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Abstract. Therapists and clinicians have been combining virtual real-
ity (VR) systems for rehabilitation purposes with motion capture sys-
tems to accurately keep track of the users’ movements and better an-
alyze their kinematic performance. The current state-of-the-art motion
capture technology is limited to the clinical setting due to its cost, the
necessity for a controlled environment, requirement of additional equip-
ment, among others. Given the benefits of home-based rehabilitation
protocols, more portable and cost-effective technology is being coupled
with the VR systems. In this work, we focus on validating the accuracy
of the Kinect™ camera from Microsoft. We compare its performance
to a current state-of-the-art motion capture system. Namely, we 1) an-
alyze the difference between the outcome metrics computed with data
collected with the Kinect™ camera and the outcome metrics computed
with data collected with the motion capture system, and 2) compare
the spatial trajectories generated by both systems for the hand, elbow,
and shoulder joints. Data were collected from ten able-bodied adults
to quantify these comparisons. In general, results from both analyzes
support the validity and feasibility of using the Kinect™ camera for
home-based rehabilitation purposes.
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1 Introduction

In the spirit of using virtual reality (VR) systems for rehabilitation purposes,
therapists and clinicians have been combining these VR systems with motion



capture systems to keep track of the user’s movements. Currently, the most pre-
cise technology are marker-based systems, like the Vicon and OptiTrack systems.
These use optical sensors to track reflective markers attached to the user’s body
and determine the three-dimensional (3D) coordinates of the markers, thus be-
ing able to locate the position of the user’s body and limbs. Although shown to
be highly accurate, these marker-based systems are limited when applied to the
home setting. Some limitations include: cost, the necessity for a controlled en-
vironment, and the time required for marker placement. As such, marker-based
motion capture systems have generally been limited to the clinical setting.
This is one of the main reasons we decided to use the Kinect™ camera from
Microsoft as the 3D depth capturing system for our VR system. In this work
we quantify the accuracy of the Kinect camera as a motion capture system.
We validate the precision of the device and study the feasibility of using it
for rehabilitation purposes by comparing it to a marker-based motion capture
system: the OptiTrack system. Previous studies have shown that the Kinect can
achieve competitive motion tracking performance as the OptiTrack [1]. Although
positive results were achieved, these studies focus only on spatial comparisons. In
this work we further investigate the Kinect’s capabilities specific to our proposed
system and kinematic parameters of interest, namely for the assessment of an
individual’s upper-body kinematic progress in a home environment.

2 System Description

We focus this work on upper-body motor skills, of which the most dominant form
is reaching movements which are correlated to various rehabilitation scenarios.
The ability to reach is critical for most, if not all, activities of daily living such as
feeding, grooming, and dressing [2]. In general, a reaching movement or exercise
requires an individual to move their arm from an initial position to a target
position. While interacting with the proposed system, it evaluates the user’s
kinematic performance and provides corrective feedback with respect to a set of
defined reaching tasks. For this work we define the reaching exercises such that
they are correlated to the virtual platform as described in the following section.

2.1 Virtual Environment

In order to enable a non-biased data collection process for randomized trials, we
employed a platform called Super Pop VRT™ [3, 4], a motivating virtual reality
game used to track upper-body movements using a three-dimensional depth
camera - we make use of the Kinect camera from Microsoft. During game play,
the user moves their arms to complete a set of reaching tasks. The movements
are mapped into the virtual environment which is displayed on a computer or
projecting screen. The objective of the game is for the user to move their arms
to ‘pop’ the virtual bubbles that appear on the screen. More details and images
about the setup and the system can be found in [3-5].



For this work we define a reaching task as the arm displacement generated
while moving one’s hand from ‘popping’ one bubble towards ‘popping’ another
in the Super Pop VR™ environment. To map the required reaching exercises
to the game’s virtual environment, the game employs a special type of virtual
bubbles called ‘Super Bubbles’ (SBs). At various instances during game play,
a set of SBs is displayed on screen prompting the user to move their dominant
hand and complete the reaching task. An example of a reaching task in the Super
Pop environment is shown in Figure 1. Namely, the reaching task requires users
to raise their dominant hand to ‘pop’ the START bubble directly above their
dominant shoulder, then make a downward movement to ‘pop’ the second SB,
and finally reach the TARGET bubble located to their side, thus creating a 90°
movement.

The positions of the three SBs are the same for all users, but the distance
between them is a function of the length of the user’s dominant arm. Before each
game, the users are asked to raise their arms as high as they can to calibrate
the game settings. The Kinect camera captures the three-dimensional Cartesian
coordinates of the user’s dominant hand and shoulder, and positions the SBs
on the circumference of the circle centered at the user’s shoulder which radius
equals the length of the user’s dominant arm as shown in Figure 1.

Fig. 1: Example of a 90° trajectory created by the position of the three Super
Bubbles.

3 Hypothesis

We determine the Kinect camera’s feasibility by comparing its performance to a
state-of-the-art marker-based system, the OptiTrack system. Our objective is to
evaluate our system’s ability, using the Kinect, to yield results similar to those
yielded by the OptiTrack system. In this manner, we can thus support our claim
that the Kinect camera can be used as a motion capture system for home-based
rehabilitation as well as identify any limitations with its use. The hypotheses of
this study are:

1. The differences between the outcome metrics computed with data collected
with the Kinect camera and the outcome metrics computed with data col-
lected with the OptiTrack system are negligible. This is to say that the



differences are small enough such that we consider the results from the two
systems to be equal to each other.

2. The trajectories generated with Kinect and OptiTrack data are spatially
similar to each other for the hand, elbow, and shoulder joints.

4 Experimental Design

Ten able-bodied adults were recruited to interact with the Super Pop VRTM
system. Six females and four males ranging in age between 24 and 31 years old
played the game. All participants were asked to complete a 90° reaching task (as
described in Figure 1) ten times for each arm. Their interactions were recorded
with both the Kinect camera and the OptiTrack system. The participants were
asked to wear a non-infrared reflective suit with passive infrared markers at-
tached to it for the extraction of the OptiTrack data. The reflective suit had 37
markers in total (Figure 2a). Our OptiTrack setup consists of six Flex 3 cameras.
The layout of the testing environment is shown in Figure 2b. Details about how
to calibrate the OptiTrack cameras can be found in [6].
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Fig. 2: (a) IR marker configuration, and (b) layout showing placement of the user
and the Kinect and OptiTrack cameras.

To validate the first hypothesis, we focus on the kinematic parameters that
depend only on the tracking systems: path length (PL), and elbow and shoul-
der range of motion (EROM and SROM respectively). We do not consider the
parameters that depend on additional external variables because these can po-
tentially introduce errors that are not derived from the two systems directly. For
example, the movement time parameter depends only on the computer’s system



clock, thus it is independent of the tracking systems’ capabilities. For each par-
ticipant, we computed a percent error difference between the outcome metrics
computed with Kinect data and the outcome metrics computed with OptiTrack
data. We computed a percent error value for each movement task the participant
completed and averaged the values per arm. The final percent error difference
per participant is computed using (1).
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where PEP®7? is participant p’s average percent error difference of parameter
3 for n completed movements tasks with arm o, V2*?(¢) and Vg’a’ﬁ(t) are
the outcome measures computed with Kinect and OptiTrack data respectively
for participant p, parameter 8 and trial ¢, and nf” is the normalization factor
for parameter 5. Each parameter has its own normalization factor. The EROM
and SROM parameters are normalized with respect to their maximum allowed
ROM (150° and 180° respectively [7]). Given that there is no maximum value
allowed for the PL parameter (i.e. any trajectory can have an infinite length in
theory), its percent error is normalized with respect to the value computed with
OptiTrack data since we consider it to be the ground truth value.

To validate the second hypothesis, we use the deviation from path (DfP)
parameter to quantify the similarity between the trajectories generated with
Kinect and OptiTrack data for the hand, elbow, and shoulder joints. For a given
participant, we compute the area between the Kinect and OptiTrack curves for
each completed movement task, each joint, and each arm. The final comparison
between the two trajectories is the average of the areas from the movement tasks
a given participant completed.

Before performing the computations, we first eliminate the trials with corrupt
data. Corrupt data occurs when one or both of the motion capture systems loses
track of the user’s movements. For the OptiTrack, this happens when the cameras
lose track of one or more of the suit’s IR markers. For the Kinect, this happens
when the camera loses track of one or more of the user’s joints. When one or
both of these events occur there is an incorrect estimate of the user’s position,
thus inaccurate joint coordinates are stored. Examples of trials without and with
corrupt data are shown in Figure 3.

5 Experimental Results

The average percent error differences between the outcome measures computed
with Kinect data and the outcome measures computed with OptiTrack data
per participant for the PL, EROM, and SROM parameters are shown in Table
1. The average area values between the trajectories generated with Kinect and
OptiTrack data per participant for the hand, elbow, and shoulder joints are
shown in Table 2.
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(a) Trajectories without corrupt data.
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(b) Hand trajectory with corrupt OptiTrack data.

Fig. 3: Examples of Kinect (blue) and OptiTrack (red) trajectories without (top)
and with (bottom) corrupt data.

6 Discussion and Conclusion

The percent errors averaged from all participants for the PL, EROM, and SROM
parameters are relatively low (Table 1). The percent error differences for the
EROM and SROM parameters range between 5% and 7% for both arms, while
the percent error differences for the PL parameter range between 10.5% and
12.5% for both arms. These low values suggest that the differences between
the outcome measures computed with Kinect data and the outcome measures
computed with OptiTrack data are small enough such that we can conclude that
the two capturing systems yield similar outcome measures. This supports our
first hypothesis and our claim that we can substitute the marker-based motion
tracking system with a more portable and cost-effective option. Namely, these
results suggest that the Kinect is a viable option for home-based rehabilitation
because it provides similar accuracy as the current state-of-the-art marker-based
motion capture systems within 5-7% for the EROM and SROM parameters and
10.5-12.5% for the PL parameter.

The areas between the trajectories generated with Kinect and OptiTrack
data for the hand, elbow, and shoulder joints averaged from all participants are



Table 1: Average percent errors for each parameter per participant.

‘ Right Arm PE [%] ‘ Left Arm PE [%)]
Participants PL EROM SROM PL EROM SROM

1 15.1 1.9 2.0 12.9 7.1 0.8

2 - - - - - -
3 8.3 3.3 3.0 10.7 3.2 4.4
4 19.4 5.0 9.0 34.5 5.1 9.5
5 12.3 3.7 2.2 10.2 6.5 1.0
6 4.3 2.8 3.4 3.7 2.2 1.4

7 6.6 9.7 7.6 - - -
8 5.2 13.1 20.1 5.9 5.9 7.6
9 4.2 8.8 13.3 6.3 14.4 11.8
10 19.0 6.1 3.0 15.7 5.9 7.5
AVG 10.5 6.0 7.1 12.5 6.3 5.5
STD 6.1 3.8 6.2 9.7 3.7 4.2

“PE: percent errors, PL: path length, EROM and SROM: elbow and shoulder range of motion.
**Missing values are due to all trials having corrupt data.

Table 2: Average areas as computed by the DfP parameter for the hand, elbow,
and shoulder joints per participant.

| Right Arm DfP [102 m?] | Left Arm DfP [107% m?]
Participants Hand Elbow Shoulder Hand Elbow Shoulder
1 62.2 48.4 38.9 48.1 46.8 19.8
2 - - - - - -
3 68.2 34.3 41.2 79.2 47.1 39.7
4 111.4 56.1 36.0 167.8 62.9 25.2
5 95.1 57.3 42.4 132.5 62.2 52.1
6 80.5 53.7 53.1 76.5 49.1 41.7
7 58.6 94.5 45.3 - - -
8 108.4 38.5 37.9 116.1 50.9 34.3
9 102.8 91.5 93.6 73.7 88.0 63.7
10 116.1 50.1 37.0 175.9 120.2 41.6
AVG 89.3 58.3 47.3 108.7 65.9 39.8
STD 22.3 21.1 18.1 47.0 25.9 14.0

"DfP: deviation from path, PL: path length, EROM and SROM: elbow and shoulder range of motion.
**Missing values are due to all trials having corrupt data.

relatively low (Table 2). The results are in the order of less than 0.15m?2. These
low values support our second hypothesis that the trajectories generated by both
tracking systems are spatially similar to each other. This further supports the
validity and feasibility of using the Kinect camera for home-based rehabilitation
purposes.
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