈T T+1 such that δ̃n = δn for all n ∈ T T

and δ̃n = 0 for all n ∈ T T+1\T T . According to Lemma 3, if we increase the demand δ̃n by

one unit for some n ∈ T T+1\T T , i.e., δ̃n ← δ̃n + 1, then we can find a new optimal solution

in which the first stage production xT+1
1 will be nondecreasing. Repeating this procedure

until δ̃n = δn for all n ∈ T T+1\T T , then (xT+1
n )n∈T T+1 will be exactly an optimal solution

of the T + 1 horizon problem; and we have xT+1
1 ≥ xT∗

1 . 2
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Next, we will show that for any fixed n ∈ T ∞, the solution xT∗
n is bounded for all T .

LEMMA 4 For any fixed n ∈ T ∞, there exists x̃∗n ∈ Z+ such that xT∗
n ≤ x̃∗n for any T .

PROOF. Assume this conclusion is not true for node n, then there exists sequence {Tn
k }k

such that x
(T n

k )∗
n → ∞ as k → ∞. By our assumptions, we have F (T n

k )∗ → ∞, which is a

contradiction. 2

According to Corollary 2 and Lemma 4, it can be shown that xT∗
n converges as T goes

to infinity by Monotone Convergence Theorem.

COROLLARY 3 For any fixed n, there exists x̄n such that xT∗
n → x̄n as T →∞.

PROOF. First, consider set S1. There is only one node 1 in this set and it is the root of

the whole scenario tree. By Corollary 2 and Lemma 4 and monotone convergence theorem,

there exists x̄1 such that limT→∞ xT∗
1 = x̄1. Also by integrality of x1, xT∗

1 = x̄1 when T is

large enough. Under such circumstance, we can consider the nodes in S2, i.e., the children

of node 1. Now since the values of decision variables of node 1 are already fixed, the original

problem becomes |S2| independent problems whose roots are exactly the nodes in S2. We can

use the former arguments again to show that there exists x̄n such that limT→∞ xT∗
n = x̄n for

all n ∈ S2. Therefore, by induction, our conclusion holds for nodes in ST N for any T ≥ 1. 2

It is not hard to show the vector (x̄n)n∈T∞ is a feasible solution for the infinite horizon

problem (note that when (xn)n∈T∞ is determined, (In)n∈T∞ is also determined by the

constraints of Q∞).

LEMMA 5 (x̄n)n∈T∞ is a feasible solution for (Q∞).

PROOF. For any fixed n ∈ T ∞, we have:

∑
m∈P(n) x̄m =

∑
m∈P(n) limT→∞ xT∗

n = limT→∞
∑

m∈P(n) xT∗
n

≥ limT→∞(
∑

m∈P(n) δm − I0) =
∑

m∈P(n) δm − I0,

where the first inequality comes from the feasibility of (xT∗
n )n∈T∞ . 2
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Finally, we obtain the following convergence result.

THEOREM 12 (Solution and value convergence property)

lim
T→∞

F T∗ = F̄ = F∞∗, (54)

where F̄ is the objective value corresponding to the solution (x̄n)n∈T∞.

PROOF. First, let X̄∞ be the feasible solution corresponding to (x̄n)n∈T∞ . It is easy to

see that XT∗ → X̄∞ as T → ∞ by Corollary 3 and the integrality of decision variables.

Therefore, according to Theorem 11, we have:

lim
T→∞

F T∗ = F̄ .

On the other hand, we have the following inequalities:

F T∗ ≤ F∞∗ ≤ F̄ .

The first inequality comes from the fact that we can obtain a feasible solution XT of (QT )

from any optimal solution X∞∗ of (Q∞) by setting XT
n = X∞∗

n for all n ∈ T T , and the

objective value of this solution is an upper bound of F T∗. The second inequality comes

from Lemma 5. Therefore, we have limT→∞ F T∗ = F̄ = F∞∗. 2

5.4 Determination of the planning horizon

Theorem 12 implies the existence of a planning horizon of (Q∞), i.e., we can find a length

T 1 of planning horizon such that for all T ≥ T 1, the optimal solution xT∗
1 at the root node of

the finite approximation problem (QT ) will be equal to x∞∗1 of the infinite horizon problem

(Q∞). In fact, we can develop some useful upper bound for this length of planning horizon.

By Lemma 3, x
(T+1)∗
1 ≥ xT∗

1 . Consider the case x
(T+1)∗
1 > xT∗

1 , it implies that it will

cost less to increase one more unit production at the root node 1 than to produce this unit

at the T + 1 stage. Since the production cost and inventory cost are linear, we only need

to consider the following T + 1 stage problem. Let δ′n = 0 for all n ∈ T T ; and let δ′n = 1

for all n ∈ ST+1. Compare two solutions for this set of data. In the first solution, x1 = 1
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and xn = 0 for all other n. In the second solution, x′n = 0 for all n ∈ T T and x′n = 1 for all

n ∈ ST+1. The objective values of these two solutions are:

F = q1α1 +
∑

n∈T T qnβn

F ′ =
∑

n∈ST+1
qnαn

If F ≥ F ′, then it means we could not decrease the objective value by produce one more

unit at the root node to satisfy the demands T stages away from the first stage. In this

case we can conclude that T 1 ≤ T . To find a good upper bound for T 1, we would like to

find the smallest T such that

q1α1 +
∑

n∈T T qnβn ≥
∑

n∈ST+1
qnαn (55)

holds. For this purpose, let qltβlt = minn∈St qnβn for t = 1, · · · , T and quT+1
αuT+1

=

maxn∈ST+1
qnαn. We would require:

q1α1 +
∑T

t=1 qltβlt |St| ≥ quT+1
αuT+1 |ST+1|.

If we assume each node in T ∞ has exactly B children, then |St| = Bt−1 for t = 1, · · · , T +1.

We have:

T1 ≤ min{T : q1α1 +
∑T

t=1 qltβltBt−1 ≥ quT+1
αuT+1

BT } (56)

Under further assumptions, we can even get closed form representation of T 1 upper bound.

For example, if we use assumptions (A1) and (A3) and assume that

ε1µ
t(n) ≤ qn (57)

for some ε2 > ε1 > 0 (note that ε1 is uniform for all n) , then we have T1 ≤ min{T :

q1α1 +
∑T

t=1 ε1µ
tM1B

t−1 ≥ ε2µ
T+1M2B

T }, from which we get

T1 ≤ dexp(
log

(µB−1)q1α1−µε1M1
(µB−1)µε2M2−µε1M1

log µB )e.

That is,

T1 ≤ d( (µB−1)q1α1−µε1M1

(µB−1)µε2M2−µε1M1
)

1
log µB e. (58)
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5.5 Summary

This chapter describes the study of an infinite horizon stochastic lot-sizing problem. First,

we show that under mild conditions on the stochastic data there exists an optimal solution to

the problem. By using a shifting-up procedure similar to the primal algorithm in Chapter II,

we show a monotonicity property of the optimal solution of the finite approximation problem

of the original infinite problem. Next, we prove the solution and objective value convergence

of the finite horizon approximation problem to the infinite horizon problem, as the planning

horizon goes to infinity. Combining these results with the integrality of decision variables, we

show the existence of a planning horizon for the infinite horizon stochastic lot-sizing problem,

in the context of stochastic programming. Finally, we develop a formula to calculate the

planning horizon.
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CHAPTER VI

CONCLUSIONS

In this thesis, we report on our study of multi-stage stochastic programming models for

production planning problems. We make the following contributions.

We start from a very simple multi-stage stochastic lot-sizing problem with a single item,

with no fixed charge and capacity constraint. We develop primal and dual algorithms by

exploiting the problem structure. Both algorithms are strongly polynomial and much more

efficient than the Simplex method.

We propose a multi-stage stochastic programming model for capacity planning under

uncertainty. First, we compare the two-stage model and multi-stage model. We discuss the

concept of value of multi-stage stochastic programming and develop informative theoretical

bounds. The analysis shows that the value of the multi-stage stochastic programming model

can be very high for certain classes of multi-period capacity planning problems. Second, by

studying the problem structure, we identify the simple stochastic lot-sizing problem studied

previously as a key sub-model that can be solved by an efficient algorithm. Based on

the decomposition structure and the property of the simple stochastic lot-sizing problem,

we design an efficient approximation scheme for the capacity planning model. We show

that the relative gap between the objective values of the approximation solution and the

optimal solution converges to zero asymptotically as the number of stages of the scenario

tree approaches infinity. We conduct numerical experiments for a semiconductor planning

problem using industrial-size data, the results of which conform to our theoretical analysis.

We establish an infinite horizon stochastic lot-sizing problem with linear cost and sin-

gle item. Under mild assumptions, we show that both the optimal solution and objective

value of the finite approximation problem converge to that of the infinite horizon prob-

lem. Therefore, there exists a planning horizon for this infinite horizon stochastic lot-sizing

problem. We develop useful upper bounds for the planning horizon. This study is the first
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for a planning horizon in the context of infinite horizon stochastic programming models.

The infinite horizon stochastic lot-sizing problem here is different from previous stochastic

dynamic programming models in that it is assumed that both the cost and demand data

are random; the stochastic processes are general and all feasible solutions are considered.

The study reported here is a first step leading to a series of open questions in multi-

stage stochastic programming models for production planning. As in the deterministic case,

the stochastic lot-sizing problem is prevalent in many production planning problems under

uncertainty. The study of variants of the simple stochastic lot-sizing problem studied in

Chapter II can be useful in understanding more general production planning problems un-

der uncertainty. For example, one can study the capacitated stochastic lot-sizing problem

with fixed charge and the multi-item stochastic lot-sizing problem with budget constraints.

It would also be interesting to compare stochastic lot-sizing models from the viewpoints

of stochastic dynamic programming and stochastic programming. Chapter III presents a

comparison of two-stage and multi-stage models in a static fashion, i.e., with a fixed finite

time window. However, in practice one always uses a rolling horizon method. Therefore, it

is of interest to study the performance of stochastic programming models under a rolling

horizon approach. It is also of interest and importance to study conditions for the exis-

tence of a planning horizon in the context of general classes of infinite horizon stochastic

programming problems.
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