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ABSTRACT 

In this paper a new quadric-based view-dependent simplification 
scheme is presented. The scheme provides a method to connect 
mesh simplification controlled by a quadric error metric with a 
level-of-detail hierarchy that is accessed continuously and 
efficiently based on current view parameters. A variety of 
methods for determining the screen-space metric for the view 
calculation are implemented and evaluated, including an 
appearance-preserving method that has both geometry- and 
texture-preserving aspects. Results are presented and compared 
for a variety of models. 
Keywords: view-dependent, level of detail, simplification, 
appearance-preserving, multiresolution models. 
 

1  INTRODUCTION 
 

We are entering an era where 3D models from diverse sources are 
achieving unprecedented scale and detail. These include urban 
models that may contain extended streetscapes or large collections 
of detailed buildings. Some of these models are reconstructed 
from range data and imagery [Neu03, Fru01] while others are 
constructed using advanced CAD or procedural methods 
[Won03]. In addition there are highly complex single models of 
varying sizes that must be dealt with using view-dependent 
techniques [Lin03, Lev00]. Many of the models in these two 
categories are textured or have other strong appearance attributes. 

There have concurrently been developments in level-of-detail 
(LOD) management and visualization methods. Many of these 
methods have been applied to compact but highly detailed models 
[Hop97, Gar97] while others have been applied to extended large 
scale models, such as terrain, where out-of-core management is 
necessary [Dav98, Lin03, Fau00]. Ultimately, multiresolution 
methods of sufficient flexibility are needed to provide good 
quality visualizations at minimal cost for all these different types 
of models. In addition, optimal interactive visualization is in 
general obtained when local resolutions within and among models 
are chosen dynamically based on the current viewpoint. Also, 
multiresolution models, when properly organized, can provide 
efficient, incremental access to data that may reside out-of-core or 
in networked archives. 

This paper presents the following new results that are useful in 
attacking these diverse models. 
• A new, view-dependent method is provided based on the 

quadric-error approach that has general appearance-preserving 
attributes. 

• A multiresolution hierarchy is developed that efficiently 
encodes a succession of quadric-based simplifications 
permitting traversal from original highly detailed models to 
final, constrained models. 

• It is shown how geometry and/or texture-preserving metrics 
can be used to produce view-dependent simplifications. A 
variety of metrics are developed and evaluated. 

• The quality of this view-dependent method is evaluated for a 
range of architectural and non-architectural models. 

 
Because it is based on the quadric error approach [Gar97, Gar98], 
our view-dependent method provides flexible, good quality shape-

preserving simplification that applies to both topological and non-
topological geometry. Our view-dependent mesh collapse or 
expansion is also monotonic. The methods presented here can fit 
into a general program attacking both structured (e.g., buildings) 
and natural models in a scalable geospatial framework [Fau00, 
Rib03]. In addition, the quadric approach handles boundary 
preservation in a general way. This permits the transition to 
simple textured objects that have been used successfully in 
interactively navigable large scale collections of buildings in 
urban environments [Dav99, Jep96]. 

 
2  RELEVANT RESEARCH 

 
A lot of work has been done on geometric model simplification, 
and effective methods have been developed that apply to models 
with consistent meshes. In this section we will concentrate on 
work most relevant to the research described here. Some methods 
enact a series of topology-preserving edge collapses to produce a 
desired level of simplification, such as Hoppe’s progressive mesh 
(PM) [Hop96, Hop97]. Other methods do not require topological 
consistency nor preserve topology. These include vertex 
clustering methods [Ros93] and methods that either remove 
vertices [Sch92] or combine vertices at new locations (not 
necessarily along edges) [Gar97, ElS99]. There are also methods 
based on regular meshes [Lin96, Paj01, Lin03, Fau00], which are 
usually obtained by resampling. These have the advantage of a 
compact representation, a simplification hierarchy that is 
straightforward to set up, and extension to efficient out-of-core 
management of large scale data [Fau00, Lin03]. However, these 
methods may not represent certain irregular surface features (say, 
a mountain ridge on terrain) as efficiently as irregular methods. 
Most of the regular methods, except for [Lin03], have been 
applied mainly to terrain height fields. 

Garland and Heckbert [Gar97] present the quadric-based 
approach to polygonal simplification, which creates simpler 
approximations of the input mesh by performing a sequence of 
vertex merges. The algorithm always chooses the merge that 
would result in the lowest quadric error as the next merge to 
perform. The quadric error metric measures surface deviation and 
curvature by concisely encoding any number of plane equations of 
faces in the local neighborhood of a simplified point and its 
predecessors. However, this lowest error merge is achieved with 
the complication that the merged vertex can be anywhere in the 
3D region near the original vertices rather than, say, along the 
connecting edge. The basic approach has been extended [Gar98, 
Hop99] to account for appearance attributes, including vertex 
colors, vertex normals, and texture coordinates. While these 
approaches yield nice results, it is not clear how the appearance 
attribute error relates to the geometric error in this metric, or how 
to bound appearance error in the rendered image. Erikson et. al. 
[Eri99] extend the quadric approach to support the joining of 
unconnected pieces of the mesh beyond just the initial threshold 
pairs. Their approach produces high quality drastic simplifications 
of potentially non-manifold models of arbitrary topology and fits 
well under a hierarchical level of details (HLOD) approach 
[Eri98]. The HLOD approach works best for scene graphs where 



there exist many logically or actually separated objects, as 
opposed to expansive contiguous meshes. 

The above methods can produce good models at a target LOD. 
In addition some of the methods above and others can produce 
either simplified or more complex models dynamically based on 
changing viewing parameters [Hop97, Lin96, Lin03, Paj01, 
Fau00, ElS99, Xia97, San01]. The latter capability is of 
significant importance for free navigation among highly detailed 
or large scale models where one may zoom in for a close-up look 
or back away for an overview. With these methods, views of large 
scale models, such as terrain, can be reduced by a factor of a 
hundred or more in polygon count without noticeable reduction in 
image quality [Lin96]. The view-dependent methods differ in the 
details of their approaches. Most of them use a merge hierarchy of 
some sort that is traversed at run-time to produce the current view, 
such as the merge tree [Xia97] or the view-dependence tree 
[ElS99]. Like [ElS99], Hoppe's approach [Hop97] imposes 
dependencies (restrictions to preserve mesh consistency) on the 
run-time simplification; however, they are looser and generally 
allow more optimally adaptive view-dependent simplifications. 
Luebke [Lue97] describes a framework for view-dependent 
simplification of arbitrary polygonal environments based on a 
vertex clustering-based tight-octree hierarchy. In this sense the 
method is similar to that of [Lin03]. The algorithm uses the 
screen-space projection of vertex deviation bounding spheres as 
the view-dependent simplification metric, which can be a very 
conservative bound due to the mismatch between the box-shaped 
clustering cells as well as lack of consideration for appearance 
attributes. 

Cohen et. al. [Coh98] present an algorithm for appearance-
preserving simplification. The approach involves a representation 
conversion whereby normal maps replace normals and texture 
maps are used for colors. This allows the algorithm to use a 
texture-deviation metric alone to guarantee appearance quality. 
The approach is able to generate low-polygon-count 
approximations of the original model while still preserving 
appearance, but it operates as a static simplification algorithm. 
While it is theoretically capable of generating single path 
simplification sequences as in a PM, it cannot be directly applied 
to an adaptive view-dependent simplification. Sander [San01] 
presents an approach for texture mapping progressive meshes that 
seeks to minimize texture stretch. The approach is mainly 
concerned with creating stretch minimizing texture atlases such 
that the entire PM simplification sequence can use the same map.  
Like [Coh98], our approach is concerned with bounding the 
texture deviation, whatever the parameterization. 

 
3.  HIERARCHICAL DATA STRUCTURE 

 
As with most view-dependent simplification approaches [ElS99, 
Lin96, Hop97, Lue97, Paj01], our approach consists of two 
phases: an offline pre-processing phase and a run-time view-
dependent meshing phase. The pre-processing phase generates a 
hierarchy that encodes all possible selectively refinable meshes 
attainable during the subsequent run-time simplification phase. As 
with [ElS99], we generate a vertex hierarchy of vertex-pair 
collapses from the bottom-up. However, instead of using the 
cubic-spline distance metric, we use an area-weighted quadric 
error metric with boundary preservation quadrics [Gar97] to 
determine the simplification sequence. During this pre-processing 
phase, we also calculate texture coordinates and incremental 
bounds on the texture deviation. These texture-deviation bounds 
are later used during run-time to select the appropriate LOD 

approximation within a user-specified screen-space error bound. 
(See Sec. 4 for a description of geometry and texture deviations.) 

Recently, Lindstrom has developed a view-dependent quadric-
based approach [Lin03] that uses a regular resampling of the 
original surface tesselation. A significant difference between this 
approach and ours is that we retain the original tesselation. In 
addition we consider view-dependent error metrics that depend 
more generally on appearance attributes (geometry, texture, etc.) 
whereas Lindstrom only considers geometry. Garland has 
considered color and texture in a quadric approach [Gar98], but 
without view-dependence. Although Lindstrom finds that 
resampling has little effect on the quality of the simplification for 
the models he considers [Lin03], it is still possible that for certain 
models important details may either be lost or require excessively 
detailed resampling to retain them. In addition, the resampling 
grid must be chosen for each model, which introduces an 
additional complication to the modeling process. Our approach 
has neither of these potential drawbacks. Ultimately it may be that 
the two approaches can be combined to take advantage of both the 
powerful out-of-core capabilities of Lindstrom's method and the 
precision detail-handling of our approach. 

We thus make the following contributions. Our view-
dependent method uses a quadric-based structure that produces 
better visual quality than ElSana's method [Els99] and is built on 
the original surface rather than the resampled surface, as in 
Lindstrom's method [Lin03]. It also depends on appearance 
attributes rather than geometric attributes alone (as in Lindstrom). 
In addition, as we show in Sec. 5, the structure is fast to build and 
traverse, as opposed to Hoppe's algorithm, which takes very long 
to preprocess [Hop97, Hop99]. 

 
Constructing the Quadric-Based Tree 
We have chosen the quadric approach because it quickly produces 
good quality simplifications of polygonal models by contracting 
arbitrary vertex pairs, not just edges. This procedure can produce 
better quality approximations than those restricted to edge 
collapses and is more general (in particular, it is useful for non-
manifold models encountered in urban, architectural, or other 
reality-based visualization). The quadric error metric measures 
surface deviation and curvature by concisely encoding any 
number of plane equations of faces in the local neighborhood of a 
simplified point and its predecessors [Gar97]. A quadric matrix 
(or simply, quadric) Q is the sum of any number of fundamental 
error quadrics Kp= ppT, where p = [a b c d]T represents the plane 
defined by ax + by + cz + d = 0, where a2 + b2 + c2 = 1.  The 
quadric error ∆(v) = ∆([vx vy vz 1]T) = vT Q v, is the sum of 
squared distances from a point (vx,vy,vz) to all the planes encoded 
in Q. 

The basic quadric approach can be extended to preserve 
boundaries [Gar97]. For every edge on the boundary, we can 
construct a plane parallel to that edge and perpendicular to the 
face. We can compute the quadric for this plane (called a border 
quadric) and add it to the quadric of the face. For higher boundary 
preservation, the border quadric is multiplied by a weighting 
factor (we use a default of 1000) before being added in. We use 
these border quadrics to constrain the simplification process so it 
produces a particular lowest approximation. This is especially 
useful for simplifying collections of, say, buildings and other 
objects in an urban environment. Here, one needs to both move in 
for close-ups and navigate to an overview in the visualization 
[Dav99, Jep96]. To support the overviews, the simplification 
should converge consistently to a collection of simple textured 
objects (such as a polygon for an extended façade or a box for 
many buildings). 



Our approach builds a binary tree of vertices from the bottom 
up via a sequence of vertex merges. We begin with all the vertices 
of the original mesh M0, which will be the leaves of the eventual 
tree. We use the vertex-pair collapse sequence {vcol0, …, vcolk} 
of the quadric simplification algorithm to determine the order of 
vertex merges and the positions of the merged vertices. For vcoli, 
when merging two vertices Va and Vb ∈ Mi, we create a new 
vertex Vc ∈ Mi+1 to be the parent of Va and Vb in the tree. Pointers 
to the faces removed by this merge are stored as the subfaces of 
Vc and each subface retains a residence index, the index of Vc. 
This information will be used during run-time to update the mesh. 
The algorithm proceeds until there is one vertex, the root of the 
tree. Note that we could also stop when the last face is decimated, 
when the error of the most recent vertex merge has passed some 
threshold, or when the above reference polygon. The result would 
then be a forest of binary trees [Hop97, Lue97]. 

 
Data Structures 
We have developed several structures, based on the work of 
[Hop97] and [Lue97], to make the run-time traversal of the above 
trees efficient. Our approach extends [Hop97] to general meshes 
without requiring the use of dependencies, while being able to 
update the mesh more efficiently than [Lue97] due to the binary 
structure of the tree. ListNode is a doubly linked list structure used 
to string together faces in the active triangle list and vertices in the 
active vertex list. An index is used as a unique identifier as well as 
an index to locate the respective face or vertex being linked. Face 
consists of references to the three original vertices as well as the 
three current vertices of a triangle. The residence_index refers to 
the index of the vertex node in which the face becomes a subface. 
Vertex consists of a 3D point location, a 2D texture coordinate, 
refinement information, binary tree id and depth, adjacent face 
and subface lists, and pointers to the parent and two child nodes. 
RefineInfo depends on the selective refinement approach used. It 
includes a bounding sphere radius for frustum culling as well as 
information that defines a deviation space to be projected into 
screen space in order to make a refinement decision on the node. 
Below is a listing of the structural organization. 

 
struct ListNode { 
     long index;  // unique identifier 
     ListNode *next; 
     ListNode *prev; 
}; 
struct Face { 
     ListNode active;  // list stringing active faces 
     Vertex *vertices[3]; // the original vertices 
     Vertex *proxies[3]; // the current vertices 
     Long residence_index; // index of the vertex where this 

// face is a subface 
}; 
struct Vertex { 
     ListNode active; // list stringing active boundary vertices 
     NodeStatus status;  // inactive, active, or active boundary 
     3-Vector pos;  // point location 
     3-Vector normal;  // normal vector 
     2-Vector texture_pos; // texture coordinate 
     RefineInfo refine_info; // selective refinement info 
     FaceNode *faces;  // head of linked list of pointers to Face 
     FaceNode *subfaces; // faces collapsed in this node 
     BitVector tree_id;  // binary tree id; root is 1, child nodes 

// are id*2 and id*2+1 
     int depth;  // depth in the binary tree 
     Vertex *parent;  // parent node to collapse into 
     Vertex *vt, *vu;  // child nodes to refine to 

}; 

 
Iterative Updates. We need efficient per-vertex handling for 
merges and splits that are made at run-time in the view-dependent 
simplification. On a merge, the approach is to deactivate the 
subfaces, move all other adjacent faces to the parent node, and 
update the corner references of the faces. The approach on a split 
is to activate the subfaces, distribute the adjacent triangles (and 
the subfaces) to the appropriate child node, and update the corner 
references. Our algorithm differs from [Lue97] in two ways: we 
maintain adjacent triangle lists for each vertex in the active mesh 
and we leverage the binary tree structure to minimize calls to the 
routine that finds the lowest active ancestor of a node. This is 
desirable since this routine is the most computationally expensive 
part of the inner loop of these routines The pseudocode for 
collapse of v (the merge of its two child nodes) is as follows. 
 
collapseVertex(Vertex *v) 
     for each subface s of v 
          removeAdjacency(s->proxies[3], s); 
          deactivateFace(s); 
     for each face f of v->vt 
          if f->residence_index = v->active.index then 
               removeAdjacency(v->vt, f); 
     for each face f of v->vu 
          if f->residence_index = v->active.index then 
               removeAdjacency(v->vu, f); 
   linkLists(v->vt->faces, v->vu->faces, v->faces); 
   activateVertex(v); 
   deactivateVertex(v->vt); 
   deactivateVertex(v->vu); 
 
splitVertex(Vertex *v) 
     for each subface s of v 
          activateFace(s); 
          lowestActiveAncestor(s->proxies[3], s); 
          for each corner c of {1, 2, 3} 
               addAdjacency(s->proxies[c], s); 
     for each face f of v 
          if childIsLeft(f, v) then 
               addAdjacency(v->vt, f); 
          else 
               addAdjacency(v->vu, f); 
     for each face f of v->vt 
          for each corner c of {1, 2, 3} 
               if f->proxies[c] = v then 
                    f->proxies[c] := vt; 
     for each face f of v->vu 
          for each corner c of {1, 2, 3} 
               if f->proxies[c] = v then 
                    f->proxies[c] := vu; 
   clearList(v->faces); 
   activateVertex(v->vt); 
   activateVertex(v->vu); 
   deactivateVertex(v); 
 
In the pseudocode, activate… adds faces or vertices to the active 
lists, and deactivate… removes vertices or faces; addAdjacency(v, s) 
and removeAdjacency(v, s) add/remove face s to/from the adjacent 
face list of vertex v; linkLists(a, b, c) concatenates lists a and b and 
moves the resulting list to c. In addition, lowestActiveAncestor(v, s) 
replaces the proxy of vertex v of face s with the lowest active 
ancestor of vertex v in the tree; childIsLeft(f, v) uses the depth of 
vertex v and the tree_id of the corresponding proxy of face f to 
determine whether the face belongs in the adjacent faces list of the 
left or right child of v; clearList(a) clears linked list a. Note that we 
always store vt and vu, the child nodes of the residence node of 
the face, in corner indices 1 and 2, thus s->proxies[3] refers to the 
other vertex involved. The implementation of clearList() is trivial 



(set list to NULL) since the nodes of the adjacent face list of v are 
moved into the child node lists, thus emptying the list of v.  
 

4  VIEW-DEPENDENT METRICS AND 
MESH UPDATES 

 
We now describe the details of the deviation metrics that are used 
to select a particular LOD (depending on the screen-space 
projection of the metric), the run-time meshing algorithm based 
on the structures in Sec. 3, and the particulars of the view-
dependent simplification process. We will then have a complete 
algorithm for efficiently visualizing complex models. 
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Fig. 1  Several metrics for view-dependent simplification. 

 
Deviation Metrics 
We consider several deviation metrics that encompass either 
geometric or texture error measures, as shown in Fig. 1. In Sec. 5, 
we will evaluate and compare these metrics, using them on 
different models. 

For the merge of vertices Va and Vb ∈ Mi to vertex Vc ∈ Mi+1, 
we define measures for the geometric deviation incurred. In Fig. 
1, each of these deviations is indicated by red dotted lines. These 
include the collapse distance deviation vectors GCDV : Gab = Vb – 
Va, Gac = Vc - Va (Fig. 1A), and the incremental surface distance 
deviation vectors GISV: Gc = Vc - Hi(Vc), Ga = Hi+1(Va) - Va, Gb = 
Hi+1(Vb) - Vb (Fig. 1B) where Hj(X) is the 3D point on mesh Mj 
closest to point X. The quadric error vector GQV = ∆(Vc)  ̂ n  (Fig. 
1C), simplistically computed by scaling the surface normal  ̂ n  
(which is the direction of highest deviation from the surface) by 
the quadric error at VC [Lin03], provides a better alternative. In 
practice, this measure uses the quadric error to scale a careful 
characterization of the actual normals involved, which is derived 

from the same quadric matrices. Alternatively, a simpler but less 
precise formulation is to use the quadric error as the radius of a 
bounding sphere, which results in a conservative bound. Notably, 
GCDV and GISV measure incremental errors, which are in general 
non-monotonic, while the quadric metrics measure errors from the 
original mesh, which are monotonic. In principle, the quadric 
metric should be the most accurate measure of geometric 
deviation. 

Geometric deviation gives an incomplete measure of the 
actual appearance deviation. We must also track texture deviation, 
which is the measure of how far a point Vi on a surface Mi has 
deviated from the point Vj on another surface Mj that has the same 
texture coordinate as Vi [Coh98]. Using Cohen's notation, we can 
map between 3D object space and 2D texture space. The function, 
Fj(X): Mj →  P, maps point, X, on the surface, Mj, to point, x, in 
the 2D texture domain, P.1. The inverse function, F-1

i(x): P →  Mi, 
maps point x in the texture domain P to a point X on surface Mi. 
We now define a one-way incremental texture deviation vector 
GT1V = Vc - Pc, where Pc = F-1

i(Fi+1(Vc)),and a set of two-way 
incremental texture deviation vectors GT2V: (GT1V, Va – Pa, Vb – 
Pb), where Pa = F-1

i+1(Fi(Va)) and Pb = F-1
i+1(Fi(Vb)). (Fig. 1D and 

Fig. 1E illustrate GT1V and GT2V, respectively.) The length of GT1V 
or the max length of the vectors in GT2V can also be used as the 
radius of a bounding sphere. Since this radius is non-monotonic 
(as is the case with all the other incremental metrics), we calculate 
the bounding sphere radius r(Vc) = ||G|| + max(r(Va), r(Vb)), where 
G is the deviation vector of choice, be it geometric deviation or 
texture deviation. The difference between one-way and two-way 
deviations is that the former calculates only the deviation from Mi 
due to Vc, while the latter calculates this deviation plus the 
deviation from Mi+1 due to Va and Vb. The two-way incremental 
deviation will thus provide a better bound. 

Texture coordinates for Vc are calculated by using the texture 
coordinate of the point closest to Vc in mesh Mi. That is, Fi+1(X) = 
Fi(Hi(X)). Note that the mapping is potentially not one-to-one.  
Furthermore, for the two-way bounds, we seek the texture 
coordinate for Vc that results in the smallest r. Therefore, the 
approach examines only the local neighborhood Ni,Vc of  Vc and 
looks for the texture coordinate from the closest points to the 
faces in NVc that minimizes the max two-way texture devation. 

Fig. 1F is provided for completeness. It describes the total 
texture deviation between the merged surface and the original 
surface. In this case deviations from all affected texture 
coordinates must be included [Coh98]. This total deviation is too 
complex to consider for interactive view-dependent 
simplification, hence we devise approximate metrics to bound it. 

 
Mesh Updates 
The run-time meshing algorithm resembles that of [Hop97] and is 
also similar to [Lue97] and [ElS99]. It maintains a linked list of 
active boundary vertices and a list of active triangles. A vertex 
may be active or inactive, and the active vertices may be on the 
boundary or interior. (See Fig. 2.) The boundary vertices are all 
the leaf nodes of the sub-tree of all active vertices. These 
boundary vertices (referred to as a front in the tree) comprise all 
the vertices of the current selectively refined mesh, the list of 
active triangles. A simplification pass (Fig. 3) consists of the 
traversal of the vertex front during which view-dependent 
simplification criteria are applied to decide whether to collapse, 
keep, or split a vertex node. A collapse removes a pair of vertices 

                                                 
1 Capital letters (e.g., X) refer to points in 3D, while lower case 
letters (e.g., x) refer to points in the texture domain. 



Fig. 4 Effect of dependencies on two different navigation paths.

and adds their parent vertex to the active vertex list while a split 
replaces a vertex with its two child vertices. Depending on the 
mesh update information stored at the node, a split/collapse may 
also result in the introduction/removal of t triangles from the 
active triangle list. For [Hop97] t is always 2, while our approach 
permits zero or more, allowing it to support arbitrary meshes as in 
[Lue97]. Unlike the vertex-clustering tree of [Lue97], it is able to 
exploit the binary tree structure to perform less work during this 
update. In contrast to [Hop97] and [ElS99], it neither stores, 
updates, nor enforces dependencies. 
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Fig. 2  The vertex front is circled. Green nodes are active-interior, 
blue nodes are active-boundary, and orange nodes are inactive. 
Here, vertex V7 is split and vertices V10 and V11 are merged. 

 
Dependencies. Both [Hop97] and [ElS99] enforce dependencies 
on the view-dependent simplification of the mesh to preserve 
some aspect of mesh validity or coherence including foldover-
prevention and local adjacency information. However, this 
requires the algorithm to perform a few additional comparisons 
for every refinement evaluation as well as update the 
dependencies after every vertex split or merge occurs. In addition, 
to perform a desired vertex split, it may be necessary to split 
neighboring vertices and their neighbors therein (that is, to 
recursively evaluate a chain of dependencies) just to respect the 
dependencies. Because a long and expensive recursion might 
result, ElSana et. al. [ElS99] ignore the need to recursively 
activate secondary display vertices and instead opt for a lazy 
approach, waiting for vertices to split during later frames. They 
report that this is reasonable for slowly changing view-
parameters. However, with our quadric-based tree, even slow 
navigation can result in a simplified mesh that is very visually 
inadequate for a long time, or it may never activate some visually 
critical nodes. Fig. 4 demonstrates this phenomenon. In 4a, the 
sphere was approached from the right and zoomed in. In 4b, the 
entire sphere was brought into view all at once, allowing the 
supporting vertices to be present, followed by zooming in to the 
same view. The tessellation inside the viewing frustum of 4a is 
inadequate. (It should resemble that of 4b.) In Fig. 4b, there is not 
much simplification enough outside the view frustum. The 
dependencies in 4b are overly restrictive due to a chain of 
dependencies. 
 

This phenomenon is more severe with our quadric-based tree 
than with the tree of [ElS99] which is based on a spline-distance 
metric. The spline-distance metric is an indication of deviation 
across the surface.  With this metric, a vertex pair collapse on the 
surface is highly likely to increase the error of the potential 
subsequent collapse between the newly picked vertex and its 
neighbors. The quadric metric is an indication of deviation 
orthogonal to the surface, so a vertex pair collapse does not 
necessarily increase the quadric error of the new vertex with 
respect to its neighbors, particularly in flat or common curvature 
regions. Thus, a tree built with the quadric metric is much more 
likely to result in chains of dependencies as it is more likely to 

nest neighbors as ancestors or descendents or each other as 
opposed to across the tree horizontally as cousins. 

Note that the algorithm of [Hop97] imposes less restrictive 
dependencies. Even though this would reduce the chance of 
inadequate refinement when taking the lazy approach (as in 
[Els99]), their algorithm opts for correctness and evaluates chains 
of dependencies anyway. 
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Fig. 3  The pink, purple, and dark gray triangles are subfaces of 
V7, V5, and V4, respectively in Fig. 2. (a) Full mesh.  (b) Tree on 
left of Fig. 2.  (c) Tree on right. 

 
In our approach, no run-time dependencies are enforced. The 
[Hop97] method requires manifold surfaces, which is too narrow 
for our case, and the [ElS99] method is too restrictive in terms of 
the run-time simplifications it will permit. Instead, we allow the 
view-dependent simplification criteria alone to determine the 
mesh from all those encoded in the tree structure. Not enforcing 
supplementary dependencies allows for maximally adaptive 
simplification and also speeds up computation of the active vertex 
front. Ignoring dependencies means that there may be a chance for 
mesh inconsistencies, such as fold-overs, during run-time 
simplification. However, these hardly ever occur in practice, 
although they are somewhat more likely for artificial meshes 
(such as meshes for flat or nearly flat walls). For textured 
surfaces, our screen-space appearance metric bounds texture 
deviation. So any visual artifacts due to fold-overs on texture-
mapped surfaces with no additional surface-dependent visual 
ornamentation, e.g. specular highlights, have negligible visible 
impact (when the texturing is applied to both sides of the 
polygons). In practice we have found that not only do foldovers 
occur infrequently, but also that visual artifacts due to foldovers 
are not noticeable. This is consistent with our approach to focus 
on preserving appearance attributes rather than on mesh 
consistency. This is reasonable since the mesh itself often has no 
fundamental value (as in models acquired from laser range data or 
even in some constructed models) and sometimes is not even 
consistent, as in non-topological models. 



 
Screen-Space Deviation. To determine the maximum screen-
space deviation, we select one of the above deviation metrics and 
project the deviation bounding sphere to screen space. 

As with most approaches, e.g. [Hop97, Paj01, Lin03], we opt 
for an approximate but more efficient evaluation instead of 
precise evaluation.  We calculate the projected radius, p, of the 
sphere centered at v with radius r as follows. 
 
γ = 2 * h / φ 
p = γ * r / (v - e)    •

r 
e  

 
where h is the vertical size in pixels of the viewport, φ is the 

(vertical) field of view angle, γ is an approximation of the pixels 
per view angle subtended, and     

r 
e  is the view direction vector, 

which is calculated once per view.  A vertex is refined if its p is 
less than a pixel threshold τ. 

This approximation underestimates the projection sizes away 
from the view center and overestimates those near the view center 
and a parallel projection assumption is made. Furthermore, the 
neighborhood of V on an adaptively simplified mesh may be 
different than the neighborhood of V for which the bounds were 
originally calculated during the build phase. 

 Hoppe [Hop97] estimates the Hausdorf distance between 
Nv,i+1, the local neighborhood of v after edge collapse i, and Nv,0, 
the corresponding local neighborhood on the original mesh, M0, 
by analyzing the residual error vectors from a dense set of points 
on M0. The distance bound obtained is used as the radius µ of the 
bounding sphere, which is used to bound error during view-
dependent refinement. In addition, this approach can project a 
vector scaled in the direction of the normal that biases the 
refinement for preserving geometry on or near the silhouette. This 
approach yields nice results, but requires significant computation, 
especially if it were to be extended to account for texture 
deviation. Although the tree is built off-line, it is still desirable to 
have an efficient build phase, especially for applications such as 
urban modeling where data generation to visualization turn-
around time is important. 

 

model verts tris 
initial 
pairs load init T1V ISV T2V

tree 
height

sphere 10k 20k 30k 0.17 0.19 0.36 0.44 0.84 54 
wave 103k 205k 308k 1.64 2.22 4.64 5.22 8.16 26 
bunny 36k 69k 104k 0.49 0.77 1.48 1.70 1.77 22 
buddha 150k 300k 450k 2.12 6.05 7.31 8.06 8.49 26 
façade 49k 97k 146k 1.03 0.95 2.05 2.36 3.86 36 
wall 3.6k 7.2k 36k 0.14 3.67 0.25 0.28 0.52 31 
Table 1. All timings are in seconds. 

 
Frustum and Backface Culling. Each node of the vertex tree 
stores a frustum culling bounding sphere radius that bounds all 
descendant vertices. Our implementation compares the sphere 
with the six planes of the view frustum. Nodes with frustum-
culling bounding spheres that intersect the frustum are candidates 
for refinement. Alternatively, one can opt for a faster but more 
conservative evaluation of view frustum visibility as in the 
frustum cone of [Paj01]. 

For closed manifold models of objects, faces on the back side 
with respect to the viewpoint are not visible as long as the 
viewpoint is never located on the inside the model. Therefore, it 
makes sense to allow these faces to simplify as much as possible. 
Like [Hop97, Paj01], we bound the spread of normals of the 

adjacent faces of a vertex v and the descendants of v with a cone 
represented as the vertex normal,   ̂ n v, and a cone angle, 
αv. Α vertex is considered unnecessary for supporting a front face 
if  ̂ n v • (v - e) / ||v - e|| > sin αv holds. The situation is more 
complicated, of course, for open or non-manifold models, as are 
sometimes encountered in urban visualization. 

5 RESULTS AND DISCUSSION 
We test our approach and evaluate the various metrics using a 
variety of models of different types (Figs. 5-8). The sphere, wall, 
and wave models are procedurally generated and include texture 
coordinates. The wall is comprised of 1800 separate components 
with arbitrarily connectivity. The wave is a height-field of sine 
waves that continuously vary in frequency. The bunny, the 
Buddha, and the building façade are models constructed from 
scanned data. The building façade [Fru01] includes texture 
information scanned concurrently with the geometry, and thus 
possesses an inherently correct parameterization. Table 1 gives 
basic information, including size, initial candidate simplification 
pairs, and tree height, for these various models and shows their 
respective tree construction times in seconds. (These timings are 
from our prototype implementation running on a 2.4GHz 
Pentium4 Win2k PC with 512MB of RDRAM and a NVIDIA 
Quadro4 900XGL graphics card.) Our build times are comparable 
with qslim [Gar97] since the quadric simplification approach is 
the foundation of our tree build algorithm. On top of the basic 
algorithm, we perform additional computation associated with the 
view-dependent structure, including linking the tree, computing 
texture coordinates, and computing run-time refinement 
information such as the error bounds. The two-way texture bounds 
(T2V) followed by the two-way geometric bounds (ISV are the 
most computationally expensive error bounds to compute, so 
those build times are listed separately. The total build times are 
significantly faster than for some other methods [Hop97]. 

For a fly through of the wave model, we achieve average 
frame rates of 20fps, where 54 percent of each frame is devoted to 
the simplification pass and the rest to rendering. We achieve 
simplification throughputs of over 60k triangles per second (tps) 
for collapses and over 50k tps for splits. Because we have 
concentrated on the new view-dependent structure and error 
metric implementation in this paper, our implementation is un-
optimized for rendering. It traverses a linked-list for every 
refinement pass and traverses a linked-list to render every frame.  
We have not implemented optimizations, such as vertex arrays (as 
in [Els02]) and display lists (as in [Lin03]), or mesh update 
optimizations, such as prioritized traversal [ElS02], triangle-
budged simplification [Lue97], asynchronous simplification 
[Lue97], etc. We anticipate that significant improvement in 
performance would result in incorporating any of the above, 
which is straightforward for most. 

 
 

 
Fig. 5 View-dependent simplification of bunny and wave models. 



Fig. 5 shows the view-dependent simplification in action. For the 
bunny model, notice the high fall-off in mesh tessellation density 
outside the view frustum (blue outline). The wave model (right) 
exhibits more simplification in areas of lower frequency content 
(towards the lower right of the image) and less simplification in 
areas of higher frequency content (towards the upper left). Here 
we use GT2V.  The GISV, GQV, and GT1V metrics behave similarly. 

Figure 6 shows the facade model simplified using each metric 
at one pixel screen-space deviation for 1024 x 768 pixel views. 
The blue box shows the viewport. The first pair (6A, 6B) is at full 
resolution; each subsequent pair is for a different metric. In each 
pair, the right-hand image shows the mesh explicitly. Note that the 
geometry-only metric GCDV (6E, 6F) preserves appearance, but 
does not allow much simplification. Also note that the geometry-
only metric GISV (6I, 6J) allows significant simplification, but fails 
to bound texture deviation. As shown in (6C, 6D), GT1V bounds 
texture deviation at the vertices of the active mesh, but not in 
between. GT2V (6G, 6H) not only bounds texture deviation at the 
vertices, but it also bounds deviation across the faces. The quadric 
sphere metric GQV (6K, 6L) gives nice adaptive simplification, 
refining more in areas of high geometric detail, but guarantees no 
bounds on texture deviation. Furthermore, there is less of a fall-off 
in tesselation for portions of the model further from the viewpoint 
than with other approaches. 

 

  
Fig. 7 Wall model with (left) and without texture. 

 
Fig. 7 demonstrates that our scheme can preserve appearance even 
on piecemeal meshes such as the wall model. This an architectural 
model generated with a procedural technique where mesh 
topology is not enforced [Won03]. Notice how the mesh falls 
apart outside the view frustum, yet inside is virtually 
indistinguishable from the original. As it moves inside the 
frustum, the outside mesh also reforms consistently. Finally, Fig. 
8 shows the Buddha model simplified with the texture deviation 
metric GT2V, despite it not being given (nor does it compute) a 
texture parameterization. The GT2V metric gracefully falls back to 
GISV. 

 
6  CONCLUSIONS AND FUTURE WORK 

 
We have presented a quadric-based approach for appearance-
preserving, view-dependent visualization of triangulated models. 
We have described a method for quickly generating a 
visualization-ready hierarchy from an input model. This hierarchy 
can be efficiently traversed for view-dependent rendering. In 
addition the data structure accommodates different error metrics. 
We have characterized the relative merits of several metrics in 
determining the appropriate mesh for preserving appearance. We 
have presented results for several models that show the visual 

quality of our approach and the merits of the different error 
metrics.  

 
There are a number of avenues for future work. Normal maps 

and vertex color information can be added to the formalism to 
efficiently improve the appearance-preserving character of non-
texture mapped models. A formulation for boundary preservation 
using reference planes can be built on our approach to permit 
consistent transition to simple textured objects appropriate for 
overviews of collections of objects. In addition a more general 
approach could be developed for urban models based on 
architectural semantics [Won03] that would support interactive 
3D planning. Finally large collections of models could be placed 
in a scalable structure for interactive visualization that ranges over 
all scales. Our approach has the flexibility to support all these 
avenues. 
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Fig. 8 Buddha model simplified with GT2V. 
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Fig. 6 Façade model (Fru01) comparing different metrics at a resolution of 1 pixel (except for 6A, which is full resolution). 
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