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SUMMARY 

 

Volatile organic compounds (VOCs) such as chlorinated solvents are among 

major contaminants found in contaminated sites. Groundwater contamination by VOCs 

has become a major environmental issue due to the toxicity of VOCs at very low 

concentrations. Once VOCs enter the ground, they will spread out through porous soil 

media by complicated processes including advection, dispersion, and partitioning. These 

processes may accelerate groundwater contamination by VOCs over time. In order to 

preserve groundwater resources from such contamination and to clean up sites 

contaminated with VOCs, it is necessary to understand the fate and transport of 

contaminants in the subsurface systems and physicochemical processes involving 

remediation technologies. To enhance our understanding, in this work, numerical studies 

were performed on the following important topics: (i) multiphase flow and contaminant 

transport in subsurface environments; (ii) biological transformations of contaminants; 

(iii) in-situ air sparging (IAS); and, (iv) thermal-enhanced venting (TEV). Among VOCs, 

due to the wide use of trichloroethylene (TCE) as a solvent, TCE is one of the most-

frequently-detected chemicals in the contaminated groundwater. In this study, TCE and 

its daughter products (cis-1,2-dichloroethylene (cDCE) and vinyl chloride (VC)) are 

chosen as target contaminants. cDCE and VC are more toxic than TCE. 

Density-driven advection of gas phase is generated by the increase in gas density 

due to vaporization of high-molecular weight contaminants such as TCE in the 

unsaturated zone. This study investigated the effect of the density-driven advection on the 

fate and transport of TCE in the unsaturated/saturated zones. The effect of some 



 xxii

important factors including infiltration and permeability on the density-driven transport 

of TCE were analyzed. The density-driven advection of gas phase played an important 

role in TCE transport into the atmosphere and into the saturated-zone groundwater near a 

contaminant source area. 

Biological transformations of contaminants can generate byproducts, which may 

become new toxic contaminants in subsurface systems. Sequential biotransformations of 

TCE, cDCE, and VC are considered, which are expressed by first-order relationships and 

Michaelis-Menten kinetics. Under different reaction rates for the two bioreaction kinetics, 

temporal and spatial concentration profiles of parent and daughter contaminants were 

examined to evaluate the effect of biotransformations on multispecies transport. The 

concentration profiles of the contaminants varied with the magnitude of bioreaction 

coefficients, and the locations of the highest concentration zones of daughter 

contaminants depended on bioreaction kinetics.  

IAS injects clean air into the subsurface below the groundwater table to remediate 

contaminated soil and groundwater. In this study, through the application of numerical 

models, the movement of gas and the groundwater as a multiphase flow in the saturated 

zone and the removal of TCE by IAS application were investigated. A multiphase flow 

under IAS was examined in terms of saturation levels and fluid velocity profiles of each 

phase in a three-dimensional domain. Several scenarios for IAS systems were simulated 

to evaluate remedial performance of the systems in terms of several IAS-related factors, 

such as injection-well types, flow rates, injection-point depths, injection methods, and 

well-to-well distances. In this study, IAS using multiple-injection wells showed superior 

remedial performances over IAS using single-injection well.     



 xxiii

TEV is used to clean up soil contaminated with a nonaqueous phase liquid 

(NAPL) in the unsaturated zone. Transport of heat energy in porous media and the effect 

of TEV application on TCE NAPL removal were analyzed under different operational 

conditions regarding air injection rate and relative humidity. In terms of the variations of 

temperature and NAPL saturation, TEV was compared with normal soil venting at an 

ambient temperature. Under modeling conditions used here, TEV was effective to deliver 

thermal energy to contaminated zones. Thus, TEV increased TEC removal rates in the 

domain and reduced remedial times.   

For numerical studies conducted in this thesis, the governing equations for flow of 

water, gas, and NAPL phases and transport of multispecies and heat energy in porous 

media were developed and solved using Galerkin finite element method. A three-

dimensional numerical model, called TechFlowMP model, has been developed. For each 

research topic, the model has been verified and validated using analytical solutions and 

experimental data published in the literature.  
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CHAPTER I  

INTRODUCTION 

 

This chapter provides introduction to soil and groundwater contamination in 

subsurface environments and two remedial technologies (in-situ air sparing and thermal-

enhanced venting) that may be used to clean up contaminated zones. The chapter 

concludes with a discussion of the scope of the present study. 

 

1.1 Soil and Groundwater contamination       

Groundwater is an important fresh water resource throughout the world. It is used 

for public and domestic water supply systems, and agricultural and industrial purposes. In 

the United States in 1995, the USGS reported that approximately 77 billion gallons of 

fresh groundwater was withdrawn daily; nearly half of the nation’s overall population and 

about 99% of the population in rural areas used groundwater as drinking water; nineteen 

states obtained more than 25% of their overall water supply from groundwater; and ten 

states obtained more than 50% of their total water supply from groundwater [Solley et al., 

1998; EPA, 2000]. Such large utilization of groundwater comes from its advantageous 

characteristics such as: (i) its availability at extended areas; (ii) relatively constant supply 

through years; and (iii) its high quality due to the purification processes by soil matrix 

[Wiener, 1972; Bear, 1979].  

In many areas of the U.S., the future sustainability of groundwater resources is at 

risk from overuse and contamination. Major sources of groundwater contamination most 

frequently cited as being of greatest concern include underground storage tanks, septic 
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tanks, hazardous waste sites and landfills, surface impoundments, chemical 

manufacturing and storage facilities, fertilizer and pesticide applications, and salt water 

intrusion. According to EPA report [2000], underground storage tanks (USTs) 

represented the highest number of potential sources of groundwater contamination. Of 

over 85,000 UST sites reported in 72 hydrogeologic settings in 22 states, 57 % were 

characterized as confirmed contaminant releases to the environment and 18 % had 

releases that adversely affected groundwater quality. 

Volatile organic compounds (VOCs), such as solvents and hydrocarbon fuels, are 

among major chemicals found in many contaminated sites. Subsurface contamination of 

VOCs is usually caused by spills, leakage from transport and storage facilities, or release 

from uncontrolled hazardous landfills [Lorah, 1997; Wu and Schaum, 2001; Dinicola et 

al., 2002]. Typically, VOCs are released as a non-aqueous phase liquid (NAPL) into the 

ground. Due to capillary forces in pore space, when VOCs migrate in the form of NAPL 

through porous media, they leave behind an immobilized residual suspended in soil pore 

structures. Through partitioning processes such as dissolution, vaporization, and 

adsorption onto soil particles, the residual NAPL becomes a long-lasting source of soil 

and groundwater contamination [Mendoza and Frind, 1990a; Thomson et al., 1997].  

VOCs have drawn our concern because of their toxicity at low concentrations. 

Among VOCs, trichloroethylene (TCE) widely used as a solvent in industry is one of the 

most frequently detected contaminants in the groundwater [Wu and Schaum, 2001]. TCE 

has been found in at least 861 sites of the 1,428 hazardous waste sites that make up the 

National Priorities List and are targeted for long-term federal clean-up [ATSDR, 1997]. 

Based on available Federal and State surveys, ATSDR [1997] estimated that between 9 % 
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and 34 % of the drinking water supply sources tested in the U.S. may have some TCE 

contamination. 

In the subsurface near contaminant source zones, VOCs often exist in multiple 

phases (water, gas, and NAPL). These phases have distinct flow patterns, generating 

multiphase flow. Multiphase flow means a simultaneous flow of two or more immiscible 

fluids. Transport of VOCs in a multiphase flow occurs as a result of complex mechanical, 

chemical, and biological processes such as advection, diffusion, sorption, and biological 

transformations [Thomson et al., 1997]. Molecular diffusion, which is generated by a 

concentration gradient, or advection of gas phase, which is created by pressure- or 

density-gradients, is often a primary driving force for contaminant transport in the 

unsaturated zone while groundwater flow has a dominant effect on contaminant transport 

in the saturated zone. The density-driven advection of gas, which is generated by high 

concentration of dense VOCs like TCE near source zones,  has a significant effect on 

spreading contaminants [Mendoza and Frind, 1990a]. Biological transformations of 

VOCs can introduce toxic daughter contaminants into groundwater systems. For instance, 

under anaerobic conditions, the dehalogenation of TCE produces intermediates such as 

dichloroethylenes (DCEs) and vinyl chloride (VC) [Vogel et al., 1987]. DCEs are more 

toxic than TCE, and VC is a known human carcinogen [Montgomery, 2000].   

The understanding of the processes that influence fate and transport of 

contaminants in groundwater systems and proper modeling of these processes is essential 

to evaluate the effectiveness of recommended clean-up processes. In turn these models 

can then be effectively used in management decisions that may prevent soil and 

groundwater from pollution or they may be used in decisions to effectively remediate a 



 4

contaminated site. Thus, extensive researches have been carried out to predict the 

behavior of VOCs in the subsurface [Corapcioglu and Baehr, 1987; Mendoza and Frind, 

1990a; Lenhard et al., 1995; Altevogt et al., 2003; Jellali et al., 2003] and to identify 

biological transformation of VOCs, especially halogenated hydrocarbons [Vogel et al., 

1987; Pavlostathis and Prytula, 2000; Alvarez-Cohen and Speitel, 2001; He et al., 2003]. 

However, contaminant transport modeling still has many challenges to represent its 

migration in multiple phase environments [Miller et al., 1998]. Even though contaminant 

transport in gas phase has significant effects on the spreading of dense VOCs in the 

unsaturated and saturated zones, the transport has not been taken into much 

consideration. Up to now, currently available models are mainly focused on groundwater 

flow in the saturated zone and contaminant transport in water phase [Mulligan and Yong, 

2004]. In studies on contaminant transport in the unsaturated zone, only gas-phase 

contaminant transport was considered without interactions between gas and water flows 

[Mendoza and Frind, 1990a, b], or biological processes in the unsaturated have been 

neglected [Thomson et al., 1997]. To enhance our understanding of transport and reaction 

processes of VOCs in the unsaturated and saturated zones, in Chapter III and IV, the 

following important processes are reviewed: (i) interaction between density-driven gas 

flow and water flow in a variably saturated zone; (ii) contaminant transports in each 

phase and mass transfer between phases; and (iii) biological transformation of 

contaminants within water phase. 
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1.2 Remedial technologies for contaminated zones     

In the United States, the development of remedial technologies for contaminated 

sites has been driven by increased environmental awareness and national hazardous waste 

cleanup programs managed by Environmental Protection Agency (EPA). The programs 

have been regulated by Comprehensive Environmental Response, Compensation, and 

Liability Act (CERCLA or Superfund), Resource Conversation and Recovery Act 

(RCRA), Oil Pollution Act (OPA), and Underground Storage Tank (UST) program. 

Under these programs a variety of remediation technologies have been used or 

recommended. These remediation technologies include: (i) pump-and-treatment for 

groundwater; (ii) soil vapor extraction; (iii) bioventing; (iv) chemical and biological 

treatments; (v) bioremediation; (vi) in-situ air sparging; (vii) thermal-enhanced venting; 

and (viii) monitored natural attenuation.  

In-situ air sparging (IAS) is a cost-effective remedial technology applied to 

remove VOCs dissolved in the groundwater and NAPL both above and below the 

groundwater table [Unger et al., 1995; Kirtland and Aelion, 2000]. It has been used at 

many sites contaminated by chlorinated solvents and petroleum hydrocarbons [Bass et 

al., 2000]. Contaminant removal by IAS commonly relies on two primary mechanisms; 

volatilization and biodegrdation of contaminants [Roosevelt and Corapcioglu, 1998]. IAS 

injects contaminant-free air below the groundwater table. As the air rises through the 

saturated zone, contaminants in aqueous phase or NAPL diffuse into the air due to 

concentration gradient and are then carried out into the unsaturated zone above the 

groundwater table. Typically, in the unsaturated zone, the air containing the contaminants 

are withdrawn by soil vapor extraction (SVE), and the contaminants are treated by post-
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treatment units. IAS may enhance the aerobic biodegradation of contaminants in the 

subsurface by transferring oxygen to the groundwater. Kirtland et al. [2001; 2005] 

examined the biodegradation of petroleum hydrocarbons through a field-pilot test for 

IAS/SVE and  the biodegradation of recalcitrant organic compounds such as 

dichloroethylene. 

In IAS, injected air causes dynamic movement of groundwater and air by 

displacing water in soil matrix. The lateral and upward movements of the air are an 

important factor to determine the radius of influence and the degree of contact between 

the injected air and the contaminated groundwater, which control the efficiency of IAS 

[McCray, 2000]. Before a full-scale air sparging system is installed, sparging pilot tests 

should be performed to obtain field data about feasibility of IAS, radius of influence, and 

mechanical requirements such as pressure and flow rates. Based on case studies of IAS, 

Bass et al. [2000] pointed several difficulties in IAS application; For examples, sparging 

well density, a rebound of groundwater concentrations, and remediation times with 

different initial concentration of dissolved contaminants. Numerical modeling is a 

valuable tool in predicting complex processes regarding fluid flow, contaminant 

transport, and nonequilibrium reactions and in solving problems occurring during IAS 

[Benner et al., 2002]. Especially, the understanding of dynamic behavior of gas and water 

fluids is essential to determine the applicability of IAS and to design IAS system under 

certain hydrogeologic situations. 

Thermal-enhanced venting (TEV) is a remedial technique used to enhance 

removal or recovery of less-volatile residual hydrocarbon contaminants such as 

naphthalene and dodecane in the unsaturated zone. TEV applies heated air to the 
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contaminated zone while soil venting uses ambient air. As heat energy is introduced into 

the ground, many physicochemical properties of fluids and VOCs are changed under 

nonisothermal environments. In a case of vapor pressure of an organic compound highly 

depending on temperature, the temperature increase of 20-30°C leads the increase in the 

gas-phase concentrations of  a less-volatile contaminant by three- or five-fold 

[Kaluarachchi and Islam, 1995]. Thermal energy plays important roles in increasing 

remediation efficiency and in reducing remediation time of the contaminated unsaturated 

zone.  

 

1.3 Scope of the Study 

The study area of this thesis is divided into two main parts; The first part focuses 

on how organic contaminants naturally migrate and are biologically transformed, and the 

second part concentrates on how two remediation technologies (IAS and TEV) work to 

clean up contaminated soil and groundwater and how we can improve their performance.  

In these two parts, the objectives of this study is: (i) to investigate biological 

transformations of multi-species by sequential reactions and density-driven advective 

transport of contaminants in multiphase flow in a variably saturated zone; and, (ii) to 

analyze dynamic fluid flows and contaminant transport under isothermal or 

nonisothermal conditions in two remediation technologies, IAS and TEV. 

In this study, fully coupled flow equations for mobile and immobile phases, 

advective-dispersive transport equations of multi-species, and heat transport equations in 

variably saturated zones are developed. Multiphase flow equations are coupled by 

capillary pressure and saturation degree, and the equations are linked with transport 
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equations with concentration terms. In the transport equations, non-equilibrium processes 

such as biological transformation and mass transfers between phases are expressed by a 

first-order relationship or Michaelis-Menten equation. For nonisothermal conditions, heat 

transport equation is solved to take into account the variation in properties of fluid and 

chemicals due to the change in temperature. The governing equations for flow, and 

contaminant and heat transport are numerically solved using Galerkin finite element 

method (FEM), and a three-dimensional FEM-based model, referred to as TechFlowMP, 

was developed. The model was verified using experimental data, analytical solutions, and 

numerical results found in literature, and it was used to run a variety of simulation 

problems.  

In Chapter II, a comprehensive literature review related to research topics of this 

thesis: (i) multiphase flow and density-driven transport; (ii) biological transformation of 

contaminants; (iii) in-situ air sparging; and (iv) thermal-enhanced venting system is 

presented.  

In Chapter III, the governing equations for multiphase flow and contaminant 

transport are developed, and numerical methods used to solve the equations are given. 

The chapter addresses the effect of density-driven advection of gas phase on contaminant 

transport in the unsaturated and saturated zones. Especially, the transport profiles of 

conservative-contaminant by two mechanisms (density-driven transport and diffusion-

only transport) are compared. In addition to the density-driven advection of gas, the 

effects of infiltration and permeability on contaminant transport are investigated. 

Biological transformations of multi-species (TCE, DCEs, and VC) by sequential 

reactions are considered in Chapter IV. Transports of three reactive contaminants in 



 9

three-dimensional domain are verified using analytical solutions. Spatial and temporal 

distributions of all contaminants in gas and water phases are also analyzed.  

Chapter V focuses on multiphase flow and contaminant removal in IAS systems. 

In this chapter, the interactive movement of water and air fluids during air sparging and 

contaminant transport in the two fluids are addressed. The system design parameters such 

as influence of radius, gas saturation level, and gas flow velocity are estimated for several 

options of IAS system. Based on contaminant removal rates and residual concentration in 

gas and groundwater, the remedial efficiency of each option is evaluated, and effective 

design methods of IAS are suggested.  

In addition to flow and transport equations, in Chapter VI, heat transport equation 

is formulated and solved to describe heat conduction through soil matrix, heat convection 

due to gas flow, and heat exchange due to vaporization or condensation of water and 

NAPL in pore spaces. Experimental data found in literature were used to validate 

TechFlowMP on the variation in temperature due to volatilization of NAPL. Simulation 

results of several TEV systems are analyzed in terms of three topics; air flow through 

porous media under nonisothermal conditions, the temperature change of soil matrix due 

to heat input and vaporization/condensation of a chemical or water, and concentration 

evolution of a contaminant in TEV system. 

 Finally, in Chapter VII, conclusions and recommendations for further research 

are given. 
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CHAPTER II  

LITERATURE REVIEW 

 

In this chapter, a review of studies related to the migration of volatile organic 

compounds in the subsurface and two remediation technologies are given. The topics 

covered are: (i) density-driven transport of contaminants; (ii) biological transformation of 

contaminants; (iii) in-situ air sparging system; and, (iv) thermal-enhanced venting 

system. 

 

2.1 Density-driven Transport of Contaminants 

Soil and groundwater contamination is often initiated by an accidental spill or 

leakage of volatile organic compounds (VOCs) such as organic solvents and hydrocarbon 

fuels. The contaminants may percolate into the ground as a non-aqueous phase liquid 

(NAPL), which migrates downward under the influence of gravity and, to some extent, 

spreads laterally due to the effect of capillary forces [Abriola, 1989]. According to its 

density, NAPL is generally divided into two groups; light non-aqueous phase liquid 

(LNAPL), which is lighter than water, and dense non-aqueous phase liquid (DNAPL), 

which is heavier than water. The density of NAPL plays an important role in its 

movement in the subsurface. LNAPL and DNAPL behave similarly in the unsaturated 

zone, disregarding percolation velocities as a result of different viscosities. When they 

reach the saturated zone, however, LNAPL forms a pool on the groundwater table while 

DNAPL sinks into the saturated zone below the groundwater table [Yaron et al., 1984]. 

While NAPLs migrate through porous soil media, some fraction of them will be 
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continuously retained in the soil pore spaces due to surface tension effects [Falta et al., 

1989]. After reaching the final spreading stage of NAPLs, they eventually become 

immobile in a condition of residual saturation. The residual saturation may be at about 2-

20 % of the available pore spaces [Schwille, 1988]. 

Residual NAPL contaminants trapped in the pore spaces will volatilize into the 

surrounding soil gas and dissolve into water phase. Fate and transport of contaminants in 

gas and water phases occurs as a result of complex processes such as advection, 

diffusion, partitioning, and biological transformations in the subsurface environment 

[Thomson et al., 1997]. Typically, groundwater flow is created by hydraulic head 

gradients, having a primary effect on contaminant transport in the saturated zone. Gas 

flow in the subsurface can be generated by a variety of factors such as density gradients 

of gas, barometric pressure changes, groundwater table fluctuations, and vapor 

extraction/injection [Mendoza and Frind, 1990a; van Dijke et al., 1995; Auer et al., 1996; 

Thomson et al., 1997; Rathfelder et al., 2000]. Especially, the gas flow induced by the 

density gradient of gas is called density-driven advection, which is associated with high 

concentrations of contaminants in gas near a contaminant source. In the unsaturated zone, 

without considering atmospheric pressure gradient, vapors less dense than air may rise to 

the ground surface while those more dense than air may sink towards the groundwater 

table [Sleep and Sykes, 1989].  

Density-driven transport of a contaminant refers to its transport that is mainly 

governed by density-driven advection. Since VOCs have high vapor pressures, the 

changes in gas density due to contaminants are larger in the soil gas than in the 

groundwater. The effect of density changes on density-driven advection is also larger in 
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gas phase than in water phase. Density-driven advection plays an important role in 

spreading dense VOCs such as trichloroethylene (TCE) and tetrachloroethylene (PCE) in 

the unsaturated and saturated zone [Falta et al., 1989]. 

Many experimental studies were carried out to investigate density-driven 

transport of VOCs in porous soil media and its effects on groundwater contamination 

[Lenhard et al., 1995; Conant et al., 1996; Smith et al., 1996; Jellali et al., 2001; Altevogt 

et al., 2003; Jellali et al., 2003].  Lenhard et al. [1995] analyzed the transport of TCE in 

the unsaturated zone using a vertical two-dimensional experimental cell. The comparison 

of their experiments and numerical results demonstrated that the density-driven advective 

flow of gas phase was significant in the downward movement of TCE gas-plume. 

Altevogt et al. [2003] examined the transport of a dense gas (Freon-113) in a sand 

column in three primary flow directions (horizontal, vertically upward, and vertically 

downward), and they identified that advective driving force causing the downward flow 

of the dense gas retards transport of the gases in the upward direction. Large-scale 

experiments, done by Jellali et al. [2001; 2003], demonstrated that the downward 

propagation of TCE vapor plumes leads to increase TCE concentrations with depth. 

Jellali et al. [2003] reported that mass transfer of TCE from the unsaturated zone into the 

saturated zone is governed almost equally by molecular diffusion and vertical dispersion, 

and, even though the mass transfer is small, it may be significant potential for 

groundwater pollution. Temperature variations have a significant impact on the transport 

of contaminant vapors because gas density and vapor pressure of contaminants highly 

depend on temperature. Through field experiments, Conant et al. [1996] investigated the 

temperature effect of two seasons (winter and summer) on the transport of TCE vapors in 
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the unsaturated zone. In the winter (subsurface temperatures ranged less than zero to 10 

ºC at the ground surface to the depth of 3.5 m), a decrease in subsurface temperatures 

reduced the vapor pressure of TCE and its diffusion coefficient in gas phase with the 

increase in sorption. Thus, molecular diffusion became dominated on TCE transport, and 

the spreading of TCE vapor was relatively small. During the summer months (subsurface 

temperatures ranged about 24 to 10 ºC at the ground surface to the depth of 3.5 m). An 

increase in subsurface temperatures caused high vapor concentrations of TCE in the 

source area, resulting in a greater driving force for both dispersion and density-driven 

advection, and a decrease in retardation due to vapor dissolution and sorption. Thus, 

vaporized TCE plume was widely spread out in the unsaturated zone. Since temperature 

is a critical factor to raise the vaporization of various VOCs, high temperature is often 

used to accelerate the remediation of contaminated sites [EPA, 1991]. The effect of 

temperature on the removal of VOCs, especially TCE, is addressed in Chapter VI. 

Analytical solutions of VOCs transport in the unsaturated zone are available in the 

literature [Jury et al., 1983; 1984; 1990; Shoemaker et al., 1990; Shan and Stephens, 

1995]. Jury et al. [1983] developed a one-dimensional transport solution on the 

assumptions of linear, equilibrium partitioning between gas, water, and adsorbed phases, 

first-order degradation, steady-state water flow, and chemical release into atmosphere 

through a stagnant air boundary layer. The solution includes water-phase advection and 

diffusion and gas-phase diffusion. Shoemaker et al. [1990] extended the solution given by 

Jury et al. [1983] to one- and two-dimensional analytical solutions considering gas-phase 

sorption as well as water-phase sorption. Gas-phase sorption (direct partitioning of a 

contaminant from gas phase to solid phase) significantly retarded the propagation of a 
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contamination front under very dry soil conditions. Shan and Stephens [1995] developed 

an one-dimensional analytical solution to investigate the density effect of a contaminated 

gas mixture on vertical transport of VOCs in the unsaturated zone. In the analytical 

solution, the gas velocity is proportional to total contaminant concentration in the mixture 

and molecular weights of contaminants. Therefore, density-driven advection of gas 

mixture generates fast transport of contaminants when the concentrations are relatively 

high and the contaminants have high molecular weights like TCE and PCE.  

One of the earlier numerical studies considering an advective gas flow were done 

by Weeks et al. [1982]. They used a one-dimensional finite difference model to simulate 

transport of two atmospheric fluorocarbons from the atmosphere into the very thick 

unsaturated zone. The model included diffusion, convection associated with a decline in 

the water table, and partitioning processes. Among the three processes, gas diffusion was 

the primary mechanism causing downward migration of the fluorocarbons in the 

undisturbed unsaturated zone with small groundwater discharge. Using a two-

dimensional finite element model, Metcalfe and Farquhar [1987] investigated advective 

transport due to the change in gas density in simulating the migration of carbon dioxide 

and methane from waste disposal sites. In the simulation, density and viscosity of gas 

mixture were evaluated as a function of contaminant concentrations.  

Falta et al. [1989] investigated density-driven gas flow in the unsaturated zone by 

analytical and numerical methods. Analytically, they estimated maximum velocities of 

various gas mixtures, which are generated by the change in gas density due to 

vaporization of contaminants. They reported that transport of halogenated contaminants, 

such as TCE and chloroform, is highly affected by density-driven flow of gas phase, and 
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that the flow is significant in a relatively permeable zone. Using the modified TOUGH, a 

three dimensional numerical code with the finite difference method, Falta et al. [1989] 

numerically analyzed the density-driven migration of toluene and carbon tetrachloride in 

the unsaturated zone; at 25 oC, 1 atm, approximate maximum density of gas mixture is 

1.27 kg/m3 for toluene + air and 1.93 kg/m3 for carbon tetrachloride + air while pure air is 

about 1.17 kg/m3. Their numerical analysis showed that the density-driven flow of gas 

was large and noticeable for carbon tetrachloride while the flow was small for toluene. 

Mendoza and Frind [1990a; 1990b] developed a two-dimensional model to 

investigate main transport mechanisms, such as diffusion, density-driven advection, and 

advection due to vaporization at sources, in the unsaturated zone. The model was 

validated through a comparison of simulation results and experimental data. Based on the 

results of various simulations, they also pointed out the importance of density-driven 

advection of gas phase on contaminant transport, and reported that soil-surface boundary 

plays a very important role in releasing contaminants from the subsurface into the 

atmosphere. Open soil-surface much reduced the development of contaminant vapor 

plume relative to the closed soil-surface boundary. They also noted that higher moisture 

content can increase the contaminant concentration in water phase, thus more 

contaminant can be transported into the saturated zone.  

In the unsaturated zone, water phase constantly interacts with gas phase, and the 

two phases simultaneously flow through porous media as a multiphase flow. In 

unsaturated zone, the numerical works done by Metcalfe and Farquhar [1987], Falta et al. 

[1989], and Mendoza and Frind [1990a; 1990b] neglected water flow and contaminant 

transport in water phase under the assumptions of a local equilibrium between gas and 
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water phases. Sleep and Sykes [1989] developed a two-dimensional model that included 

the movements of water and gas in simulating contaminant transport in variably saturated 

media. Under the assumption that the capillary effect between gas and water phases is 

negligible, the model linked water phase flow and gas phase flow in terms of their 

saturation levels. The density was treated as a function of contaminant concentrations 

without any effect of gas compression. Sleep and Sykes [1989] showed that: (i) 

contaminant transport due to the density-dependent gas flow caused greater spreading of 

TCE in gas phase in the unsaturated zone; (ii) a combined effect of density-dependent 

advection of gas phase and contaminant partitioning between water-air phases increased 

pollution of groundwater in the saturated zone; and, (iii) an in-situ gas venting, in which a 

vacuum is applied below a source zone of immobilized TCE, was very effective in 

removing TCE vapor.  

Mendoza and McAlary [1990] simulated vapor transport of TCE from its residual 

source in a two-dimensional domain, and investigated potential of groundwater 

contamination due to dissolution of TCE. Their simulation results suggested that, 

regardless of ground surface boundary conditions, groundwater can be significantly 

polluted by TCE, and infiltration will accelerate the development of contaminated 

groundwater plumes. Since Mendoza and McAlary [1990] handled the unsaturated zone 

and the saturated zone as separate domains, direct mass transfer of TCE at the interface 

between the two zones was not achieved.  

Thomson et al. [1997] developed a two-dimensional finite-element-based model 

to simulate flow of gas and water phases and TCE transport in the phases. In estimating 

the density of gas mixture, the model included both gas phase compressibility and TCE 
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concentration in the mixture. Water and gas flow equations are coupled through the gas-

water capillary pressure and saturation degrees in the presence of an immobile NAPL 

source. The model excluded sorption and potential biological transformation while 

including the first-order relationship for mass transfer between phases, i.e., NAPL/water, 

NAPL/gas, and water/gas. The numerical simulations done by Thomson et al. [1997] 

showed that: (i) fluctuations in the water table largely contribute to the transport of VOCs 

from the contaminated saturated zone through the unsaturated zone and into the 

atmosphere; (ii) the density-driven advection of gas phase increases groundwater 

contamination and dissolution of contaminants from an immobile NAPL source; and, (iii) 

high infiltration makes groundwater contamination by VOCs worse since the infiltration 

develops the downward movement of water and blocks contaminant transport into the 

atmosphere.  

As discussed above, density-driven advection of gas phase plays an important role 

in spreading VOCs, especially chlorinated solvents such as TCE, in the unsaturated zone 

and in transporting them into the groundwater in the saturated zone. A variety of 

experiments and numerical works have demonstrated the effect of density-driven 

advection on contaminant transport. However, the numerical modeling efforts discussed 

earlier have been conducted under limited conditions. For example, Mendoza and Frind 

[1990a; 1990b] considered only gas phase while excluding water flow and Thomson et al. 

[1997] neglected contaminant sorption onto soil and biological transformations while 

considering advection, dispersion, and diffusion in water and gas phases. In a review of 

available public-domain models, Karapanagioti et al. [2003] pointed out that gas 

advection has not been much considered for transport modeling in the unsaturated zone. 
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A few of the models included gas advection and none of the models accounted for both 

gas advection and biological processes at the same time. In this thesis, contaminant 

transport in both water and gas phases is considered with multiphase flow. Since the 

unsaturated and saturated zones are treated in a single domain, the transport of 

contaminants into the atmosphere or into the groundwater in the saturated zone is 

effectively estimated with density-driven advection of gas, mass transfer between water-

gas phases, sorption of dissolved contaminants into soil and biological transformations. 
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2.2 Biological Transformation and Transport of Contaminants  

in Subsurface Systems 

VOCs released in the unsaturated zone may contact with indigenous 

microorganisms, which can biologically transform the compounds [Vogel et al., 1987]. 

Among VOCs, due to the frequent appearance of chlorinated hydrocarbons in 

groundwater contamination and their toxicity, dehalogenation processes of VOCs have 

been extensively studied [Vogel and McCarty, 1985; Freedman and Gossett, 1989; 

Maymo-Gatell et al., 1997; Wu et al., 1998; Pavlostathis and Prytula, 2000; Hendrickson 

et al., 2002; Dyer, 2003; He et al., 2003].  

Biological transformations of chlorinated hydrocarbons are very complicated 

processes and depend on contaminant chemical properties, concentration, and subsurface 

environment parameters, such as oxygen, microorganism, oxidation-reduction potential, 

and temperature. For example, under anaerobic conditions, TCE can be transformed to 

dichloroethylenes (DCEs), vinyl chloride (VC) [Vogel and McCarty, 1985], and ethylene 

[Freedman and Gossett, 1989]. In Figure 2.1, among three DCE isomers produced 

theoretically, cis-1,2-DCE (cDCE) is the most common byproduct, and 1,1-DCE is the 

least prevalent one [Wiedemeier, 1998]. Thus, cDCE has been often used as a 

representative among DCE isomers in sequential-bioreaction modeling [Clement et al., 

2000]. The transformations of TCE and DCEs requires a low oxidation-reduction 

potential [Vogel et al., 1987; Freedman and Gossett, 1989]. When TCE is dechlorinated 

under methanogenic conditions, competition between methanogenesis and dechlorination 

of TCE for electron donors occurs [Wu et al., 1998]. In Equations (2.1) and (2.2), 

molecular hydrogen is used as an electron donor for both reactions. 

Methanogenesis: 4H2 + CO2 → CH4 + 2H2O     (2.1) 
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TCE dechlorination: 3H2 + C2HCl3 → C2H4 + 3HCl    (2.2) 

During reductive dechlorination of TCE shown in Figure 2.1, the chlorinated 

hydrocarbons are used as electron acceptors, not as sources of carbon, and a chlorine 

atom is removed and replaced with an hydrogen atom [Wiedemeier, 1998]. Wu et al. 

[1998] studied the effect of different organic materials as a substrate or an electron donor 

on dechlorination of TCE under methanogenic conditions. They reported that the fraction 

of a substrate used for dechlorination may increase when the substrate is slowly 

biodegraded. Davis et al. [2002] investigated rate coefficients and associated half-lives 

for biodegradation of TCE, DCEs, and VC. In their studies, the higher concentration of 

halogenated compounds showed the lower degradation rate and the longer half-life. Davis 

et al. [2002] found diverse group of microorganisms including iron reducers and 

anaerobic heterotrophs in the anaerobic zone where reductive dechlorination of TCE 

occurred. In field studies for contaminated sites, Dyer [2003] found TCE, DCEs and VC 

in both the unsaturated and the saturated zones. 
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Figure 2.1 Reductive dehalogenation of TCE [Lorah, 1997] 

 

A wide range of chlorinated hydrocarbons can be microbially degraded under 

aerobic conditions via cometabolism [Smith and McCarty, 1997; Wiedemeier, 1998; 

Verce and Freedman, 2000; Verce et al., 2002]. The degradation is catalyzed by 

microbial enzymes, such as methane monooxygenase (MMO) in methanotrophic 

bacteria, and the enzymes may oxidize TCE to TCE epoxide, which is subsequently 

mineralized [Smith and McCarty, 1997; Johan et al., 2001]. Because cometabolism yields 

no carbon or energy benefits to microbial cells [Alvarez-Cohen and Speitel, 2001], 

microorganisms use other substrates to grow new cells and to meet their energy 
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requirements. In order to raise methane-oxidizing bacteria, which transform TCE, Smith 

and McCarty [1997] provided methane gas as an energy source for the bacteria. The 

methane showed two functions: an energy source for cell growth and a competitive 

inhibitor of TCE cometabolism. The inhibition kinetics by methane varied with TCE 

concentration: Methane addition inhibited TCE cometabolism at low TCE concentrations, 

however, it enhanced TCE cometabolism at high TCE concentrations. 

DCEs and VC can be detoxified  by aerobic and anaerobic microorganisms, 

generating the benign products such as ethylene, inorganic chloride, and carbon dioxide 

[Vogel and McCarty, 1985; Freedman and Gossett, 1989; Coleman et al., 2002; He et al., 

2003].  Under aerobic conditions, cDCE can not be used as a source of energy and carbon 

while VC can be used as a primary substrate for microbial growth [Verce et al., 2002; 

Singh et al., 2004]. Verce et al. [2002] reported that cDCE is biodegraded by aerobic 

cultures grown on VC, which can be generated by dehalogenation of DCEs under 

anaerobic conditions. Cometabolism may occur relatively slowly in comparison to 

metabolism of growth substrate [Alexander, 1994].  

Biological degradation kinetics of contaminants under anaerobic or aerobic 

conditions are very important in designing in-situ bioremediation system, and they are 

also required as components of fate and transport models [Alvarez-Cohen and Speitel, 

2001]. Biological processes of contaminants in the subsurface are highly complex and are 

combined with a variety of biochemical and environmental factors such as competition, 

product toxicity (inhibition), energy and carbon source, and heterogeneity of subsurface 

systems [Vogel et al., 1987; Murphy et al., 1997; Murphy and Ginn, 2000; Alvarez-

Cohen and Speitel, 2001; Cupples et al., 2004; Yu et al., 2005]. Therefore, it may be 
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almost impossible to entirely understand and express all biological reaction kinetics. In 

applications, Michaelis-Menten (or Monod) and pseudo-first-order kinetics maybe used 

to express reductive dechlorination and cometabolic biodegradation reactions of 

chlorinated hydrocarbons [Smith et al., 1997; Clement et al., 2000; Pavlostathis and 

Prytula, 2000; Alvarez-Cohen and Speitel, 2001]. Michaelis-Menten model are 

[Pavlostathis and Prytula, 2000]: 

SK
Skr

S
b +

−=
'

         (2.3) 

where br  is the rate of bioreactions (ML-3T-1); kXk ='  is the maximum bioreaction rate 

(MT-1) for a constant biomass concentration; k  is the maximum specific rate of substrate 

degradation (Msubstrate M-1
cell T-1); S  is the substrate (contaminant) concentration (ML-3); 

X  is the active microbial concentration (ML-3); SK  is the half-saturation constant for the 

substrate of the bioreaction (ML-3). Pseudo-first-order model is a simplification of 

Michaelis-Menten model on the assumption that substrate concentrations ( S ) are 

significantly lower than half-saturation constants ( SK ) and can be written as 

[Pavlostathis and Prytula, 2000]: 

Skrb 1−=       (2.4) 

where 1k  is the pseudo-first-order reaction coefficient (T-1). Based on experimental 

studies on sequential reductive dechlorination of chlorinated benzene congeners (CBs), 

Pavlostathis and Prytula [2000] recommended Michaelis-Menten model over pseudo-

first-order model for the modeling of CBs transformation. In experimental studies of 

biological reduction of PCE and TCE, Haston and McCarty [1999] reported that 

Michaelis-Menten kinetics is the best approach in modeling chlorinated aliphatic 
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hydrocarbons (CAH). The kinetic parameters for CAH have been investigated through 

various laboratory experiments [Barrio-Lage et al., 1987; Fennell and Gossett, 1998; 

Haston and McCarty, 1999; Cupples et al., 2004; Yu et al., 2005]. For field-scale 

applications, Clement et al. [2000] used first-order models to represent sequential 

biotransformations of perchloroethylene (PCE) and TCE in the saturated zone. The use of  

Michaelis-Menten and pseudo-first-order kinetics, given in Equations (2.3) and (2.4) 

respectively, would be appropriate when the bioreaction rate is primarily a function of 

contaminant concentration under nearly constant microbial mass over time. If active 

bioremediation techniques such as bioaugmentation and biosimulation cause to highly 

increase microorganism mass at target sites, the effect of the mass change on degradation 

rates needs to be considered. The first-order model is reasonable for most natural 

attenuation modeling [Wiedemeier, 1998] and for biodegradation at low-pollutant 

concentration in the groundwater flow [Schmidt et al., 1985]. Weber and DiGiano [1996] 

suggested that first-order equations are widely applicable for description of various 

environmental reactions such as mass transfer between phases. In addition to reaction 

kinetics, their reaction rates may spatially vary over contaminated zones. The rates 

depend on the type and amount of bacteria present in the aquifer and the availability of 

electron donors and carbon source. To delineate the spatial variations in reaction patterns 

(aerobic or anaerobic reactions) and reaction rates, Clement et al. [2000] divided a 

contaminated area into a few reaction zones based on field-monitoring data, and assigned 

different coefficients for sequential biotransformations to each zone in order to match 

numerical results with field data.  
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Most of transport modeling of reactive contaminants, including physicochemical 

and biological transformation processes, has been conducted only in the fully saturated 

zones [Yeh and Tripathi, 1991; Schaerlaekens et al., 1999; Clement et al., 2000; Fang et 

al., 2003]. A three-dimensional finite-element-based hydrogeochemical transport model, 

HYDROGEOCHEM [Yeh and Tripathi, 1991], was developed, and used to simulate the 

transport of reactive multiple species with various chemical processes such as 

precipitation-dissolution, sorption, ion exchange, and oxidation-reduction [Tripathi and 

Yeh, 1993]. In addition to such physicochemical reactions, Fang et al. [2003] considered 

biological processes in BIOGEOCHEM to simulate complicated microbiological and 

chemical reactions of multicomponents in the groundwater.  Rifai et al. [2000] developed 

a two-dimensional finite difference model, BIOPLUME III, to investigate the natural 

attenuation of organic contaminants  in the groundwater. The model, which includes both 

pseudo-first-order and Monod kinetics for biodegrdation, was used to evaluate the impact 

of anaerobic processes on the fate and transport of benzene, toluene, ethylbenzene, and 

xylene (BTEX) at Patrick Air Force Base (AFB) in Florida. Essaid et al [1995] developed 

a two-dimensional transport model with sequential biological processes, known as 

BIOMOC, to predict biodegradation of contaminants such as benzene and toluene at a 

crude oil spill site. The model uses Monod kinetics for biodegradation processes. 

Clement [1997] developed a three-dimensional transport of reactive multicompounds in 

the groundwater, RT3D, which includes sequential biodegradation reactions of 

contaminants such as PCE and TCE. RT3D was applied to analyze multicomponent 

transport and biotransformation of PCE via sequential dechlorination processes 
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(PCE→TCE→cDCE→VC→Ethene) within the fully saturated zone at the Area-6 site in 

Dover Air Force Base, Delaware. 

Biological processes within water phase in the unsaturated zone constantly occur, 

and a parent contaminant and its daughter contaminants exist in water and gas phases 

through partitioning processes [Borch et al., 2003]. Biological processes in the 

unsaturated zone have not considered in transport modeling even though they play 

important roles in generating toxic intermediates, spreading them in the unsaturated zone, 

and transporting them into the saturated zone. To investigate the effect of biological 

processes in the unsaturated zone on contaminant transport and groundwater pollution, 

this study takes account of sequential dehalogenations of TCE, e.g., TCE→cDCE→VC, 

under anaerobic conditions and cometabolism of TCE under aerobic conditions within 

water phase in the unsaturated or saturated zone. Michaelis-Menten (or Monod) and 

pseudo-first-order equations are used to express bioreaction kinetics of contaminants in 

multicomponent transport modeling. 

Transport models of reactive multispecies are described by a set of partial 

differential equations, and, due to the change in fluid properties and reactions between 

chemicals, the equations may become highly nonlinear.  In formulating a system of 

nonlinear equations, three approaches are used: (i) a mixed differential and algebraic 

equation (DAE) approach; (ii) a direct substitution approach (DSA); and, (iii) a 

sequential iteration approach (SIA). DAE and DSA require extremely large computer 

resources in terms of central processing unit (CPU) memory and CPU time since they  

solve all variables simultaneously while SIA needs the fewest resources since it solves 

variables sequentially and iteratively [Yeh and Tripathi, 1989]. Through the comparison 
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of the three approaches, Yeh [1989] recommended SIA for practicality and flexibility in 

simulating multispecies transport with complex reactions in two- or three-dimensional 

domains. In this study, TechFlowMP employs SIA to handle nonlinear equations for 

multispecies and multiphase. To improve the convergence of SIA and to reduce 

computational burdens of DAE in very complicated reaction systems, Molins et al [2004] 

and Fang et al. [2003]  proposed methods that decouple or decompose reactions processes 

into a few groups of processes. 

In cases of flow and transport modeling in three-dimensional domains, high 

computation capacity is often required due to the complexity of the modeling and the 

large CPU needs [Gwo and Yeh, 1996]. Gwo [2001] developed a high-performance 

computer model, HBGC123D, to simulate heat transfer, reactive solute transport, and 

hydrogeological and biological processes in groundwater systems. HBGC123D is a 

shared-memory parallel code that utilizes the OpenMP directives as a parallel 

computation scheme, which is also implemented to TechFlowMP in this study.  

 

2.3 In-situ Air Sparging 

In-situ air sparging (IAS) is a remediation technology used for subsurface 

removal of dissolved VOCs and NAPL [Thomson and Johnson, 2000]. Air sparging 

injects clean, pressurized air into the subsurface below the water table. The air rises due 

to the forces of buoyancy and capillary, and it contacts with dissolved or NAPL 

contaminants, which are partitioned into the air. The air containing the contaminants is 

carried to the unsaturated zone, where the air is typically withdrawn by a soil vapor 

extraction (SVE) system. IAS is readily used for contaminants with high Henry’s law 
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constants, boiling points less than 250 to 300 oC, or vapor pressures greater than 0.5 

mmHg, which include benzene, xylene, toluene, and TCE [EPA, 2004]. IAS works best 

in uniform coarse-grained soils such as sand and gravel, and it is effective when intrinsic 

permeability is equal to or greater than 910− cm2 [Sellers, 1999; EPA, 2004]. The 

applicability and performance of IAS are determined by a variety of factors, such as 

geological and hydrogeological conditions, contaminant properties, and contaminant 

distribution at sites [Wilson, 1995].  Geological and hydrogeological conditions include 

aquifer depth, soil texture, porosity, permeability, heterogeneity, and stratigraphy; 

contaminant properties include vapor pressure, solubility, and biodegradability; 

contaminant distribution includes its horizontal and vertical extents.  

The use of IAS technology is growing more rapidly than the theoretical and 

design knowledge associated with the technique, and mathematical models of air 

sparging are in the early stages of development [McCray, 2000]. Published air-sparging 

models became available in the early to mid-1990s. The first conceptualizations of air 

flow during air sparging were of bubbles rising in the saturated zone. It is generally 

accepted that airflow occurs in discrete air channels for most porous media, including 

gravel or well-sorted coarse sands. Many laboratory experiments demonstrated airflow as 

discrete bubbles or channels in coarse porous media [Ji et al., 1993; Chen et al., 1996; 

Plummer et al., 1997; Burns and Zhang, 1999; Peterson et al., 1999; Peterson et al., 2000; 

Reddy and Adams, 2001]. Corapcioglu et al. [2004] theoretically estimated the rise 

velocity of air bubbles based on the macroscopic balance equations for forces acting on 

the bubbles, such as inertia force, mass force, buoyant force, surface tension, and drag 

force. The theoretical velocity showed good agreement with laboratory-measured 
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velocity by Roosevelt and Corapcioglu [1998]. Air channeling is ubiquitous at the pore 

scale and occurs at various scales during IAS [Clayton, 1999]. Heterogeneities of 

capillarity and relative-permeability appear to be the primary cause of air channels at 

macroscopic and large scales [Ji et al., 1993; Ahlfeld et al., 1994]. At smaller scales, air 

channels may be closely spaced relative to the representative elementary volume of a 

typical model, and air-water flow can be assumed to be a continuum within relatively 

homogeneous porous media [McCray, 2000]. Air-water flow as a continuum is applied 

for multiphase flow models. 

Generally, air-sparging models are divided into two groups [McCray, 2000]: (i) 

compartmentalized, lumped-parameter models; and, (ii) multiphase fluid-flow models. In 

compartmentalized air-sparging models, fluid phases and biophysicochemical processes 

are separated into compartments: For an example, a three-compartment model may 

consist of water compartment, gas compartment, and mass-transfer compartment for 

sorption. Gas compartment usually used to represent air-channels in porous media. The 

primary purpose of compartment models is to address mass-transfer limiting diffusion of 

dissolved contaminants, and/or nonequilibrium mass transfer across air-water or NAPL-

water phases [McCray, 2000]. Compartment models are useful to address the effect of air 

channeling on contaminant removal. Wilson [1992] used a well-mixed two-compartment 

(a water compartment and a reaction compartment between water and gas) model to 

develop simple analytical air-sparging models that were used to estimate the removal of a 

dissolved contaminant under steady- or unsteady-states. Local equilibrium between water 

and gas phases was assumed in the analytical models. Wilson et al. [1994] developed a 

numerical model to simulate VOC transport into sparged air by dispersion and air-
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induced circulation of the water in the vicinity of a sparging well. In the model, the air 

was assumed to flow through discrete, persistent channels in the aquifer. By simplifying 

air-sparging systems into a few compartments and considering discrete fluid flows 

without any interaction between fluids, compartmentalized, lumped-parameter models 

have advantages to represent many complex mass-transfer processes in a bulk volume of 

porous media. However, the models cannot describe dynamic behavior of injected air and 

groundwater, the temporal- and spatial-distribution of the air, and physicochemical 

processes associated with the dynamic behavior [McCray, 2000].  

Under the assumption that air-water fluid is a continuum, multiphase fluid-flow 

models are often used to describe a simultaneous flow of water and air, which occurs 

during IAS. When immiscible multiple fluids move through porous media, the interfacial 

tension between the fluids is nonzero, and a distinct fluid-fluid interface separates the 

fluids within each pore [Bear, 1972]. The existence of fluid-fluid interfaces makes 

multiphase flow problems much more difficult to analyze and model than single-phase 

flow such as the saturated groundwater flow [Celia et al., 1995]. The ability of an 

interface to carry a nonzero stress is quantified by the interfacial tension for the fluid-

fluid pair, and the pressure difference across an interface between fluids is called 

capillary pressure. For gas-water systems, the capillary pressure, cP , can be written as, 

wgc PPP −=        (2.5) 

where gP  and wP  are gas and water pressure, respectively. 

A major difficulty in modeling multiphase flow comes from the constitutive 

relationships governing multiphase movement [Parker et al., 1987]. The relationships are 

expressed as functional relationships of capillary pressures ( cP ), saturations ( s ), and 
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relative permeabilities ( rk ) of coexisting phases. The relationships and their dependence 

on porous media and fluid characteristics have been widely studied [Brooks and Corey, 

1964; Stone, 1970; Mualem, 1976; van Genuchten, 1980; Parker et al., 1987; Demond 

and Roberts, 1991; Miller et al., 1998; Ataie-Ashtiani et al., 2002]. Capillary pressure-

saturation equations such as Brook-Corey equation [Brooks and Corey, 1964] and van 

Genuchten equation [van Genuchten, 1980] are widely used to describe the relationship 

between capillary pressure and effective saturation of a wetting fluid for multiphase flow 

[Leij et al., 1997]. In air-water systems, since the contact angle between a water-air 

interface and solid soil is less than 90o at water-phase, water is a wetting fluid, which  will 

preferentially wet the solid, and air becomes a nonwetting fluid [Bear, 1972]. The 

effective saturation of a wetting fluid (water) is defined by 
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where wes , ws , and wrs  are the effective water saturation, real water saturation, and 

irreducible water saturation, respectively. The Brook-Corey equation can be written as, 
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where dP  is the displacement pressure and λ  is a fitted parameter. The van Genuchten 

equation can be expressed as, 
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where ,, mα and n  are empirical parameters that effect the slope or location of the 

inflection point of a capillary pressure-saturation curve.  
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In multiphase flow, each fluid is regarded as a continuum in a porous medium, 

and each fluid has its own flow pathway according to its saturation level. The 

permeability of each fluid within a porous medium is affected by the presence of the 

other phase. The Darcy law, originally describing the flow of a single-phase fluid 

completely saturating a porous medium, may be extended to describe multiphase flow 

[Bear, 1972]. Under the extension of Darcy’s law, the permeability of each fluid is called 

an effective permeability. The ratio of the effective permeability of each fluid to the 

permeability of a single-phase fluid is defined as relative permeability. Relative 

permeability is generally expressed as a function of fluid saturation. In water-gas fluid 

systems, Brooks and Corey parametric model yields the relative permeabilities of water 

and gas phase as follows [Brooks and Corey, 1964], 

( ) λλ /32+= werw sk       (2.9) 

( ) ( )[ ]λλ /22 11 +−−= wewekrg ssck      (2.10) 

and the van Genuchten model gives [van Genuchten, 1980] 

 ( )[ ] 2
/12/1 11 mm
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where rwk  and rgk  are relative permeabilities of water and gas phases, respectively, and 

kc  is the Klinkenberg factor, which accounts for the air slippage in air-water flow 

systems [Bear, 1972]. Parker et al. [1987] extended van Genuchten model to three fluid 

phases and suggested closed-form expressions for capillary pressure-saturation ( sPc − ) 

and saturation-relative permeability  relationships ( rks − ) in two- and three-fluid phase 

porous media systems.  
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sPc − and rks − relationships may be different when a fluid-fluid interface is 

advancing or receding on a solid surface [Bear, 1972].  The phenomena are called  

hysteresis, produced by pore scale effects associated with the difference in a contact 

angle between fluids and a solid and nonwetting fluid entrapment during saturation path 

reversals [Lenhard et al., 1989]. Typically, the relationships are highly nonlinear, and 

their experimental measurements are often a difficult task. Ataie-Ashtiani et al. [2002] 

reported that the task can be more difficult in the presence of microheterogeneities which 

generate complex functional dependencies in rc ksP −−  relationships. In both 

environmental remediation and petroleum reservoir engineering, nonhysteretic sPc −  and 

rks −  relationships are usually accepted in multiphase flow modeling because the 

relationships are less computationally demanding and require fewer data [Miller et al., 

1998]. This study also uses nonhysteretic relationships to estimate fluid saturation and 

relative permeability in multiphase flow modeling. 

Multiphase flow equations are complex and highly nonlinear because of capillary 

pressure and relative permeability relationships incorporated into the equations. Most of 

modelings for multiphase flow have been done by numerical methods [Mohtar et al., 

1994; van Dijke et al., 1995; McCray and Falta, 1996, 1997; Marulanda et al., 2000; Mei 

et al., 2002], and a few investigators developed analytical solutions [van Dijke et al., 

1995; Philip, 1998; van Dijke and van der Zee, 1998]. Due to the nonlinearity of 

multiphase flow equations, analytical solutions are derived based on simplifying 

assumptions, such as steady-stage air flow, incompressible air, constant air velocity, and 

stagnant water. Relationships for relative permeability or capillary pressure were also 

simplified for the solutions. van Dijke et al. [1995] developed an analytical solution to 
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estimate air saturation levels and the radius of influence of IAS in a steady state situation 

with a point source injection. The analytical solution showed good agreement with IAS 

simulation results. The analytical solution is a steady boundary-layer solution that 

neglects air flow due to vertical capillary pressure gradients. Philip [1998] presented a 

full air-flow solution that allows vertical downward flow below an air-sparging point. 

The solution was given in terms of two dimensionless numbers; Kirchhoff potential that 

increases monotonically with capillary pressure and air saturation and Stokes stream 

function that maps the pattern of air flow. 

Numerical analysis on multiphase flow have significantly contributed to the 

understanding of the theoretical aspects of IAS and to the design of IAS system [McCray, 

2000]. Mohtar et al. [1994] developed a two-dimensional steady-state model, SPARG, to 

simulate air sparging in porous media. The model, based on finite element method, was 

used to predict the distribution of capillary pressure during air sparging. Using a three-

dimensional multiphase flow model developed by Huyakorn et al. [1994], Panday et al. 

[1994] depicted the distribution of steady-state gas pressure in the vicinity of a sparging 

well and the profiles of air velocity along a vertical cross-section and a horizontal plane. 

Transient air flows in a homogenous axially symmetric porous medium were simulated 

by van Dijke and van der Zee [1995], who developed nondimensionalized flow equations 

for water and gas based on the mixed form of the Richard equation. Their simulation 

results showed that injected air induced groundwater table mounding at the injection 

well, and that dynamic movements of air and water were stabilized within 2 hours, 

leading nearly steady-state air flow in static water pressure. The groundwater table 

mounding was also reported by Lundegard and Andersen [1996].  
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Using a vacuum extraction with IAS, Unger et al. [1995] investigated controlling 

mechanisms in removing TCE as DNAPL above and below the groundwater table. At 

early times, TCE in the unsaturated zone was mainly removed by rapid mass transfer 

from NAPL to gas phase. At later times, remediation was controlled by mass transfer 

between NAPL and water phase in the saturated zone. In IAS modeling, Unger et al. 

[1995] used CompFlow model developed by Forsyth and Shao [1991], and employed two 

horizontal sparging wells to yield good contact between injected air and DNAPL. The 

importance of the contact time was also pointed out by Bass et al. [2000], who reviewed 

many field and experimental cases and provided predictive indicators for successful 

application of IAS.  

Radius of influence (ROI) of sparging wells, generally defined by arbitrary gas-

phase saturation, is one of most important parameters in design of IAS system. McCray 

and Falta [1996; 1997] proposed that the accurate estimation of ROI can be obtained 

from gas-phase pressures measured in monitoring probes at contaminated sites. In IAS 

simulations using T2VOC code, Falta et al. [1995] showed that anisotropy of soil matrix 

has great importance in determining ROI, and heterogeneities of soil media also play an 

important role in airflow pathways; For example, a less permeable horizontal disc (such 

as a clay lens) as the heterogeneity in a permeable porous medium contributes to lateral 

movement of air injected below the disc.  The effect of low-permeable layers was 

demonstrated through experiments [Ji et al., 1993] and numerical studies [McCray and 

Falta, 1996; van Dijke and van der Zee, 1998].  Benner et al. [2000] used IAS to 

remediate sandy soils and shallow groundwater contaminated with LNAPL at a drum 

storage site, and they used BIOVENTINGplus to simulate the site. Toluene, ethylbenzene, 



 36

and total xylene were dominant among the NAPL contaminants. The simulation results 

showed that biodegradation was the most important mechanism in total contaminant 

removal at the site. Comparison of continuous sparging versus pulse sparging suggested 

that the former is better than the latter if mass-transfer constraints is very small and 

contaminants are readily biodegraded.  Mei et al. [2002] used a pseudo-transient method 

to investigate steady-state air flow by air venting and sparging in an axisymmetric 

domain. They pointed out that the compressibility of gas has significant effects on 

determining capillary pressure, the vertical velocity of gas, and ROI at some regions 

during IAS. Philip [1998] and Mei et al. [2002] showed that the ROI in a finer soil was 

larger than that in a coarse soil because of a stronger capillarity in the finer soil. Through 

air injection and extraction tests at a site contaminated mainly with toluene, ethylbenzene, 

and xylene, Lee et al. [2002] evaluated ROI using two indicators: (i) the temporal 

variation of gas-phase pressure and (ii) the propagation of dissolved oxygen 

concentrations in the groundwater. In their study, a pressure-based ROI was estimated 

with locations in which gas-phase pressure is greater than or equal to 2.5 mmH2O 

[USACE, 1995] while oxygen-based ROI was evaluated with locations in which 

dissolved oxygen concentration need to be greater than or equal to 5 % to enhance 

biodegradation of contaminants [EPA, 1995a]. The pressure-based ROI estimated ranged 

3.3 m to 10.5 m, and the ROI showed similar magnitude with oxygen-based ROI. 

IAS is usually used in conjunction with SVE that remove  gas mixture containing 

VOCs from the unsaturated zone with high permeability in a relative short time [Johnson 

et al., 1993; Nyer and Suthersan, 1993]. In SVE, pneumatic pressure gradients induced by 

vacuum pumps create a gas flow in the subsurface. IAS with SVE have been successfully 
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applied to many sites contaminated with gasoline and chlorinated solvents [Brockman et 

al., 1995; Aelion et al., 1997; Hughes and Dacyk, 1998; Kerfoot et al., 1998; Rabideau et 

al., 1999; Murray et al., 2000; Kirtland et al., 2001]. Bass et al. [2000] summarized 44 air 

sparging cases, consisting of 8 sites for chlorinated solvents such as PCE and TCE and 39 

sites for petroleum hydrocarbons; IAS was more successful at chlorinated solvent sites 

than at petroleum sites because of the rebound of concentrations at the petroleum sites; 

Absorbed contaminants at the petroleum sites caused concentration rebound after IAS 

ends and thus decreased IAS performance. Through two-dimensional laboratory 

experiments, Bruce et al. [1998] reported that approximately 85% of methyl tert-butyl 

ether (MTBE) as NAPL was removed by volatilization during air sparging. 

In IAS, injected air enhances biological processes of contaminants [Aelion et al., 

1997; Travis and Rosenberg, 1997; Aelion and Kirtland, 2000; Bass et al., 2000; Kirtland 

et al., 2001; Lee et al., 2002], and nutrient injections can accelerate the processes 

[Brockman et al., 1995; Pfiffner et al., 1997; Blount et al., 2002]. Brockman et al. [1995] 

investigated the effect of nutrients (nitrogen and phosphorus in gas phase) on in-situ 

bioremediation of a TCE-contaminated site through three experiment stages; At the first 

stage as a control experiment, only air is injected; at the second stage, 1-4% methane (by 

volume) with air was injected; and at the last stage, 4 % methane with additional nitrous 

oxide (0.07% by volume) and triethyl phosphate (0.007 % by volume) are injected. As 

compared to the control experiment, the methane injection at the second stage showed a 

rapid and large increase in the density of methanotrophic microorganisms. At the third 

stage, the addition of nitrogen and phosphorus increased the frequency of TCE 

biodegradative potential by approximate three orders of magnitude. 
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In IAS with SVE, nonequilibrium effects are associated with diffusion- and 

dispersion-limited mass transfer of VOCs between phases. Rate-limited mass transfer has 

great effect on the efficiency of IAS. A first-order mass transfer equation has been often 

used to nonequilibrium mass transfer of VOCs in porous media [Sleep and Sykes, 1989; 

Braida and Ong, 2000]. By implementing a dual-permeability approach used in fractured 

porous media, Falta [2000] developed a dual-media formulation to simulate the effect of 

local gas channels that form during IAS. The final equation of the formulation becomes 

same formulation as a general first-order equation, and the formulation can be used to 

estimate the coefficient of the first-order equation. Biodegradation plays also important 

role in air sparging efficiency [Aelion et al., 1997; Aelion and Kirtland, 2000], however 

the process was not much considered in air-sparging models [McCray, 2000]. In this 

study on IAS, aerobic biodegradation processes as well as nonequilibrium mass transfer 

between phases in contaminant transport are taken into consideration with multiphase 

flow modeling, which can elucidate a simultaneous flow of air and water phase during 

IAS.  

 

2.4 Thermal-enhanced Venting 

Thermal-enhanced venting (TEV) is a heat-based in-situ remediation technique to 

enhance removal or recovery of medium- to low-volatile residual hydrocarbon 

contaminants in the unsaturated zone. TEV is different to traditional soil venting because 

heated air instead of air at ambient conditions is applied to contaminated zones. TEV can 

be used in many places where excavation is not possible, such as under and around 

surface structures, and around empty underground tanks and utilities [EPA, 1995b].  
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The rise in temperature changes physical and chemical properties of an organic 

chemical; In general, its density and adsorption onto solid phase (or into soil organic 

matter)  decrease; however, its vapor pressure and molecular diffusion in the aqueous and 

gaseous phases increase [Davis, 1997; Werth and Reinhard, 1997]. For less-volatile 

contaminants, gas-phase concentrations increase by three- or five-fold when temperature 

increases by 20-30°C [Kaluarachchi and Islam, 1995]. Typically, the viscosity of a liquid 

decreases as the temperature increases, but the viscosity of gases increases with 

temperature. 

Application of heat to the unsaturated zone can be done by injection of hot gases 

(steam or air) or direct application of electrical heat energy into the ground. Through 

numerical modelings in one- and two-dimensional unsaturated domains, Islam and 

Kaluarachchi [1995] examined the effect of hot air (from 20 oC to 90 oC) on the recovery 

of hydrocarbons; Hot-air injection highly increased the recovery of medium- to low-

volatile compounds such as n-dodecane, naphthalene, and n-hexylbenzene while the 

injection showed negligible effect on the removal of highly volatile hydrocarbons such as 

benzene. Steam injection is used to increase the transfer of heat to soils; The heat 

capacity of steam is approximately four times that of air (approximately 1 kJ/kg oC), and 

heat of evaporation (more than 2000 kJ/kg oC) is effective to heat soils [Davis, 1997]. 

Steam injection has been investigated to remove NAPL contaminants in the variably 

saturated zone [Falta et al., 1992; Kaslusky and Udell, 2002; Schmidt et al., 2002; 

Gudbjerg et al., 2004]. Due to the condensation of water, steam injection can leave 

behind water saturation, and contaminants may remain at high concentration in the 

residual [Kaluarachchi and Islam, 1995; Davis, 1997]. Steam injection may cause the 
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downward migration of DNAPL to a location below the steam zone [She and Sleep, 

1999]. The migration occurs when DNAPL that is evaporated in the steam zone, 

condenses and is accumulated in the cooler soils at the edge of the heated region. To 

avoid the migration, the injection of mixtures of steam and air instead of pure steam has 

been proposed to remove DNAPL with the air at the edge [Kaslusky and Udell, 2002; 

Schmidt et al., 2002]. The condensation of steam can also reduce gas permeability in 

porous media [Kaluarachchi and Islam, 1995].  

Electrical energy can be applied directly into the ground to heat soil and injected 

air. For soil venting experiments, Lingineni and Dhir [1992] used a resistance heater at 

the inlet of one-dimensional column to heat both soil and air. They presented the 

propagation of evaporation fronts (location of minimum temperature due to 

volatilization) and thermal fronts (location that soil temperature increases mainly due to 

heat conduction) during experimental periods. Lingineni and Dhir [1992] suggested that 

thermal venting is highly effective when thermal fronts move faster than evaporation 

fronts do; The rate of thermal-front movement depends mostly on the ratio of energy 

contents of air and soil and air flow rate; and the rate of evaporation-front movement 

depends on residual saturation level, air flow rate, and the volatility of contaminants. Due 

to enthalpy for NAPL vaporization, sharp temperature drop occurred around the 

evaporation front.  

Electrical heating has been proven effective in sandy media, and it also has a 

greater potential than steam to be effective in less permeable media such as clays [Davis, 

1997]. Gauglitz et al. [1994] conducted field tests of six-phase soil heating with venting 

to remove TCE and PCE in clay soils.  In the tests, electrical resistive heating effectively 
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heated a clay zone and maintained at about 100oC. As venting removes vaporized soil 

water, air permeability increased. During heating, off-gas concentrations of TCE and 

PCE showed little change, but comparison of contaminant concentrations in soil samples 

between pre- and post-tests indicated substantial soil remediation. Through two-

dimensional laboratory experiments, Heron et al. [1998] showed that resistive heating 

and SVE is very effective in removing dissolved TCE. No temperature drop was detected 

because of no NAPL. In a review of rate-limited mechanisms, they pointed out that the 

major effect of heating on TCE removal was on the increase in volatility of TCE. 

Fotinich et al. [1999] examined the effect of hot air on the removal of diesel at two 

different flow rates and inlet temperatures (60 and 90oC) in a soil-venting system. Their 

column experiments showed that constant supply of hot air lead a steady increase in 

temperature without any significant temperature drop due to evaporation of diesel 

components. They suggested that temperature may have greater effect on determining 

total cleanup time than injection/extraction rate. The increase in temperature from 60 to 

90 oC reduced the cleanup time by a factor of 4.5 while the threefold increase in air flow 

rate (from 2.9 cm/s to 8.7 cm/s in a superficial velocity) reduced the time by a factor of 

3.75. 

TEV system involves a variety of parameters because of the change in physical 

and chemical properties with temperature. The applicability and performance could be 

predicted on the basis of site-specific hydro-geological conditions and the properties of 

target contaminants. To obtain an optimized design of thermal venting for a contaminated 

site, we need to understand the behavior of fluid and contaminants in subsurface systems. 

Several options of TEV under given situations could be set and their performance will be 
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evaluated to choose a final option. The TEV study in this thesis investigates fluid flow 

and contaminant transport under nonisothermal conditions. The transport of heat and its 

effect on TCE removal are also examined.   
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CHAPTER III  

DENSITY-DRIVEN TRANSPORT OF CONTAMINANTS  

IN A VARIABLY SATURATED ZONE 

 

As discussed in Chapter II, density gradients in gas phase generate gas flow in a 

variably saturated zone, and the gas flow constantly interacts with water flow, becoming 

a multiphase flow. Thus, contaminants will migrate in the multiphase flow. In this 

chapter, four main topics are addressed: (i) governing equations for a multiphase flow 

and contaminant transport in each phase; (ii) numerical schemes to solve the equations; 

(iii) verification of TechFlowMP model developed here using numerical and experimental 

data published in literature; and, (iv) investigation of the effect of important parameters 

on density-driven transport of contaminants. The effect of the density-driven transport on 

dissolved contaminant plume development in the saturated zone is examined through 

various applications, and a multiphase flow in the unsaturated zone is also addressed.  

 

3.1 Governing Equations 

Contaminant transport in a multiphase flow can be expressed in terms of three 

fundamental equations: (i) flow equations for gas and water phases; (ii) momentum 

equation; and, (iii) contaminant transport equations. These equations are highly coupled: 

For example, flow equations are linked by capillary pressures and saturation levels of 

each phase. Momentum equation, expressed as Darcy’s law equation, depends on phase 

saturation levels and contaminant concentrations that may change density and viscosity 

of fluid. Contaminant transport equations are connected to each other through mass 
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transfer processes. Flow and transport equations are linked in terms of mass transfer and 

concentration. Subsurface environments consist of four phases (water, gas, NAPL, and 

solid soil). Among these phases, water and gas phases are mobile, and saturation levels of 

NAPL at source zones change due to mass transfer between phases (water-NAPL and/or 

gas-NAPL).    

Density and viscosity of gas phase are defined as a function of contaminant 

concentrations and/or gas pressure. Mass transfer between phases occurs through 

dissolution and volatilization of NAPL, water-gas partitioning, and sorption. These 

processes are frequently simplified by local equilibrium assumptions, but the local 

equilibrium status between mobile phases is rarely achieved in field applications 

[Mackay et al., 1991; Thomson et al., 1997]. Non-equilibrium processes are hard to 

describe in a convenient mathematical form [Miller et al., 1990; Powers et al., 1991; 

Wilkins et al., 1995], so a first-order relationship is commonly adapted to express mass 

transfer between phases [Sleep and Sykes, 1989; Thomson et al., 1997]. In this study, a 

first-order relationship is also used to describe dissolution, volatilization, and water-gas 

partitioning of organic compounds in porous media. Biological transformations of 

organic contaminants, discussed in the next Chapter IV, are expressed as a first-order 

relationship or Michaelis-Menten equation.  

 

3.1.1 Multiphase Flow Equations 

From mass conservation equation and Darcy’s law, the governing equation of a 

multiphase flow can be derived [Sleep and Sykes, 1989; Thomson et al., 1997] 



 45

( ) ( ) '
fff

f

rfmfff QzgP
kk

t
s

+











∇+∇⋅∇=

∂
∂

ρ
µ

ρρφ
    (3.1) 

where subscript f represents mobile fluids, φ  is porosity, s is fluid saturation, ρ is fluid 

density ( 3−ML ), µ  is dynamic viscosity ( 11 −− TML ), rk  is relative permeability, mk  is 

intrinsic permeability tensor for soil media ( 2L ), P is fluid pressure ( 21 −− TML ), g is the 

gravitational constant ( 2−LT ), z  is elevation ( L ), and '
fQ  represents the strength of 

sources/sinks of mass ( 13 −− TML ). Flow equations are linked by capillary pressures at an 

interface between phases [Parker et al., 1987; Thomson et al., 1997]  

wgcgw PPP −=       (3.2) 

wncnw PPP −=       (3.3) 

where cgwP , cnwP , gP , wP , nP  are gas-water capillary pressure, NAPL-water capillary 

pressure, gas pressure, water pressure, and NAPL pressure ( 21 −− TML ), respectively. The 

sum of saturation of three phases (water, gas, and NAPL) is  

1=++ ngw sss      (3.4) 

In this study, since a NAPL is considered as an immobile residual, the change in 

NAPL saturation occurs only due to vaporization and/or dissolution. The saturation of 

NAPL, ns , can be nonzero only in NAPL source zones, and its saturation levels will be 

assigned as initial conditions. Also, if the saturation level of an immobile NAPL is small 

relative to that of water or gas and the pressures of gas and water phases are independent 

on the pressure of immobile NAPL, the presence of NAPL can be disregarded in solving 

water and gas flow equations  [Sleep and Sykes, 1989; Thomson et al., 1997]. Under this 

condition, water and gas flow equations are solely linked by Equation (3.2) while 



 46

Equation (3.3) can be excluded from fluid flow computations. In this study, two nonlinear 

flow equations for water and gas phases are considered to be coupled by Equations (3.2) 

and (3.4).  

Water Flow Equation 

Since both saturation and pressure of water phase vary with depth in the 

unsaturated zone, from Equation (3.1), water flow equation for a variably saturated zone 

can be expanded as follows [Bear and Bachmat, 1990; Diersch and Perrochet, 1999]: 
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where subscript w represents water phase, ( )[ ] gS wws ρφβαφ +−= 1  is a specific 

volumetric storativity ( 1−L ), gP www ρψ =  is water-equivalent pressure head of water 

phase ( L ), ( )( )wwww dPd //1 ρρβ =  is the compressibility of water under an isothermal 

condition ( 12 −MLT ), ( )( )wtt dPdVV //1=α  is soil matrix compressibility ( 12 −MLT ), tV  

is a bulk volume of porous media element ( 3L ), and www QQ ρ/'=  is the strength of 

sources/sinks of water phase ( 1−L ). In Equation (3.5), the effect of dissolved 

contaminants on water density is assumed to be negligible. Thus, water density is set to 

be constant under an isothermal condition.  

For a gas-water system, in which the two phases are mobile, the relationship 

between effective water saturation and gas-water capillary pressure is given in Equations 

(2.6)-(2.8), and, as given in Equations (2.9) and (2.11), relative permeability of water 

phase can be written in terms of effective water saturation. In this study, van Genuchten 

model given by van Genuchten [1980] and Parker et al. [1987] is used to define closed-
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form expressions for capillary pressure-saturation and saturation-relative permeability  

relationships. 

Boundary conditions (B.C.) for Equation (3.5) are written as 

Dirichlet (type 1) B.C.   Γ= ww ψψ     (3.6) 

Newman (type 2) B.C.   w
w f

n
=

∂
∂ψ     (3.7) 

where Γwψ  is water pressure head on a boundary ( L ), wf  is a value of water pressure 

head gradient, and n  is a unit vector normal to a boundary ( L ). 

Gas Flow Equation 

From multiphase flow Equation (3.1), as density and saturation of gas phase vary 

in the unsaturated zone, gas flow equation can be written as follows: 
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where subscript g  represents gas phase, gP wgg ρψ =  is water-equivalent pressure head 

of gas phase ( L ), and gI  indicates mass transfer of contaminants due to partitioning 

processes of contaminants between phases ( 13 −− TML ).  

Under an isothermal condition, the density of a gas mixture in Equation (3.8) is a 

function of gas pressure and concentration of contaminants. The density of a gas mixture 

containing vapors of multi-species can be expressed as [Thomson et al., 1997]: 
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where airρ  is pure air density ( 3−ML ), N is the number of contaminants, gγ is the 

compressibility of gas phase ( 22 −LT ), i
vρ  is density of pure vapor of ith contaminant 



 48

( 3−ML ), i
gC  is the concentration of ith contaminant in the gas phase ( 3−ML ). Assuming 

that a gas mixture obey the ideal gas law, the compressibility, gγ , can be determined by, 

RT
M

d
d g

g

g
g ==

ψ
ρ

γ      (3.10) 

where gM is an averaged molecular weight of the gas mixture. Substituting Equations 

(3.9) and (3.10) into the time derivative of gas density at the first term on the left-hand 

side of Equation (3.8) yields 
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Volatilization of immobile NAPL and gas-water partitioning of multispecies can 

be significant sources or sinks and should be considered [Sleep and Sykes, 1989; 

Thomson et al., 1997]. By applying a first-order relationship for the mass transfer 

processes, we obtain 
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where i
Vλ and i

Hλ  are the first-order mass transfer coefficients ( 1−T ) of ith contaminant for 

NAPL/gas and water/gas, respectively, i
geC  is the maximum concentration of ith 

contaminant in gas phase, i
wC  is the concentration of ith contaminant in water phase, and 

H  is a dimensionless Henry’s law coefficient. Substituting Equations (3.11) and (3.12) 

into Equation (3.8) yields, 
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In Equation (3.13), relative permeability of gas phase is written in terms of 

effective water pressure [Parker et al., 1987], and the permeability can be estimated by 

van Genuchten model shown in Equation (2.12). Viscosity of low-pressure 

multicomponent gas mixture is estimated by Wilke's semi-empirical method [Reid et al., 

1987],  
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where gµ , iµ , and jµ are viscosities of gas mixture and pure vapors of ith and jth species, 

respectively, ix  is a fractional molar concentration of ith species, and iM  and iM  are 

molecular weights of ith and jth species, respectively. 

Boundary conditions for Equation (3.13) are: 

Dirichlet (type I) B.C. Γ= gg ψψ     (3.16) 

Newman (type II) B.C. g
g f

n
=

∂
∂ψ

    (3.17) 

where Γgψ  and gf  are a gas pressure head and a gas-pressure-head gradient in a 

boundary, respectively, and n  is a unit vector normal to a boundary. 
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3.1.2 NAPL Equation  

The change in saturation of immobile NAPL occurs as a result of its vaporization 

into gas phase and/or dissolution into water phase, and the change can be expressed using 

first-order relationships as follows: 
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where nρ  is NAPL density ( 3−ML ), i
Dλ  is a first-order coefficient for dissolution of ith 

contaminant ( 1−T ), and i
weC  is the maximum concentration (solubility) of ith contaminant 

in water phase ( 3−ML ). 

 

3.1.3 Mass Continuity Equation 

The equation for advective-dispersive transport of ith species in mobile phases 

(water (w) and gas (g)) will be written as   
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where superscript i and subscript f  represent indexes of contaminants and fluid phases, 

respectively; C is a concentration of contaminants ( 3−ML ); D  and q are a dispersion 

tensor ( 12 −TL ) and Darcy flux ( 1−LT ), respectively; I indicates inter-phase mass transfers 

and biological reactions of contaminants ( 13 −− TML ); C* is specified concentrations of 

contaminants at a source/sink; and, Q is a strength of sources/sinks ( 1−T ). Darcy velocity 

for each fluid flow through porous media, estimated by Darcy’s law, can be written as 
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The dispersion tensor of ith species in mobile phase f, i
fD , is defined by [Bear, 

1972] 
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where αL and αT are longitudinal and transversal dispersivity of soil media, respectively, 

fff sqv φ/=  is pore velocity of a specified phase,  τ is tortuosity, D* is a molecular 

diffusion coefficient, and mnδ  is the Kronecker delta. The empirical equation for the 

tortuosity of fluids, developed by Millington and Quirk [1961], can be used in porous 

media [Weeks et al., 1982; Mendoza and Frind, 1990a; Thomson et al., 1997],  

23/7 /)( φφτ ff s=      (3.22) 

By applying a first-order relationship to dissolution, volatilization and water-gas 

partitioning processes of contaminants in porous media, mass transfers for water and gas 

phases can be written as, 
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where superscript i represents an index of contaminants.  

Biological transformations of organic compounds depend on properties of 

chemical compounds and various parameters of subsurface environments, and, as 

discussed earlier in Chapter II, biotransformation processes are very complicated and 
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site-specific. To simplify the kinetics of biotransformation of chlorinated compounds, 

Michaelis-Menten model [Haston and McCarty, 1999; Pavlostathis and Prytula, 2000; Yu 

et al., 2005] or a first-order relationship [Schmidt et al., 1985; Clement et al., 2000; 

Dinicola et al., 2002], shown in Equations (2.3) and (2.4), respectively, have been often 

used, and are also implemented herein to express sequential bioreactions of contaminants. 

In sequential bioreactions of compounds in water phase, the reduction in a parent 

compound through a biotransformation means the increase in its daughter compound. In 

terms of the daughter compound, biotransformation processes can be written as follows: 

For a first-order relationship, 
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or for Michaelis-Menten model, 
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where superscript i-1 and i represent parent and daughter compounds, respectively, Bλ  is 

a first-order biological transformation coefficient ( 1−T ), Bk  is a maximum bioreaction 

rate ( 13 −− TML ), and SK  is a half-saturation constant for a bioreaction ( 3−ML ). In this 

study, biological reactions are considered to be occurred only in water phase because 

most microorganisms for biological reactions exist in water phase. 

Sorption of dissolved contaminants on soil particles retards the transport of 

contaminants, and the sorption capacity depends on physical and chemical properties of 

soil media. Due to the hydrophobic effect of VOCs, sorption of dissolved VOCs onto soil 

particles are much faster than the partitioning process between gas and water phase, so a 
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linear sorption equilibrium can be used. Under such equilibrium status, the change in the 

concentration of a sorbed contaminant onto soil particles is directly proportional to that of 

the dissolved contaminant. The relationship is expressed as 
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where superscript i represents a target compound, i
sC is the concentration of sorbed 

contaminant in soil phase ( 1−
soilcompound MM ), bρ  is a bulk density of the soil phase 

( 3−LM soil ), i
DK  is a sorption coefficient ( 13 −

soilML ). As all surface of soil particles are 

covered preferentially by water, sorption of dissolved contaminants onto solid soil phase 

is considered while direct sorption of vaporized contaminants onto dry soil surface is 

excluded in this study. From Equations (3.23) through (3.27), the inter-phase mass 

transfer, i
fI , for water (w) and gas (g) phases in Equation (3.19) will be written as 
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Substitution of Equations (3.28) and (3.29) into Equation (3.19) yields transport 

equations of sequentially-bioreactive contaminants in water and gas phases as follows:  

For water phase, in a case of first-order bioreactions  
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,or in a case of Michaelis-Menten-type bioreactions 
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and for gas phase 
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Four types of boundary conditions can be considered for Equations (3.30)-(3.32) 

as follows [Frind, 1982; Sleep and Sykes, 1989; Mendoza and Frind, 1990a]: 

(i) Dirichlet (type I) conditions are 

 i
wo

i
w CC =       (3.33) 

 i
go

i
g CC =        (3.34) 

where woC  and goC  are specified values of contaminant concentrations in water and gas 

phases on boundaries, respectively. 

(ii) Neuman (type II) conditions are 

 i
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where wob and gob  are specified dispersive fluxes of contaminants in water and gas phases 

on boundaries, respectively.  

(iii) Cauchy (type III) conditions are 

( ) i
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i
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i
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i
ww CqnCqCDs =+∇−φ      (3.37) 
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( ) i
gogn

i
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g

i
gg CqnCqCDs =+∇−φ      (3.38) 

where wnq and gnq  are Darcy fluxes of water and gas on boundaries, respectively, and n  

is unit vectors normal to the boundaries. 

(iv) Free exit boundary can be used in cases that contaminants reach an exit boundary, in 

which boundary values can not be specified [Frind, 1988; Thomson et al., 1997]. In the 

boundary, the natural boundary term, nCDs www ∂∂ /φ , containing unknown boundary 

values, will remain unchanged.  

For contaminant transport in gas phase, the ground surface can be treated as a 

stagnant boundary layer due to vegetation and surface roughness. The flux across the 

boundary layer can be represented as [Thibodeaux, 1981; Mendoza and Mcalary, 1990]  
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D
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δ

     (3.39) 

where gob  is a contaminant flux, gδ  is the thickness of a stagnant boundary layer of gas 

phase at the ground surface, gsC is a contaminant concentration in soil gas phase at the 

ground surface, and atmC  is a contaminant concentration at the top of the layer. The atmC  

is usually set to zero for the atmosphere. This approach can be applied to a groundwater 

table boundary, which is usually assumed to be impermeable to gas phase. A contaminant 

flux across the layer of the table boundary can be expressed as [Mendoza and Frind, 

1990a; Mendoza and Mcalary, 1990] 
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where wob  is a contaminant flux across a groundwater table boundary, *
wD  is an effective 

aqueous dispersion coefficient, wδ  is the thickness of the groundwater table boundary 

layer, and wtC and wbC  are contaminant concentrations in water phase at the top and 

bottom of the boundary layer, respectively. Equations (3.39) and (3.40) imply a linear 

approximation of contaminant dispersion through stagnant boundary layers in gas and 

water phases, respectively.   

 

3.2 Numerical Solution  

Using Galerkin finite-element technique [Huyakorn and Pinder, 1983], a three-

dimensional numerical model, TechFlowMP, was developed to solve coupled equations 

for multiphase flow and multispecies transport. The model uses three-dimensional 

isoparametric rectangular prism element and a linear interpolation function, which are 

described in detail in Appendix A. 

Water flow equation shown in Equation (3.5) can be solved as water pressure-

head ( wψ )-form, water saturation ( ws )-form, or mixed ( ww s−ψ )-form. The water 

saturation-based equation (sw-form) is mass conservative [Celia et al., 1990; Diersch and 

Perrochet, 1999], but the equation can be applied only to the unsaturated zone because 

water saturation is not a variable in the saturated zone. Since water pressure-head is 

continuous and unique in the saturated and unsaturated zones, it has been widely applied 

to both zones. However, water pressure-head form produces significant global mass 

balance errors, which come from the time derivative term of water pressure head [Celia et 

al., 1990]. To overcome these errors, Celia et al. [1990] introduced a modified Picard 
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method, which uses the mixed form. They showed that the mixed form produces accurate 

mass conservative solutions, and it can be used for both the unsaturated and saturated 

zones. The mixed form has been successfully applied by Rathfelder and Abriola [1994] 

and Lehmann and Ackerer [1998]. The modified Picard method for the mixed form solely 

uses pressure head as a primary variable. To solve water flow equation in a single-phase 

system, Diersch and Perrochet [1999] introduced a primary variable switching scheme, 

which selectively uses water pressure head or water saturation as a primary variable in 

the mixed form according to water saturation level of each element. The scheme takes 

advantage of sw-form and ψw-from by separately handling the unsaturated and saturated 

zones, but it brings great complexity in applying to a multiphase system. In this study, 

since modeling domains are highly coupled multiphase and multicomponent systems and 

the modified Picard method has been successfully applied in the unsaturated and 

saturated zone, the method is used in modeling density-driven transport of contaminants. 

Thus, pressure heads of gas and water phases are selected as primary variables. A 

detailed description of numerical method for the modified Picard method is given in 

Appendix B. 

Flow velocities of gas and water phases, shown in Equation (3.20), are required 

for the solution of transport equations. In a density-driven flow in gas or water phases, 

the velocity of each phase plays an important role in contaminant transport, and has been 

widely discussed [Yeh, 1981; Diersch and Kolditz, 2002]. When the velocity is estimated 

locally at every element, discontinuity problems arise [Yeh, 1981]. To improve accuracy 

and overcome the discontinuity problem, Yeh [1981] proposed a method for globally 

continuous Darcy velocity, in which a finite element technique is applied to Equation 
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(3.20), and the method has been used to successfully solve transport problems in a 

variably saturated zone [Srivastava and Yeh, 1992; Yeh et al., 1993]. In this study, the 

continuous velocity approximation is employed to correctly simulate the density-driven 

advection of gas phase. The approximation method used here is summarized in Appendix 

C.     

The time derivatives in flow and transport equations (Equations (3.5), (3.13), and 

(3.30)-(3.32)) are approximated by a finite difference technique. This technique 

commonly uses the ε-family of approximation, in which a weighted average of the time 

derivatives is estimated at two consecutive time steps [Reddy, 1993] (See Appendix D for 

details). The backward difference technique (fully implicit method, ε=1.0), which 

requires the least computational effort, is generally acceptable for flow equations [Frind, 

1982]. However, since transport equations are more sensitive to the ε values, the 

equations are usually solved by semi-implicit Crank-Nicolson technique (ε=0.5) with a 

second-order accuracy in time. The technique reduces the smearing effects [Mendoza and 

Frind, 1990a]. All simulations in this study used ε=1.0 for flow equations and ε=0.5 for 

transport equations in each phase. 

Mass lumping of time-derivative mass matrices is used to improve the stability of 

the solution of nonlinear flow equations because mass lumping eliminates all 

convergence difficulties produced in consistent forms of the matrices [Frind, 1982; Celia 

et al., 1990; Rathfelder and Abriola, 1994]. Mass lumping process implies that each node 

in an element has an equal portion of total mass stored in the element. To show the effect 

of mass lumping on numerical oscillations, Celia et al. [1990] compared the finite 

element approximation with the finite difference approach, and they concluded that 
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modeling the unsaturated flow, especially for infiltration into dry soils, should use a 

lumping procedure for time matrices. They also suggested that the modified Picard 

scheme with mass lumping is very reliable and robust in unsaturated flow problems. 

However, for a one-dimensional linear advection-dispersion transport problem, Daus et 

al. [1985] showed that the consistent finite element formulation produces more accurate 

results than the lumped formulation. For non-linear density-dependent transport 

problems, Frind [1982] applied mass lumping procedures to flow and transport equations, 

producing more stable results. In this study, we used mass lumping procedures to 

effectively handle non-linear problems. 

Multiphase flow and transport equations are fully coupled and nonlinear. To 

reduce numerical difficulty due to the coupling and non-linearity, in this study, a 

sequentially-iterative scheme is used. This iterative scheme solves a set of decoupled 

system equations [Diersch and Kolditz, 2002]: water and gas flow equations, Darcy 

velocity equation, and transport equations are consecutively solved, and the solution 

procedures are repeated until all solutions are converged below specified tolerance levels. 

This sequential-iterative scheme has been commonly used in solving multiphase 

multicomponent transport simulations [Sleep and Sykes, 1989; Mendoza and Frind, 

1990a; Thomson et al., 1997]. The criteria used herein for convergence of general or 

modified Picard scheme are [Lehmann and Ackerer, 1998] 

1,1
,,

,11,1max +++++ +≤− mt
ra

mtmt ψεεψψ ψψ  for flow equations  (3.41) 

1,1
,,

,11,1max +++++ +≤− mt
CaCa

mtmt CCC εε  for transport equations (3.42) 

where aε and rε  are absolute and relative errors, respectively. 
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The length of time steps was automatically adjusted by the number of iterations 

done for flow and transport equations at the previous time step. The minimum and 

maximum time steps are set at the beginning of each simulation. 

Nonlinear transport equations do not have discrete criteria for accuracy and 

stability. As criteria for one-dimensional linear advection-dispersion problems, Daus et 

al. [1985] proposed the grid Peclet number, 2/ ≤∆= DlvPe , and Courant number, 

2// PeltvCr ≤∆∆=  where φ/qv =  is an averaged pore water velocity, D is a 

dispersion coefficient, and l∆ is a grid spacing or a characteristic element length. As an 

approximate guide, Mendoza and Frind [1990a; 1990b] used these numbers in solving 

two-dimensional density-driven gas flow and contaminant transport problems. In this 

study, we checked these two dimensionless numbers while modeling, and adjusted time 

steps and/or grid spacings to follow the criteria ( 2≤Pe  and 2/PeCr ≤ ) for these 

numbers. 

Mass balance calculation is used to determine the fate and transport of 

contaminant mass in each phase over time and to verify mass conservation during 

simulations. The calculation scheme was well described by Huyakorn and Pinder [1983], 

and was used by Mendoza and Frind [1990a]. The details of the method used for mass 

balance calculation are given in Appendix E.   
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3.3 Model Verification 

3.3.1 Infiltration into a Homogeneous Soil Column 

Water infiltration into a homogeneous medium having very low initial content of 

water is simulated in this problem. The infiltration occurs due to constant water pressure 

head at the top of a soil column. The problem has been widely tested in previous works 

[Celia et al., 1990; El-kadi and Ling, 1993; Li, 1993; Rathfelder and Abriola, 1994; 

Lehmann and Ackerer, 1998; Diersch and Perrochet, 1999]. The profile of a soil column 

used by the previous studies are as follows (Figure 3.1): the length of column = 30 cm; 

the intrinsic permeability of soil medium = 9.35247×10-12 m2, which is equivalent to 

hydraulic conductivity = 9.22×10-5 m/s with 2.998=wρ  kg/m3 (20oC), 807.9=g  m/s2, 

and 610993 −×=wµ  kg/m s; φ = 0.368; the residual saturation of water sm = 0.277; and n 

= 2 and αgw = 3.35 m-1, which are used to estimate relative permeability and saturation of 

water phase. The initial and boundary conditions are: initial water-equivalent pressure 

head mwo 10−=ψ , constant pressure head mw 75.0−=ψ  at the top of the column, and 

mw 10−=ψ at the bottom as boundary conditions. Constant atmospheric pressure head 

0=gψ  m and a specific volumetric storativity 0=sS were set throughout the column. A 

uniform mesh was used where 25.0=∆z cm. The simulation time is 6 hours with various 

time-steps being used in time integration, dt =10-40 sec. The convergence criteria, ψε ,a  

and ψε ,r , were 1.0e-5. The water flow equation, Equation (3.5), was solved to investigate 

the change in water saturation, which is determined by gas-water capillary pressure head. 

The simulation results are presented in Figure 3.2 (a) and (b) as profiles of water pressure 
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head and water saturation with depth, respectively. In Figure 3.2 (a), the results of water 

pressure head of this study at t = 6 hrs show very good agreement with the Philip 

semianalytical solution and other numerical results given by Lehmann and Ackerer [1998].    

 
 

 
Figure 3.1 Diagram for infiltration into a homogenous medium column 

B.C. Ψw = -0.75 m 
(Constant water saturation sw=54%) 

B.C. Ψw = -10 m 
(Constant water saturation sw=30%) 

Initial condition. 
Ψ w= -10 m 
(sw=30% at t=0) 

Unsaturated soil 
column 

Depth = 0 m 

Depth = 0.3 m 

0.3 m 
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Figure 3.2 Temporal variations of water pressures and water saturation levels. (a) The 

changes in water pressure head distribution and (b) water saturation level with 
time. The * in (a) indicates previous results given by Lehmann and Ackerer 
[1998].    
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3.3.2 Advective-dispersive Transport of Chlorinated Solvent Vapor in the 

Unsaturated Zone  

Mendoza and Frind [1990b] examined the effect of the density-driven advection 

of gas phase in a two-dimensional unsaturated zone. In this problem, flow of gas phase 

and transport of a conservative volatile organic compound are simulated in a cross-

sectional plane, shown in Figure 3.3. 

 

 
Figure 3.3 A simulation domain, a source zone, and boundary conditions 

 

 To illustrate the effect of the advective transport in gas phase, high porosity, φ = 

0.4, and intrinsic permeability, 10101 −×=k m2, which favor density-driven advective 

transport, are used (Table 3.1). The properties of the soil medium correspond to those of 

coarse sand. The medium has uniform water saturation level of 20 % with a vertically 30-

cm linear transition zone from z = 0.3 m to 0 m. It is assumed that water-phase is 

motionless with constant water-saturation levels and that local equilibrium of 

contaminant partitioning is achieved between water and gas phases. At the source zone, 

the concentration of a target contaminant, which has a molecular weight of 3.5 times that 
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of air, is 1.0 g/L. A variable mesh grid is used in the idealization of the problem domain, 

which has five spaces of 20 cm, four spaces of 5 cm, and 84 spaces of 20 cm grid in x-

direction and uniform grid spacing of 10 cm in z-direction. Since TechFlowMP of this 

study uses three-dimensional Cartesian coordinates, a layer of 10 cm thickness in y-

direction was used to emulate a two-dimensional plane. The solution domain consists of 

2790 rectangular prism elements and 5828 nodes. The run time is 4 days with a 0.1-1 

hour-long time steps.  

 

Table 3.1 Properties of a soil medium, a contaminant, and air for simulation1) 

 
Parameters Values 

Soil medium 
Permeability, km 
Porosity, φ 
Water saturation, sw

2) 
Residual water saturation, sm 
Pore-size index, λ 
Longitudinal dispersivity, αL 
Transverse dispersivity, αT 
Temperature, T 

1.0×10-10 m2 
40 % 
20 % 
20 % 
1.65 g/cm3 
0.15 m 
0.0075 m 
20 °C 

Generic VOC 
Molecular weight, MC 
Molecular diffusion coefficient, D* 
Vapor viscosity, µC 
Henry’s constant, H 

100.625 g/mol 
9.0×10-6 m2/s 
1.0×10-5 Pa s 
0.17 

1) Values are given by Mendoza and Frind [1990b]. 
2) Thirty-centimeter linear transition to full saturation at top of capillary fringe. 

 
 
 

In Figure 3.4, the contaminant plumes for two cases are shown: diffusion-only 

transport and advection-dispersion transport. Values of concentration in Figure 3.4 (a) 

and (b) are 0.001, 0.01, and 0.1 to 1.0 at intervals of 0.1. The results of this study agree 

well with those given by Mendoza and Frind [1990b], and show distinct effect of density-
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dependent transport of the contaminant: the plume development of contaminated gas is 

much larger at density-dependent transport than at diffusion-only transport. Near the 

source zone, advective flows are generated by the increase in density of gas mixture, and 

the magnitude of gas velocity depends on contaminant concentration gradients (Figure 

3.4 (c)).   
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Figure 3.4 Concentration profiles and Darcy velocity at 4 days: (a) contaminant transport 

by diffusion only, (b) contaminant transport by diffusion, mechanical 
dispersion, and density-driven advection, and (c) Darcy velocity distribution 
in the case of the density-driven transport in gas phase  
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3.3.3 Laboratory Experiment of Transport of TCE Vapor in the Unsaturated Zone  

A large-scale laboratory experiment was performed to simulate the transport of 

TCE vapor (R. L. Johnson, unpublished data, 1988), and the experimental data are used 

by Mendoza and Frind [1990a] in their numerical modeling. The data and a description of 

experimental setup are based on the paper written by Mendoza and Frind [1990a]. A 

large square column (10 m × 10 m) and 3 m deep, was filled with washed soil media, and 

one liter of TCE was introduced into 0.3-m square area at 0.45 m below the top of the 

column. At the top, air was continuously ventilated to remove TCE in the atmosphere, so 

TCE concentration on the ground surface was assumed to be zero. The concentrations of 

TCE at sampling points, shown in Figure 3.5 (a), are measured for three days.  

To model the transport of vaporized TCE in the experiment, Mendoza and Frind 

[1990a] used a two-dimensional rectangular domain in axisymmetric coordinates, but, 

since the model developed in this study uses Cartesian coordinates and rectangular prism 

elements, one-eighth of a rectangular column (the experiment box) with depth 3 m is 

used as our domain as illustrated in Figure 3.5 (b). The domain in this study consists of 

5418 nodes and 4300 rectangular prism elements. The nodal grid is composed of a space 

of 15 cm, four spaces of 7.5 cm, seven spaces of 15 cm, and ten spaces of 30 cm in x- and 

y-directions, and, from the bottom in z-direction, two spaces of 28 cm, eleven spaces of 

15.25 cm, four spaces of 7.625 cm, and three spaces of 15.25 cm. 
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Figure 3.5 (a) Laboratory experiment setup and (b) a modeling domain for this study. 
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The properties of soil media used in the experiment, air, and TCE are given in 

Table 3.2. This study used same values of parameters for model settings reported by 

Mendoza and Frind [1990a]: A longitudinal dispersivity, Lα , was set to one half of the 

radius, up to maximum of 1.0 m, and a transverse dispersivity, Tα , was ignored. The 

concentration at top nodes (x = 0-0.15 m, z = 2.55 m) of a source zone was set to 75 % of 

the saturated vapor concentration of TCE, and that at other nodes of the source zone (x = 

0-0.15 m, z = 2.39-2.47 m) was set to the saturated vapor concentration.   

 

Table 3.2 Simulation parameters for the experiment and numerical model1) 

Parameters Values 
Porous medium 

Permeability, k 
Porosity, φ 
Water saturation, sw 
Residual water saturation, sm 
Bulk density, ρb 
Temperature, T 

5.0×10-11 m2 
35 % 
31.43 % 
31.43 % 
1.65 g/cm3 
10 °C 

Trichloroethylene 
Molecular weight, MTCE 
Saturated vapor concentration, Cge 
Molecular diffusion coefficient, D* 
Vapor viscosity, µTCE 
Henry’s constant, H 
Sorption coefficient, KD 

131.4 g/mol 
0.264 g/L 
7.6×10-6 m2/s 
0.95×10-5 Pa s 
0.17 
2.5×10-5 L/g 

Air 
Molecular weight, Mair 
Viscosity, µair 
Density, ρair 

28.75 g/mol 
1.80×10-5 Pa s 
1.25 g/L 

1) Values are given by Mendoza and Frind [1990a] except air density. 
 
 

A comparison of experimental breakthrough curves, previous results of an 

advection-dispersion simulation by Mendoza and Frind [1990a], and results of this study 

is shown in Figure 3.6. At three points (G3, G4, and G5), the concentration profiles 
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obtained from this study are slightly lower than the experimental data, but most 

breakthrough curves of this study show good agreement with the experimental data and 

the best fit curves given by Mendoza and Frind [1990a]. In Figure 3.7, concentration 

profiles for two cases (diffusion-only transport and density-driven transport) are given to 

show  the effect of density-driven advection on the transport of TCE in this experiment.  
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Figure 3.6 Breakthrough curves at monitoring points of experiment units: experiment 

data (solid circles), previous simulation results done by Mendoza and Frind 
[1990a] (solid lines), and simulation results of this study (dashed lines).   
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Figure 3.7 Relative concentration profiles (C/Co) and Darcy velocity at 80 hours: (a) a 

diffusion-only transport simulation, (b) an advective-dispersive transport 
simulation, and (c) Darcy velocity of gas phase in (b). 
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3.4 Application of Density-driven Transport of  

a Conservative Contaminant in a Two-dimensional Domain 

3.4.1 Modeling Domain and Parameters 

A two-dimensional unconfined sandy aquifer with dimensions of (200 m × 16 m) 

in (x, y) directions was used to simulate the density-driven transport of TCE. The domain 

extends from the ground surface to the fully saturated aquifer (Figure 3.8). As shown in 

Figure 3.8, TCE in the form of NAPL is introduced to the unsaturated zone and resides in 

pore spaces as an immobilized contaminant source. From the immobile source, TCE will 

vaporize into soil gas and dissolve into water phase, then will migrate along with the flow 

of gas and water phases. In this chapter, TCE is assumed to be conservative to examine 

solely the density-driven transport of TCE, and the biological transformations of TCE 

into DCEs and VC are discussed in the next Chapter IV. 

  

 
Figure 3.8 A schematic diagram of a modeling domain and site conditions 
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In Figure 3.8, an immobile TCE residual is set to its NAPL saturation of 5 % at 

distance x = 50-54 m and elevation z = 13-15 m. Initial concentrations of TCE in gas, 

water, and solid phases, are set to zero within the domain. As boundary conditions at the 

ground surface, the recharge for infiltration is 30 cm per year for water phase, and 

constant atmospheric pressure is applied for gas phase. For contaminant transport in gas 

phase, the ground surface is set to a stagnant boundary layer of 0.3 m thickness. The 

parameters of a soil medium, water, and gas phases used here are given in Table 3.3, and 

properties for TCE are listed in Table 3.4. Three different values of intrinsic permeability 

for soil medium are used to investigate the influence of soil permeability on contaminant 

transport, and one value is 1.0×10-10 m2 that is equivalent to an aqueous hydraulic 

conductivity of 1.0×10-3 m s-1. The water table elevation ranges from 8.5 m on the left 

boundary to 7.75 m on the right. First-order rate coefficients for dissolution, water-gas 

partitioning, and volatilization ( Dλ , Hλ , and Vλ ) are 1.0 d-1, which were used by 

Thomson et al. [1997]. The model domain grid consists of 16,884 nodes and 8,200 

elements, which was discretized with uniform grid spacing of 1 m in x-direction and 

variable grid spacing of 0.125-0.5 m in z-direction: from the bottom in z-direction, 

fourteen spaces of 0.5 m, three spaces of 0.25 m, six spaces of 0.125 m, six spaces of 

0.25 m, and twelve spaces of 0.5 m. The run time is up to 300 days with the length of 

time steps ranging between initial 1 hour and 2 days, which was adjusted according to an 

automatic time-stepping scheme.  

Mass balance calculations are performed to determine the fate and transport of 

contaminants in the system (details are presented in Appendix E). In the calculations, 

TCE mass emitted into the atmosphere or remained in the domain is estimated, and the 
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changes in TCE mass within each phase and within the unsaturated/saturated zones are 

investigated.  

In order to investigate the effects of the density-driven advection in gas phase, 

infiltration, and permeability on contaminant transports in gas and water phases, six 

scenarios are studied as shown in Table 3.5. Based on the simulation results, fate and 

transport of TCE are analyzed: Especially, temporal and spatial distribution of TCE in the 

domain and TCE transfer into the groundwater in the saturated zone are examined and are 

compared for each case. 
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Table 3.3 Simulation parameters 
 

Parameters Values 
Porous medium 

Permeability*, k 
 

 
Porosity, φ 
Residual water saturation, sm 
Bulk density, ρb 
Temperature, T 
Longitudinal dispersivity, αL 
Transverse dispersivity, αT 
Soil organic content, foc 
Parameters for the unsaturated zone 
     n 
     αgw 

1.0   × 10-10 m2   
7.07 × 10-11 m2 
5.0   × 10-11 m2 
0.35  
0.  
1600 kg/m3 
15 °C 
1.0 m 
0.01 m 
2.5×10-5 
 
2.0 
5.0 m-1 

Water 
Water molecular weight, Mw 
Water density, ρw 
Water dynamic viscosity, µw 

18  
997.3 kg/m3 
1.0×10-3 Pa s 

Air 
Molecular weight, Mair 
Density, ρair  
Viscosity, µair 

28.75  
1.23 kg/m3  
1.8×10-5 Pa s 

* Three values of soil permeability are used for six different scenarios  
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Table 3.4 Properties of TCE at 15°C 
 

Parameters Values 
a) Molecular weight 131.39 
b) Vapor density, kg/m3    5.56 
c) Vapor dynamic viscosity, Pa s  9.38×10-6 
d) Henry constant, dimensionless 0.227  
e) Molecular diffusion in air, m2/s  7.87×10-6 
f) Molecular diffusion in water, m2/s  8.206×10-10 
g) Sorption coefficient, Koc, L/kg 100 
h) Vapor pressure, mmHg 41.27 
i) max. Cg, kg/m3 0.302 
j) max. Cw, kg/m3 1.33 

a) Montgomery [2000].  
b) Calculated by the ideal gas law. 
c) Calculated Thodos and coworkers’ equation [Perry et al., 1984] based on data from Reid et al. [1987].  
d) Calculated from regression data [Gossett, 1987]:. 
e) Calculated from the Fuller, Schettler, and Giddings relation [Perry et al., 1984]. 
f) Calculated by the Wilke-Chang method [Perry et al., 1984].   
g) Values from Mackay et al. [1992]. 
h) Calculated using regression equation (1) on page 657 [Reid et al., 1987]. 
i) Calculated from Vapor pressure by the ideal gas law.  
j) Calculated from Henry constant, wg CHC ×= . 

 
 

 

Table 3.5 Scenarios used in simulations 
 

Case No. Transport mechanism in gas phase Infiltration Permeability 
1 Diffusion-only No 1.0   × 10-10 m2 
2 Density-driven advection + Dispersion No 1.0   × 10-10 m2 
3 Diffusion-only Yes 1.0   × 10-10 m2 
4 Density-driven advection + Dispersion Yes 1.0   × 10-10 m2 
5 Density-driven advection + Dispersion Yes 7.07 × 10-11 m2 
6 Density-driven advection + Dispersion Yes 5.0   × 10-11 m2 
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3.4.2 Effect of Density-driven Transport of TCE in Gas Phase 

Through Case 1 and 2 simulations, the effects of two transport mechanisms 

(diffusion-only transport and density-driven transport) on TCE plume developments 

within water and gas phases in a variably saturated zone are compared in Figures 3.9 

through 3.11. The studies on the two mechanisms for VOCs in the unsaturated zone were 

carried out by Mendoza and Frind [1990b] and Falta et al. [1989].  

In Case 1, gas phase is assumed to be stagnant, and water flow in the unsaturated 

zone will be negligible without infiltration. Therefore, TCE transport in the unsaturated 

zone will occur mostly by molecular diffusion due to concentration gradients of TCE 

within water and gas phases. In fact, because TCE diffusivity in gas phase is larger by 3-

orders of magnitude than that in water phase, TCE diffusion in gas phase will become a 

dominant mechanism to spread TCE in the unsaturated zone. 

In Case 2, the change in the density of gas mixture is considered. For the 

conditions identified in Table 3.3, TCE has a molecular weight of 4.57 times that of air, 

and the density of gas mixture containing saturated TCE vapor will be about 1.47 times 

that of pure air. The increase in gas density due to the vaporization of TCE at the source 

will cause instability in gas phase and will generate an advective movement of gas. The 

dynamic viscosity of air is greater than that of TCE (Table 3.3), so that of a gas mixture 

containing TCE vapor reduces as the increase in TCE concentration within the gas 

mixture. In the saturated vapor pressure of TCE, the viscosity of the gas mixture 

decreased by about 7 % of air viscosity. 

The transport of vaporized TCE for Case 1 and 2 is illustrated in Figure 3.9. In 

relatively high concentration zone (>10 mg/L) near the source, Case 2 has greater lateral 
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and vertical migration of TCE than Case 1 does. In Figure 3.9 (b) and (d), TCE 

concentration contours (≥100 mg/L) show downward curvatures that are mainly 

generated by density-driven flow of gas. In Case 2, wide high-concentration zones are 

located above the groundwater table, which may accelerate TCE transfer into the 

groundwater.  

In Figure 3.9 (e), velocity profiles of gas flow show the direction and magnitude 

of gas flow derived by the density increase of gas phase in Case 2: After gas phase 

moved downward up to the groundwater table, the gas flow had lateral movement (into 

left or into right). The velocity profiles show significant vertical and horizontal gas flow 

near the source, which accelerates TCE transfer to the groundwater in the saturated zone. 

Reference vectors are used to represent the magnitude of each velocity and the maximum. 

The maximum velocity in the domain occurs as a downward velocity through the source, 

in which high density-gradients are expected, and the magnitude of gas velocities reduces 

with distance from the source. Mendoza and Frind [1990b] pointed out that the strength 

of density-driven transport depends on the relatively high velocities through a source 

zone. The dissipation of gas velocities means the decreased density effect at lower vapor 

concentrations. At a low concentration of TCE (1.0 mg/L), the density increase of a gas 

mixture due to TCE vapor is very small, approximately 0.06 % of air density. Therefore, 

as TCE vapor concentration becomes low, the density effects diminish, and diffusion in 

gas phase becomes dominant as a transport mechanism 

Near the source in the unsaturated zone (for instance, approximately x = 15-90 m 

in Figure 3.9 (d)), diffusion and/or density-driven advection of gas phase is the main 

driving force to spread TCE in the unsaturated zone. The development of TCE plumes in 
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gas and water phases will happen mostly as follows: At first, TCE at the source vaporizes 

into gas phase, and the vaporized TCE is transported within gas phase. At the same time, 

the vaporized TCE is partitioned into water phase, generating dissolved TCE. Direct 

dissolution of TCE from the source also occurs, but this showed little influence on 

migration of the TCE plume in the unsaturated zone.  

In far down-gradient zones (for instance, approximately x > 90 m in Figure 3.9 

(d)), long extended plumes of vaporized TCE may come from contaminated groundwater 

in the saturated zone: After dissolved TCE in the saturates zone migrated along with the 

groundwater flow from the high concentration zone (almost directly below the sources) to 

the down-gradient zones, the TCE is partitioned into gas phase in the unsaturated zone. In 

the saturated zone, the groundwater flow, shown in Figure 3.9 (f), is a primary 

mechanism for migration of TCE. The spreading of dissolved TCE in the domain is 

presented in Figures 3.10 for Case 1 and 2. The groundwater flow in the saturated zone 

contributes to the expansion of TCE plume in the saturated zone as well as into the 

unsaturated zone in the down-gradient area. In multiphase flows of gas and water in the 

domain, as each phase constantly interacts with the other in terms of fluid flow and mass 

transfer, pollution of one phase will result in pollution of the other phase. 

In Figure 3.9 and 3.10, Case 1 and 2 shows different spreading patterns of TCE 

between down-gradient areas with relatively low concentrations (TCE ≤ approximately 1 

mg/L) and up-gradient areas with high concentrations (TCE > approximately 100 mg/L): 

At the up-gradient areas, the development of dissolved and vaporized TCE plumes is 

greater in Case 2 than in Case 1, however, at the down-gradient areas, Case 1 shows 

larger spreading of TCE in the down gradient area than Case 2 does. These phenomena in 
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TCE spreading in gas and water phases result from the density-driven advection of gas 

phase, shown in Figure 3.9 (e). In Case 2, the advection of gas phase not only contributes 

to the spreading of vaporized TCE near the source but also accelerates the release of 

vaporized TCE into the atmosphere in the down-gradient areas. As shown in velocity 

profiles at x > 100 m in Figure 3.9 (e), the outgoing gas flow to the ground surface will 

help decrease TCE concentration in the unsaturated zone by prompting the release of 

vaporized TCE into the atmosphere. The release of vaporized TCE accelerates mass 

transfer of dissolved TCE in the saturated zone into gas phase, and helps to retard the 

development of dissolved TCE plume in the saturated zone. Many research works in the 

literature indicated that loss of contaminant mass to the atmosphere through the ground 

surface plays an import role in reducing the spreading of contaminant plumes in the 

subsurface [Sleep and Sykes, 1989; Mendoza and Frind, 1990b; Thomson et al., 1997]. 

Through a large-scale experiment, Jellai et al. [2003] reported mass transfer of TCE to 

the atmosphere that reached nearly 95 % of initial TCE volume. They also indicated that 

the transfer process is essentially governed by molecular diffusion and significantly 

reduces the potential for groundwater pollution.  
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a) TCE concentration in gas phase at t = 100 days, Case 1 
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e) Darcy velocity of gas phase at t = 200 days, Case 2 
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f) Darcy velocity of water phase at t = 200 days, Case 2 
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Figure 3.9 Vaporized TCE concentration profiles in gas phase for Cases 1 (diffusion-only 

transport) and 2 (density-driven transport) and Darcy velocities of gas and 
water phases at Case 2. 
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a) TCE concentration in water phase at t=100 days, Case 1 
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c) TCE concentration in water phase at t=200 days, Case 1 
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Figure 3.10 Dissolved TCE concentration profiles in water phase for Cases 1 (diffusion-
only transport) and 2 (density-driven transport). 
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To investigate fate of TCE in the domain, we carried out mass balance 

calculations every time step. These methods are described in Appendix E. The mass 

balance calculations showed good accuracy for the simulations: The accumulated mass-

balance error up to 300 days and the mass-balance error at every time step was less than 

1.7 % and 0.03 %, respectively.  

 In Figure 3.11, the evolution of TCE mass in gas or water phases and release of 

TCE to the atmosphere are illustrated. Figures 3.11 (a) and (b) show that mobilized TCE 

mass (dissolved or vaporized TCE from the source) is much greater at Case 2 than at 

Case 1: At 200 days, vaporized TCE mass of Case 2 in gas phase is approximate twice 

that of Case 1. In Figure 3.11 (a) and (b), vaporized TCE mass in the unsaturated zone 

shows sharp increases at an initial stage (up to approximately 50 days in Case 1 and 100 

days in Case 2), and over time TCE spread seems to approach stabilized conditions. 

Dissolved TCE mass in the saturated zone, however, shows steady increases after a 

period of lag time, around 40 days, which is the transport time for TCE from the source 

area to the saturated zone. TCE mass transported into the groundwater in the saturated 

zone is much greater in the density-driven transport of TCE (Figure 3.11 (b)) than in 

diffusion-only transport (Figure 3.11 (a)). This implies that the former has greater 

potential of groundwater pollution than the latter has. As mentioned earlier in Figure 

3.10, however, we need to note that the development of low concentration of dissolved 

TCE plume at down-gradient areas is greater in Case 1 than Case 2. For the two cases, 

daily release rate and total TCE mass that is released to the atmosphere are given in 

Figure 3.11 (c) and (d), respectively. Case 2 also shows higher daily and total release 

rates than Case 1 does. It is noted that the greater mass of mobilized TCE (vaporized 
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TCE + dissolved TCE at the source) results in the greater mass reduction of TCE at the 

source. In Figure 3.12, the density-driven advection at Case 2 contributes to fast mass 

reduction of TCE as NAPL at the source.  

From Cases 1 and 2, we may conclude that the density-driven advection of gas 

phase becomes a strong driving force to transfer TCE from NAPL phase to other phases 

(gas, water, and solid soil) as well as to the atmosphere.  
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Figure 3.11 TCE distributions in the system: (a) Case 1 (diffusion-only transport) and (b) 

Case 2 (density-driven transport), and TCE release to the atmosphere: (c) 
daily release rate and (d) total released mass of TCE  
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Figure 3.12 TCE mass reduction at the source for Cases 1 (diffusion-only 

transport) and 2 (density-driven transport) 
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3.4.3 Effect of Infiltration on TCE Transport  

In Cases 3 and 4, uniform infiltration (water recharge at the ground surface) of 30 

cm/yr is applied to investigate its effect on fate and transport of TCE in subsurface 

environments. The results of Cases 3 and 4 are compared with no infiltration cases (Case 

1 and 2). As shown in Figure 3.13, the infiltration increased water saturation in the 

unsaturated zone, and generated nearly uniform water content at z = 11-16 m. In Case 4, 

the infiltration induced a downward water flow in the unsaturated zone (Figure 3.14 (f)), 

and raised the groundwater velocity in the saturated zone: The horizontal velocities of the 

groundwater for Case 2 (No infiltration, Figure 3.9 (f)) and Case 4 (Infiltration, Figure 

3.14 (f)) in the saturated zone are 3.84×10-6 and 3.98×10-6 m/s, respectively. In Equation 

(3.4), if NAPL saturation doesn’t change, an increase in water saturation implies a 

reduction in gas saturation. The decrease in gas saturation reduces the relative 

permeability of gas phase according to van Genuchten model for a saturation-relative 

permeability relationship, given in Equation (2.12). The infiltration in Cases 3 and 4 

decreased density-driven advection of gas phase around the source: Maximum Darcy 

velocities of gas phase at Case 2 (Figure 3.9 (e)) and Case 4 (Figure 3.14 (e)) are 

3.24×10-6 and 3.18×10-6 m/s, respectively, indicating approximately 2 % reduction in 

maximum gas velocity due to the infiltration. 

In Figure 3.14 (a)-(d), the effects of the uniform infiltration on contaminant plume 

development in water and gas phases are illustrated by comparing two cases: Case 2 

(density-driven transport without infiltration) and Case 4 (density-driven transport with 

infiltration). In Figure 3.14, TCE concentration contours for Cases 2 and 4 indicate that 

infiltration slightly increases the spreading of dissolved and vaporized TCE in the 



 90

variably saturated zones. Furthermore, the concentration contours suggest that infiltration 

has greater influence on higher concentration regions near the source. Since dissolved 

TCE concentrations around the groundwater table vary over a distance, downward mass 

flux of dissolved TCE will be much greater at the high concentration regions (near the 

source) than at low concentration regions. 

Infiltration has a significant effect on the distribution of TCE (Figure 3.15). In 

Figure 3.11 (b) for Case 2 (No infiltration), the mass of TCE in gas phase is greater than 

that in water phase (both the unsaturated and saturated zones) until 200 days. The 

difference in relative mass percentages of between vaporized TCE and dissolved TCE in 

the unsaturated zone is more than 1 % at 200 days. In Case 4, infiltration significantly 

increases dissolved TCE mass in the unsaturated zone as water content rises, so the 

difference in relative mass percentages between vaporized TCE and dissolved TCE in the 

unsaturated zone reduced to less than 0.4 % at 200 days (Figure 3.15). After 95 days, 

total dissolved TCE mass exceeds vaporized TCE mass.  
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Figure 3.13 Water saturation with infiltration or without infiltration at x = 50 m: 
the groundwater table is located at around z = 8.3 m. 
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a) TCE concentration in water phase at t=250 days, Case 2 
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c) TCE concentration in gas phase at t=250 days, Case 2 
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f) Darcy velocity of water phase at t=200, Case 4 
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Figure 3.14 Effect of infiltration on TCE transport 
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Figure 3.15 Distribution of TCE in gas and water phases, Case 4 
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Mass transfer rates of dissolved TCE from the unsaturated zone to the saturated 

zone are compared to evaluate the potential of groundwater pollution for four cases 

(Cases 1, 2, 3, and 4) in Figure 3.16. Both density-driven transport and uniform 

infiltration applied at the ground surface increase the transfer rates. The effect of the 

infiltration is represented by the differences in TCE transfer rates between Case 1 and 3 

or between 2 and 4 (dashed arrows in Figure 3.16) while the effect of the density-driven 

transport is expressed by the differences of TCE transfer rates between Case 1 and 2 or 

between Cases 3 and 4 (solid arrows in Figure 3.16). The effect of the density-driven 

transport on the TCE transfer rates appears to be greater than that of the infiltration under 

simulation conditions used here. For example, in the comparison of Cases 2 and 4, 

infiltration raises TCE transport to the saturated zone by approximately 39 % (from 4.1 

g/d in Case 2 to 5.7 g/d in Case 4) at 150 days. In the comparison of Cases 3 and 4, 

however, density-driven transport in gas phase raises the transport of TCE mass to the 

saturated zone by approximately 204 % (from 2.8 g/d in Case 3 to 5.7 g/d in Case 4). 

These results suggest that the density-driven transport of TCE in gas phase has greater 

potential on groundwater pollution than the infiltration under the conditions applied to 

Cases 1 through 4. 
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Figure 3.16 Mass transfer rates of dissolved TCE from the unsaturated zone to the 
saturated zone for four cases (Cases 1, 2, 3, and 4)  
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3.4.4 Effect of Permeability on TCE Transport  

As seen in Darcy’s law equation (Equation (3.20)), the permeability of  porous 

media is a key parameter to determine Darcy velocity of water and gas phases in the 

media. Therefore, the permeability plays an important role in contaminant transport 

including density-driven transport in gas phase in a variably saturated zone [Mendoza and 

Frind, 1990b]. The effect of permeability of porous soil matrix on density-driven 

transport is examined through simulations under three different permeabilities: 1.0×10-10 

m2 for Case 4, 7.07×10-11 m2 for Case 5, and 5.0×10-11 m2 for Case 6.  

In Figures 3.17 and 3.18, the spreading of TCE plume is proportional to the 

magnitude of permeabilities of porous media: the greatest permeability in Case 4 shows 

the widest spreading of TCE plumes in the unsaturated and saturated zone. Among three 

cases (Cases 4, 5, and 6), Case 6 shows the least spreading of TCE plume in the 

unsaturated zone, however, the spreading by density-driven advection of gas phase in 

Case 6 is still significant below the source when it is compared with the spreading by 

diffusion-only transport of Case 1.  

The velocity profiles of gas phase for the three cases are presented in Figure 3.17 

(d)-(f). The velocities near the source zone depend on the magnitude of permeabilities. 

The reduction in permeability of porous media implies a decrease in the velocity of the 

groundwater, and this results in slow development of contaminant plumes. The maximum 

Darcy velocities of gas phase are 3.14×10-6, 2.39×10-6, and 1.8×10-6 m/s for the 

permeability of  1.0×10-10, 7.07×10-11 and 5.0×10-11 m2, respectively. Mendoza and Frind 

[1990b] stated that, as soil permeability decreases, advection becomes less important. 
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Thus, contaminant transport mechanism will transit from an advection-dominated to a 

diffusion-dominated process. 
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a) TCE concentration in gas phase at t = 300 days, Case 4 (Permeability = 1.0×10-10 m2) 
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b) TCE concentration in gas phase at t = 300 days, Case 5 (Permeability = 7.07×10-10 m2) 
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c) TCE concentration in gas phase at t = 300 days, Case 6 (Permeability = 5.0×10-10 m2)  
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d) Darcy velocity of gas phase at t = 300 days, Case 4 (Permeability = 1.0×10-10 m2) 
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e) Darcy velocity of gas phase at t = 300 days, Case 5 (Permeability = 7.07×10-10 m2) 
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f) Darcy velocity of gas phase at t = 300 days, Case 6 (Permeability = 5.0×10-10 m2) 
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Figure 3.17 Effect of intrinsic permeability of soil on transport of vaporized TCE in the 

unsaturated zone and Darcy velocity of gas phase at three different 
permeabilities of soil (Cases 4, 5, and 6) 
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a) TCE concentration in water phase at t = 300 days, Case 4 (Permeability = 1.0×10-10 
m2) 
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b) TCE concentration in water phase at t = 300 days, Case 5 (Permeability = 7.07×10-10 
m2) 
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c) TCE concentration in water phase at t = 300 days, Case 6 (Permeability = 5.0×10-10 
m2)  
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Figure 3.18 Effect of intrinsic permeability of soil on transport of dissolved TCE in the 

unsaturated and saturated zones (Cases 4, 5, and 6) 
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Mass transfer of TCE to the groundwater and to the atmosphere is shown in 

Figures 3.19 and 3.20, respectively. Among simulations for the three different 

permeabilities, the highest permeability (Case 4) generates the highest mass transfer rate 

of TCE to the atmosphere and to the groundwater. This results in the fast reduction of 

TCE mass in the source (Figure 3.21).  

The location of a contaminant source is an important factor to determine its fate 

and distribution in subsurface environments [Jellali et al., 2003]. Thomson et al. [1997] 

reported that, as a contaminant source becomes closer to the groundwater table, the 

dissolution rate increases and groundwater contamination becomes worse. Under the 

simulation conditions in which the NAPL source is close to the ground surface, large 

portion of mobilized TCE is released into the atmosphere: In Case 4 at 250 days, the 

average transfer rate of TCE into the atmosphere (Figure 3.19 (a)) is greater than ten 

times that dissolved into the groundwater (Figure 3.20 (a)). In Figure 3.19, for Case 4 at 

250 days, the portion of total dissolved TCE was 5.1 % of initial TCE mass in the 

domain, and about 1.8 % of the initial mass was transferred to the groundwater. In terms 

of mobilized TCE mass (sum of dissolved and vaporized TCE from the source), for Case 

4 at 250 days, 17 % of the total mobilized TCE is dissolved TCE, and about 6 % of the 

total mobilized TCE was transferred to the groundwater in the saturated zone.  

Mendoza and Frind [1990a] reported that, even though small portion of TCE in 

the source zone is transported to the groundwater in the saturated zone, dissolved TCE 

concentration in the groundwater may be still high and can exceed its drinking water 

standard (Maximum contaminant level of TCE: 0.005 mg/L) listed on the National 

Primary Drinking Water Regulations [EPA, 2000] in the down gradient area. In this 
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study, regardless of the magnitude of the permeabilities for Case 4, 5, and 6, relatively 

high concentrations of dissolved TCE in the saturated zone were predicted in the 

simulations (Figure 3.17), and showed high potentials for groundwater pollution.       
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Figure 3.19 TCE transfer to the groundwater over time for three different permeabilities 
(1.0×10-10 m2 for Case 4, 7.07×10-11 m2 for Case 5, and 5.0×10-11 m2 for 
Case 6): (a) Daily TCE transfer rates and (b) total TCE ratio transferred to the 
groundwater in the saturated zone 
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Figure 3.20 TCE transfer to the atmosphere over time for three different permeabilities 

(1.0×10-10 m2 for Case 4, 7.07×10-11 m2 for Case 5, and 5.0×10-11 m2 for 
Case 6): (a) Daily TCE transfer rates and (b) total TCE ratio transferred to the 
atmosphere 
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Figure 3.21 The reduction in TCE mass as NAPL at the source over time for three 

different permeabilities (1.0×10-10 m2 for Case 4, 7.07×10-11 m2 for Case 5, 
and 5.0×10-11 m2 for Case 6) 
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3.5 Application of Density-driven Transport  

of a Conservative Contaminant in a Three-dimensional Domain 

3.5.1 Modeling Domain  

The density-driven advection of gas phase in a three-dimensional domain is 

needed for simulations in more realistic scenarios. The two-dimensional (2D) domain 

shown in Figure 3.8 is extended to a three-dimensional (3D) domain with dimensions 

(200 m x 50 m x 16 m) in (x, y, z) directions, respectively (Figure 3.22). Similarly as 

mentioned in section 3.4, TCE in the form of NAPL is introduced to the unsaturated zone 

and resides in pore spaces as an immobilized contaminant source (5 m × 5 m × 2 m).  

 

 
Figure 3.22 A schematic diagram of a modeling domain and site conditions in a 3D 

domain 

 

At the source, the saturation of an immobile TCE residual is 5 %. Initial 
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Same initial and boundary conditions used in section 3.4 are applied here: As boundary 

conditions at the ground surface, the recharge for infiltration is 30 cm per year for water 

phase, and constant atmospheric pressure is applied for gas phase. For gas phase, no flow 

condition is applied to all boundaries except the boundary for the ground surface. 

Intrinsic permeability for soil medium is 1.0×10-10 m2, and other properties of a soil 

medium, water, and gas phases used here are given in Table 3.3.  

The model domain grid consists of 19,880 nodes and 17,290 elements, which was 

discretized as follows: In x-direction, ∆x = 2.5 m at x = 0-150 m and ∆x = 5 m at x = 150-

200 m; In y-direction, ∆y = 2.5 m at y = 0-15 m and ∆y = 5 m at y = 15-50 m; and, In z-

direction, ∆z = 1 m at z = 0-7 m and z = 9-15 m, and ∆z = 0.5 m at z = 7-9 m and z = 15-

16 m. The run time was up to 300 days with the length of time steps ranging between 

initial 1 hour and 2 days, which was adjusted according to an automatic time-stepping 

scheme.  

 

3.5.2. Results of TCE Transport in the 3D Domain  

 Transport of dissolved and vaporized TCE in the variably saturated 3D domain 

considering a density-driven advection in gas phase is illustrated in Figure 3.23 and 3.24, 

respectively. As seen in Figure 3.22, when a contaminant source in a 3D domain is finite 

in y-direction, the contaminant migration in y-direction is additionally considered as well 

as its migration in x- and z-direction. The contaminant transport in y-direction reduced the 

transport of TCE in x-direction. In Figure 3.23 (b) for the 3D domain, the front of the 

dissolved TCE plume with a concentration of 1 mg/L reached around 170 m in x-

direction at 300 days while, in Figure 3.18 (a) for the 2D domain, the dissolved TCE 
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plume migrated more than 200 m in the x-direction during the same period. Since the 

density-driven advection is accounted into all directions, its strength in any single 

direction is reduced. However, the effect of density-driven advection in gas phase on 

TCE transport is observed near the source (Figures 3.23 and 3.24). At high concentration 

areas, dissolved and vaporized TCE concentration profiles on x-z plane at y = 0 m in 

Figures 3.23 and 3.24 show graphically similar patterns as seen in Figures 3.17 and 3.18.  

Fate of TCE over time is given in Figure 3.25, which indicates that the release of 

TCE to the atmosphere will also play a key role in reducing TCE at the source in a 3D 

domain: About 58 % of mobilized TCE mass was released to the atmosphere. The portion 

of TCE dissolved in the saturated zone increases continuously with time, and it will 

accelerate groundwater pollution.  
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Figure 3.23 Transport of dissolved TCE in the 3D domain. The unit of concentrations is 

g/L. 

 
 
 



 109

 
 
 

 
 
Figure 3.24 Transport of vaporized TCE in the 3D domain. The unit of concentration is 

g/L. 
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Figure 3.25 Fate of TCE in the domain. The mobilized TCE mass indicates the sum of 

dissolved and vaporized TCE mass from the source. 
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3.6 Summary 

In this chapter, the governing equations for multiphase flow and contaminant 

transport are formulated. These equations are solved using Galerkin finite element 

method. The model developed here was verified using numerical and experimental data 

available in the literature, and it was used to investigate the effect of density-driven 

advection of gas phase, infiltration, and permeability on fate and transport of TCE in a 

variably saturated zone. From the results of simulations in the two-dimensional and three-

dimensional domains, the following conclusions can be deduced; 

 

(i) Density-driven advection of gas phase occurs near a contaminant source, and 

plays a dominant role in the spreading of TCE in the unsaturated zone and in its 

transport to the groundwater in the saturated zone. Due to the density-driven 

transport of TCE, groundwater plumes with high concentrations of TCE were 

developed in the saturated zone near the source zone, and mass transfer rates of 

TCE to the groundwater increased. 

 

(ii) The density-driven advection also increased the release of TCE into the 

atmosphere, and, especially, it helped to retard the migration of dissolved TCE in 

the far down-gradient saturated zone by accelerating the release of TCE vaporized 

from the contaminated groundwater to the atmosphere. In this study, since NAPL 

source is close to the ground surface, TCE mass released into the atmosphere was 

much greater than that dissolved into the groundwater in the saturated zone. 
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(iii) Infiltration at the ground surface raised water saturation in the unsaturated zone 

and the downward water velocity in the unsaturated zone. The increase in water 

saturation had significant effects on contaminant distribution: Dissolved TCE in 

the unsaturated zone has been largely increased, so, after a period of lag time, 

dissolved TCE mass exceeded vaporized TCE mass. Infiltration results in the 

increase in the mass flux of dissolved TCE to the saturated zone.  

 

(iv) Permeability was an important factor to determine the strength of the density-

driven transport of TCE and overall contaminant transport in subsurface systems 

because the permeability is directly related with fluid velocities. As the 

permeability of porous soil media becomes smaller, the effect of the density-

driven advection of gas phase on contaminant spreading reduces. However, the 

advection was still an important mechanism to transport the contaminant to the 

saturated zone.        

 

(v) In a three-dimensional domain, the density-driven advection of gas phase on TCE 

transport increased the migration of TCE in all directions. The transport of TCE in 

the three-dimension domain alleviated the density-gradient of gas phase when it is 

compared with the transport in a two-dimensional domain, thus the strength of the 

density-driven advection in x-direction decreased and TCE plume development in 

the x-direction was retarded. 
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CHAPTER IV  

BIOLOGICAL TRANSFORMATION OF CONTAMINANTS 

 

In Chapter III contaminants considered were assumed to be conservative. At 

contaminated sites, biological processes may occur in the subsurface system even though 

the reaction rates are highly variable. In this chapter, biological processes are considered 

as a component of biologically reactive contaminant migration. TechFlowMP computer 

model developed in this study is verified using one- and three-dimensional analytical 

solutions with sequential bioreactions. Then, several simulations for biologically reactive 

contaminants are conducted to examine the effect of biological processes on fate and 

transport of the multispecies transport in groundwater systems.   

 

4.1 Introduction 

Volatile organic compounds (VOCs) in water phase can be utilized and 

transformed into other chemicals by various microorganisms in subsurface environments. 

The transformation of VOCs usually occurs as the result of complex biological processes, 

which have been extensively studied [Vogel and McCarty, 1985; Vogel et al., 1987; 

Freedman and Gossett, 1989; Wu et al., 1998; Schafer et al., 2003]. Biological reactions 

play an important role in the transport of VOCs in groundwater systems since the 

processes can convert toxic contaminants into benign substances or may introduce new 

toxic intermediates. Also, the interactions between VOCs and organic/inorganic materials 

in gas, water, and solid phases can cause the changes in chemical properties of the 

compounds or of fluid phases [Yaron et al., 1984].      
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 Trichloroethylene (TCE), which is widely used as an industrial solvent, is one of 

the most frequently detected contaminants in the subsurface [Wu and Schaum, 2001]. 

TCE can be transformed to dichloroethylenes (DCEs) and then to vinyl chloride (VC) 

through reductive dehalogenations under anaerobic environments [Vogel and McCarty, 

1985]. The two intermediates are also toxic, and these have been detected with TCE in 

the unsaturated and saturated zones at contaminated sites [Dyer, 2003]. In the unsaturated 

zone, DCEs and VC exist in both water and gas phases through partitioning processes 

[Borch et al., 2003]. Since TCE, DCEs and VC have different physical and chemical 

properties such as density, vapor pressure, solubility, and diffusivity, they may have 

distinct transport patterns in subsurface systems.  

In this chapter, reductive dechlorination of TCE under anaerobic conditions is 

used to examine biological transformations of VOCs and transport of parent and daughter 

contaminants in groundwater systems. As seen in Figure 2.1, the dechlorination of TCE 

produces three DCE isomers. As cis-1,2-DCE (cDCE) is the most common byproduct 

among the isomers, cDCE is employed to express the sequential biological processes of 

the dechlorination of TCE (TCE→cDCE→VC) in subsurface environments.  

Biological transformations of VOCs depend on various parameters, such as 

chemical properties, concentration, and environmental conditions. The kinetics of 

biological processes is very complex. As discussed in Chapter 2.2, Michaelis-Menten (or 

Monod) and pseudo-first-order kinetics are often used to express biological processes 

[Smith et al., 1997; Clement et al., 2000; Pavlostathis and Prytula, 2000; Alvarez-Cohen 

and Speitel, 2001]. In this study, these two kinetic models are also employed to express 

reductive dechlorination of TCE, cDCE, and VC.  
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The focus of the discussion presented in this chapter is on: (i) fate and transport of 

TCE, cDCE, and VC with biological transformations; (ii) the effect of bioreaction rates 

on the transformations; and, (iii) the comparison of the effect of two kinetic models on 

generation and transport of the contaminants.  

Density-driven advection of gas phase due to multispecies (TCE, DCEs, and VC) 

in the variably saturated zone is also considered at all simulations. TechFlowMP is 

verified using analytical solutions for contaminant transport with first-order sequential 

bioreactions available in the literature. 

 

4.2 Model Verification  

4.2.1 Reactive Multi-species Transport in One-dimensional Uniform Flow 

Chemical and biological transformations of contaminants are important factors in 

determining their fate and transport. Analytical solutions for transport of multiple 

contaminants with sequential bioreactions in a uniform groundwater flow are available in 

the literature, the solutions can be used to verify numerical models. Consider sequential 

reactions of three contaminants with first-order relationships: 

 byproductsBenign 321
321 →→→ kkk CCC    (4.1) 

where 1C , 2C , and 3C  are concentrations of the first, second, and third chemicals 

( 3−ML ), respectively; and, 1k , 2k , and 3k  are first-order biological reaction coefficients 

for the first, second, and third chemicals ( 1−T ), respectively. 

In a uniform groundwater flow, transport equations of chemical species 1, 2, and 3 can be 

expressed:  
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where DK  is a constant adsorption coefficient of chemical species 1, x, y, and z are 

distance ( L ), t is time (T ), D is a constant hydrodynamic dispersion coefficient ( 12 −TL ), 

and v is a constant groundwater flow velocity ( 1−LT ). In Equations (4.2)-(4.4), sorption 

isotherm of species 1 on solid phase is assumed to be an equilibrium reaction, and species 

2 and 3 do not have a sorption process. Dividing Equation (4.2) by )1( DK+  yields 
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where superscript * denotes division by DK+1 . The initial and boundary conditions can 

be given as, 

01 =C , 02 =C , 03 =C  for 0,0 => tx     (4.6) 

oCC 11 = , oCC 22 = , oCC 33 =  for 0,0 ≥= tx      (4.7) 

where o
iC  is constant concentration of species i (i = 1, 2 , 3) at the boundary 0=x . 

By using a Fourier sine transformation method, analytical solutions for the system of 

Equations (4.2)-(4.7) are obtained as [Lunn et al., 1996]:  
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where 
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To numerically simulate the transport of these three reactive contaminants, a one-

dimensional problem is defined as follows: the length of domain is 2 m in x-direction 

with 1=∆x cm, and oC1 , oC2 , and oC3  are 1, 0, and 0, at x=0 m respectively. Other 

simulation parameters, such as flow velocity and reaction rates, are given in Table 4.1.       
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Table 4.1 Simulation parameters* 

 
                 Parameter Value 
Dispersion coefficient, D 0.18 cm2 /hr 
Velocity, v 0.2 cm/hr 
Decay rate of species 1, k1 0.05 hr-1 
Decay rate of species 2, k2 0.03 hr-1 
Decay rate of species 3, k3 0.02 hr-1 
Retardation factor, Rf 1. 
Run time, t 400 hrs 
      *Parameters given by Sun et al. [1999a] 

 

In this simulation, three transport equations are coupled by sequential degradation 

processes and are solved using the Crank-Nicolson scheme (α = 0.5) with variable time 

steps of 10-3600 sec. In Figure 4.1, the simulation results are compared with analytical 

solutions, which are calculated using MAPLE 7.0 program using Equations (4.8)-(4.15). 

The numerical results obtained show very good agreement with the analytical solutions. 
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Figure 4.1 Comparison of concentration profiles of three species at t = 400 hrs: numerical 

results (symbols) and analytical solutions (lines).   
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4.2.2 Reactive Multispecies Transport in a Three-dimensional Uniform Flow Field 

The fate and transport equation for single species contaminant undergoing a first-order 

reaction in a three-dimensional uniform flow field can be given as [Bear, 1979],  
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where C  are the concentration of the species ( 3−ML ), xD , yD , and zD  are the dispersion 

coefficients ( 12 −TL ) in x-, y-, and z-direction, respectively, v is a constant groundwater 

flow velocity ( 1−LT ) in x-direction, and k  is a first-order reaction coefficient ( 1−T ). As 

seen in Equation (4.1), a sequential reaction chain of each species, degraded with a first-

order relationship, can be expressed as [Sun et al., 1999a; Sun et al., 1999b; Wiedemeier, 

1999; Clement et al., 2000] 
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where subscript i indicates a species, iC and 1−iC  are concentration of target species and 

its parent species, respectively. Further, ik and 1−ik  are first-order reaction coefficients of 

target species and its parent species, respectively, and n is the total number of species. 

The transport system of reactive contaminants with irreversible sequential first-

order reactions in a three-dimensional uniform flow field can be expressed [Sun et al., 

1999a] 
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where iy  is a stoicheometric yield factor that describes the production of target species 

from its parent species. The values of 1−iC and 1−ik are assumed to be zero at 1=i . To 
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develop an analytical solution of Equation (4.18), Sun et al. [1999a] defined an auxiliary 

variable, ia , for species 2 to n: 
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Differentiating Equation (4.19) with respect to time and substituting it into 

Equation (4.18) yield new transport equations in terms of the auxiliary variable, ia , for 

species 2 to n as follows:  
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where ioa  and iba  are initial and boundary conditions of species i in the transformed 

system, respectively. Equation (4.20) is in the same form as Equation (4.16), so any 

previously-derived analytical solution for single-species transport in a three-dimensional 

uniform flow can be applied to Equation (4.20) [Sun et al., 1999a]. After obtaining the ia  

solution of Equation (4.20) by the analytical solution, the concentration of target species i 

in the untransformed Equation (4.18) will be calculated by [Sun et al., 1999a]  
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Analytical solutions for transport of reactive single-species in a three-dimensional 

uniform flow were developed by Domenico [1987], Wexler [1992], and Park and Zhan 

[2001]. Wexler [1992] derived the following solution for contaminant transport with a 

first-order reaction in a three-dimensional domain with infinite width and height as: 
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with 

 Initial condition (I.C.): 

 0=C , ∞<< x0 , +∞<<∞− y , and +∞<<∞− z  at t=0    (4.24) 

 Boundary conditions (B.C.): 

 oCC = , 0=x , 21 YyY << , and 21 ZzZ <<     (4.25a) 

 0=C , 0=x , 21 YyorYy >< , and 21 ZzorZz ><   (4.25b) 

 0=
∂
∂

x
C , ∞=x        (4.25c) 

 0=
∂
∂

y
C , ±∞=y        (4.25d) 

 0=
∂
∂

z
C , ±∞=z        (4.25e) 

where Y1 and Y2 are the lower and upper limits of a contaminant source zone in y-

direction, respectively, Z1 and Z2 are the lower and upper limits of the zone in z- 

direction, respectively, and τ  is a dummy variable of integration for time integral.  

To demonstrate the transport of sequentially reactive contaminants in a three-

dimensional domain, we set up the following problem (Figure 4.2): the size of domain is 

(40 m × 24m × 24 m) in (x, y, z) directions, v = 0.2 m/d, 3.0=xD  m2/d, xy DD 3.0= , 

xz DD 1.0= , k1 = 0.05 d-1, k2 = 0.02 d-1, and k3 = 0.01 d-1.   
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Figure 4.2 Schematic of a three-dimensional domain for transport of three reactive 

contaminants 

 
 
Initial and boundary conditions are: 
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except the followings: 
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 Type I. 02 =C  at 0,,,0 >=== tallzallyx    (4.28b) 

Type I. 03 =C  at 0,,,0 >=== tallzallyx    (4.28c) 

The domain consists of 45,056 rectangular prism elements and 49,005 nodes. The 

discretization of the domain are: In x-direction, ∆x = 0.25 at x = 0-1 m, ∆x = 0.5 at x = 1-2 
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m, ∆x = 1.0 at x = 2-40 m; and, in y- and z-direction, ∆y and ∆z = 0.25 at y and z= 0-±1 

m, ∆y and ∆z = 0.5 at y and z = ±1-±2 m, and ∆y and ∆z = 1.0 at y and z = ±2-±12 m.  

In Figure 4.3, comparisons of the concentration profiles of analytical solutions, 

which are calculated by MAPLE 7.0 program, and numerical results of this study at time 

100 days are given. The profiles are illustrated at two planes: x-y plane at z = 0 and x-z 

plane at y = 0. The greater dispersion coefficient in y-direction than in z-direction causes 

the development of the wider contaminant plume on x-y plane than on y-z plane. Due to 

biotransformations of species 1, the byproducts (species 2 and 3) may be more important 

than species 1 down-gradient from the source: for example, at a point (30 m, 0, 0), the 

concentrations of species 2 and 3 are higher than those of species 1.  

In Figure 4.4, concentration evolutions of contaminants over time at several 

locations are shown. Under the simulation conditions used here, the stabilized 

concentrations of species 1 and 2 decrease with distance in x-direction while the 

stabilized concentration of species 3 increases with distance in x-direction up to x=10 m. 

In Figure 4.3, the highest concentration zone of species 3 is located at around x=10 m. In 

Figure 4.4 (a), as the mesh grid becomes dense, the numerical solutions at point (5,0,0) 

show more accurate results. 

The numerical results in Figures 4.3 and 4.4 show very good agreement with the 

analytical results.  
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Figure 4.3 Concentration of three species on x-y plane at z = 0 and x-z plane at y = 0 at t = 

100 days: analytical solutions (solid lines) and dashed lines (numerical results 
of this study). 
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(c) Species 3 
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Figure 4.4 Concentration evolutions of three species at specified locations over time: 

*Analytical solutions (lines) and numerical results (symbols). † used a dense 
mesh (∆x = 0.25 at x = 0-6 m and the other grids are same). The unit of 
distance in point (x, y, z) is a meter.  
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4.3 Application of Transport of Biologically Reactive Contaminants 

4.3.1 Modeling Domain and Parameters 

As shown in Figure 3.7, the two-dimensional unconfined sandy aquifer with a 

dimension of (200 m × 16 m) in (x,y) directions is used to simulate transport of multi-

species (TCE, cDCE, and VC) with biological transformations. The concentrations of all 

species are used in determining density-driven advection of gas phase, addressed in 

Chapter III. 

For flow equations, the same initial and boundary conditions used in section 3.4 

of Chapter III are applied here (Figure 4.5). For transport equations, the same boundary 

conditions used for TCE in section 3.4 of Chapter III are employed here for TCE, cDCE, 

and VC. As the contaminant source, an immobile TCE residual is set to its NAPL 

saturation of 5 % at distance x = 50-54 m and elevation z = 13-15 m. Initial 

concentrations of TCE, cDCE, and VC in gas, water, and solid phases, are set to zero 

within the domain. As boundary conditions at the ground surface, the recharge for 

infiltration is 30 cm per year for water phase, and constant atmospheric pressure is 

applied for gas phase. For transport equations for all contaminants in gas phase, the 

ground surface is set to a stagnant boundary layer of 0.3 m thickness, and left- and right-

hand side boundaries are set to no flux condition.  

Since three contaminants in water and gas phases are considered due to biological 

transformations, computational burden would be more than three times that for single 

contaminant in section 3.4 of Chapter III. Based on experience gained on simulations 

done in Chapter III, coarse mesh grids are used in diffusion-dominated zones and low 

concentration zones far away from the TCE source to reduce computational burden. The 
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domain idealization grid used here consists of 8,190 nodes and 3,952 elements. The 

domain is discretized as follows: In x-direction, ∆x = 2.5 m at x = 0-40 and 80-200 m, 

and ∆x = 1.0 m at x = 40-80 m;  in z-direction, ∆z = 0.5 m at z = 0-6.5 and 9.5-16 m, and 

∆z = 0.25 m at z = 6.5-9.5 m.  

 

 
Figure 4.5 A schematic diagram of a modeling domain 

 

 

The properties of the soil medium, water, and gas used in this application are 

given in Table 4.2. The intrinsic permeability of the soil medium, 1.0×10-10 m2, is 

equivalent to an aqueous hydraulic conductivity of 1.0×10-3 m s-1. The physical and 

chemical properties of three contaminants (TCE, cDCE, and VC) used herein are given in 

Table 4.3. The properties of TCE are already mentioned in Table 3.4. Estimated 

retardation coefficients of TCE and cDCE due to sorption are approximately 1.2 and 1.1, 

respectively, which correspond to field data reported by Witt et al. [2002]. The 
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retardation coefficient of dissolved VC is nearly 1.0, implying that its retardation effect is 

negligible. Biological transformations of multispecies (TCE, cDCE, and VC) are 

expressed by first-order relations or Michaelis-Menten kinetics. However, dissolution, 

water-gas partitioning, and volatilization for the species are represented by first-order 

relationships, and their rate coefficients ( Dλ , Hλ , and Vλ ) are set to 1.0 d-1, which were 

used by Thomson et al. [1997]. The conversion coefficients for TCE to cDCE and cDCE 

to VC are 738.0/ =TCEDCEY  and 645.0/ =DCEVCY , respectively, which are calculated by 

dividing a molecular weight of a daughter contaminant by that of a parent contaminant.  

 

Table 4.2 Properties of soil, water, and air 
 

Parameters Values 
Porous medium 

Permeability, k 
Porosity, φ 
Residual water saturation, sm 
Bulk density, ρb 
Temperature, T 
Longitudinal dispersivity, αL 
Transverse dispersivity, αT 
Soil organic content, foc 
Parameters for the unsaturated zone 
     n 
     αgw 

1.0×10-10 m2  
0.35  
0.  
1600 kg/m3 
15 °C 
1.0 m 
0.01 m 
0.0005 
 
2.0 
5.0 m-1 

Water 
Water molecular weight, Mw 
Water density, ρw 
Water dynamic viscosity, µw 

18  
997.3 kg/m3 
1.0×10-3 Pa s 

Air 
Molecular weight, Mair 
Density, ρair  
Viscosity, µair 

28.75  
1.23 kg/m3  
1.8×10-5 Pa s 
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All simulations were carried out up to 400 days with variable time steps ranging 

from 1 to 24 hours, which were adjusted according to an automatic time-stepping 

scheme. Mass balance calculations are performed to determine the fate and transport of 

all contaminants, especially the biological transformation of each species in the system. 

In the calculations, mass transfer of each species to the atmosphere and to the 

groundwater in the saturated zone was separately calculated, and mass conservation for 

biotransformation processes was checked. Numerical results obtained for case studies are 

given in the following sections. 

 

Table 4.3 Properties of three contaminants at 15°C 

Parameters TCE cDCE VC 
a) Molecular weight 131.39 96.94 62.50 
b) Vapor density, kg/m3    5.56 4.10 2.64 
c) Vapor dynamic viscosity, Pa s × 106 9.38 9.29 9.27 
d) Henry constant, dimensionless 0.227 0.097 0.756 
e) Molecular diffusion in air, m2/s × 106 7.87 8.84 10.42 
f) Molecular diffusion in water, m2/s × 
1010 

8.206 8.711 10.65 

g) Sorption coefficient, Koc, L/g 0.1 0.049 0.003 
h) Vapor pressure, mmHg 41.27 129.2 2136.30
i) max. Cg, kg/m3 0.302 0.697 7.434 
j) max. Cw, kg/m3 1.33 7.19 9.83 

a) Montgomery [2000].  
b) Calculated by the ideal gas law. 
c) Calculated Thodos and coworkers’ equation [Perry et al., 1984] based on data from Reid et al. [1987].  
d) Calculated from regression data [Gossett, 1987]:. 
e) Calculated from the Fuller, Schettler, and Giddings relation [Perry et al., 1984]. 
f) Calculated by the Wilke-Chang method [Perry et al., 1984].   
g) Values from Mackay et al. [1992]. 
h) Calculated using regression equation (1) on page 657 [Reid et al., 1987]. 
i) Calculated from Vapor pressure by the ideal gas law.  
j) Calculated from Henry constant, wg CHC ×= . 
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4.3.2 Transport and Biotransformation of Contaminants with First-order 

Relationships   

Biotransformation rates of TCE, cDCE and VC, depend on various environmental 

factors such as population of microorganism, temperature, reduction potential, and 

contaminant concentration. The bioreaction processes and kinetics have been studied 

extensively and reported in the literature [Wiedemeier, 1998; Pavlostathis and Prytula, 

2000; Cupples et al., 2004; Yu et al., 2005]. Biotransformation rates of each species are 

an important factor in determining the generation of daughter contaminants and the 

development of contaminated plume for parent and daughter contaminants.  

Since contaminated environments are highly site-specific, it is hard to describe 

representative values of the bioreaction rates for every site. For first-order relationships 

of biotransformations of TCE, cDCE, and VC, three cases with different reaction 

coefficients are defined to simulate the bioreaction effect of multispecies transport of 

contaminants in the system (Table 4.4). The bioreaction rate data for the three 

contaminants are obtained from the literature [Clement et al., 2000; Suna et al., 2001] and 

are used for the cases. Among the cases, Case F-1 has the highest biodegradation 

coefficients for TCE, cDCE, and VC, which are reported by Suna et al. [2001], and Case 

F-3 has the lowest reaction coefficients, which were calculated from field monitoring 

data by Clement et al. [2000]. The coefficients for Case F-2 are set to be approximately 

half of the coefficients for Case F-1. In addition, a no-bioreaction case is simulated to 

show TCE transport without any biotransformation. 

Transport of TCE in gas and water phases is shown in Figure 4.6 and 4.7, 

respectively. As discussed in Chapter III, TCE transport in the unsaturated zone near the 
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source occurs mainly due to density-driven advection. The magnitude of the advection in 

gas phase is illustrated in Figure 4.6 (e): Through the source zone, strong downward 

movement of gas phase is observed.  

 
 

Table 4.4 Biotransformation scenarios for first-order relationships 

First-order coefficient, day-1 TCE cDCE*** VC 
Case F-1* 
Case F-2 

Case F-3** 

3.0×10-3 

1.5×10-3 

1.1×10-4 

2.5×10-3 

1.25×10-3 

1.6×10-4 

3.8×10-3 

1.9×10-3 

1.0×10-4 
*data from Suna et al. [2001] 
**data from Clement et al. [2000] 
***cDCE is used as a representative daughter product of TCE among DCEs 
 

 

Since the biotransformations of contaminants are assumed to occur only in the 

water phase, bioreaction rates of contaminants are determined mostly by their dissolved 

concentration, the magnitude of bioreaction coefficients, and water content in the system. 

The vertical profiles of water contents were already shown in Figure 3.11. As the density-

driven advection of gas phase increases the spreading of vaporized contaminants and 

mass transfer of contaminants into water phase, the advection will also enhance the 

biotransformation of TCE. 

Biotransformation of dissolved TCE implies the reduction in dissolved TCE mass 

in water phase and in the domain. In terms of TCE mass, the greater reaction coefficient 

causes the faster mass reduction, retarding the development of TCE plume in the system. 

To demonstrate the biotransformation effect on TCE transport, the transport profiles of 

four cases (no bioreaction, Case F-1, F-2, and F-3) are compared in Figures 4.6 and 4.7: 

Among the cases, Case F-1 (the greatest bioreaction coefficients) shows the least 
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development in dissolved and vaporized TCE plumes. Due to mass transfer of TCE 

between water and gas phases, the effect of the biotransformation of dissolved TCE on its 

transport occurs in both phases. Graphically, the difference in the size of the high 

concentration zone of dissolved TCE (≥ 1000 mg/L) between no-bioreaction case and 

Case F-1 is small, and the difference in the front of dissolved TCE plume (0.1 mg/L) 

between the two cases is less than 5 m down-gradient in Figure 4.7. The profiles of daily 

biotransformed TCE mass are shown in Figure 4.8 (a). Biotransformed TCE mass 

continuously increases over time even though the temporal increment of the TCE mass 

decreases. The increase in biotransformed TCE mass results from the increase in total 

mass of dissolved TCE in the system. Daily biotransformed TCE mass is proportional to 

the magnitude of first-order rate coefficients for biotransformation of TCE: At 400 days, 

the biotransformed TCE mass for Cases F-1, F-2, and F-3 is approximately 8.56, 4.78, 

and 0.39 g/day, which correspond to 0.3, 0.15, and 0.011 % of dissolved TCE mass, 

respectively. 

Since dissolved TCE is transformed solely to cDCE, the generation rates of cDCE 

can be estimated from TCE biotransformation rates in Figure 4.8 (a) and a yield 

coefficient between TCE and cDCE, 738.0/ =TCEDCEY . The evolution of total cDCE mass 

generated from TCE is presented in Figure 4.8 (b). As the increment of total mass of 

generated cDCE is determined mainly by dissolved TCE mass and water saturation level, 

the generated cDCE mass will rise with the increase in dissolved TCE mass.  
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Figure 4.6 TCE concentration in gas phase for four cases(No-bioreaction, Case F-1, F-2, 

and F-3) and Darcy velocity of gas for Case F-1 at t=300 days 
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Figure 4.7 TCE concentration in water phase for four cases(No-bioreaction, Case F-1, F-

2, and F-3) and Darcy velocity of water phase for Case F-1 at t=300 days 
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Figure 4.8 Biotransformation of TCE and production of cDCE. (a) Daily biotransformed 
TCE mass and (b) Total cDCE mass generated over time for three cases: Case 
F-1, F-2, and F-3.   
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For three cases (Case F-1, F-2, and F-3), the concentration profiles of cDCE, 

which is generated from dissolved TCE and a new contaminant in the system, is given in 

Figure 4.9: (a)-(c) for dissolved cDCE concentration profiles and (d)-(f) for vaporized 

cDCE concentration profiles. For all three cases, the high concentration zones of cDCE 

are located just above the groundwater table. Two zones of the highest concentration of 

cDCE are observed on left-side and right-side positions from the zone directly below the 

TCE source. The two zones are generated by three main factors: the density-driven 

transport in gas phase, the release of cDCE to the atmosphere, and the downward 

groundwater flow in the unsaturated zone. As discussed in section 3.4 of Chapter III, due 

to high density of gas mixture containing vaporized TCE around the source (x = 50-55m 

and z = 13-15 m), the flow of contaminated gas moves downward from the source, and 

then the flow splits into two directions (into left or right) just above the groundwater table 

(Figure 4.6(e)). While TCE vapor in gas phase migrates in high water content area above 

the groundwater table, vaporized TCE partitions into water phase, and then some portion 

of the dissolved TCE will be degraded into cDCE. The two-directional gas flow will 

contribute in transporting the generated cDCE into left- or right-side. The release of 

cDCE to the atmosphere decreases its concentration near the ground surface: 

Atmospheric loss of contaminants including cDCE plays an important role in reducing 

contaminant mass in the systems (Figure 4.13). The downward movement of water will 

enhance the downward migration of dissolved cDCE in the unsaturated zone and its 

transport to the saturated zone. The air inlet from the ground surface above the source 

may contribute to the dilution of cDCE concentration near the source.  
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While cDCE in water phase moves downward in the unsaturated zone, some 

portion of dissolved cDCE will vaporize into gas phase, which may also cause the change 

in the density of gas mixture. The concentration contours of vaporized cDCE are 

illustrated in Figure 4.9 (d)-(f). The highest concentration zones of vaporized cDCE agree 

with those of dissolved cDCE shown in Figure 4.9 (a)-(c).  

For the three cases (Case F-1, F-2, and F-3), the concentration distribution of 

dissolved and vaporized cDCE shows similar trends for three phases. The values of 

cDCE concentrations, however, shows distinct difference according to the magnitude of 

bioreaction coefficients: For Case F-1, the highest biotransformation rate of TCE results 

in the highest concentration profiles of its daughter contaminant cDCE and the widest 

plume development in both gas and water phases.  

In Figure 4.10, daily biotransformation rates of cDCE and total mass of VC 

produced by the biotransformation are given. The bioreaction coefficients of both TCE 

and cDCE play an important role in determining VC production: Since the concentration 

of cDCE depends on the biotransformation coefficient for TCE and the concentration of 

cDCE is linked with the generation of VC, the VC production depends on the 

biotransformation of both TCE and cDCE. Relative difference in total VC production 

between Cases F-1 and F-2 becomes larger than that in total cDCE production between 

the two cases: For example, at t=400 days, total cDCE production of Case F-1 is less than 

two times that of Case F-2, however, total VC production of Case F-1 is greater than 

three times that of Case F-2. 
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Figure 4.9 DCE concentration in water and gas phases for three cases: Case F-1, F-2, and 
F-3 at t=300 days 
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Figure 4.10 Biotransformed cDCE mass and production of VC. (a) Daily biotransformed 
cDCE mass and (b) Total VC mass generated over time for three cases: Case 
F-1, F-2, and F-3   
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VC is generated by biotransformation of cDCE in water phase, and it partitions 

into gas phase. The concentration distribution of VC in water and gas phases is given in 

Figure 4.11. The highest concentration zones of dissolved VC are detected in the down 

gradient saturated zone while the highest concentration zones of vaporized VC 

correspond roughly to those of vaporized cDCE shown in Figure 4.9.  

The concentration profiles of dissolved VC reflects the concentration profiles of 

dissolved cDCE and characteristics of sequential biotransformations: since VC is 

generated mostly around the groundwater table, the VC will be easily transferred to the 

saturated zone, and then will migrate in the relatively fast ground water flow. Since VC is 

generated after its parent contaminant cDCE is produced and accumulated, a time lag 

between the appearances of cDCE and VC may contribute to the down gradient 

movement of the high concentration zones of dissolved VC in Figure 4.11. 

In Figure 4.11, among three cases (Cases F-1, F-2, and F-3), Case F-1 shows 

highest concentration profiles of dissolved and vaporized VC. In each case, the 

concentration of dissolved VC (Figure 4.11) is much lower than that of dissolved cDCE 

(Figure 4.9). For Cases F-1 and F-2, even though the concentration of dissolved VC is 

very low, however, in wide areas, the concentration exceeds its drinking water standard 

(Maximum contaminant level of VC: 0.002 mg/L) listed on the National Primary 

Drinking Water Regulations [EPA, 2000].   
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Figure 4.11 VC concentration in water and gas phases for Cases F-1, F-2, and F-3 at 
t=300 days  
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In Figures 4.7, 4.9, and 4.11, the highest concentration zones of TCE, cDCE, and 

VC in water phase appeared at different locations due to gas and water flow, sequential 

bioreactions, and non-equilibrium mass transfer between phases. Due to the interactions 

between the complex processes, the generation and distribution of intermediate 

contaminants (cDCE and VC) can not be simply predicted, but these will be determined 

by coupled and nonlinear relationships of the processes. 

The distribution of contaminants depends on various factors such as physical and 

chemical properties of substances and environmental conditions. For Case F-1, the 

evolution of mass distribution of TCE, cDCE, and VC is illustrated in Figure 4.12. The 

temporal changes in the distribution of TCE in the domain show similar trends with those 

shown in section 3.4 of Chapter III (for a no bioreaction case): TCE mass within gas and 

water phase in the unsaturated zone increases over time while its increment decreases 

over time. Dissolved TCE in the saturated zone, however, increases almost linearly after 

a period of time lag, which is traveling time for TCE to reach the saturated zone from the 

source. After about 150 days, dissolved TCE mass is greater than vaporized TCE mass in 

the domain.  

The distribution of cDCE, which is generated by the biotransformation of 

dissolved TCE, is given in Figure 4.12 (b). Total dissolved cDCE mass is much greater 

than total vaporized cDCE mass. This distribution of cDCE in water or gas phases is 

related with the generation of cDCE only in water phase and chemical properties of 

cDCE. The vaporized cDCE comes from water phase through a non-equilibrium 

partitioning process. As seen in Table 4.3, the solubility of cDCE is approximately 5.4 

times that of TCE while the saturated vapor concentration of cDCE is about 2.3 times that 
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of TCE. The evolution of dissolved cDCE mass in the unsaturated and in the saturated 

zone suggests that, at the beginning of Case F-1 simulation, cDCE is generated mostly in 

the unsaturated zone, so dissolved cDCE mass in the unsaturated zone is greater than that 

in the saturated zone until 350 days. However, as TCE transfers into the groundwater in 

the saturated zone, dissolved cDCE mass in the saturated zone increases faster than that 

in the unsaturated zone from about 150 days, and, after 350 days, dissolved cDCE mass 

in the saturated zone exceeds that in the unsaturated zone.   

In Figure 4.12 (c), the distribution of VC is shown: Dissolved VC in the saturated 

zone has sharp increase after 150 days, and becomes a dominant portion of VC 

distribution. The factor that dissolved VC in the saturated zone is much greater than that 

in the unsaturated zone is related to one that the existence of the highest concentration 

zone of dissolved VC in the saturated zone seen in Figure 4.11. In the unsaturated zone, 

due to high vapor pressure of VC, its mass in gas phase is greater than dissolved VC.  
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Figure 4.12 Distribution of TCE, cDCE, and VC in the domain for Case F-1 
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Through mass balance calculations in the domain and at boundaries, the fate of 

TCE, cDCE, and VC is investigated and is presented in Figure 4.13. At 400 days, the 

release of TCE to the atmosphere, adsorbed TCE to soil medium, dissolved TCE, and 

vaporized TCE, and biotransformed TCE mass are approximately 33, 4.5, 4.5, 3.4, and 

3.6 % of initial TCE mass at the source, respectively. Since the source is close to the 

ground surface, TCE release to the atmosphere dominates the fate of TCE. In Figure 4.13 

(b), as TCE mass in water phase increase with time, the portion of bioreaction shows fast 

increase. After 200 days, TCE mass in gas phase reaches almost stabilized conditions: It 

may imply a dynamic equilibrium condition in which TCE mass vaporized from the 

source almost balances the sum of vaporized TCE mass for atmospheric loss and mass 

transfer into the water phase. Sorption plays an important role to determine the fate of 

TCE. The sorption will help to retard the development of TCE plume. 

In Figure 4.13 (c) and (d), relative portions of cDCE and VC mass in gas phases 

decrease over time. Dissolved cDCE has the largest portion among the distributions of 

generated cDCE. In Figure 4.13 (d), the ratio of dissolved VC mass to total generated VC 

ranges from 27 and 37 %. For cDCE and VC, the ratios of biotransformed mass to total 

generated mass steadily increase over time. This implies that the role of contaminant 

biotransformation on determining fate of contaminants will become larger over time. 

Therefore, for long term simulations of TCE transport in subsurface systems, 

biotransformation should be taken into consideration. 

Of course, total biotransformation mass depends on the magnitude of bioreaction 

coefficients. As expected from retardation factors of cDCE and VC, sorption of VC is 

minimal while that of cDCE has more than ten percent of total cDCE mass generated 
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during simulations. The atmospheric loss of cDCE and VC has significant effects on fate 

of the contaminants even though those are generated in water phase and VC comes 

mainly from the saturated zone: The loss of cDCE to the atmosphere increases 

continuously with time, and, since 200 days, the loss of VC to the atmosphere exceeds 

dissolved VC mass in the systems. It indicates that mass release to the atmosphere should 

be included in modeling fate and transport of volatile organic compounds as long as 

contaminant plume is connected with open ground surface through the unsaturated zone. 
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Figure 4.13 Fate of TCE, cDCE, and VC for Case F-1 
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4.3.3 Transport and Biotransformation of Contaminants with Michaelis-Menten 

Kinetics  

Michaelis-Menten kinetics has been often used to represent sequential 

dechlorination of chlorinated hydrocarbons [Barrio-Lage et al., 1987; Haston and 

McCarty, 1999; Pavlostathis and Prytula, 2000; Yu et al., 2005]. Michaelis-Menten 

kinetics is more complicated than a first-order relationship: As mentioned in Equation 

(2.3) in Chapter II, when the half-saturation constant is much greater than contaminant 

concentration, Michaelis-Menten kinetics becomes a first-order relationship while, on the 

contrary, when the former is much less than the latter, the kinetics becomes a zero-order 

model.  

In the previous section 4.3.2, the study on multispecies biotransformation with 

first-order relationships showed that concentration profiles of the compounds highly 

depend on the values of bioreaction rates. First-order coefficients for biological 

transformations of chlorinated hydrocarbons have been estimated through laboratory and 

field work by many researchers, and published data were used in the previous section. 

Parameters of Michaelis-Menten kinetics for TCE, cDCE, and VC have been often 

estimated only through various laboratory works, which are conducted under well 

controlled conditions [Cupples et al., 2004; Yu et al., 2005]. Due to lack of field data for 

the parameters, three different experimental data are used to simulate the sequential 

biotransformations of TCE, cDCE, and VC, which are listed in Table 4.5.  

In Michaelis-Menten kinetics, the concentration of microorganism plays an 

important role in determining maximum bioreaction rates. However, the field 

measurement of dechlorination microorganisms, such as Dehalococcoides group 
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organisms, is a difficult task, and, even though dechlorination microorganisms have been 

detected in contaminated zones and the microbial biomass has been measured through 

special laboratory procedures, the measurement data are very limited at specified 

locations [Davis et al., 2002; Lendvay et al., 2003]. The distribution of microorganisms 

may also vary over locations and subsurface environments. In this study, to overcome 

complicated biological situations and lack of field data, dechlorination microorganisms 

are assumed to be distributed uniformly at a biomass concentration of 5 µg/L in 

contaminated areas, which is chosen based on laboratory and field data (Table 4.5). In 

this section, the effect of Michaelis-Menten-kinetics biotransformations of multispecies 

on their fate and transport are examined under conditions given in Tables 4.2, 4.3, and 

4.5.   

 

Table 4.5 Biotransformation scenarios for Michaelis-Menten kinetics 

Scenarios TCE  cDCE VC 

 kB
 d) 

(µM/d) 
Ks 

(µM) 
kB

 d) 
(µM/d) 

Ks 
(µM) 

kB
 d) 

(µM/d) 
Ks 

(µM) 

Case MM-1 a) 
Case MM-2 b) 
Case MM-3 c) 

0.62 
0.008 
0.36 

2.8 
1.4 
0.54 

0.11 
0.00185 

0.36 

1.9 
3.3 
0.54 

0.012 
0.0017 
0.36 

602 
2.6 
290 

a) data from Yu et al. [2005]. 
b) data from Haston and McCarty [1999]. 
c) data from Fennel and Gossett [1998]. 
d) kB is calculated with a biomass concentration (protein or volatile suspended solid) of 5 µg/L.  

 
 
 
The concentration profiles of multispecies (TCE, cDCE, and VC) for the three 

cases are illustrated in Figures 4.14-16. In terms of concentration, its profiles for 

dissolved and vaporized TCE with Michaelis-Menten kinetics show similar trends with 
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those with first-order kinetics shown in Figures 4.6 and 4.7, respectively. However, the 

concentration profiles of dissolved cDCE show distinct difference between Michaelis-

Menten kinetics and first-order kinetics: The highest concentration zones at Michaelis-

Menten kinetics have been moved to far down gradient zones near the front of dissolved 

cDCE plume (for instance, Figure 4.14 (b)) while the highest concentration zones at first-

order kinetics are located above the groundwater table around the source (for instance, 

Figure 4.9 (a)). The difference between cDCE concentration profiles of the two kinetics 

comes from the characteristics of each kinetics: In cases of first-order kinetics, the 

generation of cDCE is linearly proportional to dissolved TCE concentration, however, in 

cases of  Michaelis-Menten kinetics, if dissolved TCE concentration is much higher than 

the half-saturation constant, sK , in Equation (2.3), the kinetics become zero-order, and 

thus the generation of cDCE is nearly independent on TCE concentration. For example, 

in first-order kinetics, the generation rate of cDCE at dissolved TCE of 100 mg/L is ten 

times that at dissolved TCE of 10 mg/L. In the contrary, for Case MM-1 in which the 

values of sK  for TCE is 2.8 µM (0.37 mg/L), the difference in the generation rates of 

cDCE under 10 and 100 mg/L of dissolved TCE would be less than 5 %. This suggests 

that the generation of cDCE in the relatively high concentration zones (≥ 10 mg/L) in 

Figure 4.14 (a) will be almost same. Under such circumstances, dilution due to advection 

(groundwater flow in the saturated zone) and dispersion will play an important role to 

determine the concentration of dissolved cDCE in the saturated zone. The inflow of clean 

groundwater from the left-end boundary to the highly contaminated zone (especially x = 

30-80 m) will reduce the concentration of cDCE in the groundwater due to dilution 

processes, and, as the groundwater becomes polluted over distance, the dilution effect 
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will decrease. High concentrations of VC also appear in the down gradient saturated zone 

near the front of dissolved VC plume.  

In Case MM-1, the biotransformation coefficient of TCE is relatively large: The 

coefficients at 0.1 and 1.0 mg/L of dissolved TCE concentration correspond to 

approximately 0.17 and 0.06 d-1 as first-order coefficients. The high biodegradation of 

TCE retards the development of its plume in the saturated zone (Figure 4.14 (a)). VC has 

the lowest bioreactivity, so its dissolved plume is widely developed as shown in Figure 

4.14 (c). Due to the generation of VC in the saturated zone, vaporized VC is also present 

in wide regions, which is partitioned from dissolved VC into gas phase.   

Case MM-2 has the least bioreaction coefficients for TCE among the three cases 

in Table 4.5. The development of TCE in the unsaturated zone is much larger in Case 

MM-2 than in Case MM-1. Dissolved cDCE and VE also have low concentrations in the 

domain in Figure 4.15, and vaporized VC concentration in the domain was less than 1 

µg/L.  

The concentration profiles of daughter contaminants (cDCE and VC) are related 

to bioreaction parameters in a complicated manner (maximum bioreaction rates and half-

saturation constants) of both a parent and the daughter contaminants. In Case MM-3, 

TCE, cDCE, and VC have the same maximum bioreaction coefficient and the same half-

saturation constant. The development of dissolved TCE plume in Case MM-3 is much 

smaller than that in Case MM-2. Among the three cases, the development of dissolved 

cDCE plume is least in Case MM-2 and is greatest in Case MM-1. The phenomena come 

from the difference of bioreactivity of TCE and cDCE: For Case MM-1, TCE and cDCE 
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are readily dechlorinated, but, for Case MM-2, the dechlorination of cDCE is very low 

while TCE is readily transformed to cDCE.   

Figure 4.16 (c) and (f) draw our attention: The concentration of dissolved VC is 

greater than that of dissolved cDCE. This phenomenon results from low bioreactivity of 

VC due to higher half-saturation coefficient of VC than that of cDCE. For instance, the 

biotransformation coefficient of dissolved cDCE at 0.5 mg/L corresponds to 

approximately 0.063 d-1 as a first-order coefficient, however the coefficient of dissolved 

VC at 0.5 mg/L does to 0.0014 d-1 as a first-order coefficient. This implies that, as the 

production of VC from cDCE is greater than the biotransformation of VC, VC is 

accumulated in the domain, raising VC concentration. During reductive dechlorination 

processes of multiple chlorinated hydrocarbons such as PCE, TCE, DCEs, and VC, due 

to competition for electron donors, VC is the least susceptible to the processes since it is 

least oxidized among these compounds [Wiedemeier, 1998]. So the rate of dechlorination 

reaction decreases with the decrease in the degree of chlorination of the compounds 

[Vogel and McCarty, 1985]. Under such environmental conditions, VC may be 

accumulated in multispecies-mixed plume [Murray and Richardson, 1993].    
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Figure 4.14 Concentration profiles of dissolved or vaporized contaminants (TCE, cDCE, 

and VC) at t=300 days, Case MM-1 
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Figure 4.15 Concentration profiles of dissolved or vaporized contaminants (TCE, cDCE, 

and VC) at t=300 days, Case MM-2 
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Figure 4.16 Concentration profiles of dissolved or vaporized contaminants (TCE, cDCE, 

and VC) at t=300 days, Case MM-3 
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The changes in total mass of cDCE and VC, generated by biotransformation of 

TCE and cDCE, respectively, are presented in Figure 4.17. As mentioned earlier, Case 

MM-1 has the highest cDCE production, and Case MM-3 has the highest VC production 

over time. Case MM-2 has very small biotransformation in the production of cDCE and 

VC. 

For Case MM-1, the variations in distribution of TCE, cDCE, and VC are shown 

in Figure 4.18. The variations in TCE distribution in Figure 4.18 (a) are similar with 

those of TCE seen in Figure 4.12 (a). As the highest-concentration zones for cDCE 

appears in the saturated zone (Figure 4.14 (b)), dissolved cDCE in the saturated zone has 

fast increase over time. In Figure 4.18 (c), dissolved VC mass in the saturated zone 

dominates in the distribution of VC.  
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Figure 4.17 Total productions of cDCE and VC for Cases MM-1, MM-2, and MM-3 
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Figure 4.18 Temporal variations in mass distribution of TCE, cDCE, and VC for Case 

MM-1 
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4.4 Summary  

In this chapter, the effect of biological transformations on fate and transport of 

multispecies are analyzed. To represent biological reactions of chlorinated solvents in the 

groundwater system, sequential bioreactions of TCE to cDCE, and to VCE are used. 

TechFlowMP model developed here was successfully verified for sequential bioreactions 

using one- and three-dimensional transport problems. As kinetics of reductive 

dechlorination for TCE, cDCE, and VC for total six simulations, first-order and 

Michaelis-Menten kinetics are employed with three different reaction cases for each 

kinetics. The parameters are chosen from field tests or laboratory experimental data. 

Density-driven advection of gas phase, discussed in Chapter III, was also considered in 

all simulations.  From the results of simulations for two sets of three scenarios of first-

order relationships and Michaelis-Menten kinetics, the followings can be summarized: 

 

(i) Biotransformation of dissolved TCE reduced the development of TCE plume in 

both the unsaturated and unsaturated zones and produces daughter contaminants, 

which become new contaminants in water and gas phases. The degree of the 

reduction depended on the magnitude of biotransformation coefficients for TCE. 

For three cases using first-order relationships, the concentration profiles of TCE in 

water and gas phases showed similar results. For three cases using Michaelis-

Menten kinetics, the biotransformation of TCE has significant effect on the 

spreading of TCE plume in water and gas phases.  
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(ii) Density-driven advection of gas phase had influence on the distribution of cDCE in 

the domain, especially in the unsaturated zone. Due to density-driven gas flow in 

the unsaturated zone, for simulation cases with first-order kinetics, the highest 

concentration zones of cDCE occurred on the left-side and right-side positions from 

the zone directly below TCE source. Since biotransformations occurs sequentially, 

there was a time lag between the increase in cDCE concentration and the increase in 

VC concentration. 

 

(iii) In cases that first-order relationships are used for biotransformation of 

contaminants, since bioreaction coefficients are independent on contaminant 

concentration, the generation of a daughter contaminant was proportional to the 

concentration of a parent contaminant dissolved in water phase. For Michaelis-

Menten kinetics, however, the biotransformation rates are determined by the 

concentration of a parent contaminant and two parameters (maximum bioreaction 

rate and half-saturation constant), the kinetics for the production of a daughter 

contaminant becomes complicated. In simulations with Michaelis-Menten kinetics, 

the highest concentration zones for dissolved cDCE were located at the down 

gradient saturated zone. The locations and the peak concentrations depended on 

kinetic parameters.  

 

(iv) High concentration zones of dissolved VC were shown in the saturated zone just 

below the groundwater table, and high concentration zones of vaporized VC in the 

unsaturated zone showed similar patterns with high concentration zones of 
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vaporized cDCE. In a case with Michaelis-Menten kinetics (Case MM-3), the 

accumulation of VC mass in the domain was observed due to fast biotransformation 

of cDCE and slow bioreaction of VC. Such circumstances may happen due to 

competition between multispecies for reductive dechlorination. 

 

(v) Atmospheric loss of TCE was a dominant mechanism to reduce the contaminant in 

the domain. For cDCE and VC, dissolved components became significant over 

time. The importance of dissolved contaminants was emphasized for cases with 

Michaelis-Menten kinetics. As mass of dissolved contaminants increases with time, 

biotransformation of the contaminants continuously increased. This suggests that 

biological transformations for dissolved volatile organic compounds should be 

considered in long-term simulations to accurately predict fate of the contaminants. 
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CHAPTER V 

IN SITU AIR SPARGING 

 

In situ air sparging (IAS) is an effective remediation technique to clean up soil 

and groundwater contaminated with volatile organic compounds (VOC) in relatively 

permeable subsurface environments. In this chapter, multiphase flow in subsurface 

systems and contaminant removal by IAS application are investigated. For IAS 

simulations, TechFlowMP is tested with gas injection/extraction applications in the 

subsurface. For verification purposes the results obtained are compared with previous 

numerical works for air sparging reported by van Dijke et al. [1995]. Then, various cases 

are investigated for IAS applications to analyze the effects of aquifer and other 

parameters of IAS systems on the remediation efficiency of this remedial procedure. The 

parameters investigated include flow rate of air injection, depth of injection wells, 

injection method, and the distance between injection wells. 

  

5.1 Introduction 

The application of IAS requires knowledge on two main processes: The first is the 

dynamic movement of liquid and gas flows as a multiphase flow through porous media, 

and the second is the chemical and biological reactions such as mass transfer between 

phases and biotransformations of contaminants. A schematic of an IAS operation is 

shown in Figure 5.1. The analysis on multiphase flow may allow us to understand: (i) 

flow path and velocity of gas phase in the unsaturated and saturated zones; (ii) the change 

in flow path and velocity of the groundwater due to IAS; and, (iii) the distribution of gas 
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saturation levels. In determining multiphase flow, one of the key parameters is 

rc ksP −− (capillary pressure-saturation-relative permeability) relationships, which was 

discussed in Chapter II. These relationships are very complicated and site-specific for 

subsurface systems. In this study, van Genuchten models [van Genuchten, 1980; Parker 

et al., 1987] are used to describe these relationships. These models have been often 

applied to IAS problems as reported in the literature [van Dijke et al., 1995; Mei et al., 

2002]. In calculating a relative permeability of gas phase (Equation (2.12)), Klinkenberg 

factor is set to 1, indicating that air slippage in air-water flow systems is not considered 

here.  

Knowledge on mass transfer of contaminants between phases and biological 

reactions of contaminants in water phase is required in estimating the removal of 

contaminants in various flow scenarios. Since mass transfer and bioreactions are 

complicated and highly heterogeneous in groundwater systems, it may be impossible to 

describe every aspect of the processes. Thus, simplified but representative reaction 

kinetics is usually applied to contaminant transport computations. In this study, in 

modeling IAS systems, a first-order relationship is used to express mass transfer of 

contaminants between phases, and Michaelis-Menten kinetics is employed to describe 

biological transformation of contaminants.    

The purpose of this chapter is two folds. The first one is to enhance our 

understanding of multiphase flow in porous media by investigating the behavior of gas 

and liquid (i.e., the contaminated groundwater) as immiscible fluids. The movement of 

gas phase is more dynamic than that of the groundwater, and gas phase plays an 

important role in carrying vaporized contaminants from the saturated zone into the 
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unsaturated zone above the groundwater table. In IAS operations, since the degree of 

contact between gas phase and contaminated groundwater is one of the important factors 

determining mass transfer rates of contaminants from water phase to gas phase, the 

distribution of gas flow has significant influence on the remediation efficiency of IAS 

systems. In this study, a multiphase flow in IAS operations is examined in terms of 

saturation levels and fluid velocity profiles of each phase in a three-dimensional domain. 

The second one is to evaluate the removal efficiency of contaminants by IAS 

operations. Based on the results of various simulations for IAS systems conducted here, 

the purpose is to provide design parameters for optimized IAS systems for contaminated 

sites. Since the number of simulation run is limited, the solutions for the parameters may 

not be fully optimized, but these will help to enhance our understanding of design 

parameters of IAS remediation systems.   

 

 
Figure 5.1 A schematic of an in-situ air sparging operation 

 

Air injection Contaminated 
soil vapor 

Sparging 
 well 

Extraction 
 well 

Groundwater 
table 

Contaminant plume

Groundwater flow 

Unsaturated zone

Saturated zone 



 165

5.2 Model Verification 

5.2.1 Unsteady Radial Flow of Gas in the Unsaturated Zone 

Unsteady radial gas flow due to gas injection or soil vapor extraction (SVE) at a 

single well in a confined unsaturated zone is simulated to verify TechFlowMP model. 

Abriola et al. [1997] used these injection/extraction problems used here to test their two-

dimensional numerical model, called MISER, which was applied to simulate SVE and 

bioventing of organic chemicals in the unsaturated zone.  

The modeling domain used here consists of a one layer confined unsaturated zone 

as shown in Figure 5.2. Gas is injected or extracted through a fully penetrating well. The 

soil in the confined unsaturated zone is homogenous and isotropic. The soil properties 

used in this application are given in Table 5.2. Water saturation level in the unsaturated 

zone is uniform at an immobile residual level of 0.12. Nitrogen gas, which was applied 

by MISER model, is also used to represent the gas phase in the unsaturated zone. 

 

 
Figure 5.2 A schematic of a modeling domain 
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through a single well in a two-dimensional radial coordinate. The angle of the arc on x-y 

plane is approximately 10°. The domain grid consists of 11,214 nodes and 5,377 

elements, which was discretized as follows: in x-direction, 10 spaces of 0.83 m, 25 spaces 

of 1.67 m, 30 spaces of 5 m, 75 spaces of 10 m, and 10 spaces of 5 m; in y-direction, 2 

spaces of 0.52 m, 15 spaces of 1.04 m, 32 spaces of 2.07 m, and 20 spaces of 4.04 m; 

and, in z-direction, one space of 1 m. 

 

Table 5.1 Soil properties for the unsaturated zone 

Parameter Values* 
Porosity 
Permeability 
Residual water saturation 
Coefficients for rc ksP −−  relationships 
         n 
         αgw 

0.33 
1×10-11 m2 

0.12 
 

7.0 
0.002 Pa-1 

* Values were given by Abriola et al. [1997]   
 

 

Two cases were simulated: One is a gas extraction test case with a flow rate of 10 

ft3/min (17 m3/hr), and the other is a gas injection test case with a flow rate of 1 ft3/min 

(1.7 m3/hr). The run time is up to ten days with a 10-1000 second variable time steps.  

In Figure 5.3, the simulation results of the two cases used in this study are 

compared to the quasi-analytical solutions developed by McWhorter [1990] and MISER 

model output reported by Abriola et al. [1997]. For both gas injection and extraction 

problems, the results of this study show good agreement with the other results as given in 

Figure 5.3. 
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(a) Soil vapor extraction test 
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(b) Gas injection test 
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Figure 5.3 Comparisons of analytical solutions and numerical results of two models 

(MISER and TechFlowMP) at gas extraction/injection tests  
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5.2.2 Air Sparging in a Homogenous Axially Symmetric Porous Medium  

van Dijke et al. [1995] investigated multiphase flow in air sparging operations in a 

two-dimensional axially symmetric domain. In this application, the axi-symmetric 

domain is converted to a three-dimensional domain for TechFlowMP that uses Cartesian 

coordinates (Figure 5.4). In the study conducted by van Dijke et al. [1995], water and air 

were considered as two immiscible incompressible continuous phases because gas 

compressibility is expected to play a minor role under steady-state conditions in which 

continuous channels to the vadose zone exist. van Dijke et al. [1995] used the mixed from 

of the Richards equations for both water and air to describe an interactive movement of 

the two fluids in a porous medium. In addition, for numerical computations, the equations 

were non-dimensionalized in terms of dimensionless numbers such as the mobility ratio 

(the ratio of the viscosity of water to that of air), the gravity related dimensionless 

numbers for water and air, and the capillary number. Simulation results are presented in 

terms of the changes in gas saturation levels and air volume that is stored in the domain.  

The properties of a soil medium and fluids (water and gas) are given in Table 5.2. 

van Genuchten models [van Genuchten, 1980; Parker et al., 1987] are used to express 

rc ksP −− relationships between water and gas phases.  
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Figure 5.4 A schematic of a model domain for air sparging  

 
 

Table 5.2 Soil and fluid properties for air sparging 

Parameter Values* 
Permeability 
Porosity 
Residual water saturation 
Coefficients for rc ksP −−  relationships 
         n 
         αgw 

5.3×10-11 m2 
0.39 
0.01 

 
3 

2 m-1 
ρgas  
µgas 
ρwater 
µwater 

1.24 kg/m3 
1.77×10-5 Pa s 

1000 kg/m3 
1.30×10-3 Pa s 

*Values were given by van Dijke et al. [1995]   
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the use of a Cartesian coordinate is more complicated than that of a two-dimensional 

radial coordinate system, but the former coordinate system can readily employed in more 

complex groundwater flow in subsurface systems, while the latter coordinate system can 

be used under restricted groundwater conditions such as no groundwater movement. In 

this problem, water in the saturated zone is assumed to be initially stationary without 

water flow in or out of the domain. In Figure 5.4, the domain idealization grid consists of 

36,005 elements and 42,528 nodes, and is discretized with variable sizes of meshes: In x-

direction, ∆x = 0.02-0.24 m (the width of an element is 1.08 times the width of the 

previous element) at x = 0.05 to 3.1 m, ∆x = 0.13 m at x = 3.1 to 3.37 m, and  ∆x = 0.14 

m at x = 3.37 to 3.65 m; in y- direction, ∆y = 0.013 m at y = 0 to 0.013 m, ∆y = 0.006 m 

at y = 0.013 to 0.025 m, ∆y = 0.008 m at y = 0.025 to 0.125 m, and ∆y = 0.013 m at y = 

0.125 to 0.25 m; and, in z- direction, ∆z=0.05 m at z= -3.5 to -5.5 m, and ∆z=0.1 m at z= 

+1.5 to -3.5 and -5.5 to -6 m. The simulation ran up to two hours with time steps ranging 

from 0.01 to 15 seconds.  

In terms of air saturation contour plots in Figure 5.5, the results of this study are 

compared to the gas saturation profiles given by van Dijke et al. [1995]. Since gas 

saturation is determined by capillary pressure between water and gas phases as seen in 

Equation (2.8), the gas saturation distribution implies the profiles of gas pressure above 

the hydrostatic pressure of water phase. For instance, in Figure 5.5, the gas saturations of 

0.08 and 0.04 represent the gas pressure of approximately 0.24 and 0.18 mH2O above the 

water pressure, respectively. The zero gas saturation indicates that the gas pressure is 

equal or less than the water pressure. In IAS, the degree of gas saturation has important 

meanings: (i) Gas saturation level is one of the key factors in determining remedial 
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performance of IAS. Gas saturation should be greater than zero to remediate polluted 

groundwater by mass transfer of contaminants from water phase to gas phase; and, (ii) 

the degree of gas saturation determines the relative permeability of soil matrix, which has 

a significant impact on Darcy velocity of gas flow below the initial groundwater table.  

In air sparging simulations conducted here, after some short periods of the 

expansion of the air zone ( the zone that gas saturation is greater than zero below the 

initial water table) in all directions (upward, downward, and lateral), the upward growth 

of the air zone due to buoyancy dominated the flow system, although some lateral 

expansion of the air zone also continued. In this problem, the air zone reached the 

groundwater table approximately 5.5 minutes after beginning of air injection, and air 

volume stored in the initially saturated zone increased sharply until around 8 minutes. 

After that sharp increase, the air volume increased very slowly, and gas flow through the 

porous medium in the initially saturated zone became stabilized over time. The time 

required for hydrostatic conditions to be reached is about two hours, and, after that time, 

the air saturation became almost a steady state. Under such conditions, the steady-state 

airflow can be treated as a single-phase flow [van Dijke et al., 1995].  

The gas saturation distributions at t = 8.2 min and 1.71 hrs are given in Figure 5.5 

(a) and (b), respectively. The air-saturation contours of two studies (the results of this 

study and the published data of van Dijke et al. [1995]) show better agreement at the 

more stabilized gas flow phase (t=1.71 hrs) in Figure 5.5 (b) as opposed to an initial stage 

(t=8.2 min) in Figure 5.5 (a). In Figure 5.5 (b), the results of the two studies show the 

different profiles of gas saturation of 0.04 and 0.08 at 01 ≤≤− z m (near the groundwater 

table). Except that difference, in Figure 5.5 (b), the difference between gas saturation 
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profiles of the two studies is greater in the vicinity of the injection points than at locations 

away for the points: i.e. the difference is greater at approximately 3−≤z m than at 

13 −≤≤− z m. That may be due to the difference in mesh discretization methods and 

coordinate systems used in this study and van Dijke et al.’s study [1995]. As discussed 

earlier, a Cartesian coordinate system is used in this study while a two-dimensional radial 

coordinate system is used in the study of van Dijke et al. [1995]. Rectangular prism 

elements in a Cartesian coordinate system used here might have difficulty in describing 

the vicinity of gas injection/extraction wells in circular-arc-shape column domains like 

the domain shown in Figure 5.4 unless highly dense grid meshes are used in the domain.  

Generally, in IAS, since air injection points are located much deeper than 

contaminated groundwater plumes, gas saturation distribution in the vicinity of the 

injection points may not have a significant impact on contaminant removal by IAS. On 

the contrary, gas saturation at mixing zones, in which injected air contacts with 

contaminated groundwater far above air injection points, will be more important than gas 

saturation near air injection points. The minimum distances between contaminant plumes 

and air injection points are discussed later.  

Overall, the results of this study show good agreement with the data published by 

van Dijke et al. [1995]. Based on the results of this study for IAS, we can expect that, in 

Cartesian coordinate systems, TechFlowMP model can be used to accurately simulate gas 

saturation distributions below the groundwater table under IAS. The accurate calculation 

of gas saturation profiles implies that TechFlowMP model is capable to simulate the 

multiphase flow (interactive movement of gas phase and groundwater) below the 

groundwater table under IAS operations. 
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van Dijke et al. [1995] ignored air-phase compressibility to simplify air sparging 

modeling: Air density was assumed to be constant. In IAS, air pressure at injection points 

should be greater than the hydrostatic pressure to release air into the saturated zone. In 

the results of this study under constant gas density, air injection pressure at an injection 

point of z=-4.5 m was approximately 4.8 mH2O, which is about 0.3 mH2O above the 

hydrostatic pressure at that point. That air injection pressure is equivalent to 0.46 

atmospheric pressure, which may cause approximately 30 % increase in gas density 

compared to air density at the ground surface. In IAS, air injection pressure depends on 

injection-point depths below the groundwater table and properties of soil media: Air 

injection pressure rises with the increase in injection-point depths. In air sparging at deep 

injection points, the variation in gas density could be an important factor to determine gas 

flow below the groundwater table, thus in all IAS simulations discussed in the following 

sections, the change in gas density due to gas pressure variations is considered. 
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Figure 5.5 Air saturation contour plots at (a) t=8.2 minutes and (b) t=1.71 hours for the 

results of this study (dashed lines) and numerical output done by van Dijke et 
al. [1995] (solid lines). A radius indicates the distance from z-axis to a data 
point on x-y plane.  
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5.3 Application of In-situ Air Sparging 

5.3.1 Modeling Domain and Parameters 

In this section, IAS is simulated in a three-dimensional unconfined aquifer to 

investigate multiphase flow (liquid and gas phases) and contaminant removal by IAS. As 

IAS is commonly combined with SVE, IAS systems in this study consist of injection and 

extraction wells. In this application two types of wells (Vertical and horizontal wells) are 

used. For vertical well systems, single and multiple wells are employed for 

injection/extraction units, and, for horizontal well systems, single well is used for 

injection and extraction. Thus, an IAS system has at least two wells (one injection well 

and one extraction well). In this application, to reduce the computational burden of IAS 

modeling in a three-dimensional domain, we have used two three-dimensional domains to 

represent the modeled region. For IAS with two wells, a smaller domain is used with 

dimensions of (40m × 20m × 15m) in (x,y,z) directions respectively. For IAS with six 

wells, a larger domain is used with dimensions of (40m × 30m × 15m) in (x,y,z) 

directions respectively. The large domain is shown in Figure 5.6, which includes vertical 

and horizontal wells for gas injection/extraction. The parameters of a soil medium, water, 

and gas as used in this application are given in Table 5.3.   

In IAS modeling, trichloroethylene (TCE) is a target contaminant, and a 

cometabolic process of TCE under aerobic conditions is considered as a biological 

reaction. To set up initial conditions for a contaminated zone, a contaminant transport 

simulation was conducted under the conditions that a TCE source is present at the 

groundwater table. Initial dissolved and vaporized TCE concentration profiles in the 
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domain are given in Figure 5.7, and these profiles are used through all simulations for 

IAS systems in this chapter. Initially TCE is present with gas, water, and soil solid phases 

in the unsaturated and saturated zones. The properties for TCE are already given in Table 

3.4. 

For flow equations of gas phase, all boundaries are assigned as no flow condition 

except that a constant atmospheric pressure is applied at the ground surface. For water 

flow equations, the boundaries of the saturated zone at the left- and right-hand side 

boundaries (on y-z planes at x=0 and 40 m) in Figure 5.6 are set to constant hydraulic 

head representing groundwater flow in increasing x-direction, and the other boundaries 

are set to no flow condition. For contaminant transport in gas phase, the ground surface is 

set to a stagnant boundary layer of 0.3 m thickness, and, for contaminant transport in 

water phase, the boundary of the saturated zone at the right-hand side boundary (on y-z 

plane and at x=40 m) is set to a free exit condition. The elevation of the groundwater 

table ranges from 9.65 m at the left-hand side boundary (x=0 m) to 9.5 m at the right-

hand side boundary (x=40 m). 

Under IAS operations, air injection derives dynamic movement of gas phase, and 

the velocity of gas phase relative to water phase is variable within the influence zone of 

IAS. Under such conditions, mass transfer characteristic of chemical species between gas 

and water phase may depend on the relative velocity between the two phases [Hecht et 

al., 1995; Jang and Aral, 2003]. Hecht et al. [1995] investigated volume-related mass 

transfer coefficients for TCE in a column experiment for cometabolic degradation of 

TCE. In the range of superficial gas velocities up to 0.04 m/s, the mean mass transfer 
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coefficient of TCE between water and gas phases is suggested as follows [Hecht et al., 

1995]: 

gasTCE qk 45.0=      (5.1)  

where gasq  denotes superficial gas velocities of gas phase (m/s) and corresponds to Darcy 

velocity of gas phase in a porous medium. 

In IAS model of this study, gas injection/extraction wells are located at the middle 

of y-direction (at y = 0 m) in the smaller and larger domains mentioned earlier, and, in the 

larger domain, additional injection/extraction wells are installed at the mirror locations 

across the x-z plane at y = 0 m. Since soil media in the domain are homogeneous and the 

locations and injection/extraction rates at wells are set to be symmetric across the x-z 

plane at y = 0 m, the smaller and larger domains including IAS systems with injection/ 

extraction wells will be symmetric across the x-z plane at y = 0 m. Thus, the half of each 

domain in y-direction (y≥ 0 m) is used in numerical simulations in this study. For all flow 

and transport equations, no flux symmetry boundary condition is assigned to the x-z plane 

at y = 0 m, which becomes a boundary because the half of total domains is used for IAS 

modeling.  

The numerical domain ranges x = 0-40 m, y = 0-10 (a small domain) or y = 0-15 

m (a large domain), and z = 0-15 m. The small domain grid consists of 35,112 nodes and 

31,590 elements, and the large domain grid 48,048 nodes and 43,875 elements. The two 

domains are discretized: in x-direction, ∆x = 1.0 m at x = 0-10 and 35-40 m, and ∆x = 0.5 

m at x = 10-35 m; in z-direction, ∆z = 1.0 m at z = 0-1 and 13-15 m, and ∆z = 0.5 m at z = 

1-13 m. In y-direction, for the small domain, ∆y = 0.5 m at y = 0-8 m, and ∆y = 1 m at y = 

8-10 m; for the large domain, ∆y = 0.5 m at y = 0-10 m, and ∆y = 1 m at y = 10-15 m.   
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All simulations for IAS operations were carried out up to 60 days with variable 

time steps ranging from 1 sec to 2 hrs. Mass balance calculations were done every time 

step to trace the removal efficiency of contaminants. Since the highest concentration 

zones are located on x-z plane at y = 0 m and x-y plane at z = 9 m, concentration contour 

plots of dissolved TCE are presented on these two planes herein. Concentration profiles 

of the contaminant on other planes in x-, y-, and z-directions are also checked but are not 

presented here. In this study, a target concentration of dissolved TCE is selected as 0.001 

g/L in cleaning up the contaminated groundwater by the IAS system. 

  



 179

 

Figure 5.6 Schematic of in situ air sparging 

 
Table 5.3 Properties of soil, water, and air 

Parameters Values 
Porous medium 

Permeability, kxx=kyy 
Permeability, kzz 
Porosity, φ 
Residual water saturation, sm 
Bulk density, ρb 
Temperature, T 
Longitudinal dispersivity, αL 
Transverse dispersivity, αT 
Soil organic content, foc 
Parameters for the unsaturated zone 
     n 
     αgw 

1.0×10-10 m2  
5.0×10-11 m2  
0.35  
0.01  
1600 kg/m3 
15 °C 
1.0 m 
0.1 m 
0.0005 
 
3 
2 m-1 

Water 
Water molecular weight, Mw 
Water density, ρw 
Water dynamic viscosity, µw 

18  
997.3 kg/m3 
1.0×10-3 Pa s 

Air 
Molecular weight, Mair 
Density, ρair  
Viscosity, µair 

28.75  
1.23 kg/m3  
1.8×10-5 Pa s 

z =9.65 m 

(0,-15,15) 

Groundwater 
table 

(40,15,0) 

x

y 
z 

(40,-15,0) (0,-15,0) 

(40,15,15) 

Unit of (x, y, z): m 

(40,15,9.5) 

Simulation domain 

Extraction wellsVertical injection well

Horizontal injection well

(0,0,0) 

Ground surface 

(0,15,0) 



 180

 
 
 

 
 
Figure 5.7 Initial concentration profiles of dissolved TCE (a, b, c, and d) and vaporized 

TCE (e). 
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5.3.2 Multiphase Flow and Contaminant Removal under IAS with One Vertical 

Injection Well 

Injection flow rates of IAS are highly variable and site-specific. In the literature 

[Marley et al., 1992; Johnson et al., 1993; Benner et al., 2000; Benner et al., 2002; Lee et 

al., 2002], the flow rates used ranges from 2 to 460 m3/hr. During pilot-scale IAS/SVE 

evaluations, several injection rates are usually tested to find out optimal values [Marley et 

al., 1992; Lee et al., 2002].  

In this study, for IAS systems with two vertical wells (one for injection and one 

for extraction), five scenarios with different flow rates have been simulated to investigate 

the effect of flow rates on flow of air and water phase and removal efficiency of TCE. 

Flow rates for each scenario are shown in Table 5.4. Typically, extraction rates in the 

unsaturated zone are larger than injection rates to capture all injected air. In these 

simulations, the extraction rates are selected as twice the injection rates. 

 

Table 5.4 Scenarios for IAS with one vertical injection well  

Flow rates (m3/hr) Case No. Injection Extraction Well screen location 

V-1 5 10 
V-2 10 20 
V-3 30 60 
V-4 50 100 
V-5 60 120 

Injection well: 
 x=25-25.5, y=0, z=2-3 m 

Extraction well: 
 x=25-25.5, y=0, z=11-12 m 

 

 

Injection rates are one of the important factors in determining the performance of 

IAS. These rates have influence on the following parameters: (i) gas saturation levels in 
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the saturated zone; (ii) the radius of influence (ROI) of injection well; (iii) flow of 

groundwater and gas; and, (iv) mass transfer of dissolved contaminants into gas phase.  

In Figure 5.8, the distributions of gas saturation in IAS at two different injection 

flow rates (10 m3/hr for Case V-2 and 60 m3/hr for Case V-5) are given. Based on these 

distributions, the cone of IAS influence, which implies a mixing zone where injected air 

contacts with the groundwater, can be estimated. Since contaminant removal in IAS 

primarily depends on mass transfer of contaminants from water phase to gas phase, the 

size of the mixing zone should be large enough to cover target contaminant plumes. The 

mixing zone can increase by (i) raising gas injection rates at a well; (ii) installing 

additional wells (multiple injection wells); and/or, (iii) using horizontal wells. The first 

option is discussed in this section, and the other two options are addressed in the 

following sections. In Figure 5.8, the increase in air injection rate at one well from 10 to 

60 m3/hr results in the expansion of IAS influence zone and the increase in gas saturation 

levels in the vicinity of sparging wells: For example, gas saturation levels around the 

sparging well increase from approximately 30 to more than 50 %. Considering the 

distribution of dissolved TCE in Figure 5.7, the expansion of IAS influence zone in 

Figure 5.8 implies the injection well can cover wider contaminant plumes. Nyer and 

Suthersan [1993] pointed out that maximum dimension of IAS cone could be obtained by 

injecting as little as 30 % of soil pore volume for finer sediments and 50 % for coarse 

sediments. The increase in gas saturation below the groundwater table has significant 

impacts on both multiphase flow (groundwater and gas flow) and contaminant removal 

by mass transfer from water phase to gas phase. Regarding a multiphase flow, gas 

saturation determines relative permeabilities of gas and water phase. The increase in gas 
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saturation in soil matrix implies the increase in relative permeability of gas phase and 

inversely the reduction in that of water phase. Regarding contaminant removal, the 

increase in gas saturation will raise the vaporization of dissolved contaminants since the 

increase in vaporized contaminants is linearly proportional to gas saturation as seen in 

Equation (3.24). Furthermore, as a mass transfer coefficient becomes larger due to the 

increase in the gas flow velocity, contaminant transfer between phases will be 

accelerated. On the contrary, the increase in gas saturation below the groundwater table 

can generate unfavorable situations on contaminant removal: Due to the increase in gas 

saturation, the velocity of groundwater flow will decrease, and thus contaminated 

groundwater plumes may have difficulty entering the mixing zones generated by IAS and 

some portion of the plumes may be diverted around the mixing zones (Figure 5.11). 

Gas flow patterns (the shape of IAS influence zone) highly depend on subsurface 

conditions such as heterogeneity of soil media. In the laboratory experiments for the 

visualization of air flow in air sparging, Ji et al. [1993] reported that air sparging into a 

experimental tank filled with uniform beads produced a roughly parabolic shape of air 

plume and the larger air injection into the tank contributed to the increase in the size of 

the air plume. In IAS modeling of this study, as soil media is homogeneous, the cone of 

IAS influence (or the distribution of gas saturation) is nearly axi-symmetric even though 

the cone is not exactly symmetric due to the groundwater flow in the increasing x-

direction. Ji et al. [1993] reported that air flow is very sensitive to heterogeneity of 

porous media: Heterogeneity in porous media results in highly distorted air flow patterns, 

far different from parabolic air plumes. Low-permeable layers (stratified media) can 

increase the lateral movement of injected air and may generate preferential flow channels 



 184

in high permeable areas [Ji et al., 1993; McCray and Falta, 1996]. Heterogeneity in soil 

media can reduce contact between injected air and contaminant plumes surrounded by 

low permeable media. If air injection pressure is high enough, horizontal low-permeable 

layers can be ruptured and penetrated by injected air [Ji et al., 1993]. The distribution of 

gas saturation is an outcome of complicated relationships of relevant parameters such as 

air injection rates and heterogeneous geological conditions of the subsurface systems. 

The gas saturation distribution will become an important factor to determine the remedial 

performance of IAS. In IAS application, minimum gas saturation levels required to 

successfully remediate contaminated groundwater can be estimated through field 

experiments and/or numerical modeling and may vary over locations at contaminated 

sites. Also, required gas saturation levels will be site-specific and depend on remediation 

goals (i.e., remedial concentrations of contaminants) at polluted sites. Based on 

information about required minimum gas saturation levels and contaminated groundwater 

plumes at target sites, air injection rates as a design parameter for IAS systems can be 

determined.     
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(a) Air injection rate Q = 10 m3/hr  
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(b) Air injection rate Q = 60 m3/hr 
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Figure 5.8 Air saturation under two air injection rates (Q = 10 and 60 m3/hr) at one 

vertical well. 
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As seen in Figure 5.8, as the increase in injection rates expands the size of IAS 

influence zone and raises gas saturation levels around the injection points, the injection-

rate increase will result in raising the volume of air displaced soil pore water below the 

groundwater table. In Figure 5.9 (a), temporal variations in gas volume stored in the 

sparging zones are presented for five different injection flow rates listed in Table 5.4. 

Regardless of air injection rates, the nearly-linear sharp increase in air volume stored in 

the sparging zones occurs for approximately 15 minutes after the start of injection, and 

then the air volume reaches a stabilized maximum values. The maximum air volume 

proportionally increases with air injection rates. The temporal variations of the air 

volume shown in Figure 5.9 (a) agree with the temporal air-volume change in the 

numerical results for air sparging reported by van Dijke et al. [1995]. The temporal 

variation of the air volume in the sparging zones can be used as a reference in monitoring 

the change in gas-water capillary pressure in the subsurface systems at contaminated. 

Based on that temporal variation, we may estimate an operation time to stabilize 

multiphase flow (gas and groundwater) in the subsurface during the operation of IAS. In 

Figure 5.9 (a), the temporal variations of the air volume suggest that air injection rates 

will have minor effects on the time required for gas flow stabilization in this study, but 

the gas-flow stabilization time may depend on the depth of injection points below the 

groundwater table and geological conditions such as intrinsic permeability and soil 

texture properties.  

Some air sparging simulation cases conducted by van Dijke et al. [1995] showed 

the fluctuation in the stored air volumes when injected air reaches the groundwater table 

and leaves the saturated zone. In this study, however, that fluctuation does not occur.  
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Radius of influence (ROI) can be defined as a maximum radius from an injection 

well to a location at which remedial effects due to injected air at the well are observed or 

as a radius from an injection well to a location at which the change in gas pressure in the 

subsurface due to air sparging is detected. In this study, since the main purpose of IAS 

application is the remediation of contaminated groundwater, ROI is used to indicate the 

maximum radius within which remedial processes happen due to injected air. ROI is one 

of the key factors in designing IAS systems. ROI can be used to determine air injection 

rates and a distance between injection wells. At contaminated sites, ROI can be estimated 

as an arbitrary gas saturation levels, gas pressures, or gas-species concentrations based on 

site conditions because remedial processes are contaminant-dependent and site-specific 

[McCray and Falta, 1996; Lee et al., 2002]. The most common method to estimate ROI is 

to use gas-phase saturation profiles. This method is accurate and is easily applicable since 

gas saturation can be calculated using water and gas pressures measured at contaminated 

sites [McCray and Falta, 1996]. 

ROI for the five cases listed in Table 5.4 is estimated in terms of four different 

levels of gas saturation and is presented in Figure 5.9 (b). ROI and injection rates are 

non-dimensionalized using two dimensionless variables (Dimensionless radius and 

gravity number for gas phase) introduced by van Dijke et al. [1995; 1998] in air sparging 

modeling. The dimensionless radius ( 'r ) is: 

cH
rr ='       (5.2) 

where r is a radius (a distance from an injection well to a certain location), and Hc is the 

depth of injection screen center as a characteristic length. The dimensionless gravity 
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number of gas phase (Ng), which implies the importance of gravity forces (or buoyancy 

forces) relative to viscous forces, is: 

( )AQ
gkN

gg

m
g /µ

ρ∆
=      (5.3) 

where km is an intrinsic permeability of soil porous media, gw ρρρ −=∆ , Qg is an air 

injection rate, and A is total surface areas of air injection screens. In this study, the lateral 

intrinsic permeability shown in Table 5.3 is used for km in Equation (5.3).     

Using the distributions of gas saturation on the x-y plane at z = 9 m below the 

groundwater table (for example, gas saturation profiles at the plane in Figure 5.8), the 

ROI shown in Figure 5.9 (b) is estimated as a maximum radius of each gas saturation 

level (0.1, 1, 5, and 10 %). ROI may have different values according to depth (z-values 

below the groundwater table) because the distributions of gas saturation on the x-z plane 

at y = 0 m show parabolic shapes. In this study, since air plumes are fully expanded at z = 

9 m (approximately 0.5 m below the groundwater table) as seen in Figure 5.8, the ROI at 

z = 9 m is selected a representative value for each injection well after gas flow is 

stabilized (after 2 hours for each simulation). In Figure 5.9 (b), at an injection rate Q=30 

m3/hr ( 31.0/1 =gN for Case V-3), ROI for gas saturation of 0.1 and 10 % is 

approximately 5.2 ( 74.0'=r ) and 3.6 m ( 51.0'=r ), respectively. When injection rates 

rises from 5 ( 05.0/1 =gN ) to 60 m3/hr ( 61.0/1 =gN ), ROI for gas saturation of 1 % 

increases from about 3.6 ( 51.0'=r ) to 5.3 m ( 75.0'=r ).   

As discussed earlier, the degree of gas saturation plays an important role in 

contaminant removal. Since contaminant concentrations in the groundwater vary over 

time and location, it is difficult to predict exact remedial performance of each gas 
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saturation level. The values of ROI at different saturation levels and inject rates shown in 

Figure 5.9 (b) can be used to predict approximate remediation zones and evaluate a 

remedial performance at each injection rate listed in Table 5.4.  
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(a) Air volume changes 
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Figure 5.9 Air volumes stored in air sparging zones and radius of influence at z = 9 m.  
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Gas flow patterns at two different injection rates are given in Figure 5.10. In IAS, 

injected gas constantly interacts with the groundwater as a multiphase flow while both 

fluids flow through porous soil media, and gas flow patterns are determined by the 

relationships of groundwater and gas pressures. In Figure 5.10, around the injection 

points, gas flow shows some lateral movement, but overall, its upward movement is 

dominant below the initial groundwater table. In the case of air injection rate of 60 m3/hr 

in Figure 5.10 (b), some downward velocity profiles are observed. After air is released at 

very high velocities from the injection points, as air plumes expand with its upward 

movement, air velocity reduces. In Figure 5.10, around injection points, maximum Darcy 

velocities of gas phase for Cases V-2 and V-5 are about 1.0 and 4.0 cm/s, respectively. 

The increase in air injection rates leads to raise gas saturation around the injection points 

as seen in Figure 5.8 and to increase gas flow velocities in the cone of IAS influence. In 

Figure 5.10, Darcy velocities of gas phase at a point of (x = 25, y = 0, z = 9 m) for Cases 

V-2 and V-5 are 0.15 and 0.54 cm/s, respectively, which imply that, according to 

Equation (5.1), the mass transfer coefficient of Case V-5 at that point is approximately 

3.5 times that of Case V-2. In Figure 5.10, gas velocities within the cone of IAS influence 

increase as a location approaches an injection well on y-z planes at z=25 m: For example, 

on the y-z plane at z = 25 m in Figure 5.10 (b), Darcy velocities of gas phase at y=0 and 4 

m are approximately 0.54 and 0.1 cm/s, respectively. In this study, these velocity profiles 

will be favorable in the application of IAS to clean up a contaminated site with the initial 

contaminant concentration profiles shown in Figure 5.7 because remedial loads 

(dissolved TCE concentrations) increase in the decreasing y-direction at y = 0-10 m. In 
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Figure 5.7 (d), the highest contaminant loads are located in the middle of the dissolved 

TCE plumes (at y = 0 m) in y-direction.    

As seen in Table 5.4, the extraction points are located at the same location on x-y 

planes with different elevations in z-direction. In Figure 5.10, extraction rates are twice 

injection rates to provide extraction capacities enough to capture all injected air. For both 

Cases V-2 and V-5, gas flows by vapor extraction in the unsaturated zone appear to cover 

ROI of injection wells.  
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(a) Darcy velocity of gas phase at air injection rate, 10 m3/hr 
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(b) Darcy velocity of gas phase at air injection rate, 60 m3/hr 
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Figure 5.10 Darcy velocity of gas phase at two air injection rates (10 and 60 m3/hr) for 

Case V-2 and V-5. Dashed lines indicate gas saturation level of 0.01.    
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Up to now, in published numerical works for air sparging [Panday et al., 1994; 

van Dijke et al., 1995; Lundegard and Andersen, 1996; McCray and Falta, 1996, 1997; 

van Dijke and van der Zee, 1998; Marulanda et al., 2000; Mei et al., 2002], gas flow in 

homogeneous or heterogeneous media has been well studied. However, the groundwater 

flow in IAS are not much considered even though the gas and groundwater flows are 

inter-linked and dissolved contaminants migrate along with the groundwater flow. The 

effect of air sparging on the groundwater flow has been discussed conceptually: As 

injected air replaces pore water in the saturated zone, the air will cause to reduce the 

groundwater flow and divert a portion of groundwater flow around the cone of IAS 

influence [Johnson et al., 1993; Nyer and Suthersan, 1993]. To investigate the effect of 

IAS on the groundwater flow, a study on a multiphase flow (gas and groundwater flows) 

in a three-dimensional domain should be conducted. Using TechFlowMP model developed 

in this study, the changes in flow path and velocity of the groundwater due to air sparging 

are investigated in the three-dimensional domain shown in Figure 5.6. In Figure 5.11, 

after injected air flow is stabilized, the groundwater flow patterns in the domain are 

given. In addition to velocity profiles of the groundwater in Figure 5.11, a gas saturation 

of 0.01 is included to indicate the cone of IAS influence.    

Regarding the groundwater flow, one of the most important things in IAS is the 

mixing between injected air and contaminated groundwater. In IAS, contaminated 

groundwater should enter into the cone of IAS influence to contact with injected air. If 

the cone of IAS influence (or ROI) is smaller than contaminant plumes or contaminated 

groundwater plumes diverts around the IAS influence zones, remedial actions by IAS 

may be not sufficient to meet a remediation goal. In Figure 5.11, the change in the 
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groundwater flow velocity within the zone of IAS influence depends on air injection 

rates. For Cases V-2 and V-5, the groundwater velocities show significant reduction 

within the cone of IAS influence compared to the background groundwater velocity near 

x=0 m: In Figure 5.11 (a), at three different elevations z=3, 5, and 9 m of the injection 

well location (x=25 and y=0 m), groundwater flow velocities for Case V-2 are 4.98×10-7, 

1.49×10-6, and 1.96×10-6 m/s, respectively, which corresponds to approximately 13, 38, 

and 50 % of the background groundwater velocity (3.9×10-6 m/s) far away from the 

injection well, respectively. In Figure 5.11 (b) for Case V-5, the groundwater velocities at 

those three elevations z=3, 5, and 9 m are 1.95×10-8, 5.09×10-7, and 8.84×10-7 m/s, 

respectively, which are equal to approximately 0.5, 13, and 23 % of the background 

groundwater flow, respectively. These reductions in the groundwater velocities within the 

IAS influence zone for Cases V-2 and V-5 are proportional to gas saturation levels.    

In Figure 5.11, as the groundwater flow velocity highly reduces in the vicinity of 

air injection points, some portion of the groundwater detours below the air injection 

points. This detour is more serious in Case V-5 than in Case V-2: i.e., the greater 

injection rate results in the larger diversion of the groundwater. The lateral detour of the 

groundwater flow also occurs on x-y plane at z=9 m in Figure 5.11. These lateral and 

vertical detours may result in accelerating the spreading of dissolved contaminants or 

uncontrolled movement of the contaminants [Nyer and Suthersan, 1993]. In addition, 

excessive air injection may reduce the efficiency of IAS systems by decreasing a mixing 

ratio that is a ratio of the treated groundwater volume to the injected air volume.  
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(a) Darcy velocity of groundwater at air injection rate, 10 m3/hr 
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(b) Darcy velocity of groundwater at air injection rate, 60 m3/hr 
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Figure 5.11 Darcy velocity of the groundwater at two air injection rates (10 and 60 m3/hr) 

for Case V-2 and V-5. Dashed lines indicate a gas saturation level of 0.01.  
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As seen in Figure 5.8 to 5.11, the distribution of gas saturation, ROI, and flow 

velocities of gas and water phases are linked with each other and these parameters are 

important factors to determine the remedial efficiency of IAS systems. At contaminated 

sites, optimum values of operational parameters such as injection rates may be selected 

based on remediation performance results of various field test and/or IAS simulations. In 

this study, for IAS systems with single injection well, the remedial performances of five 

cases listed in Table 5.4 are investigated in terms of contaminant concentration reduction 

(Figure 5.12) and overall contaminant mass reduction within the modeling domain 

(Figure 5.13). 

In Figure 5.12, temporal concentration profiles of dissolved TCE on the x-y plane 

at z=9 m and the x-z plane at y=0 m are given because these two planes contain the 

highest concentration profiles of dissolved TCE. Since the concentration of vaporized 

TCE in gas phase is very small (less than 0.001 g/L) through the domain, its 

concentration profiles are not presented in this chapter. However, total mass of vaporized 

TCE is considered in calculating the efficiency of IAS systems, discussed later.  

In this study, the remedial performance of each IAS simulation case will be 

discussed in terms of three main aspects: (i) ROI of an injection well for contaminated 

groundwater plumes; (ii) the contaminant-concentration reduction compared to a target 

value; and, (iii) the lateral or vertical detours of contaminated plumes around the cone of 

IAS influence occurs. 

In Figure 5.7 (d), initial dissolved TCE plumes with its concentration ≥  0.001 g/L 

are located within y = 0-4 m on x-y plane, which are inside the ROI of 1 % gas saturation 

for Case V-2 and V-5 in y-direction: In Figure 5.9, the ROI values for the two cases are 
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4.05 ( 57.0'=r ) and 5.3 m ( 75.0'=r ), respectively. The ROI values of 10 % gas 

saturation for Case V-2 and V-5 are 2.15 ( 3.0'=r ) and 4.25 m ( 6.0'=r ), respectively, 

which implies the latter ROI value for Case V-5 covers initial contaminant plumes on x-y 

plane in y-direction but the former ROI does not. In this study, dissolved TCE plume 

shown in Figure 5.7 will expand out laterally and vertically due to dispersion along with 

the groundwater flow, and its expansion may be accelerated due to the diverted 

groundwater flow around injection wells shown in Figure 5.11. The size of remedial 

zones (effective ROI) could be evaluated from spatial contaminant concentration profiles 

around injection wells over time. Contaminant concentrations in aqueous phase can be 

non-dimensionalized as follows: 

max,

'
w

w

C
CC =      (5.3) 

where 'C  is a dimensionless contaminant concentration, wC is a dissolved contaminant 

concentration (g/L), and max,wC is a maximum concentration (or solubility) of a 

contaminant as a characteristic concentration (g/L). In this study, the max,wC for TCE is 

1.33 g/L as shown in Table 3.4. The remedial target concentration of TCE (0.001 g/L) 

corresponds to a dimensionless concentration 00075.0'=C . Since dimensionless 

concentrations of TCE (or dissolved TCE concentrations) vary over time and location due 

to transport processes including advection, dispersion, and partitioning, the effective ROI 

(or 'r ) mentioned above are complicatedly coupled with gas flow and contaminant 

transport processes. The effective ROI (or 'r ) also changes over time. Therefore, it is 

difficult to define a specified relationship between 'C  and effective ROI (or 'r ). Instead, 

among temporal values of effective ROI during remedial periods, its minimum value can 
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be selected as a representative effective ROI of an injection well, which may be used in 

designing IAS systems.   

Temporal variations of concentration of dissolved TCE are given in Figure 5.12, 

in which dissolved TCE concentrations are illustrated as dimensional values (g/L). For 

both Cases V-2 and V-5, the concentration of dissolved TCE decreases over time due to 

the operation of IAS systems. In Figure 5.12 (A3), at 20 days for Case V-2, some 

dissolved TCE plumes with the concentration of 0.001 g/L ( 00075.0'=C ) on x-z plane at 

y=0 m pass through the zone of IAS influence shown in Figure 5.8 (a). In a zone (x=25 m 

and z=8-9.5 m on the x-z plane in Figure 5.12 (A3)) through which the TCE plumes pass, 

gas saturation levels for Case V-2 are between 10 and 20 % as shown in Figure 5.8 (a). In 

that zone, gas saturation levels for Case V-5 are between 30 and 40 % as shown in Figure 

5.8 (b), and gas saturation levels for Case V-3 are from 20 and 30 % (Figures for Case V-

3 are not presented here). In Cases V-3 (Q=30 m3/hr and 31.0/1 =gN ) and V-5 (Q=60 

m3/hr and 61.0/1 =gN ), the concentration reductions of dissolved TCE on x-z plane at 

y=0 m are higher than in Case V-2, and, in Cases V-3 and V-5, no dissolved TCE with 

the concentration of 0.001 g/L ( 00075.0'=C ) passes through the air sparging zone on the 

plane. These imply that, if single injection well is used in this study, gas saturation of 

more than 20 % should be provided in the zone (x=25 m and z=8-9.5 m on x-z plane at 

y=0 m), through which the highest-concentration TCE plumes pass, to clean up the 

contaminant plumes shown in Figure 5.6 (b) below the target concentration of 0.001 g/L 

( 00075.0'=C ) on x-z plane at y=0 m.    

Regarding the detour of contaminant plumes for Cases V-2 and V-5, dissolved 

TCE concentration plots at 5 days on x-y plane at z = 9 m are shown in Figure 5.12 (A1) 
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and (B1). At 5 days, the contaminant spreading in y-direction on x-y plane at z = 9 m is 

greater in Case v-5 than in Case V-2, which is also observed in Figure 5.12 (B2) and 

(B3). In IAS modeling with one vertical well of this study, the detour of contaminated 

groundwater plumes becomes larger as air injection rates increase: This may be due to the 

higher groundwater velocity reduction within IAS influence zones at the higher injection 

rate as shown in Figure 5.11.  

In Case V-2, due to the detour of the groundwater on x-y plane at z = 9 m, the 

concentration contour of 0.001 TCE g/L ( 00075.0'=C ) exceeds the ROI of 1 % gas 

saturation (4.05 m and 57.0'=r ) in y-direction at 5 days in Figure 5.12 (A1). At 20 and 

30 days in Figure 5.12 (A3) and (A4), respectively, some contaminant plumes migrate 

over the IAS influence zone.  

In Case V-5, the concentration contour of 0.001 TCE g/L ( 00075.0'=C ) exceeds 

the ROI of 1 % gas saturation (5.3 m and 75.0'=r ) in y-direction at 10 days in Figure 

5.12 (B2). In Figure 5.12 (B3) and (B4), some portion of dissolved TCE plumes on x-y 

plane at z=9 m bypasses the IAS influence zone. The detour of dissolved TCE plumes 

around the IAS influence zone on x-y plane at z=9 m occurred for all five cases listed in 

Table 5.4.  

In Figure 5.12 (B3), while contaminant plumes move around the injection well, 

some portion of the plumes are remediated to below 0.001 TCE g/L ( 00075.0'=C ) level 

within some high gas saturation zones near the injection well. The point M, which 

indicates the limit of those high gas saturation zones, is located at 4 m in y-direction 

( 57.0'=r ) and corresponds to approximately 10 % gas saturation limit shown in Figure 

5.8 (b). The 10 % gas saturation at point M implies that, if gas saturation of up to 10 % is 
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provided beyond point M in the increasing y-direction, the detoured contaminant plumes 

that have not completely remediated on x-y plane at z=9 m will be successfully treated 

below the target TCE concentration (0.001 g/L or 00075.0'=C ).  
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Figure 5.12 Dissolved TCE concentrations (g/L) at Cases V-2 and V-5  
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In Figure 5.12, the removal of dissolved TCE on x-z plane at y=0 m are successful 

if air injection rate is equal to or greater than that of Case V-3 (30 m3/hr). For the all five 

cases listed in Table 5.4, however, the removal of dissolved TCE on x-y plane at z=9 m 

fails to achieve the remedial target (0.001 TCE g/L). In order to overcome problems 

related with the detoured contaminant plumes, we may have questions like “is air 

injection rate not sufficient yet?” or “should other approaches such as multiple vertical 

wells or horizontal wells be implemented?” These questions can be answered by 

investigating overall contaminant mass removal for the all five cases.    

In Figure 5.13, the overall removal efficiency rises with the increase in air 

injection rates. The removal efficiencies of TCE in the domain for Cases V-1 (injection 

rate 5 m3/hr), V-2 (10 m3/hr), V-3 (30 m3/hr), V-4 (50 m3/hr), and V-5 (60 m3/hr) are 

about 70, 80, 89, 91, and 91.9 % at 60 days. The increases in air injection from 5 to 10 

m3/hr and from 10 to 30 m3/hr raise TCE removal efficiencies by 10 and 9 %, 

respectively. However, the increase in air injection from 30 to 60 m3/hr generates the 

increase of less than 3 % in TCE removal efficiency. These implies that, in this study, the 

continuous increase in air injection rates at one injection well shown in Table 5.4 may 

have a limit in raising TCE removal efficiency. That limit may be due to the failure of 

one-injection well systems in capturing and cleaning up the detoured contaminated 

groundwater plumes on x-y plane at z=9 m shown in Figure 5.12. Therefore, to remediate 

the detoured contaminated groundwater plumes on that plane, multiple vertical wells or 

horizontal wells should be used. In addition, in Figure 5.13, the overall removal 

efficiencies profiles indicates that more than air injection rate of 30 m3/hr does not have a 

significant effect in increasing the efficiency. Air injection rates more than 30 m3/hr will 
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be excessive for one vertical well in this study. Thus, for multiple vertical well systems 

discussed in the next section, air injection rates per well are limited up to 30 m3/hr.    
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Figure 5.13 Removal of TCE by IAS operations with one vertical injection well 
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5.3.3 TCE Removal by IAS Systems with Multiple Vertical Wells 

In Figure 5.12, IAS systems with one vertical injection well missed some portion 

of dissolved TCE plumes on x-y plane at z=9 m. Thus, multiple-injection-well systems 

will be one of the options to capture and clean up the missed contaminant plumes on the 

x-y plane. As listed in Table 5.5, two scenarios for IAS with three injection and three 

extraction wells are set. In the multiple-well systems, the second and third wells (Well 

No. 2 and 3) will support the first well (Well No. 1). The first well is located at the 

middle of TCE plume at y=0 m, and the second and third wells are located at y= +5 and -

5 m, respectively, to capture the contaminant plumes that are not covered by the first 

well. To facilitate the capture of the detoured plumes, the second and third wells are 

located 1 m upstream (x=24 m) the location of the first well (x=25 m). The distance 

between the first and second wells is about 5.1 m. Based on gas saturation distributions 

given in 5.8, the expected gas saturation levels in the middle of the first and second wells 

(on x-y plane at z=9) are approximately 13 and 24 % for Cases MV-1 and MV-2, 

respectively. 

 

Table 5.5 Scenarios for IAS systems with six vertical wells  

Flow rates (m3/hr) Case 
No. Injection Extraction

Screen locations  
of injection (Inj.)/extraction (Ext.) wells 

MV-1 10 15 

MV-2 30 45 

Inj.  well 1: x=25-25.5, y=0, z=2-3 m 
Ext. well 1: x=25-25.5, y=0, z=11-12 m 
Inj.  well 2 & 3: x=24-24.5, y=+5/-5, z=2-3 m 
Ext. well 2 & 3: x=24-24.5, y=+5/-5, z=11-12 
m 
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The distributions of gas saturation in multiple-injection-well systems are given in 

Figure 5.25 and are discussed later. In this section, our attention will be on contaminant 

removal for the detoured groundwater plumes on x-y plane at z=9 m. Concentration 

profiles of dissolved TCE over time for Cases MV-1 and MV-2 are presented in Figure 

5.13. In the both cases, dissolved TCE plumes on x-y plane at z=9 m are captured and 

remediated by IAS with multiple wells. Overall, in Figure 5.14, multiple-well IAS 

systems successfully clean up the contaminant plumes shown in Figure 5.7 below the 

target concentration of dissolved TCE 0.001 g/L (or 00075.0'=C ). In a comparison of 

concentration profiles of Cases MV-1 and MV-2 over time, the concentrations of 

dissolved TCE in the domain are lower in the latter case than in the former case. The 

advance (penetration) of contaminant plumes into the IAS influence zones in the 

groundwater flow direction is also greater in Case MV-1 than in Case MV-2. As 

expected, the larger injection rate contributes to the faster reduction in TCE 

concentration.  

Multiple-well systems (Cases MV-1 and MV-2) also enhance contaminant 

removal in high concentration zones. For example, in Figure 5.12 (A3) for Case V-2 at 20 

days, some portion of TCE plumes ( ≥wC 0.001 g/L or 00075.0'≥C ) pass through the 

IAS influence zone on x-z plane at y=0 m, however, this passage does not occur in Figure 

5.14 (A2) for Case MV-1. The synergetic effects of multiple injection wells on 

remediation will help to reduce the requirement of air injection rates at each well of IAS 

systems in this study. Those synergetic effects will vary with many parameters such as 

well interval, injection rate, well layout, groundwater flow, and heterogeneous soil 

properties.         
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Figure 5.14 Concentration profiles of dissolved TCE (g/L) at IAS with multiple injection 

wells: (A) Case MV-1 and (B) Case MV-2  
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Overall removal efficiency of TCE in Cases MV-1 and MV-2 is given in Figure 

5.14. In this study, IAS systems with multiple injection wells appear to be effective in 

cleaning up the contaminated groundwater in the modeling domain. The removal 

efficiencies of Cases MV-1 and MV-2 reach up to 96 and 97.2 % at 60 days, respectively. 

Even though total injection rate (30 m3/hr) of Case MV-1 is half the injection rate (60 

m3/hr) of Case V-5 (for one injection well), the removal efficiency of the former case (96 

%) is greater than that of the latter case (91.9 %). This implies that, under the 

contamination situations used here, well dispatched multiple sparging wells can be more 

effective than one sparging well in capturing a contaminant plume and cleaning up 

contaminated groundwater.  

As mentioned earlier, the remedial performance of multiple-well IAS systems 

depends on many parameters. Especially, when the velocity of the groundwater flow or 

the concentration of contaminants increase, remedial burdens imposed to each well will 

rise. In such cases, high flow rates or more injection wells may be required. The design 

and operation of IAS systems with multiple wells will be determined based on multiple 

factors such as hydrogeological conditions of contaminated sites, spatial distributions of 

contaminants, physicochemical properties of contaminants, and remedial goals. 
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Figure 5.15 Removal of TCE by IAS with multiple vertical injection wells: Case MV-1 

and MV-2 
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5.3.4 Multiphase Flow and Contaminant Removal by IAS Systems with One 

Horizontal Well   

In IAS systems, horizontal wells are selected because these are expected to 

produce uniform gas distribution in the saturated zone and yield good contact between 

injected air and a contaminant plume [Unger et al., 1995]. A horizontal well can be 

extended laterally to cover wide contaminant plumes. To examine the flow of gas and 

groundwater and the removal efficiency of TCE by IAS systems with one horizontal well, 

three scenarios are set as listed in Table 5.6. The horizontal injection/extraction wells are 

located along with y-direction from y = -5 to +5 m as seen in Figure 5.6, and, in the 

numerical modeling domain of this study, the horizontal wells are at y = 0 to 5 m. Air is 

assumed to be released uniformly through an injection well screen. 

 
Table 5.6 Scenarios for IAS with one horizontal well  

Flow rates (m3/hr) Case No. Injection Extraction Well screen location 

H-1 20 40 
H-2 60 120 
H-3 100 200 

Injection well: 
 x=25-25.5, y=-5-+5, z=2.5-3 m 

Extraction well: 
 x=25-25.5, y=-5-+5, z=11.5-12 m 

 

The profiles of stabilized gas saturation for Cases H-1 and H-2 are given in Figure 

5.16. On x-z plane (at y=0 m), the gas distribution profiles show parabolic shapes, and on 

x-y plane (at z=9 m) the gas distribution contours appear along with horizontal wells. In 

both Cases H-1 and H-2, gas saturation on y-z plane (at x=25 m) distributes more widely 

than that in the vertical-well air injection cases shown in Figure 5.8. That wide 

distributions in horizontal-well IAS will would be good to cover contaminant plumes 
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uniformly. On y-z plane (at x=25 m), gas saturation levels become higher as gas injection 

rates increase: Case H-1 shows gas saturation of around 10 % in the region containing the 

groundwater with high dissolved TCE concentration (y=0-5 m and z=5-9.5 m), and Case 

H-2 has that of around 20 % in the region. Since air injection through a horizontal well 

occurs over a wider screen area than that through a vertical well, gas saturation in the 

vicinity of air sparging points is lower at Case H-2 (Figure 5.16 (b)) than at Case V-5 

(Figure 5.8 (b)) at the same injection rate of 60 m3/hr. The lower gas saturation will help 

to reduce the diversion of the groundwater flow around air injection points. The 

comparison in gas saturation between Case V-5 (vertical injection) in Figure 5.5 (b) and 

Case H-2 (horizontal injection) in Figure 5.16 (b) demonstrates that, under a 

homogeneous soil conditions used here, the horizontal air injection can provide more 

uniform and wider mixing zone, in which injected air contacts with the groundwater, than 

the vertical air injection.  

Flow and Darcy velocity of gas phase and groundwater are shown in Figure 5.17. 

Darcy velocity of gas phase around the horizontal injection well for Case H-2 is much 

less than that around a vertical injection well for Case V-5 under the same injection rate 

of 60 m3/hr: For Case H-2, the maximum velocity is approximately 0.7 cm/s while for 

Case V-5 the velocity is about 4 cm/s. Within IAS influence zones, the reduction of 

groundwater velocity is also less in Case H-2 than in Case V-5. So, the movement of 

contaminant plumes will be faster in Case H-2 than in Case V-5 when the plumes pass 

through the middle of IAS influence zones. 
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(b) Case H-2 
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Figure 5.16 Air saturation under air injection through one horizontal well: Cases H-1 and 

H-2
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(a) Darcy velocity of gas phase  
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(b) Darcy velocity of groundwater  
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Figure 5.17 Darcy velocities of gas and groundwater at Case H-2. Dashed lines indicate a 

gas saturation level of 0.01.    
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In the application of IAS with a horizontal well, our attentions are on (i) whether 

the influence zone of a horizontal injection well covers all contaminant plumes and (ii) 

whether air injection rates are enough to clean up the plumes. 

For Cases H-1 and H-2, the variations in dissolved TCE concentration are given 

in Figure 5.18. The migration of contaminant plumes shown on x-y plane (at z=9 m) in 

Figure 5.18 demonstrate that the influence zones in the two cases cover all contaminated 

plumes: No contaminant plume detours the influence zones of horizontal IAS wells. In 

Case H-1, however, some contaminant plumes with dissolved TCE concentration of 

0.001 mg/L (or 00075.0'=C ) pass through the sparging zones at 20 and 30 days. At Case 

H-2, dissolved TCE plume is successfully removed to below its target concentration of 

0.001 g/L (or 00075.0'=C ) by IAS operation. In Figure 5.18 (A2) and (A3) for Case H-

1, the passage of some contaminant plumes through the air sparging zone occurs at 

relatively high concentration regions (dissolved TCE concentration ≥ 0.01 g/L or 

0075.0'=C ) among the whole plumes shown in Figure 5.7. This indicates that, in Case 

H-1, gas saturation of 10-20 % in the approximate main remedial-reaction zones of y=0-4 

m and z=6-9.5 m at x=25 m is not sufficient to clean up highly polluted groundwater 

plumes (approximately dissolved TCE concentration ≥ 0.01 g/L or 0075.0'=C ) passing 

the zones below the target concentration of 0.001 TCE g/L (or 00075.0'=C ). In Case H-

2, however, the contaminant loads passing the main reaction zones are successfully 

removed under gas saturation of 20-30 % in the zones. Nyer and Suthersan [1993] 

pointed out that very low air injection rates may not be sufficient for IAS to work. The 

evolution of contaminant concentration in Cases H-1 and H-2 shows that the ratio of 

contaminant loads to be remediated and injected gas volume is an important factor on the 
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removal of dissolved TCE. Contaminant loads may depend mostly on contaminant 

concentration and the groundwater flow.   

Overall removal efficiency of TCE by one-horizontal-injection-well systems is 

given in Figure 5.19. The efficiencies for Cases H-1, H-2, and H-3 are approximately 

93.9, 96.6, and 97 % at 60 days, respectively. The efficiency in Case H-2 is much higher 

than that obtained by air sparging through one vertical well (Case V-5), shown in Figure 

5.13. The efficiency of 96.6 % in Case H-2 (injection 60 m3/hr) is a little higher than that 

of 96.0 % in Case MV-1 (total injection 30 m3/hr for three wells). The efficiency of 97 % 

in Case H-3 (injection 100 m3/hr) is similar to the efficiency of 97.2 in Case MV-2 (total 

injection 90 m3/hr for three wells). In this study, the efficiency results of IAS systems 

with horizontal wells or multiple injection wells suggest that the IAS systems can be 

good options to remediate the contaminant plumes shown in Figure 5.7 below a target 

concentration of 0.001 g/L dissolved TCE (or 00075.0'=C ).  

The difference in the efficiency between Case H-1 and H-2 is greater than that 

between Cases H-2 and H-3. The increase in injection flow rates from 60 to 100 m3/hr 

contributes to only 0.4 % increase in the removal efficiency. If a target concentration of 

dissolved TCE using IAS systems is 0.001 mg/L (or 00075.0'=C ), the flow rate of 100 

m3/hr would be excessive air injection in this study.  
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Figure 5.18 Concentration profiles of dissolved TCE (g/L) for (A) Case H-1 and (B) Case 

H-2. 
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Figure 5.19 Removal of TCE by air sparging through one horizontal well 
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5.3.5 Effect of Depth of a Vertical Sparging Well on Contaminant Removal by IAS 

A depth of air injection depends on the contaminant distribution in groundwater 

systems. Nyer and Suthersan [1993] suggested that a depth of injection should be at least 

1 or 2 feet deeper than the deepest known point of contamination. In the industry, a 

recommended depth of air injection is less than 30 (9.1 m) to 40 feet (12.2 m). At depths 

greater than 40 feet, nested injection points are recommended [Nyer and Suthersan, 

1993]. As a depth of air injection becomes deeper, ROI may increase, but also the 

potential for channeling due to the presence of higher permeability becomes larger. In 

field applications, air sparging at deeper depth requires safety considerations due to the 

high air pressures involved.  

As seen in initial concentration profiles of dissolved TCE in Figure 5.7, the 

deepest point of dissolved TCE is about z=6 m (approximately 3.5m below the 

groundwater table). In this section, in order to investigate the effect of air injection depth 

on contaminant removal and the detour of contaminated plumes around the sparging 

points, three cases with different depths of air injection are considered as listed in Table 

5.7. For simulations for the three cases, an IAS system with one vertical injection well is 

used at the same injection rate, 20 m3/hr.  

In the three cases shown in Table 5.7, the increase in well screen elevation (or the 

decrease in the depth of injection points below the water table) results in the reduction in 

ROI of an injection well. As the distance between injection points and contaminant 

plumes reduces due to the reduction in the depth of injection points, some contaminant 

plumes may be exposed to a fast gas flow in the vicinity of injection points, so mass 

transfer between water and gas phases may enhanced. Due to the reduction in the depth 
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of injection points, however, the detour of contaminant plumes can be accelerated by the 

diversion of the groundwater flow around the injection points. The profiles of gas and 

groundwater flow velocity at injection rate 10 m3/hr are already shown in Figures 5.10 (a) 

and 5.11 (a), respectively.  

 

Table 5.7 Scenarios for air sparging at different depths 

Case No. 
Well screen 

elevation 
(Injection well) 

Well screen location Flow rates 
(m3/hr) 

SE-1 z=2-3 m 
(*Depth bgw: 7 m) 

SE-2 z=3-4 m 
(*Depth bgw: 6 m) 

SE-3 z=4-5 m 
(*Depth bgw: 5 m) 

Injection well: 
x=25-25.5, y=0 
Extraction well: 

x=25-25.5, y=0, z=11-12 m 

Injection: 10  
Extraction: 20 

*Depth bgw denotes an approximate depth of the center of well screen below the groundwater table 
 

 

In Figure 5.20, concentration profiles of dissolved TCE are shown for Cases SE-

1, SE-2, and SE-3 at 20 and 30 days. The development of dissolved TCE plume on x-z 

plane at y=0 m is greater at Cases SE-2 and SE-3 than at Case SE-1. Especially, for Cases 

SE-2 and SE-3, the spreading of contaminant plumes on x-z plane at y=0 m is distinct in 

Figure 5.20 (b) and (c). That spreading is mostly due to the downward movement of the 

groundwater flow around a sparging well shown in Figure 5.11. In Figure 5.20, as a depth 

of air injection becomes shallow, the remediation performance of IAS systems becomes 

worse: dissolved TCE plumes passing through the air sparging zones on x-z plane at y=0 

m become bigger. The ROI of an injection well for 1% gas saturation in Cases SE-1, SE-

2, and SE-3 is 4.05, 3.9, and 3.65 m, respectively. In the three cases, as the ROI of an 

injection well reduces, the detour of contaminated groundwater plumes on x-y plane at 
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z=9 m increases. Among the three cases, Case SE-3 (the shallowest depth of air sparging) 

shows the highest concentration profiles on the x-y plane at z=9 m. 

Overall removal efficiency of TCE for the three cases is given in Figure 5.21. The 

efficiencies for Case SE-1, SE-2, and SE-3 are approximately 80, 76, and 71 % at 60 

days, respectively. The results of the three cases indicate that, in the contaminated site 

conditions used here, the elevation of air injection should be at least less than z=3 m: This 

elevation is 3 m deeper than the deepest point of initial dissolved TCE contamination.  

Regardless contaminant removal efficiency of the three cases, a major problem in 

Case SE-2 and SE-3 will be the downward spreading of dissolved TCE, which should be 

avoided in the application of IAS. In determining a depth of air injection, the downward 

detour (diversion) of the groundwater flow around air sparging points should be 

considered. In this study, under specified conditions used here, air sparging points of z=2-

3 m seem to be good for IAS systems used. The degree of groundwater diversion may 

vary over contaminated sites and will be influenced by various parameters such as 

geological properties, gas saturation levels, and air injection rates. Thus, the depth of air 

sparging points can be selected through site investigations and experiments and/or 

modeling for target sites. 
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Figure 5.20 TCE concentration profiles (g/L) for Cases SE-1 (Screen elevation z= 2-3 m), 

SE-2 (Screen elevation z= 3-4 m), and SE-3 (Screen elevation z= 4-5 m) 
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Figure 5.21 Removal efficiency of TCE for Cases SE-1, SE-2, and SE-3  
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5.3.6 Comparison of Continuous and Pulse Air Injection   

Pulse air injection was proposed to improve the performance of air sparging 

systems by increasing the contact between contaminated groundwater and injected air 

and the mixing between treated and untreated groundwater within the cone of IAS 

influence [Rutherford and Johnson, 1996; Heron et al., 2002]. Based laboratory 

experimental results for the removal of tetrachloroethylene, Heron et al. [2002] reported 

that pulse air sparging produces five to eight times higher contaminant removal for each 

energy units applied than continuous air sparging. Pulsing periods of 8 to 24 hours is 

recommended for field applications. Nyer and Suthersan [1993] suggested that pulse air 

injection can be used to overcome the diversion of groundwater flow around the cone of 

IAS influence. When an IAS system is off, contaminated groundwater can move into the 

zone of IAS influence without the reduction in the groundwater flow velocity due to air 

sparging. When the system is on, the contaminants within the zone can be removed.  

To examine the effect of pulse air injection on TCE removal, two pulse air 

sparging cases listed in Table 5.8 are considered, and the results of the pulse air injection 

cases are compared with those of the continuous air injection cases (H-1 and H-2) which 

are shown in section 5.3.4. 

 
Table 5.8 Scenarios for pulse IAS systems  

Flow rates (m3/hr) Case No. Pulse cycle Injection Extraction Well screen location 

P-1 12 hrs 20 40 
P-2 12 hrs 60 120 
H-1 20 40 
H-2 

Continuous 
injection 60 120 

 Horizontal injection well: 
 x=25-25.5, y=0-5, z=2.5-3 m 
Horizontal extraction well: 

 x=25-25.5, y=0-5, z=11.5-12 
m 
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In this study, the pulse injection cases listed in Table 5.8 will produce two 

different situations from the continuous injection cases: (i) the contact time between the 

groundwater and injected gas will reduce to approximately half (12 hrs per day); and, (ii) 

contaminant migration in the zone of IAS influence will be accelerated while IAS is off. 

Darcy velocities of the groundwater flow at a location (x=25, y=0, z=9 m) are 2.07×10-6 

and 1.48×10-6 m/s for Cases H-1 (or P-1), and H-2 (or P-2), respectively while the 

background velocity (or under no air injection) is 3.9×10-6 m/s. So, at that location, 

contaminant migration under no air sparging will be more than twice that under air 

sparging of Case P-2. Therefore, pulse air-injection methods will increase contaminant 

loads that should be removed while air sparging is on.   

Since upward velocities of gas phase in z-direction for Cases H-1 and H-2 vary 

over location within the zone of IAS influence when IAS is on, the residence time of 

injected air highly depends on its rising pathway from an injection point to the 

unsaturated zone. The shortest distance of gas trajectory in the saturated zone may equal 

to the depth of an injection point below the groundwater table. In fact, the traveling 

distance of gas phase will be always greater than the injection-point depth due to the 

tortuosity of porous media. In a modeling domain, an averaged residence time can be 

calculated by dividing air volumes stored in the air sparging zone by injection rates. In 

this study, the overall averaged residence times for Cases H-1 and H-2 are approximately 

13 and 20 minutes when IAS is on. The residence times of injected air decrease with the 

increase in air injection rates in this study. The longer residence time of gas phase in the 

saturated zone will provide more contact time for mass transfer of contaminants between 

gas and liquid phases. However, the reduction in rising velocity of gas phase (the longer 
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residence time of gas phase in the saturated zone) decreases the magnitude of a mass 

transfer coefficient as shown in Equation (5.1).  

The removal efficiency of TCE for Cases P-1 and P-2 is compared with that for 

continuous air sparging Cases H-1 and H-2 in Figure 5.22. According to injection flow 

rates (20 or 60 m3/hr), pulse IAS shows different responses in TCE removal efficiency. 

At 20m3/hr (the smaller injection rate), Case P-1 (Pulse IAS) shows much lower 

efficiency than Case H-1 (Continuous IAS) throughout the simulation period: At 60 days, 

the total removal of TCE for Cases P-1 and H-1 is 86.7 and 93.9 %, respectively. In 

Figure 5.18, Case H-1 failed in removing high-concentration TCE plumes passing 

through the zone of IAS influence, so we stated air injection 20 m3/hr (in Case H-1) is not 

sufficient for IAS to work. Under those situations (air injection 20 m3/hr), the application 

of pulse operation results in the increase in contaminant loads per injected air volume, 

and thus TCE contaminant removal efficiency in pulse air sparging of Case P-1 becomes 

worse as shown in Figure 5.22.  

At 60m3/hr (the larger injection rate), continuous IAS (Case H-2) was successful 

to meet our remediation goal (dissolved TCE < 0.001 g/L or 00075.0'<C ) as shown in 

Figure 5.18. At that flow rate, pulse IAS (Case P-2) is also effective in contaminant 

removal (Figure 5.22): At 60 days, the removal efficiency of Case P-2 and H-2 is 98.2 

and 96.6 %, respectively. In a comparison of temporal contaminant removal for Cases H-

2 and P-2, the superiority of each case on TCE removal depends on time: Until around 30 

days, the overall removal of TCE is greater at continuous IAS (Case H-2) than at pulse 

IAS (Case P-2) even though the difference in TCE removal between the two cases 

diminishes over time. During that period, the difference between the two cases is less 
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than 10 %, and approximately 90 % of TCE is removed. That difference may be due to a 

time lag for pulse IAS not to work while it is off: In this IAS modeling, continuous IAS is 

operated 24 hrs a day, but pulse IAS 12 hrs a day. In Figure 5.18, as dissolved TCE mass 

in the domain decreases with time due to IAS operation, contaminant loads per injected 

air volume reduce with time. Until around 30 days, the temporal reduction in contaminant 

loads helps to diminish the difference in TCE removal between Cases H-2 and P-2. After 

30 days, the overall removal in pulse IAS (Case P-2) becomes greater than that in 

continuous IAS (Case H-2): At 60 days, the difference in the overall removal is 

approximately 1.5 %. This enhancement in contaminant removal of Case P-2 over that of 

Case H-2 may result from contaminant migration under no air injection: While pulse IAS 

is off, more untreated contaminant plumes enter into the IAS influence zone (that 

generated under air injection) and then will be removed by pulse IAS operations.  

In Cases P-2 and H-2, remediation rates over time (or remediation times) do not 

show significant differences because the migration of TCE to be removed within the zone 

of IAS influence mostly depends on the background groundwater flow even though the 

groundwater flow velocities vary within the influence zone.  

For both Cases P-2 and H-2, air injection rate is sufficient for IAS to remediate 

contaminated groundwater plumes: The 12-hour-interval pulse IAS of injection 60 m3/hr 

corresponds to continuous air injection rate of 30 m3/hr, which is half the injection rate of 

Case H-2. The difference between Cases P-2 and H-2 is at total volume of injected air (or 

total air injection time), which may related with the operational cost of IAS systems. The 

simulation cases listed in Table 5.8 is too limited to decide the superiority of continuous 

or pulse operations on remedial performance. Remedial performance and applicability of 
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these operations will depend on site conditions. Under specified conditions for this IAS 

study including groundwater flow and contaminant plumes shown in Figure 5.6 and 

Figure 5.7, respectively, Case P-2 may be selected as a better option over Case H-2 in 

saving the operation cost of IAS systems.  

A pulse period of IAS (Periodicity of pulse air sparging) will be a factor to 

determine temporal remedial performance of IAS application because pulse periodicity 

may change temporal/spatial contaminant loads for injected air. As mentioned earlier in 

this section, pulse periods of IAS implemented at contaminated sites varied according to 

site conditions. In this study, one operation interval (12 hrs) is considered as shown in 

Table 5.8. Shorter intervals of pulse IAS (for example, 4- or 6-hour intervals) may help to 

equalize contaminant loads per injected air volume and may change a final contaminant 

removal efficiency. At contaminated sites, based on overall remedial performance results 

at different periodicity of pulse IAS through laboratory/field experiments and/or 

numerical simulations, optimal intervals of pulse IAS will be determined. 
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Figure 5.22 A comparison of removal efficiency of TCE by continuous or pulse air 

injection. 
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5.3.7 Biological Transformation of TCE under IAS Systems 

Biological degradation of contaminants is one of main mechanisms for IAS 

operation. Kinetics of biological processes can be of major practical importance for IAS 

application when biological transformations of contaminants are very active processes at 

contaminated sites.  

TCE can be microbially degraded under anaerobic conditions by dechlorination 

processes discussed in Chapter IV and under aerobic conditions by cometabolic 

transformation reactions. In IAS, since injected air generates aerobic conditions within 

the zone of IAS influence where remedial processes occur, only cometabolic reactions 

are considered in IAS modeling of this study. Cometabolic transformations are catalyzed 

by microbial enzymes and yield no carbon or energy used by the microorganism 

[Horvath, 1972]. Methanotrophs are the most widely studied bacteria for TCE 

cometabolism, and the kinetics of the cometabolism has been extensively investigated by 

many researchers [Alvarez-Cohen and Speitel, 2001].  

Among kinetic coefficients for metanotrophic cometabolism of TCE summarized 

by Alvarez-Cohen and Speitel [2001], as shown in Table 5.9, two cases (low and high 

bioreaction coefficients) are selected to examine the effect of TCE cometabolism on TCE 

removal efficiency by IAS systems. Since TCE cometabolism occurs under aerobic 

conditions, the cometabolism is considered in the region containing gas saturation of 

greater than 0.001 % in the domain. Cometabolic processes may depend on many 

parameters such as microorganism population and diversity, concentration of 

contaminants and nutrients, and temperature. In this study, however, reaction rates of 

TCE cometabolism depend only on contaminant concentrations under uniform biomass 
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population in the domain and are expressed by Michaelis-Menten kinetics. As reference 

cases (or no bioreaction cases), Cases H-1 and H-2, which are already discussed in 

section 5.3.4, are used here in Table 5.9.  

 
 

Table 5.9 Scenarios for biological transformations of TCE under IAS systems  

Michaelis-Menten 
kinetics a) Flow rates (m3/hr) 

Case No. kB 
b)

 
(mg/L d) 

Ks 
(mg/L) Injection Extraction 

Well screen location 

B-1 0.0012 4.7 20 40 
B-2 0.275 19 20 40 
B-3 0.0012 4.7 60 120 
B-4 0.275 19 60 120 
H-1 20 40 
H-2 

No bioreaction 
60 120 

 Horizontal injection well: 
 x=25-25.5, y=0-5, z=2.5-3 

m 
Horizontal extraction well: 
 x=25-25.5, y=0-5, z=11.5-

12 m 

a) Michaelis-Menten kinetic coefficients from Alvarez-Cohen and Speitel [2001] 
b) kB is calculated with a biomass concentration of 5 µg/L. 
 

 

In Figure 5.23, temporal variations of TCE concentration in IAS (air injection 20 

m3/hr) considering TCE cometabolic processes are given. The comparison of 

concentration profiles of Case H-1 (no bioreaction) in Figure 5.18 and Case B-1 (low 

bioreactivity) in Figure 5.23 shows that biological transformations of TCE in Case B-1 

help to reduce the contaminant plume development (TCE concentrations), but the 

reduction in TCE concentration distributions is minor. For Case B-2 in Figure 5.23, the 

cometabolic processes of TCE have significant effects on the reduction in dissolved TCE 

concentration. Temporal reduction in TCE concentration for Case B-2 (Q=20 m3/hr with 

high bioreactivity) is much greater than that for Case H-2 (Q=60 m3/hr with no 
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bioreaction). Stimulating biological processes may contribute to the increase in the 

remedial capability without causing the spreading of contaminants in the domain. In 

Cases H-1 and H-2, the increase in air injection flow rate from 20 to 60 m3/hr helps to 

raise the capability of IAS in treating contaminant loads. In Figure 5.18, the raised 

capability is sufficient to block the downstream migration of contaminant plumes but is 

not effective to reduce the lateral spreading of TCE on x-y plane at z=9 m: In Figure 5.18 

(A2) and (B2), the spreading of contaminant plumes in y-direction on x-y plane at z=9 m 

is similar in both Cases H-1 and H-2. In the both cases, contaminant plumes reach up to 

about 6 m in y-direction in Figure 5.18 (A2) and (B2). In Figure 5.23, however, high-rate 

biotransformation of TCE in Case B-2 has significant effects on the reduction in the 

lateral and vertical spreading of contaminant plumes.     
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Figure 5.23 TCE concentration profiles in IAS considering TCE cometabolism at air 

injection rate Q=20 m3/hr: Bioreaction Case 1 (B-1) and Case 2 (B-2). 
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In Figure 5.24, the overall TCE removal efficiencies for six cases listed in Table 

5.9 are compared. At the air injection rate 20 m3/hr, the overall efficiencies for Cases H-

1, B-1, and B-2 are 93.9, 94.8 and 99.8 %, respectively. Temporal TCE mass reduction 

profiles for Cases H-1, B-1, and B-2 demonstrate high variability in bioreaction 

capabilities: At 30 days in Figure 5.24 (a), the contributions of TCE cometabolism on its 

removal are less than 1% for Case B-1, however, for Case B-2 these reach up to 15 %, 

which is greater than the contributions of approximately 5 % due to air injection increase 

from 20 (Case H-1) to 60 m3/hr (Case H-2) at 30 days. At the injection rate of 60 m3/hr in 

Figure 5.24 (b), the effect of biodegradation on TCE removal is significant in Case B-4. 

The results of Case B-2 and B-4 show that high-rate biological processes could save a 

remediation time. The simulations conducted in this section show the potential capability 

of biological processes in IAS under simplified condition used here.  

In IAS applications at contaminated sites, the evaluation of the bioreactivity of 

contaminants including cometabolic processes could be accomplished through detailed 

field investigations and tests.   
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(a) Air injection flow rate, 20 m3/hr 
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(b) Air injection flow rate, 60 m3/hr 
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Figure 5.24 Bioreaction effects on TCE removal   

 
 



 235

5.3.8 Distance between Wells at Multiple Vertical Well Systems 

In section 5.3.3, IAS systems with multiple vertical wells have been effective to 

clean up the groundwater contaminated with TCE. In designing IAS systems, the distance 

between injection wells is of importance in determining the removal efficiency of 

contaminants and the cost of IAS systems. The distance between the wells plays a key 

role in determining the overlapping degree of ROI of two injection wells, the distribution 

of gas saturation at locations between the two wells, and contaminant removal capacity of 

IAS depends on the gas-saturation distribution. Optimized distance between injection 

wells will make the performance of an IAS system to meet remediation criteria at 

contaminated sites, and will also allow us to save the cost of the IAS system. In this 

section, the effect of a distance between injection wells on TCE removal is investigated 

to find out a maximum allowable distance in cleaning up the contaminated groundwater 

below a target concentration of dissolved TCE, 0.001 g/L, in this study. Three scenarios 

are considered as listed in Table 5.10: The distances of the three cases are chosen based 

on ROI results shown in Figure 5.9 and TCE concentration profiles in Case MV-2 (the 

distance of 5.1 m between injection wells). From ROI results at injection rate 30 m3/hr 

shown in Figure 5.9, we can expect that the ROI of two injection wells (No. 1 and 2) for 

Case W-2 (well-to-well distance = 7.1 m) will be overlapped at approximately 10 % gas 

saturation (ROI at 10 % gas saturation=3.6 m); For Case W-3, the ROI of each injection 

well (No. 1 and 2) at Case W-3 (well-to-well distance = 8.1 m) will be overlapped at 

about 5 % gas saturation (ROI at 5 % gas saturation=4.15 m). For all cases, air is injected 

continuously, and biological transformations of TCE are not included here.  
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IAS with multiple injection wells is used to increase the contaminant removal 

efficiency by remediating the detoured contaminant plumes shown in Figure 5.12 and to 

reduce air injection rates at each well. The study in this section focuses on gas-saturation 

distribution and contaminant removal. 

 

Table 5.10 Scenarios for IAS systems with multiple wells  

Well No. 2 
(Screen location) Case 

No. 
Distance* 

(m) x (m) y (m) z (m) 

Well No. 1 
(Screen location) 

W-1 6.1 24-24.5 6 

W-2 7.1 24-24.5 7 

W-3 8.1 24-24.5 8 

Injection 
well: 
z=2-3 

Extraction 
well: 

z=11-12 
 

Injection well: 
 x=25-25.5, y=0, z=2-3 m 

Extraction well: 
 x=25-25.5, y=0, z=11-12 m 

 
Injection rate: 30 m3/hr 

Extraction rate: 30 m3/hr 
*Distance indicates the distance between the centers of injection well No. 1 and No. 2. 

 

 

In Figure 5.25, the distribution of gas saturation is given for Cases W-1, W-2, and 

W-3. The overlap of influence zones of two injection wells (Injection well No. 1 and No. 

2) happens in the middle of the distance between the wells. As the distance between the 

wells increases, the overlap of gas saturation becomes less. The degree of gas saturation 

is an indicator of contaminant remedial capacity at locations. Since contaminant loads 

(i.e., contaminant concentrations) vary over location and time, in the application of IAS, 

it is hard to determine the degree of gas saturation, which is sufficient to treat 

contaminant loads every point in the domain through whole remediation periods. By 

analyzing the development of contaminant plumes over time in the domain, we can 

determine whether gas saturation under a specified IAS conditions is enough or not.  
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For Case W-1, the gas saturation overlaps of two injection wells on x-y plane at 

z= 9 m are given in Figure 5.25 (A1); the cross-sectional gas saturation profiles between 

two wells on y-z plane x=24.5 m are presented in Figure 5.25 (A3); and, gas saturation 

profiles of injection well No. 1 are shown in Figure 5.25 (A2). The gas saturation profiles 

shown in Figure 5.25 (A3), (B3), and (C3) are useful to identify the variation of gas 

saturation over depth at the overlapped regions.  

In the gas saturation distributions shown in Figure 5.25, the overlapped regions 

vary for the three cases in Table 5.10. The overlapped regions are located at 

approximately y=1.3-5, 2.3-5, 3.3-5 m for Cases W-1, W-2, and W-3, respectively on y-z 

plane x=24.5 m. Those overlapped regions draw our attentions since the regions are the 

pathway of the detoured contaminant plumes as shown in Figure 5.12. As the distances 

between injection wells increase, gas saturation levels in the overlapped regions decrease 

and the sizes of the overlapped regions become smaller. In Figure 5.25 (A1), (B1), and 

(C1), the gas saturation levels in the middle of the distance between two wells are at 

approximately 10-20, 10-15, and 5-10 % for Cases W-1, W-2, and W-3, respectively on 

x-y plane z=9 m. In Figure 5.25 (A3), (B3), and (C3), the vertical profiles of overlapped 

gas saturation at z=6-9.5 m in the middle of the distance between two wells are at 

approximately 10-20, 1-15, and 0.1-8.5 % for Cases W-1, W-2, and W-3, respectively on 

y-z plane x=24.5 m. 

The effectiveness of the three cases (Cases W-1, W-2, and W-3) can be evaluated 

based on the removal and spreading of TCE. Concentration profiles of dissolved TCE for 

Case W-2 and W-3 are compared in Figure 5.26. The both cases are successful to reduce 

dissolved TCE below its concentration of 0.001 g/L on x-z plane at y=0 m. At x-y plane 
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at z=9 m, Case W-2 is successful to achieve the target TCE concentration, but Case W-3 

fails: In Figure 5.26 (B4) and (B6) for Case W-3, some portion of the contaminated 

groundwater penetrates the gas saturation zones overlapped by two injection wells and 

leaves the zones downstream as the incompletely-treated groundwater. This indicates that 

the degree of gas saturation in the overlapped zone of Case W-3 is not sufficient for IAS 

systems to remove dissolved TCE below its target concentration (0.001 g/L). In Figure 

5.25 (B1) for Case W-2, the gas saturation at the center of the overlapped region on x-y 

plane at z=9 m is approximately 15 %, and in Figure 5.25 (C1) for Case W-3, the gas 

saturation at the center point is less than 10 %. In this study, if multiple injection vertical 

wells are used under the flow rate and layout conditions given in Table 5.10, the 

maximum allowable distance between injection wells is approximately 7 m to achieve the 

specified remediation goal (dissolved TCE < 0.001 g/L).    

In deciding the distance between injection wells, we may use gas saturation 

distributions and ROI profiles of each injection well, shown in Figures 5.8 and 5.9 (b), 

respectively: ROI profiles at different gas saturation levels will be useful to predict 

effective ROI at different contaminant concentrations. Gas saturation distributions within 

the zone of IAS influence can be used to estimate an approximate remedial capacity of 

each injection well. A multi-injection-well IAS system is a combination of single-

injection-well IAS systems. Gas distribution data around single injection well will allow 

us to estimate the distributions of gas saturation at the overlapped regions between 

injection wells in multi-injection-well IAS systems. The gas saturation distributions at the 

overlapped regions will vary with distances between injection wells, injection rates, 

injection depths, and geological conditions in subsurface systems. Usually, as 



 239

contaminant concentrations are different over locations, the required gas saturation levels 

will change over location in successfully completing a target remediation goal. 

Furthermore, under heterogeneous subsurface environments at contaminated sites, the 

prediction of gas saturation distribution between wells would be much more difficult. The 

simulation results (gas saturation distributions and contaminant plume developments) of 

the three cases given in Figures 5.25 and 5.26 may be used to enhance our understandings 

on multiple-injection-well IAS systems and to demonstrate the diversion problems of 

contaminant plumes in the systems.  

The temporal variations in overall removal efficiencies of the three cases are 

presented in Figure 5.27. These efficiencies do not show significant difference: At 60 

days, these are 96.9, 95.1, and 92.9 % for Case W-1, W-2, and W-3, respectively. The 

difference in contaminant removal efficiency between Cases W-2 and W-3 produces after 

15 day in Figure 5.27. That difference may result mostly from the detoured contaminant 

plumes of Case W-3 shown in Figure 5.26 (B4) and (B6).     
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Figure 5.25 Gas saturation distributions at IAS systems with multiple wells 
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(a) Case W-2 
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Figure 5.26 Concentration profiles of dissolved TCE at Cases W-2 and W-3 
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Figure 5.27 Reduction in TCE mass over time for Cases W-1, W-2, and W-3 

 
 



 243

5.4 Summary  

In this chapter, the flow of gas and groundwater as a multiphase flow was 

investigated under IAS with vertical or horizontal wells, and the spreading of 

contaminant plumes and the removal efficiency of TCE by IAS operations were 

analyzed. TechFlowMP model developed here was successfully verified using gas 

injection/extraction problems in the unsaturated zone and air sparging simulation data 

reported by van Dijke et al. [1995]. Under specified conditions including initial 

contaminant distributions and hydrogeological parameters used herein, many scenarios 

for IAS systems were simulated to evaluate remedial performance of the systems in terms 

of several IAS-related factors, such as injection well types (vertical-type vs. horizontal-

type), flow rates, injection well depths, injection methods (continuous vs. pulse), and 

biological transformations. From the results of the simulations conducted herein, the 

followings can be summarized:       

 

(i) In the study on the flow of gas and the groundwater under single-injection-well 

IAS, the increase in air injection flow rates leaded to the increase in the radius of 

IAS influence (or the size of the cone of IAS influence) and gas saturation level 

within the cone. The increase in gas saturation in the initially saturated zone 

accelerated the upward gas flow in the zone. Regardless of injection rates, gas 

volume stored in the cone was stabilized after its sharp linear increase during 

approximately 15 minutes. As injected air replaces pore water in soil matrix 

below the groundwater table, the air caused to reduce velocities of the 

groundwater flow and to divert some portion of the groundwater around the zone 



 244

of IAS influence. The reduction in the groundwater velocities was proportional to 

air injection rates (or gas saturation levels). In this study, since a homogeneous 

medium is used, the flow of groundwater and injected air through porous media 

did not show preferential pathways. However, if heterogeneous or stratified media 

are present in the domain, the flow may show different patterns. 

 

(ii) In the simulations conduced here for IAS systems with one vertical injection well, 

the increase in injection flow rates helped to raise the removal efficiency of TCE: 

At injection rates of greater than 20 m3/hr, the IAS systems were good enough to 

clean up contaminant plumes close to an injection well. Due to the diversion of 

contaminant plumes around an injection well, however, the systems were not 

successful to remove TCE below a concentration of 0.001 g/L through the whole 

contaminant plumes.  

 

(iii) In the simulations carried out here for IAS systems with multiple vertical wells, 

the systems were successful to capture the detoured contaminant plumes 

generated around injection wells and helped to raise contaminant removal 

efficiency by IAS. In this study, the distance between injection wells determined 

the overlapped regions of the influence zones of the wells and the degree of gas 

saturation in the regions. Thus, the distance played a key role in determining the 

success of IAS systems with multiple vertical wells in capturing the detoured 

contaminant plumes. In IAS modeling of this study, at the distance between 

injection wells ≥  7 m, the IAS systems with multiple vertical wells remediated 
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polluted groundwater below a dissolved TCE concentration of 0.001 g/L and 

showed high removal efficiency more than 95 %. The results of simulations 

conducted for multiple-injection-well IAS suggested that, under the modeling 

conditions used here, IAS systems with multiple injection wells having small 

injection rates are superior over IAS systems with one injection well having a 

large injection rate. Of course, at contaminated sites, the remedial performance of 

each IAS system will vary upon contaminant concentrations and site conditions.      

 

(iv) Under air injection conditions used for vertical and horizontal wells in this study, 

air injection through a horizontal well generated wider influence zone than that 

through a vertical well. The horizontal-well air injection also produced relatively 

uniform gas saturation on wide y-z plane along with a horizontal injection well in 

x-direction. At the same injection rate used here, the velocities of air flow released 

from well screens were much smaller in the horizontal-well air injection than in 

the vertical-well air injection. That may reduce a diversion of the groundwater 

flow in the vicinity of injection wells for horizontal-well systems. The IAS 

systems with a horizontal well fully covered all contaminant plumes, but, at a low 

flow rate (20 m3/hr), the contaminant removal by the systems failed to decrease 

dissolved TCE concentration below 0.001 g/L at some high-concentration plumes. 

At a high flow rate (60 m3/hr), the remediation performance of the systems was 

sufficient to achieve our remedial goal. In this study, air injection rates for the 

horizontal wells will be determined by the ratio of contaminant loads to required 

air volumes at the highest-concentration zones within the contaminant plumes. 
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(v) The depth of injection wells should be deep enough to avoid a diversion of 

contaminated groundwater plumes below air injection wells. In this study, when 

the top of injection well screens is deeper about 3 m than the deepest point of the 

contaminant plumes, the diversion did not occur. The required distance between 

injection points and contaminated plumes will vary over air injection rates 

applied.   

 

(vi) For modeling for pulse IAS in this study, a pulse-air-injection method was 

successful when injection flow rates are sufficient (60 m3/hr at one horizontal 

well). If an injection rate is not enough (20 m3/hr at one horizontal well), the 

remedial efficiency of pulse IAS was worse than that of continuous IAS. 

However, the injection rate is sufficient, the overall efficiency of pulse IAS was 

better than that of continuous IAS at the same flow rate.  

 

(vii) Michaelis-Menten kinetics was used to describe an aerobic cometabolism of TCE. 

In IAS modeling of this study, the effect of biological transformations on the 

remedial efficiency of IAS systems was highly variable according to the 

bioreactivity of a contaminant. In a case that biodegradation of TCE is high, the 

cometabolic transformation contributed to enhancing the removal efficiency of 

IAS systems: At that case, the efficiency reached more than 99 % at a low 

injection rate 20 m3/hr. However, at low bioreactivity, the contribution of TCE 

cometabolism to TCE removal was minor. The four scenarios conducted here 
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demonstrated the potential capability of bioreactions on contaminant removal. At 

contaminated sites, the potential may be evaluated through site-specified 

investigations.    

 

(viii) Dimensionless variables representing injection rates, ROI, and contaminant 

concentrations in modeling systems were defined and used under limited 

simulation cases in this study. Under various modeling conditions including 

different injection-screen areas, injection depths, and intrinsic permeabilities, 

those dimensionless variables will be very useful in characterizing the 

relationships between air injection rates and ROI under IAS. Those dimensionless 

variables may be used to predict the remedial potential of each gas saturation 

level in the initially saturated zone under specific conditions, but, we need to note 

that there are complexly-coupled nonlinear relationships between gas saturation 

levels and contaminant removal rates in whole modeling domains. 
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CHAPTER VI 

THERMAL-ENHANCED VENTING 

 

Thermal-enhanced venting (TEV) uses heated air to remove a nonaqueous phase 

liquid (NAPL) from contaminated soils in the unsaturated zone. Due to heated air 

injection into the zone, the temperature of the injection zone in the subsurface increases 

as a function of time. In these applications, heat transfer in porous media as well as gas 

flow and multiphase contaminant transport in subsurface systems should be considered. 

In this chapter, governing equations for heat energy transport in a porous medium are 

developed and solved along with the contaminant transport equations described earlier. 

Using TEV experimental data published in the literature, TechFlowMP is validated for 

heat transport in a porous medium, and, based on the results of several TEV applications, 

the effect and efficiency of TEV on NAPL contaminant removal is investigated. 

 

6.1 Introduction 

TEV is different from traditional soil venting because heated air instead of air at 

ambient conditions is applied to the contaminated zone. Due to the application of heated 

air at the contamination zone, the temperature will increase in this zone and this in turn 

will raise the evaporation rates of residual NAPL contaminants. Therefore, TEV is a 

suitable method to enhance removal or recovery of medium- or less-volatile residual 

hydrocarbon contaminants in the unsaturated zone [Kaluarachchi and Islam, 1995]. A 

schematic of TEV is shown in Figure 6.1. 
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Figure 6.1 Schematic of a thermal-enhanced venting system.   

 

Contaminated subsurface environments include the following phases: water, gas, 

soil, and NAPL. The physicochemical and thermal properties of each phase including 

thermal conductivity and heat capacity are dependent on temperature. Density and 

viscosity of gas phase, and vapor pressure of VOCs are significantly influenced by the 

variation in temperature. In Figure 6.2, the change in vapor pressure of TCE as a function 

of temperature is given.     
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Figure 6.2 Vapor pressure of TCE 

 

In this chapter, heat energy transport equations are developed to describe 

temperature variations due to heated air injection, water vaporization/condensation, and 

contaminant vaporization from NAPL to gas phase. Under non-isothermal conditions, the 

changes in temperature-dependent properties of gas and contaminants are considered in 

gas flow and contaminant transport in subsurface environments. In the unsaturated zone, 

since the velocity of soil water is very small, water phase is assumed to be stationary. In 

applications of TEV in this chapter, flow of gas phase, saturation changes of NAPL and 

water phases, and transport of contaminants in gas phase are considered. The change in 

saturation of water phase occurs due to evaporation or condensation, and the reduction in 

NAPL saturation results from vaporization of contaminants. TCE is a target contaminant 

in NAPL and gas phase. 

The purpose of this study is to investigate heat transport in porous soil matrix and 

to evaluate the performance of TEV systems in removing residual TCE NAPL in 
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unsaturated subsurface environments. Two main parameters are considered: air injection 

flow rates and relative humidity (or water vapor density) in injected air. Air flow rates 

determine gas velocity in a porous medium. Water vapor (steam) is very effective in 

carrying heat energy due to heat capacity of water vapor (approximately 4 kJ/kg oC) and 

heat of evaporation (more than 2000 kJ/kg oC).  

 

6.2 Heat Energy Transport Equation  

In the subsurface, heat energy transport occurs by conductive and convective heat 

fluxes. Conductive heat flux in soil matrix depends in a complex fashion on properties of 

multiple phases (solid, water, gas, and NAPL), and convective heat flux is generated 

mainly by gas phase flow. In this study, heat energy transport is analyzed under the 

assumption of local thermal equilibrium between all phases and parallel heat conduction. 

The governing equation for the conservation of heat energy can be written as [Glascoe et 

al., 1999] 
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  (6.1) 

where fh  is specific enthalpy of phases (subscript s = solid soil, w = liquid water, n = 

NAPL, g =  air in gas, v = water vapor, and o =  organic chemical vapor) ( kgJ / ); s  is 

saturation of phases; vρ  and oρ  are densities of water vapor (water vapor concentration 

in gas phase) and organic vapor (contaminant concentration in gas phase) ( 3/ mkg ), 

respectively; gq  are Darcy velocity of gas phase ( sm / ); vJ  and oJ  are the flux of water 
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vapor and organic vapor in gas phase ( smkg // 2 ), respectively; AK  is an overall thermal 

conductivity ( KmW // ); T is absolute temperature (K); and, SQ  is heat source/sink per 

unit volume due to heated air injection/extraction ( smJ // 3 ). The first two terms 

represent the enthalpy accumulation in solid soil and fluid phases (liquid water, air in gas, 

and NAPL). The third and fourth terms are the enthalpy accumulation for water vapor 

and organic chemical vapor, respectively: These terms include heat transfer due to 

condensation/evaporation of water and vaporization of organic chemicals. The fifth term 

represents a flux of air enthalpy. The sixth and seventh terms are for fluxes of water 

vapor enthalpy and organic vapor enthalpy, respectively. The seventh term indicates 

multiphase thermal conduction.  

Specific enthalpies can be expressed as linear functions of temperature and the 

respective specific heat capacities [Glascoe et al., 1999]: 

( )refss TTch −=       (6.2a) 

( )refww TTch −=       (6.2b) 

( )refgg TTch −=       (6.2c) 

( )refnn TTch −=       (6.2d) 

( )refvwaterLatv TTchh −+= ,      (6.2e) 

( )refoorganicLato TTchh −+= ,      (6.2f) 

where c  is specific heat capacity ( KkgJ // ) for each component; waterLath ,  and organicLath ,  

are specific enthalpies of vaporization of water and an organic chemical, respectively; 

and, refT  is a reference absolute temperature. Since enthalpy is a relative quantity, refT  
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can be any temperature (for example, 0 oC) as long as the temperature value is used 

consistently in all heat calculations.    

Mass flux of two components (water vapor and organic vapor) in gas phase can be 

represented by advection and dispersion. The flux terms in Equation (6.1) will be 

expressed as, 

vvgvgv DqJ ρθρ ∇−=       (6.3a) 

oogogo DqJ ρθρ ∇−=      (6.3b) 

where vD  and oD  are dispersion coefficients for water vapor and organic vapor in gas 

phase, respectively. Dispersion coefficients can be calculated by Equation (3.21). 

Combining Equations (6.1) through (6.3) yields the following heat transport 

equation: 

( )[ ]
( )[ ] ( ) ( )[ ]

( ) 0=+∇⋅∇−

∇+∇⋅∇+++−⋅∇+

+++−
∂
∂

SA

ooogvvvgoovvrefgg

oogvvgrefh

QTK
hDshDshhTTq

hshsTTS
t

ρφρφρρρ

ρφρφ

   (6.4) 

where hS  is an overall heat capacity ( KmJ // 3 ). In multiphase systems, volume-

averaged overall heat capacity under thermodynamic equilibrium can be estimated as 

follows [Bear, 1972; Kaluarachchi and Islam, 1995; Kaviany, 1995; Nield and Bejan, 

1999]: 

( ) ∑
=

+−=
ngwf

fffssh cscS
,,

1 ρφρφ     (6.5) 

In TEV systems, since gas flows are derived by injection and extraction pressures, 

advective transport of water vapor and organic vapor in gas phase would be much greater 

than dispersive transport of these components. Thus, the heat transport terms for 
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dispersion (the terms in the third square bracket in Equation (6.4)) may be neglected and 

are not considered in this study.  

The overall (effective) thermal conductivity, AK , in Equation (6.4) depends on 

several parameters, such as soil-grain thermal conductivity, a water thermal conductivity, 

a gas thermal conductivity, a NAPL thermal conductivity,  porosity, saturation of phases, 

and geometry of media [Nield and Bejan, 1999]. One of the methods to calculate overall 

thermal conductivity of porous media is a simple parallel conduction model. In the 

model, heat conduction in a soil matrix (including solid and fluid phases) is assumed to 

occur in parallel, and overall conductivity, AK , is obtained as a weighted arithmetic mean 

of the conductivities of phases as follows [Bear, 1972; Nield and Bejan, 1999].  

( ) ∑
=

+−=
ngwf

ffsA KsKK
,,

1 φφ      (6.6) 

where fK  is heat conductivity of each phase ( KmW // ), and subscript f indicates solid 

soil (s), water (w), gas (g), and NAPL (n) phases. The parallel method has been 

commonly used in nonisothermal subsurface simulations [Falta et al., 1992; Adenekan et 

al., 1993; Kaluarachchi and Islam, 1995]. In Equation (6.6), overall thermal conductivity 

is dominated by thermal conductivity of soil (rock), followed by that of liquids. Gas has a 

least effect on the overall conductivity, and the effect is negligible; thermal conductivity 

of a liquid is 10-100 times larger than that of a gas [Adenekan et al., 1993]. 

Since the contribution of radiation on heat transport is very small in the 

subsurface [Kaluarachchi and Islam, 1995], the effect of radiation is ignored. Although 

heat may be regained by condensation of contaminant vapor, it is not considered here.          
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6.3 Model Verification: Thermal Venting in a One-dimensional Soil Column 

For TEV, Lingineni and Dhir [1992] conducted one-dimensional column 

experiments to investigate the effect of heat application on the removal of ethanol in a 

glass bead-filled column. The experiment column is vertically 60-cm long with a square 

cross section with a width of 18 cm. Heat was supplied directly to soil media and 

incoming air by a resistance heater. Two cases of soil venting experiments were carried 

out: air injection at ambient conditions (Case I) and air injection with a heat source (Case 

II). In the experiments, temperature variations were measured through the column. The 

published temperature profiles of the two cases are used to verify TechFlowMP model 

developed in this study.  

The initial temperature and residual saturation of ethyl alcohol in the column were 

23 oC and 13 %, respectively. In Case I, air at ambient conditions was injected at a flow 

rate of 234 L/min. In Case II, a resistance heater with a heat input of 130 W was installed 

at the inlet of the column in order to heat porous media in the column and air injected at a 

flow rate of 140 L/min.  

In this study, in order to simulate the experiments of Lingineni and Dhir [1992], 

an one-dimensional domain with 60-cm length is used, which is discretized with a 

uniform mesh size of 1 cm. Parameters used here are: porosity φ  = 0.4, a first order 

coefficient for ethanol evaporation vλ = 13 s-1, thermal conductivity of a medium in the 

column =  1.4 W/m/K, and heat storage capacity of the medium = 2.3×106 J/m3/K. 

Enthalpy of ethanol evaporation ethanolh  is calculated using the following regression 

equation given by Yaws [1999]: 
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( ) 079.03 25.516/110984.1 Thethanol −×=    (6.7) 

In the simulations, the equations for gas flow, ethanol saturation, contaminant transport in 

gas phase, and heat energy transport are solved. The run time is up to 1500 sec with a 

constant time step of 1 sec. Local thermal equilibrium is assumed throughout the 

experimental column. 

In Cases I, latent heat of ethanol evaporation in the column is absorbed from the 

injected air and the packed media in the column: Under no heat source (no heater), 

thermal energy of the injected air and the packed media at an ambient temperature is 

consumed by ethanol evaporation. So, the vaporization of ethanol results in temperature 

drops of the injected air and porous media in the column. In Figure 6.3, the measured 

temperature profiles of the injected air (or the packed media) in the column are given: At 

1500 sec, the measured maximum temperature drop of the injected air is approximately 

32 oC. Simulation results of this study for Case I are compared with the published 

experimental data of Lingineni and Dhir [1992] in Figure 6.3. Overall, the experimental 

data and the numerical results of this study show good agreement. Lingineni and Dhir 

[1992] stated that the location of the lowest temperature in the column at each time step 

indicates the evaporation front of ethanol. The lowest-temperature location in the column 

moves from the inlet (distance=0 m) towards the exit (distance = 0.6 m) over time. Since 

thermal energy delivered to the evaporation front by the flowing gas (air) becomes less 

with the movement of the evaporation front toward the exit because some portion of 

thermal energy of the injected gas is consumed to heat the media in the column before the 

gas reaches the evaporation front. Therefore, as the evaporation front in the column 

moves toward the exit, the temperature of the column (Temperature of the injected 
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gas/the packed media) at the evaporation front becomes lower. In Figure 6.3,  the 

temperature drop at the evaporation front at 500 sec is much smaller in the simulation 

results of this study than in the experimental data. The simulation results show good 

agreement with the experimental data around the evaporation fronts, especially, 

downstream from the evaporation fronts.  
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Figure 6.3 A comparison of temperature profiles between experimental data and 

simulation results for Case I (Air injection experiments without a heat source), 
Q=234 L/min.  
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In Case II, thermal energy is provided by a resistance heater at the inlet of the 

column, and the energy is transported through conduction and convection processes. The 

propagation of heat energy due to convection mostly depends on gas flow, and, since heat 

propagation by conduction in the column is very slow, the heating of the packed medium 

downstream of the inlet region is primary due to thermal energy delivered by heated gas 

[Lingineni and Dhir, 1992]. The convective heat transfer of gas phase also helps raise the 

temperature at ethanol-evaporation fronts. The lowest temperature of about -1 oC in 

Figure 6.4 (Case II) is higher than the lowest temperature of approximately -9 oC in 

Figure 6.3 (Case I). In Figure 6.4 for Case II, the simulation results of this study show 

good agreement with the experiment data of Lingineni and Dhir [1992]. In Case II, due to 

heat supply by a resistant heater, the temperature in the inlet of the column reaches more 

than 80 oC. The temperature drops due to ethanol evaporation in the column are much 

smaller in Case II than in Case I. 

In Figure 6.4, the experimental data between distances from 0.12 to 0.18 m at t = 

1500 sec show somewhat horizontal temperature profiles, which are not observed at the 

simulation results of this study. Lingineni and Dhir [1992] pointed out that the left-side 

end of the horizontal temperature profiles indicates the propagation of thermal fronts, at 

which the temperature becomes above the ambient temperature due to heat energy 

supplied at the inlet of the column. The propagation of thermal fronts primarily depends 

on the ratio of energy contents of air and soil and air injection rates [Lingineni and Dhir, 

1992]: Increasing the heat input at the inlet of the column will raise the temperature of the 

incoming ambient air passing through the heater, but the contribution of the heated air to 

the propagation of thermal fronts will be minor.   
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One of the methods to increase the ratio of energy contents of air and soil is to use 

humidified air (the mixture of dry air and steam). As discussed in Chapter II, the heat 

capacity of steam, which is four times that of air, and heat of water evaporation will 

contribute to the increase in convective heat transfer rates. In the following section 

including TEV simulations of this study, humidified air is used to effectively transport 

thermal energy from air injection points to contaminated zones through porous media. 
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Figure 6.4 A comparison of temperature profiles between experimental data and 

simulation results of this study for Case II (Air injection experiments with a 
heat source), Q=140 L/min.  
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6.4 Application of Thermal-Enhanced Venting 

6.4.1 Modeling Domain and Parameters 

A two-dimensional unsaturated domain shown in Figure 6.5 is used in TEV 

modeling of this study to investigate the effect of TEV on NAPL contaminant removal 

and the transport of thermal energy in subsurface environments. In a TEV system shown 

in Figure 6.1, which describes a contaminated region containing NAPL between injection 

and extraction wells, heated humid air is injected into the unsaturated zone at the bottom 

(the inlet) of the domain, and contaminated gas (the mixture of air, water vapor, and 

vaporized TCE) is withdrawn from the top (the exit) by vapor extraction systems. While 

heated air travels from the inlet to the exit, a contaminant as NAPL phase partitions into 

gas phase, and then the contaminant in gas phase is removed out of subsurface systems.  

 

 
 

Figure 6.5 A model domain for TEV modeling 

 

 

Heated air 

Gas extraction 

3 m 

2 m 

 1 m 

0 
 z 

 x 

 1 m 
4 m 

3 m 

TCE  
NAPL 
source 

Unsaturated  zone 

A

A′ 



 263

In Figure 6.5, TCE, as an immobilized NAPL contaminant source in pore spaces, 

is located at x = 1-3 m and z = 1-2 m in the unsaturated zone. The initial saturation of 

TCE residual is 10 %.  

In Figure 6.5, boundary conditions for gas flow equation are as follows: specified 

pressure-head gradient conditions (type II) are assigned at the bottom and the top 

boundaries for injection and extraction wells (z=0 and 3 m, respectively), and no flux 

condition is given at the left- and right-hand side boundaries (x=0 and 4 m). For 

contaminant transport in gas phase, initial and boundary conditions are: an initial TCE 

concentration in gas phase is zero within the domain; the injected air contains no TCE; 

and, zero-dispersive flux (type II) on all boundaries. For heat transport, initial 

temperature of the domain is 10 oC. Since heated air at constant temperature of 80 oC is 

injected into the domain, total heat-energy flux (Cauchy or type III) is used at the inlet 

boundary (z = 0 m), and a specified heat-energy flux (type II) is used at the outlet 

boundary (z = 3 m). These heat boundary conditions were also used by Kaluarachchi and 

Islam [1995].  

The properties of a soil medium in the domain are: intrinsic permeability k = 

5.0×10-11 m2, porosity φ = 0.35, bulk density of soil matrix = 1600 kg/m3, residual water 

saturation 0=ms , longitudinal dispersivity 1.0=Lα , transverse dispersivity 001.0=Tα , 

coefficients for rc ksP −−  relationships of van Genuchten model (Equations (2.8) and 

(2.9)) 2=n , and 3=gwα m-1. The molecular diffusion coefficients of TCE and water 

vapor in gas phase are 7.87×10-6 and 2.33×10-5 m2/s, respectively. The first-order mass 

transfer coefficients for vaporization of TCE and water are 0.01 and 0.001 s-1, 

respectively. The temperature-dependent properties of TCE and air in gas phase are 
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estimated using regression equations listed in Table 6.1. Thermal conductivity of soil 

particles is 0.48 W/m/K, and the regression equations for other thermal properties used 

herein are presented in Table 6.2. 

In TEV simulations, a system of decoupled equations for gas flow, saturation of 

liquid water and TCE NAPL, transport of TCE and water vapor in gas phase, and heat 

transport in porous media are sequentially solved and iterated until the solutions of all 

equations converge within specified criteria. The criteria ( aε  and rε in Equations (3.41)-

(3.42)) are 10-3 for flow and heat transport equations and 10-4 for transport equations for 

TCE and water vapor in gas phase. The partitioning of TCE into pore water phase is not 

considered here. 

 

Table 6.1 Regression equations for properties of air and TCE in gas phase  
 

Property Estimating equations 
)(Tairρ  Ideal gas law, nRTPV =    
)(TTCEρ  Ideal gas law, nRTPV =  

mixturegasρ  Density of gas mixture, Equation (3.9) 

gasair ,µ (micropoise)* 241
, 100967.1108062.4153.50 TTgasair

−− ×−×+=µ  

gasTCE ,µ (micropoise)** 251
, 108948.6102164.4621.23 TTgasTCE

−− ×−×+−=µ  

mixturegasµ  Wilke's semi-empirical method***, Equation (3.15) 
*From Yaws and Braker [2001] 
**From Yaws [1999]   
***From Reid et al. [1987] 
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Table 6.2 Regression equations for thermal properties 

Thermal property Regression equations 
Thermal conductivity of 
water*, W/m/K 

263
, 105391.510612.42758.0 TTK liquidwater

−− ×−×+−=  

Thermal conductivity of 
air*, W/m/K 

295
, 102207.9102342.700512.0 TTK gasair

−− ×−×+=  

Thermal conductivity of 
NAPL (TCE)*, W/m/K 

)7/2()^571/1(4428.11042.2
, 10 T
LiquidTCEK −×+−=  

Specific heat capacity 
of water*, J/mol/K 37

242
,

103469.5

101103.2109953.3053.92

T

TTc liquidwater

−

−−

×+

×−×−=
 

Specific heat capacity 
of air**, J/mol/K 
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10001484cosh/1484100758.0
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Specific heat capacity 
of water vapor**, 
J/mol/K 

{

10001169cosh/116910089.0

106105.2sinh/106105.2102679.0

103336.0

2
5
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Specific heat capacity 
of soil*** 

( )[ ]298000611.01)1(48.0 −+−= Tcsoil φ  

Specific heat capacity 
of NAPL (TCE)*, 
J/mol/K 

36

23
,

108353.1

104035.14725.0916.58

T

TTc liquidTCE

−

−

×+

×−+=
 

Latent heat of 
vaporization of water*, 
kJ/mol 

( ) 321.0
, 13.647/1053.52 Th waterLat −=  

Latent heat of 
vaporization of TCE 
(NAPL)*, kJ/mol 

( ) 396.0
, 571/1915.46 Th TCELat −=  

*From Yaws [1999] 
**From Perry et al.[1984] 
***From Hart and Couvillion [1986] 
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Run time is up to 30 hours with variable time steps of 2-6 seconds. Mass balance 

calculations for TCE mass are performed to determine the removal of TCE by TEV 

systems and TCE distribution in the domain. For all simulations of TEV, accumulated 

mass balance errors for TCE were less than 0.5 % during simulation periods. Peclet ( Pe ) 

and Courant (Cr ) numbers were less than 2 and 1, respectively. 

To evaluate the performance of TEV in removing TCE in NAPL, eight 

application cases are investigated as shown in Table 6.3: Two cases of soil venting at 

ambient conditions and six cases of TEV with different humidity and flow rates. The 

water vapor concentration in injected humid air of each case is approximately 6.4 g/m3 at 

50 % relative humidity and 15 oC and 48.7, 121.6, and 218.9 g/m3 at 20, 50, and 90 % 

relative humidity at 80 oC, respectively.  

 

Table 6.3 Scenarios for TEV applications 

Type Case No. Injected air 
temperature (oC) 

Relative 
humidity (%) 

Flow rate  
(m3/hr) 

N-1 15 50 12.6 Normal venting N-2 15 50 21.0 
TA-1 80 20 12.6 
TA-2 80 50 12.6 
TA-3 80 90 12.6 
TB-1 80 20 21.0 
TB-2 80 50 21.0 

Thermal-
enhanced venting 

(TEV) 

TB-3 80 90 21.0 
 

 

In Table 6.3, the increase in relative humidity of injected humid air will 

proportionally raise heat capacity of injected humid air. As mentioned earlier in Chapter 

II, heat capacity of water vapor is four times that of dry air (approximately 1 kJ/kg oC) 
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and heat of evaporation is more than 2000 kJ/kg [Davis, 1997]. Air inject rates are also an 

important factor in determining soil temperature rise under TEV since convective heat 

transfer in soil venting depends on gas flow rates in porous media. The flow rates of 12.6 

and 21.0 m3/hr correspond to three and five pore volumes in the domain per hour, 

respectively, which are approximately 8.75×10-3 and 1.46×10-2 m/s as Darcy velocities of 

gas phase, respectively.  

Due to nearly unidirectional gas flow (from the bottom to the top in z-direction) in 

the domain shown in Figure 6.5, soil temperature rise and TCE NAPL saturation 

reduction occur mostly along with the increasing z-direction. Thus, we will focus on the 

variations in soil temperature and NAPL saturation in z-direction. To support our analysis 

on heat transport and TCE removal (NAPL saturation reduction), simulation results 

(profiles of temperature and NAPL saturation) on A-A′ line (at x=2 m) in Figure 6.5 will 

be presented. In calculating overall TCE removal, all TCE mass in the domain is 

considered.  

 

6.4.2 Results of TEV Simulations   

The increase in soil temperature plays an important role in enhancing the 

vaporization of TCE at the contaminant source zone. For normal venting and thermal-

enhanced venting cases listed in Table 6.3, the evolution of soil temperature in the 

domain is shown in Figure 6.6. Since the temperature of injected air (15 or 80 oC) is 

higher than initial temperature of the domain (10 oC), the injected air contributes to raise 

soil temperature in the domain. The degree of temperature rise depends on injected-air 

temperature, injection flow rate (Q), and relative humidity (RH). For instance, in Figure 
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6.6, soil temperatures at the inlet of the domain (z=0 m) at 3 hrs are 61, 73, and 75 oC for 

Cases TA-1 (RH=20 %, Q=12.6 m3/hr), TA-2 (RH=50 %, Q=12.6 m3/hr), and TB-1 

(RH=20 %, Q=21 m3/hr), respectively. 

In Figure 6.6, the evaporation of TCE at the source zone (z=1-2 m) causes to 

decrease soil temperature at the zone. In Figure 6.6 (a1) for Case N-1, minimum soil 

temperature within the source zone drops over time. The locations of the lowest 

temperature move downstream with time until the end of the source zone (z = 2 m): For 

example, the locations are at 1.2, 1.4, and 2.0 m in z-direction (at x=2) for 3, 9,  and 15 

hours, respectively even though the locations are not noticeable in Figure 6.6 (a1). In 

Figure 6.3 for ethanol evaporation experiments, the minimum-temperature locations are 

clearly recognized, however, in Figure 6.6 (a1), until 12 hrs, soil temperature drops occur 

at fairly similar degree within the source zone except the temperature rise around z=1 m 

over time due to thermal energy of injected air. The difference in temperature profiles 

between ethanol (in Figure 6.3) and TCE (in Figure 6.6 (a1)) comes from the fact that 

evaporation of ethanol occurs mostly at the minimum-temperature location, however, 

evaporation of TCE occurs somewhat uniformly over the whole source zone. In section 

6.3, the evaporation front of ethanol corresponds to the minimum-temperature location 

(in Figure 6.3), however, in this section regarding TCE, the location of the lowest 

temperature does not match the evaporation front of TCE. For instance, at t = 21 hrs of 

Case N-1, the lowest temperature is observed at z = 2 m (Figure 6.6 (a1)), but, at that 

time, the evaporation front of TCE is at the beginning of the source zone, z = 1 m, (Figure 

6.7 (a1)).   
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In normal venting cases listed in Table 6.3, since the temperature of injected air 

(15 oC) is higher than the initial soil temperature (10 oC), the increase in an injection rate 

results in more heat supply to the contaminated zone. In Figure 6.6 (a1) and (b1), at t = 

21 hrs, soil temperature at the beginning of the contaminated zone (z = 1 m) is higher in 

Case N-2 (Q=21.0 m3/hr) than in Case N-1 (Q=12.6 m3/hr): The temperatures for the 

former and latter cases are 13.6 and 8.7 oC, respectively. At that time, the soil 

temperature at the end of the contaminated zone (z = 2 m) is approximately 1.1 and 1.5 

oC in Cases N-1 and N-2, respectively.       

In TEV cases listed in Table 6.3, heated air (80 oC) at different relative humidity 

is supplied to enhance TCE evaporation. Relative humidity is defined as the ratio of 

actual water vapor density to saturated water vapor density at a specified temperature. 

The increase in relative humidity implies the increase in specific heat capacity of injected 

humid air. The higher relative humidity in injected gas derives the higher soil temperature 

in the contaminated zone. For example, in Figure 6.6 (a2)-(a4) at t = 9 hrs, soil 

temperature at z = 1 m is 27.4, 56.7, and 76.5 oC for Cases TA-1 (RH=20 %), TA-2 

(RH=50 %), and TA-3 (RH=90 %), respectively.  

The degree of relative humidity has influence on patterns of temperature increase. 

At t = 12 hrs in Figure 6.6 (a3), the temperature profiles of Case TA-2 (RH=50 %) can be 

divided into three stages: The first stage is at z = 0-0.8 m, the second one is at z = 0.8-1.2 

m, and the third one is at z > 1.2 m. On the second stage, soil temperature variations are 

very small and relatively horizontal. The second stage is noticeable at a relative humidity 

of 50 % (Case TA-2 and TB-2), but that is not clear at 20 or 90 % relative humidity 
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cases. In Figure 6.4 (TEV for ethanol evaporation), some horizontal temperature profiles 

appear on the experimental data between distances from 0.12 to 0.18 m at t = 1500 sec.    

Based on temperature profiles shown in Figure 6.6, we may compare relative 

impacts of flow rates and relative humidity on soil temperature rise. In this study, the 

temperature increment due to the injection rate increase (from 12.6 to 21 m3/hr) at each 

relative humidity (RH=20, 50, or 90 %) are greater than that due to the increase in 

relative humidity (RH=20 to 50 % or RH=50 to 90 %) at the injection rate 12.6 m3/hr. 

For example, at z=1.6 m, 6 hrs in Figure 6.6, the injection rate increase (from 12.6 to 21 

m3/hr) generates the temperature increment of 6 (i.e., 8.5 to 14.5 oC), 26 (i.e., 13.5 to 39.5 

oC), and 41.7 oC (i.e., 28.3 to 70 oC) for RH = 20, 50, and 90 %, respectively. At an 

injection rate of 12.6 m3/hr, the temperature increments (at z=1.6 m, 6 hrs) are: 5 oC when 

RH increases from 20 to 50 %; 15 oC when RH increases from 50 to 90 %. These data 

also indicate that the temperature increment becomes larger as relative humidity 

increases. In addition, the effect of relative humidity on temperature increments is higher 

at the higher injection rate Q=21 m3/hr than Q=12.6 m3/hr: At a injection rate of 21 

m3/hr, the temperature increments (at z=1.6 m, 6 hrs) are: 25 oC when RH increases from 

20 to 50 %; 30.5 oC when RH increases from 50 to 90 %.  

Temperature profiles shown in Figure 6.6 are estimated in the simplified model 

domain shown in Figure 6.5 even though thermal properties of phases (gas, liquid, and 

soil) change with temperature. At contaminated sites, the prediction of temperature 

variations in the subsurface may require information on more parameters such as soil-

media heterogeneity, infiltration, and the groundwater table. 
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Figure 6.6 Temperature profiles over time during TEV on A-A′ line (at x=2 m) 
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Temporal saturation changes of TCE NAPL at the source zone (z=1-2 m on A-A′) 

are given in Figure 6.7. The reduction in the saturation of TCE NAPL starts from the 

beginning points of the source zone (z=1 m) because mass transfer rates at the points are 

highest within the source zone and the increase in soil temperature by heat transport 

occurs along with gas flow (in increasing z-direction). 

In Figure 6.7, compared to the normal venting, TEV (the application of heated air) 

improves the reduction in TCE NAPL saturation: In Case TA-1 (Q=12.6 m3/hr and 

RH=20 %), all TCE at z=1 m is removed at 12 hrs while at that time TCE NAPL 

saturation at z=1 m in Case N-1 (Q=12.6 m3/hr) is approximately 0.37. At normal 

venting, the increase in injection rates contributes the reduction of TCE NAPL saturation: 

At 12 hrs, the saturation (at z=1 m) in Case N-2 (Q=21 m3/hr) is about 0.33. 

In TEV modeling of this study, the higher flow rate produces the greater increase 

in soil temperature as already seen in Figure 6.6 and the greater reduction in TCE NAPL 

saturation in Figure 6.7. For example, in Figure 6.7 (a2) for Case TA-1 (Q=12.6 m3/hr) at 

6 hrs, TCE NAPL saturations at z = 1 and 2 m are 0.062 and 0.078, and, in Figure 6.6 

(a2), the corresponding soil temperatures are 17.0 and 7.5 oC, respectively. In Figure 6.7 

(b2) for Case TB-1 (Q=21.0 m3/hr) at 6 hrs, NAPL saturations at z = 1 and 2 m reduce to 

0.048 and 0.074, respectively, and the corresponding temperatures (in Figure 6.6 (b2)) 

are 30.5 to 9.5 oC, respectively.  

The increase in relative humidity of injected air is not directly related with the 

variation of TCE NAPL saturation even though water condensation may change gas 

saturation levels. However, since the relative humidity increase produces soil temperature 

rise that determines the increment of TCE vapor pressures (Figure 6.2), the relative 
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humidity of injected air is an important factor to determine TCE removal (or the 

reduction in TCE NAPL saturation). The increase in relative humidity of injected air 

prompts the reduction in TCE NAPL saturation at the source zone. In Figure 6.7 for 

Cases TAs (TA-1, TA-2, and TA-3) at 6 hrs, when the relative humidity of injected air 

increases from 20, 50, to 90 %, the NAPL saturation at z = 1 m reduces from 0.062, 0.045 

to 0.0. At air injection rate of 12.6 m3/hr, operation times required to completely remove 

TCE at z = 1 m are less than 21, 12, 8, and 6 hours for Cases N-1, TA-1, TA-2, and TA-3, 

respectively. The NAPL saturation profiles of Case TA-2 at 8 hrs are not presented in 

Figure 6.7.   

In Figure 6.7, the difference between the NAPL saturation reductions of each case 

listed in Table 6.3 at 3 hrs is much smaller than the difference at 6 hrs. That is due to a 

heat transporting time, which is required for heat to be transferred from the inlet of the 

domain (z=0 m) to the beginning of the source zone (z=1 m). The slope of each NAPL 

saturation line at time steps become larger with time, and the overall slopes in TEV cases 

significantly rise with the increase in relative humidity of injected air even though the 

slope varies over locations. As simplified indicators for the slopes, we may compare the 

difference in NAPL saturation levels at z=1 and 2 m for Cases TA-1, TA-2, and TA-3. In 

Figure 6.7, the saturation levels at z=1 and 2 m at 6 hrs are: 0.062 and 0.078 in Cases TA-

1, respectively; 0.045 and 0.079 in Case TA-2, respectively; and, 0 and 0.083 in Case 

TA-3, respectively. As expected, the difference between the two NAPL saturation levels 

at z=1 and 2 m becomes larger with the increase of RH in injected air. Among those 

saturation levels, we need to note the saturation levels at z=2 m: As RH increases, the 

saturation levels at z=2 m increase (TCE removal becomes smaller) while those at z=1 m 
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decrease. These phenomena are due to heat energy applied. For Cases TA-1, TA-2, and 

TA-3, as soil temperature gradients (negative values) within the contaminated zone in 

Figure 6.6 become steeper due to the increase in relative humidity of injected air, NAPL 

saturation gradients (positive values) in Figure 6.7 also become steeper. In Case TA-2, 

the temperatures at z=1 and 2 m are approximately 38 and 9.1 oC, respectively, at which 

maximum TCE vapor concentrations are approximately 0.88 and 0.25 kg/m3, 

respectively; If TCE concentration within injected air (gas phase) due to TCE NAPL 

evaporation increases up to 0.25 kg/m3 before the gas reaches z=2 m, the evaporation of 

TCE NAPL at z=2 m will be minor because a driving force for TCE NAPL evaporation 

(the difference between a maximum TCE concentration and a current TCE concentration 

in gas phase) diminishes. Therefore, the larger difference in temperature between z=1 and 

2 m will result in the lower evaporation of TCE NAPL at z=2 m. The evaporation of TCE 

also depends on the magnitude of vaporization-rate coefficients of TCE as shown in 

Equation (3.18). The smaller vaporization rate will reduce the mass of vaporized TCE 

over distance and may decrease the difference in NAPL saturation reductions over 

distance.  

In Figure 6.7, for Q=21 m3/hr, NAPL saturation at z=2 m, 6 hrs in Case TB-3 is 

smaller than Cases TB-2 and TB-1: The saturation levels are 0.053, 0.075, and 0.074, 

respectively. That may be due to strong heat transport in Case TB-3: At 6 hrs, all TCE 

NAPL up to z=1.6 m are removed (Figure 6.7 (b4)).   

In TEV simulation cases used here, only two temperatures are considered. In TEV 

application at contaminated sites, the temperature of injected air will also be an important 

factor for heat transfer in soil matrix and contaminant removal. In subsurface systems, 



 275

evaporation of NAPL results from complex relationships of physical and chemical 

parameters such as temperature, porosity and pore size in soil matrix, and mass transfer 

between phases. 
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Figure 6.7 The changes in TCE NAPL saturation over time on A-A′ line (at x=2 m) 
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The temporal reduction of TCE mass in the domain is illustrated in Figure 6.8. 

The increases in relative humidity of injected air and/or injection rate of air reduce 

remediation times required to remove all NAPL at the source zone. At an injection rate of 

12.6 m3/hr (Figure 6.8 (a)), the required operation times are 32, 20, 14, and 11 hours for 

Cases N-1, TA-1, TA-2, and TA-3, respectively. Under that flow rate, TEV reduces the 

times by 38 and 66 % in Case TA-1 and TA-3, respectively compared to Case N-1. At an 

injection rate of 21.0 m3/hr (Figure 6.8 (b)), the required operation times are 27, 14, 9.5, 

and 7 hours for Cases N-2, TB-1, TB-2, and TB-3, respectively: The operation times 

reduced by 48 and 74 % for Case TB-1 and TB-2, respectively compared to Case N-2. In 

this study, the application of heat energy reduces operation times by at least 12 hours 

compared to the normal venting cases shown in Table 6.3. At Cases N-1 and N-2, the 

increase in flow rates from 12.6 to 21.0 m3/hr reduces the operation time by about 15.6 % 

(5 hrs). Under the conditions used herein, the overall reduction profiles of TCE NAPL 

mass shown in Figure 6.8 suggest that the application of thermal energy is effective in 

enhancing a remedial performance of TCE in the domain. 

In the domain shown in Figure 6.5, there is a time lag between a heat input at the 

inlet and the enhancement in TCE NAPL removal at the contaminated zone. The 

variation of temperature within the source zone (z=1-2 m) depends on air injection rates 

and relative humidity applied for each case as shown in Figure 6.7, so the time lag vary 

over simulation cases shown in Table 6.3. In the simulation cases, since the higher flow 

rate yields the more heat energy transport to the source zone, the higher flow rate reduces 

the time lag observed in this TEV modeling. 
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In temporal profiles of TCE mass reduction in the domain shown in Figure 6.8, 

the time lag may be approximately estimated from the diversion of TCE mass reduction 

profiles of TEV cases from the mass reduction profiles of normal venting cases (Cases N-

1 and N-2): The time lag is about 3 and 2 hours for injection rates of 12.6 and 21.6 m3/hr, 

respectively.  

At contaminated sites, the performance of TEV systems may be related with may 

operation parameters including air injection rates and relative humidity and temperature 

of injected air. In achieving a target performance of TEV systems, various combinations 

of operational parameters might be available. Among the simulation cases considered in 

this study, Cases TA-2 (Q=12.6 m3/hr and RH=50 %) and TB-1 (Q=21.0 m3/hr and 

RH=20 %) show similar performances in terms of a removal efficiency of TCE and a 

operation time required to remove all TCE in the domain (Figure 6.8): For the two cases, 

maximum differences in the removal efficiency and operation times to achieve each 

efficiency level are less than 5 % and 0.5 hour through simulation periods, respectively. 

Since the two cases produce nearly same results, either can be selected to remove TCE 

NAPL in this TEV modeling.  

In the application of TEV systems to remove NAPL in the unsaturated zone, the 

selection of optimal settings for field remediation systems may be chosen based on 

removal efficiency of each setting and other factors such as applicability of each option at 

contaminated sites, costs for installation and operation, and safety. 
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Figure 6.8 Reduction of NAPL saturation over time by TEV at two different flow rates: 
(a) air injection rate = 12.6 m3/hr and (b) air injection rate = 21.0 m3/hr 
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6.5 Summary 

In this chapter, for TEV systems, heat energy transport equations are formulated 

and solved with other equations for gas flow and contaminant transport in gas phase. 

TechFlowMP model developed in this study is verified using experimental data published 

in the literature. Under considerations for temperature-dependent parameters such as 

density and viscosity of gas phase, eight applications are studied to investigate heat 

transport in porous media and TCE NAPL removal by normal venting and thermal-

enhanced venting. Through the application studies of TEV, the effects of air injection 

rates and injected-air relative humidity on TCE removal are analyzed. From the results of 

the eight-application studies, the followings can be summarized: 

 

(i) Since heat energy required by evaporation of TCE at the contaminated zones is 

absorbed mostly from the incoming air and solid soil, TCE evaporation decreased 

soil temperature at the contaminated zone. Soil temperature drop at the source 

zone was greater in normal venting at ambient conditions than in TEV. At normal 

venting, maximum drop of soil temperature occurred downstream at the end of 

the contaminated zone, and the larger injection flow rate produced the higher 

increase in soil temperature at the contaminated zone.  

 

(ii) TEV using heated air with three different levels of relative humidity (20, 50, and 

90 %) was effective in transporting heat energy from the inlet to the contaminated 

zone. As heat energy delivered compensates heat consumption for evaporation of 

TCE at the contaminated zone, soil temperature at the contaminated zone did not 
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show significant drop throughout simulation periods. In TEV applications of this 

study, maximum temperature drop was less than two Celsius degree. Water vapor 

in gas phase played an important role in the increase in energy content of gas 

phase. Thus, the higher relative humidity in injected air resulted in the greater 

increase in soil temperature in the model domain. As expected, the larger flow 

rate enhanced the increase in soil temperature and the reduction in TCE NAPL 

saturation in the domain. In simulations of TEV cases of this study, as the 

transport of thermal energy by conduction and convection processes moves ahead 

the evaporation fronts, the reduction rate of TCE NAPL at the contaminated site 

was proportional to the magnitude of heat energy input into the domain. 

 

(iii) Operating times required to completely remove TCE in the domain decreased 

with the increase in relative humidity of injected air and injection rates. The 

results of the simulations carried out in this study showed that, under the 

modeling conditions used here, TEV systems can reduce remediation times by at 

least 38 % compared to normal venting systems. In this study, water vapor in 

injected air played an important role in raising energy contents of the injected air 

and in transporting heat energy to the contaminated zone. In TEV modeling 

conducted here, the relative humidity of 50 % in injected air reduced more than 

50 % of the operation time required by normal venting systems  
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CHAPTER VII 

CONCLUSIONS 

 

Groundwater contamination with volatile organic compounds (VOCs) has become 

a major environmental concern. In order to preserve groundwater resources from such 

contamination and to clean up sites contaminated with VOCs, the understanding of fate 

and transport of contaminants in the subsurface systems and evaluation of remediation 

technologies is essential. To enhance this understanding, the study presented in this thesis 

addressed four important topics: (i) multiphase flow and contaminant transport in 

subsurface environments; (ii) biological transformations of contaminants; (iii) in-situ air 

sparging (IAS); and (iv) thermal-enhanced venting (TEV). Among VOCs, 

trichloroethylene (TCE) is one of the most commonly detected chemicals at contaminated 

sites. In this study, TCE and its daughter products (dichloroethylene (cDCE) and vinyl 

chloride (VC)) are chosen as target contaminants. A three-dimensional numerical model, 

called TechFlowMP, has been developed to conduct numerical modeling involving the 

four topics mentioned above. The model has been verified and validated using analytical 

solutions and experimental data published in the literature.  

In the first part of this thesis, density-driven transport of TCE in subsurface 

environments was studied. Vaporization of TCE as a nonaqueous phase liquid (NAPL) 

generated density-driven advection of gas phase. Under modeling conditions used in this 

study, the density-driven advection played a key role in the spread of TCE in the 

unsaturated zone near contaminant source area and in the transport of TCE into the 

groundwater in the saturated zone. The advection increased the contaminant release into 
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the atmosphere and also enhanced the reduction of NAPL saturation at contaminant 

source area. In the down-gradient saturated zone, as the density-driven advection 

accelerated the release of TCE from the contaminated groundwater to the atmosphere, the 

density-driven advection helped to reduce the development of dissolved contaminant 

plume in the zone. Infiltration applied in this study lowered gas flow velocity in the 

unsaturated zone but raised contaminant transport into the saturated zone by accelerating 

the downward movement of pore water in the unsaturated zone. In terms of permeability, 

the higher permeability of soil matrix created stronger density-driven advection in gas 

phase. The study on density-driven transport of contaminants helped us find the effect of 

the density-driven advection of gas phase on groundwater pollution in the upstream and 

downstream zones. The findings will be used to plan monitored natural attenuation and/or 

to design active remediation strategies at contaminated sites. 

In the second part of this thesis, the effects of biological transformations of 

dissolved contaminants on their transport were investigated. First-order relationships and 

Michaelis-Menten kinetics were used to describe sequential biotransformations of TCE, 

cDCE, and VC. Biotransformation of TCE reduced its spreading in a variably saturated 

zone and introduced new contaminants in subsurface systems. The greater bioreaction 

coefficient of TCE produced the greater reduction in TCE concentration and the greater 

production of cDCE. Since Michaelis-Menten kinetics becomes a zero-order or first-

order relationship according to contaminant concentrations, the kinetics was more 

complicated than a first-order relationship in predicting concentration profiles of cDCE 

and VC. According to bioreaction kinetics, the locations of the highest concentration 

zones of cDCE and VC varied.  For example, in first-order relationships, the highest 
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concentration zones of cDCE were located just above the groundwater table while, in 

Michaelis-Menten kinetics, the zones appeared in the down gradient saturated zone. In a 

case that biotransformation rates of TCE and cDCE were equal and were much greater 

than those of VC, VC concentrations were higher than cDCE concentrations in the 

system, which might represent competition between multispecies for dechlorination 

processes. The study in the second part of this thesis emphasized the importance of 

biological transformations of contaminants in their fate and transport in subsurface 

systems for long-term simulations. The fate and transport of reactive contaminants in 

multiphase flow highly depended on the kinetics of biotransformations and the magnitude 

of bioreaction coefficients. The findings of this study can be used to set up long-term 

remediation plans for bio-reactive contaminants. Since physical, chemical, and biological 

parameters of subsurface systems are highly site-specific, field experiments and 

investigations should be conducted to estimate the subsurface parameters as well as 

biotransformation coefficients.    

In the third part of this thesis, IAS modeling was conducted to analyze two 

important topics: (i) interactive movement of injected air and groundwater, as multiphase 

flow, in three-dimensional domains and (ii) remedial performance of a variety of IAS 

systems for contaminated groundwater. In IAS modeling, air flow generated by air 

injection was stabilized after a short period of IAS operation time. The injected air caused 

the reduction in groundwater velocity in the influence zone of air sparging. Some portion 

of groundwater flow detoured around the influence zone. Under IAS modeling conditions 

used in this study, IAS through multiple injection wells were superior over IAS through 

one injection well in capturing dissolved-contaminant plumes and cleaning up the 



 285

contaminated groundwater. Air injection using a horizontal well created uniform gas 

saturation in wider influence zones than that using a vertical well. The single-horizontal-

injection-well IAS used in this study covered all contaminant plumes, and the required air 

injection rate of the IAS was 60 m3/hr to achieve a target performance in contaminant 

removal (TCE < 0.001 g/L). The detour of groundwater flow below injection points may 

cause uncontrolled migration of contaminants. To avoid this detour, the depth of injection 

wells should be deep enough below contaminant plumes. In this study, the minimum 

distance between the top of injection well screens and the deepest point of contaminant 

plumes was approximately 3 m. A pulse air injection method was very effective to 

capture contaminant plumes under air injection rate ≥  60 m3/hr in this study. The effect 

of biodegradation on contaminant removal was highly variable according to bioreaction 

activity. In IAS systems with multiple vertical wells, the distance between injection wells 

is an important design parameter. Wells should be close enough to ensure the 

performance of IAS systems. In this study, the maximum distance between vertical 

injection wells was approximately 7.1 m in removing dissolved TCE below its 

concentration 0.001 g/L in the modeling domain.  

Up to now, the change in groundwater flow due to IAS has not been much studied 

and ignored in IAS study even though the groundwater flow is one of important factors 

that determine remedial efficiency of IAS. This study on IAS elucidated interactive flows 

of injected air and groundwater as multiphase flow and transport and removal of a 

contaminant under IAS in a subsurface system. The results of the IAS study can be used 

in designing effective, optimal IAS systems for contaminated sites. 
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In the last part of this thesis, under TEV in the unsaturated zone, heat transport 

through porous media and the effect of TEV on TCE NAPL removal were examined. 

Under the conditions used in this TEV modeling, thermal energy of injected air was 

effective in raising soil temperature at the contaminated zones, so TEV increased 

contaminant removal rates and reduced remediation times. The performance of TEV 

improved with the increase in injection flow rate and/or relative humidity of injected air. 

The TEV simulation results, including spatial, temporal variations in temperature and 

NAPL saturation degree under several TEV operations, will help us not only to identify 

the best operation conditions among the scenarios used herein but also to build optimal 

TEV strategies for contaminated sites. 

The first and second parts of this thesis focused on natural contaminant movement 

in subsurface environments: i.e., the fate and transport of conservative or reactive 

contaminants under no-human interruption. The results of those two parts allow us to 

well understand the impacts of transport mechanisms on the development of contaminant 

plumes and to delineate future soil and groundwater contamination at target sites. These 

outcomes will be one of fundamental data in decision-making processes for remedial 

actions such as monitored natural attenuation, pump-and-treatment, and IAS. 

The third and fourth parts of this thesis discovered in detail fluid flow and contaminant 

transport under human-induced remedial activities of IAS and TEV, respectively. The 

results of these two parts can be used to make practical guidelines for the application of 

the two remedial technologies, IAS and TEV. For example, the guidelines for IAS may 

include maximum air injection rates, well-to-well distances, injection types, and multiple-
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well layouts at contaminated sites. For TEV, humidity and temperature of injected gas 

mixtures can be additionally considered.  

Based on the findings of the study presented in this thesis, the following research 

topics can be recommended as further research areas: 

(i) Density-driven transport with gas and water phases in heterogeneous 

porous media; 

(ii) Transport of contaminants with convergent reactions; 

(iii) IAS in heterogeneous and/or stratified subsurface systems;  

(iv) Investigations on TCE fate and transport in the presence of other co-

contaminants; and 

(v) Gas flow and heat transport in a three-dimensional domain under TEV.   
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APPENDIX A  

A THREE-DIMENSIONAL ISOPARAMETERIC RECTANGULAR PRISM 

ELEMENT AND A LINEAR INTERPOLATION FUNCTION 

 

A rectangular prism element (Eight-node-linear element, Rectangular 

parallelopiped element,  Trilinear hexahedral element, or brick) shown in Figure A.1 is a 

basic element for three-dimensional domains and is used in TechFlowMP model. In a 

natural coordinate system (ξ,η,ζ), a shape function (basis function) for a rectangular 

prism element with eight nodes can be written  as follows [Hinton and Owen, 1979; 

Hughes, 1987; Zienkiewicz and Taylor, 1989]: 

( )( )( )ζζηηξξ iiiiw +++= 111
8
1     (A.1) 

where 1,, ±=iii ζηξ . 

The element has faces ξ = ±1, η = ±1 and ζ= ±1 as shown in the Figure A.1. Local 

coordinates of eight nodes are given in Table A.1. 

Each basis function (shape function) has a value of 1 at its own node, and 0 at the 

other eight nodes. A property of the basis functions for an element is that 
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Figure A.1 Rectangular prism element 

 

 

Table A.1 Local coordinates of eight nodes 

Local node number ξi ηi ζi 
1 -1 -1 1 
2 1 -1 1 
3 1 -1 -1 
4 -1 -1 -1 
5 -1 1 1 
6 1 1 1 
7 1 1 -1 
8 -1 1 -1 
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APPENDIX B  

MODIFIED PICARD METHOD 

 

Water flow equation in a variably saturated zone can be written as follows [Bear 

and Bachmat, 1990; Diersch and Perrochet, 1999]: 

( ) ww
w

rwmwww
sw Qzgkk

t
s

t
Ss +








∇+∇⋅∇=

∂
∂

+
∂
∂ ψ

µ
ρφψ   (B.1) 

where subscript w represents water phase, ( )[ ] gS wws ρφβαφ +−= 1  is a specific 

volumetric storativity ( 1−L ), gP www ρψ =  is water-equivalent pressure head of water 

phase ( L ), ( )( )wwww dPd //1 ρρβ =  is compressibility of water under an isothermal 

condition ( MLT /2 ), ( )( )wtt dPdVV //1=α  is soil matrix compressibility ( MLT /2 ), tV  

is a bulk volume of porous media element ( 3L ), and www QQ ρ/'=  is strength of 

sources/sinks of water phase ( 1−L ).  

Using the backward Euler approximation, the time-derivative of water saturation 

at the second term on the left-hand side of Equation (B.1) can be expanded, 

t
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∆
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=
∂
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φφ     (B.2) 

where superscript t is a time level, and superscript m denotes an iteration level at t+1 time 

level, and ∆t is a length of time step. By applying the approximation of the mixed form, 

proposed by Celia et al. [1990], to two mobile-phase (gas-water) system, the term 

( )gw
mt

ws ψψ ,1,1 ++  in Equation (B.2) can be expanded in a truncated Taylor series with 

respect to wψ :     
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where c is a specific fluid capacity defined by Parker et al. [1987]. The specific fluid 

capacities can be evaluated by either analytical derivative equations or chord slope 

approximations [Parker et al., 1987; Rathfelder and Abriola, 1994; Diersch and 

Perrochet, 1999]. The chord slope approximations have some limitations; it is not 

applicable in the region with the steep and near-discontinuous pressure gradient around 

0=fψ  [Paniconi and Putti, 1994]. TechFlowMP is capable of handling both methods, 

and the analytical method is used in this study. The analytical evaluation for specific fluid 

capacities in two mobile-phase (air-water) system can be done by [Parker et al., 1987],  
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Finally, combining Equations (B.2) and (B.3) and then inserting them into 

equation (B.1) yields,  
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For gas phase flow, its equation for a variably saturated zone can be written as 

follows as shown in Equation (3.13): 
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In the same manner applied to water flow equation, the equation for gas-phase 

flow can be rewritten as,  
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APPENDIX C 

CONTINUOUS DARCY’S VELOCITY APPROXIMATION 

 

Flow velocities of gas and water phase are required in solving contaminant 

transport equations. The velocities can be expressed using Darcy’s law. Globally 

continuous velocities of gas and water phase can be obtained by implementing a finite 

element method to solve Darcy’s law equation [Yeh, 1981]. Fluid velocity in porous 

media, q , can be written as follows: 
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q ρ

µ
−∇⋅−=      (C.1) 

where subscript f = fluid phase(g for gas and w for water), k  = intrinsic permeability 

tensor (L2), krf = relative permeability of β phase in a porous medium, µf = dynamic 

viscosity of  β  phase (M/LT), Pf = pressure in  f phase (M/LT2), g = vector of gravitational 

acceleration directed downward (L/T2), gP Rff ρψ= , and ρR = reference water density.  

Equation (C.1) can be expanded for a three-dimensional domain: 
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In Equation (C.2), Darcy velocity and pressure head can be approximated by  
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where w  is an approximation function. When Equations (C.5) and (C.6) are substituted 

into Equation (C.2), the residual for Equation (C.2) can be written by 
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For the Galerkin residual technique, the weighted residual equations are of the 

general form: 
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where Ω is a three-dimensional domain, and N is total number of nodes. 

Substitution of Equation (C.7) into the residual )),,,(ˆ( tzyxqR f  yields: 
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Equation (C.9) can be rewritten in the form of element matrix: 
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If principal permeability directions match with principal coordinate directions, 

xyK , xzK , yxK , yzK , zxK , and zyK  become zero. Finally, the form of element matrix in 

all directions (x-, y-, and z-direction) can be summarized as follows:    

In x-direction, 
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The form of element matrix in y- and z-direction can be obtained in the same 

manner done in x-direction. In y-direction, 
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For z-direction, 
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APPENDIX D 

 TIME DERIVATIVES IN FLOW AND TRANSPORT EQUATIONS 

 

Contaminant transport equation (Parabolic equation) can be expressed in the form 

of element matrix as follows: 
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CMCM masseconductanc     (D.1) 

where the conductance matrix [ ] [ ] [ ]AdvectionDiffusion MMM +=econductanc  and [ ]massM  is a 

mass storage matrix for a time derivative. The most commonly used method for solving 

Equation (D.1) is the α family of approximation, in which a weighted average of the time 

derivative of a dependent variable is approximated at two consecutive time steps by 

linear interpolation of the values of the variable at the two steps [Reddy, 1984]: 
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where s{}  refers the value of the enclosed quantity at time ∑=
∆==

s

i is ttt
1

, and 

1−−=∆ sss ttt  is the sth time step. If the time interval [0, T0] is divided into equal time steps 

then tsts ∆= .  

Equation (D.2) can be interpreted as Taylor’s expansion or finite difference. 

Using Taylor’s expansion, 
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Figure D.1 Schematic for time derivatives 
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The α+SC  can be estimated in two ways as follows: 

.....))(,(
!2

))1(())(,()1()()( 00
'

2

000 +
−

+−+=+ tCtfdttCtfdttCtC SS
ααα     (D.4) 

.....))(,(
!2

)())(,()()( 11
'

2

1111 +
−

+−= ++ tCtfdttCtfdttCtC SS
ααα    (D.5) 

Ignoring from the second derivative in both Equations (D.4) and (D.5) and 

subtracting from Equation (D.4) to Equation (D.5) yield 
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Using the finite difference technique,   
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For different values of α, we obtain the following well-known numerical 

integration schemes [Reddy, 1984]: 
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Equation (D.2) can be used to reduce Equation (D.1) to algebraic equations 

among C at time ts+1. Since Equation (D.1) is valid for any t > 0, it is valid for t = ts and t 

= ts+1: 
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where it is assumed that mass matrix [Mmass] is independent of time. 

We multiply both sides of Equation (D.2) with [Mmass] and obtain 
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Rearranging the terms into known and unknown ones, finally we obtain 
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If { }F  is invariant over time and ∆t is constant, Equation (D.14) can be simplified 

as follows:  
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APPENDIX E  

MATERIAL BALANCE CALCULATION 

 

Mass balance calculation is used to determine the fate (distribution) of 

contaminants in each phase over time and to verify mass conservation in the model. The 

calculation scheme was well described by Huyakorn and Pinder [1983], and it was used 

by Mendoza and Frind [1990]. As an example, consider the transport of a reactive species 

in the variably saturated zone. The governing equation can be written as 
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where φ is porosity, s is saturation degree, D is a dispersion coefficient [L2T-1], C 

is contaminant concentration [ML-3], q is Darcy velocity [LT-1], R is a retardation 

coefficient, λ is a decay coefficient [T-1], and M is the contribution of point sources/sinks 

in domains. The M can be expressed as 
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where Q  and *C  are the flow rate [L3T-1] and concentration at wells, nw is the 

number of wells, and δ  is the Dirac delta function. 

The mass balance over the whole domain Ω is obtained by integrating equation 

(E.1) and applying Green’s theorem to both the dispersive and advective terms. Thus we 

obtains 
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where ni is the outward vector normal to the boundary. The first term in Equation 

(E.3) represents the net material flux across the whole boundary. The second and third 

integrals represent, respectively, the rate of mass storage and the rate of mass decay in 

domain Ω. The last term represents the net rate of mass production owing to well 

injection and pumping. 

If an approximate finite element solution  ),,()(ˆ zyxwtCC jj= is substituted, the 

rate of material loss Mε can be evaluated as follows: 

( ) ( )∑∫∫
=

ΩΓ
+Ω








+

∂
∂

+Γ∇−≡
wn

l
lljj

j
iM CQdwC

t
C

RsdnCsDCq
1

*ˆˆ λφφε   (E.4) 

The properties of the basis functions for element and boundary will be: 
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where nB is the number of nodes on the whole boundary and n is the total number of 

nodes in the whole solution region. Combination of equations (E.4)-( E.6) yields   
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Equation (E.7) can be expressed in a simple form as 
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The Ω
iF  and w

lF  can be directly evaluated in elements. The boundary material 

flux, B
iF * , is determined by boundary conditions. 

[B.C. Type I] For a first-type boundary condition, the dispersive boundary nodal 

flux is not known explicitly and should be computed by back substitution of Ĉ  into the 

nonboundary integral terms of the original finite element approximation of the transport 

equation at node i*. Once the dispersive nodal flux, D
ciQ * , has been computed, the outward 

advective flux is obtained from 

iini wCqnCq =ˆ       (E.10) 

where qn is the outward normal fluid flux distribution. The total boundary nodal 

flux is obtained from  
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 [B.C. Type II] For a second-type boundary condition, the outward dispersive 

flux distribution is prescribed as 
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and the outward advective flux is obtained at equation (E.10). 

The total boundary nodal flux is  
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 [B.C. Type III] For a third-type boundary condition, the total material flux 

distribution is prescribed as 
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





∂
∂

−
ˆˆ φ     (E.14) 

and thus B
iF *  is given explicitly by 

∫Γ Γ= dwqF i
T
c

B
i **      (E.15) 

Cumulative mass balance error at a current time level, 1+t
Mε , will be computed by 

( )∑
=

+ ∆=
t

k

k
M

t
M t

1

1 εε      (E.16) 

where k is the time level. 

Either 1+t
Mε  or its normalized form 1~ +t

Mε  can be used as an indicator of the global 

accuracy of the numerical solution of the transport equation. The 1~ +t
Mε  is defined as 
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