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SUMMARY 

The purpose of this thesis was to design and construct a system for 

the experimental determination of the heat transfer coefficient of liquid 

sodium in a thermal entrance region. 

A review of the literature revealed that analytical and experimental 

investigations of entrance region phenomena had been conducted for a 

variety of fluids. In quest of higher rates of heat transfer, much 

attention has recently "been given to liquid metals as possible heat 

transfer media. Quite often experimental data for these fluids have been 

found to he lower than theoretical predictions. In particular, two previous 

works dealing with the heat transfer coefficient of liquid sodium in an 

entrance region reported results which were erratic and lower than expected.. 

The phenomena of wetting between a liquid-solid interface has been sug

gested as a possible cause for the variation in experimental measurements. 

However, the actual effects of wetting on heat transfer are not definitely 

known. One case in which a non-wetting condition between sodium and 

stainless steel was known to exist was reported with no effect of wetting 

on heat transfer. Some tests have been made with liquid metals in which 

the data indicated a definite decrease in the heat transfer coefficient 

due to non-wetting, while others have shown that there was little variation 

in results between wetting and non-wetting. The effects of wetting are 

believed to be more pronounced in an entrance region, where coefficients 

are higher, and in flow passages of small diameter, where a small thermal 

resistance would be magnified. A system is therefore described in which 
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the heat transfer coefficient at a sodium-copper interface with a small 

length-to-diameter ratio could be measured. Since sodium is used com

mercially to deoxidize copper at high temperature, it is believed that 

a wetting condition could be obtained merely by raising the interface 

temperature. When wetting existed, the measured heat transfer coefficient 

should closely approximate predictions of the theoretical analogy, 

Three analytical results are presented which could be used in com

parison with experimental data obtained by the test apparatus described. 

The solutions differ only in the postulated velocity distribution. They 

are as follows: (l) the solution by Graetz for parabolic velocity profile, 

(2) the solution by Graetz for uniform velocity distribution, and (3) the 

solution by Poppendiek and Palmer for velocity distribution obeying the 

.1/7 power law. 

Since experimental results are to be compared with the above solu

tions, the test section must be designed to approximate closely the postu

lates inherent in the solutions. These are as follows: (l) fluid 

temperature is uniform upstream of the test section, (2) heat is added to 

the fluid only at the copper-sodium interface, (3) longitudinal heat con

duction is negligible, and (k) the temperature of the copper-sodium inter

face is constant. A method for computing longitudinal conduction and heat 

addition to the sodium other than at the test surface is given in the 

appendix. 

The complete system was assembled and loaded with sodium. The 

initial test section and pump both failed to operate. These parts were 

replaced, but still no data could be taken due to the formation of insolu

ble oxides during modification of the equipment. The apparatus was then 

dismantled, cleaned, and inspected. 
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The final test section built for the present system is believed 

to be suitable for measuring entrance region coefficients at elevated 

interface temperatures. The design introduces a considerable deviation 

from theoretical postulates; however, a closer approximation employing 

a heat insulating gasket was found impossible. 

Recommendations are made for a system which it is believed would 

operate satisfactorily. The test section used could be similar to the 

final one described in this thesis. The pumping problem could be 

solved by trying several models, or it could be completely eliminated 

by circulating sodium with gas pressure. Other recommendations con

cerning the arrangement of equipment and precautions for keeping the 

sodium free of contamination are also made. 



CHAPTER I 

INTRODUCTION 

General.—One of the greatest challenges in the field of power generation 

has been the redesign of heat exchange equipment to obtain higher rates 

of heat transfer more efficiently and with smaller surface areas. The 

challenge has been accepted by many investigators, and great improvements 

have been made in heat exchangers over the years. The results of their 

works are the high performance pieces of equipment found in a wide 

variety of modern industries. 

There have been two recent developments in the field which may 

permit phenomenal rates of heat transfer compared with values used in 

the design of present equipment. One of these is the use of liquid 

metal6, which have high thermal conductivities, as heat transfer media. 

The other development is a more effective use of the high heat transfer 

coefficients associated with a thermal entrance region. 

A thermal entrance region occurs when a thermally established 

fluid flows past a discontinuity in the thermal boundary conditions. The 

discontinuity could be in the form of a sudden change in either temperature 

or heat flux of the wall of a tube through which the fluid is flowing. 

In either case the heat transfer coefficient at the discontinuity can be 

shown to be infinite. When a viscous fluid flows through a tube, the 

fluid near the wall will be in laminar motion. The mode of heat transfer 

near the wall is then by molecular conduction only. The heat transferred 

across the solid-fluid interface can be expressed by the following 
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equation: 

h (t - t ) =* -k ¥• x x w m'x £y LJx A w rA *JJ (x, o) 
( i ) 

In this case, f is the heat flux per unit area of the interface, h is the 

heat transfer coefficient, t is the tube wall temperature, t is the 
' w m 

mixed mean fluid temperature, k is the thermal conductivity of the fluid, 

|— is the temperature gradient of the fluid, x is the direction of flow 

with x a 0 at the discontinuity, and y is the direction normal to the 

direction of flow with y a 0 at the wall. Equation 1 may he rearranged to 

solve for the heat transfer coefficient as 

h - -.^iyjfr, °) (2) 
Jklx * t - "b 

v w m'x 

The following postulates are made: (1) a fluid of uniform temperature 

flows through a channel having the same wall temperature and (2) at the 

position x =» 0 the temperature of the wall is suddenly changed to a new 

value which is held constant for all x greater than zero. The temperature 

gradient, *— (x, 0), can then be shown to approach infinity as x approaches 

zero. Since (t - t ) is finite at x = 0, the heat transfer coefficient 
w m x ' 

is infinite. 

For the case of a heat flux discontinuity the assumptions are as 

follows: (l) a fluid of uniform temperature flows through a tube with 

the same wall temperature and (2) a heat flux is imposed at x = 0 which 

is held constant for all x greater than zero. Then (t - i ) at x = 0 
° w m 

is zero. However, |— (x, 0) has a finite value; hence the heat transfer 

coefficient is again infinite at x = 0. 
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By using a liquid metal as a heat transfer medium and taking 

advantage of the high coefficients obtained in an entrance region, the 

design of heat exchangers with very high rates of heat transfer should 

thus be possible. However, complications have been noted with liquid 

metal systems which often make accurate predictions of heat transfer 

coefficients impossible. One of the greatest uncertainties is the 

effect of wetting on the heat transfer coefficient between liquid 

metal and a solid interface. 

Previous work.—There has been very little work done on the topic of heat 
M H H P H H ^ M i M m H M M p * 

transfer to liquid metals in a thermal entrance region with constant wall 

temperature. However, the theoretical effects of an entrance region have 

been known for many years; and recently considerable work has been done 

on heat transfer to various fluids in an entrance region with constant 

wall temperature or constant heat flux. 

The earliest known work which could be adapted to an entrance 

region is the mathematical solution of Graetz (1) published in 1883 for 

forced convection heat transfer to a fluid flowing through a tube with 

uniform velocity distribution. Graetz (2) also developed an equation 

for fluid in laminar flow in a tube which was published in l885» 

The next important work was not until 1921 when Latzko (3) pre

sented a solution for heat transfer in a thermal entrance region for a 

fluid in turbulent flow. He postulated a Prandtl modulus of one and 

neglected the contribution of molecular conduction to heat transfer. 

In 1928 Leveque (k) derived a solution which is used as an 

asymptotic solution to the equation of Graetz for parabolic velocity 

[umbers in parentheses refer to references in the bibliography. 
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distribution of a fluid very near the beginning of a thermal entrance 

region. 

In 19^6 Sanders (5) presented a solution for a fluid with a 

fully established velocity distribution in an entrance region of constant 

wall temperatureo His solution is applicable only for fluids of high 

Prandtl modulus. 

Boelter, Young, and Iversen (6) made experimental investigations 

of local heat transfer coefficients to air with a uniform wall temperature. 

Values for a wide variety of simultaneous hydrodynamic and thermal entrance 

conditions were obtained<, The range of Reynolds modulus was from 17,000 

to 56,000. 

Humble, Lowdermilk, and Desmon (7) made an investigation of average 

heat transfer and friction coefficients with air flowing through smooth 

L2 
tubes. The ratios of — used were 15 to 120. Their results and related 

N.A.C.A. research is summarized by Pinkel (8). 

Seban and Shimazaki (9) presented numerical solutions for fluids 

of high thermal conductivity in a thermal entrance region of uniform wall 

temperature0 Their calculations included the contribution of eddy diffu-

sivity. Later Seban (10) performed an experimental investigation of the 

heat transfer coefficient to lead-bismuth entectic in a tube of approxi

mately constant heat flux. Both local coefficients in the entrance region 

and average coefficients for the tube length were obtained„ 

English and Barrett (11) obtained experimental values of the 

local heat transfer coefficient between mercury and a stainless steel 

tube with a constant wall heat flux0 Interest was largely placed on the 

Symbols used are defined in Appendix A. 
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average coefficient; however, their data could be applied to the entrance 

region. 

Poppendiek (12) developed a theoretical solution for the Nusselt 

modulus of a fluid in turbulent flow between parallel plates in a thermal 

entrance region with a constant wall temperature. The contribution of 

eddy diffusivity to heat transfer was neglected. The solution can be 

applied to the initial portion of an entrance region of a circular pipe 

as the flow annuli near the pipe wall are the important heat transfer 

layers and may be treated as the flow layers between parallel plates. 

Poppendiek and Palmer (13) later presented an asymptotic solution to 

simplify the solution for large values of Pe— . 

Aladyev (ik) obtained local and average values of heat transfer 

coefficients for water in turbulent flow in a thermal entrance region. 

Reynolds modulus varied from 2,500 to 100,000. 

Johnson, Hartnett, and Clabaugh (15 > 16, IT) investigated the heat 

transfer coefficient from a mild steel tube to lead-bismuth entectic in 

laminar, transition, and turbulent flow and to mercury in turbulent flow. 

All cases were with constant wall heat flux. The test section was a 3 A 

in., 18 gage tube four feet 3.ong. However, the Nusselt modulus was 

obtained for eight sections so the results could be applied to the 

entrance region. In all cases the average Nusselt modulus was considerably 

below the predictions of the Martinelli-Lyon momentum theory. 

Stromquist (18) measured heat transfer coefficients to mercury 

with constant wall flux. Both fully developed and entrance coefficients 

were obtained. Tests were also made with sodium additives, which act 

as wetting agents for mercury and steel. The Nusselt modulus was not 

appreciably increased with wetting. 
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Quittenton (19) measured local and average heat transfer coef

ficients "between sodium and a monel tube with constant heat flux. The 

data were very inconsistent even between runs at identical temperatures 

and Peclet moduli. When compared with the following theoretical equation 

of Lyon given in the Liquid-IMetals Handbook; (20), the measured data were 

considerably lower and scattered: 

Nu - 7.0 + 0.025 Pe0*8 (3) 

Harrison (21) made experimental and analytical investigations of 

the Nusselt modulus for mercury and sodium in an entrance region with 

constant wall temperature. The heat exchange surface was a copper disk 

with =r ratios as low as 1/2. The results with mercury compared quite 

well with the equation of Poppendick and Palmer (13) for a velocity 

distribution obeying the l/7 power law. Sodium da,ta were erratic 

and below the predicted values. A non»wetting condition was believed to 

exist which set up an additional thermal resistance at the test section 

wall. 

Berry (22) made an analytical analysis of the Nusselt modulus in 

an entrance region. An expression was found for the Nusselt modulus ELS 

a function of downstream position. The dependence of the entry length 

on Reynolds modulus and Prandtl modulus is also presented. 

Diessler (23) made a comprehensive analytical and experimental 

study of friction factors and heat transfer coefficients of a fluid with 

a Prandtl modulus of 0.73 in an entrance region. The theoretical 

solution for a fluid with a Prandtl modulus of 0.01 in a thermal entrance 

region with constant heat flux is also given. 
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Wingo (2k) measured the heat transfer coefficient to water in 

transition flow in an entrance region with constant wall temperature. 

Lubarsky and Kaufman (25) reviewed several experimental investi

gations on the heat transfer1 coefficient of liquid metals. Both average 

and entrance region coefficients were discussed. In many cases the 

data of the original experiirentor were re-evaluated using one source for 

the properties of the fluids involved. Comparisons were made between 

each work and the appropriate theoretical calculations. 

Only two of the experimental works cited, Quittenton (19) and 

Harrison (21),;were concerned with the coefficient for sodium in an 

entrance region. The results of both were erratic and below theoretically 

predicted values. An additional thermal resistance caused by non-wetting 

of sodium and the test section wall could result in erratic coefficients. 

Moyer and Rieman (26) measured the heat transfer coefficient for sodium 

and type 3^7 stainless steel over a temperature range of 100 to 500 

degrees centigrade. The measurement was obtained by partially sub

merging a stainless steel rod in a molten sodium bath. They concluded 

that wetting had no effect on the heat transfer coefficient. However, 

in a test section similar to the one used by Harrison (21) with a small 

diameter, an additional resistance due to wetting could exist which 

would control the value of the heat transfer coefficient; whereas in a 

larger, static system the effect could not be noticed. 

Objective.—The objective of this thesis is to describe a system for 

measuring the heat transfer coefficient between liquid sodium and a 

copper disk in a constant wall temperature entrance region. With the 

apparatus, the Reynolds modulus and the temperature of the copper-
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sodium interface could be varied. As the temperature level is increased 

the degree of wetting is believed to increase. This effect could be 

observed by comparing measured and theoretically predicted values of the 

heat transfer coefficient. As the degree of wetting increases the 

measured results would become more consistent and would approach predicted 

values. 



CHAPTER. II 

ANALYTICAL SOLUTIONS 

Analytical solutions for entrance region phenomena have been 

developed based on certain postulates. Since experimentally obtained 

results are to be compared with the theoretical analogy, the assumptions 

used in the analogy must be adhered to in design of the test apparatus. 

A summary of analytical derivations along with the assumptions used 

are presented below. 

The mode of heat transfer to a fluid in laminar motion is by 

molecular conduction. For a fluid in turbulent motion, an additional 

contribution to heat transfer exists in the eddy motion of fluid 

particles. However, for liquid metals, the thermal eddy diffusivity 

is small compared to the thermal molecular diffusivity for low Reynolds 

moduli. For such a case heat transfer is primarily by molecular conduction 

The criterion used by Poppendiek and Palmer (27) for neglecting the Contri

bution of eddy diffusivity to heat transfer is if the mean § ratio is 

less than 20 per cent of 2(, or the inverse of the Prandtl modulus. 

The heat transfer coefficient is usually expressed in terms of the 

Nusselt modulus for purposes of derivation and correlation. In terms of 

this parameter, Equation 2 becomes 

"V-T-TT^hwT- W 
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The terms of Equation k are the same as used in Equation 1. The Nusselt 

modulus defined above is at the position x from the thermal, discontinuity, 

The average Nusselt modulus for length L in the direction of flow is 

defined as 

N-
\ 

Nu dx 
x (5) 

The general method of solving for the Nusselt modulus is to solve 

for the temperature distribution within the moving fluid. The Fourier-

Poisson equation is used to describe the temperature field due to 

molecular conduction only in a moving fluid. In cylindrical coordinates 

it is 

CQ "Si + u -5* + u n + u a£ 
£T + Xfcc + r^r + r dr 

* 2£ + A 
r dr dx 

at-

k^i 
dx + &[*£] + <6) 

r ^ L <^J 

The following postulates are made to simplify the equations:: ; 

.1. Conduction is negligible parallel to the direction of flow; 

i.e.,*J|=0. 

2. The temperature field is symmetrical about the axis; i.e., 

5?"°-
3- Steady conditions prevail with respect to time; i.e., ^= » 0. 

k. The velocity distribution is established; i.e., u = u^ = 0. 

5. Physical properties are constant and hence independent of 
.2. 

temperature; i.e., ~ 
3x |_ dx J 

ati = k a > t 
S?' 
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Equation 6 thus reduces to 

u |* • or 
X ^X 

£* + i S* 
^.2 r ar 
r 

(7) 

The following boundary conditions for a thermal entrance region 

are postulated: 

1. Initial fluid temperature is uniform; t(0, r) = t • 
o 

2. Wall temperature is uniform; t(x, b) = t . 

3. Temperature field is axially symmetrical; ̂ — (x, 0) = 0 . 
oT 

With the above assumptions and boundary conditions, three solutions 

for entrance region heat transfer are presented for comparison. They 

differ only in the postulated velocity distribution. The solutions are 

as follows: 
1. the solution by Graetz (28) for parabolic velocity distribution, 

2. the solution by Graetz (28) for uniform velocity distribution, 

and 

3. the solution by Poppendiek and Palmer (13) for velocity 

distribution obeying the l/7 power law, 

The solution of Graetz for the average Nusselt modulus of a fluid 

with parabolic velocity distribution is shown by Harrison (29) to be 

'2'- '-"* (8) 
L " " " " 

Nu_ .- -1/4 Pe I ln[o.820e-2(2-705> /Pe &M + 

O.0972e-2(6-66> /Pe <D/L> + 0.0135e-
2<10-3> /Pe(D/L> + ---' 

Since the solution of Graetz has not been evaluated for the region very 

near the beginning of a thermal entrance, the following solution by 

Leveque (30) is used as an asymptote: 
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N" \ 
1.615 * S 

-i V 3 
(9) 

Harrison (31) derives the following equation for the Nusselt 

modulus of a fluid with uniform velocity distribution based on Graetz*s 

solution: 

N "L 

00 

= - 1/k Pe 2 In kt-1 L n-1 
-ka. /Pe (D/L) 

e n' x ' ' (10) 

n 

The velocity distribution of a fluid in turbulent flow can be 

expressed as the following power law; 

u = B( I )» (H) 

where u is the fluid velocity at a distance y from the wall of radius b 

and B is a constant. The value of m is shown by Schlichting (32) to 

depend on the Reynolds modulus * Poppendiek and Palmer (13) have developed 

the following asymptotic solution for large values of Pe — for a fluid 

obeying the power law velocity distribution: 

1 m + 1 
Nu a 
X n=T-2

 + i> L 2 l " m < m + 2 > X 

l/(mf2) 

(12) 

where m is the exponent in the power law. By setting m = 0 Equation 12 

can be used as an asymtotic solution to Equation 10 

Nu * 0.56^ 
x :»g 

1/2 
(13) 

The average Nusselt modulus then becomes 
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NIL = 1.128 »l 
1/2 

(3A) 

At a Reynolds modulus in the range of 100,000, the exponent m is 

1/7. Substituting this value into Equation 12, the Nusselt modulus 

becomes 

7/15 
Nu =» O0638 
x 

The average Nusselt modulus is then 

X (15) 

N< \JL = 1.196 p.2 
L* 

7/15 
(16) 

The solutions for the average Nusselt modulus of the three different 

velocity distributions are given in Figure 1. 



CHAPTER III 

DESCRIPTION OF THE APPARATUS 

General system.—The conditions used in design and procurement of sodium 

handling equipment were 600°F. temperature and 30 psig. pressure. The 

information on materials which will withstand sodium at 600°F. is well 

summarized in the Liquid-Metals Handbook (33)» and this reference was 

frequently consulted. Clean materials which would not contaminate the 

sodium were required. 

The sodium loop is shown schematically in Figure 2 and by photo

graph in Figure 3« The apparatus consisted of the following parts: 

(l) melting tank, (2) filter, (3) sump, (k) pump, (5) test section, and 

(6) meter. 

The melting tank was fabricated from a section of 10 in. black 

steel pipe. A steel plate was welded to the bottom and tapped for a 

l/2 in. pipe outlet. The top of the tank was flanged so sodium bricks 

could be loaded into the system. On the discharge of the tank, a l/k 

in., 200 lb. stainless steel gate valve was installed so the tank could 

be isolated from the other parts of the system after the initial melting 

had been accomplished. 

The filter consisted of a porous stainless steel element No. C-l4-l8, 

grade E, and a container No. 1000-20 manufactured by Micro Metallic 

Corporation of Glen Cove, New York. The material was type 30^ stainless 

steel, and connections were l/k in. pipe size. A special gasket made 

from copper plate was used in place of the rubber gasket furnished. A 
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bypass with a l/k in., 200 lb. stainless steel globe valve was installed 

for the filter. 

The sump was made from k in. schedule *J-0 type 30^ stainless steel 

pipe. It was 1 ft. - 7 in. long. A stainless steel plate was welded to 

each end. Three l/k in. stainless steel couplings were welded to the 

sump for sodium and vent lines. All welding was performed by the electric 

arc method using stainless steel rods. 

Two different pumps were tried in the system. The first was an 

elecgromagnetic type pump. It consisted of the windings of a three 

phase, 220 volt induction motor and a coil of stainless steel tubing. 

The copper wires on the armature were removed, and the armature was 

machined down. A l/k in. diameter by 0.01 in. wall, type 30̂ - stainless 

steel tube was coiled on the armature, and the assembly was replaced 

in the motor windings. The ends of the tubing were passed through 

holes in the motor end bells and connected with the other parts of the 

sodium circuit. The armature was held stationary. The pump contained 

no moving parts, "but was designed to circulate sodium "by magnetic flux 

established by the alternating current in the motor windings. The 

Liquid-Metals Handbook (3^) describes a pump which operates on the same 

principle. Attempts to circulate sodium with this pump were unsuccessful, 

and it had to be replaced. 

A stainless steel centrifugal pump, type E-l, manufactured by 

Eastern Industries of New Haven, Connecticut, was then used. The pump 

was designed for water and similar fluids, at low temperatures. To 

modify it for use with sodium, a new bearing made from high nickel cast 

iron and a graphite and asbestos packing were installed. Sodium tended 



16 

to leak through the packing when gas pressure over about 15 psig. was 

applied to the system,, Another disadvantage was the motor operated at 

too high a temperature due to heat conduction from the pump. A l/k in., 

200 lb, globe valve was provided on the pump discharge for flow control. 

The meter was made from a 2 in. schedule kO stainless steel nipple 

12 in. long. The ends were threaded for two stainless steel pipe caps. 

A l/k in. coupling was welded to the side of the 2 in. pipe near the 

bottom for a sodium inlet. Another 1/4 in. coupling was welded near 

the top for a vent. Two electrical probes were placed in the cap at 

the top of the 2 in„ pipe. One probe extended down to just above the 

sodium inlet; the other was about an inch below the vento The volume 

3 of the meter between probes was 23o05 in„ The flow rate was measured 

by closing a valve in the sodium circuit and thus forcing the sodium to 

flow into the meter. When the sodium came in contact with the long probe 

an electrical circuit was completed which started a timing device. When 

contact was made between the sodium and. the short probe the timer stopped 

and an alarm sounded. The valve could then be opened and the meter 

drained back into the sodium loop. The electrical circuit is shown 

schematically in Figure k0 

The various parts of the system were connected with 1/2 in. type 

30k stainless steel tubing. The fittings used were stainless steel 

SWagelok compression fittings made by Crawford Fitting Company of 

Cleveland, Ohio. 

In addition to the sodium system, an inert gas and vent system 

was needed. This consisted of a copper tube joining the vent connection 

of the meter with the sump, a connection in the tube for gas supply and 
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vent, a cylinder of argon with a pressure regulator, a vacuum pump, two 

pressure and vacuum gages, and five "brass valves. The system was 

connected so the entire sodium loop could be evacuated or supplied with 

argon, or either the sump or meter could be vented or subjected to 

pressure with argon* With this arrangement it was possible to force 

sodium through the loop into the meter or back out of the meter and 

thereby verify that the sodium lines were free* 

All pieces of equipment containing sodium were heated with elec

trical heaters fastened to the outside of the equipment. The heaters 

used were Chromalox, inconel sheathed, of the ring, strip, and tubular 

design manufactured by Edwin L, Wiegand and Company of Pittsburgh, 

Pennsylvania. Control was obtained by Variac transformers. The 

electrical diagram is shown in Figure 5. All heated equipment and 

tubing were covered with 2 in. thick, premolded Kaylo insulation and 

Super k& Insulating Cement. 

Test section.--The test section was patterned after the type used by 

Harrison (21) with some modifications. The necessary features of 

design were a good approximation to the analytical postulates presented 

in Chapter II and an adaptation to high temperature sodium,, The 

important restriction was to produce a temperature discontinuity at 

the test plate. Sodium temperature was to be measured at points just 

preceding and Just following the test section. Between these two points, 

it was desired to add heat to the sodium only at the copper interface 

with adiabatic conditions on each side of the copper. Three different 

designs were tried. 
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The first test section is shown in Figure 6. It was composed of 

a 1/8 in. thick copper disk of 3 in. outside diameter and a 1/8 in. 

drilled hole in the center, A synthetic sapphire gasket was placed on 

each side of the copper plate to reduce longitudinal conduction of heat. 

Two identical hydrodynamic calming sections were made to fit against 

each sapphire gasket. These sections consisted of a carbon steel tube 

2 in. long and a 5 in. diameter flange on one end and a 3 A in. flange 

on the other. The small flaages were placed against the gaskets. The 

assembly was held together by bolts through holes in the large flanges. 

In the initial operation of the apparatus, the assembly slipped out of 

line and no data were taken. 

A second test section was then "built and installed. To decrease 

the possibility of leaks and misalignment, a stainless steel calming 

tube was silver soldered directly to the flanges and copper test plate. 

This introduced a larger longitudinal conduction error. The tubing was 

l/k in. outside diameter with a 0.01 in. wall. Bolts were again used 

between the flanges to inereeise the strength. The tube was very 

delicate and evidently became stressed when the test section was 

installed. No leaks were found during a hydraulic test on the assembly 

before installation. However1, the tube developed a leak when molten 

sodium was passed through it, and again no data could be taken„ 

The final test section was similar in design to the second one. 

The major improvement was an increase in strength with a heavier wall 

tube. This test section is shown in detail in Figures 7 and 8. The 

copper test plate was 0.125 in. thick. The outside diameter was 3 in. 

A l/l6 in. thick by 1.0 in. wide copper flange was soldered around the 
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test plate. A 110 volt 750 watt Chroraalox heater was coiled around 

the flange. A Variac transformer was used to control the heat input. 

Eight 1/6̂ 4- in, diameter holes were drilled into the test plate for 

thermocouple wires. Four holes were cLrilled in each of two radial lines 

at 90 degree angles,, Thirty gage Leeds and Northrup constantan wires 

were soldered into these holes <, A 30 gage Leeds and Northrup copper 

wire was soldered to the plate as a common lead to complete the thermo

couple circuit. The center of the test section was drilled and reamed to 

0.1875 in* This gave an — ratio for the heat exchange surface of O.667. 
•U 

A type 30^ stainless steel calming tube was soldered to each side of 

the copper plate and to a flange. The tubes were 0.2535 in. outside 

diameter and drilled and reamed to the same inside diameter as the 

copper plate. The tubes and plate were assembled on a drill rod and 

silver soldered together. The tube on the upstream side was 3-1A in, 

long, giving a hydr©dynamic calming ~ ratio of 17.3- The tube on the 

downstream side was 1-3A in, long. Four l A in* diameter bolts 

between the two flanges increased the strength. 

The heat flux and copper-sodium interface temperature could be 

obtained from the temperature measurements made at each of the radial 

positions in the copper plate. The following equation can be used? 

<l - * " ( * . - V? (17) 
l n F 

A graphical procedure is suggested by rearranging Equation 17 to 
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Then by plotting the temperature at a given radius versus the logarithm 

of the ratio of that radius to the radius of the wall, a linear relation

ship is obtained with a slope of 6rtkL a n d iirfcerceP* o f *w»
 T h e 

average heat transfer coefficient for the length L can be calculated 

from 

\ - wr-T^ (19) 
u K W IT 

where q and t.. are found as outlined above, A is the area of the inter-

face, and tm is the average of sodium temperature measurements in and 

out of the test section. The method given for finding the heat flux 

and wall temperature are based on the assumption that heat flow in the 

copper plate is in the radial direction only. The surfaces of the copper 

plate were covered with insulation except at the center where the tubes 

were connected to the plate. Therefore, heat loss from the plate will 

be negligible except for longitudinal conduction in the tubes. A 

method for calculating the conduction error in the calming tubes is 

given in Appendix C* 

The effect of longitudinal conduction within the moving fluid 

on entrance region heat transfer was examined by Harrison (35) • He 

concluded that heat conduction within the fluid was negligible if the 

Peclet modulus is greater than 400. The Peclet modulus is the product 

of Reynolds and Prandtl moduli. The Prandtl modulus of liquid sodium 

is approximately 0.01. The corresponding Reynolds modulus for a Peclet 

modulus of 1*00 is 1*0,000. Thus for Reynolds moduli of 40,000 or 

greater, the effect of conduction within the sodium is negligible. The 

system as designed could be* used over a range of Reynolds modulus of 
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1*0,000 to 100,000 and hence would be operating above the minimum 

Reynolds modulus for a conduction error in the sodium. 

Instrumentation.—The instrumentation consisted of metering and 

temperature indicating systems. The metering apparatus is described 

above. In addition to the eight temperature measurements on the test 

plate, two additional temperatures were required to compute the heat 

transfer coefficient. These were the sodium temperatures at the inlet 

and outlet of the test section. The thermocouples used were 20 gage 

Leeds and Northrup chromel-alumelo The hot junction was placed in the 

sodium stream through a thermocouple packing gland. A lava disk was 

used in the gland to prevent leaks. The glands were fitted into l/k in. 

stainless steel tees. The two tees were connected to the flanges on 

each side of the test section by close pipe nipples. Additional chroinel-

alumel thermocouples were placed at random on the outside of equipment 

and tubing so temperatures throughout the system could be obtained. This 

proved extremely helpful during heating and operation of the equipment. 

It was found that the short J.engths of tubing on each side of the copper 

plate in the test section required heating during warmup of the system. 

A heater was made from 22 gage nichrome resistance wire with fiberglass 

insulation and coiled on the tubes. A chrorael-alumel thermocouple was 

located 1-5/8 in. upstream from the copper plate on the outside of the 

calming tube so the temperature there could be maintained above the 

freezing point of sodium during the warmup period. The two groups of 

chromel-alumel and copper-constantan thermocouples were each brought to 

a terminal block. An eleven position Leeds and Northrup switch was 

used for each group of thermocouples. From each switch a single cold 
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junction was maintained at 32°Fo in an ice bath and placed in series with 

a No. 8662 Leeds and Northrup Portable Precision Potentiometer. With 

this arrangement the temperature at ea,ch thermocouple position could 

be quickly obtained by turning the switch to the appropriate position 

and reading the millivolts indicated on the potentiometer. 



CHAPTER IV 

PROCEDURE 

Since the arrangement of the equipment did not permit complete 

drainage, sections of the system were individually flushed with 

trichloroethylene during construction. This removed oil and grease 

and left the inner surfaces of the equipment free from any impurities 

which might contaminate the sodium. 

After the apparatus had been assembled, it was carefully tested 

for leaks. For this purpose, a portable air compressor was temporarily 

connected to the system. The pressure was brought up to approximately 

30 psig., and leaks were located by brushing soap solution on all joints. 

Considerable difficulty was encountered in attempting to get the system 

completely air tight. Particular trouble was noted with the threaded 

stainless steel joints and in the compression fittings used on the 

copper gas line. Many joints were sealed by silver soldering. Leaks 

through the valve stem packings were also quite frequent. 

Construction was completed by providing heaters and insulation 

for all equipment and flow passages which were to contain sodium. All 

remaining traces of trichloroethylene were removed by heating the 

apparatus. Air and vapors were removed from the system by a vacuum 

pump. The system was then filled with argon, which is completely inert 

to sodium. The original intention was to keep a slight positive pressure 

of argon on the system at all times to prevent infiltration of air. 

However, during the period of modifications which were found necessary 
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for the pump and test section, a positive pressure was not always main

tained. 

Protective clothing consisting of gloves, goggles, aprons, and 

helmets were worn during handling of solid sodium and operating the 

apparatus. As a further precautionary measure, two fifty-pound containers 

of Ansul Met-L-X Dry Powder were purchased for use as a fire extinguisher 

in the event of a molten sodium fire. 

Five two-pound bricks of metallic sodium manufactured by National 

Distillers Chemical Company of Ashtabula, Ohio, were placed in the loading 

tank. The sodium had been stored in sealed metal cans containing an 

inert atmosphere. However, the bricks were covered with a thin film of 

oxide. No attempt was made to remove the oxide before loading. The 

top of the loading tank was then bolted in place, and again the system 

was evacuated and filled with argon. [Vhe discharge valve on the loading 

tank was closed. The loading tank as well as all other parts of the 

system were heated to slightly above the melting point of sodium, 208°F. 

The pressure, which had increased during heating, was equalized on both 

sides of the discharge valve. The valve was then opened and the system 

filled with sodium. The loading tank was isolated from the other 

components, after it had been emptied, by closing the valve. The tank 

was then opened; and it was observed that most of the pure sodium had 

flowed out, leaving a heavy deposit of sodium oxide. Sodium oxide is 

very insoluble in liquid sodium at low temperatures and is also 

lighter than sodium. Hence, when the sodium melted, the oxides formed 

a layer of solids which remained in the tank. The porous stainless 

See reference 36 for the solubility of sodium oxide. 
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steel filter, located on the discharge of the loading tank, effectively-

removed any particles of insoluble sodium oxide remaining in the molten 

sodium. 

Attempts were then made to circulate the sodium with the electro

magnetic pump. It was found necessary to wrap a heater around the two 

tubes on each side of the copper plate in the test section. Considerable 

difficulty was also experienced in heating the stainless steel coil in 

the pump above 208°F. The voltage was increased on the motor windings 

until a mercury-in-glass thermometer placed against the coil of tubing 

indicated a temperature above the melting point of sodium. Sodium could 

then be forced through the pump and test section by increasing the 

pressure on the sump with argon. However, the pump would not circulate 

the sodium. Since the motor was three phase, the possibility existed 

of wiring it so the magnetic flux was opposite to the direction of the 

helical coil. This possibility was eliminated by interchanging two of 

the wires, which reverses the direction of rotation of a three phase 

motor. The pump still failed to work. Reasons for the pump failure were 

not determined; although one limitation which may have affected its 

operation was noted. The voltage which could be applied was severely 

restricted by the low temperature insulation on the motor windings. 

A small centrifugal pujmo was then installed in place of the 

electromagnetic pump. The apparatus was again heated and another 

attempt made to pump sodium. This time sodium could not be forced 

through the test section. It was then discovered that a small amount 

of sodium had leaked between the sapphire gasket and copper plate. The 

test section had then slipped out of alignment so there was not a 
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complete passage through which the sodium could flow. 

The test section was then replaced "by a second model. A leak 

developed when the pressure in the sump was increased to circulate the 

sodium; therefore, a third test section had. to he installed. 

The system was again heated and the pressure on the sump increased. 

Although the pressure was raised as high as 20 pslg. in addition to 

approximately 17 psig. developed "by the pump, it was still impossible 

to circulate the sodium. It was found that air had entered the apparatus 

during modifications of the pump and test section. When these components 

were removed, precautions were taken to eliminate air by either capping 

the lines or replacing the section with tubing. When each new item was 

installed, it was filled with argon immediately before installation. 

However, the precautions were evidently not rigorous enough. 

The equipment was then dismantled and visually inspected. Heavy 

concentrations of sodium oxide were found in the pump, test section, and 

adjacent tubing which had been replaced during modification. Some 

deposits of sodium oxide were also found in the sump, and small traces 

were noted around some of the fittings where air had evidently leaked 

in. Sodium oxide can be identified and distinguished from pure sodium 

by its appearance, Pure sodium has a bright, silvery color while sodium 

oxide is dull grey. 

The sodium was removed from all components by first submerging them 

in a tank of hot oil. The temperature of the oil was maintained above 

the melting point of sodium. As the sodium melted it flowed from the 

equipment and settled to the bottom of the tank* Sodium does not react 

with oil below the cracking temperature, and it was protected from 
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reaction with the atmosphere by the oil bath. The remaining sodium and 

sodium oxide were removed by reacting them with methyl alcohol. This 

reaction is vigorous but not rapid enough to be dangerous. Precautions 

must be taken as the reaction liberates hydrogen gas. Any final 

particles of sodium were removed by a solution of 20 per cent water and 

80 per cent methyl alcohol. This reaction can be dangerous if there 

are large particles of sodium remaining or if the alcohol and water are 

added separately. The final steps in cleaning were to flush the com

ponents with water and then with trichloroethylene to remove oil. A 

visual examination of the inner surfaces showed no corrosion or damage 

from sodium on any of the equipment, including the porous stainless steel 

filter element. The sodium had remained in the apparatus a period of 

approximately eight weeks. For the major portion of that time the system 

had remained cold; however, it had undergone about ten heating and 

cooling cycles, each one day in duration. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions.—As a result of the construction and operation of the 

apparatus the following conclusions are made: 

1. The final test section fabricated for the present apparatus 

could be used for the experimental measurement of liquid sodium in a 

thermal entrance region. The deviation from the assumptions of the 

theoretical analogy is considerable. However, the design is a com

promise between a more exact representation of the theoretical case and 

a practical model which would operate satisfactorily. 

2. The type of electromagnetic pump used is a feasible method 

of circulating sodium but requires further development to produce a 

satisfactory design. 

3. The method used to load sodium into the apparatus and to 

filter the oxides and impurities was very satisfactory. The porous 

stainless steel filter was effective and readily adapatable to liquid 

sodium. 

k. The tubing and fittings were assembled with little difficulty 

and were well suited to laboratory scale handling of liquid sodium. The 

standard stainless steel valves with asbestos packing were unsatisfactory 

for use with sodium because of leaks at the valve stems. 

5. A small amount of silver solder was used to seal some Joints 

and to assemble the test section. Silver is soluble in sodium and this 

method of welding is not normally recommended. However, on equipment 
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designed for very limited contact time with sodium, silver solder could 

be used. It is a very convenient method of welding delicate parts and 

was employed for this reason. 

6„ The method of removing sodium from equipment was satisfactory. 

Had it been possible to drain all the apparatus without dismantling it, 

the cleaning operation would have been considerably simplified. 

Recommendations.—A slightly modified system is recommended to be con

structed employing a similar test section to the final model discussed 

above. The problem of pumping liquid sodium is indeed difficult. A 

variety of electromagnetic as well as centrifugal type pumps have been 

developed for use with liquid metals. The cost of these pumps is quite 

high and usually eliminates them from consideration for small scale 

experimental work. The centrifugal pump used in the present system was 

not sufficiently tested to draw a definite conclusion on its use with 

sodium. The pump is believed to have a limited operating period because 

of the excessive motor temperature and the small leak along the shaft. 

A gear pump, with a safety relief, or a sump pump may possibly be used. 

Provisions should be made so the motor will not be heated excessively 

by conduction from the pump. A system could feasibly be constructed in 

which sodium could be circulated by gas pressure and thus eliminate the 

pump. Two large reservoirs would be needed. This method has the dis

advantage that all measurements for each run must be made while one 

reservoir is being emptied and the other filled. The length of the 

run is dependent on the amount of sodium used. If a pump can be used 

it is an improvement because data can then be taken at leisure and the 

flow rate is steady. A test loop could be constructed employing both 
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the reservoirs and the pump. The pump should he provided with valves 

and a bypass so data could be taken if it failed to operate, 

In the design of liquid metal apparatus, provisions for complete 

drainage should be carefully considered. This would greatly simplify 

precleaning operations as well as the removal of the liquid metal after 

tests were completed. 

Extreme care should be taken to prevent contamination of sodium. 

It is important that all leaks be completely eliminated. Molten sodium 

leakage from equipment is a dangerous hazard, and infiltration of air forms 

sodium oxide which may be deposited on surfaces or cause plugging of flow 

passages. Care should be taken in replacing or repairing parts of the 

system. A section can easily be removed if the temperature is below 

the melting point of sodium. The exposed ends should be capped immedi

ately. When a new section is installed it should be thoroughly cleaned 

before installation. A connection to the section should be made so all. 

air can be evacuated and replaced by argon after the section is in 

place. Adequate precautions with liquid sodium systems are imperative 

for successful tests. 
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APPENDIX A 

NOMENCLATURE 

Letter Symbols 

• 2 

A area, ft. 

a positive roots of Jp(a) 

B constant 

b radius or half distance between plates, ft. 

C circumference, ft. 

c heat capacity, BTU/lb.-°F. 

D diameter, ft. 

p 
h heat transfer coefficient, BTU/hr.-ft. -eF. 

k thermal conductivity, BTU/hr.-ft.-°F. 

L length of flow passage, ft. 

M constant 

m exponent in power law expression 

N constant 

n see Appendix C 

q. heat transfer rate, BTU/hr. 

r radius, ft. 

T time, hr. 

t temperature, °F. 

u velocity, ft./sec. 

V average fluid velocity, ft./sec. 

W flow rate, lb./hr. 



x, y distance coordinates, ft. 

Greek Letter Symbols 

ex thermal diffusivity, ft. /hr. 

P gamma function 

A an increment 

6 eddy diffusivity, ft.2/hr. 

0 see Appendix C 

u dynamic viscosity, lb./ft.-sec. 

2 
V kinematic viscosity, ft.' /hr. 
p density, lb/ft.3 

(h angular displacement 

Subscripts 

e convective heat transfer 

L average value over length L 

m mean fluid property 

0 initial condition 

r condition at radius r 

w condition at the wall 

x local value 

Dimensionless Moduli 

Nu N u s s e l t , hD/K 

Pe P e c l e t , DV/cx 

Pr P r a n d t l , C/J/K 

Re Reynolds , pVD/yu 



APPENDIX B 

FIGURES 



Figure 1. Average Nusselt Moduli in a Thermal Entrance Region of Constant Wall Temperature 

U) 
VJ1 
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Figure 2. Schematie Diagram of Apparatus 
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Figure 3. Photograph of Apparatus. OJ 
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KEY TO FIGURE k 

A Isola t ion Transformer 

B NE-51 Poorer P i lo t Light 

C Red 6 Volt Pilot Light for High Level 

D Alarm for' High Level 

E Double Pole Double Throw 110 Volt A.C. Latching Relay 

F Green 6 Volt Pilot Light for Low Level 

G Timer 

H Amber 6 Volt Pilot Light for Timer Reset 

J Single Pole Double Throw 110 Volt A.C. Relay 

K Four Connector Male Plug; 

L Receptacle 

M Meter 

a Fuse 

—-*-— Timer Reset 



M U O Volt 
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Figure k. Schematic Diagram of Timing Circuit 
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KEY TO FIGURE 5 

A Loading Tank Heaters 

B Filter Heater 

C Sump Heaters 

E Test Plate Heater 

F Meter Heater 

G Tubing Heaters 

H Resistance Wire Heater at Test Section 

=*£: Variac Transformer 
LAA^J 

I 750 | Resistance Otype Electrical Heater with Wattage Reting 

I 00 I Convenience Outlet 

n n Fuse 
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Figure 5. Schematic Diagram of Heating Circuit 



Figure 6. Sketch of Initial Test Section 
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Figure 7- Sketch of Final Test Section •p-
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Figure 8. Sketch of Heat Exchanger 
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Copper Test Plate 

Silver Soldered Joint 

TC + dx 

Type 36k Stainless 
Steel Tube 

Figure 9. Detailed Sketch for Use in Examination of Longitudinal Conduction 



APPENDIX C 

EXAMINATION OF LONGITUDINAL HEAT CONDUCTION 

A method is presented here to account for the longitudinal heat 

conduction from the test plate. The analysis has been considerably 

simplified so that a closed mathematical rather than a numerical 

solution may be obtained. The method is then used to evaluate the 

heat loss for a hypothetical case. 

The following assumptions are employed: 

1. There is no radial temperature gradient in the stainless steel 

tube. 

2. The heat loss to environment is negligible. 

3o The thermal conductivity of the tube is constant,. 

km The temperature of sodium is constant. 

5. The heat transfer coefficient to sodium is constant. 

6. The contribution to heat conduction of the silver solder 

fillet is negligible. 

The symbols used in the analysis are as follows: 

2 
1. A » cross sectional area of tube, ft. , 

2. C - circumference of tube, ft., 

3. t a temperature of copper-sodium interface, °F., 

a temperature of tube at x - 0, 

h, t = temperature of tube at any point x, °F., 

5. t « mean temperature of sodium, °F., 

6. 6 a t - t , F., 
m ' 
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then 

or 

let 

7. k s thermal conductivity of tube, BTU/hr.-ft.-F., and 

p 
8* h = heat transfer coefficient of sodium, BTU/hr.-ft. -F, 

The heat flux at a point x can "be expressed as 

.. dt 
*x* - ^ d E 

The heat flux at a differential, increment from the point x is 

Sc + ax - -k A h (t + i to> 
The rate of heat transfer to sodium is given "by 

dq =» h C (t - t ) dx 

For steady state conditions a heat "balance on the element dx gives 

«x = Sc + ax + d*c 

,2 
k A S_i =. h C (t - t ) 

a? m 

2 fl ft 
k A =-J - hC0 

dx 

r, / h C 

n =si/ r-— 
ItA. 

the equation becomes 

2 
d 9 2£ 

dx^ 
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since n is considered constemt 

M -nx „ nx 
e - Me + Ne 

To evaluate a particular case for the magnitude of the heat con

duction in the tubing, the following conditions are assumed: 

1. tffl - 392°F., 

2. t = 600°F., 
o ' 

3. Re = 50000, 

k. k = ik.Q BTU/hr.-ft-F., and y ^ — 

k 
5. h is given by Equation 3 --

£ § - 7 + 0 . 0 2 5 P e 0 ' 8 
(3) 

The properties of sodium at 392°Fo or 200°C. listed in the Liquid. 

Metals Handbook (37) are 

lo density = 56ab lb./ft.
3, 

2o viscosity • 3.02 x 10" lb*/ft.-sec., | 
i 

3„ thermal conductivity a Vj.l BTU/hr.-ft. F., and 
i 

k. heat capacity = 0„320 BTU/lb.- F0 | 

The Prandtl modulus becomes 

Pr - Sg = 0.00739 

The Peclet modulus is 

Pe = (Pr)(Re) =* 370 

Equation 3 is applicable for uniform heat flux far removed from an 
entrance region. The assumption that the heat transfer coefficient is 
constant and represented by this equation may introduce an errorj but 
permits considerable simplification. 



50 

The heat transfer coefficient is calculated to he 

.-2 
h = 

kj.l x 10' 
l3o^" 7 + 0.025(370) 

0.8 

h = 29600 BTU/hr. - ft. -F. 

The constant n can now he calculated as 

n 
hC 
kA 

/(29,6Q0)(0.187$)(12)00 
= V (14.8)(0.0290) 

n = 790 

The houndary conditions are 

1. 6 * 208°F. and 
o 

? d9~ d' dx 

where L shall he taken as 3*25 in., which is the distance to the tuhe 

inlet. 

The constants of integration can he found as 

208 - Me"0 + Ne° 

or 

208 = M + N 

de 
dx 

„ -nL „ +nL » -nMe + nNe 
UL 

solving the two equations for N 

K • 2 0 8 < 2 ^ , > 
e +1 
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For L = 3»25 in. the value of N is approximately zero. 

Therefore 

6 = 208e' 

The heat loss from the tube may now be evaluated. 

dq = hcedx uc 

dq = 208hCe"79Qxdx 

-208hC -789x1L 

% = -iw* Jo 
<i„ * 

208hC 
c 790 

q =* 382 BTU/hr. c 

The theoretical heat transfer rate for the copper test plate 

with no longitudinal conduction can be found from extrapolation of the 

power law curve on Figure 1. 

^S-370^1T55r> 

Pe 5 = 555 

which gives 

Nu^ - 23 

52 , 23 

h = 69>^00 BTU/hr,-ft.2-°F„ 

<1 » hCL6 

>0)(fr]. 

lW 
q = 7380 BTU/hr, 

^ (69^00)(fr)(0.1875)(0.12$)(208) 

The increase in temperature of the scdium can now be calculated. 

_ 4W Re 9 Tn y^-TtD 
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(5000Q)(3o02)(lO^)(3600)(rr)(0.l875) 
W ( 1 2 ) 

W = 666 lb./hr. 

q. => Wc At 

solving for the sodium temperature change, At, 

At - T380 
A t - (666)(0.320) 

At * 35.2 F. 

Since the temperature rise is appreciable, the heat transfer rate 

must be modified using an average sodium temperature „ Assuming an 

approximate temperature rise of 32 F, the new calculation gives 

_ (69to))(fr)(0.1875)(0.125)(192) 
^ " ihk 

q. = 6800 BTU/hr. 

The heat loss due to conduction in the stainless steel tube down

stream of the test section will be 

hC6 
a a 
•̂c n 

(29600)(0.1875)(I76)fr 
% (790)(12) 
qc = 32^ BTU/hr. 

The per cent error shall be defined as the total heat loss by-

conduction in the tubes to the theoretical heat transfer rate. It is 

therefore 

t o t a l <lr> / - rtrt s e r ror = r (100) 

382 + 32k , . „ , . 
e r r o r * 6800 ( 1 0 0 ) 

error « 10A per cent 
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The deviation from the case of a temperature discontinuity at 

the inlet and outlet of the test surface is thus appreciable. However, 

the extremely high exponent in the equation of temperature difference 

versus the longitudinal direction indicates a steep temperature gradient 

can be expected near the position x = 0. 



II i ' 
k I BIBLIOGRAPHY 

.1 



55 

1. Jakob, Max, Heat Transfer, New York* John Wiley and Sons, Inc., 19^9* 
Vol. 1, p0 1*51. 

2. Ibid., pp. 1*51-1*59. 

3. Latzko, He, "Der Warmeubergang an einen turbulenten Flussigkeitsoder 
Gasstrom," Zeitschrift fur angewandte Mathematik und Mechanik, Vol. 1, 
No. If, August, 192,1. (N. A. C* A. TransiatioiTWlDSoTi "~~ 

h. Jakob, op. Git., pp. in$0~46&. 

5. Sanders, V. D., A Mathematical Analysis of the Turbulent Heat Transfer 
in a Pipe with a. Surface Temperature Discontinuity at Entrance, M.S. 
Thesis, University of California, Berkeley, California, l$Pl$L~~ 

6. Boelter, L. M. K., G. Young, and H. W. Iversen, An Investigation of 
Aircraft Heaters XXV11 - Distribution of" Heat Transfer Rate in the 
Entrance Section of a Circular Tube, N. A. C. A. Technical Note "1^51, 
Washington, D. C , July 1958. 

7. Humble, H. V., W. H. Lcwdermilk, and L. Go Desman, Measurements of 
Average Heat-Transfer and Friction Coefficients for Subsonic Flow 
of Air in Smooth Tubes at High Surface and Fluid Temperatures, 
N. A. C. A. Report 1020, Washington, D. C , 1951-

8. Pinkel, B., "A Summary of N» A. C. Ao Research on Heat Transfer and 
Friction for Air Flowing Through Tubes With Large Temperature 
Difference," American Society of Mechanical Engineers Transactions, 
Vol. 76, No. 2, 1954, pp. 305-317* 

9« Seban, R. A., and T. Shimazaki, Calculations Relative to the Thermal 
Entry Length for Fluids of Low Prandtl Number, University of 
California, Berkeley, California, 19^9° 

10. Lubarsky, B. and So J. Kaufman, Review qf_ Experi.TTient.al Investigations 
of Liquid-Metal Heat Transfer,' N» Ao C. Ao Technical IcJtF333^7~" 
Washington, D. C , 1955;» p<> 16. 

11. English, D. and T. Barrett, "Heat-Transfer Properties of Mercury," 
The Institution of Meehanieal Engineers and The American Society of 
Mechanical Engineers, General Discussion on Heat Transfer, 1951* ' 
pp. 45OU60. " ~ " " — 

12. Poppendiek, H. F., Forced Convection Heat Transfer in Thermal Entrance 
Regions, Part I, ORNL 913, Oak Ridge National Lab, Oak Ridge, 
Tennessee, March 1951• 

13. Poppendiek, H. F., and L. D. Palmer, Forced Convection Heat Transfer 
in Thermal Entrance Regions, Part II, ORNL, 914, Oak Ridge National 
Lab, Oak Ridge, Tennessee, May 195,2. 

Experi.TTient.al


56 

14. Aladyev, I. T., "Eksperimental' noe Opredelenie LokaJ.' nykh i 
Srednikk Koeffitsientov Teplootdachi Pri Turbulentnom Techenii 
Zhidkosti v Trubakh," Izoestiya Akademii lauk SSSR Otdelenie 
Tekhnicheskikk Nauk, No. 11, 1951 > pp. 1669-l6bl. 11. A. C, Ac, 
Translation TM 1356)• 

15. Johnson, H. A., J. P. Hartnett, and W. J. Clahaugh, "Heat Transfer 
to Molten Lead-Bismuth Entectic in Turbulent Pipe Flow," American 
Society of Mechanical Engineers Transactions, Vol* 75 > No. 6, 1953? 
pp. 1191-119«. 

16. Johnson, H. Ao, Jo P. Hartnett, and Wo Jo Clabaugh, "Heat Transfer 
to Mercury in Turbulent Pipe Flow/' American Society of Mechanical 
Engineers Transactions, Vol* 76, No0~4^ 195^ PP° 505-511° 

17. Johnson, Ho A., J. P. Hartnett,. and W. Jo Clabaugh, "Heat Transfer 
to Lead-Bismuth and Mercury in Laminar and Transition Pipe Flow," 
American Society of Mechanical Engineers Transactions, Vol* 76, No0 4, 
195*, PP 513-517. * 

18. Stromquist, W. K., Effect of Wetting on Heat Transfer Characteristics 
of Liquid Metals, 0R0 93? Tecnnieal Information Service, United 
States Atomic Energy Commission, Oak Ridge, Tennessee, March 1953« 

19. Lubarsky and Kaufman, op. citu, p. 22, 

20. Lyon, R. N., ed., Liquid-Metals Handbook, 2nd edu, Atomic Energy 
Commission - Department of the Wavy, Washington, Do C», June 1952> 
p. 187. 

21. Harrison, W. B., Forced Convection Heat Transfer in Thermal Entrance 
Regions, Part III, OREL 915, Oak Ridge National Lab, Oak Ridge, 
Tennessee, June 1954. 

22 o Berry, V„ J., Jr., "Non-Uniform Heat Transfer to Fluids Flowing in 
Conduits," Applied Scientific Research, Section A, Vol. 4, No. 1, 
1953-54, pp. 61-75• 

23. Deissler, K. Go, Analysis of Turbulent Heat Transfer and Flow in the 
Entrance Regions of Smooth Passages, N« Ac C. Ao Technical Note 30T0", 
Washington, Do C , October 1953> 

24. Wingo, Ho Eo, The Heat Transfer Coefficient for Transition Flow in a 
Thermal Entrance Region of Uniform Wall Temperature, M.S. Thesis, 
Georgia Institute of Technology^ Atlanta, Georgia, 1956. 

25. Lubarsky and Kaufman, op. cit. 

260 Moyer, J. Wo, and W. A. Rieman, "Heat Transfer Measurements at Sodium-
Stainless Steel Interface," Journal of Applied Physics, Vol. 25, 
No. 3, March 1954, pp. 400-402, 



57 

27. Poppendiek and Palmer, op. cit., p. ik. 

28. Harrison, op. cit., pp. 9-11* 

29. Ibid., pp. 1*3-1̂ . 

30. Jakob, op. cit., p. K62. 

31. Harrison, op. cit., pp„ kk~h^. 

32. Schlichting, H., Boundary Layer Theory (Translated by J, Kestin), 
New York: McGraw-Hill Book Co., Inc.7 1955, pp. ̂ 00-^03. 

33. Jackson, C. B., ed., Liquid-Metals Handbook, Sodium- - Nak Supplement, 
Atomic Energy Commission - Department of the Navy, Washington, I). C , 
July 1956. 

3*K Ibid., p. 289. 

35. Harrison, op. cit., pp. 15-21. 

36. Jackson, op. cit., p. 8. 

37- Ibid., pp. 2k-kk. 


