
RAPID APPLICATION MOBILIZATION AND
DELIVERY FOR SMARTPHONES

A Dissertation
Presented to

The Academic Faculty

by

Cheng-Lin Tsao

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
August 2012

Copyright c© 2012 by Cheng-Lin Tsao

RAPID APPLICATION MOBILIZATION AND
DELIVERY FOR SMARTPHONES

Approved by:

Professor Raghupathy Sivakumar,
Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Nikil S. Jayant
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Umakishore Ramachandran
College of Computing
Georgia Institute of Technology

Professor Ghassan AlRegib
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: June 2012

DEDICATION

To

my parents Min-Chia Tsao and Chin-Chu Tu,

my wife Hsun-Han Yu

and

my daughter Sophia Y. Tsao.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.

Raghupathy Sivakumar, for his unflagging guidance and support. This dissertation

would not have been possible without all the insightful discussion with him. He has

given me great freedom in making my own decisions and coming up with research

ideas. During my dissertation study, he has acted as an excellent role model of a

researcher with intense enthusiasm and drive. His high standards for clear thinking

and effective communication are inspiring to me will continue to guide me in my

future endeavors.

I would like to thank Profs. Nikil S. Jayant, Douglas M. Blough, Umakishore

Ramachandran, and Ghassan AlRegib for serving in my proposal and dissertation

committee. I am grateful for their valuable advices and opinions, which helped me

improve the quality of this dissertation.

My gratitude extends to the present and past members of the GNAN research

group. I appreciate the significant help from Sandeep Kakumanu in multiple re-

search projects. I thank Tae-Young Chang, Zhenyun Zhuang, Sriram Lakshmanan,

Yeonsik Jeong, Aravind Velayutham, Shruti Sanadhya, Chao-Fang Shih, Bhuvana

Krishnaswamy, Jiechao Wang, and Nishith Agarwal for their valuable feedback and

assistance in my dissertation.

Last but not the least, I would like to thank my family: my parents, my wife,

and my daughter. Their encouragement, support, and sacrifices have helped me go

through the ups and downs of this journey. To them, I dedicate this dissertation.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

II ORIGIN AND HISTORY OF THE PROBLEM 8

2.1 Performance enhancement with multiple interfaces 8

2.2 Transport-layer protocol design for wireless networks 9

2.3 Application Mobilization . 10

2.4 Remote computing . 11

2.5 Macros . 12

2.6 Mobile Application . 13

III ON EFFECTIVELY EXPLOITING MULTIPLE WIRELESS IN-
TERFACES IN MOBILE HOSTS 15

3.1 Overview . 15

3.2 Super-Aggregation . 16

3.2.1 Scope . 16

3.2.2 Problem Motivation . 17

3.2.3 Goals . 17

3.3 Super-Aggregation Principles . 18

3.3.1 Selective Offloading - Tackling TCP Self Contention 19

3.3.2 Proxying - Overcoming Impact of Blackouts on TCP 21

3.3.3 Mirroring - Hiding Random Losses from TCP 23

3.3.4 Integrated Operations . 26

3.3.5 Super-Aggregation for Upstream Communication 26

v

3.4 Super-Aggregation Architecture . 27

3.4.1 Deployment Model . 27

3.4.2 Software Architecture . 27

3.5 Super-Aggregation Beyond TCP . 31

3.5.1 Generic Principles and Case Study 31

3.5.2 Generic Architecture . 33

3.6 Theoretical Analysis . 34

3.6.1 Analysis of Offloading-ACK 34

3.6.2 Analysis of Proxying-blackout-freeze 38

3.6.3 Analysis of Mirroring-loss-fetching 40

3.6.4 Insights from the Analysis 42

3.7 Performance Evaluation . 43

3.7.1 Experimental Testbed . 44

3.7.2 Solution Prototyping . 45

3.7.3 Offloading-ACK Performance 46

3.7.4 Proxying-blackout-freeze Performance 47

3.7.5 Mirroring-loss-fetching Performance 48

3.7.6 Performance of Integrated Operations 50

3.7.7 Performance on Google Android 50

3.8 Issues . 51

IV A REMOTE COMPUTING PROTOCOL FOR HETEROGENEOUS
DEVICES . 55

4.1 Overview . 55

4.2 Remote Computing for Heterogeneous Devices 55

4.2.1 Remote Computing for Application Mobilization 57

4.2.2 Challenges with Remote Computing 57

4.2.3 Problem Statement . 59

4.3 View Virtualization . 59

4.4 Transformation Services . 63

vi

4.4.1 Core Transformation Services 63

4.4.2 Add-on Transformation Services 64

V AN EFFECTIVE REMOTE COMPUTING SOLUTION FOR SMART-
PHONES . 67

5.1 Overview . 67

5.2 Motivation . 67

5.2.1 Inflated Effort in Remote Computing from Smartphones . . . 68

5.2.2 Measurement of Redundancy in User Activity 69

5.3 Design Principles . 72

5.3.1 Overview . 72

5.3.2 Application-Agnostic SmartMacros 72

5.3.3 Task Effort Reducing Front-end 74

5.3.4 Parameterization and Preemptability 75

5.3.5 Offline Macro Recommender 76

5.4 Solution . 77

5.4.1 MORPHAggregation Server on Desktop 78

5.4.2 MORPHAggregation Client on Smartphone 82

5.4.3 Portability to other Platforms 84

5.5 Performance Evaluation . 85

5.5.1 Overall Performance Improvement 88

5.5.2 Performance Improvement by Application 88

5.5.3 Subjective Opinion . 89

5.5.4 Overhead Analysis . 90

5.5.5 Results of Offline Macro Suggestion 91

5.5.6 Trace-Based Evaluation of Task Effort Reduction 92

VI ENABLING RAPID MOBILIZATION FOR ENTERPRISE AP-
PLICATIONS . 94

6.1 Overview . 94

6.2 Solution Basics and Design Elements 94

vii

6.2.1 Dynamic Interface Transformation 96

6.2.2 Traffic Optimization . 97

6.3 Solution Details . 99

6.3.1 Dynamic Interface Transformation 99

6.3.2 Traffic Optimization . 103

6.4 Performance Evaluation . 105

6.4.1 Time-to-task . 106

6.4.2 Number of Actions . 107

6.4.3 Traffic Consumption . 107

6.4.4 Sensitivity to tasks and network environments 108

6.4.5 Comparison with Custom-Built Apps 109

6.4.6 Interaction Response Time 112

6.4.7 Overhead Analysis . 113

VII ADD-ON TRANSFORMATION SERVICES AND SYSTEM IN-
TEGRATION . 114

7.1 Overview . 114

7.2 Add-on transformation services . 114

7.2.1 Reduction . 114

7.2.2 Overflow . 115

7.2.3 Zoom . 115

7.2.4 Rearrangement . 116

7.2.5 Customized Translation . 116

7.3 Integrated operation of MORPH and super-aggregation 116

VIIICONCLUSION AND FUTURE WORK 119

8.1 Main Contributions . 119

8.2 Future Work . 121

IX PUBLICATIONS . 124

REFERENCES . 126

viii

LIST OF TABLES

1 Variables in the super-aggregation analysis 35

2 Parameters in the super-aggregation analysis 35

3 Virtual View API and mapping to accessibility frameworks 61

4 Task list and macros used for MORPHAggregation evaluation 87

5 Time on task and reduction percentage with MORPHAggregation 89

6 Statistics from offline macro suggestion 91

7 Applications and Tasks . 106

8 Time requirement in application mobilization using *Mobile 110

ix

LIST OF FIGURES

1 Marginal improvement of simple aggregation on heterogeneous interfaces 17

2 Motivation of super-aggregation for TCP 20

3 Super-aggregation architecture . 28

4 Topology of the super-aggregation experimental testbed 44

5 Performance of offloading-ACK . 46

6 Comparison of offloading-ACK analysis and experiments 47

7 Performance of proxying-blackout-freeze 48

8 Comparison of proxying-blackout-freeze analysis and experiments . . . 49

9 Performance of mirroring-loss-fetching 49

10 Comparison of mirroring-loss-fetching analysis and experiments . . . 50

11 Super-aggregation integrated operations and performance on Android
phone . 51

12 Remote computing from heterogeneous devices 56

13 Performance of Baseline Remote Computing 58

14 MORPH system overview . 60

15 Concept of add-on services . 65

16 Screenshot of a smartphone VNC client shows an intricate interface. . 68

17 Real-user activity shows redundancy and potential effort reduction . . 71

18 MORPHAggregation system overview 73

19 Types of macro solutions . 74

20 MORPHAggregation software architecture 78

21 MORPHAggregation desktop UI screenshot 79

22 An example of macro suggestion with a suffix tree 82

23 MORPHAggregation client screenshot 83

24 Overall performance enhancement with MORPHAggregation 85

25 Evaluation of subjective opinion on MORPHAggregation 90

26 Overhead analysis of MORPHAggregation 91

x

27 Trace-based evaluation of effort reduction with MORPHAggregation . . 92

28 Application mobilization with remote computing 95

29 Screenshot of app-launchers in the *Mobile client 96

30 Screenshots of MS Word in PC, baseline 97

31 Screenshots of MS Word in *Mobile 98

32 Components in the core *Mobile system 100

33 Screenshots of dynamic interface transformation 100

34 Performance of the mobilized applications in the Wi-Fi network . . . 106

35 Performance of the mobilized applications in accomplishing a task set
in the 3G network . 108

36 Comparison with manually-built mobile apps of Word 108

37 Comparison of PC version, mobile version, and *Mobile of Microsoft
SharePoint . 111

38 Comparison of PC version, mobile version, and *Mobile of Georgia
Tech T-Square . 112

39 Microscopic analysis of *Mobile . 113

40 Testbed for integrated evaluation of MORPH and super-aggregation . 117

41 Response time in remote access to applications from a smartphone . . 118

xi

SUMMARY

Smartphones form an emerging mobile computing platform that has hybrid

characteristics borrowed from PC and feature phone environments. While maintain-

ing great mobility and portability as feature phones, smartphones offers advanced

computation capabilities and network connectivity. Although the smartphone plat-

form can support PC-grade applications, the platform exhibits fundamentally dif-

ferent characteristics from the PC platform. Two important problems arise in the

smartphone platform: how to mobilize applications and how to deliver them effec-

tively. Traditional application mobilization involves significant cost in development

and typically provides limited functionality of the PC version. Since the mobile appli-

cations rely on the embedded wireless interfaces of smartphones for network access,

the application performance is impacted by the inferior characteristics of the wireless

networks. Our first contribution is super-aggregation, a rapid application delivery

protocol that in tandem uses the multiple interfaces intelligently to achieve a per-

formance that is “better than the sum of throughputs” achievable through each of

the interfaces individually. The second contribution is MORPH, a remote computing

protocol for heterogeneous devices that transforms the application views on the PC

platform into smartphone-friendly views. MORPH virtualizes application views inde-

pendent of the UI framework used into an abstract representation called virtual view.

It allows transformation services to be easily programmed to realize a smartphone

friendly view by manipulating the virtual view. The third contribution is the system

design of super-aggregation and MORPH that achieve rapid application delivery and

mobilization. Both solutions require only software modifications that can be easily

deployed to smartphones.

xii

CHAPTER I

INTRODUCTION

The rapid growth of smartphones in recent years has embodied the emergence of a new

computing platform. Smartphones, which are mobile phones with advanced compu-

tation capabilities and network connectivity, possess hybrid characteristics borrowed

from PCs and feature phones. On one hand, smartphones provide the same level of

portability and mobility as feature phones with the small form factor and battery

power of their hardware design. On the other hand, smartphones are significantly

improved from feature phones in the following aspects which make the platform more

similar to the PC platform. (1) Smartphones run a complete operating system and

a full-fledged application platform. The platform enables mobile applications, which

are usually called mobile apps, to be easily installed and executed by the user. (2)

Smartphones provide a standard TCP/IP protocol stack to allow mobile apps to com-

municate with application servers in the same way as PCs do, instead of through a

more limited protocol such as WAP. (3) Smartphones provide higher computation

capabilities in terms of CPU, memory, and storage. (4) Smartphones provide mobile

broadband connectivity, and they are typically equipped with multiple wireless in-

terfaces such as Wi-Fi, cellular networks, and Bluetooth. (5) Smartphones provide

better input interfaces such as a touch screen, a trace ball, and/or a qwerty key-

board. With those attributes, smartphones have formed a new mobile computing

platform that is capable of supporting PC-grade applications, which are applications

traditionally implemented in PCs.

While the smartphone platform is capable of supporting PC-grade applications,

it has several fundamental characteristics that distinguish it from the PC platform.

1

(1) As a mobile device, a smartphone has to rely on wireless networks to provide net-

work connectivity. To cater to the requirement of mobile users of ubiquitous and best

possible connectivity, most smartphones are embedded with multiple wireless inter-

faces, such as Wi-Fi, 2.5G/3G/4G, and Bluetooth. Wireless networks exhibit several

different characteristics from wired networks such as narrower and varying capacity,

disconnection, and random packet loss. (2) The small form factor of smartphones

imposes constraints on the user interface of mobile apps. For example, manipulation

through a touch screen is not as accurate as that through a mouse. A smartphone key-

board, both physical and on-screen, is not large enough to fit all keys of a standard-size

keyboard. The small screen size of three to four inches limits the amount of infor-

mation that can be shown by the application. To address the aforementioned issues,

a mobile app typically has a different user interface from its PC counterpart and

needs to be redesigned. (3) Smartphones provide limited computation and battery

resources. Compared to PC, smartphones have lower computation resources such

as CPU, memory, and storage. More importantly, the dependence on battery power

poses a fundamental constraint on the available computation and network resources in

a smartphone. (4) Unlike the consumer PC market which is dominated by Microsoft

Windows, the smartphones today have diverse operating systems: Google Android,

Apple iOS, Symbian OS, BlackBerry OS, Microsoft Windows CE (including Windows

Mobile and Windows Phone 7), Palm webOS, etc. Each OS platform is not compat-

ible with the other, and thus each mobile app needs to be specifically developed for

a target platform. Besides, smartphones are typically based on an instruction set

architecture for embedded systems such as ARM, while PCs are based on a regular

architecture such as x86.

The unique characteristics of smartphones have given rise two fundamental prob-

lems in the emerging mobile computing platform: how to mobilize applications and

2

how to effectively deliver them. Application mobilization means the process of en-

abling a PC application to be used from mobile phones, specifically for smartphones

in the context of the proposed research. Although the smartphone platform is capa-

ble of supporting PC-grade applications, the heterogeneity between the PC platform

and the smartphone platform does not allow a PC application to directly run in a

smartphone. Traditional methodology of application mobilization requires explicit

development and has several limitations including time and cost requirement, usabil-

ity, and feature parity. Application delivery means the delivery of application contents

to the client via the networks. A mobile app, be it created with traditional applica-

tion mobilization or not, relies on the wireless interfaces embedded in a smartphone

to enable network access. In contract to the PC platform, the weak connectivity of

the smartphone platform is characterized by its limited and varying capacity, random

packet loss, and temporary disconnection. The issues of the weak connectivity, if left

unaddressed, would have a profound impact on the application performance delivered

to the smartphone users.

In this dissertation, we extract two networking problems from application mobi-

lization and application delivery in the context of smartphones. First, in application

delivery, we focus on the problem of leveraging heterogeneous interfaces available at a

smartphone. Most smartphones today are equipped with multiple and heterogeneous

wireless interfaces. Approaches of leveraging multiple network interfaces fall under

two broad categories: “one-interface at a time” approaches and the more recently

studied “simultaneous use of multiple interfaces” approaches. For obvious reasons

including the fact that the wireless interfaces are innately limited and heterogeneous

in capabilities, the latter class of approaches have significant promise in improving the

performance experience by the user. However, many of the approaches that fall into

this category have focused on what can be defined as bandwidth aggregation as the

primary goal to achieve. In other words, if there are two interfaces I1 and I2 available

3

with respective bandwidths of B1 and B2, the approaches focus on delivering the ag-

gregate bandwidth of B1+B2 to the user. We call the functionality provided by such

approaches simple aggregation and argue that for most practical environments sim-

ple aggregation will provide no meaningful benefits to the user, because of the large

degree of capacity heterogeneity among wireless interfaces. Consider, for example, a

smartphone that supports both 3G and Wi-Fi data interfaces. 3G data rates support

bandwidths of up to 100-500Kbps while Wi-Fi interfaces support 2-54Mbps. A simple

aggregation of the bandwidths provided by the two interfaces will provide negligible

improvement in terms of performance perceived by the user, with respect to a best-

available-interface solution. Thus, an interesting and relevant question that arises in

the context of application delivery for smartphones is the following: Is there a more

intelligent strategy for aggregation of multiple heterogeneous interfaces that will enable

us to achieve “more than the sum of the parts” in terms of network performance?

In the context of application mobilization, we focus on a networking problem of

remote computing from heterogeneous devices. Remote computing provides a novel ap-

proach of application mobilization by running a PC version of the application on a PC

and providing a remote view into that application on the smartphone. This approach

offers several attractive benefits including zero-code mobilization, full-functionality

applications, and seamless manageability. Besides application mobilization, remote

computing itself is an important networking problem with several applications rang-

ing from remote access of files and data, to access to applications installed on servers,

to remote IT support. The more recent emergence of virtual desktop infrastructures

(VDIs) that almost exclusively rely on remote computing software for access has fur-

ther elevated the importance of the latter. The applications of remote computing

and the proliferation of mobile devices have driven the need of remote computing to

PCs from heterogeneous devices including smartphones and tablets. For examples,

industry solutions of remote computing for mobile devices include Microsoft Remote

4

Desktop Mobile, VMware View Mobile, and Citrix Receiver Mobile. However, re-

lying on remote computing to access applications from heterogeneous devices raises

a major challenge since remote computing protocols typically assume homogeneous

platforms on either end of the remote session. As a result, application views that

are originally developed for PCs will be presented as-is on the smartphones. Several

unique characteristics of smartphones make the PC view quite cumbersome to use -

(i) The bounding box of a PC application is typically much larger than the screen real

estate on a smartphone. This raises extra burden in zooming and panning in access-

ing UI elements in the PC application; (ii) Application interfaces on smartphones are

typically layered to adapt navigation and information organization to the constraint

of the screen size. PC application with a flatter structure may cause extra burden

on the smartphone user; (iii) Independent of the above issues that increase user ef-

fort, performing the same number of actions on the smartphone as on the PC is also

subjectively burdensome to the user due to the constrained environment. (iv) The

back and forth exchange of data between the server and client that could impose data

usage burdens on the wireless link. To address the above issues, the second question

we ask in this dissertation is: Is there a more intelligent design of remote computing

protocols that achieves better user performance by delivering suitable application views

to heterogeneous devices?

In this dissertation, we focus on protocol design that addresses the two networking

problems identified in the context of application delivery and application mobilization:

aggregating heterogeneous wireless interfaces and remote computing from heteroge-

neous devices. To provide practical solutions that achieves rapid application delivery

and mobilization, we consider system implementation of the protocols that requires

just software modifications, since smartphone hardware typically has an integral de-

sign and is not extensible. Thus, the contributions of this work are threefold:

5

• First we identify interface aggregation and remote computing as protocol prim-

itives and proposing novel approaches in adapting the primitives to solve the

problems of application mobilization and delivery for smartphones. Specifically,

we propose to leverage the interface heterogeneous when using the primitive of

interface aggregation in the context of rapid application delivery for smart-

phones, and we propose to transform application view when using the primitive

of remote computing in the context of rapid application mobilization for smart-

phones.

• Second, we develop principles and design elements in transport-layer and application-

layer protocols respectively for aggregating heterogeneous interfaces and remote

computing across heterogeneous devices. In transport layer, we propose a proto-

col called super-aggregation that effectively aggregates the heterogeneous inter-

faces available in smartphones and achieves performance beyond simple aggre-

gation. Super-aggregation leverages the the heterogeneity that naturally exists

among different wireless interfaces. With appropriate knowledge of the data

being transferred over the interfaces, super-aggregation is able to achieve aggre-

gate throughput that is better than the sum of the throughputs achievable in

each of the interfaces individually. In application layer, we propose a mobile

remote computing protocol for heterogeneous devices called MORPH. MORPH

is built atop of traditional remote computing and enables application transfor-

mation that dynamically transforms the PC view into one that is suitable for

heterogeneous devices including smartphones and tablets.

• Third, we develop full-fledged experimental systems for application mobilization

and delivery that use the respective protocols. The super-aggregation system

is designed as a network optimization middleware that requires only client-side

software modifications. To achieve rapid application mobilization, we propose a

6

system solution called *Mobile that is based on the MORPH protocol. *Mobile

uses a proxy-based network architecture to mobilize PC applications for smart-

phones without explicit effort in development. It enhances the usability of the

mobilized applications with a new mobile computing paradigm called program-

ming by transformation enabled by the MORPH protocol. Finally, we propose

the integrated operation of super-aggregation and MORPH to achieve a com-

plete solution for rapid application mobilization and delivery for smartphones.

Thus, the central thesis of this work is that remote computing and interface ag-

gregation, with appropriate adaptations, can be used to respectively achieve rapid

application mobilization and application delivery for smartphones. The adaptations

constitute the core research contributions and consist of the MORPH remote com-

puting protocol and the super-aggregation solution for interface aggregation.

The rest of the dissertation is organized as follows. In Chapter 2, we provide the

origin and history of the problem, where we discuss related work in both academic

literature and industrial solutions. In Chapter 3, we present the protocol and solution

of super-aggregation that achieves rapid application delivery by effectively aggregating

heterogeneous interfaces available in smartphones. In Chapter 4, we present the

design of the MORPH protocol that enhances the performance of remote computing

for heterogeneous devices with view virtualization and transformation services. In

Chapter 5, we present the design and evaluation of MORPHAggregation, the aggregation

transformation service that reduces time and effort in accomplishing tasks in remote

computing from smartphones. In Chapter 6, we present the design of translation

service and traffic suppression service of MORPH, and we present *Mobile as the

rapid application mobilization solution based on MORPH. In Chapter 7, we present

the design of other transformation services of MORPH, and we present the integrated

evaluation of super-aggregation and MORPH. In Chapter 8, we present the conclusion

and discuss future research that can potentially be spawned from this dissertation.

7

CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

Smartphones are an emerging class of mobile phones that offers advanced computa-

tion capabilities and network connectivity. They enable mobile applications, which

are often called mobile apps, by providing a complete operating system and a full-

fledged application platform. With the rapid growth in industry, smartphones have

recently hit a long-anticipated milestone: they overtook PCs in terms of the global

shipments [22]. The dramatic growth in smartphones, e.g. 87.2% in the worldwide

market in 2010 [10], demonstrates its promising potentials. Smartphones have occu-

pied more than one quarter of the mobile phone population in US and Europe [7],

and they are expected to dominate the mobile market in the near future [23]. The

technology advances in the smartphones have made them a promising platform for

mobile computing that has drew attentions from both the research community and

the industry. Apple’s App Store, the largest digital distribution platform for mobile

apps, provides a collection of 350,000 mobile apps [4], while Android is catching up

with 300,000 apps [34]. In this chapter, we discuss work in literature and industry

solutions related to application mobilization and delivery for smartphones.

2.1 Performance enhancement with multiple interfaces

There has been significant work in the context of enhancing network performance

using multiple interfaces, and approaches have tackled the problem fall under two

broad categories: “one interface at a time” approaches and the more recently studied

“simultaneous use of multiple interfaces” approaches. The former approach aims

to select the best network path out of the available interfaces [46]. Since wireless

networks are innately limited and heterogeneous in nature, the latter approach is more

8

promising in improving the performance experienced by the user. Most of the works in

this category have focused on achieving bandwidth aggregation of multiple interfaces.

pTCP [51], WAMP [75], RMTP [62], MC2 [73], MAR [72], LS-SCTP [30], SCTP-CMT

[53] perform bandwidth aggregation at transport layer, while [68] achieves bandwidth

aggregation at network layer. R2CP [50] and PRISM [54] also include mechanisms

to address issues in wireless network, but they both require end-to-end deployment.

They all provide linear throughput improvement by simply dividing traffic to multiple

interfaces.

Heterogeneous interfaces of smartphones have also been used to improve other

performance metrics other than throughput. CoolSpots [67] uses Bluetooth-enabled

access points to reduce energy consumption on wireless divides with both Wi-Fi and

Bluetooth interfaces. Cell2Notify [31] uses cellular radio to wake up Wi-Fi interface

on a smartphone when there is incoming traffic. It improves battery lifetime of VoIP

over Wi-Fi by reduce energy consumption in idle time of Wi-Fi. Context-for-Wireless

[70] proposes an adaptive radio selection strategy between Wi-Fi and cellular based

on context.

2.2 Transport-layer protocol design for wireless networks

A number of works have been proposed to extend or modify existing transport-layer

protocols, such as TCP, for wireless networks. They typically consider just one wire-

less technology. For example, TCP-ELN [35], WTCP [74], and STP [48] are TCP-

based protocols for WLAN, WWAN, and satellite network, respectively. On the other

hand, they require modification in entities beside the mobile client, such as the access

point and/or the correspondent host in the Internet. For example, Snoop [36] and

WTCP [74] both address random wireless losses, but they are deployed at AP or

both ends, respectively. Freeze-TCP [47] also uses flow-control mechanisms to freeze

9

TCP connection before blackout happens. However, it requires appropriate TCP im-

plementation on sender side and accurate prediction of blackout occurrence time to

make the mechanism work.

2.3 Application Mobilization

Application mobilization is done today using one of three different strategies: (i)

homegrown solutions where enterprises directly invest resources in developing custom

mobilized applications; (ii) third-party solutions where application vendors such as

SAP, Oracle and Microsoft provide mobilization platforms that can in-turn be used

by enterprises to mobilize applications with appropriate configurations; and (iii) cross-

platform solutions like web applications that are compatible with multiple platforms

including smartphones. The above methodologies to mobilization however come with

several limitations. (1) Traditional application mobilization is a time and cost con-

suming process since all (or partial) functionality of a PC application needs to be

rewritten for the smartphone platform. The mobilization time can vary depending

upon the complexity of the application and can range from a few months to over

a year. The diversity among smartphone platforms requires separate development

effort for each platform, and that further magnifies the time and cost requirement

in mobilization. (2) While the user interface of PC applications is designed for PC

interface, it does not fit with the smartphone interface that is more constrained and

is different from that of PCs. User interface needs to be adapted in the applica-

tion mobilization process to cope with the constraints in the smartphone interface,

otherwise the usability of the mobilized application would be impaired and the user

would be frustrated. (3) Another important consideration is what the feature parity

of the mobilized application will be. While some popular PC applications such as

office suite have been mobilized by application vendors, the mobile versions typically

expose only a subset of the capabilities of the full-blown PC applications.

10

2.4 Remote computing

There have been two types of remote computing. The first approach is where in-

formation is passed between the server and the client in the form of raw pixel data.

The VNC [71] remote desktop application is an example. The VNC server encodes

the pixel data of the remote computer and sends the encoded bit stream to the VNC

client, which decodes the bit stream and the renders the screen display on the local

computer. To save the amount of data transferred, the VNC server periodically polls

the pixel data of the full screen of the remote computer to detect the regions that

are updated and sends only the changed portion of the screen instead of continuously

sending the full screen frames of the remote computer. VNC is a cross-platform so-

lution and can work across multiple operating systems for both the remote and local

computers. Examples of solutions based on VNC are UltraVNC and RealVNC [71].

The second type is based on graphical primitives, which are basic drawing commands

provided by the operating system. RDP [21] is a Microsoft application and protocol

that falls under this category. MobiDesk [37] proposes a thin client solution for mo-

bile devices by optimizing the WAN traffic involved in performing remote computing.

The solution is primarily meant for mobile laptops and is similar in principle to other

remote computing approaches. PCoIP [20] is another product that optimizes remote

computing traffic, especially video over IP networks. It improves user experience by

adapting video quality to the network conditions in remote computing.

Remote computing solutions has also been made available to smartphones. There

has been an open source thin client called AndroidVNC [1] available in Google An-

droid phones. There are also commercial remote computing solutions available to dif-

ferent smartphones phones including iPhone, Android, and BlackBerry: MochaSoft

RDP and VNC clients[19], iTeleport [12], TeamViewer [25], and LogMeIn ignition

[15].

11

2.5 Macros

The notion of operator aggregation is related to the concept of macro, which is a se-

quence of instructions that has been recorded and can be replayed by the user. There

have been two types of macros proposed in the literature, and they have different

limitations.

The first type is application macros provided by the application developers in

certain application software. One of the most popular application macros is Microsoft

Excel macro [18]. Excel allows users to record their operators in the form of a Visual

Basic script. The other example is iMacros [11], which is a browser plug-in that allows

users to record their operators when browsing the web. However, each application

macro only works for the specific application. The user has to rely on the application

developer to provide such functionalities. The scope of the application macros is

also limited. An application macro cannot work across multiple applications. Some

functions of an application may not be captured by the macro system. For example,

iMacros does not record the operator of printing a web page.

The second type is raw macros, which records and replays the raw activities such

as mouse clicks at a certain coordinate and keystrokes. An example of raw macro

systems is AutoHotkey [5]. Although raw macros work for generic applications in PC,

it cannot replay the intended tasks robustly. Since raw macros are defined by the raw

system variables, it would fail replay the recorded task if the system environment is not

the same as the recorded state. For example, moving/resizing the window would cause

the mouse click at the same coordinate to activate a different function. Raw macros

cannot respond to adaptive user interfaces, such as the truncated menu that shows

frequent items in Microsoft Office and other applications. The timing of replaying the

macro is a big headache to raw macros, since the appearance next function may be

delayed due to the current computation loading, and raw macros have no information

regarding the application context. The concept of raw macros has been studied in

12

the area of Programming by Demonstration (PbD) [43, 60, 76, 52, 55], where most

solutions are designed for PC users instead of smartphone users.

Macros have also been applied in the context of network systems and mobile

computing. In [42], the authors present a raw macro-based solution for remote com-

puting. Mugshot [63], CoScriptor [59], SmartBookmarks [52], and Chickenfoot [40]

are application macro solutions for web applications. WikiDo [56] is crowd sourc-

ing based IT-support solution for allowing non-technical users to help each other in

setting up/using IT applications. The solution records operators of one user on one

computer and replays the recorded operators on another computer. While the con-

cept of application agnostic macros proposed in WikiDo is similar to our solution

with respect to the UI automation framework used, our solution is specifically de-

signed for accessing macros from a smartphone, and it provides features for macro

extensibility, exception handling and a macro suggestion tool. Apple automator [6]

is an application for MAC OS that allows users to define workflows to access a user

recorded set of functions automatically. The user is allowed to choose from a limited

set of functions from each application to be used for the workflow. Tasker [24] is a

similar automation application for the Android OS for automating a pre-defined set

of operations on different apps running on the Android phone.

2.6 Mobile Application

UI customization has been applied in the context of smartphones to realize mobile-

friendly interfaces. Merlion [64] is a solution for creating application mash-ups that

allow users to define a smaller subset of UI elements to be visible when using the

application remotely from a smartphone. The solution requires a design phase to

customize the mobile app interface, and the frontend purely relies on VNC to display

the selected UI elements. In [58], the authors propose a more reliable UI mash-

up solution by performing image recognition of the UI elements accessed. Again the

13

users can manually select a modified simple interface for mobile UI for the application

they want to access. However, this approach requires a complex image recognition

component to identify the user intent and hence all the possible UI elements should

be identified statically. PageTailor [39] introduces reusable customization for mobile

users, but the solution is specific to web pages instead of general applications.

A number of mobile application development frameworks such as Appcelerator

[3], appMobi [2] provide solutions for write-once-deploy-everywhere mobile apps us-

ing a single API framework. However, these solutions require a manual re-write of

applications involving significant developer effort.

Content adaptation is a technology that is typically used to transform web content

to adapt the device constraints of mobile phones. In [77], the important content of a

web site is re-arranged or made bigger to improve the readability in a small screen.

FeedCircuit [8] is a technology used by Google to adapt RSS feeds for the mobile

browser in Android phones. Highlight [66] and Flashproxy [65] are solutions that allow

users to access web applications from mobile phones that lack certain capabilities, such

as JavaScript and Flash. All the above content adaptation solutions are designed for

static web applications instead of native PC applications or rich web applications.

14

CHAPTER III

ON EFFECTIVELY EXPLOITING MULTIPLE WIRELESS

INTERFACES IN MOBILE HOSTS

3.1 Overview

In this chapter, we focus on rapid application delivery for smartphones that effec-

tively leveraging their available wireless interfaces. Mobile devices, be it smartphones,

tablets, or laptops, have gone through a sea-change in their capabilities over the last

decade. One of the different dimensions along which they have evolved is that of

connectivity. To cater to the requirement of mobile users of ubiquitous and best

possible connectivity, most mobile devices today are equipped with multiple and het-

erogeneous wireless interfaces. For example, popular smartphones today ranging from

the iPhone to the Google Android phone to the Blackberry all come equipped with

multiple wireless data interfaces, including Wi-Fi, 2.5G/3G/4G, and Bluetooth. Not

surprisingly, an interesting and relevant question that arises in the context of such

mobile devices is the following: What is the best approach to leverage the multiple in-

terfaces available at a mobile device in terms of the performance delivered to the user?

In answering the question we argue that simple “bandwidth aggregation” approaches

do not provide any meaningful benefits when the multiple interfaces used have highly

disparate bandwidths as is true in many practical environments. We then present

super-aggregation, a set of mechanisms that in tandem use the multiple interfaces

intelligently and in the process is able to achieve a performance that is “better than

the sum of throughputs” achievable through each of the interfaces individually. We

prototype super-aggregation on both a laptop and the Google Android mobile phone

and demonstrate the significant (up to 3x throughput) performance improvements it

15

provides in real-world experiments. We conduct both theoretical analysis and exten-

sive experiments show that super-aggregation is able to improve throughput beyond

the sum of the parts under most of the cases.

3.2 Super-Aggregation

3.2.1 Scope

The scope of this work is restricted to devices with multiple wireless interfaces. While

several of the principles presented may be relevant for devices for multiple wired

interfaces or heterogeneous wired and wireless interfaces as well, we do not delve into

such scenarios in the thesis. The devices themselves can be either mobile computing

devices such as laptops and mobile smart phones that have data capabilities. In terms

of the wireless interfaces, the principles and solutions presented are agnostic to the

specific technologies used.

Without impacting the generality of the proposed solutions, we rely entirely on

a laptop and a mobile phone (Google Android) as the devices in the experimental

set-up used for performance characterization, evaluation and proof-of-concept demon-

stration. Similarly, we use 3G and Wi-Fi as the heterogeneous wireless interfaces in

all our experiments. The laptop is equipped with an Atheros 802.11b/g card and

a 3G (EVDO) USB stick. The Google Android phone has built-in 802.11g and 3G

(HSDPA) interfaces. Further details of the test-bed can be found in Section 3.7.

While the super-aggregation principles presented are extensible to other applica-

tions and protocols, we ground most of our initial discussions of super-aggregation in

the context of TCP acceleration. We later revisit the extensibility of super-aggregation

to both other applications/protocols and to environments with more wireless inter-

faces later in the chapter.

16

�

�

�

�

�

��

��

��

��

���	
� �������
������ ���	
� �������������� ����
�� ���������������

�������� ��	�� �!��

"
#
$
"
%
&'
(
)
%
*
(
+
,-
.
*
/0

��12�

34

��5��� �������	�
�

Figure 1: Marginal improvement of simple aggregation on heterogeneous interfaces

3.2.2 Problem Motivation

In this section we briefly illustrate the limitation of switching and simple aggregation

and thus motivate the need for super-aggregation. Figure 1 shows measurement of

TCP throughput as experienced by a multi-interface laptop that has 3G (EVDO)

and Wi-Fi (g/b) connectivity. We emulate a perfect simple aggregation mechanism

by opening two independent TCP connections through the two available interfaces,

thus removing any synchronization bottlenecks. Hence, the result presented for simple

aggregation is idealized.

The average throughput on the 3G link is much smaller than that on the Wi-

Fi link and hence simple aggregation only gives marginal improvement: merely 3%

in the ’g’ mode and 16% in the ’b’ mode. The measurement shows that simple

aggregation is not an effective way of aggregating heterogeneous wireless interfaces

in typical scenarios. The above result, while obvious, serves as the motivation for

our investigation into super-aggregation principles that more intelligently leverage

the multiple interfaces to achieve a throughput performance that is better than the

sum of the parts.

3.2.3 Goals

The goals of this work, beyond the identification and development of super-aggregation

principles, are as follows:

17

• Deployability: We believe that any aggregation solution for multi-homed mo-

bile devices will have a significantly better adoption rate if it requires only

mobile device side changes. Hence, one of our key goals will be to develop and

realize super-aggregation through changes only at the mobile device.

• TCP and beyond: Since TCP is by far the most dominantly used transport

layer protocol in today’s Internet, we focus our goals almost entirely on TCP

acceleration as the first application of super-aggregation. We however will re-

visit extending super-aggregation to other applications/protocols later in the

chapter.

• Prototyping: Another key goal for the work is prototyping and demonstrat-

ing super-aggregation on real-world platforms including a laptop and a mobile

phone.

3.3 Super-Aggregation Principles

In this section we present the different super-aggregation principles, and ground the

discussions specifically in the context of TCP acceleration. At a high level, when

aggregating a high-bandwidth interface with a low-bandwidth interface, a simple

bandwidth aggregation strategy does not yield any significant improvements in per-

formance. The super-aggregation principles on the other hand explicitly leverage

properties of the low-bandwidth interface that may be superior to those of the high-

bandwidth interface to relieve any bottlenecks that prevent the effective utilization of

the high-bandwidth interface.

For each of the principles, we identify the rationale and present the high-level

design. We arrive at the rationale by appropriately identifying an existing bottleneck

in TCP’s operation and show how super-aggregation may be used to relieve that

bottleneck. For all the experiments we use the set-up discussed in Section 3.7 where

both the laptop and the smartphone are connected to the backbone using a 3G link

18

and an Wi-Fi link. A file server hosted in a major university is used as the fixed point

from where content is downloaded or to where content is uploaded. We revisit the

solution details including the generalization of the principles to beyond TCP in the

next section. Also, we present the super-aggregation techniques for TCP acceleration

in the form of a layer 3.5 solution in the protocol stack. For brevity, in the rest of the

discussions we refer to the high bandwidth interface as the Wi-Fi interface and the

low bandwidth interface as the 3G interface.

3.3.1 Selective Offloading - Tackling TCP Self Contention

TCP Self Contention: Figure 2(a) shows the TCP throughput measurements for

downstream traffic as observed at both the laptop and the smartphone. The figure

also shows the throughput enjoyed by an application using UDP in a similar set-up.

The UDP packet sizes are set to be the same as the TCP maximum segment size

(MSS). The UDP throughput is 30% higher than the TCP throughput in the 802.11g

network and as much as 70% higher in the 802.11b network.

Hence, the difference in performance is attributable to two possible factors: (a)

upstream load imposed by TCP’s ACK traffic and the resulting self-contention; and

(b) TCP’s congestion control algorithm potentially inhibiting the connection through-

put. However, the experimental set-up is such that there is no contending traffic on

the wireless legs, thus leading to the first factor as the dominating one. We refer to

this cause as simply ACK related self contention. Although a typical TCP implemen-

tation sends an ACK for every two data packets, the ACK is significantly smaller

with only a 20 byte IP payload as opposed to a 1480 byte IP payload for the data.

However, due to the overheads imposed by the 802.11 protocol, even small sized ACK

frames end up contending on an equal footing to the data frames at the MAC layer.

This is because of both the byte overheads due to link layer headers and the preamble

and other MAC operations such as inter-frame spacings and transmission of certain

19

0

5

10

15

20

25

laptop (802.11b) laptop (802.11g) google android
Wireless interfaces

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

TCP
UDP
UDP (1 ack / 8 data)
UDP (2 ack / 8 data)
UDP (3 ack / 8 data)
UDP (4 ack / 8 data)

(a) Impact from self-contention

0

5

10

15

20

25

0 2 4 6 8 10
Time (sec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

0

20

40

60

80

100

120

C
w

n
d
 a

n
d
 s

st
h
re

sh
 (

p
k
t)

throughput

cwnd

ssthresh

(b) Impact from blackout

0

2

4

6

8

10

0.0% 0.1% 0.3% 1.0% 3.0%
Packet loss rate

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

(c) Effect of random wireless losses

Figure 2: Motivation of super-aggregation for TCP

portions of the frames at base transmission rate.

We verify this self-contention hypothesis by explicitly sending bidirectional UDP

traffic in the Wi-Fi network to mimic the behavior of TCP. We send 1464-byte UDP

datagrams on the downlink, and 32-byte UDP datagrams on the uplink. As shown in

Figure 2(a), we send one up to four ACKs per eight segments. The last case mimics

self-contention of TCP ACKs, which reduces throughput from 20 Mbps to 15 Mbps

in the 802.11g network. This is despite the fact that TCP ACKs take only 164 kbps.

Other cases show that intermediate levels of self-contention also cause corresponding

throughput reduction, and that TCP throughput can be increased by removing ACKs

from the Wi-Fi network.

Selective Offloading: In this context, we propose an offloading-ACKmechanism

to address self-contention in Wi-Fi networks. The key idea is to divert uplink ACKs

to the 3G uplink to prevent them from contending with the downlink data in the

Wi-Fi network1.

There are, however, two challenges that need to be addressed in order for offloading-

ACK to be viable in a real environment: (i) The 3G uplink may not have sufficient

bandwidth to send the required number of ACKs that will sustain the maximum

TCP downlink throughput on the Wi-Fi network. The low uplink bandwidth has two

impacts on TCP. ACKs may be dropped at the transmission buffer, which renders

1We address obvious issues such as impact of ingress filtering later in the chapter.

20

the TCP sender unable to increase its congestion window or have more bursty trans-

missions. (ii) The 3G link has a larger RTT, which increases the RTT observed by

the TCP sender and hence slows down the growth rate of its congestion window and

hence the overall throughput enjoyed by the TCP connection.

We address both the above challenges by adding intelligence to the offloading-

ACK mechanism to better control when the ACKs are offloaded and how many of the

ACKs are offloaded. First, offloading-ACK is performed only when the consequent

RTT inflation does not adversely impact the growth of the congestion window. This

occurs when the congestion window is large (and hence the connection throughput

is less dependent on congestion window growth rate), which naturally is also when

self-contention will be near its peak. A simple heuristic we use for the offload-ACK

threshold is the ssthresh value that TCP uses in its congestion avoidance algorithm.

The value is 20 segments in our prototyping. Secondly, offloading-ACK is performed

only to that fraction of ACKs that are indeed sustainable by the low-bandwidth

interface. The remaining ACKs are sent as-is through the default interface. ACKs

in the beginning of a congestion window are preferably sent over the low-bandwidth

interface as opposed to those toward the rear-end of the congestion window to offset

the delay differences and also to mitigate any adverse impacts of out of order receipt

of ACKs at the TCP sender2.

We revisit other properties of the offloading-ACK mechanism and synergies with

the other proposed mechanisms later in the chapter.

3.3.2 Proxying - Overcoming Impact of Blackouts on TCP

Impact of Blackouts on TCP: A blackout for a wireless link occurs when the

wireless channel experiences severe fading or the client undergoes a layer two or layer

three handoff. TCP’s performance is severely impacted by such blackouts, especially

2Note that a TCP sender that receives spurious ACKs (with sequence number less than a previ-
ously received ACK sequence number) will simply ignore the spurious ACKs.

21

in vehicular Wi-Fi networks, as an experimental study shows average 75-second black-

outs [41]. Figure 2(b) shows the state of a TCP connection during a blackout that

occurs during a 2 second period. The TCP sender, unaware of the blackout, will lose

all packets transmitted during the blackout and hence will experience a retransmis-

sion timeout. The sender subsequently will enter slow start and drop its congestion

window to one. Since the TCP sender cannot know the exact time the blackout ends,

it relies on retransmissions of the first segment in the congestion window followed by

an exponential backoff in the RTO if no ACKs are received. It is very likely that

when the blackout ends at the mobile device end, the TCP sender is still in the midst

of waiting for the expiry of a now inflated retransmission timeout. This unnecessary

idle period coupled with the TCP connection starting back from a congestion window

of one and a very small ssthresh (due to the back to back timeouts) render the TCP

connection crippled to a low throughput performance. In this particular example,

the throughput of the TCP connection is roughly reduced by half because of the two

second blackout. Note that any mechanism such as the mobile device gratuitously

sending an ACK when the wireless interface comes out of blackout is unlikely to

address all the above problems.

Proxying: In this context, we propose a super-aggregation technique called

proxying-blackout-freeze in which the 3G link is used to notify the TCP sender about

blackout events on the WI-Fi link. The notification is in the form of a zero-window

advertisement as if it were sent from the receiver with the WI-Fi interface’s IP ad-

dress. The notification will freeze the TCP connection when blackout occurs. When

the WI-Fi interface recovers from the blackout, a resume notification in the form

of a non-zero window advertisement is sent through the WI-Fi interface. Accord-

ing to RFC 1122 [29], the TCP sender should enter persist mode upon receiving a

zero-window advertisement. When it receives the window update at a later point it

restarts sending segments from the first unacknowledged sequence number without

22

reducing the congestion window or the slow-start threshold.

An important challenge that needs to be addressed is the actual blackout detection

that must be done in real time and ideally with a low overhead. In the proposed

super-aggregation technique, we implement a hybrid blackout detection mechanism

to achieve a high responsiveness with a low overhead. An active link probing is

performed when a passive link monitoring mechanism indicates that a blackout has

likely occurred. The passive link monitor merely tracks if any packet is seen at all

on the wireless interface of interest. If no packets are seen for more than 200 ms,

the wireless client sends an ICMP ping message to its default gateway on the wireless

interface to verify if a blackout has actually occurred. The zero-window advertisement

through the 3G interface is generated as soon as the blackout is verified. The monitor

module continues sending of ICMP ping messages to the default gateway of the WI-

Fi interface until it receives a response to its query. As soon as recovery from the

blackout is verified (through the receipt of response to the ping) a window update is

sent to the TCP sender to resume the connection.

Another challenge is that TCP sender may not implement zero-window behaviors

suggested by RFC 1122. For example, Linux (kernel 2.6.27) TCP implementation

responds to zero window advertisement only when there is no outstanding packets.

This can be resolved by combining the mechanism in next subsection. New ACKs

are sent via 3G interface to make TCP sender believe all outstanding packets are

received, and use mirroring-loss-fetching to recover those packets without impacting

the performance on Wi-Fi.

3.3.3 Mirroring - Hiding Random Losses from TCP

Random losses: TCP is well known to suffer in the presence of random losses in

wireless environments. Figure 2(c) shows the TCP throughput when introducing

random wireless losses into the network. Even a 1% packet loss can reduce a TCP

23

connection’s throughput to less than 20% of the achievable performance. As iden-

tified by a multitude of prior works, the main cause of the degradation is TCP’s

interpretation of all packet losses to be due to network congestion and the consequent

reduction of its sending rate by half. However, the above mentioned random wire-

less losses may occur due to a high bit error rate in the wireless network due to low

signal-to-noise-ratios because of channel fading, large tx-rx distances, or interference.

Thus, if there is a reliable approach to distinguish congestion losses from ran-

dom losses and have the TCP sender react only to congestion losses, considerable

improvements can be achieved.

Mirroring: In this context we introduce a concept of random-loss hiding for

TCP connections, wherein a loss classified as a random loss is not reported by the

mobile device back to the TCP sender. If such losses are not reported (positive

ACKs are sent as if such segments were received successfully) the TCP sender will not

retransmit those segments thus compromising on the guaranteed reliability semantics.

To facilitate such loss hiding without compromising on the reliability semantics the

proposed super-aggregation technique establishes a mirrored TCP connection through

the 3G interface with the goal of fetching only the segments lost due to random

loss. Segments fetched using the mirrored connection are then inserted back into

the byte stream of the original connection to fill the holes created by the random

losses. Such loss hiding and lost segment fetching through the 3G interface can

provide considerable benefits for the TCP connection established through the WI-

Fi interface. However, several key challenges need to be tackled. We now briefly

elaborate on the challenges and the solutions proposed.

Loss distinction: How the proposed technique performs successful distinction of

random and congestion losses is an important design element. However, note that the

link layer at the mobile device will receive corrupted frames that it will then discard

due to the errors unlike segments lost due to congestion that it will not receive in

24

the first place. With an appropriate interface into the link layer the proposed super-

aggregation technique gathers information on frames discarded due to corruption and

consequently classifies losses as congestion losses or random wireless losses.

TCP connection mirroring: The mirroring of a TCP connection, in general, will

require application layer knowledge. While performing such mirroring is one option,

the proposed super-aggregation technique relies on a simple connection set-up replay

for mirroring the TCP connection. In other words, the sequence of messages ex-

changed since the set-up of the original connection is replayed in order to mirror the

original TCP connection. With typical Internet applications (HTTP, FTP, SMTP,

CIFS, P2P) we have considered thus far such a replay suffices.

Selected and Fast fetching: Since the 3G link has a considerably lower magni-

tude in terms of data-rate, a brute-force simple fetching of all the content just to

retrieve the randomly lost segments is clearly not a viable strategy. Hence, the pro-

posed mirroring mechanism performs selected and fast fetching, whereby the receiver

proactively acknowledges segments that it does not need irrespective of whether it

was received or not. Ideally, such segments will be purged from the TCP sender’s

buffer even before being transmitted by the sender. The only sequence numbers that

the receiver does not acknowledge unless received correctly are the sequence numbers

corresponding to the randomly lost segments. We place a guard time before fetching

the desired segment to make the space for it to squeeze the narrow 3G link. The

guard time is at least one segment size divided by data rate, and is configured as

256 ms in prototyping. We later show in the performance evaluation section on how

such a fast and selected fetching scheme performs effectively. Note that some newer

implementations of the TCP sender perform an explicit check for an incoming ACK

sequence number being smaller than the right edge of the current congestion window.

However, even under such conditions proactive ACKs paced correctly can appropri-

ately accelerate the progress of the mirrored connection. However, some application

25

level range-fetching (such as supported by HTTP and FTP) would be required to

eliminate redundant transmission of content on the mirrored connection.

Sequence number offsets: Since every new TCP connection establishment results

in a new start sequence number, the mirroring mechanism appropriately offsets the se-

quence number of segments (or bytes) received on the mirrored connection to retrieve

the sequence number pertinent to the original TCP connection.

3.3.4 Integrated Operations

The three mechanisms proposed for TCP acceleration can seamlessly work with each

other. Moreover the traffic processing sequence would be as follows: mirroring-loss-

fetching, offloading-ACK, and proxying-blackout-freeze. When segments arriving at

the Wi-Fi interface have holes that have been attributed to random wireless losses,

mirroring-loss-fetching hides them and generates a positive ACK for the latest seg-

ment. The generated ACKs are sent via the 3G interface using offloading-ACK mech-

anism. Finally, Mirroring-loss-fetching also establishes a mirrored connection to re-

cover the randomly lost segments, and shares the 3G uplink capacity with offloading-

ACK. If no packets are received for a period of time on the WI-Fi interface, proxying-

blackout-freeze detects the blackout and freezes the Wi-Fi TCP connection using a

notification through the 3G interface.

Finally, each super-aggregation principle shown in this section does outperform

simple aggregation in a setting with heterogeneous interfaces by leveraging the multi-

ple interfaces intelligently. However, super-aggregation in principle may include as one

of its mechanisms simple bandwidth aggregation as well especially when the interfaces

have bandwidths of similar orders.

3.3.5 Super-Aggregation for Upstream Communication

Although the super-aggregation principles presented thus far were discussed in the

context of downstream data transfer, they can be adapted for upstream data transfer

26

in a straightforward manner. Offloading-ACK is realized by sending data packets on

the Wi-Fi interface but labeling the 3G interface address as the source IP. Although

data is sent on the Wi-Fi interface, ACKs will be received on the 3G interface to avoid

self-contention. Proxying-blackout-freeze is similar to the downstream case, but zero-

window advertisement and window updates are sent to the TCP sender in the local

machine. Mirroring-loss-fetching for upstream traffic doesn’t require establishment of

a real mirrored connection. It merely retransmits random losses and masks the loss

information from the local TCP sender.

3.4 Super-Aggregation Architecture

3.4.1 Deployment Model

The super-aggregation principles presented in the last section can be implemented

as a layer-3.5 software middleware in the mobile host. It can be implemented in

the Linux kernel uses NetFilter to capture and process TCP packets traversing the

network stack, or generate packets if necessary. The super-aggregation principles only

require deployment at the mobile device and do not require any modification at the

remote host or intermediate routers. The TCP implementations on the remote host

and the mobile device are unaware of the super-aggregation principles that improve

their performances transparently. With this deployment model, super-aggregation can

enhance end-to-end performance of mobile host with any legacy TCP-based server.

3.4.2 Software Architecture

The implementation of each super-aggregation principle is divided into multiple com-

ponents in the software architecture, as shown in Figure 3(a). We now briefly explain

the components. Offloading-ACK is realized with the ACK Marker and Offloader

components. Proxying-blackout-freeze is realized with the Blackout Detector and

Blackout Handler. Mirroring-loss-fetching is realized with the Mirroring Manager,

Loss Hider, and Fast Fetcher. Interface Characterizer is a common component used

27

Blackout

Handler

Offloader

Mirroring

Manager

ACK Marker

Interface Characterizer

Loss Hider

TCP

Wi-Fi Interface 3G Interface

Fast Fetcher

Blackout

Detector

Data of downstream traffic

ACK of downstream traffic

Data of upstream traffic

ACK of upstream traffic

(a) Data flow

Blackout

Handler

Offloader

Mirroring

Manager

ACK Marker

Interface Characterizer

Loss Hider

Fast Fetcher

Blackout

Detector

Uplink Capacity

Blackout / Recovery

Mirroring Exception

Downlink

Capacity

Lost Packets

TCP

Wi-Fi Interface 3G Interface

Loss Distinction

(b) Control flow

Figure 3: Super-aggregation architecture

by offloading-ACK and mirroring-loss-fetching.

Figure 3(a) shows packet flows across the super-aggregation components. There

are four types of TCP packets in the diagram: data packets and ACK of down-

stream traffic; data packets and ACK of upstream traffic. The four types of packets

are illustrated with different arrows in the packet flow diagram. For ease of expo-

sition we describe the super-aggregation operations in the order of upstream data

(request from client), upstream ACK, downstream data (content from server), and

downstream ACK. Figure 3(b) shows the exchange of control messages among the

super-aggregation components. The details are explained along with the data traffic.

Data of upstream traffic: Each packet generated by the TCP layer is recorded

by the Mirroring Manager for establishing a mirroring connection on the 3G interface.

The Mirroring Manager duplicates each data packet and puts the IP address of the

3G interface in the IP header. The data packets of the original connection are sent

to the Wi-Fi interface. The duplicate packets are sent via the 3G interface in the

same order to establish a mirroring connection and request for the same content from

server.

ACK of upstream traffic: When a packet is received on the downlink of any

28

wireless interface, it could be an ACK for previously sent data packets or data packets

sent by server in response to user request. Both data packets and ACK packets may

belong to the original connection or the mirroring connection. All packets received on

any wireless interface are sent to the Mirroring Manager, which differentiate the four

cases. It distinguishes packets belonging to the original connection and the mirroring

connection by comparing destination IP addresses with the record of mirroring. Data

packets and ACKs are differentiated from each other by calculating their TCP payload

length. TCP ACKs belonging to the original connection are sent to TCP layer directly

without any modification. ACKs belonging to the mirroring connection are processed

by Mirroring Manager itself. It retransmits data packets if they are lost in the Internet

so that requests on the mirroring connection is always the same as the original one.

Data of downstream traffic: Similar to ACKs of upstream traffic, downstream

data packets belonging to the original connection and the mirroring connection are

treated separately. The Mirroring Manager first checks if data seen on the original

connection and the mirroring connection are identical. If the data seen on both

connections are different, mirroring cannot be supported since the TCP sender serves

different data on the two paths. The Mirroring Manager falls back to no mirroring

and sends a mirroring exception notification to the Loss Hider to stop hiding packet

loss.When mirroring is enabled, the data packets belonging to the original connection

are sent to the Loss Hider, and those of the mirroring connection are sent to the Fast

Fetcher. Loss Hider sends all in-sequence data packets to TCP layer. If it finds a

hole in the received data packets, it retrieves the loss information from the lower link

layer. If the hole is attributed to a random wireless loss, the Loss Hider stores out-

of-sequence packets in its buffer and notifies the Fast Fetcher about the lost packets

to fetch on the mirrored connection.It sends a TCP ACK for highest data sequence

number it has seen in order to hide the losses from the TCP sender. The Loss Hider

waits for the Fast Fetcher to recover the lost packets and delivers all recovered packets

29

to TCP in sequence. Data packets coming from the mirroring connection are sent to

the Fast Fetcher by the Mirroring Manager. The Fast Fetcher identifies the packets

that were lost in the original connection and passes them to the Loss Hider. The Fast

Fetching technique is used to control the process of sending ACKs in the mirrored

connection to accelerate the retrieving of the lost packets.

ACK of downstream traffic: ACKs of downstream traffic are generated by the

TCP layer and several components, such as the Loss Hider and the Fast Fetcher. All

those ACKs are sent to the ACK marker to perform appropriate offloading-ACK. It

marks all ACKs as offloadable so that the Offloader knows they can be offloaded to

3G interface. If an ACK only contains cumulative information and can be replaced by

newer ACKs, ACK Marker adds a mark of replaceable. The Offloader takes ACKs of

both the original connection and the mirroring connection for offloading-ACK via 3G

interface. The Offloader gets the information of uplink capacity in the 3G interface

from the interface characterizer. If the 3G interface has enough uplink capacity for

offloading, it sends all the ACKs via the 3G interface. Otherwise, Offloader discards

replaceable ACKs without affecting TCP operations.

Blackout handling: The Blackout Detector on the Wi-Fi interface monitors

all activity events in the Wi-Fi network to detect blackout and link recovery events.

It sends a probe message to default gateway if no activity is observed on the Wi-Fi

interface for a period of time. When blackout is detected, the Blackout Detector sends

a blackout notification to Blackout Freezer, which sends ACKs with zero-window

advertisement to freeze the connection. When the link recovers from blackout, the

Blackout Detector sends a link recovery notification to Blackout Freezer to resume

the TCP transmission with a non-zero window update. The ACKs are generated with

the latest ACK sent by the ACK Marker, and their flow window size is modified by

the Blackout Detector. The ACKs directly go through the 3G interface since they

are sent when the Wi-Fi interface is in blackout.

30

Interface characterizer: All four types of packets traverse Interface Character-

izer if they are sent through the 3G interface. The Interface Characterizer measures

capacity on both the uplink and the downlink in the 3G network. It calculates

the remaining uplink/downlink capacity by subtracting data that have already been

sent/received on the 3G interface. The uplink and downlink capacity information

is sent to the Offloader and the Fast Fetcher whose decision relies on the remaining

capacity. The Offloader reduces amount of ACKs sent to the 3G interface when there

is not enough uplink capacity. The Fast Fetcher also adjusts the guard time that is

inversely proportional to the downlink capacity on the 3G interface.

3.5 Super-Aggregation Beyond TCP

3.5.1 Generic Principles and Case Study

We now generalize the super-aggregation principles proposed in Section 3.3 and demon-

strate their generic application with a case study of a non-TCP protocol. Each generic

principle describes an approach of leveraging multiple interfaces of wireless devices

that can increase throughput beyond the sum of the parts. We pick rate-adaptive

video streaming [44] for the case study since it is a popular UDP application in the

Internet. In such systems, the server sends video streams in the form of UDP data-

grams to clients. To provide good video quality in response to capacity variation, the

server adjusts its codec or sending rate based on available bandwidth to the client.

3.5.1.1 Selective offloading - tackling self-contention of client reports

Selective offloading chooses some packets to move from the Wi-Fi interface to the

3G interface. One design principle is moving some packets to the 3G interface to

resolve self-contention in the Wi-Fi network, as in offloading-ACK. Moving small

packets can provide significant improvements since overhead of sending them via the

Wi-Fi interface is relatively higher. The other design principle is to use the 3G in-

terface when overall performance is affected by some characteristics that the Wi-Fi

31

interface performs poorer than the 3G interface. In rate-adaptive video streaming,

clients keep sending reports of traffic characteristics to the sender to rate adaptation.

The rate adaptation and overall throughput may be impaired by intermittent avail-

ability of the Wi-Fi interface, while 3G interface provides much higher availability.

A video client on mobile host is unable to send reports during blackout and hand-

off. The server may interpret missing of reports as client disconnection or network

congestion. Incorrect characterization causes improper rate adaptation of the video

stream. Offloading-report moves report packets to the 3G interface with high avail-

ability enables continuous reporting, which allows server to do timely and accurate

rate adaptation. It also reduces packet loss rate of video on downlink, since small

report packets cause self-contention in Wi-Fi networks.

3.5.1.2 Proxying - improving reliability and timeliness of command packets

Proxying improves performance of the connection on Wi-Fi by masquerading packets

from 3G, which serves as a proxy when Wi-Fi is temporarily unavailable. One design

principle is to enable communication when the Wi-Fi interface has blackouts, as

in proxying-blackout-freeze. Adding control packets via the 3G interface can help

in preventing blackout’s adverse effects to application. The other design principle

is to improve reliability and timeliness of some packets by sending them to both

interfaces. Heterogeneous interfaces provide diversity in packet losses, so sending a

redundant packet to the 3G interface can effectively improve end-to-end reliability.

Video streaming clients send command packets to perform control operations, such as

pause/resume video delivery and updating configurations. Losing command packets

degrades response time perceived by the client. Proxying-redundant-commands sends

a duplicate copy of those command packets to improve the reliability. It improves

response time to the client and may also improve other dimensions of performance

since commands are delivered more timely.

32

3.5.1.3 Mirroring - reducing loss rate of baseline frames

Mirroring creates a independent connection on the 3G interface, and same or re-

lated content is downloaded to improve performance by leveraging loss diversity. One

design principle is decoupling some of high-layer mechanisms to the mirroring con-

nections, as in mirroring-loss-fetching. This helps the client to separate operation

of two mechanisms that have adverse interaction in Wi-Fi networks. The other de-

sign principle is reducing packet loss rate by fetching redundant contents from both

connections, especially essential portions in the original connection. Scalable Video

Coding [69] is commonly considered in rate-adaptive video streaming since it encodes

video content into different quality levels in a scalable way. All clients receive baseline

frames and those with higher capacity also receive enhancement frames that rely on

baseline frames. Baseline frames are more critical packets and requires less band-

width than enhancement frames. Mirroring-baseline-frames establishes a mirroring

connection via the 3G interface and requests for a baseline video stream of the same

video content. Having duplicate baseline frames from server can significantly improve

overall video quality, especially in a lossy environment.

3.5.2 Generic Architecture

We present the generalized software architecture in a modular fashion such that it is

evident how to reuse the common components for generic super-aggregation principles.

As shown in Figure 3(a), some components in the super-aggregation architecture are

specific for TCP, while others provide common functionalities needed in other prin-

ciples. For example, Offloader is used for offloading-ACK, Report Offloading, and

Voice Offloading. Offloading-ACK uses ACK marker to notify Offloader that ACK

packets should be offloaded. The Report Offloading and Voice Offloading should have

their own component to mark report packets and voice frames. The Offloader takes

33

all packets marked and split them according to available uplink bandwidth on 3G in-

terface. Other common components include the Blackout Detector and the Interface

Characterizer.

3.6 Theoretical Analysis

In this section we present an analytical model to study the throughput of super-

aggregation. The analysis answers a fundamental question: in what conditions does

super-aggregation yield throughput more than sum of the parts? The analytical model

can also be used to assess the performance of super-aggregation when applied to other

networks. Each of the three super-aggregation principles are analyzed separately in

the corresponding network conditions. In the analysis of offloading-ACK, there is no

blackout or random wireless loss. In the analysis of proxying-blackout-freeze, there are

blackouts but no random wireless loss. In the analysis ofmirroring-loss-fetching, there

are random wireless losses but no blackout. For each principle, we first analyze the

throughput of default TCP under the corresponding condition then the throughput of

the super-aggregation principle. Throughout the analysis, we assume that the wireless

link is the bottleneck of the end-to-end path. Table 1 lists the variables used in the

analysis, and Table 2 lists the parameters and their values. At the end of this section,

we presents the insights from the analysis to show that in most of the cases super-

aggregation is able to provide throughput more than sum of the parts. The analytical

model is validated with experiments in the next section.

3.6.1 Analysis of Offloading-ACK

When self-contention occurs to TCP, uplink ACK packets compete with downlink

data packets for the same wireless network resources. A TCP receiver replies with an

ACK for every two data segments. The saturated throughput of TCP at the wireless

34

Table 1: Variables in the super-aggregation analysis
Variable Definition

Ts(p) Saturated throughput of TCP protocol p (default TCP or
super-aggregation)

T (p) Average throughput of TCP protocol p (default TCP or
super-aggregation)

tdata Time to send a TCP data segment
tack Time to send a TCP acknowledgement
tframe(l) Time to send a MAC frame of payload length l

tmpdu(l) Time to send a MPDU of payload length l

tbackoff 802.11 backoff duration
tblackout Duration of a blackout
tinterval Interval between two blackout occurrences
pc Probability of contention
bps(r) Bits per symbol of the 802.11 data rate r

Ws Congestion control window size under saturation
W (i) Congestion control window size at round i

Wmax Maximum congestion window size achieved upon packet loss
N(pl) Number of packets sent in a congestion avoidance phase
pl Packet loss rate
RTTk Round trip time on the path of link k (wifi or 3g)
RTO TCP retransmission timeout
B buffer size at the Wi-Fi AP

Table 2: Parameters in the super-aggregation analysis
Parameter Definition Value

htcp TCP header length 32 bytes
mss TCP maximum segment size 1448 bytes
hip IP header length 20 bytes
hmac 802.11 MAC header length 28 bytes
hmack 802.11 MAC ACK length 14 bytes
tsifs 802.11 SIFS 34µs
tdifs 802.11 DIFS 16µs
tslot 802.11 slot duration 9µs
CWmin Minimum contention window size 15
tpreamble 802.11 PLCP preamble duration 16µs
tsignal 802.11 PLCP signal field duration 16µs
hserv 802.11 PLCP service field length 16 bits
htail 802.11 PLCP tail length 6 bits

35

link is determined by the time to send both the TCP data segments and ACKs.

Ts(tcp) =
2mss

2tdata + tack
(1)

Either a TCP data segment or a TCP acknowledgement is sent as a frame in the

Wi-Fi network, and each one subject to contention losses since the Wi-Fi AP and the

Wi-Fi client are competing for channel access.

tdata = tframe(hip + htcp +mss)×
1

1− pc
(2)

tack = tframe(hip + htcp)×
1

1− pc
(3)

To simplify the analysis, we assume both the AP and the client stay with the minimum

contention window.

pc =
1

CWmin + 1
(4)

tframe(l) = tdifs + tbackoff + tmpdu(hmac + l) + tsifs + tmpdu(hmack) (5)

The expected duration in backoff also assumes minimum contention window.

tbackoff =
1

2
CWmin × tslot (6)

tmpdu(l) = tpreamble + tsignal + tsymbol × ⌈
hserv + l + htail

bps(r)
⌉ (7)

Offloading-ACK eliminates self-contention of TCP in the Wi-Fi network by moving

TCP ACKs to the 3G link. With the Wi-Fi link purely used for downstream TCP

data segments, the saturated throughput does not contain time to send TCP ACKs.

Ts(tcp) =
mss

tdata
(8)

Since there is no contention between the AP and the client, there is no overhead in

retransmission due to contention losses.

tdata = tframe(hip + htcp +mss) (9)

36

TCP throughput can be further improved if the technique of frame bursting is

enabled. Frame bursting is a technique supported by some commercial Wi-Fi APs,

such as Linksys WAP55AG. It allows consecutive frames to be sent by the same host

if no other host is competing for the channel access. With self-contention of TCP,

most frames are not sent in a burst due to the contention. With offloading-ACK,

frame burst works for most frames, and that reduces the time for sending a MAC

frame since each MPDU is preceded by an SIFS instead of DIFS plus backoff.

tframe(l) = tsifs + tmpdu(hmac + l) + tsifs + tmpdu(hmack) (10)

The saturated throughput of both default TCP and offloading-ACK is derived

above, but that does not translate into the average throughput observed in practice.

The saturated throughput can be maintained only if the intermediate routers have

enough buffer space the incorporate the natural fluctuation of congestion window

size. In other words, the saturated throughput can be regarded as the upperbound

of TCP throughput, which is achieved with sufficient buffer space in the Wi-Fi AP.

The lowerbound of TCP throughput can be derived by assuming no buffer space in

the Wi-Fi AP. That cause immediate packet drops if the TCP transmission rate is

higher than the saturated throughput. The average throughput in such a scenario

can be approximated as 3
4
Ts(p) since the congestion window is cut down by half after

a packet loss.

We provide a more detailed analysis based on the TCP congestion control mech-

anism. To derive the long-term average throughput, the analysis only considers the

congestion avoidance phase of TCP. During congestion avoidance phase, congestion

window is increased by one MSS every round, which length is the RTT. The conges-

tion control window size (in the unit of TCP MSS) under saturation can be derived

from the saturated throughput.

Ws =
Ts × RTT

mss
(11)

37

RTT =











RTTwifi for default TCP

RTTwifi+RTT3g

2
for offloading-ACK

(12)

Let’s assume at round rs, TCP has congestion window equals to Ws. TCP keeps

growing its congestion window beyond the saturated value. At round rs+ i, TCP has

congestion window equals to Ws + i. It means that TCP sends i more packets than

what the Wi-Fi link can absorb. In other words, i packets are accumulated in the

buffer at the Wi-Fi AP at round i. Packet loss occurs at round rs + rp such that

rp
∑

i=1

i > B, (13)

where B is buffer size at the Wi-Fi AP.

r2p

2
+

rp

2
−B > 0 (14)

rp = ⌊−
1

2
+

√

1

4
+ 2B⌋ + 1 (15)

The maximum congestion window is achieved when the packet loss occurs.

Wmax = W (rs + rp)

= Ws + rp

(16)

Wmin = ⌊
Wmax

2
⌋ (17)

T (p) =
1

2
(Wmax+Wmin)×(Wmax−Wmin+1)−1)×mss

(Wmax−Wmin+1)×RTT

∼= 3
4
Wmax ×

mss
RTT

(18)

3.6.2 Analysis of Proxying-blackout-freeze

To analyze the impact from blackout, we assume that blackouts occurred in the Wi-Fi

network periodically. The period of a blackout is tblackout, and the frequency of its

occurrence is fblackout. As shown in Figure 2(b), blackout causes an RTO timeout since

the whole burst of packets are lost. When retransmission occurs after an RTO, if the

38

Wi-Fi network is still in blackout, the packet is retransmitted again with a doubled

RTO. Let n be the number of retransmissions occurred in the blackout period.

tidle =

n−1
∑

i=0

RTO × 2i = RTO × (2n − 1) ≥ tblackout (19)

n = ⌊log2(
tblackout

RTO
+ 1)⌋ (20)

tidle = RTO × (2⌊log2(
tblackout

RTO
+1)⌋ − 1) (21)

TCP goes back to slow start after the idle period. Since the slowstart threshold

is also reduced to one MSS due to the repeated timeouts, TCP can only increase its

congestion window by one MSS until it reaches the saturated congestion window. The

time for TCP to resumes its congestion window from slow start back to the saturated

value is:

tss = Ws × RTT (22)

After that, TCP enters its congestion avoidance phase and achieves throughput

same as the the value derived in the previous subsection. It stays in congestion

avoidance until next blackout occurs.

tca = tinterval − tidle − tss (23)

The overall throughput can be derived by averaging the amount of data transferred

during the idle period, the slow start period, and the normal congestion avoidance

period.

T (tcp) =
tss ×

(Ws+1)mss

2RTT
+ tca ×

(Wmax+Wmin)mss

2RTT

tinterval
(24)

Proxying-blackout-freezing can freeze the TCP transmission during the blackout

and immediately resumes the transmission after the blackout. The TCP remains in

39

the normal throughput except during blackout.

tca = tinterval − tblackout (25)

T (proxying) =
tca ×

(Wmax+Wmin)mss

2RTT

tinterval
(26)

3.6.3 Analysis of Mirroring-loss-fetching

To analyze the impacts from random wireless loss, we assume that each packet loss is

an independent event with probability pl. The analysis of TCP throughput is based

on N , the number of packets sent in a congestion avoidance phase, which is defined as

the duration between two packet losses. The probability distribution of N is derived

by considering both congestion-related losses and random wireless losses.

Pr{N = n} =























(1− pl)
n−1pl if 0 ≤ n < Nmax

(1− pl)
Nmax if n = Nmax

0 otherwise

(27)

Nmax =
1

2
(Wmin +Wmax)(Wmax −Wmin + 1)− 1 (28)

Nmax is the total number of packets that can be sent in a congestion avoidance

phase when there is no packet loss. Since congestion-related packet loss occurs when

the congestion window exceeds the maximum value derived above, N cannot exceed

Nmax. A congestion avoidance phase can be terminated earlier by a random wireless

loss. Since each packet has a probability of pl to be lost, the distribution of N under

Nmax is a geometric distribution.

40

E[N(pl)] =
∑

n=0NmaxPr{N = n} × n

=
∑

n=0Nmax − 1(1− pl)
n−1pl × n+ (1− pl)

Nmax ×Nmax

= 1−Nmax(1−pl)
Nmax−1+(Nmax−1)(1−pl)

Nmax

pl
+ (1− pl)

NmaxNmax

= 1−(1−pl)
Nmax

pl
− pl(1− pl)

Nmax−1Nmax

(29)

The derivation also demonstrates the qualitative characteristics of E[N]. When

network capacity is high (Nmax is large) or packet loss rate is high, the first component

in E[N] dominates, and thus the congestion window is limited by random wireless

losses. When network capacity is low or packet loss rate is low, the second component

in E[N] dominates, and thus the congestion window is limited by congestion-related

losses.

The expected upperbound of congestion control window size can be derived from

the expected number of packets sent in a congestion avoidance phase.

E[N(pl)] =
(Wmax(pl)+Wmin(pl))(Wmax(pl)−Wmin(pl)+1)

2
− 1 (30)

3

8
Wmax(pl)

2 +
3

4
Wmax(pl)− (1 + E[N(pl)]) = 0 (31)

Wmax(pl) =

√

8

3
E[N(pl)] + 3− 1 (32)

Wmin(pl) = ⌊
1

2
Wmax(pl)⌋ (33)

TCP throughput under packet loss rate pl can be derived as follows:

T (tcp, pl) = E[N(pl)]×mss

(Wmax(pl)−Wmin(pl)+1)×RTT

∼= 3
4
Wmax(pl)×

mss
RTT

(34)

Mirroring-loss-fetching prevents TCP from unnecessary reduction in congestion

window by hiding random wireless losses to the TCP sender. The throughput achieved

41

withmirroring-loss-fetching is constrained by two factors. The first one is the through-

put of data transfer in the primary connection, and the second one is the rate in re-

covering lost packets in the mirroring connection. In the mirroring connection, there

is a guard time tg,ack before generating an ACK, and a larger guard time tg,data is

applied when the ACK is expected to trigger a data segment that was lost in the

primary connection. The value of tg,ack and tg,data depends on the data rate in the 3G

connection. The rate in recovering lost packets Tr is determined by the average time

to trigger a data segment (no matter lost or not) from the TCP sender.

Tr =
mss

pl × tg,data + (1− pl)× tg,ack
(35)

The overall throughput is the minimum of the throughput in the primary connec-

tion and the rate in recovering lost packets. If the distinction between congestion

losses and random losses is enabled, mirroring-loss-fetching allows TCP to achieve

the throughput in the primary connection as if there is no random wireless loss.

T (mirroring, pl) = min(T (tcp, 0), Tr) (36)

3.6.4 Insights from the Analysis

In this subsection, we present the insights from the theoretical analysis on the through-

put of super-aggregation under different conditions. We specifically look at an impor-

tant aspect of the degree of heterogeneity required in the capacity of the two interfaces

to observe aggregate throughput more than sum of the parts. The following observa-

tions will be verified with extensive experiments in the next section.

The throughput improvement from offloading-ACK and/or proxying-blackout-freeze

is independent from the capacity of the secondary interface. As shown in the theo-

retical analysis, the throughput formulas of offloading-ACK (Eq. 18) and proxying-

blackout-freeze (Eq. 26) do not contain the capacity of the secondary interface. Those

two principles are able to achieve a saturated throughput higher than sum of the

42

parts no matter how small the capacity of the secondary interface is. While the

secondary interface has higher capacity than necessary, offloading-ACK or proxying-

blackout-freeze does not exhaust its capacity, and the remaining capacity can be uti-

lized with simple aggregation (discussed in Section 3.8). In general, offloading-ACK

and proxying-blackout-freeze can provide aggregate throughput more than the sum of

the parts under any degree of capacity heterogeneity.

Contrary to the above two principles, the throughput improvement of mirroring-

loss-fetching depends on the capacity of the secondary interface. Eq. 36, when

capacity of the secondary interface is significantly lower than that of the primary

interface, the overall throughput ofmirroring-loss-fetching is dominated by Tr. In that

case, the aggregate throughput depends on the capacity of the secondary interface,

as shown in Eq. 35. That is because the data transport of mirroring-loss-fetching

is stagnated by waiting for loss recovery in the secondary interface. The analytical

model can also be used to predict if mirroring-loss-fetching is beneficial when the

capacity in the secondary interface drops down. If the capacity in the secondary

interface is insufficient to benefit the overall throughput, super-aggregation should

not hide all packet loss in the primary connection.

3.7 Performance Evaluation

In this section, we describe our prototyping on real multi-interface wireless devices

and their performance in experimental field trials. We present performance of all

super-aggregation principles on laptop in detail. Results on Google Android phone

are summarized since they demonstrate similar performance. The performance results

measured in the experimental testbed are used to validate the theoretical analysis in

the previous section.

43

EVDO802.11b/g

TCP server

Smartphone

(Google Android)
Laptop

Verizon

3G network

T-Mobile

3G network

Campus

Wi-Fi network

802.11g HSDPA

Ethernet

Ethernet

Network Nightmare

WAN emulator

Internet

AT&T DSL

Figure 4: Topology of the super-aggregation experimental testbed

3.7.1 Experimental Testbed

Figure 4 shows the topology of the experimental testbed. It includes both typical

types multi-interface wireless device: laptop and smartphone equipped with Wi-Fi

and 3G. The laptop is equipped with an Atheros 802.11a/b/g PCMCIA card and a

Verizon USB727 EVDO stick. Its operating system is Fedora 9 with Linux kernel

2.6.27. The driver of the Wi-Fi interface and the EVDO interface are MadWifi 0.9.4

and wvdial, respectively. The smartphone is T-Mobile G1, which has embedded Wi-

Fi and HSDPA interfaces. It runs with Google Android operating system and Linux

kernel 2.6.25. The testbed includes a TCP server to provide bulk data transfer for

downstream throughput measurement and has no background traffic. Connections

last for 100 seconds in each experiment. It is a desktop with Fedora 9 and Linux

kernel 2.6.27.

To evaluate the performance of super-aggregation in real life, both mobile clients

connects to the Internet via real service providers. The Wi-Fi access is provided by

the campus network service at Georgia Tech. The 3G access on the laptop and the

smartphone is provided by Verizon and T-Mobile, respectively. Since original RTT

between Wi-Fi interface and the TCP server is too small, we add a WAN emulator

between TCP server and campus network. We conduct RTT measurement from the

Wi-Fi interface to 20 popular websites, and the average value is 58.6 msec. The

44

WAN emulator is configured with 50 msec RTT to make the testbed representative

for multi-interface wireless devices.

Other than performance evaluation with real service providers, we also conduct

more extensive experiments with diverse capacity in the two interfaces to validate the

theoretical analysis. To manipulate the network capacity in the experiment testbed,

we use a Wi-Fi AP (Linksys WAP55AG) and an emulated cellular network (Network

Nightmare WAN Emulator). By using the network emulation, we covers a broad

range of wireless technologies of heterogeneity capacity. The data rate in the Wi-Fi

interface ranges from 6Mbps to 54Mbps. The data rate of the secondary interface

also varies from 2.5G (GPRS/EDGE) with around 100kbps to 4G (WiMAX/LTE)

with tens of Mbps.

3.7.2 Solution Prototyping

In order to evaluate super-aggregation performance with user-space implementation,

we use a user-space TCP implementation so that super-aggregation can be realized

below it. We select Atou (Almost TCP over UDP) [45], which is a validated tool

for studying TCP performance. Both server and client program include bulk data

transfer on top of Atou. Atou sends out segments and ACKs encapsulated in UDP

datagrams, and TCP mechanisms are implemented based on standards. We use

NewReno with SACK in Atou and verify that it gives almost the same performance as

TCP (using iperf) as shown in the preliminary study in Section 3.3. Minor differences

may appear between TCP and Atou for some scenarios. They may be caused by

higher computation priority of TCP in kernel space or Atou’s configurations not

being exactly the same as that of a specific TCP implementation.

All three TCP-based super-aggregation principles are implemented in C and inte-

grated with Atou. They are implemented only at the receiver-side source code and

deployed to wireless clients. Sender-side codes are the original Atou, except some

45

0

5

10

15

20

802.11b 802.11g
Wireless interfaces

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default TCP

super-aggregation

simple aggregation

(a) Throughput improvement on
802.11b/g

60.00 60.01 60.02 60.03
Time (sec)

d
ef

au
lt

 T
C

P

su
p
er

-a
g
g
re

g
at

io
n

data

ack

(b) Avoiding self-contention in
802.11g

0

5

10

15

20

25

0 50 100 150 200

Wi-Fi RTT (msec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default TCP (avg)

super-aggregation (avg)

super-aggregation (max)

(c) Effect of RTT on the Wi-Fi
path

Figure 5: Performance of offloading-ACK

mechanisms are added for better TCP standard compliance (flow control and appro-

priate byte counting). We use gcc and ARM GNU/Linux cross-compiler to build the

executable for laptop platform and Android platform, respectively.

3.7.3 Offloading-ACK Performance

In experiments, Offloading-ACK resolves self-contention and improves TCP through-

put with same magnitude as expected from the motivation. It improves TCP through-

put by 37% and 152%3 on the laptop client using 802.11g and 802.11b, as shown in

Figure 5(a). Figure 5(b) is packet traces captured with tcpdump. It demonstrates

self-contention of default TCP, in which data packets and ACKs don’t overlap in time.

It also shows capability of Offloading-ACK to allow TCP to fully utilize the 802.11g

interface for downlink data. Although average throughput of offloading-ACK is af-

fected by RTT of the 3G path, it is still able to achieve maximum throughput during

a connection, as shown in Figure 5(c). It gives higher improvement magnitude when

RTT on Wi-Fi path is longer since relative impact from 3G interface’s long RTT is

smaller. The performance of integrated operations shows that Mirroring-loss-fetching

can resolve the issue of long RTT on the 3G path.

Figure 6 compares the analysis and experimental results of both default TCP and

3To compare with TCP ACK aggregation techniques such as [33], we perform ACK aggregation
(one for 12 packets) in 802.11g, and it only improves default TCP by 8.27% in experiments.

46

0

5

10

15

20

25

30

35

6M 9M 12M 18M 24M 36M 48M 54M

Wi-Fi data rate (bps)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (offloading)

experiment (offloading)

(a) Effect of Wi-Fi data rate

0

5

10

15

20

25

30

35

100k 200k 500k 1M 2M 5M 10M

Uplink capacity in the secondary interface (bps)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (offloading)

experiment (offloading)

experiment (offloading 1000s)

(b) Effect of capacity in secondary
interface

Figure 6: Comparison of offloading-ACK analysis and experiments

offloading-ACK. The results show that the analytical model accurately capture the

throughput performance of TCP and offloading-ACK under different circumstances.

It is noteworthy in Figure 6(b) that when the cellular network has capacity lower

than 500kbps, the observed throughput in our default experiment settings is lower

than what expected by the analysis. The reason is because offloading ACKs through

a cellular interface of narrow bandwidth slows down TCP in achieving the saturated

throughput, even though the saturated throughput is independent of the cellular in-

terface capacity. RFC 3465 [32] specifies that TCP should not increase its congestion

window by more than two full segments with each acknowledgement, the growth rate

in congestion control window is reduced when fewer acknowledgements are delivered.

With the 100-second data transfer in default experiments, TCP with offloading-ACK

does not have enough time to achieve the supported throughput. By extending the

connection duration to 1000 seconds, the average throughput achieved in the experi-

ments matches with the analysis.

3.7.4 Proxying-blackout-freeze Performance

Blackouts are generated every 20 seconds on average within the 100-second connec-

tion. Figure 7(a) demonstrates the effectiveness of Proxying-blackout-freeze by show-

ing TCP states under blackout. TCP doesn’t go to slow start or cut down congestion

window when receiving zero-window advertisement via the EVDO interface. TCP

47

0

5

10

15

20

25

0 2 4 6 8 10
Time (sec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

0

20

40

60

80

100

120

C
w

n
d
 a

n
d
 s

st
h
re

sh
 (

p
k
t)

throughput

cwnd

ssthresh

(a) Freezing TCP during blackout

0

5

10

15

20

10 20 50 100 200

Wi-Fi RTT (msec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default tcp

super-aggregation

ideal

(b) Effect of RTT on Wi-Fi path

0

5

10

15

20

0.5 1 2 5 10

Blackout duration (sec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default tcp

super-aggregation

ideal

(c) Effect of blackout duration

Figure 7: Performance of proxying-blackout-freeze

throughput is also immediately resumed after receiving window update after link

comes back. Compared to default TCP in Figure 2(b), proxying-blackout-freeze im-

proves TCP throughput by 87%. Figure 7(b) shows that proxying-blackout-freeze gives

close-to-ideal throughput with different RTT on Wi-Fi path, where ideal throughput

values are calculated as throughput with no blackout times the ratio of link avail-

ability. Improvement magnitude is 161% when Wi-Fi RTT is 200 msec since TCP

spends more time to recover its congestion window. Figure 7(c) shows that proxying-

blackout-freeze gives more improvement with longer blackout duration. It improves

TCP throughput by 136% when average blackout duration is 10 seconds.

Figure 8 compares the analysis and experimental results of both default TCP and

proxying-blackout-freeze under blackouts. The default blackout duration is 2 seconds.

The analysis and the experimental results are very close to each other. The analysis

of default TCP has higher throughput than experiments. That can be caused by the

overhead in TCP retransmission in practice, such as a coarse-grained timer for TCP

timeout.

3.7.5 Mirroring-loss-fetching Performance

Figure 9(a) shows that Fast Fetching technique is effective in fetching lost packets

using the EVDO interface. It can recover lost segments 36 times faster than naive

48

0

5

10

15

20

6M 9M 12M 18M 24M 36M 48M 54M

Wi-Fi data rate (bps)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (proxying)

experiment (proxying)

(a) Effect of Wi-Fi data rate

0

5

10

15

20

100k 200k 500k 1M 2M 5M 10M

Uplink capacity in the secondary interface (bps)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (proxying)

experiment (proxying)

(b) Effect of capacity in secondary
interface

0

5

10

15

20

0.2 0.5 1 2 5

Blackout duration (sec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (proxying)

experiment (proxying)

(c) Effect of blackout duration

Figure 8: Comparison of proxying-blackout-freeze analysis and experiments

0

100

200

300

400

500

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (sec)

S
eq

u
en

ce
 n

u
m

b
er

fast fetching (data)

fast fetching (ack)

normal fetching (data)

normal fetching (ack)

(a) Fast fetching

0

5

10

15

20

10 20 50 100 200

Wi-Fi RTT (msec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default tcp

super-aggregation

simple aggregation

(b) Effect of packet loss rate

0

5

10

15

20

0.0% 0.1% 0.3% 1.0% 3.0%
Wi-Fi packet loss rate

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default tcp

super-aggregation

simple aggregation

(c) Effect of RTT on Wi-Fi path

Figure 9: Performance of mirroring-loss-fetching

fetching with a normal TCP connection. As shown in Figure 9(b), mirroring-loss-

fetching significantly outperforms default TCP. It keeps TCP throughput close to loss-

less environment until loss rate is more than 3%. Figure 9(c) shows that mirroring-

loss-fetching gives more improvement magnitude when the Wi-Fi path has longer

RTT since TCP spends more time in recovering its congestion window. It improves

TCP throughput by 175% when Wi-Fi RTT is 200 msec.

Figure 10 compares the analysis and experimental results of both default TCP

and mirroring-loss-fetching under random wireless loss. The default packet loss rate

is 0.1%. The matching of the analysis and the experimental results shows that the

analytical model is very accurate in estimating the throughput under random wireless

loss.

49

0

5

10

15

20

6M 9M 12M 18M 24M 36M 48M 54M

Wi-Fi data rate (bps)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (mirroring)

experiment (mirroring)

(a) Effect of Wi-Fi data rate

0

5

10

15

20

25

30

100k 200k 500k 1M 2M 5M 10M

Uplink capacity in the secondary interface (bps)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (mirroring)

experiment (mirroring)

(b) Effect of capacity in secondary
interface

0

5

10

15

20

25

30

0.0% 0.1% 0.2% 0.5% 1.0% 2.0%

Wi-Fi packet loss rate

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

analysis (tcp)

experiment (tcp)

analysis (mirroring)

experiment (mirroring)

(c) Effect of packet loss rate

Figure 10: Comparison of mirroring-loss-fetching analysis and experiments

3.7.6 Performance of Integrated Operations

Figure 11(a) shows the experimental scenario for integrated operations. At first only

Wi-Fi is available, then the client enters coverage of 3G network. It experiences

two-second blackout when it moves out from first Wi-Fi network, across second one,

and enters third Wi-Fi network. There is an interference sources in the third Wi-Fi

network that causes one-percent random wireless losses.

Figure 11(b) shows instantaneous throughput of super-aggregation and default

TCP as the client moves along. They have similar throughput when Wi-Fi is the only

access at first, and super-aggregation starts to outperform default TCP once 3G is

available because of offloading-ACK. Both throughputs drop to zero during blackouts,

but proxying-blackout-freeze can immediately resume throughput while default TCP

falls back to slow start. Mirroring-loss-fetching provides most significant improvement

when random wireless losses happen in AP3. Overall, super-aggregation gives 189%

improvement, which almost triples default TCP’s throughput.

3.7.7 Performance on Google Android

Figure 11(c) shows throughput improvements of all super-aggregation principles on

Google Android phone with 802.11g: 31% with offloading-ACK, 42% with proxying-

blackout-freeze under 2-second blackouts, and 67% with mirroring-loss-fetching under

0.3% packet loss rate. Although throughput achieved on Android is typically lower

50

3G base station

Wi-Fi AP3
Interference

Source

Wi-Fi AP1

Wi-Fi AP2

(a) Experimental scenario

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100
Time (sec)

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default TCP

super-aggregation

(b) Performance of integrated op-
erations

0

5

10

15

20

Offloading-ACK Proxying-blackout-

freeze

Mirroring-loss-

fetching

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

default TCP

super-aggregation

simple aggregation

(c) Super-aggregation on Android
phone

Figure 11: Super-aggregation integrated operations and performance on Android
phone

than that of laptop, which may be due to different hardware capabilities, improve-

ments from super-aggregation principles are significant.

3.8 Issues

IP spoofing: Offloading-ACK and proxying-blackout-freeze require IP spoofing, which

might be blocked by ingress filtering at routers. Experiments in [38] shows that

around 25% of ASes allow spoofing, and 40% of clients in the Internet can spoof

addresses up to a /8 netblock. There are two ways to support offloading-ACK and

proxying-blackout-freeze when spoofed packets are blocked by ingress filtering. One

is to tunnel packets to a proxy that can do IP spoofing. The proxy model is practi-

cal since forwarding light traffic for offloading-ACK and proxying-blackout-freeze can

provide significant improvement. The other way is to introduce a new TCP option

to allow sender to recognize other IP addresses belonging to the same wireless client.

Layer separation violation: Scope of super-aggregation principles span from

link layer to transport layer, so they need to be carefully designed to not violating

layer separation. We base the design of all three principles on standard operations

and common properties of TCP, Wi-Fi, and 3G technologies. All principles work as

enhancement to TCP with knowledge of underlying interfaces. It takes consideration

to implement super-aggregation principles when functionalities in transport layer and

51

link layer have non-standard implementation.

Extra resource consumption: The generic mirroring principle consumes extra

resources when establishing the mirroring connection to server. The design of each

mirroring principle should request for essential contents on the mirroring connection

if possible. For example, mirroring-loss-fetching uses byte-range fetching technique

if the functionality is supported by application-layer protocol of the traffic. This

requires knowledge of application-layer functionalities and protocols, and it should

be considered as add-on to principles implementation for better efficiency.

Connection mirroring: Mirroring-loss-fetching is mainly designed for state-less

content services and should not be used in the following cases. If end-to-end semantics

is critical for the application on top of TCP, hiding losses from sender side may cause

inconsistency issues between two ends. It also assumes server to send identical data

when receiving identical requests, but practical servers may give different response if

the content provisioning includes randomness or other external information, such as

system time. Besides, the mirroring connection cannot be established if the encryption

used in the original connection have a different session key for each new connection.

For those cases, mirroring-loss-fetching cannot be used and super-aggregation doesn’t

modify ACKs generated by the wireless client.

Extension to other wireless technologies: Super-aggregation can be applied

to any combination of wireless technologies, as long as the interfaces exhibit hetero-

geneity in terms of three characteristics: capacity, connectivity, and loss rate. Since

the different interfaces are likely to operate on different channels (to leverage the

multiple interfaces in the first place) and hence will connect to different APs, they

naturally will have uncorrelated connectivity and packet losses. Hence, there arise

two possibilities based on whether or not there exists capacity heterogeneity: First,

when two interfaces have heterogeneous capacities, the rule of thumb that must be

applied is that the one with higher capacity acts as the primary interface. The other

52

interface acts as the secondary to enhance performance through the super-aggregation

principles. We do note that impact of the degree of heterogeneity on the performance

gains with respect to simple aggregation is an interesting problem and something we

leave for future research. Second, if the two interfaces have similar capacities, the

interface with better connectivity is picked as the primary interface. The other in-

terface is used as the secondary for the super-aggregation principles. Note that there

may remain unutilized capacity on the secondary interface, and a simple aggregation

technique can then be applied to use up the remaining bandwidth.

Thus, considering typical examples of recent wireless technologies such as 802.11n,

WiMAX, 3G, and Bluetooth, we believe that the proposed principles will apply as-is to

any combination of two heterogeneous wireless interfaces. For homogenous interfaces

the applicability again is valid as long as capacity heterogeneity exists: for example,

when two Wi-Fi interfaces on the same mobile device use different channels, and have

different signal quality and hence data rates. If capacity is homogenous, such as two

Wi-Fi interfaces with the same data rate, a combination of super-aggregation and

simple aggregation will be required to maximize the throughput.

Extension to three or more interfaces: Thus far in this chapter, we have

focused on the super-aggregation principles applying to only two interfaces. We now

briefly discuss how the principles may be extended to apply to three or more inter-

faces: First, each mechanism is assigned to a different interface based on individual

characteristics. Second, if an interface is underutilized, it is used to share the load of

another interface. Finally, if any interface is still underutilized, simple aggregation is

used along with super-aggregation to maximize throughput. This can be exemplified

with a mobile device equipped with four interfaces using 802.11n, WiMAX, 3G and

Bluetooth technologies respectively. For such a scenario, 802.11n will be selected as

the primary interface for the highest capacity supported. WiMAX will then be as-

signed to mirroring-lost-fetching because of its relatively higher capacity. Bluetooth

53

will be assigned to proxying-blackout-freeze for its short latency and low bandwidth,

and 3G will be assigned to offloading-ACK. WiMAX may have extra uplink capacity

since it is mainly used for downloading. It will then be assigned to share the loads

of offloading-ACK on 3G. TCP ACKs with spoofed IP will be sent via both WiMAX

and 3G, according to their uplink capacity. If WiMAX still has unutilized capacity,

some data traffic will be split to it by using simple aggregation.

Battery lifetime: Although super-aggregation principles activate multiple inter-

faces simultaneously, we believe they don’t consume more power than when using a

single interface. Since throughput is improved by super-aggregation, a given amount

of data will be transferred faster and energy saved with more sleep time. In this

context, we have studied the energy consumed by downloading 10 MB of data on the

Android phone with the following energy model, where the parameters are defined as

follows: Ex
m is energy consumption per minute to maintain a connection on interface

x (with or without power saving); Ex
t is energy consumption per byte transferred on

interface x; T is end-to-end throughput; Np and Ns are number of bytes transferred

on the primary interface and that on the secondary one, respectively.

E = (Ewifi
m − Ewifi−psm

m) ·
Np

T
+ E

wifi
t ·Np + E

3g
t ·Ns (37)

Based on the empirical measurements of energy consumption in [70] (HTCWizard

in Table 2), super-aggregation (with the offloading-ACK mechanism) consumes 65.69

joules, which is better than that of default TCP (65.82) and simple aggregation

(79.51).

54

CHAPTER IV

A REMOTE COMPUTING PROTOCOL FOR

HETEROGENEOUS DEVICES

4.1 Overview

In the previous chapter, we have presented super-aggregation as a rapid application de-

livery protocol that effectively leverages heterogeneous wireless interfaces available in

smartphones. In this chapter, we consider the problem of remote computing protocol

for heterogeneous devices, which is a promising approach in rapid application mobi-

lization. We propose a remote computing protocol called MORPH, Mobile Remote

computing Protocol for Heterogeneous devices. Traditional remote computing pro-

tocols assume homogeneous devices to be used at both ends of the remote session

and thus have poor performance when being used from smartphones. MORPH ad-

dresses the device heterogeneity problem by transforming application views to ones

that are more suitable for smartphones. We present the design of a core component

of MORPH called virtual view that virtualizes application views into an abstract rep-

resentation irrespective of the UI framework used in the PC applications. Then, we

introduce transformation services that can be applied onto the virtual view to realize

smartphone-friendly views. In the next two chapters, we will elaborate on three core

transformation services, which are aggregation, translation, and traffic suppression.

4.2 Remote Computing for Heterogeneous Devices

Since MORPH is built on top of traditional remote computing, we present a short

primer on the technology and its applications in mobile computing. Figure 12 illus-

trates the network model of remote computing for heterogeneous devices where the

55

server resides in a PC and the client resides in a mobile device, such as a smart-

phone or a tablet. Virtual network computing (VNC) and Remote desktop protocol

(RDP) are both examples of remote computing protocols. In VNC the server sends

raw pixel information, while in RDP the server sends graphical primitives and com-

mands. Remote computing has several application scenarios. First, using remote

computing, a mobile user can access his or her own PC when being away from it.

It would be very useful when the user wants to access certain applications or data

that exist in the remote PC but not the smartphone. A recent study [57] shows that

knowledge workers spend only 35% of work time at their desk. When the users are

away from their PCs for the remaining 65% of the time, being able to access the PCs

from smartphones would provide great convenience and boost their productivity. Sec-

ond, remote computing allows a user to access a virtualized PC. For example, VDI

is a popular technology used in industry to virtualize the desktop environment for

enterprise employees. Being able to access a VDI system from a smartphone again

provides convenience and productivity benefits. Third, remote computing allows a

user to access others’ PC such as in remote IT support that an IT technician can

remotely access a user’s PC from a smartphone to provide troubleshooting in real

time.

smartphone PC

Physical PC System

tablet VDI

Applications

Remote

Computing

Server

Files & DataRemote

Computing

Client

Remote

Computing

Client

Virtual PC System

Applications

Remote

Computing

Server

Files & Data

Figure 12: Remote computing from heterogeneous devices

56

4.2.1 Remote Computing for Application Mobilization

Remote computing can be used as a mobilization strategy by simply running the tar-

get application on a PC backend, and providing a view of that application’s bounding

box to the smartphone. Attaching the backend PC to the appropriate file system can

provide access to the user’s data stores. We use VNC as the underlying remote com-

puting protocol of the baseline solution due to the ready availability of open-source

VNC clients. However, the design presented is agnostic to the specific remote comput-

ing protocol. There are three advantages to using remote computing for mobilization:

• Zero software porting: Perhaps the most important advantage of mobi-

lization using remote computing is that there is no porting of the application

software required. The application still runs only on a PC, and merely a view

is furnished to the smartphone.

• Easy IT manageability: A by-product benefit of continuing to use PC appli-

cations even for smartphone users is that the management of the mobilization

infrastructure can be done using existing IT processes, such as those for software

updates.

• Familiar interface: Since users have previously relied on the original PC

application, the interface furnished through remote computing will continue

to be familiar, and any functionality accomplishable using the PC could be

performed from the smartphone.

4.2.2 Challenges with Remote Computing

The biggest drawback with using remote computing for mobilization is that the ap-

plication view from the PC is presented as-is on the smartphone without any trans-

formations save for resolution scaling. The PC view is quite cumbersome to use on

the smartphone, and several reasons contribute to the unwieldiness of the interface:

57

0

20

40

60

80

100

Project QuickBooks Word

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

a
ct

io
n

s

Applications

PC

Baseline

4.15x

3.06x

4.18x

(a) Task effort

0

50

100

150

200

Project QuickBooks Word

A
v

e
ra

g
e

 t
im

e
-t

o
-t

a
sk

 (
se

c)

Applications

PC

Baseline

3.89x

4.65x

3.94x

(b) Time-to-Task

0

10

20

30

40

50

60

70

80

Project QuickBooks Word

A
v

e
ra

g
e

 b
a

n
d

w
id

th

co
n

su
m

p
ti

o
n

 (
k

b
p

s)

Applications

(c) Traffic Consumption

Figure 13: Performance of Baseline Remote Computing

(i) The bounding box of the application on the PC is typically much larger than the

screen real estate on the smartphone. This raises a pan/zoom trade-off for the user.

In a zoomed out mode, panning to reach different sections of the view is reduced,

but the UI elements are too small to read or manipulate easily. Thus, once the user

reaches the section of interest, a zooming in is almost always required. In a zoomed

in mode, the user has better visibility of the UI elements, but the burden to pan in-

creases considerably. (ii) Application interfaces on smartphones are typically layered

for better navigation and organization. PC application interfaces typically have a

flatter structure with fewer layers but a denser element layout. Such interfaces are

not suitable for smartphones and may cause extra burden on mobile users. (iii) Inde-

pendent of the above issues that increase user effort, performing the same number of

actions on the smartphone as on the PC is also subjectively burdensome to the user

due to the constrained environment.

To study the above problems quantitatively, we perform user-studies of three

applications - Microsoft Project, Intuit Quickbooks, and Microsoft Word - mobilized

using baseline remote computing. We measure the objective metric of total number of

actions (such as mouse clicks/keyboard entries) taken by each of the 10 participating

users to complete pre-defined tasks. Figure 13(a) shows the performance when the

tasks are performed on the smartphone and PC respectively (with 90% confidence

intervals). The average number of actions required on the smartphone is 3.1x to 4.2x

58

of that required for the PC. Similarly Figure 13(b) shows the average time required

to perform the same tasks. Such inflation in user burden can directly be attributed

to the reasons identified earlier.

Another drawback of remote computing is the back and forth exchange of data

between the server and client that could impose data usage burdens on the wireless

link. Hence, we analyze the traffic consumed by the baseline remote computing

protocol for the three PC applications averaged over the six tasks per application.

The average traffic consumption for the three applications is presented in Figure

13(c) and is 50.33 Kbps during the execution of a task. While not prohibitive, the

performance would be an issue in cellular data networks where the available per user

capacity can dip below the required data rates. Furthermore, with increasing trends

toward usage based billing in cellular data networks, reducing the required data rate

will also ease cost burdens.

4.2.3 Problem Statement

In the rest of this chapter we answer the following question: Could transformations

be applied to remote computing views to make smartphone users more effective when

accessing a remote PC? In answering this question, we tackle the challenges identified

for remote computing earlier in the section.

4.3 View Virtualization

MORPH is a remote computing protocol for heterogeneous devices that enables appli-

cation view transformation on top of traditional remote computing. Thus, it inherits

the various advantages of remote computing discussed in Section 4.2. More impor-

tantly, it is designed to explicitly address the challenges identified. At a high level

MORPH transforms the application view dynamically for the smartphone environment

within the context of the remote computing session. The transformation is performed

in an application-agnostic fashion with the goals of reducing user-burden and traffic

59

consumption.

The design of MORPH is predicated on two properties of typical applications:

(i) Application user-interfaces (UIs) are built by relying on well-known frameworks

for the creation of UI elements. Examples of such UI frameworks include Microsoft

.NET, SAP GUI, Java, Web DOM, GTK+, Cocoa, QT, and Flash. (ii) Accessibility

frameworks exist for each of the above UI frameworks that allow for UI elements to

be monitored and manipulated.

At a high level, the MORPH design (see Figure 14) consists of two components:

the view virtualization that converts any application view into a virtualized view of UI

elements with well defined attributes and APIs; and the transformation services that

transform the virtual view for the specific smartphone environment. In the rest of the

section we elaborate on the view virtualization and describe several transformation

services in Section 4.4.

View Abstractor

Frontend

Virtual View

UI

Automation

JavaScript

DOM

SAP

Scripting
...

Accessibility Frameworks

Virtual View API

Reduction Overflow Zoom

Add-on Transformation Services

Customized

Translation

Backend

Rearrangement

Run-time

Remote Computing

Translation
Traffic

Suppression
Aggregation

Figure 14: MORPH system overview

The goals of creating a virtual view are two-fold: (i) it shields the complexity of

interfacing with the myriad of UI platforms from the transformation services, and

instead exposes a standardized representation of the UI elements that the transfor-

mation services can manipulate; and (ii) once a virtual view is created, different sets

60

Table 3: Virtual View API and mapping to accessibility frameworks

UI framework Microsoft .NET SAP GUI Web DOM
Accessibility framework UI Automation SAP GUI Scripting JavaScript and DOM

Attributes
Id {Name, LocalizedControlType,

AutomationId}
{Name, Type, Id} { Name, TagName, Id}

Type LocalizedControlType Type TagName
Location {Left, Top} {Left, Top} {OffsetLeft, OffsetTop, Offset-

Parent}
Size {Right-Left, Bottom-Top} {Width, Height} {OffsetWidth, OffsetHeight}
State Value and State Value and State Attributes
Parent Ancestors.head Parent ParentNode
Children Children Children ChildrenNode
Status N/A: virtual view-only
Template N/A: virtual view-only

Functions
Read() Read from an attribute
Write() Write to an attribute
Invoke() Invoke Execute Click

Events
OnOpen() MenuOpenedEvent, ContextMenuEvent, DOMNodeInserted,

WindowOpenedEvent ChangeEvent DOMNodeInsertedIntoDocument
OnClose() MenuClosedEvent, DestroyEvent DOMNodeRemoved,

WindowClosedEvent DOMNodeRemovedFromDocument
OnActivity() FromPoint, FocusedElement FindByPosition,

GuiFocus
OnClick, OnDblClick, OnKeyUp

of transformations can be applied to the same view in a smartphone platform specific

manner. Thus, the virtual view has to be simple but flexible enough to facilitate the

creation of powerful transformation services with relative ease.

The virtual view in MORPH is an abstract representation of the UI of a PC

application. It is represented as a tree where each node corresponds to a UI element

in the application, and each link represents the relationship between a container UI

element and another UI element in the container. Specifically, the root node of a

virtual view represents the main window of a PC application. The window typically

contains a menu bar, a tool bar, a status bar, and other UI elements that are all

represented as children to the root node. The children in turn contain other children.

For example, the menu bar contains several menu items, which may further contain

sub-menu items.

For each node in a virtual view, a set of attributes is defined that describes the UI

element. Table 3 lists nine attributes that are extracted from the application view by

61

the UI abstractor - (i) ID is a unique identifier for the UI element; (ii) type represents

the specific type of a UI element such as button, menu item, text field, etc. (iii)

location describes the coordinates of the UI element in the application view; (iv) size

contains the width and height of the UI element; (v) state represents information

contained inside the UI element, such as the text in a text field or the checked state

of a check box; (vi) parent and children describe the hierarchy relationship in the tree

structure of the virtual view; and finally (vii) status indicates the visibility of the UI

elements while template provides style descriptions when rendering the UI element.

A virtual view also contains dynamic information in terms of the events triggered

in the PC application. As shown in Table 3, three types of common events are

captured: - (i) an OnOpen() event occurs when a view, such as a pop-up menu or

a dialog, is opened in the PC application; (ii) an OnClose() event occurs when a

view is closed in the PC application; and (iii) an OnActivity() event occurs whenever

the user performs activity, such as a mouse click or a keystroke, on a UI element.

Finally, besides attributes and events, the virtual view provides a simple API to

allow manipulation of the UI elements. As shown in Table 3, the API provides three

functions: the Read() and Write() functions allow a service to access the value of

an attribute of a UI element, and the Invoke() function allows a service to perform

activity on a UI element, such as the clicking of a button element.

The MORPH UI abstractor is the component that interfaces with the different

UI frameworks in extracting attributes for the virtual view, monitoring for events to

report through the virtual view, and invoking appropriate framework specific APIs to

support the virtual view functions. The UI abstractor creates a uniform representation

of virtual views by leveraging the accessibility frameworks associated with the UI

frameworks. Table 3 shows how the attributes and events in virtual view are matched

with those used in three popular UI frameworks - UI Automation, SAP GUI scripting,

and JavaScript.

62

4.4 Transformation Services

In the previous section, we have present the view virtualization of MORPH that

converts the application view of any PC application into a virtual view. In this

section, we present transformation services that can be programmed into MORPH to

convert the virtual view into smartphone-friendly views. Among the transformation

services of MORPH, we focus on three core services that deal with fundamental

challenges that have been discussed in Section 4.2.2. We then present add-on services

that are optionally added depending on requirements.

4.4.1 Core Transformation Services

The three core services are translation, aggregation, and traffic suppression. The first

two services deal with the usability challenges in accessing a PC application via remote

computing where the application view is not originally designed to be consumed from

a smartphone. The last service deals with the traffic consumption of MORPH that

relies on remote computing to deliver the application view.

Translation: This service transforms the virtual view into an application view

that is appropriately for the smartphone. It translates each UI element in the vir-

tual view into a smartphone native UI element if a corresponding widget module is

available in the smartphone platform. For example, mouse clickable tabs could be

transformed into touchable buttons, and a pull down menu could be transformed into

a spinner wheel. The action performed on the native UI element is translated back

into a corresponding event in the PC application. If no native UI element in the

smartphone platform matches with an element in the virtual view, the element is cat-

egorized as a workspace item and is rendered as-is graphically through the underlying

remote computing. The action performed in the workspace is also redirected to the

PC application via remote computing.

63

Aggregation: This service allows a user to aggregate multiple actions in a task

into a single click invocation when using a mobile app transformed by MORPH. For

routine tasks that the user wants to execute in a mobile app, aggregation service

allows the user to record them in to a single macro. A macro can be then accessed

from the MORPH frontend to automate and also speed up the corresponding task

execution. The service can also be extended further to support parameters or custom

values for certain actions during playback of a macro.

Traffic Suppression: This service efficiently delivers the virtual view of an appli-

cation transformed by MORPH to the frontend client. As described in the translation

service, a virtual view may contain elements that requires graphical rendering. Thus,

the traffic suppression service is built on top of an existing remote computing proto-

col, such as RDP or VNC, to enable delivery of virtual view. However, existing remote

computing protocols are not explicitly designed for mobile applications transformed

from their PC counterparts, so there is unnecessary traffic consumption involved in

the virtual view delivery process. The traffic suppression service is explicitly designed

to leverage information available in the virtual view to suppress unnecessary traffic in

the underlying remote computing without compromising its functionality.

4.4.2 Add-on Transformation Services

In this section, we introduces several feature-rich add-on transformation services can

be built into the mobile app transformed by MORPH. Figure 15 illustrates five ex-

ample services that we use to demonstrate the flexibility of the virtual view.

Reduction: This service provides a simplified view of the mobile app by showing

only a subset of the UI elements that the user wants to access from the smartphone.

The reduction can be performed by one of the following ways: a) manually choosing

the useful UI elements or b) automatically choosing only the frequently used subset

of UI elements. For manual reduction, the service can provide an “edit mode” by

64

zoom

reduction

rearrangement
customized

transformation

A B C D

M

E F

N

A B C D

G

M

E F

H

I

J

K

L
N

M

N

level 1 level 2 level n

...

A B C D

G

M

E F

H

I

J

K

L
N

A B

M

C ▼

G

H

I

▼

A C

M

E ▼

G

H

I

▼

D

E

F

Back

main overflow

A C F D

I

M

E B

J

K

G

H

L

N

A B C D E F

G

MH

I

J

K

L
N

A C

M

E F

H

J

K

L

overflow

Figure 15: Concept of add-on services

adding a “show/hide” toggle button adjacent to each UI element.

Overflow: This service intelligently splits a virtual view into multiple views to

suit the smartphone environment. Because of the difference in form factor, the user

interface of a PC application typically has more elements than that of a mobile app.

When a virtual view contains more elements than what can be fit into a smartphone

screen, squeezing all elements into the small screen would result in a dense and un-

usable user interface. Overflow service intelligently organizes elements in a virtual

view, presents a suitable number of elements for the smartphone screen, and hides

the remaining elements in an “overflow” view visible on demand.

Zoom: This service allows a user to dynamically adjust the set of UI elements

available in the mobile app from the frontend on demand. It allows the user to define

different zoom levels for a virtual view, ranging from simple but feature-limited ones

with fewer elements, to feature-rich but complex ones with more elements. It provides

a control knob in the frontend to allow the user to dynamically adjust the zoom level

in run-time depending on what features the user wants to access.

Rearrangement: This service presents a customized layout for the transformed

view and allows configuration of the placement of the various UI elements in the view.

65

This is particularly useful if the usage patterns of the mobile app are different from

those on the PC application and thus the original layout is no longer suitable.

Customized Translation: The service allows users to further customize the

look-and-feel of a mobile app transformed by MORPH. Specifically, it allows a user

to customize how a UI element in virtual view is translated into a native element in

the smartphone platform.

66

CHAPTER V

AN EFFECTIVE REMOTE COMPUTING SOLUTION

FOR SMARTPHONES

5.1 Overview

In the previous chapter, we have presented the view virtualization of the MORPH

protocol and have introduced transformation services that can be built on the virtual

view. In this chapter, we present the design of the aggregation transformation service

that reduces the time and effort required in accomplishing tasks from smartphones.

Aggregation allows a user to combine multiple actions into a single click invocation to

reduce the effort and time in executing a routine task. We introduce a key building

block called smart macros that have the robustness of application macros but at

the same time possess the generality of raw macros. Using smart macros, we design

and prototype MORPHAggregation, a remote computing solution for smartphones. We

show using experimental studies and a trace based analysis of real user activity that

MORPHAggregation can improve user experience considerably.

5.2 Motivation

While VNC and other remote computing solutions are mature and effective solutions

to provide remote access to a PC from another PC, they are not explicitly designed

for remote access from a smartphone. Remote access from a PC is very intuitive to an

user, since the local PC provides a homogeneous user interface as the remote PC. The

full screen display is shown on the local monitor, and the user controls the remote

PC using a mouse and a keyboard at the local PC. In such a scenario, the overall

user experience of remote computing is close to that of using a local PC. However,

67

Figure 16: Screenshot of a smartphone VNC client shows an intricate interface.

remote computing from a smartphone is significantly more difficult because of the

constraints in the device including form-factor, screen size, and the lack of a mouse

and a keyboard. We characterize the degree of cumbersomeness with the task effort,

which is defined as the number of operators needed to accomplish a computing task.

It can be represented with the following equation:

TaskEffortV NC = TaskEffortPC × Inflation (38)

where Inflation is the factor representing the additional burden imposed on the user

by the limitations of the smartphone. In the rest of this section, we first provide

qualitative reasons causing such Inflation, and then we analyze PC usage traces col-

lected from different users and show that there are considerable amounts of usage

redundancy to be leveraged to reduce TaskEffortPC. In Sections 6.2 and 5.4, we show

how both factors are addressed by MORPHAggregation.

5.2.1 Inflated Effort in Remote Computing from Smartphones

We explain how the task effort is increased in remote computing from a smartphone

with the following (non-exhaustive) reasons: (i) The zoom problem: By default, the

full desktop screen is squeezed in to the small screen on the smartphone, as Figure 16

shows a screenshot of MS Exel via AndroidVNC [1]. This renders it almost impossible

to directly access or manipulate any single GUI element on the desktop. Doing so

68

requires the user to zoom in, which is commonly done using pinching on newer smart-

phones. However, such zooming requires the user to perform additional operators.

(ii) The pan problem: Zooming comes with a by-product problem. Once the screen

is zoomed in, not all GUI elements on the original desktop screen is now visible to

the user, and panning is required to navigate the full screen. This typically involves

the user swipe across the screen and further increases the number of operators the

user has to perform. (iii) The keyboard problem: Many smartphones do not support a

full fledged keyboard. Hence, to access keys not available in the default layout, users

will have to press additional buttons on the keyboard. For example, on the stock An-

droid keyboard, users will have to press the ‘123’ button to access the number keys.

Some keys are specific to PC and are unavailable in smartphone keyboard at all, such

as ‘Ctrl’ and ‘F1’ that requires a custom implementation in the remote computing

client to perform. (iv) The error problem: Users tend to make more mistakes on the

smartphone when performing operators. Undoing such mistakes and re-performing

the operators would require extra operators. MORPHAggregation is explicitly designed

to reduce Inflation but we defer discussions on how it accomplishes the reduction till

later in the chapter.

5.2.2 Measurement of Redundancy in User Activity

While reducing Inflation is one approach to reduce TaskEffortV NC , another compli-

mentary approach we consider is the reduction of TaskEffortPC by enabling to perform

operators in aggregates. Such operator aggregation would specifically be relevant if

users naturally tend to perform redundant aggregates of operators. Before we delve

any further into ways to accomplish this, we now briefly present results from a user

activity analysis to study whether there is redundancy in user operators.

The PC user activity trace is collected from ten different volunteer users spanning

both academia and the industry. Each user is provided with a custom-built monitor

69

utility that captures all operators performed by the user and exports them onto a

stored file. The monitor transparently runs in the background on the PC so that it

captures the true activity of the users in their routine usage of the applications. Each

user periodically emailed back the stored file and the usage analysis was performed

offline.

The usage analysis first involved analyzing the redundancy in user activity, or in

other words the amount of repetitive activity that can be reduced by operator aggre-

gation. We define the degree of redundancy as follows: Consider an operator sequence

“ABCABCDABE”. This contains two repetitive substrings: “ABC” and “AB”. Each

repetitive substring can be replaced with a new code, and the resultant string will

reveal the upperbound of the redundancy elimination possible. For example, “ABC”

can be replaced with the code X and “AB” can be replaced with the code Y . The

original string can thus be reduced to “XXDY E”, which reduces the length from 10

to 5. The redundancy in the sequence is then calculated to be 10−5
10

= 50%.

To quantify the redundancy in user activity, we need to first discover repetitive

tasks. We define a repetitive task to be a sequence of operators that has appeared

in the history at least twice. To analyze the redundancy, we use the user history to

perform trace-based evaluation. We greedily match the history with the repetitive

tasks that have been identified, and we assume that each repetitive tasks can be

replaced with a single new operator. We consider only repetitive tasks of at least

length two for such replacement. Figure 17(a) shows the redundancy of different

users participated in the analysis. The redundancy in user activity ranges from 20%

to 40% for most users, and the average is 30.96%. While showing an exhaustive

list of repetitive tasks we identified in the traces is prohibitive, we provide a few

example repetitive tasks: 1) In MS Excel printing a chart in to a colorful ps file;

2) In MS Word changing the spacing between paragraphs with a specific pt. This

indicates that an intelligent operator aggregation technique can reduce task effort in

70

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

R
e
d
u
n
d
a
n
cy

Users

(a) Redundancy observed in user
activity

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

E
ff

o
r
t
 r

e
d

u
c
t
io

n

Users

(b) Potential effort reduction on
a smartphone by user

Figure 17: Real-user activity shows redundancy and potential effort reduction

a significant fashion.

There are two relatively offsetting factors that have to be considered when trans-

lating the above degree of redundancy into what degree of effort reduction can be

achieved on the smartphone: (i) The above analysis assumes that replacement code

is always of length one, which obviously is not realistic. Hence, a notion of lookup

overhead for the newly introduced codes has to be incorporated. We consider the

lookup overhead to be approximated as logkN where k is the number of aggregate

operators that can be presented to the user at any given point in time, and N is the

total number of such aggregate operators. (ii) The analysis also does not account

for the mobile inflation factor discussed earlier. Using the remote computing exper-

iments conducted later in Section 6.4 where users were asked to perform the same

tasks on both the PC and the smartphone, we determine the mobile inflation factor

to be 3.31. Figure 17(b) shows the effort reduction after the adjustment of both the

lookup overhead and the mobile inflation factor. The potential effort reduction on

the smartphone ranges from 20% to 80%. The effort reduction is related to the re-

dundancy in user activity, which is intuitive. The interesting observation is that the

effort reduction can be higher than the redundancy that appears in the user activity

in PC. The reason is because a set of aggregated operator can be presented as a simple

button and avoid the operator inflation effect. Analysis across top applications in the

trace shows a similar reduction potential from 20% to 80%.

71

5.3 Design Principles

5.3.1 Overview

MORPHAggregation is a software solution designed to improve the experience of a user

accessing a remote PC from a smartphone. It is a two-ended solution, with presence at

both the PC and the smartphone (see Figure 18). The MORPHAggregation server at the

PC co-exists transparently with a remote computing server. The MORPHAggregation

client at the smartphone is integrated as an overlay with the remote computing client.

MORPHAggregation provides a powerful framework for users to create robust, general

and extensible macros on the PC, name them, and invoke them easily at the smart-

phone within the context of the remote computing client. In the rest of this section we

focus on the fundamental design elements in MORPHAggregation: application agnostic

smart macros that allow MORPHAggregation to provide the robustness of application

macros but with the generality of raw macros; task effort reducing front-end on the

smartphone that is presented as an overlay within the context of the remote com-

puting client; parameterization and pre-emptability of macros that provide a high

degree of flexibility and extensibility; and offline macro recommender that analyzes

user activity and provides recommendations for macros to be created. Note that the

rest of the discussion in this section is not meant to be an exhaustive description of

MORPHAggregation, but rather the principal design elements. We defer the complete

description to the next section.

5.3.2 Application-Agnostic SmartMacros

Operator aggregation through the creation of macros is a desirable capability for

task effort reduction. However, as explained in Section 5.2, traditional approaches to

creating macros have been severely limited by one of two problems: raw macros suffer

from robustness issues and are notoriously erroneous if the playback environment

differs even slightly from the recording environment; and application macros suffer

72

PC Smartphone

Macro

Recording

Macro

Replaying

Macro

Suggestion

Macro

Repository

Macro

Presentation

Remote

Computing

Server

Remote

Computing

Client

store

replay

retrieve

handle

parameter &

exception

MORPHAggregation

Underlying remote computing

Figure 18: MORPHAggregation system overview

from a lack of generality and users are dependent on application developers to provide

the capability of macros on a per-application basis.

MORPHAggregation uses a new type of macros that we introduce called smart macros

that have the robustness of application macros but provide the generality of raw

macros. The design of smart macros is derived from a combination of key trends and

observations on how operating systems today work. Most operating systems (OS) to-

day provide application developers with higher order primitives called GUI elements

than simply the ability to create graphical objects. Thus, application developers can

readily use GUI elements such as text-boxes, buttons, and forms instead of creating

them from scratch. Because the OS also assumes the responsibility of providing call-

backs to the application when GUI elements are invoked or manipulated, applications

register each GUI element with well identifiable information ranging from the parent

application to the specifically recognizable name of the element to the state of the

element. Smart macros tap into the GUI element framework directly to facilitate the

recording of robust macros in an application agnostic fashion. Thus, a smart macro at

a high level is a sequence of operators with each operator represented as an address-

able GUI element with its appropriate state and the raw user input to be delivered

to that GUI element.

Figure 19 shows how smart macros compare to the other types of macros. As

73

Application macros
Application specific

Robust

Smart macros
Application agnostic

Robust

Raw macros
Application agnostic

Not robust

mouse clicks

keystrokes

software

component

GUI

element

operating

system

event function

call

Figure 19: Types of macro solutions

we explain in Section 5.4, the UI automation and the .NET frameworks available

in MS Windows are used in tandem for tapping intelligently into the GUI element

framework and capturing raw user activity. We also discuss how such frameworks are

also readily available on other OSes.

5.3.3 Task Effort Reducing Front-end

Once smart macros are created, they have to be presented to the user on the smart-

phone. MORPHAggregation uses a push technique to update the list of macros available

on the smartphone, but we defer further discussion of the update mechanism to the

next section. More importantly, the actual front-end on the smartphone has to be

designed carefully with the following considerations: (i) the front-end has to be non-

intrusive and should ideally seamlessly co-exist with the remote computing client

front-end; (ii) the front-end must be non-limiting in terms of what the user can ac-

complish independent of whether relevant macros are available or not; and (iii) the

front-end should be heavily tailored toward reducing task effort.

The MORPHAggregation front-end is designed to address the above considerations.

It is designed as a collapsible transparent overlay to the remote computing client on

the smartphone (see Figure 23). The user continues to be able to view and use the

regular remote computing client and opportunistically can invoke macros from the

overlay macros panel. The user can collapse the macros panel if required. Creation

of the front-end in this fashion is straightforward as the MORPHAggregation client is

integrated with the remote computing client software. When a macro is invoked, the

invocation is carried over to the MORPHAggregation server on the PC out-of-band of the

74

actual remote computing session. However, the playback of the macro at the PC is

presented back to the user real-time naturally through the remote computing session.

Thus, the user can actually observe the execution of the macro. More importantly,

the user can seamlessly intersperse the use of macros with raw input to the remote

computing client interface indefinitely.

Finally, the front-end is also designed to minimize the task effort when invoking

macros. When the replay of macros requires user-input (see discussion on Param-

eterization later in the section), the front-end automatically pans and zooms to the

concerned GUI element that needs manipulation by the user. This eliminates the need

for the user to navigate to that element. Note that because the MORPHAggregation

server has the exact information about the GUI element on the PC, identifying its

coordinates on the smartphone through the API of the remote computing client is

straightforward. Finally, if the GUI element can take default values (e.g. text-boxes,

check boxes, radio buttons, etc.) MORPHAggregation pre-populates the GUI element

with the default values derived from the state of the GUI element when the macro

was recorded or last replayed whichever was later. The front-end provides users with

the option of replaying an entire macro with default values in which case the user is

not prompted for input during the replay. Finally, the replay of the macro itself is

done faster than real-time minimizing the task-time for users.

5.3.4 Parameterization and Preemptability

Operator aggregation using macros is useful when the user wants to replay the exact

sequence of operators represented by the macros. However, in reality users could

want minor variations in tasks every time a macro is replayed. MORPHAggregation

accommodates such variations by supporting parameterization of the smart macros.

At a high level when the user records a macro the operators of the user can be classified

as parameters. The macro is then recorded as a sequence of only the operators with

75

appropriate indicators for when user input should be sought for the parameters. The

original input for the parameters is also preserved as default input values for the

macro. This provides a powerful abstraction to users as macros can now be used with

variations on the fly. To the best of our knowledge, this is the first approach to enable

parameterization of generalized macros.

The classification of an operator into either a parameter or not is done by distin-

guishing whether the operator merely changes the state of the associated GUI element

or invokes the GUI element respectively. During playback of a parameterized macro,

MORPHAggregation provides users with the option of executing the macro in continu-

ous mode with just the default values and not pausing for input. If a user does choose

to replay the parameterized version of a macro, an option is still provided to resume

the macro in continuous mode after every parameter input.

Another form of macro extensibility MORPHAggregation supports is the ability to

pause macros, perform raw input, and then resume the original macro. This provides a

further degree of extensibility than parameterization as macros now can be extended

with arbitrary introduction of new operators as well. By default, the pausing of

macros is allowed in MORPHAggregation only when the playback is stopped for user

input. However, it is possible to instrument the playback to occur slower than real-

time and allow users to pause the macro at any given point in the playback.

5.3.5 Offline Macro Recommender

The effectiveness of the MORPHAggregation solution depends on the user creating use-

ful macros. While the user is very likely to know the most important aggregates of

operators it is challenging for a user to be able to create all useful macros. Hence,

one of the important design elements in MORPHAggregation is the offline macro rec-

ommender. The MORPHAggregation server monitors user activity even when a macro

is not being recorded and logs the activity after classifying parameter operators from

76

others. The macro recommender component of MORPHAggregation then, on demand,

parses the log to generate a list of repetitive tasks observed in the user activity. For

each such task, the application, the length, the exact sequence of operators, and the

frequency of occurrence of the task are presented. The report is generated simply as

readable text. The tasks are first filtered based on user specified length and frequency

thresholds, and rank ordered based on decreasing values for length∗frequency. Users

may then choose to explicitly record a subset of the macros specified in the report1.

The tracking of user activity is done intelligently to account for users switching

from one application to another. Thus, if a user performance activity A1 at time

t1 in application App1, moves on to another application, and returns back to App1

to perform activity A2, MORPHAggregation will track the concatenation of A1 and A2

as a continuous task. Also, the Macro Recommender only finds the longest matched

sequences to eliminate redundantly identifying sub-strings of tasks as also repetitive

tasks. Briefly, this is accomplished using a suffix tree for building task patterns from

the user activity log. The Macro Recommender takes the history of user activity since

the last time a recommendation report was generated, and it inserts all suffixes of

the history into the suffix tree. After inserting all suffixes, the Macro Recommender

traverses the suffix tree to identify repetitive tasks, which are nodes that satisfy both

the length (node depth) and the frequency thresholds. We defer the detail mechanism

to the next section.

5.4 Solution

In this section we present the system realization of the MORPHAggregation solution.

We present the system architecture, the details of our implementation and the various

components involved in the building the system.

Figure 20 shows the software architecture and the components that reside in four

1Future work could facilitate users simply choosing an identified task and the macro automatically
being recorded.

77

Macro

Recommender

Raw Action

Recorder

GUI Element

Extractor

Parameter and

State Store

Macro

Generator

Macro

Recorder

Frontend

Macro Initiator
Operator

Replayer

Parameter

Handler
Exception

handler

User Behavior

History

Overlay Panel

UI Updater

Parameter and

Exception

Presenter

Macro

Presenter

Notification

Receiver

Desktop Mobile

Macro

Repository

Macro Recording

Macro Suggestion

Macro Presentation

Macro Replaying

Figure 20: MORPHAggregation software architecture

functional blocks described in Section 6.2. The solution is designed as a server-

client architecture, where the server resides on the desktop and the client resides

on the smartphone. Since the MORPHAggregation design is centered around operator

aggregation that is orthogonal to the core remote computing functionality, the so-

lution is implemented as an overlay to an existing remote computing solution but

does not change any of the native behavior of the remote computing software. The

MORPHAggregation client requires integration with the remote computing client on the

smartphone, but the integration is merely to gain access to the UI and the remote

computing protocol and interaction is left untouched. The MORPHAggregation server

on the other hand is fully decoupled from the remote computing server and has no

direct interactions with it. Also, any communication between the MORPHAggregation

client and server is done out of band of the remote computing session. The arrows in

the figure show the interaction between components in terms of function calls.

5.4.1 MORPHAggregation Server on Desktop

The MORPHAggregation server resides on the desktop and implements three func-

tional blocks of the solution, namely the Macro Recording, Macro Replaying, and

Macro Suggestion. The desktop also maintains a persistent database for all the

78

Start

recording

Abort

recording

Recorded

operators

Replay the

last recorded

macro

Finish

recording

Figure 21: MORPHAggregation desktop UI screenshot

recorded macros. All the desktop components are developed using C#. The per-

sistent database is an SQL-based relational database called HyperSQL [9]. We use

an unmodified realVNC [71] server on the desktop as an independent process. While

a number of components constitute the MORPHAggregation server we explain the key

ones below and only briefly summarize the others.

Macro Recorder Frontend: This is a simple GUI application that allows the

user to start/stop/abort the recording of a macro and also allows playback for verifi-

cation. Figure 21 shows a screenshot of the frontend.

GUI Element Extractor: This component has two responsibilities: converting

raw operators into GUI elements and retrieving a unique identity for each element.

The GUI element extractor uses the APIs provided by the accessibility frameworks

for extracting the handle for the GUI element. In the context of Windows the UIA

framework provides functions FromPoint() and FocusedElement() to determine the

AutomationElement for a mouse entry and a keyboard entry, respectively. Next, the

GUI element extractor has to retrieve a unique identity for the GUI element so that

it can be reliably located while executing a macro. The AutomationElement has

several properties that could be used to identify it, such as name or automation ID.

However, even a combination of these properties is not sufficient to uniquely identify

an element. Automation ID is not provided by all GUI elements, and multiple GUI

79

elements in a GUI application window can have the same name. We propose to trace

the GUI tree hierarchy from the target GUI element back to the root and use the full

ancestor list as the unique identity.

Parameter and State Identifier: To allow parameterization, we categorize GUI

elements as a parameter type based on specific control types (Ex: edit box, check box,

radio button and drop-down menu). We record the operator performed during the

recording of the macro as the default value for the parameter. We also maintain the

state of those GUI element which function is stateful, such as setting/unsetting a

check box.

Macro generator: When the user clicks the stop button on the macro recording

frontend, all the individual operators are aggregated in to a single macro. The macro is

a dynamic array of GUI element information recorded for each operator. Each entry

in the array is self-sufficient to replay the necessary operator and the information

stored contains the process on which an operator is performed, the unique identity of

the GUI element so that it can be retrieved, the GUI element’s state and the operator

performed. The user can manually provide a name for the macro.

Operator Replayer: The Operator replayer is responsible for replaying an indi-

vidual operation. Since we have already recorded the full path of the GUI element

handle in the GUI element tree, we can walk through the tree from the root element

of the tree to reach the required GUI element and thus retrieve its handle. In our im-

plementation we use the FindChild() method provided by the UIA library to traverse

the GUI element tree. Next, the recorded state of GUI element is restored before the

operator is performed on the element. Lastly, the operator is performed on the GUI

element. For a mouse click operator, we send a mouse click to to the GUI element

retrieved. We use the sendInput() function (available in the user32.dll) to replay a

mouse click. Similarly, focus is set to the GUI element that is supposed to receive the

keyboard operator and the raw keys are sent to the GUI element. The sendKeys()

80

function available in the Windows Forms library is used to send the keyboard input

to the focused GUI element.

Exception Handler: This component is responsible for handling one of the

following exceptions that occur while executing a macro: 1) process latency caused

by the underlying OS when it is heavily loaded makes itself unable to render the next

target GUI element in time; 2) missing prerequisite operators in the recorded macro

(Ex: visiting a URL before accessing the webpage, clicking on a tab in the ribbon

interface of Word 2007 etc); 3) notifications or alerts from the application that block

the interaction in the user interface. All the above cases make the macro replayer

unable to find the next GUI element. The exception handler retries several times to

avoid the latency issue and then hands control to the user via the exception presenter.

Macro Recommender: This component analyzes the user activity history on

an on-demand basis and suggests macros for the user to create. The Raw Operator

Recorder and the GUI Element Extractor are reused to keep track of the user activity

on the PC, which is stored as a dump. As introduced in the previous section, the

macro recommender uses a suffix tree to process the user activity, since a suffix

tree is a well-known linear-time solution to the longest common substring problem.

Figure 22 uses an example history of operators, say “ABCABCDABE” to show the

steps in determining all longest-matching repetitive sequences using a suffix tree.

Each node in the suffix tree represents a sequence of operators and also the number

of occurrences of the particular sequence (e.g. the leftmost “C2” in (1) represents

that “ABC” appears twice). The Macro Recommender removes redundant patterns

by filtering the longest-matching repetitive sequences from the found sequences. It

removes redundant prefixes in (2) and redundant suffixes in (3) by leveraging the

information stored in the suffix tree. The Macro Recommender keeps track of the

discovered patterns and suggest the new patterns to the user for macro creation.

81

A3 B3 C2 D1 E1

A1E1 D1 A1B3

E1

C2

C2

A1 D1

A1

B1

E1

B1

A1 D1

A1

B1

E1

B1

A1

B1

E1

B1

B1

C1

C1

A1C1 D1

D1 A1

D1

B1

E1

...

(1) all repetitive substring: {A, B, C, AB, BC, ABC}

A3 B3 C2

B3 C2

C2

A3

B3

C2

(2) after removing redundant

prefixes: {B, C, AB, BC, ABC}

(3) reversed suffix tree,

after removing redundant

suffixes: {AB, ABC}

Figure 22: An example of macro suggestion with a suffix tree

Other Components: We now describe the other components that constitute

the MORPHAggregation server: 1) Raw Operator Recorder is involved in capturing the

raw user input like mouse clicks and keyboard entries. 2) Macro Repository provides

an interface to store and retrieve the recorded macros in the persistent database. 3)

The Macro Initiator handles the replaying of macros on the desktop. It interfaces

with the MORPHAggregation client app and retrieves the macro from the repository

when required and executes each operation involved in the macro using the Operator

Replayer. 4) The Parameter Handler takes care of replaying parameter operations

on the desktop. The handler provides the bounding box and a default value for the

parameter, and it applies the user input to the GUI element.

5.4.2 MORPHAggregation Client on Smartphone

The MORPHAggregation client contains all the components of the Macro Presentation

functional block and some components of the others. We prototype the solution by

modifying AndroidVNC, an open-source VNC client. We modify only two files of the

AndroidVNC source namely VncActivity, the main Activity object, and VncCanvas,

the main GUI object of VNC interface. All MORPHAggregation communication from

the smartphone to the desktop is asynchronous and bidirectional. We now explain

82

Remote desktop Hide overlay panel Application menu (scrolling)

Figure 23: MORPHAggregation client screenshot

the different components:

Overlay Panel: The overlay panel is a control panel that is embedded into the

remote computing client and provides a set of buttons to the smartphone user. Figure

23 shows a screenshot of the overlay panel and the underlying VNC client. There

are five sets of buttons shown in the control panel depending on the stage of macro

execution: application menu, macro menu, macro execution menu, parameter menu,

and exception handling menu. The overlay panel shows only one menu at a given

time and the panel added to the remote computing client using a layout that allows

overlapping. The switching between menus is realized by toggling the visibility of the

previous and the current menus. The overlay panel is added to the content of the

VncActivity object with a FrameLayout that overlaps the panel on top of the VNC

client. Since Android only allows the UI thread to modify the UI, other components

that want to update the overlay panel need to go through the UI updater, a component

created by us in the UI thread.

Macro Presenter: This component maintains the application menu and the

macro menu, and it also responds to the selection of the user. It connects to the macro

repository to retrieve the list of applications and the list of macros associated with a

specific application. The applications and the macros are alphabetically ordered so

that the users can easily find the macros. When an application is selected by the user,

83

the macro presenter sends a request to the macro initiator to bring the application to

the foreground. When a macro is selected by the user, the macro presenter sends a

request to the macro initiator to execute the selected macro. Both requests are sent

with asynchronous communication so that the UI of the smartphone is not blocked.

While a macro is being executed by the macro initiator, the macro presenter shows

the macro execution menu that allows the user to control the timing of the execution.

As we have discussed in Section 5.3.4, the timing control allows the user to extend

the recorded macros with new operators in runtime.

Parameter/Exception Presenter: This component handles the presentation of

parameters and exceptions to the user. While receiving a notification of a parameter

from the parameter handler, this component first shows the parameter menu in the

overlay panel via the UI updater. Then it zooms the user to the bounding box of

the parameter. This is done by using the zooming and panning functions in the

interface provided by the underlying remote computing client, which is VncCanvas

in our prototype. The response from the user could be a new value or selecting a

default value provided by the parameter handler. Lastly, the presenter accepts the

response from the user and returns it to the parameter handler to proceed with the

execution. Similarly, the parameter/exception presenter shows the exception menu

upon an exception notification from the exception handler on the desktop side. The

exception menu contains three options namely ”Retry”, ”Ignore” and ”Abort”. These

options are self-explanatory.

Notification Receiver: This component receives notifications of new macros

from the macro generator and gives updates to the user in the overlay panel.

5.4.3 Portability to other Platforms

Portability to other PC platforms: Since Mac OS and Linux also have their own

accessibility frameworks [16, 13], the MORPHAggregation solution can be easily ported

84

0

10

20

30

40

50

60

Easy Medium Hard

A
v

e
ra

g
e

 t
a

sk
 e

ff
o

rt

Task complexity

PC

Mobile VNC

MORPH_Aggregation

(a) Task effort by complexity

0

10

20

30

40

50

None Single Multiple

A
v

e
ra

g
e

 t
a

sk
 e

ff
o

rt

Number of parameters

PC

Mobile VNC

MORPH_Aggregation

(b) Task effort parameter type

0

20

40

60

80

100

Easy Medium Hard

A
v

e
ra

g
e

 t
im

e
 o

n
 t

a
sk

 (
se

cs
)

Task complexity

PC

Mobile VNC

MORPH_Aggregation

(c) Time on task

Figure 24: Overall performance enhancement with MORPHAggregation

to other PC platforms as well.

Portability to other smartphone platforms: The MORPHAggregation solution

can also be ported to other smartphone platforms such as iPhone, RIM, Windows

Phone 7, Symbian, PalmOS as long as the source code of the target remote computing

client is available. Note that the integration required with the client is very simple.

5.5 Performance Evaluation

In this section, we present the performance evaluation of our implementation of

MORPHAggregation with experiments involving real users.

Prototyping: Our prototype testbed consists of 1) a Dell desktop running Win-

dows XP SP3 with a Pentium-4 2.8 GHz CPU, 3GB RAM, and a 19-inch monitor

(1280x1024) and 2) a Samsung Galaxy S smartphone running Android 2.1 with 1GHz

CPU, 512MB RAM, and a 4-inch screen (800x480). We evaluate our solution with

nine Windows applications and six tasks of different complexity for each applica-

tion. The full list of tasks and applications is shown in Table 7. While the tasks are

pre-determined, they are designed from real-user activity dumps we collected for the

motivation results used in Section 5.2.2. Since we observe that users not only use

easy-to-find GUI elements but also those hidden inside layers of menus, we define the

tasks with different levels of complexity to fully capture typical user activity. We use

the AndroidVNC [1] as the VNC client for comparisons. Both the AndroidVNC and

MORPHAggregation apps are installed in the Android phone which connects to the PC

85

via a local Wi-Fi network. In the rest of the section, we refer to AndroidVNC as

simply VNC.

Metrics: We compare the user experience of MORPHAggregation with that of VNC

and direct PC access using two objective performance metrics, time on task and task

effort. Our definition of task effort only focuses on mouse/keyboard operators that can

be identified and automated by a software system. It can be considered as a limited

version of the Keystroke-level Model in GOMS family [49], which contains mental

operators such as mental preparation and concentration shift that are not directly

related our solution. We also get subjective feedback from real users and provide

a CPU and memory profiling analysis of VNC and MORPHAggregation to show the

overheads introduced by our solution. Finally, we provide statistics from the offline

macro suggestion for the user dumps collected from ten users and the potential task

effort reduction for these users using the MORPHAggregation solution.

Experimental methodology: We invited twenty-two volunteers in our exper-

imental evaluation, and all of them are students whose age is between 20 and 30.

While some of them were not smartphone users, all of them actively use their PCs for

daily tasks. In the experiment, each user was randomly given two applications from

the nine applications, and was asked to perform three tasks (one in each complexity

category) in each application. While using MORPHAggregation, the smartphone had

been loaded with the pre-defined 54 macros, and the user is asked to perform the six

tasks with the corresponding macros. Since a user might not be familiar with the

application or the smartphone, we asked the user to practice the tasks until they feel

comfortable to perform experiments so that the learning effect is reduced. We perform

within-subject evaluation (the user performs the same tasks on PC, on AndroidVNC,

and then on MORPHAggregation) so that the users can give us their subjective feedback

with side-by-side comparison. It should be noted that the experimental results here

are only applicable to the scenarios where an experienced user has created macros

86

for her routine tasks, and she uses the macros to reduce her time and effort in do-

ing these routine tasks from a smartphone. We use the traces from real users to

evaluate the achievable time/effort reduction in accomplishing generic tasks using

remote computing from a smartphone. We do not study the learning effort of using

MORPHAggregation and defer it as part of our future work.

Table 4: Task list and macros used for MORPHAggregation evaluation
App Complexity Tasks

Easy Open and print a file Change format of a line
Word Medium Justify the entire text Add border to document

Hard Insert picture & effects Justify text & add a footer

Easy Open and print a file Sort data by a column
Excel Medium Insert a bar chart Insert a formula in a cell

Hard Import data from a csv file Insert a scatter chart

Easy Add a picture in a slide Change template for slides
Power Medium Print handouts of slides Select an animation scheme
Point Hard Add a footer Edit the master slide

Easy Print the current calendar Print contact list
Outlook Medium Arrange mail Arrange contacts

Hard Change email options Change calendar options

Easy Print a summary report Banking summary
Quicken Medium Export cash flow report Add a transaction

Hard Compare spending by year Find spending on clothing

Easy Print a webpage Go to a specific webpage
IE Medium View an RSS feed Check weather

Hard Change email options Change tab options

Easy Add a new announcement Upload a new document
Share Medium Add a new event Add a new task
Point Hard Edit permissions Check in a document

Easy Print a file Show a category of shapes
Visio Medium Change pattern of a shape Add shadow to a shape

Hard Configure layout Flip a figure

Easy Print a Gantt chart View network diagram
Project Medium View a resource sheet Sort event list by criterion

Hard Create a specified report Print multiple views

Measurement and analysis: During each experiment, we collect objective per-

formance data with measurement tools built for both the PC and the Android phone.

The tools measure both the task effort and the time on task for the user to execute

a task. In VNC and MORPHAggregation, the measurement tool is integrated into the

87

menu of the Android app. In PC, the measurement tool is a stand-alone program

that can capture raw user input to any application. The users provide their subjec-

tive opinion of using PC, VNC, or MORPHAggregation in executing each task. We use

Google Docs to create an online survey form where they can give their subjective

opinion in an anonymous manner. We use averages to provide overall performance

evaluation, but we don’t provide confidence intervals since the grouped tasks contain

different tasks that may belong to different applications or complexity.

5.5.1 Overall Performance Improvement

The performance results in Figures 24(a) show that our primary design goal of reduc-

ing task effort is achieved across different task categories. As discussed in Equation

38 in Section 5.2 task effort on VNC contains a component of task effort on the PC

and a component of mobile inflation. MORPHAggregation reduces both the components

as evidenced by a lower task effort than both the effort on VNC and the effort on

PC. Figure 24(b) shows the task effort categorized in terms of number of parameters

required for the task. We observe that with more parameters, the effort reduction

ratio is higher since the users can significantly reduce their effort by using default

values. Figure 24(c) shows a significantly lower time on task for MORPHAggregation

when compared to those of VNC for all three task categories. Also, we observe that

MORPHAggregation takes almost the same average time as working on a PC. While

for some tasks, MORPHAggregation takes a slightly lesser time than a PC because of

the task effort reduction with operator aggregation. The time on task in the VNC

is significantly higher since the users not only have to perform all operators, each of

them is inflated due to the input constraints in the smartphone.

5.5.2 Performance Improvement by Application

While we show average results in the previous subsection, Table 5 shows the reduction

of time on task when using MORPHAggregation when compared to VNC for individual

88

Table 5: Time on task and reduction percentage with MORPHAggregation

Application VNC MORPHAggregation Reduction

Word 77.22 16.07 79%

Excel 59.10 25.63 57%

PowerPoint 50.53 21.04 58%

Outlook 41.75 8.04 81%

Quicken 105.43 24.81 76%

Internet Explorer 24.66 21.30 14%

Visio 38.96 13.33 66%

Project 41.93 10.19 76%

SharePoint 53.86 31.56 41%

applications. We observe that the time on task by MORPHAggregation to perform

tasks reduces for all applications. The applications have different types of GUI menus

ranging from the traditional menus with a deeper structure for Quicken to the newest

Ribbon interface for MS Office 2007 products. We observe that irrespective of the GUI

menu type, VNC requires a lot of time for users to navigate the menu for performing

tasks. The time reduction varies from 14 % for IE to 81 % for MS Outlook.

5.5.3 Subjective Opinion

After performing all experiments, we ask the users to provide their subjective opinion

on using different platforms to accomplish tasks. We ask the user “How would you

rate your user experience in performing the task using certain platform?” with a

scale value from 1 (poorest) to 5 (best), which is known as the Likert scale [61].

Figure 25(a) shows first a significant decrease in the subjective evaluation for VNC

when compared to PC, and our solution provides a significant increase back to the

PC-level. Everyone in the focus group rated MORPHAggregation greater or at least

equal to VNC for every task performed. In fact some users rated MORPHAggregation

higher than a PC because our solution reduces the effort of performing operators on

the smartphone to less than even that of performing on a PC. Figure 25(b) shows the

main reasons of users’ frustration on using VNC from the smartphone, and most of

89

0%

20%

40%

60%

80%

100%

PC VNC MORPH

Aggregation

P
e

rc
e

n
ta

g
e

 o
f

u
se

rs

1

2

3

4

5

(a) Likert scale

0% 20% 40% 60% 80% 100%
Percentage of VNC

Limited view

Cumbersome mouse control

Cumbersome typing

Slow response

(b) Frustration on VNC

Figure 25: Evaluation of subjective opinion on MORPHAggregation

them are related to the interface constraints and increased task effort.

5.5.4 Overhead Analysis

We now present a CPU and memory usage profiling of our solution. We collect the

CPU and memory statistics while executing a hard task of MS Word on both the

PC and the smartphone. The statistics for PC are collected using perfmon, a system

monitor utility tool provided by Microsoft along with Windows. The statistics for the

Android smartphone are collected using SystemPanel, one of the best-rated system

monitor apps in the Android Market. Figure 26(a) shows the average CPU usage of

VNC and the MORPHAggregation solution at the desktop and at the smartphone. The

results of MORPHAggregation on the PC include the unmodified VNC server running on

the PC. The MORPHAggregation server takes 7.19% atop the unmodified VNC server

2. The integrated client takes less CPU than the unmodified VNC client, and it can

be attributed to the reduced load at the smartphone side due to less user interaction

with the app.

Figure 26(b) shows the average memory usage of VNC and MORPHAggregation at

both server and the client sides. The memory usage measurement is based on the

unique set size in Android and the private bytes in Windows, since both indicate

the memory size exclusively allocated to the process. The MORPHAggregation server

2The CPU usage of the unmodified VNC server is also increased by 3.71% when running with
MORPHAggregation since operators are executed at a faster rate.

90

0%

20%

40%

60%

80%

100%

Server Client

C
P

U
 u

sa
g

e

VNC

MORPH_Aggregation

(a) CPU usage

0

10

20

30

40

50

60

Server Client

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

VNC

MORPH_Aggregation

(b) Memory usage

Figure 26: Overhead analysis of MORPHAggregation

Table 6: Statistics from offline macro suggestion

User ID Number of tasks Average length Average daily freq.

1 143 2.34 2.96

2 652 2.77 0.47

3 1125 2.87 1.11

4 471 7.28 2.20

5 156 14.18 3.61

6 59 5.24 1.78

7 100 1.96 1.32

8 53 1.72 0.84

9 493 2.68 1.24

10 282 17.58 5.57

takes about 26MB atop the unmodified VNC, and the overhead is acceptable since

current PCs typically have a large memory. The MORPHAggregation client takes only

100KB more memory than the unmodified VNC client. Since we have designed the

MORPHAggregation solution to have most of the processing on the server, the client is

very lightweight and efficient.

5.5.5 Results of Offline Macro Suggestion

Table 6 shows the statistics from running the offline macro suggestion tool on the user

activity dumps of the ten users we collected for Section 5.2.2. The table shows the

number of tasks identified for aggregation on a per user basis. The table also shows

the average number of operators for the tasks identified and the average frequency of

repetition of the tasks. We observe that for most users, the tool is able to identify

91

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

E
ff

o
r
t
 r

e
d

u
c
t
io

n

Users

(a) Effort reduction by user

W
o

rd

E
x
ce
l

P
o
w
e
rP
o
in
t

O
u
tl
o
o
k

IE

E
cl
ip
se

A
cr
o
b
a
t

V
im

V
is
io

W
in
d
o
w
s

0%

20%

40%

60%

80%

100%

E
ff

o
r
t
 r

e
d

u
c
t
io

n

Applications

(b) Effort reduction by applica-
tion

Figure 27: Trace-based evaluation of effort reduction with MORPHAggregation

more than one hundred repetitive tasks. Further we observe that these tasks are

typically executed by the user at least once or twice per day. The average length of

the tasks is at least two for most users with User 10 having an average task length of

17.58.

5.5.6 Trace-Based Evaluation of Task Effort Reduction

While we have shown task effort reduction for the specific pre-defined tasks, we now

show the potential task effort reduction for realistic user activity. In a realistic sce-

nario, it may not be feasible to optimize every operator that the user intends to

perform from a smartphone. Thus, we base our analysis on the traces of user ac-

tivity we collected from real users for evaluating the effort reduction achievable by

MORPHAggregation
3. We use the following equation to estimate the effort of executing

a task with MORPHAggregation:

TaskEffortMORPHAggregation = min(TaskEffortPC × Reduction, 1)

where Reduction is the effort reduction from PC that we observe in the experiments,

which value is 0.61. Note that the task effort of executing a macro is at least one. In

the user activity history, we only match with operator sequences that have at least

3Note that the trace-based analysis is performed by assuming that the typical user activity on a
smartphone will be the same as that on a PC. In reality, this might not be the case and the users
might actually want to perform only a subset of tasks performed on a PC. MORPHAggregation will
reduce task effort to much greater extent than our pessimistic estimate.

92

two operators. This fits with the minimum macro length in the task list and makes

the analysis more realistic. Figure 27(a) shows the effort reduction achieved with

MORPHAggregation for each of the users. The reduction ranges from 14.85% to 70.30%,

and the average of 37.71% shows that MORPHAggregation can provide significant effort

reduction in real user activity. Similarly, MORPHAggregation reduces task effort in each

of the top applications used by the users, as shown in Figure 27(b).

93

CHAPTER VI

ENABLING RAPID MOBILIZATION FOR ENTERPRISE

APPLICATIONS

6.1 Overview

In the previous chapter, we have presented the aggregation transformation service

of MORPH protocol that reduces the effort and time required to accomplishing a

repetitive task in remote computing. In this chapter, we present the design and im-

plementation of the other two core transformation services of MORPH. First, trans-

lation transformation service presents a smartphone friendly view by converting each

element in the virtual view into a native element in the smartphone. It reduces the

task effort and time-to-task even for non-repetitive tasks. Second, traffic suppression

transformation service intelligently suppresses and reduces traffic required for the

remote access leveraging knowledge of the virtual view. Using MORPH as the under-

lying protocol, we present a solution of rapid application mobilization called *Mobile

that integrates the two core transformation services. We prototype the solution and

demonstrate significant performance gains using user-experiments. While we focus

on enterprise applications since mobilizing them is more challenging, the solution is

also applicable to consumer applications.

6.2 Solution Basics and Design Elements

*Mobile is an application mobilization solution that is built on MORPH. At the high

level, the *Mobile backend resides on the PC and offers an “optimized window” into

the backend application for the smartphone user to view and control the application.

Figure 28 illustrates the network architecture of application mobilization with remote

94

computing from a smartphone. The *Mobile server runs on the backend PC, which

communicates with the *Mobile client runs on the smartphone using the MORPH

protocol. The client receives updates to the application views from the server, and

renders them. The client sends back any user-input, and the server executes the

input on the PC. The *Mobile client, as shown in Figure 29, is a single native app

provided to the smartphone user that contains multiple app-launchers one each per

applications installed on the PC.

PC

Application Mobilization Proxy

*Mobile

Backend

Application

Client

Application

Server

Smartphone

*Mobile

Frontend

MORPH

Figure 28: Application mobilization with remote computing

Briefly, the “optimized window” consists of providing a dynamic UI transforma-

tion to make it more amenable and appropriate for the smartphone. For example,

mouse clickable tabs could be transformed into touchable buttons, and a pull down

menu could be transformed into a spinner wheel. It also consists of reducing the re-

mote computing traffic by intelligently suppressing and compressing the remote view

information with knowledge of the smartphone environment.

For ease of exposition, we also consider a baseline version of *Mobile that does

not have the aforementioned design elements and instead simply provides a thin

client window into the PC. We use the baseline to set up the motivation for the

design elements and also later to compare performances. While we use VNC as

the underlying thin client solution for *Mobile, the design elements and concepts

presented may be easily extended to other thin clients such as RDP.

Figure 30(a) shows part of a screenshot of MS Word on a PC platform, and Figure

30(b) shows the corresponding screenshot of the baseline thin client in an Android

smartphone (Samsung Galaxy S).

95

Figure 29: Screenshot of app-launchers in the *Mobile client

6.2.1 Dynamic Interface Transformation

*Mobile is designed with the capability to perform dynamic interface transformation

that dynamically, and in real-time converts the user interface of the PC application

into a user interface appropriate for the smartphone. The noteworthy aspects of the

transformation design are the following: (i) Unlike traditional thin client solutions

that tap into the view on the backend at the pixel or graphical primitives level, *Mo-

bile taps into the view at the level of UI elements. This higher level of abstraction

at which *Mobile learns of the view allows it to construct a common UI description

of the same. The common UI description is then shipped to the smartphone where

the view described is then rendered using elements available in the smartphone’s UI

library thus making the view more tailored and useable. Note that this approach of

decoupling the abstraction and rendering allows the same common UI description to

be rendered differently on different smartphone platforms. On Windows PCs, the UI

element information can be extracted using the UI automation library [28]. (ii) Since

the transformation is performed dynamically and automatically, it is possible that

*Mobile encounters UI elements that it does not recognize or cannot get sufficient

96

(a) PC interface (b) Baseline interface

Tiny UI elements

difficult to access

UI elements

optimized for PCs

Figure 30: Screenshots of MS Word in PC, baseline

information about. To tackle such scenarios *Mobile employs a robust fallback strat-

egy of transferring and rendering unrecognized UI elements using the underlying thin

client mechanism. Thus, *Mobile is capable of rendering a single application view

that is a composite of transformed and untransformed UI elements. An example of

a UI that is opaque to *Mobile and hence has to be rendered as-is is the workspace

in Microsoft Word. Screenshots of the *Mobile transformed UI (implemented for the

Android OS) for MS Word are shown in Figures 31. We can see how the different UI

elements are more accessible for users to navigate through.

6.2.2 Traffic Optimization

One of the obvious dependencies *Mobile has is that of network connectivity. While it

is a definite drawback in comparison to a standalone traditionally mobilized applica-

tion, we argue that many if not most applications in an enterprise setting do operate

in a client server mode and hence connectivity is a requirement imposed even by the

underlying application. Of the three applications we consider, both Microsoft Project

and Intuit Quickbooks rely on connectivity to varying degrees while Microsoft Word

does not require any connectivity.

97

(b) Transformed Toolbar(a) Transformed window

Easy-to-

click UI

elements

Showing

embedded

menu on

demand

Figure 31: Screenshots of MS Word in *Mobile

Thus, *Mobile is designed with the capability to intelligently optimize the traffic

incurred by remoting. There are two design elements that constitute this capability:

(i) Thin client solutions by default perform short-term lossless compression of the

view to be rendered. In other words, a particular view is differentially coded with

respect to the last view. However, we posit that in a smartphone environment the

different views of an application are likely to repeat on an exact basis due to the

lack of dynamics such as window re-sizing re-positioning. Thus *Mobile performs

long term inter-view differential coding in addition to the short-term compression for

UI elements that are conveyed using the traditional thin client scheme. The client

maintains a dictionary of past views per application, and the *Mobile proxy performs

its differential coding with the optimal past view and appropriately informs the client

the index of the past view to use for the decoding. Note that the dictionary could

either be learned or pre-loaded. (ii) In addition to better compression of the views,

*Mobile also intelligently suppresses traffic when updates in the server side view are

not likely to be visible at the client side. Examples of such scenarios include when

local rendering of UI elements blocks the visibility of updates and updates that occur

98

outside the bounding box of the visible application window. For example (of the

former scenario), when showing the transformed UI of a toolbar as in Figure 31(b),

any updates to the workspace is not necessary to be conveyed.

6.3 Solution Details

In this section we present the solution details for *Mobile. The *Mobile client on

the smartphone contains a thin client frontend. The *Mobile backend contains a

corresponding thin client server to enable the baseline remote computing. Figure 32

shows the different components that achieve dynamic interface transformation and

traffic optimization.

As introduced earlier, the *Mobile backend resides on the PC and interacts with

the various applications installed on the PC. In the rest of the section we first explain

the individual components involved in each of the three design elements. While the

overall design of *Mobile can be applied to any combination of PC platform, mobile

platform, and thin client computing technology, we ground the discussion with the

implementation details of our prototype that uses Windows OS as the PC platform,

Android OS as the mobile platform, and VNC as the thin client computing technology.

While we present details of a Windows OS based prototype that uses the Microsoft

UI Automation framework, we note that the solution is feasible for other OSes such

as Linux and MAC OS, using similar accessibility frameworks [17, 14].

6.3.1 Dynamic Interface Transformation

We first explain the common UI description used to transform the PC UI to the

smartphone UI. The user interface is described using a tree data structure of a sin-

gle root object and several children objects. The children might in turn have more

children objects. Each object can represent UI control types such as window, menu,

dialog, button, check box, etc. Dynamic interface transformation is realized with

three functional blocks: Proxy UI processing maps each PC UI element to an object;

99

UI Update

Extractor

Command

Handler

UI Converter

UI Pruner

Suppression

Learner

UI Event

Handler

UI Renderer

Workspace

Controller

Multi-Frame

Encoder

Multi-Frame

Decoder

Thin-Client

Message

Processor

Thin-Client

Message

Handler

*Mobile Proxy*Mobile Client

Command Execution

Traffic Optimization

App Menu

App View

Proxy UI

Processing

Frontend UI

Rendering

Figure 32: Components in the core *Mobile system

(a) Project dialog (b) Transformed dia-
log

(c) QuickBooks menu (d) Transformed
menu

Figure 33: Screenshots of dynamic interface transformation

frontend UI rendering renders each object as a native smartphone UI element; com-

mand execution reversely maps smartphone elements to PC elements to perform user

interaction.

Proxy UI Processing: This functional block is responsible for extracting the

uniquely identifiable information of the various PC UI elements and converting them

to the common UI description. We denote a “view” as a set of PC UI elements

that will be rendered together in a single page on the *Mobile client. A view could

denote a main window of an application, a drop-down menu, or a separate dialog.

100

The UI update extractor extracts all the UI elements belonging to current view shown

in PC. The current view is identified by events that are triggered automatically by

the OS or generated by other components of the solution. In our implementation, the

extraction process itself is achieved by using the TreeWalker object provided by the

UI Automation library.

There are often a few UI elements of a PC application, in a given view, that are

unnecessary for the *Mobile client. For example, PC elements such as buttons for

maximizing/minimizing a window are unnecessary on the *Mobile client. There are

also some redundant UI elements that serve as containers for other UI elements that

are also unnecessary for the *Mobile client. The UI Pruner helps in eliminating such

unnecessary UI elements from the common UI description.

Once all the PC UI elements of a given view are extracted and pruned, the UI

converter creates a common UI description for the entire view with the necessary tree

data structure of objects. The common UI description of the view is also sent to the

*Mobile client for rendering on the smartphone.

Frontend UI Rendering: The UI renderer is the core component in the *Mobile

client that performs the rendering of the transformed user interface. We design the

rendering process of the transformed UI elements with a push model. Each view of a

common UI description is rendered as a separate full-screen page in the *Mobile client.

Each type of object is mapped into a native UI element in the target mobile platform.

When there is no direct mapping of an object in the target mobile platform, we use

an element with similar functions or develop a priori a custom element. For example,

“combo box”, a PC UI element does not have a direct equivalent in Android, and

hence it is transformed into a “Spinner”, which pops up a selection list upon a click.

Transformation of window and Ribbon toolbar is shown in Figures 31(a) and 31(b).

Figure 33(b) shows the transformation of the Font dialog in MS Project. Figure 33(d)

shows how a pop-up menu in QuickBooks is transformed into a scrollable ListView

101

in Android.

The workspace controller seamlessly renders the workspace on the *Mobile client

and also sends user actions on the workspace such as mouse-clicks and keyboard

entries to the thin client message handler on the *Mobile proxy. Several mechanisms

are added to improve usability: 1) When the user clicks on an editable element in

the workspace, the controller automatically opens the software keyboard for the user.

2) The controller also remembers the current position and zoom scale in workspace

between view switching to provide seamless operation for the mobile user.

Command Execution: This functional block is responsible for understanding

user intent on the *Mobile client and initiating the action required to fulfill the user

intent. When the user clicks on a UI element or enters some text in an edit box on the

app view, an “element-click” or a “set-text” command is sent to the *Mobile proxy

respectively. The UI event handler maps the UI element to the corresponding object

and sends it to the command handler, which maps it to the UI element reference to

perform the necessary action on the PC. While the UI converter and the UI renderer

perform transformation to and from the common UI description, they store the map-

ping into a hash map, and both the UI event handler and the command handler use

the hash maps for quick retrieval. In Windows, APIs provided by UI Automation are

used for performing the actions.

The command handler is also responsible for opening applications. Upon launch-

ing of the *Mobile client, the app menu loads the profile of the mobile user and shows

the list of applications available for use. When the user clicks on an application icon,

an “application-open” command is sent to the command handler residing on the *Mo-

bile proxy. The command handler initiates a new instance of the application if not

already opened or just brings the application to the foreground. The command han-

dler then sends an event to the UI extractor asking it to extract the UI information

of the main window.

102

6.3.2 Traffic Optimization

Traffic optimization is an important design element in *Mobile to reduce the network

traffic usage by the thin client solution for the workspace. Since we rely on VNC

as the underlying thin client solution in our prototype, we first provide a primer on

VNC. VNC [27] is based on the open source Remote Framebuffer (RFB) protocol [26].

The screen update is performed with a polling mechanism. The VNC client requests

for updates of the desktop screen of a remote PC where the VNC server resides in.

The server pulls the framebuffer, which is the complete pixel-by-pixel information of

the current video display. The VNC server compares the current framebuffer against

the previous one, and it sends only an incremental update that contains the delta-

difference from the previous framebuffer it has already sent to the client. Once the

VNC client receives a framebuffer update, it refreshes the local screen display with

the updates and requests for the next update. We now explain the details of traffic

optimization using the following functional blocks:

Reduced update scope: *Mobile reduces the scope of screen updates in the

thin client computing to eliminate unnecessary information in the space domain.

Unlike traditional thin client solutions that displays the full desktop screen, only

the workspace of the application needs to be displayed using remote computing in

*Mobile. A normal VNC client always requests for the entire screen window as the

scope of any updated content. The request message is modified by the thin client

message processor, which uses the bounding box of the workspace as the scope for

update request.

Request suppression: *Mobile further eliminates unnecessary traffic in the time

domain. It suppresses not just screen updates from the thin client server but also the

requests from *Mobile client when it is not displaying the workspace. For example,

when menus/ dialogs are opened and fully transformed, the common UI description

103

contains only transformed objects but not the workspace, and thus thin client com-

puting is not needed in those views. To enable this suppression, we use a learning

algorithm to identify these scenarios. We note that a menu/dialog is opened only

when some UI element is clicked on the PC application. When a menu/dialog is

opened for the first time, the suppression learner associates the menu/dialog view to

the last UI element clicked. When the same UI element is transformed the next time

around, the suppression flag is filled for the corresponding common UI description

object. To enable the actual suppression mechanism in the VNC, we define a new mes-

sage in the RFB protocol called “UpdateSuppress”. The “UpdateSuppress” message

instructs the thin client message handler to prevent updates to the previous update

request received from the VNC client. When a rendered UI element that carries a

suppression flag is clicked on the *Mobile client, the message processor is notified by

the UI event handler to perform update suppression. The message processor sends an

“UpdateSuppress” message and holds the new updates generated by the VNC client.

When the UI renderer later shows a view with the workspace, the message processor

sends the a regular framebuffer “UpdateRequest” message to make the VNC server

enter its normal state, where it can send regular updates of the workspace screen.

Multi-frame encoding/decoding: As discussed earlier, *Mobile leverages the

long-term redundancy across multiple screen views to further reduce traffic consump-

tion by the thin client computing. Both the VNC server and client maintain a con-

sistent cache of multiple screen framebuffers that have been seen in the thin client

connection. Whenever the server has to send a screen update to the frontend, it

compares the current framebuffer with all the multiple screen framebuffers and iden-

tifies one where the delta-difference is the minimum. The server encodes the update

and instructs the client to use the correct reference screen to apply the update. The

consistency of the screen caches at both sides is maintained with a simple mecha-

nism. When the server stores the current screen into the cache, it adds the cache

104

update information into the update message. In our implementation, we modify the

“FramebufferUpdate” message in the RFB protocol to include the source index and a

destination index in the screen cache. The screen cache is maintained with a standard

cache replacement algorithm used in microprocessor cache replacement policies, such

as first-in-first-out (FIFO) or least frequently used (LRU).

6.4 Performance Evaluation

In this section, we present the performance evaluation of our implementation of *Mo-

bile.

Prototyping: The client device is a Samsung Galaxy S smartphone running An-

droid 2.1 with a 1GHz CPU and 512MB RAM. The application proxy is an Windows

Server 2003 instance on the Amazon EC2 cloud. The *Mobile prototype is built by

modifying the open-source AndroidVNC [1] at the frontend and TightVNC server [27]

at the backend. We study three enterprise applications namely Quickbooks Enter-

prise Solutions, MS Project and MS Word. Of the three, Quickbooks is a server-client

based application while the other two are standalone PC applications.

Metrics: The primary performance metrics that we study include time-to-task

(time taken to complete a pre-defined task), number of actions (clicks/keyboard en-

tries) to complete a task, and traffic consumption in accomplishing tasks of enterprise

applications from a smartphone.

Methodology: We rely on two sets of experiments for the results presented in the

section. For the first set of results, we rely on an user-study with ten volunteers

invited from both academia and industry. The volunteers were picked to represent

diversity across age-groups (25-40), gender and employer type (large university, start-

up, large enterprise). Eight of the volunteers were heavy smartphone users. Each

user was asked to perform one representative task for each of the three applications

(the bold faced tasks in Table 7) and using all three interfaces (PC, smartphone

105

0

50

100

150

200

Project QuickBooks Word

A
v

e
ra

g
e

 t
im

e
-t

o
-t

a
sk

 (
se

c)

Applications

Baseline

*Mobile

PC

-59%

-66%

-55%

(a) Time-to-task

0

20

40

60

80

100

Project QuickBooks Word

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

a
ct

io
n

s

Applications

Baseline

*Mobile

PC

-72%

-85%

-69%

(b) Number of actions

0

100

200

300

400

500

600

700

800

Project QuickBooks Word

A
v

e
ra

g
e

 t
ra

ff
ic

 s
iz

e
 (

K
B

)

Applications

Baseline

*Mobile

-71%

-32%

-78%

(c) Traffic consumption

Figure 34: Performance of the mobilized applications in the Wi-Fi network

baseline, smartphone *Mobile). We measure time-to-task, number of actions and

traffic consumption as the metrics of interest. For the second set of “microscopic”

results, we use two expert users to study (a) the sensitivity of the performance results

across different types of tasks for each application and different network environments

(Wi-Fi and 3G); (b) how *Mobile compares against custom built applications; and

(c) the *Mobile response time and overheads.

6.4.1 Time-to-task

Figure 34(a) shows the average time taken in accomplishing a task of the applications

from the smartphone (with 90% confidence interval). The time taken in PC is also

shown in the Figure as the benchmark comparison. Since the user interface in the

PC applications is already optimized, the time-to-task we can achieve in a mobilized

app can only equal to or greater than that of PC. As shown in the figure, *Mobile

achieves 59%, 66%, and 55% of the achievable performance enhancement for each of

Table 7: Applications and Tasks
Project QuickBooks Word

1 add a task add a customer format text

2 configure a task add an item apply a watermark

3 link tasks add an invoice add a page border

4 view network diagram receive a payment justify a paragraph

5 assign a resource view unpaid invoices add a numbered list

6 update task schedule send a sales report insert decorative text

106

the three applications.

6.4.2 Number of Actions

Figure 34(b) shows the average number of actions required in accomplishing a task

of the applications using the smartphone. Similar to the time-to-task, we also show

number of actions required in directly using the PC. *Mobile achieves 72%, 85%, and

69% of the achievable performance enhancement. In Microsoft Project and Word, the

reduction in number of actions mainly comes from the transformation of the Ribbon

toolbar. Since the toolbar is designed to be manipulated with a mouse instead of a

touch pad, some of the buttons have a very small size. In the baseline thin-client

solution, the users have to zoom/pan the screen several times to be able to accurately

click on a button. By transforming the buttons into ones with an appropriate size, the

Ribbon toolbar of Project and Word become easy to manipulate. On the other hand,

the reduction in number of actions in QuickBooks is contributed by the transformed

pop-up menus. The menus appear small and cluttered in the baseline thin-client

solution, and *Mobile transforms them into scrollable lists that are also used in native

apps.

6.4.3 Traffic Consumption

Figure 34(c) shows the traffic consumption for completing the tasks. The traffic

optimization in *Mobile is able to reduce the traffic size by more than half in Mi-

crosoft Project and Microsoft Word, and about one third of traffic is reduced in

Intuit QuickBooks. The reason of the better reduction ratio in Project and Word

may be attributed by the higher redundancy existing in the usage of the two appli-

cations. Common operations in the two application cause switches between different

views and this results in frequent redundant updates. For example, users switches

between different Ribbon tool bars when using both applications. Here the multi-

screen buffering algorithm helps in reducing the traffic. While menus in QuickBooks

107

0

50

100

150

200

250

300

350

Project QuickBooks Word

T
o

ta
l

ti
m

e
-t

o
-t

a
sk

 (
se

c)

Applications

Baseline

*Mobile

PC

-33%
-66%

-63%

(a) Time-to-task

0

50

100

150

200

250

Project QuickBooks Word

T
o

ta
l

n
u

m
b

e
r

o
f

a
ct

io
n

s

Applications

Baseline

*Mobile

PC

-54% -75%
-78%

(b) Number of actions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Project QuickBooks Word

T
o

ta
l

tr
a

ff
ic

 s
iz

e
 (

M
B

)

Applications

Baseline

*Mobile

-45% -47%
-37%

(c) Traffic consumption

Figure 35: Performance of the mobilized applications in accomplishing a task set in
the 3G network

Task feasibility *
M

o
b

il
e

Q
u

ic
k

O
ff

ic
e

T
h

in
k

F
re

e

Format text O O O

Apply a watermark O X X

Apply a page border O X X

Justify a paragraph O X O

Add a numbered list O X X

Insert decorative text O X X

(a) Task feasibility

0

5

10

15

20

Task 1 Task 4

T
im

e
-t

o
-t

a
sk

 (
se

c)

Tasks in MS Word

*Mobile

QuickOffice

ThinkFree

N
o

t
fe

a
si

b
le

(b) Time-to-task

0

5

10

15

20

Task 1 Task 4

N
u

m
b

e
r
 o

f
a

c
t
io

n
s

Tasks in MS Word

*Mobile

QuickOffice

ThinkFree

N
o

t
fe

a
si

b
le

(c) Number of actions

Figure 36: Comparison with manually-built mobile apps of Word

also cause redundant updates, those updates have a smaller size.

6.4.4 Sensitivity to tasks and network environments

We perform microscopic analysis by considering more extensive tasks and varying the

access technology. Figure 35(a) shows the total time taken for accomplishing a task

set (six tasks) of the various applications using the smartphone via its 3G network.

Similarly, Figure 35(b) and Figure 35(c) show the effort and traffic consumption

during the same set of experiments. While accomplishing a task set takes more

time, actions, and traffic than a single task, *Mobile consistently provide considerable

performance improvement for all applications and tasks tested in the experiments.

The performance using the Wi-Fi network is similar to that of 3G, and thus is not

presented due to lack of space.

108

6.4.5 Comparison with Custom-Built Apps

While *Mobile is a rapid solution for mobilizing applications, the traditional strategy

to mobilize applications is a clean slate approach that develops the mobile app from

scratch. Thus, it is pertinent to compare *Mobile against such a solution. There

are two ways in which such a comparison can be done. The first is to compare

applications mobilized through the two approaches using metrics such as time to task

and feature parity. The second is to compare, for the functionality supported by

the *Mobile mobilized app, how much comparative effort would be required using

the traditional strategy. We perform the first comparison objectively, and provide

qualitative arguments for the second comparison.

We now compare the performance of *Mobile with custom built native apps objec-

tively. We identify two equivalent native apps for MS Word known as Quickoffice and

ThinkFree Office from the Android Market. However, these native apps do not im-

plement the complete functionality of MS Word. Rather, they provide only a subset

containing a few basic edit functions. Figure 36(a) shows the possibility of achieving

the six tasks that we identify. We observe that Quickoffice can be used only for one

task while ThinkFree Office can be used for two of the six tasks. On the other hand,

*Mobile can provide the complete functionality of MS Word thus enabling all six

tasks. Figures 36(b) and 36(c) show the two metrics of time and number of actions

for the possible tasks using the native apps. We observe that the performance of

*Mobile is comparable to the native apps. Thus, we see that while providing signifi-

cantly more functionality than custom built native apps, *Mobile provides comparable

performance in terms of usability.

The aforementioned lack of feature parity in custom-built mobile apps is closely

related to the large cost to develop a full functionality app. As per mobilization

vendors, the typical cost to mobilize an enterprise application ranges from a time

effort of six months to a few years, and a cost ranging from $500,000 to $3000,000.

109

Comparatively, the time (and hence cost) to mobilize an application using *Mobile is

smaller by several orders of magnitude. We substantiate this claim by considering the

time effort required to mobilize three typical enterprise applications, i.e. MS Project,

Intuit QuickBooks, and MS Word. It takes approximately 17 minutes to mobilize

each of the three applications using *Mobile. The breakdown of the time requirement

is listed in Table 8.

6.4.5.1 Web-based Enterprise Applications

Finally, it should be noted that mobilizing enterprise applications, even when they are

web based, is prohibitively high when relying on the traditional clean slate strategy.

This is somewhat in contrast to mobilizing web sites, which is a somewhat easier

problem. Web sites, such as New York Times http://www.nytimes.com, focus on

serving content to the web clients. Such web clients typically use a simple interaction

model and have no application and business logic. Whenever they interact with the

web site, an HTML document and its CSS style files are delivered to the client to

describe the current view. Mobilizing web sites can be done by changing the HTML

and CSS files require less effort, while still not trivial, to mobilize. On the other

hand, web applications, especially enterprise web applications, typically provide rich

functionality and may even contain part of the business logic residing at the client side.

Such clients are typically based on client-side web technology such as AJAX where

the presentation or functionality logic is hosted and executed in the web client. The

client dynamically loads data and information from web servers, middleware servers,

Table 8: Time requirement in application mobilization using *Mobile
Stage Time spent

Instance initialization 10.2 min

Software installation 5.3 min

Security configuration 1.3 min

Mobile app deployment 0.4 min

Total 17.2 min

110

(a) PC version (b) Mobile version (c) *Mobile

Figure 37: Comparison of PC version, mobile version, and *Mobile of Microsoft
SharePoint

or database servers. As a result, mobilizing such web applications requires changes to

the client-side code, which is JavaScript in AJAX clients, besides simply the changes

in HTML and CSS files. Such code rewriting in mobilizing web application clients

is similar to that of mobilizing native clients and thus takes significantly more effort

than mobilizing web sites.

This latter point about web based enterprise applications is illustrated by consid-

ering two other enterprise applications MS Sharepoint and Georgia Tech T-square (a

Sakai CLE based collaboration application). Because of the high cost in providing a

smartphone-friendly view in web applications, the current mobile version provided in

the two web applications either have a primitive interface or an interface very similar

to the PC version. Figure 37(a) shows the screenshot of the shared documents in

a site hosted in the full-blown PC SharePoint application. Figure 37(b) shows the

screenshot of the same tool in the same site hosted in the mobile version of Share-

Point. The mobile site has a very primitive interface that lacks the rich functionality

provided in the PC site. Figure 37(c) shows the same SharePoint application mobi-

lized by *Mobile. Figure 38(a) shows the screenshot of the resource tool in a course

111

(a) PC version (b) Mobile version (c) *Mobile

Figure 38: Comparison of PC version, mobile version, and *Mobile of Georgia Tech
T-Square

site hosted in the full-blown T-Square application. Figure 38(b) shows the same tool

in the mobile version of T-Square. The mobile site still inherits majority of UI ele-

ments and layout from the PC version, thus is not optimized for the smartphones.

Figure 38(c) shows the application view of the same tool in T-Square mobilized by

*Mobile. In both case studies, translation transformation service of MORPH allows

*Mobile to provide a more smartphone-friendly view than the mobile version with a

considerably less development effort.

6.4.6 Interaction Response Time

An important requirement for usability of a UI of an application is feedback to the

user for any interaction with the user interface. An example is when a user clicks

on a button, an animation of the button is presented to the user indicating that the

action of clicking the button is completed. While the actual application functionality

performed by clicking the button might take some time depending on processing

requirements, the animation of the button click gives an instant feedback to the

user. We term the time taken to provide this feedback as the event confirmation

112

time. The time taken to complete the application functionality is known as the total

interaction response time. The lower the confirmation time the better is the usability

of an application. When using a thin client solution, feedback should come from the

remote machine. Network latency can lead to an increased confirmation time. This is

evidenced from Figure 39(a), which shows the average for the two time metrics over

multiple actions of a task. Since *Mobile uses local rendering of UI, the confirmation

feedback can be shown to the user immediately. The total interaction time however is

comparable for the two approaches because eventually the application functionality

itself is performed by the remote machine.

0.0

0.5

1.0

1.5

Confirmation

time

Total response

time

A
v

g
.

re
sp

o
n

se
 t

im
e

 (
se

c) Baseline

*Mobile

(a) Interaction response time

0

20

40

60

80

100

0%

20%

40%

60%

80%

100%

CPU Memory

M
e

m
o

ry
 U

sa
g

e
 (

M
B

)

C
P

U
 u

sa
g

e

Baseline

*Mobile

(b) Overhead analysis

Figure 39: Microscopic analysis of *Mobile

6.4.7 Overhead Analysis

An important goal of our solution is to use minimal resources of the smartphone.

We have already seen how our solution relies on a low network traffic footprint. We

now characterize the CPU and memory resources used by our app on the Android

smartphone (Figure 39(b)). From the figure we observe that *Mobile uses comparable

CPU resources with respect to the baseline solution. While the memory usage of

*Mobile is comparatively higher than the baseline solution, we argue that memory

usage is still acceptable since recent smartphones typically are equipped with at least

512MB RAM.

113

CHAPTER VII

ADD-ON TRANSFORMATION SERVICES AND SYSTEM

INTEGRATION

7.1 Overview

In the previous chapters, we have presented a rapid application delivery protocol

called super-aggregation that effective leverages heterogeneous interfaces. We have

also presented a remote computing for heterogeneous devices called MORPH, includ-

ing view virtualization and three core transformation services. In this chapter, we

present the remaining work that completes this dissertation. First, we describe the

design of other add-on transformation services that can operate on the virtual view of

MORPH. Second, we present and evaluate the integrated operation of MORPH and

super-aggregation.

7.2 Add-on transformation services

In this section, we explain how the add-on transformation services introduced in

Chapter 4 can be implemented with virtual view. All services discussed are imple-

mented entirely at the backend and thus can be enabled dynamically without the need

to make any changes to the frontend that has been installed on the smartphones.

7.2.1 Reduction

The reduction service allows the user to remove certain elements from a virtual view

to realize a simpler user interface in the mobile app transformed by MORPH. The

user can either manually choosing the useful UI elements to keep in the virtual view

or let the reduction service automatically suggesting the frequently used subset of UI

elements. For manual reduction, the service can provide an “edit mode” by adding

114

a “show/hide” toggle button adjacent to each UI element. For automated reduction,

the service listens to the OnActivity() events to analyze user activity. In run-time,

the service registers to the OnOpen() and OnUpdate() events to change the status

attribute of the UI elements in a virtual view as shown or hidden.

7.2.2 Overflow

The overflow service improves the usability of a dense virtual view of lots of elements

by intelligently splitting a virtual view into multiple views, including the main view

and the overflow view. Only a set of number of elements are presented in the main

view to suit the small screen of the smartphone, and the remaining elements are moved

into “overflow” views that can be made visible on demand. Similar to the reduction

service, the elements in the main view can be manually configured by the user, or

automatically configured by the overflow service based on the usage frequency of the

elements. There are two ways that an overflow view can be created for the remaining

elements. The first one is a pop-up dialog that will be layered on top of the main view

when invoked. The second one is a in-line expansion where the elements are stored

in an invisible container, which is made visible when invoked. During run-time, the

service registers to the OnOpen() and OnUpdate() events to reorganize the elements

in the virtual view.

7.2.3 Zoom

The zoom service allows a user to adjust richness of the frontend with several zoom

levels. The lowest zoom level provides the simplest user interface with the most

limited set of features, and the highest zoom level enables all features that the user

wants to access from a smartphone. Each element in a virtual view is associated to a

zoom level. The zoom service registers to OnOpen() and OnUpdate() events and add

a knob to allow the user to adjust the zoom level from the frontend. When the user

switches to a certain zoom level, all elements at a higher zoom level is removed from

115

the virtual view, and then the updated virtual view is sent to the frontend.

7.2.4 Rearrangement

The rearrangement service allows the user to customize the order of UI elements

presented in a virtual view. The service is realized by moving the nodes in the tree

structure of the virtual view by writing the children attribute. Similar to the reduction

service, rearrangement configuration can be done either manually or automatically,

and either approach is supported by the same functions in the virtual view API. In

run-time, the rearrangement service changes the order of elements in their parent

based on the configuration.

7.2.5 Customized Translation

The customized translation service allows users to customize the look-and-feel of the

mobile app transformed by MORPH. The service associates a look-and-feel template

to each type of element in a virtual view. In an Android environment, the template

can be defined as an XML snippet that describes the style settings such as size,

foreground color, background color, padding, margin, layout alignment, etc. The

customized translation service registers to OnOpen() and OnUpdate() events and

provides the templates along with the virtual view.

7.3 Integrated operation of MORPH and super-aggregation

In this section, we present an experimental study on the integrated operation of the

two proposed protocols, i.e. MORPH and super-aggregation. Since super-aggregation

is designed as a generic layer-3.5 middleware solution, it enhances application delivery

throughput independent from the application protocol on top of it. Thus, the network

performance of MORPH can be enhanced by super-aggregation without any explicit

modification.

We conduct integrated evaluation using trace-based experiments in a real testbed

116

shown in Figure 40. The client device is a Samsung Galaxy S smartphone running

Google Android 2.1 with a 1GHz CPU and 512MB RAM. The server is a Windows

Server 2003 machine hosted in Amazon EC2 cloud. As described in Chapter 6, the

MORPH is prototyped in both the Windows server and the Android client using VNC

as the underlying remote computing protocol. WAN emulator between the client and

the Internet emulates a mobile network with both Wi-Fi and 3G connectivity. The

emulator takes two traces collected from experiments conducted in a testbed with real

Wi-Fi and 3G deployment, which is described in Chapter 3. The traces contain the

instantaneous throughput of default TCP and super-aggregation (integrated operation

of three design principles) in the same mobile network scenario used in Chapter 3.

The bandwidth constraint of the WAN emulator is changed every one second based

on the traces. The WAN emulator is the bottleneck of the end-to-end path since the

smartphone connects to a nearby Wi-Fi at 54Mbps with excellent signal strength.

Thus, the trace-based WAN emulation allows us to measure the network performance

of a real smartphone application in a mobile network.

Smartphone

(Google Android)

Internet

802.11g Ethernet

WAN emulator
PC server

Default TCP Super-aggregation

3G
Wi-Fi

Interference

Wi-Fi

Wi-Fi

Throughput traces in a mobile network

Figure 40: Testbed for integrated evaluation of MORPH and super-aggregation

Using the testbed, we evaluate the performance of a mobile application from a

smartphone connecting to the Internet via a mobile network. The performance metric

117

is average response time of all actions performed in the mobile application. We

consider two applications. One is accounting software called QuickBooks, which is a

native PC application. The other is collaboration software called T-Square, which is a

web application. We evaluate the performance of bothMORPH and super-aggregation

by comparing them to the respective baseline solutions. For MORPH, the baseline

solution is VNC for the native application or Android mobile browser for the web

application. For super-aggregation, the baseline is the default TCP mechanism of a

smartphone, which switches from cellular data to Wi-Fi if an AP is accessible.

Figure 41 shows the average response time of accessing QuickBooks and T-Square

from the smartphone via a mobile network using the four combinations of technolo-

gies. Baseline mobile app with default TCP has the highest response time. Super-

aggregation reduces the average response time by almost half for both applications.

The reduction comes from the improvement in throughput and quick recovery after

disconnection with super-aggregation. MORPH provides improvement in response

time by 51% and 68% for T-Square and QuickBooks, respectively. The improve-

ment comes from the reduction in traffic by the traffic suppression service. Using

MORPH and super-aggregation in tandem combines the benefits from both solution

and achieves reduction in average response time up to 85%. The integrated evaluation

shows that MORPH and super-aggregation, both individually and jointly, can signif-

icantly reduce the response time in accessing mobile applications from smartphones.

0

2

4

6

8

10

12

14

T-Square QuickBooks

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Application

Baseline w/ default TCP
Baseline w/ super-aggregation
MORPH w/ default TCP
MORPH w/ super-aggregation

-48%-51%

-72%

-49%-68% -85%

Figure 41: Response time in remote access to applications from a smartphone

118

CHAPTER VIII

CONCLUSION AND FUTURE WORK

In this dissertation, we focused on two important problems that arise in the emerging

mobile computing platform of smartphones - application mobilization and applica-

tion delivery. We identified the open challenges of both problems in the context of

smartphone, which is distinct from the traditional PC platform in terms of network

connectivity, user interface, resource availability, and software platform. In applica-

tion mobilization, traditional approaches require significant time and effort, and they

typically suffer from functionality scale back. In application delivery, performance is

impacted by the inferior characteristics of the underlying mobile and wireless con-

nectivity. In the following we summarize the main contributions of this dissertation

research.

8.1 Main Contributions

• We presented a solution strategy called super-aggregation for mobile devices

with multiple interfaces that achieves more than the sum of the parts in terms

of aggregate performance when the multiple interfaces are used simultaneously.

• We showed that super-aggregation can be realized purely as a layer-3.5, mobile-

device-only solution and how an instantiation of super-aggregation can be used

to achieve TCP acceleration in wireless data networks.

• We implemented super-aggregation on two mobile platforms - a laptop and an

Android mobile phone and in the process use real-world 3G and Wi-Fi wireless

data networks to demonstrate the efficacy of the proposed super-aggregation

principles and overall solution.

119

• We presented MORPH, a remote computing protocol for heterogeneous devices.

MORPH improves user performance in remote computing from a smartphone

by transforming application views in the PC platform into smartphone-friendly

views. MORPH abstracts application views independent of the underlying ap-

plication framework into a uniform representation called virtual views, which al-

lows transformation services to opreate on them and realize smartphone-friendly

views.

• We presented the design of a core transformation service of MORPH called

aggregation that reduces the time and effort required in accomplishing tasks

from smartphones. The solution called MORPHAggregation is prototyped on top

of VNC as the underlying remote computing protocol. MORPHAggregation intro-

duces a key building block called smart macros that allow users to record and

replay their repetitive tasks. Smart macros have both the generality of tradi-

tional raw macros but at the same time possess the robustness of application

macros.

• We presented a solution called *Mobile that achieves rapid application mobi-

lization. The solution is built on top of MORPH and consists of two core

transformation services: (i) translation service presents a smartphone friendly

view by converting each element in the virtual view into a native element in

the smartphone, and (ii) trac suppression service that it intelligently suppresses

and reduces traffic required for the remote access leveraging knowledge of the

virtual view.

• We presented add-on transformation services that can be programmed onto the

virtual view of MORPH. The add-on transformation services include reduction,

overflow, zoom, rearrangement, and customized translation.

• We presented the integrated operation of super-aggregation and MORPH. We

120

conducted an experimental study to evaluate the performance of super-aggregation

and MORPH, both individually and jointly, in accessing a mobile application

from a smartphone.

8.2 Future Work

While the dissertation has identified several challenges in application mobilization and

application delivery in the context of smartphones, there are several open problems

that have opened up as a result of this dissertation research.

• The super-aggregation of this dissertation research focuses on Wi-Fi 802.11g and

3G in the design and prototyping of the proposed solution. The smartphone

platform keeps evolving with new communication technologies, such as 802.11n

and 4G. Extending the super-aggregation solution to more wireless protocols,

such as 802.11n, 4G, Bluetooth, satellite networks would provide more practical

contributions to application delivery of new smartphones.

• In the super-aggregation work presented in this dissertation, we presented three

design principles that leverage three heterogeneous characteristics between Wi-

Fi and cellular data networks: self-contention, disconnectivity, and random

packet loss. There are more dimensions that different wireless networks may

exhibit different characteristics. For example, cellular data networks are typi-

cally monitored by the telecom carriers, which may adopt certain QoS mecha-

nisms to ensure the service their customers pay for. On the other hand, Wi-Fi

networks typically provide free access with no or minimum QoS control. Super-

aggregation can be extended with more design principles derived from other

heterogeneous characteristics between wireless networks.

• PC applications are built without the awareness of contextual information of

121

the user, since the context of application usage typically remain static. The con-

textual information includes but is not limited to location, speed, or the person

nearby. When MORPH enables transformation of PC applications into mo-

bile apps for a smartphone, contextual information available at the smartphone

can potentially be leveraged to make the mobilized applications more mobile-

friendly. For example, printing is a common feature in most PC applications.

When a user wants to print a document in a application from a smartphone,

he or she may want to print the document to the closest printer instead of the

default one configured in the system. The challenge of the contextualization

service is to allow for the collection of contextual information on the mobile-

device, and furnish it appropriately as input to the PC application on-demand,

even when the original application is not equipped for contextualization.

• Different software vendors typically develop PC applications and integration

of functionality from different applications cannot be achieved through con-

ventional approaches without direct collaboration of application vendors. Ap-

plication Federation is another transformation service that can potentially be

realized in MORPH. It will allow the user to federate two or more different

applications and present them (or a subset of their functionalities) as a single

federated application on the smartphone. The federated application view al-

lows the user to perform activity across multiple PC applications and/or get

simultaneous view into them in a dashboard-like smartphone app.

• Tablets are an emerging class of mobile devices with hybrid characteristics bor-

rowed from smartphones and PCs. Most mobile apps for smartphones can also

run in tablets she most popular tablets in market today such as the iOS-based

Apple iPad and the numerous Android-based tablets use the same underlying

OS as their smartphone counterparts. However, the user interface of mobile

122

apps typically needs to be customized or optimized for tablets for best usability

and performance. Thus, the MORPH frontends have to be carefully designed

to provide users a consistent look and feel compared to other mobile apps they

would use on those platforms. Also, performance considerations including pro-

cessing and memory overheads of the frontend will have to be studied.

123

CHAPTER IX

PUBLICATIONS

Journal Papers

1. C.-L. Tsao and R. Sivakumar, “A Super-Aggregation Strategy for Multi-

homed Mobile Hosts with Heterogeneous Wireless Interfaces,” submitted to

IEEE/ACM Transactions on Mobile Computing, 2011.

2. S.Lakshmanan, C.-L. Tsao, and R. Sivakumar, “Symbiotic Coding for high

density Wireless LANs,” submitted to IEEE/ACM Transactions on Mobile

Computing, 2011.

3. S.Lakshmanan, C.-L. Tsao, and R. Sivakumar, “Aegis: Physical Space Secu-

rity for Wireless Networks With Smart Antennas,” IEEE/ACM Transactions

on Networking, vol. 18, no. 4, pp. 1105-1118, August 2010.

4. Y. Jeong, S. Kakumanu, C.-L. Tsao, and R. Sivakumar, “VoIP over Wi-Fi

Networks: Performance Analysis and Acceleration Algorithms,” Springer Mo-

bile Networks and Applications Journal (MONET), vol. 14, no. 4, pp. 523-538,

August 2009.

Conference Papers

1. C.-L. Tsao, S. Kakumanu, and R. Sivakumar, “SmartVNC: An Effective Re-

mote Computing Solution for Smartphones,” ACM International Conference on

Mobile Computing and Networking (MOBICOM), Las Vegas, Nevada, USA,

Sept, 2011.

124

2. C.-L. Tsao and R. Sivakumar, “On Effectively Exploiting Multiple Wireless

Interfaces in Mobile Hosts,” ACM International Conference on Emerging Net-

working Experiments and Technologies (CoNEXT), Rome, Italy, Dec. 2009.

3. S. Lakshmanan, C.-L. Tsao, and R. Sivakumar, “On Coding Concurrent Trans-

missions in Wireless Networks,” Poster Presentation, ACM International Con-

ference on Mobile Computing and Networking (MOBICOM), Beijing, China,

Spet. 2009.

4. S. Lakshmanan, C.-L. Tsao, R. Sivakumar, and K. Sundaresan, “Securing

Wireless Data Networks against Eavesdropping using Smart Antennas,” In-

ternational Conference on Distributed Computing Systems (ICDCS), Beijing,

China, June 2008.

5. Y. Jeong, S. Kakumanu, C.-L. Tsao, and R. Sivakumar, “Improving VoIP

Call Capacity over IEEE 802.11 Networks,” IEEE International Conference on

Broadband Communications, Networks, and Systems (BROADNETS), Raleigh,

NC, USA, Sept. 2007.

125

REFERENCES

[1] “android-vnc-viewer.” http://code.google.com/p/android-vnc-viewer/.

[2] “App Mobi.” http://www.appmobi.com/.

[3] “Appcelerator.” http://www.appcelerator.com/.

[4] “Apple’s App Store Downloads Top 10 Billion.” http://www.apple.com/pr/library
/2011/01/22appstore.html.

[5] “AutoHotkey.” http://www.autohotkey.com/.

[6] “Automator in Mac OS X.” http://developer.apple.com/macosx/automator.html.

[7] “The comscore 2010 mobile year in review.” http://www.comscore.com/
Press Events/Presentations Whitepapers/2011/2010 Mobile Year in Review.

[8] “FeedCircuit.” http://feedcircuit.garage.maemo.org/.

[9] “HyperSQL.” http://hsqldb.org/.

[10] “IDC: Q4 2010 Smartphone Shipments Increase 87.2%.” http://www.idc.com/
about/viewpressrelease.jsp?containerId=prUS22689111.

[11] “iMacros.” http://www.iopus.com/imacros/.

[12] “iTeleport JadduVNC.” http://www.iteleportmobile.com/iphone.

[13] “KDE Accessibility Project.” http://accessibility.kde.org/.

[14] “KDE Accessibility Project.” http://accessibility.kde.org/.

[15] “LogMeIn.” https://secure.logmein.com/.

[16] “Mac OS X Accessibility Protocol.” http://developer.apple.com/library/
mac/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/
OSXAXmodel.html.

[17] “Mac OS X Accessibility Protocol.” http://developer.apple.com/library/mac/#

documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/

OSXAXmodel.html.

[18] “Microsoft Office.” http://office.microsoft.com/.

[19] “Mochasoft VNC/RDP Clients for iPhone and Android.” http://www.mochasoft.dk/.

[20] “PC-over-IP.” http://www.teradici.com/.

[21] “Remote Desktop Protocol.” http://msdn.microsoft.com/en-us/library/aa383015
(VS.85).aspx.

126

http://www.appmobi.com/
http://www.appcelerator.com/
http://feedcircuit.garage.maemo.org/
http://accessibility.kde.org/
http://developer.apple.com/library/mac/#documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAXmodel.html
http://developer.apple.com/library/mac/#documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAXmodel.html
http://developer.apple.com/library/mac/#documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXModel/OSXAXmodel.html

[22] “Smartphones have conquered PCs.” http://money.cnn.com/2011/02/09/technology/
smartphones eclipse pcs/index.htm.

[23] “Smartphones to Overtake Feature Phones in U.S. by 2011.” http://blog.nielsen.com/
nielsenwire/consumer/smartphones-to-overtake-feature-phones-in-u-s-by-2011/.

[24] “Tasker for Android.” http://tasker.dinglisch.net/.

[25] “TeamViewer.” http://www.teamviewer.com/download/mobile.aspx.

[26] “The RFB Protocol.” http://www.realvnc.com/docs/rfbproto.pdf.

[27] “TightVNC Software.” http://www.tightvnc.com/.

[28] “UI Automation.” http://msdn.microsoft.com/en-us/library/ms747327.aspx.

[29] “RFC 1122: Requirements for Internet Hosts - Communication Layers,” 1989.

[30] Abd El Al, a., “LS-SCTP: a bandwidth aggregation technique for stream control
transmission protocol,” Computer Communications, vol. 27, pp. 1012–1024, June 2004.

[31] Agarwal, Y., Chandra, R., Wolman, A., Bahl, P., Chin, K., and Gupta, R.,
“Wireless wakeups revisited: energy management for voip over wi-fi smartphones,” in
Proceedings of ACM MobiSys, (New York, NY, USA), pp. 179–191, ACM, 2007.

[32] Allman, M., “RFC 3465: TCP Congestion Control with Appropriate Byte Counting
(ABC),” 2003.

[33] Altman, E., Bp, I., and Ingeniera, F. D., “Novel delayed ack techniques for im-
proving tcp performance in multihop wireless networks,” in Proceedings of Personal
Wireless Communications, pp. 23–25, 2003.

[34] AndroLib, “Android Market Statistics.” http://www.androlib.com/appstats.aspx,
2011.

[35] Balakrishnan, H. and Katz, R., “Explicit loss notification and wireless web per-
formance,” in Proceedings of the IEEE Globecom Internet Mini-Conference, pp. 1–5,
1998.

[36] Balakrishnan, H., Seshan, S., Amir, E., and Katz, R. H., “Improving TCP/IP
performance over wireless networks,” in Proceedings of ACM MobiCom, (New York,
NY, USA), pp. 2–11, ACM, 1995.

[37] Baratto, R. A., Potter, S., Su, G., and Nieh, J., “MobiDesk : Mobile Virtual
Desktop Computing Categories and Subject Descriptors,” in MobiCom, 2004.

[38] Beverly, R. and Bauer, S., “The spoofer project: Inferring the extent of source
address filtering on the Internet,” in Proceedings of the Steps to Reducing Unwanted
Traffic on the Internet, 2005.

[39] Bila, N., Ronda, T., Mohomed, I., Truong, K. N., and Lara, E. D., “PageTailor
: Reusable End-User Customization for the Mobile Web,” in MobiSys, 2007.

127

http://www.realvnc.com/docs/rfbproto.pdf
http://www.tightvnc.com/
http://msdn.microsoft.com/en-us/library/ms747327.aspx

[40] Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C., “Automation
and customization of rendered web pages,” in UIST, 2005.

[41] Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., and Madden, S., “A
measurement study of vehicular internet access using in situ wi-fi networks,” in Pro-
ceedings of ACM MobiCom, (New York, NY, USA), pp. 50–61, ACM, 2006.

[42] Chang, T.-Y., Velayutham, A., and Sivakumar, R., “Mimic: raw activity ship-
ping for file synchronization in mobile file systems,” in MobiSys, 2004.

[43] Cypher, A., Halbert, D. C., Kurlander, D., Lieberman, H., Maulsby, D.,
Myers, B. A., and Turransky, A., eds., Watch what I do: programming by demon-
stration. Cambridge, MA, USA: MIT Press, 1993.

[44] de Cuetos, P. and Ross, K. W., “Adaptive rate control for streaming stored fine-
grained scalable video,” in Proceedings of NOSSDAV, (New York, NY, USA), pp. 3–12,
ACM, 2002.

[45] Dunigan, T. and Fowler, F., “A tcp-over-udp test harness,” Tech. Rep. ORNL/TM-
2002/76, Oak Ridge, TN, 2002.

[46] Fracchia, R., Casetti, C., Chiasserini, C.-F., and Meo, M., “WiSE: Best-Path
Selection in Wireless Multihoming Environments,” IEEE Transactions on Mobile Com-
puting, vol. 6, pp. 1130–1141, Oct. 2007.

[47] Goff, T., Moronski, J., Phatak, D. S., and Gupta, V., “Freeze-TCP: a true
end-to-end TCP enhancement mechanism for mobile environments,” in Proceedings of
IEEE INFOCOM, vol. 3, (Tel Aviv), pp. 1537–1545, Mar. 2000.

[48] Henderson, T. and Katz, R., “Transport protocols for Internet-compatible satellite
networks,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 2, pp. 326–
344, 1999.

[49] Holleis, P., Otto, F., Hussmann, H., and Schmidt, A., “Keystroke-level model
for advanced mobile phone interaction,” in CHI, 2007.

[50] Hsieh, H.-Y., Kim, K.-H., Zhu, Y., and Sivakumar, R., “A receiver-centric trans-
port protocol for mobile hosts with heterogeneous wireless interfaces,” Proceedings of
the 9th annual international conference on Mobile computing and networking - Mobi-
Com ’03, p. 1, 2003.

[51] Hsieh, H.-Y. and Sivakumar, R., “A transport layer approach for achieving aggre-
gate bandwidths on multi-homed mobile hosts,” Wireless Networks, vol. 11, no. 1-2,
pp. 99–114, 2005.

[52] Hupp, D. and Miller, R. C., “Smart Bookmarks : Automatic Retroactive Macro
Recording on the Web,” in UIST, 2007.

[53] Iyengar, J., Amer, P., and Stewart, R., “Concurrent Multipath Transfer Using
SCTP Multihoming Over Independent End-to-End Paths,” IEEE/ACM Transactions
on Networking, vol. 14, pp. 951–964, Oct. 2006.

128

[54] Kim, K.-H. and Shin, K. G., “PRISM: Improving the performance of inverse-
multiplexed TCP in wireless networks,” IEEE Transactions on Mobile Computing,
vol. 6, pp. 1297–1312, Dec. 2007.

[55] Kurlander, D. and Feiner, S., “A history-based macro by example system,” in
UIST, (New York, New York, USA), pp. 99–106, 1992.

[56] Kushman, N., Brodsky, M., Dina, S. R. K. B., Regina, K., and Rinard, M.,
“WikiDo,” in HotNets, 2009.

[57] Laing, A., Craig, D., and White, A., “Vision Statement: High-Performance Office
Space,” Harvard Business Review, Sept. 2011.

[58] Lamberti, F. and Sanna, A., “Extensible GUIs for remote application control on
mobile devices,” IEEE computer graphics and applications, vol. 28, no. 4, pp. 50–7,
2008.

[59] Leshed, G., Haber, E. M., Matthews, T., Lau, T., Ave, C., Rd, H., and Jose,

S., “CoScripter : Automating & Sharing How-To Knowledge in the Enterprise,” in
CHI, 2008.

[60] Lieberman, H., ed., Your wish is my command: programming by example. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.

[61] Likert, R., “A technique for the measurement of attitudes.,” Archives of Psychology,
vol. 22, no. 140, pp. 1–55, 1932.

[62] Magalhaes, L. and Kravets, R., “Transport level mechanisms for bandwidth ag-
gregation on mobile hosts,” in Proceedings of INCP, pp. 165–171, Nov. 2001.

[63] Mickens, J., Elson, J., and Howell, J., “Mugshot : Deterministic Capture and
Replay for JavaScript Applications,” in NSDI, 2010.

[64] Mohomed, I., “Enabling mobile application mashups with Merlion,” in HotMobile,
2010.

[65] Moshchuk, A., Gribble, S. D., and Levy, H. M., “Flashproxy : Transparently
Enabling Rich Web Content via Remote Execution,” in MobiSys, 2008.

[66] Nichols, J., Hua, Z., and Barton, J., “Highlight : A System for Creating and
Deploying Mobile Web Applications,” in UIST, 2008.

[67] Pering, T., Agarwal, Y., Gupta, R., and Want, R., “Coolspots: reducing the
power consumption of wireless mobile devices with multiple radio interfaces,” in Pro-
ceedings of ACM MobiSys, (New York, NY, USA), pp. 220–232, ACM, 2006.

[68] Phatak, D. and Goff, T., “A novel mechanism for data streaming across multiple
IP links for improving throughput and reliability in mobile environments,” in Infocom,
Ieee, 2002.

[69] Radha, H. M., van der Schaar, M., and Chen, Y., “The MPEG-4 fine-grained
scalable video coding method for multimedia streaming over IP,” IEEE Transactions
on Multimedia, vol. 3, pp. 53–68, Mar. 2001.

129

[70] Rahmati, A. and Zhong, L., “Context-for-wireless: context-sensitive energy-efficient
wireless data transfer,” in Proceedings of ACM MobiSys, (New York, NY, USA),
pp. 165–178, ACM, 2007.

[71] RealVNC Ltd, “The RFB Protocol.” http://www.realvnc.com/docs/rfbproto.pdf.

[72] Rodriguez, P., Chakravorty, R., Chesterfield, J., Pratt, I., and Banerjee,

S., “Mar: a commuter router infrastructure for the mobile internet,” in Proceedings of
ACM MobiSys, (New York, NY, USA), pp. 217–230, ACM, 2004.

[73] Sharma, P., Lee, S.-J., Brassil, J., and Shin, K. G., “Aggregating bandwidth for
multihomed mobile collaborative communities,” IEEE Transactions on Mobile Com-
puting, vol. 6, pp. 280–296, Mar. 2007.

[74] Sinha, P., Nandagopal, T., Venkitaraman, N., Sivakumar, R., and Bhargha-

van, V., “WTCP: a reliable transport protocol for wireless wide-area networks,” Wire-
less Networks, vol. 8, no. 2/3, pp. 301–316, 2002.

[75] Snoeren, A. C., “Adaptive inverse multiplexing for wide-area wireless networks,”
in Global Telecommunications Conference, 1999. GLOBECOM ’99, vol. 3, (Rio de
Janeireo), pp. 1665–1672, 1999.

[76] Sugiura, A. and Koseki, Y., “Simplifying macro definition in programming by
demonstration,” in UIST, (New York, New York, USA), 1996.

[77] Zhang, D., “Web content adaptation for mobile handheld devices,” Communications
of the ACM, vol. 50, pp. 75–79, Feb. 2007.

130

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Chapter 2 — Origin and History of the Problem
	Performance enhancement with multiple interfaces
	Transport-layer protocol design for wireless networks
	Application Mobilization
	Remote computing
	Macros
	Mobile Application

	Chapter 3 — On Effectively Exploiting Multiple Wireless Interfaces in Mobile Hosts
	Overview
	Super-Aggregation
	Scope
	Problem Motivation
	Goals

	Super-Aggregation Principles
	Selective Offloading - Tackling TCP Self Contention
	Proxying - Overcoming Impact of Blackouts on TCP
	Mirroring - Hiding Random Losses from TCP
	Integrated Operations
	Super-Aggregation for Upstream Communication

	Super-Aggregation Architecture
	Deployment Model
	Software Architecture

	Super-Aggregation Beyond TCP
	Generic Principles and Case Study
	Generic Architecture

	Theoretical Analysis
	Analysis of Offloading-ACK
	Analysis of Proxying-blackout-freeze
	Analysis of Mirroring-loss-fetching
	Insights from the Analysis

	Performance Evaluation
	Experimental Testbed
	Solution Prototyping
	Offloading-ACK Performance
	Proxying-blackout-freeze Performance
	Mirroring-loss-fetching Performance
	Performance of Integrated Operations
	Performance on Google Android

	Issues

	Chapter 4 — A Remote Computing Protocol for Heterogeneous Devices
	Overview
	Remote Computing for Heterogeneous Devices
	Remote Computing for Application Mobilization
	Challenges with Remote Computing
	Problem Statement

	View Virtualization
	Transformation Services
	Core Transformation Services
	Add-on Transformation Services

	Chapter 5 — An Effective Remote Computing Solution for Smartphones
	Overview
	Motivation
	Inflated Effort in Remote Computing from Smartphones
	Measurement of Redundancy in User Activity

	Design Principles
	Overview
	Application-Agnostic SmartMacros
	Task Effort Reducing Front-end
	Parameterization and Preemptability
	Offline Macro Recommender

	Solution
	MORPH1.66Aggregation Server on Desktop
	MORPH1.66Aggregation Client on Smartphone
	Portability to other Platforms

	Performance Evaluation
	Overall Performance Improvement
	Performance Improvement by Application
	Subjective Opinion
	Overhead Analysis
	Results of Offline Macro Suggestion
	Trace-Based Evaluation of Task Effort Reduction

	Chapter 6 — Enabling Rapid Mobilization for Enterprise Applications
	Overview
	Solution Basics and Design Elements
	Dynamic Interface Transformation
	Traffic Optimization

	Solution Details
	Dynamic Interface Transformation
	Traffic Optimization

	Performance Evaluation
	Time-to-task
	Number of Actions
	Traffic Consumption
	Sensitivity to tasks and network environments
	Comparison with Custom-Built Apps
	Interaction Response Time
	Overhead Analysis

	Chapter 7 — Add-on Transformation Services and System Integration
	Overview
	Add-on transformation services
	Reduction
	Overflow
	Zoom
	Rearrangement
	Customized Translation

	Integrated operation of MORPH and super-aggregation

	Chapter 8 — Conclusion and Future Work
	Main Contributions
	Future Work

	Chapter 9 — Publications
	References

