
Appearance-Preserving View-Dependent Visualization (Paper 367)
Justin Jang William Ribarsky Christopher Shaw Peter Wonka

GVU Center, Georgia Institute of Technology

ABSTRACT

In this paper a new quadric-based view-dependent simplification
scheme is presented. The scheme provides a method to connect
mesh simplification controlled by a quadric error metric with a
level-of-detail hierarchy that is accessed continuously and
efficiently based on current view parameters. A variety of
methods for determining the screen-space metric for the view
calculation are implemented and evaluated, including an
appearance-preserving method that has both geometry- and
texture-preserving aspects. Results are presented and compared
for a variety of models.
Keywords: view-dependent, level of detail, simplification,
appearance-preserving, multiresolution models.

1 INTRODUCTION

We are entering an era where 3D models from diverse sources are
achieving unprecedented scale and detail. These include urban
models that may contain extended streetscapes or large collections
of detailed buildings. Some of these models are reconstructed
from range data and imagery [Neu03, Fru01] while others are
constructed using advanced CAD or procedural methods
[Won03]. In addition there are highly complex single models of
varying sizes that must be dealt with using view-dependent
techniques [Lin03, Lev00]. Many of the models in these two
categories are textured or have other strong appearance attributes.

There have concurrently been developments in level-of-detail
(LOD) management and visualization methods. Many of these
methods have been applied to compact but highly detailed models
[Hop97, Gar97] while others have been applied to extended large
scale models, such as terrain, where out-of-core management is
necessary [Dav98, Lin03, Fau00]. Ultimately, multiresolution
methods of sufficient flexibility are needed to provide good
quality visualizations at minimal cost for all these different types
of models. In addition, optimal interactive visualization is in
general obtained when local resolutions within and among models
are chosen dynamically based on the current viewpoint. Also,
multiresolution models, when properly organized, can provide
efficient, incremental access to data that may reside out-of-core or
in networked archives.

This paper presents the following new results that are useful in
attacking these diverse models.
• A new, view-dependent method is provided based on the

quadric-error approach that has general appearance-preserving
attributes.

• A multiresolution hierarchy is developed that efficiently
encodes a succession of quadric-based simplifications
permitting traversal from original highly detailed models to
final, constrained models.

• It is shown how geometry and/or texture-preserving metrics
can be used to produce view-dependent simplifications. A
variety of metrics are developed and evaluated.

• The quality of this view-dependent method is evaluated for a
range of architectural and non-architectural models.

Because it is based on the quadric error approach [Gar97, Gar98],
our view-dependent method provides flexible, good quality shape-

preserving simplification that applies to both topological and non-
topological geometry. Our view-dependent mesh collapse or
expansion is also monotonic. The methods presented here can fit
into a general program attacking both structured (e.g., buildings)
and natural models in a scalable geospatial framework [Fau00,
Rib03]. In addition, the quadric approach handles boundary
preservation in a general way. This permits the transition to
simple textured objects that have been used successfully in
interactively navigable large scale collections of buildings in
urban environments [Dav99, Jep96].

2 RELEVANT RESEARCH

A lot of work has been done on geometric model simplification,
and effective methods have been developed that apply to models
with consistent meshes. In this section we will concentrate on
work most relevant to the research described here. Some methods
enact a series of topology-preserving edge collapses to produce a
desired level of simplification, such as Hoppe’s progressive mesh
(PM) [Hop96, Hop97]. Other methods do not require topological
consistency nor preserve topology. These include vertex
clustering methods [Ros93] and methods that either remove
vertices [Sch92] or combine vertices at new locations (not
necessarily along edges) [Gar97, ElS99]. There are also methods
based on regular meshes [Lin96, Paj01, Lin03, Fau00], which are
usually obtained by resampling. These have the advantage of a
compact representation, a simplification hierarchy that is
straightforward to set up, and extension to efficient out-of-core
management of large scale data [Fau00, Lin03]. However, these
methods may not represent certain irregular surface features (say,
a mountain ridge on terrain) as efficiently as irregular methods.
Most of the regular methods, except for [Lin03], have been
applied mainly to terrain height fields.

Garland and Heckbert [Gar97] present the quadric-based
approach to polygonal simplification, which creates simpler
approximations of the input mesh by performing a sequence of
vertex merges. The algorithm always chooses the merge that
would result in the lowest quadric error as the next merge to
perform. The quadric error metric measures surface deviation and
curvature by concisely encoding any number of plane equations of
faces in the local neighborhood of a simplified point and its
predecessors. However, this lowest error merge is achieved with
the complication that the merged vertex can be anywhere in the
3D region near the original vertices rather than, say, along the
connecting edge. The basic approach has been extended [Gar98,
Hop99] to account for appearance attributes, including vertex
colors, vertex normals, and texture coordinates. While these
approaches yield nice results, it is not clear how the appearance
attribute error relates to the geometric error in this metric, or how
to bound appearance error in the rendered image. Erikson et. al.
[Eri99] extend the quadric approach to support the joining of
unconnected pieces of the mesh beyond just the initial threshold
pairs. Their approach produces high quality drastic simplifications
of potentially non-manifold models of arbitrary topology and fits
well under a hierarchical level of details (HLOD) approach
[Eri98]. The HLOD approach works best for scene graphs where

there exist many logically or actually separated objects, as
opposed to expansive contiguous meshes.

The above methods can produce good models at a target LOD.
In addition some of the methods above and others can produce
either simplified or more complex models dynamically based on
changing viewing parameters [Hop97, Lin96, Lin03, Paj01,
Fau00, ElS99, Xia97, San01]. The latter capability is of
significant importance for free navigation among highly detailed
or large scale models where one may zoom in for a close-up look
or back away for an overview. With these methods, views of large
scale models, such as terrain, can be reduced by a factor of a
hundred or more in polygon count without noticeable reduction in
image quality [Lin96]. The view-dependent methods differ in the
details of their approaches. Most of them use a merge hierarchy of
some sort that is traversed at run-time to produce the current view,
such as the merge tree [Xia97] or the view-dependence tree
[ElS99]. Like [ElS99], Hoppe's approach [Hop97] imposes
dependencies (restrictions to preserve mesh consistency) on the
run-time simplification; however, they are looser and generally
allow more optimally adaptive view-dependent simplifications.
Luebke [Lue97] describes a framework for view-dependent
simplification of arbitrary polygonal environments based on a
vertex clustering-based tight-octree hierarchy. In this sense the
method is similar to that of [Lin03]. The algorithm uses the
screen-space projection of vertex deviation bounding spheres as
the view-dependent simplification metric, which can be a very
conservative bound due to the mismatch between the box-shaped
clustering cells as well as lack of consideration for appearance
attributes.

Cohen et. al. [Coh98] present an algorithm for appearance-
preserving simplification. The approach involves a representation
conversion whereby normal maps replace normals and texture
maps are used for colors. This allows the algorithm to use a
texture-deviation metric alone to guarantee appearance quality.
The approach is able to generate low-polygon-count
approximations of the original model while still preserving
appearance, but it operates as a static simplification algorithm.
While it is theoretically capable of generating single path
simplification sequences as in a PM, it cannot be directly applied
to an adaptive view-dependent simplification. Sander [San01]
presents an approach for texture mapping progressive meshes that
seeks to minimize texture stretch. The approach is mainly
concerned with creating stretch minimizing texture atlases such
that the entire PM simplification sequence can use the same map.
Like [Coh98], our approach is concerned with bounding the
texture deviation, whatever the parameterization.

3. HIERARCHICAL DATA STRUCTURE

As with most view-dependent simplification approaches [ElS99,
Lin96, Hop97, Lue97, Paj01], our approach consists of two
phases: an offline pre-processing phase and a run-time view-
dependent meshing phase. The pre-processing phase generates a
hierarchy that encodes all possible selectively refinable meshes
attainable during the subsequent run-time simplification phase. As
with [ElS99], we generate a vertex hierarchy of vertex-pair
collapses from the bottom-up. However, instead of using the
cubic-spline distance metric, we use an area-weighted quadric
error metric with boundary preservation quadrics [Gar97] to
determine the simplification sequence. During this pre-processing
phase, we also calculate texture coordinates and incremental
bounds on the texture deviation. These texture-deviation bounds
are later used during run-time to select the appropriate LOD

approximation within a user-specified screen-space error bound.
(See Sec. 4 for a description of geometry and texture deviations.)

Recently, Lindstrom has developed a view-dependent quadric-
based approach [Lin03] that uses a regular resampling of the
original surface tesselation. A significant difference between this
approach and ours is that we retain the original tesselation. In
addition we consider view-dependent error metrics that depend
more generally on appearance attributes (geometry, texture, etc.)
whereas Lindstrom only considers geometry. Garland has
considered color and texture in a quadric approach [Gar98], but
without view-dependence. Although Lindstrom finds that
resampling has little effect on the quality of the simplification for
the models he considers [Lin03], it is still possible that for certain
models important details may either be lost or require excessively
detailed resampling to retain them. In addition, the resampling
grid must be chosen for each model, which introduces an
additional complication to the modeling process. Our approach
has neither of these potential drawbacks. Ultimately it may be that
the two approaches can be combined to take advantage of both the
powerful out-of-core capabilities of Lindstrom's method and the
precision detail-handling of our approach.

We thus make the following contributions. Our view-
dependent method uses a quadric-based structure that produces
better visual quality than ElSana's method [Els99] and is built on
the original surface rather than the resampled surface, as in
Lindstrom's method [Lin03]. It also depends on appearance
attributes rather than geometric attributes alone (as in Lindstrom).
In addition, as we show in Sec. 5, the structure is fast to build and
traverse, as opposed to Hoppe's algorithm, which takes very long
to preprocess [Hop97, Hop99].

Constructing the Quadric-Based Tree
We have chosen the quadric approach because it quickly produces
good quality simplifications of polygonal models by contracting
arbitrary vertex pairs, not just edges. This procedure can produce
better quality approximations than those restricted to edge
collapses and is more general (in particular, it is useful for non-
manifold models encountered in urban, architectural, or other
reality-based visualization). The quadric error metric measures
surface deviation and curvature by concisely encoding any
number of plane equations of faces in the local neighborhood of a
simplified point and its predecessors [Gar97]. A quadric matrix
(or simply, quadric) Q is the sum of any number of fundamental
error quadrics Kp= ppT, where p = [a b c d]T represents the plane
defined by ax + by + cz + d = 0, where a2 + b2 + c2 = 1. The
quadric error ∆(v) = ∆([vx vy vz 1]T) = vT Q v, is the sum of
squared distances from a point (vx,vy,vz) to all the planes encoded
in Q.

The basic quadric approach can be extended to preserve
boundaries [Gar97]. For every edge on the boundary, we can
construct a plane parallel to that edge and perpendicular to the
face. We can compute the quadric for this plane (called a border
quadric) and add it to the quadric of the face. For higher boundary
preservation, the border quadric is multiplied by a weighting
factor (we use a default of 1000) before being added in. We use
these border quadrics to constrain the simplification process so it
produces a particular lowest approximation. This is especially
useful for simplifying collections of, say, buildings and other
objects in an urban environment. Here, one needs to both move in
for close-ups and navigate to an overview in the visualization
[Dav99, Jep96]. To support the overviews, the simplification
should converge consistently to a collection of simple textured
objects (such as a polygon for an extended façade or a box for
many buildings).

Our approach builds a binary tree of vertices from the bottom
up via a sequence of vertex merges. We begin with all the vertices
of the original mesh M0, which will be the leaves of the eventual
tree. We use the vertex-pair collapse sequence {vcol0, …, vcolk}
of the quadric simplification algorithm to determine the order of
vertex merges and the positions of the merged vertices. For vcoli,
when merging two vertices Va and Vb ∈ Mi, we create a new
vertex Vc ∈ Mi+1 to be the parent of Va and Vb in the tree. Pointers
to the faces removed by this merge are stored as the subfaces of
Vc and each subface retains a residence index, the index of Vc.
This information will be used during run-time to update the mesh.
The algorithm proceeds until there is one vertex, the root of the
tree. Note that we could also stop when the last face is decimated,
when the error of the most recent vertex merge has passed some
threshold, or when the above reference polygon. The result would
then be a forest of binary trees [Hop97, Lue97].

Data Structures
We have developed several structures, based on the work of
[Hop97] and [Lue97], to make the run-time traversal of the above
trees efficient. Our approach extends [Hop97] to general meshes
without requiring the use of dependencies, while being able to
update the mesh more efficiently than [Lue97] due to the binary
structure of the tree. ListNode is a doubly linked list structure used
to string together faces in the active triangle list and vertices in the
active vertex list. An index is used as a unique identifier as well as
an index to locate the respective face or vertex being linked. Face
consists of references to the three original vertices as well as the
three current vertices of a triangle. The residence_index refers to
the index of the vertex node in which the face becomes a subface.
Vertex consists of a 3D point location, a 2D texture coordinate,
refinement information, binary tree id and depth, adjacent face
and subface lists, and pointers to the parent and two child nodes.
RefineInfo depends on the selective refinement approach used. It
includes a bounding sphere radius for frustum culling as well as
information that defines a deviation space to be projected into
screen space in order to make a refinement decision on the node.
Below is a listing of the structural organization.

struct ListNode {
 long index; // unique identifier
 ListNode *next;
 ListNode *prev;
};
struct Face {
 ListNode active; // list stringing active faces
 Vertex *vertices[3]; // the original vertices
 Vertex *proxies[3]; // the current vertices
 Long residence_index; // index of the vertex where this

// face is a subface
};
struct Vertex {
 ListNode active; // list stringing active boundary vertices
 NodeStatus status; // inactive, active, or active boundary
 3-Vector pos; // point location
 3-Vector normal; // normal vector
 2-Vector texture_pos; // texture coordinate
 RefineInfo refine_info; // selective refinement info
 FaceNode *faces; // head of linked list of pointers to Face
 FaceNode *subfaces; // faces collapsed in this node
 BitVector tree_id; // binary tree id; root is 1, child nodes

// are id*2 and id*2+1
 int depth; // depth in the binary tree
 Vertex *parent; // parent node to collapse into
 Vertex *vt, *vu; // child nodes to refine to

};

Iterative Updates. We need efficient per-vertex handling for
merges and splits that are made at run-time in the view-dependent
simplification. On a merge, the approach is to deactivate the
subfaces, move all other adjacent faces to the parent node, and
update the corner references of the faces. The approach on a split
is to activate the subfaces, distribute the adjacent triangles (and
the subfaces) to the appropriate child node, and update the corner
references. Our algorithm differs from [Lue97] in two ways: we
maintain adjacent triangle lists for each vertex in the active mesh
and we leverage the binary tree structure to minimize calls to the
routine that finds the lowest active ancestor of a node. This is
desirable since this routine is the most computationally expensive
part of the inner loop of these routines The pseudocode for
collapse of v (the merge of its two child nodes) is as follows.

collapseVertex(Vertex *v)
 for each subface s of v
 removeAdjacency(s->proxies[3], s);
 deactivateFace(s);
 for each face f of v->vt
 if f->residence_index = v->active.index then
 removeAdjacency(v->vt, f);
 for each face f of v->vu
 if f->residence_index = v->active.index then
 removeAdjacency(v->vu, f);
 linkLists(v->vt->faces, v->vu->faces, v->faces);
 activateVertex(v);
 deactivateVertex(v->vt);
 deactivateVertex(v->vu);

splitVertex(Vertex *v)
 for each subface s of v
 activateFace(s);
 lowestActiveAncestor(s->proxies[3], s);
 for each corner c of {1, 2, 3}
 addAdjacency(s->proxies[c], s);
 for each face f of v
 if childIsLeft(f, v) then
 addAdjacency(v->vt, f);
 else
 addAdjacency(v->vu, f);
 for each face f of v->vt
 for each corner c of {1, 2, 3}
 if f->proxies[c] = v then
 f->proxies[c] := vt;
 for each face f of v->vu
 for each corner c of {1, 2, 3}
 if f->proxies[c] = v then
 f->proxies[c] := vu;
 clearList(v->faces);
 activateVertex(v->vt);
 activateVertex(v->vu);
 deactivateVertex(v);

In the pseudocode, activate… adds faces or vertices to the active
lists, and deactivate… removes vertices or faces; addAdjacency(v, s)
and removeAdjacency(v, s) add/remove face s to/from the adjacent
face list of vertex v; linkLists(a, b, c) concatenates lists a and b and
moves the resulting list to c. In addition, lowestActiveAncestor(v, s)
replaces the proxy of vertex v of face s with the lowest active
ancestor of vertex v in the tree; childIsLeft(f, v) uses the depth of
vertex v and the tree_id of the corresponding proxy of face f to
determine whether the face belongs in the adjacent faces list of the
left or right child of v; clearList(a) clears linked list a. Note that we
always store vt and vu, the child nodes of the residence node of
the face, in corner indices 1 and 2, thus s->proxies[3] refers to the
other vertex involved. The implementation of clearList() is trivial

(set list to NULL) since the nodes of the adjacent face list of v are
moved into the child node lists, thus emptying the list of v.

4 VIEW-DEPENDENT METRICS AND
MESH UPDATES

We now describe the details of the deviation metrics that are used
to select a particular LOD (depending on the screen-space
projection of the metric), the run-time meshing algorithm based
on the structures in Sec. 3, and the particulars of the view-
dependent simplification process. We will then have a complete
algorithm for efficiently visualizing complex models.

Collapse Distance Deviation

possible surface Mi

current surface Mi-1

original surface M0

deviation vectors

Va Vb

Vc

PO

PC

Two-Way Incremental
Distance Deviation

Va Vb

Vc

Quadric Error Deviation

Va Vb

Vc

Va Vb

Vc

PC

One-Way Incremental
Texture Deviation

Va Vb

Vc

PA

Two-Way Incremental
Texture Deviation

PB
PC

Total Texture Deviation

(A) (B)

(C) (D)

(E) (F)

Va Vb

Vc

PO

Fig. 1 Several metrics for view-dependent simplification.

Deviation Metrics
We consider several deviation metrics that encompass either
geometric or texture error measures, as shown in Fig. 1. In Sec. 5,
we will evaluate and compare these metrics, using them on
different models.

For the merge of vertices Va and Vb ∈ Mi to vertex Vc ∈ Mi+1,
we define measures for the geometric deviation incurred. In Fig.
1, each of these deviations is indicated by red dotted lines. These
include the collapse distance deviation vectors GCDV : Gab = Vb –
Va, Gac = Vc - Va (Fig. 1A), and the incremental surface distance
deviation vectors GISV: Gc = Vc - Hi(Vc), Ga = Hi+1(Va) - Va, Gb =
Hi+1(Vb) - Vb (Fig. 1B) where Hj(X) is the 3D point on mesh Mj
closest to point X. The quadric error vector GQV = ∆(Vc) ̂ n (Fig.
1C), simplistically computed by scaling the surface normal ̂ n
(which is the direction of highest deviation from the surface) by
the quadric error at VC [Lin03], provides a better alternative. In
practice, this measure uses the quadric error to scale a careful
characterization of the actual normals involved, which is derived

from the same quadric matrices. Alternatively, a simpler but less
precise formulation is to use the quadric error as the radius of a
bounding sphere, which results in a conservative bound. Notably,
GCDV and GISV measure incremental errors, which are in general
non-monotonic, while the quadric metrics measure errors from the
original mesh, which are monotonic. In principle, the quadric
metric should be the most accurate measure of geometric
deviation.

Geometric deviation gives an incomplete measure of the
actual appearance deviation. We must also track texture deviation,
which is the measure of how far a point Vi on a surface Mi has
deviated from the point Vj on another surface Mj that has the same
texture coordinate as Vi [Coh98]. Using Cohen's notation, we can
map between 3D object space and 2D texture space. The function,
Fj(X): Mj → P, maps point, X, on the surface, Mj, to point, x, in
the 2D texture domain, P.1. The inverse function, F-1

i(x): P → Mi,
maps point x in the texture domain P to a point X on surface Mi.
We now define a one-way incremental texture deviation vector
GT1V = Vc - Pc, where Pc = F-1

i(Fi+1(Vc)),and a set of two-way
incremental texture deviation vectors GT2V: (GT1V, Va – Pa, Vb –
Pb), where Pa = F-1

i+1(Fi(Va)) and Pb = F-1
i+1(Fi(Vb)). (Fig. 1D and

Fig. 1E illustrate GT1V and GT2V, respectively.) The length of GT1V
or the max length of the vectors in GT2V can also be used as the
radius of a bounding sphere. Since this radius is non-monotonic
(as is the case with all the other incremental metrics), we calculate
the bounding sphere radius r(Vc) = ||G|| + max(r(Va), r(Vb)), where
G is the deviation vector of choice, be it geometric deviation or
texture deviation. The difference between one-way and two-way
deviations is that the former calculates only the deviation from Mi
due to Vc, while the latter calculates this deviation plus the
deviation from Mi+1 due to Va and Vb. The two-way incremental
deviation will thus provide a better bound.

Texture coordinates for Vc are calculated by using the texture
coordinate of the point closest to Vc in mesh Mi. That is, Fi+1(X) =
Fi(Hi(X)). Note that the mapping is potentially not one-to-one.
Furthermore, for the two-way bounds, we seek the texture
coordinate for Vc that results in the smallest r. Therefore, the
approach examines only the local neighborhood Ni,Vc of Vc and
looks for the texture coordinate from the closest points to the
faces in NVc that minimizes the max two-way texture devation.

Fig. 1F is provided for completeness. It describes the total
texture deviation between the merged surface and the original
surface. In this case deviations from all affected texture
coordinates must be included [Coh98]. This total deviation is too
complex to consider for interactive view-dependent
simplification, hence we devise approximate metrics to bound it.

Mesh Updates
The run-time meshing algorithm resembles that of [Hop97] and is
also similar to [Lue97] and [ElS99]. It maintains a linked list of
active boundary vertices and a list of active triangles. A vertex
may be active or inactive, and the active vertices may be on the
boundary or interior. (See Fig. 2.) The boundary vertices are all
the leaf nodes of the sub-tree of all active vertices. These
boundary vertices (referred to as a front in the tree) comprise all
the vertices of the current selectively refined mesh, the list of
active triangles. A simplification pass (Fig. 3) consists of the
traversal of the vertex front during which view-dependent
simplification criteria are applied to decide whether to collapse,
keep, or split a vertex node. A collapse removes a pair of vertices

1 Capital letters (e.g., X) refer to points in 3D, while lower case
letters (e.g., x) refer to points in the texture domain.

Fig. 4 Effect of dependencies on two different navigation paths.

and adds their parent vertex to the active vertex list while a split
replaces a vertex with its two child vertices. Depending on the
mesh update information stored at the node, a split/collapse may
also result in the introduction/removal of t triangles from the
active triangle list. For [Hop97] t is always 2, while our approach
permits zero or more, allowing it to support arbitrary meshes as in
[Lue97]. Unlike the vertex-clustering tree of [Lue97], it is able to
exploit the binary tree structure to perform less work during this
update. In contrast to [Hop97] and [ElS99], it neither stores,
updates, nor enforces dependencies.

V10 V11

V5

V8 V9

V4

V2

V1

V14 V15

V7V6

V3

Simplification Pass:
split: V7; merge: V10, V11

V10 V11

V5

V8 V9

V4

V2

V1

V14 V15

V7V6

V3

Fig. 2 The vertex front is circled. Green nodes are active-interior,
blue nodes are active-boundary, and orange nodes are inactive.
Here, vertex V7 is split and vertices V10 and V11 are merged.

Dependencies. Both [Hop97] and [ElS99] enforce dependencies
on the view-dependent simplification of the mesh to preserve
some aspect of mesh validity or coherence including foldover-
prevention and local adjacency information. However, this
requires the algorithm to perform a few additional comparisons
for every refinement evaluation as well as update the
dependencies after every vertex split or merge occurs. In addition,
to perform a desired vertex split, it may be necessary to split
neighboring vertices and their neighbors therein (that is, to
recursively evaluate a chain of dependencies) just to respect the
dependencies. Because a long and expensive recursion might
result, ElSana et. al. [ElS99] ignore the need to recursively
activate secondary display vertices and instead opt for a lazy
approach, waiting for vertices to split during later frames. They
report that this is reasonable for slowly changing view-
parameters. However, with our quadric-based tree, even slow
navigation can result in a simplified mesh that is very visually
inadequate for a long time, or it may never activate some visually
critical nodes. Fig. 4 demonstrates this phenomenon. In 4a, the
sphere was approached from the right and zoomed in. In 4b, the
entire sphere was brought into view all at once, allowing the
supporting vertices to be present, followed by zooming in to the
same view. The tessellation inside the viewing frustum of 4a is
inadequate. (It should resemble that of 4b.) In Fig. 4b, there is not
much simplification enough outside the view frustum. The
dependencies in 4b are overly restrictive due to a chain of
dependencies.

This phenomenon is more severe with our quadric-based tree
than with the tree of [ElS99] which is based on a spline-distance
metric. The spline-distance metric is an indication of deviation
across the surface. With this metric, a vertex pair collapse on the
surface is highly likely to increase the error of the potential
subsequent collapse between the newly picked vertex and its
neighbors. The quadric metric is an indication of deviation
orthogonal to the surface, so a vertex pair collapse does not
necessarily increase the quadric error of the new vertex with
respect to its neighbors, particularly in flat or common curvature
regions. Thus, a tree built with the quadric metric is much more
likely to result in chains of dependencies as it is more likely to

nest neighbors as ancestors or descendents or each other as
opposed to across the tree horizontally as cousins.

Note that the algorithm of [Hop97] imposes less restrictive
dependencies. Even though this would reduce the chance of
inadequate refinement when taking the lazy approach (as in
[Els99]), their algorithm opts for correctness and evaluates chains
of dependencies anyway.

V10
V11

V14
V15

V8 V9

V6

V4

V10
V11

V7

V6

V4

V5

V14
V15

V6

(a)

(b) (c)

Simp Pass

Fig. 3 The pink, purple, and dark gray triangles are subfaces of
V7, V5, and V4, respectively in Fig. 2. (a) Full mesh. (b) Tree on
left of Fig. 2. (c) Tree on right.

In our approach, no run-time dependencies are enforced. The
[Hop97] method requires manifold surfaces, which is too narrow
for our case, and the [ElS99] method is too restrictive in terms of
the run-time simplifications it will permit. Instead, we allow the
view-dependent simplification criteria alone to determine the
mesh from all those encoded in the tree structure. Not enforcing
supplementary dependencies allows for maximally adaptive
simplification and also speeds up computation of the active vertex
front. Ignoring dependencies means that there may be a chance for
mesh inconsistencies, such as fold-overs, during run-time
simplification. However, these hardly ever occur in practice,
although they are somewhat more likely for artificial meshes
(such as meshes for flat or nearly flat walls). For textured
surfaces, our screen-space appearance metric bounds texture
deviation. So any visual artifacts due to fold-overs on texture-
mapped surfaces with no additional surface-dependent visual
ornamentation, e.g. specular highlights, have negligible visible
impact (when the texturing is applied to both sides of the
polygons). In practice we have found that not only do foldovers
occur infrequently, but also that visual artifacts due to foldovers
are not noticeable. This is consistent with our approach to focus
on preserving appearance attributes rather than on mesh
consistency. This is reasonable since the mesh itself often has no
fundamental value (as in models acquired from laser range data or
even in some constructed models) and sometimes is not even
consistent, as in non-topological models.

Screen-Space Deviation. To determine the maximum screen-
space deviation, we select one of the above deviation metrics and
project the deviation bounding sphere to screen space.

As with most approaches, e.g. [Hop97, Paj01, Lin03], we opt
for an approximate but more efficient evaluation instead of
precise evaluation. We calculate the projected radius, p, of the
sphere centered at v with radius r as follows.

γ = 2 * h / φ
p = γ * r / (v - e) •

r
e

where h is the vertical size in pixels of the viewport, φ is the

(vertical) field of view angle, γ is an approximation of the pixels
per view angle subtended, and

r
e is the view direction vector,

which is calculated once per view. A vertex is refined if its p is
less than a pixel threshold τ.

This approximation underestimates the projection sizes away
from the view center and overestimates those near the view center
and a parallel projection assumption is made. Furthermore, the
neighborhood of V on an adaptively simplified mesh may be
different than the neighborhood of V for which the bounds were
originally calculated during the build phase.

 Hoppe [Hop97] estimates the Hausdorf distance between
Nv,i+1, the local neighborhood of v after edge collapse i, and Nv,0,
the corresponding local neighborhood on the original mesh, M0,
by analyzing the residual error vectors from a dense set of points
on M0. The distance bound obtained is used as the radius µ of the
bounding sphere, which is used to bound error during view-
dependent refinement. In addition, this approach can project a
vector scaled in the direction of the normal that biases the
refinement for preserving geometry on or near the silhouette. This
approach yields nice results, but requires significant computation,
especially if it were to be extended to account for texture
deviation. Although the tree is built off-line, it is still desirable to
have an efficient build phase, especially for applications such as
urban modeling where data generation to visualization turn-
around time is important.

model verts tris
initial
pairs load init T1V ISV T2V

tree
height

sphere 10k 20k 30k 0.17 0.19 0.36 0.44 0.84 54
wave 103k 205k 308k 1.64 2.22 4.64 5.22 8.16 26
bunny 36k 69k 104k 0.49 0.77 1.48 1.70 1.77 22
buddha 150k 300k 450k 2.12 6.05 7.31 8.06 8.49 26
façade 49k 97k 146k 1.03 0.95 2.05 2.36 3.86 36
wall 3.6k 7.2k 36k 0.14 3.67 0.25 0.28 0.52 31
Table 1. All timings are in seconds.

Frustum and Backface Culling. Each node of the vertex tree
stores a frustum culling bounding sphere radius that bounds all
descendant vertices. Our implementation compares the sphere
with the six planes of the view frustum. Nodes with frustum-
culling bounding spheres that intersect the frustum are candidates
for refinement. Alternatively, one can opt for a faster but more
conservative evaluation of view frustum visibility as in the
frustum cone of [Paj01].

For closed manifold models of objects, faces on the back side
with respect to the viewpoint are not visible as long as the
viewpoint is never located on the inside the model. Therefore, it
makes sense to allow these faces to simplify as much as possible.
Like [Hop97, Paj01], we bound the spread of normals of the

adjacent faces of a vertex v and the descendants of v with a cone
represented as the vertex normal, ̂ n v, and a cone angle,
αv. Α vertex is considered unnecessary for supporting a front face
if ̂ n v • (v - e) / ||v - e|| > sin αv holds. The situation is more
complicated, of course, for open or non-manifold models, as are
sometimes encountered in urban visualization.

5 RESULTS AND DISCUSSION
We test our approach and evaluate the various metrics using a
variety of models of different types (Figs. 5-8). The sphere, wall,
and wave models are procedurally generated and include texture
coordinates. The wall is comprised of 1800 separate components
with arbitrarily connectivity. The wave is a height-field of sine
waves that continuously vary in frequency. The bunny, the
Buddha, and the building façade are models constructed from
scanned data. The building façade [Fru01] includes texture
information scanned concurrently with the geometry, and thus
possesses an inherently correct parameterization. Table 1 gives
basic information, including size, initial candidate simplification
pairs, and tree height, for these various models and shows their
respective tree construction times in seconds. (These timings are
from our prototype implementation running on a 2.4GHz
Pentium4 Win2k PC with 512MB of RDRAM and a NVIDIA
Quadro4 900XGL graphics card.) Our build times are comparable
with qslim [Gar97] since the quadric simplification approach is
the foundation of our tree build algorithm. On top of the basic
algorithm, we perform additional computation associated with the
view-dependent structure, including linking the tree, computing
texture coordinates, and computing run-time refinement
information such as the error bounds. The two-way texture bounds
(T2V) followed by the two-way geometric bounds (ISV are the
most computationally expensive error bounds to compute, so
those build times are listed separately. The total build times are
significantly faster than for some other methods [Hop97].

For a fly through of the wave model, we achieve average
frame rates of 20fps, where 54 percent of each frame is devoted to
the simplification pass and the rest to rendering. We achieve
simplification throughputs of over 60k triangles per second (tps)
for collapses and over 50k tps for splits. Because we have
concentrated on the new view-dependent structure and error
metric implementation in this paper, our implementation is un-
optimized for rendering. It traverses a linked-list for every
refinement pass and traverses a linked-list to render every frame.
We have not implemented optimizations, such as vertex arrays (as
in [Els02]) and display lists (as in [Lin03]), or mesh update
optimizations, such as prioritized traversal [ElS02], triangle-
budged simplification [Lue97], asynchronous simplification
[Lue97], etc. We anticipate that significant improvement in
performance would result in incorporating any of the above,
which is straightforward for most.

Fig. 5 View-dependent simplification of bunny and wave models.

Fig. 5 shows the view-dependent simplification in action. For the
bunny model, notice the high fall-off in mesh tessellation density
outside the view frustum (blue outline). The wave model (right)
exhibits more simplification in areas of lower frequency content
(towards the lower right of the image) and less simplification in
areas of higher frequency content (towards the upper left). Here
we use GT2V. The GISV, GQV, and GT1V metrics behave similarly.

Figure 6 shows the facade model simplified using each metric
at one pixel screen-space deviation for 1024 x 768 pixel views.
The blue box shows the viewport. The first pair (6A, 6B) is at full
resolution; each subsequent pair is for a different metric. In each
pair, the right-hand image shows the mesh explicitly. Note that the
geometry-only metric GCDV (6E, 6F) preserves appearance, but
does not allow much simplification. Also note that the geometry-
only metric GISV (6I, 6J) allows significant simplification, but fails
to bound texture deviation. As shown in (6C, 6D), GT1V bounds
texture deviation at the vertices of the active mesh, but not in
between. GT2V (6G, 6H) not only bounds texture deviation at the
vertices, but it also bounds deviation across the faces. The quadric
sphere metric GQV (6K, 6L) gives nice adaptive simplification,
refining more in areas of high geometric detail, but guarantees no
bounds on texture deviation. Furthermore, there is less of a fall-off
in tesselation for portions of the model further from the viewpoint
than with other approaches.

Fig. 7 Wall model with (left) and without texture.

Fig. 7 demonstrates that our scheme can preserve appearance even
on piecemeal meshes such as the wall model. This an architectural
model generated with a procedural technique where mesh
topology is not enforced [Won03]. Notice how the mesh falls
apart outside the view frustum, yet inside is virtually
indistinguishable from the original. As it moves inside the
frustum, the outside mesh also reforms consistently. Finally, Fig.
8 shows the Buddha model simplified with the texture deviation
metric GT2V, despite it not being given (nor does it compute) a
texture parameterization. The GT2V metric gracefully falls back to
GISV.

6 CONCLUSIONS AND FUTURE WORK

We have presented a quadric-based approach for appearance-
preserving, view-dependent visualization of triangulated models.
We have described a method for quickly generating a
visualization-ready hierarchy from an input model. This hierarchy
can be efficiently traversed for view-dependent rendering. In
addition the data structure accommodates different error metrics.
We have characterized the relative merits of several metrics in
determining the appropriate mesh for preserving appearance. We
have presented results for several models that show the visual

quality of our approach and the merits of the different error
metrics.

There are a number of avenues for future work. Normal maps

and vertex color information can be added to the formalism to
efficiently improve the appearance-preserving character of non-
texture mapped models. A formulation for boundary preservation
using reference planes can be built on our approach to permit
consistent transition to simple textured objects appropriate for
overviews of collections of objects. In addition a more general
approach could be developed for urban models based on
architectural semantics [Won03] that would support interactive
3D planning. Finally large collections of models could be placed
in a scalable structure for interactive visualization that ranges over
all scales. Our approach has the flexibility to support all these
avenues.

Acknowledgments.
We acknowledge the Stanford Computer Graphics Lab for the use
of the bunny and Buddha models. This work is supported by the
Department of Defense's MURI program, administered by the
Army Research Office; it is also supported by a grant from the
NSF Large Scientific and Software Data Visualization program.

Fig. 8 Buddha model simplified with GT2V.

REFERENCES

Coh98 J. Cohen, M. Olano, and D. Manocha. Appearance-

Preserving Simplification of Polygonal Models. Proc.
SIGGRAPH 98, pp. 115-122 (1998).

Dav98 Davis, D., Jiang, T.F., Ribarsky, W., Faust, N. Intent,
Perception, and Out-of-Core Visualization Applied to Terrain.
Proc. IEEE Visualization '98, pp. 455-458 (1998).

Dav99 Douglass Davis, William Ribarsky, T.Y. Jiang,
Nickolas Faust, and Sean Ho. "Real-Time Visualization of
Scalably Large Collections of Heterogeneous Objects," Report
GIT-GVU-99-14, IEEE Visualization '99 pp. 437-440, (1999).

ElS99 J. El-Sana and A. Varshney. Generalized View-
Dependent Simplification. Computer Graphics Forum
(Eurographics '99) 18(3), pp 83-94 (1999).

ElS02 J. El-Sana and E. Bachmat. Optimized View-Dependent
Rendering for Large Polygonal Datasets. Proc. IEEE
Visualization ‘02, pp. 77-84 (2002).

Eri98 Carl Erikson and Dinesh Manocha. Simplfication
Culling of Static and Dynamic Scene Graphs. UNC Chapel
Hill Computer Science Technical Report TR98-009 (1998).

Eri99 Carl Erikson and Dinesh Manocha. GAPS: General and
Automatic Polygonal Simplification. Symposium on
Interactive 3D Graphics, pp 79-88 (1999).

Fau00 N. Faust, W. Ribarsky, T.Y. Jiang, and T. Wasilewski.
Real-Time Global Data Model for the Digital Earth. Proc.
INTERNATIONAL CONFERENCE ON DISCRETE GLOBAL
GRIDS (2000). An earlier version is in Rep. GIT-GVU-97-07.

Fru01 C. Früh and A. Zakhor. 3D model generation for cities
using aerial photographs and ground level laser scans. IEEE
Computer Vision and Pattern Recognition Conference (Kauai,
Hawaii, December, 2001).

Gar97 M. Garland and P. Heckbert. Surface Simplification
Using Quadric Error Metrics. Proc. SIGGRAPH 97, pp. 209-
216 (1997).

Gar98 M. Garland and P. Heckbert. Simplifying Surfaces with
Color and Texture using Quadric Error Metrics. Proc. IEEE
Visualization 98, pp. 263-269 (1998).

Hop96 H. Hoppe. Progressive Meshes. Proc. SIGGRAPH 96,
pp. 99-108 (1996).

Hop97 Hoppe, Hugues. View-Dependent Refinement of
Progressive Meshes. Proc. SIGGRAPH 97. pp. 189-198
(August 1997).

Hop99 H. Hoppe. New Quadric Metric for Simplifying Meshes
with Appearance Attributes. IEEE Visualization 99, pp. 59-66
(1999).

Jep96 W. Jepson, R. Liggett, S. Friedman. Virtual Modeling of
Urban Environments. Presence, 5(1), pp. 72-86 (1996).

Lev00 M. Levoy et. al. The Digital Michelangelo Project: 3D
Scanning of Large Statues. Proc. SIGGRAPH 00, pp. 131-141
(2000).

Lin03 Peter Lindstrom. Out-of-Core Construction and
Visualization of Multiresolution Surfaces. To be published,
ACM Symp. on Interactive 3D Graphics (2003).

Lue97 David Luebke and Carl Erikson. View-Dependent
Simplification of Arbitrary Polygonal Environments. Proc.
SIGGRAPH 97, pp. 199-208 (1997).

Neu03 U. Neumann, S. You, J. Hu, B. Jiang, and J. Lee,
“Augmented Virtual Environments (AVE): for Visualization
of Dynamic Imagery”, IEEE Virtual Reality’03, pp. 61-67
(2003).

Paj01 Renato Pajarola. FastMesh: Efficient View-dependent
Meshing. Proc. Pacific Graphics 2001, pp. 22-30, (2001).

Rib03 William Ribarsky. Virtual Geographic Information
Systems. To be published. The Visualization Handbook,
Charles Hansen and Christopher Johnson, editors (Academic
Press, New York, 2003).

San01 P. Sander, J. Snyder, S. Gortler, H. Hoppe. Texture
Mapping Progressive Meshes. Proc. SIGGRAPH 01, pp. 409-
416 (2001).

Sch92 W. Schroeder, J. Zarge, and W.E. Lorensen. Decimation
of Triangle Meshes. SIGGRAPH 92, pp. 65-70 (1992).

Won03 Peter Wonka, Michael Wimmer, Francois Sillion, and
William Ribarsky. Instant Architecture. To be published,
SIGGRAPH 2003 (2003).

Xia97 J.C. Xia, J. El-Sana, A. Varshney. Adaptive Real-Time
Level-of-Detail-Based Rendering for Polygonal Models, IEEE
Transactions on Visualization and Computer Graphics, 3, 2,
pp.171-183 (1997).

Fig. 6 Façade model (Fru01) comparing different metrics at a resolution of 1 pixel (except for 6A, which is full resolution).

A B C D

E F G H

I J K L

A B C D

E F G H

I J K L

