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Summary

Despite the increasingly broad perceptual capabilities of neural networks, apply-

ing them to new tasks requires significant engineering effort in data collection

and model design. Generally, inductive biases can make this process easier by

leveraging knowledge about the world to guide neural network design. One such

inductive bias is disentanglment, which can help preven neural networks from

learning representations that capture spurious patterns that do not generalize

past the training data, and instead encourage them to capture factors of variation

that explain the data generally.

In this thesis we identify three kinds of disentanglement, implement a strat-

egy for enforcing disentanglement in each case, and show that more general

representations result. These perspectives treat disentanglement as statistical

independence of features in image classification, language compositionality in

goal driven dialog, and latent intention priors in visual dialog. By increasing

the generality of neural networks through disentanglement we hope to reduce

the effort required to apply neural networks to new tasks and highlight the role

of inductive biases like disentanglement in neural network design.

xv



1
Introduction

Deep Learning (DL) has been an exciting new development for Artificial Intelli-

gence (AI). It has led to great progress on problems that are fundamentally per-

ceptual and thus traditionally hard. Now the field can classify images [KSH12;

He+16; SZ14; Xie+16], meaningfully relate text to images [Ant+15; Jia+18;

And+18; Lu+19; Xu+15], and learn to play difficult games [Sil+16; Mni+15].

These models even outperform humans sometimes [DK17; Sil+17]. This is

enabled by Neural Networks (NNs) that shortcut difficult or ill posed logical

problem by instead recognizing patterns. However, as we approach increasingly

complex problems we are still challenged to scale AI with that complexity.

To see this challenge compare image classification, visual question answering,

and visual dialog. We know how to train an image classifier to accurately

label images with one of 1000 classes [Rus+14; He+16]. First collect lots of

labeled examples (e.g., 10,000 per class), then train a convolutional neural net to

predict the correct labels. The neural net will learn features that represent image

semantics that are more directly useful for classification than pixel intensities.

Large scale labeled image data is expensive to collect and neural nets can be

difficult to design, but the approach achieves accuracy on par with humans. 1

In visual question answering (VQA) the goal is to answer a question (e.g., “What

color is the animal?” in Fig. 1.1) about an image instead of simply labeling

that image. This scales complexity by requiring VQA models to understand

1Note the task is constrained to the distribution of images and classes found in Ima-
geNet [Rus+14].

1



natural language in addition to the visual world. As before, the approach is to

collect a large dataset of examples [Ant+15] – (image, question, answer) tuples

in this case – and train a neural net to predict the answer given the image and

question [Jia+18]. The VQA model needs to be able to understand much of the

same visual content as the image classifier, so instead of learning a good image

representation from scratch it directly uses the representation learned by the

image classifier. Nonetheless, it still needs to learn to represent language and to

ground that language in the classifier’s visual representation.

But this time the approach is less effective, achieving quantifiably and quali-

tatively worse performance than humans [Ant+15]. Even the best VQA mod-

els [Jia+18] that take this primarily data-driven approach fail at simple tasks like

counting objects in an image. Moreover, data is more expensive to collect be-

cause it requires generating not just answers to questions, but also the questions

themselves. At the same time the space of possible examples (image, question,

answer tuples) is larger since there are more questions one might pose in natural

language than the 1000 labels from ImageNet [Rus+14].

red

What color is the fire hydrant?

yellow

And the one to the right?

Fig. 1.1.: This thesis revolves around three problems: image classification, visual
question answering (VQA), and visual dialog. In image classification the
goal is simply to pick a descriptive label for an image from a list of choices.
The image above might be labeled “fire hydrant” (label not shown). In VQA
the goal is to answer a question about an image. Above, one agent asks
about fire hydrant color and the VQA agent responds saying the hydrant is
red. Finally, in visual dialog agents have a conversation about an image. In
the example, the question asking agent follows up the previous question by
asking about a related fire hydrant.

A similar story holds for visual dialog, which allows a sequence of questions

like the two in Fig. 1.1. The second question in Fig. 1.1 (about the yellow

2



hydrant) depends on the previous questions and answers, making the task

more complex and requiring a representation of dialog history to be learned.

Humans answer questions much better than neural nets trained with lots of

examples [Das+17b] and data collection is more expensive than previous tasks,

mirroring the challenges of VQA.

Representation learning is key in all these cases, but it also becomes less

effective as tasks get more complex. To address these issues we will continue to

focus on representation learning, but look for ways to improve it in addition to

just collecting more data. This will be done by using our prior knowledge about

the tasks and the world to bias the representations these neural nets learn.

In particular we focus on disentangled representations, and show that by en-

couraging neural net representations to be disentangled they perform better in

terms of generalization to new examples and new tasks. Though neural nets

learn useful representations, learning is terribly underconstrained, leading to

concepts that are not very general [Zha+16] and shifting the attention of de-

signers to the inductive biases we bake into these models. Disentanglement is

one such inductive bias. In its most general – hence not very useful – sense,

disentanglement is the idea that representation learning can be constrained by

forcing different factors of variation to be represented separately [BCV13]. A

representation thus constrained should generalize better.

This thesis continues by describing three different perspectives on disentangle-

ment and relating them to existing work. It then devotes three chapters – Chapter

2, Chapter 3, and Chapter 4 – to detailed explanations of how these perspectives

on disentanglement can be implemented and how doing so increases the gen-

eralizability of the corresponding representations. The final chapter concludes

by summarizing our work and reflecting on the role of disentanglement and

inductive biases more generally in neural net design.

3



1.1 Three Perspectives on Disentanglement

and Generalization

In this work disentanglement has three somewhat different definitions, each

paired with a slightly different notion of generalization. For each case we

provide a concrete definition of what disentanglement is and in the body of

the thesis we verify that by encouraging disentanglement we can improve

generalization. This section first offers a common framework for thinking about

these notions of disentanglement, then details each of the three perspectives in

individual sub-sections.

Disentanglement is only useful because of the structure we observe in the world,

so we have to start by understanding that structure. Only certain scenes can be,

or are likely to be, physically realized. Because of this, we can often summarize

our observations using a small amount of information communicated as a few

salient factors of variation. For example, “a black cat on a white background” is

a small amount of information summarizing Fig. 1.2b. It only applies to very

few of all the possible images of cats, much less all possible images. With more

information about what task this representation is supposed to help perform,

e.g. object classification, we can further reduce the summary to simply “a black

cat.”

In general, the world contains direct observations formalized as input vectors

x (usually a vector of real numbers). They are typically represented by some

neural network f as vectors h = f(x). There are also true but unknown

“generative factors”, dimensions of some vector z, such that all the variations of

z correspond to some x that occurs in the real world, though it might be that

4



(a) (b) (c)

Fig. 1.2.: In Section 1.1.1 we consider how to find a function which classifies all
of these images correctly. The rightmost images are of different classes,
but have similar raw pixel representations, while the leftmost images are
both cats, but have less in common. By disentangling representations using
statistical independence we want to avoid the tendency of neural nets to
overfit to fine-grained patterns like those shared between the cat in Fig. 1.2b
and Fig. 1.2c.

some variations in x are not likely to be generated by any z. If h is a disentangled

representation then its dimensions will correspond to the dimensions of z.

To take some intuitive examples, the latent z might correspond to some com-

bination of things like the rotation of digits / faces, the classes objects fall

into, or attributes like color and shape. If we can get neural nets to discover

generalizable representations like these, then those representations will support

better performance on the tasks they are used for.

This setup is fairly vague. What does it mean for the dimensions of h to

“correspond” to the dimensions of z, and more importantly what are these

factors of variation z exactly? There is not a good general answer because z

depends strongly on domain specific knowledge, and the choice of factors might

not even be unique. Each choice of z effectively defines an implicit task which

different disentanglement priors may be more or less well adapted to. This

ambiguity makes it useful to define different notions of disentanglement, based

on different domain specific intuitions about the latent factors. The subsequent

5



sub-sections do exactly this, but before proceeding we will briefly summarize

the place of disentanglement in the deep learning literature.

The idea that there is low-dimensional structure to the world, a manifold, and

that neural networks should take advantage of it is fundamental to representation

learning [LBH15; BCV13; GBC16]. As a result, it has been explored extensively

in literature on unsupervised learning of disentangled representations [Hig+17;

Kul+15; DB17]. If neural nets start with disentangled representations before

being trained to accomplish goals then they may be able to accomplish those

goals more efficiently or more accurately.

A number of works have taken up this idea under the label of unsupervised

pre-training and observed increased interpretability and better generalization

(mainly using synthetic data) of the resulting representations [Hig+17; Che+16;

Kul+15]. Some work has even applied these methods to additional tasks and

found improved generalization Steenkiste et al. [Ste+19] and Esmaeili et al.

[Esm+18]. What makes this possible in an unsupervised is that the inductive

biases of disentanglement are compatible with the inductive biases found in

the data [Loc+19]. On the other hand, supervision allows the inductive bias of

a particular task to strongly inform the model and which factors are useful to

disentangle for the task at hand.

This brings us to the proposed notions of disentanglement. In each of the

three sections below we describe a problem and how a more specific notion of

disentanglement can be used to solve it.
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1.1.1 Disentanglement as Statistical Independence

In Chapter 2 a disentangled representation h is one where changes in one (or a

few) dimensions of z correspond to changes in one (or a few) dimensions of h.

Intuitively, this sounds like statistical independence, so in this perspective the

more statistically independent the dimensions of h, the more disentangled the

representation. Redundant representations might capture spurious patterns and

overfit to fine-grained differences, like those between Fig. 1.2b and Fig. 1.2c,

as opposed to the more general patterns shared by the cats but not the dog in

Fig. 1.2.

We penalize redundant representations when training image classifiers. Instead

of optimizing just the cross-entropy loss LCE commonly used for training neural

network classifiers we penalize redundancy with an additional term LDeCov

weighted by hyperparameter λ:

L = LCE + λLDeCov (1.1)

Given activation values hn
i and hn

j of neurons i and j for example n, we measure

the covariance between i and j using the current (size N ) batch of examples

Ci,j = 1
N

N∑
n=1

(hn
i − µi)(hn

j − µj) (1.2)
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where µi is the empirical mean of activation i over the batch. This allows us to

use the Frobenius norm ‖ · ‖F to aggregate all covariances between different

neurons into LDeCov

LDeCov = 1
2
(
‖C‖2F − ‖diag(C)‖22

)
(1.3)

This loss, described in detail in Chapter 2, is larger for redundant representations,

so penalizing it minimizes redundancy.

Training with this loss reduces overfitting in large CNN image classifiers. To

measure this we use test accuracy and the gap between train and test accuracy,

computing both metrics for a number of image classification CNNs and datasets.

Generally, test accuracy increases and the gap between train and test accuracy

decreases when we use the DeCov loss. By disentangling representations

with the DeCov loss we increase the generaliztion capabilities of CNN image

classifiers.

This view of disentanglement as statistical independence is also popular in

the unsupervised disentanglement literature. There statistically independent

representations form the basis of some of the most important work like β-

VAE [Hig+17], where independence results from a variational prior. Further

related work directly penalizes the total covariance of h [KSB17] in a fashion

similar to that described in Chapter 2. Both of these works succeeded the work

of Chapter 2.
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1.1.2 Disentanglement as Compositionality

In Chapter 3 we treat disentanglement as compositionality in language. Eventu-

ally we want systems that use neural networks to interact with humans using

language, so they need to understand symbolic representations like words. A

key feature of these types of representation is compositionality, when words

that themselves have meaning can be combined with other words to form new

meanings.

To see why this is important and how it is an example of disentanglement,

consider how a neural net might represent words for each of the objects in

Fig. 1.3a. These objects are embedded into a continuous vector space (here the

2d plane) and we want to do a simple classification task, assigning a word to

each object. Here we take a geometric perspective on how neural nets do this,

by using one hyperplane per word [Mon+14]. For example, the blue triangle

might be represented by the black hyperplane in Fig. 1.3b (the dashed line is

the normal vector) and then the other two objects by the additional hyperplanes

in Fig. 1.3c. The hyperplane an object is farthest in front of corresponds to the

word used by the neural net to represent that object. This toy example makes it

fairly easy to place one hyperplane per object and thereby represent each of the

objects from the available set.

(a) (b) (c)

Fig. 1.3.: This is a toy example where there are three objects that need to be represented
with symbols. Neural networks can do this using one hyperplane per symbol.
The right most figure uses one per object, allowing them to be distinguished
symbolically.
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But what happens when we get a new object we have not seen before? Because

the world often has compositional structure, this new object is likely to be

similar to past observations but with a novel composition of attributes, like the

red square from Fig. 1.4a. Using the previous hyperplanes the red square is

going to be represented with the same word as the red triangle since it is closest

to being in front of that hyperplane (it has the highest activation when projected

on to that normal vector). This prevents the model from distinguishing between

red shapes (Fig. 1.4b).

(a) (b) (c)

Fig. 1.4.: Using one hyperplane per example as in the middle figure does not generalize
well when a new object like the red square is added to the environment.
However, a compositional representation like the one on the right will
generalize well by disentangling attributes.

However, an alternate representation could use compositional features like the

shape and color attributes and it would be able to distinguish between red shapes.

Such a representation disentangles the two attributes and thus generalizes better.

One way for a neural net to do this would be to use two words corresponding to

the two hyperplanes from Fig. 1.4c – one for color and one for shape.

In Chapter 3 we study compositionality using the simple object reference game

described in Fig. 1.5. There are two agents, Q-bot (in green) and A-bot (in red).

A-bot gets to see an object (in this case, a blue square) that Q-bot does not know

about. Q-bot is told to predict two attributes of the object (here, color and shape),

and the two bots communicate with each other to pass on information about the

object. Ideally, the dialog looks something like the one in Fig. 1.5. Q-bot asks

"X" (what color?), A-bot responds "1" (blue), Q-bot asks "Y" (what shape?),

10



and A-bot responds "2" (square). After the dialog Q-bot makes a prediction

about the color and shape of the object (blue, square).

(color,
shape)

X

1

Y

2

Prediction

(blue, square)

Fig. 1.5.: The object reference game of Chapter 3, described in Section 1.1.2.

In this toy setting it is trivial to supervise Q-bot and A-bot with a composi-

tional language, designed by humans, that disentangles the various attributes

of interest, but we are interested in studying how a compositional language

might emerge without this supervision. We are interested in what it takes for

these agents to discover a compositonal language from feedback about task

performance. Thus we reward both agents when Q-bot guesses both attributes

correctly, and we give no reward otherwise. A language that can communicate

object attributes emerges as a result of this feedback, but it is not necessarily

compositional. When a new object is shown to A-bot, it won’t necessarily be

able to communicate both attributes effectively because it may have learned a

language more like the one in Fig. 1.4b than the one from Fig. 1.4c.

We improve this ability to learn compositional language by adding a cultural

transmission mechanism to train our bots with. In evolutionary linguistics

cultural transmission has been shown to increase the compositionality of lan-

guage [Kir01; KCS08; KGS14]. These studies simulate the transmission of

language between pairs of agents in a sequence. Agent A is given a random

language and teaches part of it to agent B. This gives agent B a new language,

which it then teaches to agent C. As agents continue to learn in this fashion the

language itself changes to become more compositional than it was at first.
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We transfer this result to our object reference game with neural agents using a

more indirect approach which implicitly encourages transmission of language

between agents and still increases language compositionality. To achieve im-

plicit language transmission we 1) create a population of many Q-bots and many

A-bots, and 2) create dynamics in the population by replacing some agents

periodically. Each new agent has an ineffective (randomly generated) language.

This creates a knowledge gap that encourages these new agents to learn from

the old agents that already know an effective language, implicitly mimicing the

transmission protocol from before. In Chapter 3 we show that this encourages

the resulting languages to generalize to unseen objects like the red square from

Fig. 1.4a.

1.1.3 Disentangling Intention and Language

In Chapter 4 our final perspective focuses on scaling question representations

to goal driven visual dialog by transferring language information from VQA.

Our goal driven dialog setting requires agents to ask questions about images,

like in VQA, but for a different reason. Thus by learning to generate the words

in a question (language) and then learning what that question should be about

(intention) we can efficiently learn a representation that transfers the needed

information while being flexible enough to adapt to a new task.

We study this problem using an image guessing game similar to the object

reference game from Chapter 3, but with a vision component (natural images)

and natural language (English). In this goal driven visual dialog setting we

provide the agents with an image guessing game to solve. Two agents are

presented with the pool of images shown on the left of Fig. 1.6. One is identified

as the target image (number 3 in Fig. 1.6), and this information is only revealed

to the question answering agent A-bot. Next the bots engage in a couple rounds
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of dialog. In each round Q-bot asks a question about the pool of images and

A-bot answers it with respect to only the target image. Then Q-bot makes a

guess about which image is the target given only the dialog so far and the image

pool. Thus Q-bot asks questions to help it find the target image. In this context,

a good question allows A-bot’s answer to discriminate between images in the

pool instead of trying to “stump” A-bot, as in the original question motivation

for VQA. The questions in VQA are similar to those in visual dialog, but their

intent is different because the two tasks have different goals.

We could approach this problem by trying to collect complete dialogs where

participants play the image guessing game, then train Q-bot to generate those

questions. This would align the intent and language of the questions, but it

would be expensive and it wouldn’t scale to new tasks; every new task would

require a new dataset.

An alternate approach, which we take in Chapter 4, is to transfer language to the

image guessing game from an existing dataset (VQA) and then learn to solve the

new task by rewarding Q-bot when it guesses the target correctly. This task level

feedback is easy to compute because we know the target image. To generalize

from VQA to goal driven dialog we design a model that first determines question

intention and realizes that intention in a sequence of words.

Agents’ intentions depend on their goals, so we must discuss what agents are

trying to accomplish when they ask questions in VQA and visual dialog. In the

VQA dataset the motivation is to develop a question answering agent and not a

question asking agent, so questions are asked by humans. Humans were told to

ask questions that would stump a smart robot [Ant+15]. This task is different

from the one we ask our visual dialog agents to perform (to guess the target

image).
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1 2

3 4

laying

Is the child laying or sitting?

red

What color is the blanket?

P: 4

P: 3

GuessDialogPool

3

Fig. 1.6.: The image guessing game described in Section 1.1.3. The green bot tries
to guess the target image (outlined in red), which only the red bot can see,
by asking the red bot questions. These Questions are only answered for the
target image, so if they are discriminative enough then they can be used to
figure out which image is the target.

Though the intention is different in the two tasks, questions need be expressed in

natural language in both cases, so both questioner agents need an understanding

of how to generate valid questions. Normally this can be accomplished by

training Q-bot to mimic human generated questions for the relevant task, like

those generated for VQA [Mos+16]. But for more complex tasks like our goal

driven visual dialog task this approach becomes less appealing. The increased

complexity of visual dialog makes it more data hungry and at the same time

more expensive to collect data for.

We approach this with transfer learning, by leveraging data already collected

for VQA to solve the more complex visual dialog task. Questions generated for

VQA and visual dialog are similar in that they both must be expressed in valid

language (i.e., English in this case), but different in their intention (they have

different goals). This suggests we should transfer knowledge about language

from VQA to visual dialog, but ignore the intention of the VQA questions.

In particular, Q-bot first generates a latent variable constrained to represent

intention and then generates language conditioned on this latent variable. The

language generation part of Q-bot is trained to mimic human language from

the VQA dataset but is not trained to solve the image guessing game. As Q-bot
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is trained for the image guessing game discussed above it can only adapt its

intention representation.

We show that without these steps to promote disentanglement Q-bot is indeed

able to guess the target image correctly. However, even though it was initialized

with some knowledge of what English questions look like, we show that its

language drifts and no longer looks like valid English when disentanglement

is not used. With disentanglement we show that the language looks a lot more

like valid English to humans who judge it. Moreover, it acts like valid English,

because humans can understand it well enough for Q-bot to guess the right

image.

1.2 Contributions

• In chapter Chapter 2 we show how disentangling latent variables using

statistical independence at a low level makes NNs generalize better to

new examples from the same domain. Disentanglement is realized via

an additional regularizing loss which penalizes redundancy or statistical

dependence.

• In chapter Chapter 3 we cast language in goal oriented dialog as a latent

variable and show how to make it compositional without direct super-

vision. In particular, adding multiple agents with cultural dynamics

encourages compositionality. As we point out, this is a commonly known

effect in Evolutionary Linguistics, but we are the first to apply the idea to

neural networks. We show that the languages, which emerge as a result

of goal driven behavior, generalize compositionally.
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• In Chapter 4 we focus on a more realistic visual dialog setting where the

language is English and the task involves natural images. We discuss how

to build a question asking agent that disentangles language from intention.

Our agent not only solve new tasks effectively, but it does so without

forgetting what valid English looks like. This allows our agent to interact

with humans to solve tasks it did not receive language supervision for.

In summary, this thesis identifies the importance of the disentanglement bias to

generalization in representation learning by describing three notions of disen-

tanglement and showing how disentanglement promotes generalization in each

case.
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2
DeCov: Decorrelating

Hidden Representations

2.1 Introduction

Deep Neural Networks (DNNs) have recently achieved remarkable success on a

wide range of tasks – e.g., image classification on ImageNet [KSH12], scene

recognition on MIT Places [Zho+14], image captioning with MS COCO [Lin+14a;

Vin+14; CZ15], and visual question answering [Ant+15]. One significant rea-

son for improvement of these methods over their predecessors has to do with

scale. Faster computers coupled with optimization improvements such Batch

Normalization, Adaptive SGD, and ReLus let us quickly train wider and deep

networks. Access to large annotated datasets and regularizers such as Dropout

has provided significant reduction in the amount of overfitting in these large

networks, thus enabling the performance we see today.

In this paper, we focus on the problem of overfitting, which is observed when

a high capacity model (such as a DNN) performs very well on training data

but poorly on held out data. Even when trained on large annotated datasets

(such as ImageNet [Rus+14] or Places [Zho+14], containing millions of labelled

images), deep networks are susceptible to overfitting. This problem is further

exacerbated when moving to new domains and tasks – since DNNs tend not to

generalize with a few examples, each new task tends to require curating and
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annotating a new large dataset. While there has been some success with transfer

learning [Gir+14; Don+14; Yos+14], networks still overfit.

A promising alternative to creating even larger datasets is to apply different

forms of regularization to the network while training to avoid overfitting. These

methods include regularizing the norm of the weights [Tik43], Lasso [Tib96],

Dropout [Sri+14], DropConnect [Wan+13], Maxout [Goo+13], etc.

One particular regularizer of interest to DNNs is Dropout [Sri+14], which

attempts to prevent co-adaptation of neuron activations. Co-adaptation occurs

when two or more hidden units rely on one another to perform some function

which helps fit training data, thus becoming highly correlated. Co-adaptation

is reduced by Dropout using an approximate model averaging technique that

sets a randomly selected set of activations to zero at training time. [Sri+14]

show that this has a regularizing effect, leading to increased generalization and

sparser, less correlated features. Notice that this is without explicitly encouraging

decorrelation in hidden activations.

To further investigate the relationship between hidden activation correlations

and overfitting, we show in (Fig. 2.1) two quantities from a CNN trained for

image classification on CIFAR100 [KH09] – (1) the amount of overfitting in

the model (as measured by the gap between train and val accuracy), and (2)

the amount of correlation in hidden activations (as measured by the Frobenius

norm of the sample cross-covariance matrix computed from vectors of hidden

activations; details in Section 2.2). Both these quantities of interest are reported

as a function of amount of training data (x-axis) and with/without Dropout

(left/right subplot). As expected, both increased training data and Dropout have

a regularizing effect and lead to reduced overfitting.
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The figure also shows an interesting novel trend – as the amount of overfitting

reduces, so does the degree of correlation in hidden activations. In essence,

overfitting and co-adaptation seem to be correlated. The open question of course

is – is the relationship causal?
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Fig. 2.1.: Two principal ways to prevent overfitting in deep models are to train with
more data (x axis) and to train with Dropout (right plot). As expected, both of
these decrease validation error (left axis), but they also happen to decrease
hidden activation cross-covariance (right axis). We investigate whether
explicitly minimizing cross-covariance can lead to reduced overfitting.

This leads to the principal questions of this paper – Is it possible to bias networks

towards decorrelated representations by directly reducing correlation between

hidden units? And do such decorrelated representations generalize better?

Overview and Contributions. The goal of this paper is to learn DNNs with

decorrelated activations and study the effect of this decorrelation on their gener-

alization performance. Towards this end, we propose a fairly natural loss called

DeCov, which explicitly encourages decorrelation between the activations in a

deep neural network. This loss requires no additional supervision, so it can be

added to any existing network.

In addition to the link discussed above, our motivation also comes from the

classical literature on bagging and ensemble averaging [HS90; PC93; Bre96],

which suggests that decorrelated ensembles perform better than correlated

ones.
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Our experiments encompass a range of datasets (MNIST [LeC+95], CIFAR10/100 [KH09],

ImageNet [Rus+14]), and different kinds of network architectures (Caffe im-

plementations of LeNet [LeC+95], AlexNet [KSH12], and Network in Net-

work [LCY13]). All cases suggest that DeCov acts as a novel and useful

regularizer.

2.2 Approach: DeCov Loss

To express our notion of redundant or co-adapated features, we impose a loss

on the activations of a chosen hidden layer. In a manner similar to Dropout,

our proposed Decov loss may be applied to a single layer or multiple layers in

a network. For simplicity, let us focus on a single layer. Let hn ∈ Rd denote

the activations at the chosen hidden layer, where n ∈ {1, . . . , N} indexes one

example from a batch of sizeN . The covariances between all pairs of activations

i and j form a matrix C:

Ci,j = 1
N

∑
n

(hn
i − µi)(hn

j − µj) (2.1)

where µi = 1
N

∑
n h

n
i is the sample mean of activation i over the batch.

We want to minimize covariance between different features, which corresponds

to penalizing the norm of C. However, the diagonal of C contains the variance

of each hidden activation and we have no reason to require the dynamic range

of activations to be small, so we subtract this term from the matrix norm to get

our final DeCov loss

LDeCov = 1
2
(
‖C‖2F − ‖diag(C)‖22

)
(2.2)
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where ‖ · ‖F is the frobenius norm, and the diag(·) operator extracts the main

diagonal of a matrix into a vector. In our experiments, subtracting the diagonal

made little difference for small networks, but led to increased stability for larger

networks.

Perhaps the best quality of this loss is that it requires no supervision, so it can be

added to any set of activations. In a manner similar to Dropout, our experiments

typically apply Decov loss to fully connected layers towards the deep end of a

network (e.g., fc6 and fc7 for AlexNet). However, note that Decov affects all

parameters up to the layer where it is applied (and not just the parameters in the

specific layer).

At first glance, one seeming peculiarity about this loss is that its global minimum

can be found by setting all weights for h to 0. This is similar to an L2 regularizer

in that both encourage weights to tend toward 0, but one important difference

between these two regularizers is that LDeCov depends on input data and is not a

function purely of a weight vector like one might find in a classical regularizer

such as L2 or L1.

To understand this further, consider the gradient of the loss with respect to a

particular activation a for a particular example m

∂LDeCov
∂hm

a

= 1
N

∑
j 6=a

[
1
N

∑
n

(hn
a − µa)(hn

j − µj)
]

(hm
j − µj). (2.3)

Let us denote the rightmost term in this expression by I(j,m) = (hm
j − µj).

This term is large (in absolute value) when feature j is discriminative for

example m w.r.t. the mean of the batch. If j were not discriminative for m then

hm
j would be close to µj . Hence, we can consider I as an “importance” term,

corresponding to a notion of how significant feature j is for example m.
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Also notice that the term on the left in the gradient expression is simply the

covariance between feature a and feature j. Thus, the gradient can be re-written

as

∂LDeCov
∂hm

a

= 1
N

∑
j 6=a

Ca,j · I(j,m). (2.4)

Interpretation. Intuitively, the covariance term can be thought of as measuring

(linear) redundancy: features a and j are redundant if they vary together. Thus,

the DeCov loss tries to prevent features from being redundant, but redundancy

is weighted by importance (I). Specifically, a feature j contributes towards a

large gradient of feature a on example m if j is important for m and correlated

with a. This means important features correlated with a (e.g., j) contribute to a

large gradient of a, suppressing the activation hm
a . A feature which fires only in

specialized situations (e.g., a cat’s ear) will likely be nearly identical or noisy for

most other examples (e.g., non-cats) and will not contribute towards gradients

of other specialized features.

2.3 Related Work

Redundancy Based Representations. The idea of using low redundancy to

learn representations has been around for decades. In an early attempt to model

human perception, [Bar61] lists 3 possible learning principles, the 3rd being the

notion that representations should not be redundant.

Later work continued to investigate this intuition in the context of unsupervised

feature learning. Three objectives emerged, each of which formalize the no-

tion differently. (1) An information theoretic view is expressed by [Lin88].

The main idea is to maximize information gained by predicting the next rep-
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resentation/layer between input and output. (2) The closest objective to ours

is cross-correlation (not cross-covariance), which appears in [BB09] and com-

plements a temporal coherence objective. It also appears in [PH86] where it

complements an objective which encourages units to capture higher order input

statistics. (3) Finally, redundancy minimization is realized through predictability

minimization in [Sch92] for the purpose of learning factorial codes (representa-

tions whose units are independent). This objective says that one unit should not

be predictable given all of the others in its layer as input.

All of these works focus on unsupervised feature learning and do not experiment

with supervised models. Furthermore, these early pioneering works were limited

by data and evaluated small networks without many of the modern design

choices and features (e.g. ReLus, Dropout, SGD instead of Hebb’s update rule,

batch-normalization, etc.). We propose redundancy minimization for a new

purpose (regularization), evaluate it using modern techniques such as end-to-end

learning using SGD with respect to a supervised objective, and do this in the

context of harder challenges presented by modern datasets. To the best of our

knowledge, such a setting has not been considered before.

Correlation/Covariance Losses in Other Settings. Other works have used

similar penalties, but in different settings and to different effects. Deep Canon-

ical Correlation Analysis (Deep CCA) [And+13] and Correlational Neural

Networks (CorrNets) [Cha+15] apply a similar loss which maximizes corre-

lation, unlike our minimization of cross-covariance. Both methods are used

to learn better features in the presence of multiple views or modalities. They

embed inputs to a common space and maximize correlation between aligned

pairs.
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Another idea similar to ours is that of [Che+14], which aims to discover and

disentangle hidden factors. The goal is to separate supervised factors of varia-

tion (e.g., class of MNIST digits) from unsupervised factors of variation (e.g.,

handwriting style). In order to achieve this goal, they impose a covariance (not

correlation) loss between (1) the softmax outputs of a neural network trained to

recognize digits and (2) a hidden representation which is used in conjunction

with (1) to reconstruct the input (via an auto-encoder).

These two works suggest that correlation losses significantly impact learned

representations in the context of modern networks. One key difference be-

tween these two approaches and ours is that while their formulations decorre-

late [Che+14] and disregard [And+13; Cha+15] parts of different representations,

our approach tries to decorrelate parts of the same representation. Moreover,

the ultimate goals are different. Unlike these approaches, our goal is simply to

improve supervised classification performance by reducing overfitting, and not

to reconstruct the original data.

Dropout and Batch Normalization. Two recent approaches to regularization

in deep neural networks are Dropout [Sri+14] and to some extent Batch Nor-

malization [IS15]. Dropout aligns with our intuition and goals more closely as

it aims to improve classification performance by reducing co-adaptation of acti-

vations. On the other hand, Batch Normalization focuses on faster optimization

by reducing internal co-variate shift, which is the constant variation of a layer’s

input as it learns. Some Batch Normalization results indicate it could act as

a regularizer, but this has not been exhaustively verified yet. Our approach is

similar to Batch Normalization due to its use of mini-batch statistics.
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2.4 Experiments

We begin with a synthetic dual “modality” experiment, which serves as a testbed

for measuring improvement due to decorrelation. Next, we use an autoencoder

(as in [Sri+14]) to contrast DeCov and Dropout. Finally, we use a variety of

experiments to report Image Classification performance on CIFAR10/100 and

ImageNet, noticing significant improvement in all cases. Note that we set the

Dropout rate to 0.5 as suggested by [Sri+14].

2.4.1 Dual modality experiments with MNIST:

Predicting Side-by-Side Digits

We propose a synthetic dual “modality” task on MNIST – simultaneously

predict the class labels for two digits placed adjacent in an image. We created a

dataset where each example consists of two MNIST digit images horizontally

concatenated and separated by 16 black pixels (to prevent interference between

feature maps in the first layers). (Fig. 2.2) shows a few examples.

Fig. 2.2.: We consider the task of simultaneously predicting two MNIST digits placed
side by side. By biasing right digits more than left digits at train time, we
create a controlled scenario with the type of problem we expect DeCov to
solve.
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The important detail of this experiment is the particular bias we inject into the

distribution of left and right digits. Let

P (l) = 0.1 and P (r|l) =



0 if l ∈ {0, . . . , 4} and r ∈ {0, . . . , 4}

0.2 if l ∈ {0, . . . , 4} and r ∈ {5, . . . , 9}

0.1 if l ∈ {5, . . . , 9}

.(2.5)

To generate one example we first sample the left digit using P (l) then the right

using P (r|l). As shown in Appendix A.1.1, we can compute the conditional

entropies of one digit given the other to get H(l|r) = 2.0868 and H(r|l) =

1.9360. Since H(l|r) > H(r|l), the left digit is more informative of the right

than the right is of the left. There is no cross-digit signal at test time, so features

for the right and left digits should be completely decorrelated to generalize, but

learned features will have some correlation between left and right. Intuitively,

DeCov should help generalization in this scenario. Our experiments support

this.

We use Caffe’s [Jia13] reference version of LeNet [LeC+95]. It has two con-

volution layers, each followed by pooling, then a fully connected layer with

500 hidden units which are shared between the two softmax layers. We apply

DeCov and/or Dropout to the 500 hidden units of the fully connected layer.

Tab. 2.1.: MNIST side by side results. As expected, biasing right digits at train time
so that they are weakly informed by left digits leads to lower performance
on an unbiased test set. More importantly, DeCov provides greater im-
provements over the baselines on the right, confirming that it leads to better
features when decorrelation is extremely likely to improve performance.

Left Digit Right Digit

DeCov Dropout train test train - test train test train - test

no no 99.98 ± 0.01 97.94 ± 0.18 2.05 ± 0.19 100.00 ± 0.00 96.75 ± 0.24 3.25 ± 0.24
no yes 99.99 ± 0.00 98.45 ± 0.04 1.54 ± 0.04 99.99 ± 0.00 97.39 ± 0.20 2.61 ± 0.20
yes yes 99.97 ± 0.01 98.59 ± 0.12 1.38 ± 0.12 99.99 ± 0.00 97.81 ± 0.07 2.18 ± 0.06
yes no 99.99 ± 0.00 98.74 ± 0.03 1.25 ± 0.04 99.99 ± 0.00 97.99 ± 0.12 2.00 ± 0.12

weight decay 99.97 97.86 2.11 99.97 96.21 3.76
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Results. (Tab. 2.1) reports the accuracy of left and right digit classifiers. Our

injected dataset bias can be clearly seen in the lower test accuracy and higher

train-test gap of the right classifier, indicating that all of our networks incorporate

the train time bias into their predictions. We report mean accuracies across

4 trials, along with the standard deviation. We also compare the effect of

Dropout.

The main result is that the gaps between the performance of DeCov and the

baselines are larger for the biased right digit (e.g., right digit test accuracy

shows a ∼0.6% improvement when switching from Dropout-alone to DeCov-

alone while the improvement for left digits is just ∼0.3%). This suggests that

the baselines pick up on the false bias and that DeCov does the best job of

correcting for it. DeCov also improves generalization for both classifiers since

test accuracy is higher in the bottom two rows and the train - test gap is lower in

those rows. Combining Dropout with our DeCov loss hurts slightly, but we note

that the error bars overlap in some cases, so this is not a statistically significant

difference.

One skeptical hypothesis is that the DeCov loss is simply enforcing something

akin to an L2 penalty on the weights. The experiments with DeCov and Dropout

already use an L2 penalty, so this is unlikely, but a grid search over weights on

this term shows it makes little difference. The best accuracies are reported in

the last row of (Tab. 2.1).

2.4.2 MNIST Autoencoder

To offer a more qualitative point of comparison, we visualized learned features

using the 2 layer autoencoder experiment from [Sri+14] (section 7). In this

experiment an autoencoder is trained on raw pixels of single MNIST digits
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(a) Baseline with train
MSE = 1.47 and test
MSE = 1.47

(b) DeCov with train
MSE = 0.98 and test
MSE = .98

(c) Dropout with train
MSE = 3.08 and test
MSE = 3.03

Fig. 2.3.: Weights learned by the first layer of a 2 layer autoencoder are reshaped into
images and visualized for a model with no DeCov or Dropout ((Fig. 2.3a)),
a model with DeCov ((Fig. 2.3b)), and a model with Dropout ((Fig. 2.3c)).

using an encoder with 1 layer of 256 ReLU units and a decoder (untied weights)

that produces 784 (28×28) ReLU outputs. (Fig. 2.3) shows the weights learned

by the autoencoder (reshaped to align with the input image) and mean-square

reconstruction errors.

Weight initialization turned out to be an important factor for the visualizations.

Initializing all weights by sampling from U [−
√

3
n ,
√

3
n ] (based on [GB10]; as

implemented in Caffe) led to visualizations as seen in [Sri+14] (the baseline

looks like noise), but sampling weights from a Gaussian with mean 0 and

standard deviation 0.001 led to baseline visualizations with faint digit outlines.

The latter initialization was used in (Fig. 2.3).

One take-away is that MSE is significantly lower for DeCov than others. How-

ever, the key take-away is the qualitative difference between representations

learned with Dropout and those learned with DeCov. Recall from Section 2.1

that Dropout reduces cross-covariance while DeCov explicitly minimizes it.

Despite this intuitive similarity, the two lead to different learned representa-

tions.
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2.4.3 Image Classification

CIFAR10

CIFAR10 contains 60,000 32x32 images sorted into 10 distinct categories

[KH09]. We training on the 50,000 given training examples and testing on the

10,000 specified test samples. Hyper-parameters (loss weights for DeCov and

weight decay) are chosen by grid search on the standard train/val split.

We use Caffe’s quick CIFAR10 architecture, which has 3 convolutional layers

followed by a fully connected layer with 64 hidden units and a softmax layer.

The hidden fully connected layer is not followed by a non-linearity. The DeCov

loss is added only to the 64 hidden units in the hidden fully connected layer.

All reported results are average performance over 4 trials with the standard

deviation indicated alongside.

Tab. 2.2.: CIFAR10 Classification. We can see that DeCov with Dropout leads to the
highest test performance and the lowest train-test gap.

DeCov Dropout train test train - test

no no 100.0 ± 0.00 75.24 ± 0.27 24.77 ± 0.27
no yes 99.10 ± 0.17 77.45 ± 0.21 21.65 ± 0.22
yes yes 87.78 ± 0.08 79.75 ± 0.17 8.04 ± 0.16
yes no 88.78 ± 0.23 79.72 ± 0.14 9.06 ± 0.22

weight decay 100.0 75.29 24.71

Results. In Table 2.2, we again observe significant improvements when using

the DeCov loss – there is a ∼4.5% improvement in test accuracy (over no

regularization). Moreover, the DeCov loss reduces the gap between train and

val accuracies by ∼15% (without Dropout) and ∼16% (with Dropout)!

Comparing the four combinations, we see that using DeCov alone provides

a larger improvement than using Dropout. Using both DeCov and Dropout
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further improves the generalization (as measured by the gap in train and test

accuracies), but the improvement in absolute test performance does not seem

statistically significant.

We again test if L2 weight decay can provide similar improvements and find

once again that the best setting gives little improvement over the baseline.

One promise of regularization is the ability to train larger networks, so we

increase the size of our CIFAR10 network. We add another fully connected

layer to the network used in the previous experiment, double the number of

filters in each convolutional layer, and double the number of units in the fully

connected layers. This larger network performs better than the smaller version

– all accuracies are higher than corresponding entries in (Tab. 2.2). However,

there are the stronger indications of overfitting in this network – specifically,

the train accuracies are much higher than test accuracies (when compared to

the previous network). (Tab. 2.3) shows the results. We observe similar trends

as the previous experiment – there are significant gains from using DeCov

alone compared to Dropout alone, and there is a further slight improvement in

combining both. Using Dropout alone gives a ∼1.5% boost in test accuracy,

while using DeCov alone provides a ∼4% increase in test accuracy. Using both

yields roughly the same test performance, but the trainval and test gap is further

reduced.
Tab. 2.3.: CIFAR10 Classification with a bigger version of the base network

DeCov Dropout (train+val) test (train+val) - test

no no 100.00 77.38 22.62
no yes 100.00 79.93 20.07
yes yes 96.76 81.68 15.08
yes no 98.15 81.63 16.52
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CIFAR100

To scale up our experiments, we move to CIFAR100 [KH09]. We use the same

architecture as the base architecture for CIFAR10 and hold out the last 10,000

of the 50,000 train examples for validation. Table 2.4 shows that Dropout

alone highest higher test performance than DeCov alone, but DeCov leads to a

smaller train-test gap. Using both regularizers not only achieves the highest test

accuracy, but also the smallest train-test gap (∼34% smaller than using neither

regularizer). This suggests that the two regularizers may have complementary

effects.
Tab. 2.4.: CIFAR100 Classification Accuracies

DeCov Dropout train test train - test

no no 99.77 38.52 61.25
no yes 87.35 43.55 43.80
yes yes 72.53 45.10 27.43
yes no 77.92 40.34 37.58

One more problem comes with the question of how to weight the DeCov loss.

All of our experiments use grid search to pick this hyper-parameter. The optimal

weight varies across datasets, but we have found consistency across variations in

architecture. We varied both the DeCov weight and the number of hidden units

in the fully connected layer to which DeCov is applied, training a new network

for each setting. The best DeCov weight (0.1) is consistent for a range of hidden

activation sizes in this dataset, though it is different in other experiments.

ImageNet

Now we explore results for networks trained for ImageNet classification, starting

by applying DeCov to fc6 and fc7 in AlexNet [KSH12]. The last 50,000 of

the ILSVRC 2012 train images are held out for validation. Our implementation
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comes from Caffe. In particular, it uses a fixed schedule that multiplies the

learning rate by 1/10 every 100,000 iterations (see jumps in (Fig. 2.4)). We do

not use early stopping and do not perform color augmentation.

In (Fig. 2.4) we notice that when neither of the two regularizers – Dropout or

DeCov– are applied (blue line), the network overfits (it even gets 100% train

accuracy), and the DeCov loss (hidden activation redundancy) is higher than

with any other combination of the regularizers. Applying either of the regu-

larizers also causes a synchronous drop in both losses. Explicitly minimizing

the DeCov loss naturally leads to much lower DeCov losses, and we notice

that this coincides with significantly reduced overfitting. Interestingly, Dropout

results in relatively lower DeCov loss too, even when DeCov is not optimized

for. This is further indication of the link between redundant activations and

overfitting.
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train no DeCov, yes Dropout
val no DeCov, yes Dropout

train yes DeCov, no Dropout
val yes DeCov, no Dropout

train yes DeCov, yes Dropout
val yes DeCov, yes Dropout

Fig. 2.4.: Cross Entropy and DeCov losses over the course of training AlexNet with
256x256 images. Note that the DeCov val curves are hidden by the train
curves. Interestingly, DeCov is reduced even by Dropout, though not nearly
as much as when it is explicitly minimized.

(Fig. 2.5) shows accuracies across different image resolutions we used to train

AlexNet. AlexNet is typically trained with 256x256 images, but training with

smaller images is faster 1 and reduces the number of parameters in the network.

Smaller images (we use 128x128, 160x160, 192x192, and 224x224) lead to

smaller feature maps output by pool5, so the dense connection between pool5

1Using CuDNNv3, AlexNet with 128x128 inputs takes 103ms averaged over 50 runs to compute
a forward and backward pass. For 256x256 images this time is 449ms.
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and fc6 has fewer parameters, the model has less capacity, and it’s less likely

to overfit. For example, images scaled to 256x256 (taking 227x227 crops 2)

lead to a weight matrix with 38 million parameters while 128x128 images (with

99x99 crops) result in a 4 million parameter matrix. Generally, accuracies (left

plots) and the train-val gap (right plots) have a slight positve slope, confirming

that performance and overfitting increase with resolution and model capacity.

Note that the DeCov loss weight was tuned using grid search at each resolution

both with and without Dropout.
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Fig. 2.5.: ImageNet classification performance using AlexNet. Plots on the left show
training and validation (ILSVRC 2012 validation set) accuracy at different
resolutions. Note how all curves have a much lower train-val gap than the
(blue) baseline.

We see that Dropout alone (green) usually has the best val accuracy, which is

slightly higher than the two losses combined (purple) and a couple points higher

than DeCov alone (red) at higher resolutions. At the lowest resolution Dropout

alone is tied with DeCov alone. Dropout also reduces overfitting more than

2At train time crops are sampled and mirrored randomly. At test time only the center 227x227
crop is used.
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DeCov, though both independently reduce overfitting by a large margin – from

59.35% to 14.7% in the case of DeCov @ 128x128.

Finally, we test our new regularizer on ILSVRC 2012 with one more architecture

– the Network in Network [LCY13].3 This architecture is fully convolutional:

it contains 4 convolutional layers, with 96, 256, 384, and 1024 feature maps,

respectively. Between each of these layers and after the last are two convolu-

tional layers which have 1x1 kernels, which further process each feature map

output by the main convolutional layers before being fed into the next layer. To

produce 1000 softmax activations, 1000 feature maps are averaged over spatial

locations to produce one feature vector. We applied DeCov to these average

pooled feature vectors.

Interestingly, this architecture has much less overfitting than AlexNet. However,

adding a DeCov loss still decreases overfitting substantially and improves vali-

dation accuracy. There is a small boost in performance on validation accuracies

and a significant decrease of ∼3% (for top 1) and ∼2% (for top 5) in the train -

val gap.

Tab. 2.5.: ImageNet Classification Accuracies with Network in Network

DeCov Dropout ILSVRC 2012 train top 1 ILSVRC 2012 val top 1 train - val

no no 71.68 58.67 13.01
no yes 71.32 58.95 12.37
yes yes 68.28 59.08 9.20
yes no 68.33 58.85 9.48

DeCov Dropout ILSVRC 2012 train top 5 ILSVRC 2012 val top 5 train - val

no no 89.91 81.18 8.73
no yes 89.63 81.53 8.10
yes yes 87.99 81.94 6.05
yes no 87.88 81.57 6.05

3This is the model provided in the Caffe Model Zoo: https://gist.github.com/
mavenlin/d802a5849de39225bcc6
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2.5 Discussion and Conclusion

Fine-tuning. In the experiments we presented, networks were always trained

from scratch, but we also tried fine-tuning networks in different scenarios.

During our ImageNet experiments we fine-tuned both the Network in Network

and AlexNet architectures initialized with parameters that weren’t trained with

a DeCov loss, but were trained with Dropout. In both cases performance either

stayed where it was at fine-tuning initialization or it decreased slightly (within

statistical significance). We found similar results when fine-tuning for other

tasks like attribute classification (fine-tuning AlexNet) and object detection (Fast

RCNN [Gir15]).

This, along with some cases where combining Dropout and DeCov decreases

performance slightly suggest that the DeCov loss may possibly be acting ad-

versarially to activations learned by Dropout. Fine-tuning with DeCov is an

interesting direction for future work.

Trends. All of our experiments strongly indicate two clear trends:

1. DeCov reduces overfitting as measured by the gap between train and test

performance.

2. DeCov acts as a regularizer: performance with DeCov is always better

than performance without either DeCov or Dropout.

To be clear, the results do not support that Dropout can be completely replaced by

DeCov, but simply that in a number of scenarios DeCov is a useful alternative

and their combination almost always works the best. Our loss clearly has

desirable regularization properties at the expense of one extra hyper-parameter

to tune.
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In this work, we proposed a new DeCov loss which explicitly penalizes the

covariance between the activations in the same layer of a neural network in

an unsupervised fashion. This loss acts as a strong regularizer for deep neural

networks, where overfitting is a major problem and Dropout has been required

to get large models to generalize well. We show that DeCov competes well

against Dropout over a range of experiments which investigate different scales,

datasets and architectures.
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3
Emergence of

Compositional Language

with Deep Generational

Transmission

3.1 Introduction

Compositionality is an important structure of language that reflects a disentan-

gled understanding of the world – enabling the expression of infinitely many

concepts using finitely many elements. Agents that have compositional under-

standings of the world generalize in obviously correct ways even in the face

of limited training examples [LB18]. For example, an agent with a composi-

tional understanding of blue squares and purple triangles should

also understand purple squares without directly observing any of them.

Developing artificial agents that can ground, understand, and produce com-

positional (and therefore more interpretable) language could greatly improve

generalization to new instances and ease human-AI interactions.

In building theories of how compositionality emerges in human languages, work

in evolutionary linguistics looks to the process of cultural transmission [Kir01;

KCS08]. Cultural transmission of language occurs when a group of agents pass

their language on to a new group of agents, e.g. parents who teach their children
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Fig. 3.1.: We introduce cultural transmission into language emergence between neural
agents. Start with the goal-oriented dialog task at the top of the figure (similar
to that of Kottur et al. [Kot+17]). During learning we periodically replace
some agents with new ones (gray agents). These new agents do not know
any language, but instead of creating one they learn it from older agents.
This creates generations of language that become more compositional over
time.

to speak as they do. Because this education is incomplete and biased, it allows

the language itself to change over time via a process known as cultural evolution.

This paradigm [KGS14] explains the emergence of compositionality as a result

of expressivity and compressibility – i.e. to be most effective, a language

should be expressive enough to differentiate between all possible meanings

(e.g., objects) and compressible enough to be learned easily. Work in the

evolutionary linguistics community has shown that over multiple ‘generations’

these competing pressures result in the emergence of compositional languages

both in simulation [Kir01] and with human subjects [KCS08]. These studies

aim to understand humans whereas we want to understand and design artificial

neural networks.

Approaching the problem from another direction, recent work in AI has studied

language emergence in such multi-agent, goal-driven tasks. These works have

demonstrated that agent languages will emerge to enable coordination-centric

tasks to be solved without direct or even indirect language supervision [Foe+16;

SSF16; LPB17; Das+17a]. However, the resulting languages are usually not

compositional and are difficult to interpret, even by other machines [ADK17].
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Some existing work has studied means to encourage compositional language

formation [MA18; Kot+17], but these settings study fixed populations of agents

– i.e. examining language within a single generation.

In this work we bridge these two areas – examining the effect of genera-

tional cultural transmission on the compositionality of emergent languages

in a multi-agent, goal-driven setting.

We study this in the context of a cooperative dialog-based reference game in-

volving two agents communicating in discrete symbols [Kot+17]; an example

dialog is shown at the top of (Fig. 3.1). To examine cultural transmission, we

extend this setting to a population of agents (bottom of (Fig. 3.1)) and introduce

a simple mechanism to induce the expressivity and compressibility pressures

inherent in cultural transmission. Specifically, we periodically re-initialize some

subset of the agents in the population. In order to perform well at the task, the

population’s emergent language must be sufficiently expressive to reference all

the objects (expressivity) and must be easily learnable by these ‘new’ agents

(compressibility). The new agents have a randomized language whereas the

surviving agents already know a grounded language. This “knowledge gap” cre-

ates an implicit ‘teaching’ setting that is analogous to the explicit transmission

stage in models of iterative learning [Kir01].

Through our experiments and analysis, we show that periodic agent replacement

is an effective way to induce cultural transmission and yields more composi-

tionally generalizable language in our setting. To summarize, our contributions

are:

– We propose a method for inducing implicit cultural transmission in neural

language models.
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– We measure the similarity between agent languages and verify cultural trans-

mission has occurred as a result of our periodic agent replacement protocol.

– We show our cultural transmission procedure induces compositionality in

neural language models, going from 13% accuracy on a compositionally

novel test set to 46% in the best configuration. Further, we show this is

complementary with previous priors which encourage compositionality.

3.2 Task & Talk: A Testbed for Compositional Language

Emergence

We consider the cooperative Task & Talk reference game introduced in [Kot+17].

Shown in the top of (Fig. 3.1), the game is played by two agents – one who

observes an attributed object – e.g. (purple, solid, square) – and

another who is given a task to retrieve a subset of these attributes over the course

of the dialog – e.g. (color,shape). The dialog itself consists of two rounds

of agents exchanging single-token utterances from fixed vocabularies. At the

end of the dialog, the task-aware agent must report the requested attributes

and both agents are rewarded for correct predictions. This causes a language

grounded in the objects to emerge because there is no other way to solve the

task.

A compositional solution to this task can look like a question-answer style

dialog where the task-aware agent queries the other for specific attributes (top

of (Fig. 3.1)) – e.g. uttering “X” requesting the color to which the other

agent replies “1” indicating purple. Importantly, this pattern would persist

regardless of the other attribute values of the object (e.g. for all (purple, *,

*) objects). However, as there is no grounding supervision provided, agents

must learn to associate specific meanings to specific words and it is unlikely
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for compositional languages to emerge purely by chance. Given the same

color task, an non-compositional agent might use “1” for (purple, solid,

square) and then “2” for a novel instance (purple, solid, circle).

Other agents have no way to know that “2” means purple instead of “1”, so

compositional language is essential for generalization to compositionally novel

instances.

Models.. To formalize this setting, let Q-bot and A-bot be agent policies

parameterized by neural networks Q and A respectively. At each round t,

Q-bot observes the task xQ and it’s memory of the dialog so far ht−1
Q and

produces a single-token utterancemt
Q ∈ V from the vocabulary V . Functionally,

mt
Q, h

t
Q = Q(mt−1

A , xQ, h
t−1
Q ) where mt−1

A is A-bot’s reply in the previous

round. Likewise, A-bot responds by computing mt
A, h

t
A = A(mt

Q, xA, h
t−1
A )

where xA is the object instance represented symbolically by concatenating 3

one-hot vectors, one per attribute. After two rounds, Q-bot must respond to the

task, predicting the requested attribute pair û = U(xQ, h
T
Q) as a function of the

task and Q-bot’s final memory state. Both agents are rewarded if both attributes

are correct (no partial credit). We follow the neural network architectures of

Q,A, and U from [Kot+17].

Measuring Compositional Generalization.. Kottur et al. [Kot+17] gener-

ated a synthetic dataset consisting of three attribute types (color, shape,

style) each with four values (e.g., red, blue, square, star, dotted,

solid, ...) and six tasks, one task for each ordered pair of different attribute

types. This results in 64 unique instances and 384 task-instance pairs. To evalu-

ate compositionality, Kottur et al. [Kot+17] held out 12 random instances for

testing. Given the closed-world set of instances, these 12 triplets of attributes is

not seen during training; however, each individual value is seen in other triplets

that do appear in training. As such, test accuracy is a measure of compositional

generalization.

41



Shortcomings of [Kot+17] Evaluation.. In our investigations, we found some

shortcomings in the evaluation protocol of [Kot+17]. First, the authors do

not report variance over multiple runs or different random test-sets which we

found to be significant. Second, the strategy of randomly selecting the test

set can still reward some only partially compositional strategies. For instance,

suppose agents develop a language that uses single words to refer to attribute

pairs like (red, *, triangle) and (red, filled, *). Such agents

might generalize to an unseen instance (red, filled, triangle) by

composing the ‘paired’ words above instead of disentangling individual at-

tributes.

We make two modifications to address these issues. Our results are reported

as means and variances estimated from multiple training runs with 4 different

random seeds and 4-way cross-validation (16 experiments). We also introduce

a harder dataset where instead of withholding random individual instances (e.g.,

(green,dotted,triangle),...) as in [Kot+17], we withhold all instances

for a set of attribute pairs (e.g., (green,dotted,*),(red,solid,*),...).

We will refer to datasets generated in this fashion as novel pair and the original

dataset as novel instance. We report on both settings for comparison (see

appendix A.1), but find our new setting to be significantly more challenging in

practice – requiring a stricter notion of compositionality more closely aligned

with human intuitions about these attributes.

3.3 Compositional Language Emergence with Cultural

Transmission

In iterative learning models of cultural transmission from evolutionary linguis-

tics, competing pressures towards expressivity and compressibility have been
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shown to induce compositionality over multiple ‘generations’ of language trans-

fer [Kir01; KCS08]. The goal-driven nature of our reference game already

encourages expressivity – agents must be able to refer to the objects in order

to succeed. To introduce compressibility pressure and parallel literature in evo-

lutionary linguistics, we introduce a population of agents which regularly has

members replaced by new agents that lack any understanding of the remaining

population’s language. As this paradigm lacks explicit teaching steps where

new agents are trained to ground existing words, we consider this approach as a

means of implicit cultural transmission.

Algorithm 1: Training with Replacement and Multiple Agents

1 for epoch e = 1, . . . , Nepochs do
2 Sample Q-bot iQ from U{1, NQ} and A-bot iA from U{1, NA}
3 for xQ, xA, u in each batch do
4 for dialog rounds t = 1, . . . T do
5 mt

Q, h
t
Q = QiQ(mt−1

A , xQ, h
t−1
Q )

6 mt
A, h

t
A = AiA(mt−1

Q , xA, h
t−1
A )

7 û = U iQ(xQ, h
T
Q)

8 Policy gradient update w.r.t. both Q-bot and A-bot parameters

9 if e mod E = 0 then
10 Sample replacement set B under policy π and re-initialize all agents

in B

11 return all Q-bots and A-bots.

Populations of Agents.. We consider a population of Q-bots {Q1, . . . , QNQ}

and a population of A-bots {A1, . . . , ANA} with each agent having a different

set of parameters. At each iteration during learning, we sample a random Q-bot-

A-botpair to interact and receive updates – i.e. the red line (2) in Algorithm 1.

As any Q-botmay be made to communicate with any A-bot, there is pressure

for the population to adopt a unified language. Likewise, when an agent is

reinitialized it will receive positive reward much more quickly when it happens

to use language that its conversational partners understand. Furthermore, ‘com-

pressible’ languages that are easier to learn will result in greater reward for the

population in the face of periodic re-initialization of agents.

43



Introducing multiple agents may in itself add compressibility pressure and im-

prove generalizations even without replacement [RMLA18]. Agents in a popula-

tion have to model minor linguistic differences between conversational partners

given the same memory capacity. Further, each agent provides another potential

language variation that can be mimicked and perpetuated–increasing language

diversity early in training. We examine these effects through no-replacement

baselines, but find that generational pressure where some agents know less than

others can also be important for compositionality in our setting.

Replacement.. In order to create a notion of ‘generations’ we replace agents

periodically. Let π be a replacement strategy, returning a subset of the popula-

tion. Every E epochs, we call π and reinitialize the parameters and optimizers

for the returned agents (blue lines 9-10 in Algorithm 1). We investigate three

settings of π (see appendix A.2 for more details):

– Uniform Random. Sample an A-botand Q-botfrom uniform random distri-

butions.

– Epsilon Greedy. With probability 1−ε replace the A-botand Q-botwith the

lowest validation accuracy. We use ε = 0.2 in our experiments.

– Oldest. Replace the oldest A-bot and Q-bot, breaking ties with uniform

random sampling.

3.4 Experimental Setting

Experimental Setting. We evaluate on both our novel pair dataset and the

novel instance dataset from Kottur et al. [Kot+17] (see appendix A.1), as de-

scribed in Section 3.2. All results are reported as means and variances computed

from a total of 16 trials (four random seeds each with 4-way cross-validation).
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We report accuracy based on Q-botgetting both elements of the task correct –

corresponding to the more restrictive “Both” setting from [Kot+17].

Kottur et al. [Kot+17] examined a series of increasingly restrictive settings in

order to study conditions under which compositionality emerges. The primary

variables are whether A-bothas memory (ablated by setting ht
A=0) and the

vocabulary sizes VQ and VA for Q-botand A-botrespectively. For comparison we

also evaluate in these settings: Minimal Vocab ( VQ=3, VA=4). Memoryless

+ Minimal Vocab (VQ=3, VA=4, ht
A=0), Overcomplete (VQ=VA=64). We

also introduce Memoryless + Overcomplete (VQ=VA=64, ht
A=0) to complete

the cross product of settings and examine the role of memory restriction in

overcomplete vocabularies.

The Memoryless + Minimal Vocabulary setting results in the best compositional

generalization; however, this is an extreme setting – requiring not only that the

minimum number of groundable symbols be known but also that A-bot not be

able to remember it’s previous utterance. While we do report these settings and

see quite large performance gains due to cultural transmission, we are mainly

interested in the more realistic Overcomplete setting where a large pool of

possible tokens is provided and both dialog agents have memory.

Model and Training Details. Our A-bots and Q-bots have the same architec-

tur as in Kottur et al. [Kot+17]. All agents are trained with E = 25000, a batch

size of 1000, 1 and the Adam [KB15] optimizer (one per bot) with learning rate

0.01. In the Multi Agent setting we use NA = NQ = 5. We stop training after

8 generations (199000 epochs Multi Agent; 39000 epochs Single Agent). This

differs from Kottur et al. [Kot+17], which stopped once train accuracy reached

100%. Further, we do not mine negatives.

1All 384 instances (64 objects × 6 tasks) fit in 1 batch.
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Fig. 3.2.: Test set accuracies (with standard deviations) are reported against our new
harder dataset using models similar to those in [Kot+17]. Our variations on
cultural transmission (darker blue bars) outperform the baselines without
cultural transmission.

Baselines. These help isolate the effects of our approach.

– Single Agent Populations. We ablate the effect of multi-agent populations

by training individual A-bot-Q-botpairs (i.e. populations with NA = NQ =

1). We apply the uniform random (either A-botor Q-botat random) and oldest

(alternating between A-botand Q-bot) replacement strategies to these agents;

however, the epsilon greedy strategy is not well-defined here. In this setting

we decrease E from 25000 to 5000 to keep the average number of gradient

updates for each agent constant with respect to the multi-agent experiments.

– No Replacement. We also consider the effect of replacing no agents at all,

but still allowing the agents to train for the full 199,000 (39,000) epochs. Im-

provement over this baseline shows the gains from our replacement strategy

under identical computational budgets.

3.5 Results and Analysis

3.5.1 Impact of Cultural Transmission on

Compositional Generalization

Results with standard deviations against our harder dataset are reported in

(Fig. 3.2). We compared methods and models using dependent paired t-tests
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and reported the resulting p-values in Section A.4 of the appendix. Result on

the original Task & Talk dataset are in Section A.1 of the appendix.

Cultural transmission induces compositionality.. Our main result is that

cultural transmission approaches outperform baselines without cultural trans-

mission. This can be seen by noting that for each model type in (Fig. 3.2), the

3 darker blue bars (Multi Agent Replacement approaches) are largest. After

running a dependent paired t-test against all pairs of baselines and cultural

transmission approaches we find a meaningful difference in all cases (p ≤ 0.05).

This is strong support for our claim that our version of cultural transmission

encourages compositional language because it causes better generalization to

novel compositions of attributes.

Next we go on to discuss some additional trends we hope the community will

find useful.

Population dynamics without replacement usually lead to some composi-

tionality.. The Multi Agent No Replacement policies usually outperform than

the Single Agent No Replacement policies, though the difference isn’t very

significant in the except in the Overcomplete and Minimal Vocab settings. This

agrees with recent work from evolutionary linguistics, where multiple agents

can lead to compositionality without generational transmission [RMLA18].

Variations in replacement strategy tend to not affect performance.. The

Multi Agent Uniform Random/Epsilon Greedy/Oldest replacement strategies are

not largely or consistently different from one another across model variations.

This suggests that while some agent replacement needs to occur, it is not critical

whether agents with worse language are replaced or whether there is a pool of

similarly typed agents to remember knowledge lost from older generations. The
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main factor is that new agents learn in the presence of others who already know

a language.

Cultural transmission is complementary with other factors that encour-

age compositionality.. As in Kottur et al. [Kot+17], we find the Memoryless

+ Small Vocab model is clearly the best. This agrees with factors noted else-

where [Kot+17; MA18; NPJ00] and shows how many different factors can

affect the emergence of compositionality.

Removing memory makes only minor differences.. Removing memory makes

no difference (negative or positive) in Single Agent settings, but it can have

a relatively small effect in Multi Agent settings, helping Small Vocab models

and hurting Overcomplete models. While our approach is complementary with

minimizing vocab size to increase compositionality, its makes memory removal

less useful. As the Memoryless + Overcomplete setting has not been reported

before, these results suggest that the relationship between inter-round memory

and compositionality is not clear.

Overall, these results show that adding cultural transmission to neural dialog

agents improves the compositional generalization of the languages learned by

those agents in a way complementary to other priors. It thereby shows how to

transfer the cultural transmission principle from evolutionary linguistics to deep

learning.

3.5.2 Is Generational Transmission Occurring?

Because it is implicit, cultural transmission may not actually be occurring;

improvements may be from other sources. How can we measure cultural

transmission? We focus on A-bots and take a simple approach. We assume
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that if two A-bots ‘speak the same language’ then that language was culturally

transmitted. There is a combinatorial explosion of possible languages that could

refer to all the objects of interest, so if the words that refer to the same object for

two agents are the same then they were very likely transmitted from the other

agents, rather than similar languages emerging from scratch just by chance.

This leads to a simple approach: consider pairs of bots and see if they say

similar things in the same context. If they do, then their language was likely

transmitted.

More formally, consider the distribution of tokens A-bot Ai might use to de-

scribe its object xA when talking to Q-bot Qk: pk,i(mt
A|xA) or pk,i for short.

We want to know how similar Ai’s language is to that of another A-bot Aj .

We’ll start by comparing those two distributions by computing the KL diver-

gence between them and then taking an average over context (objects, Q-bots,

and dialog rounds) to get our pairwise agent language similarity metric Dij :

Dij = ÊxA,k,t

[
DKL

(
pk,i(mt

A|xA), pk,j(mt
A|xA)

)]
(3.1)

Taking another average, this time over all pairs of bots (and also random seeds

and cross-val folds), gives our final measure of language similarity reported in

(Fig. 3.3).

D = Êi,j s.t. i 6=j [Dij ] (3.2)

D is smaller the more similar language is between bots. Note that even though

Dij is not symmetric (because KL divergence is not), D is symmetric because

it averages over both directions of pairs.

We compute D by sampling an empirical distribution over all messages and

observations, taking 10 sample dialogues in each possible test state (xA, xQ) of
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Fig. 3.3.: Do bots in a population learn similar languages? On the y-axis (eq. (3.2))
lower values indicate more similar language. Bots from our method speak
similar languages, but independently evolved agents do not. Thus our
implicit procedure induces cultural transmission.

the world using the final populations of agents as in (Fig. 3.2). Note that this

metric applies to a group of agents, so we measure it for only the Multi Agent

settings, including two new baselines colored red in (Fig. 3.3). The Single Agents

Combined baseline trains 4 Single Agent No Replacement models independently

then puts them together and computes D for that group. These agents only

speak similar languages by chance, so D is high. The Random Initialization

baseline evaluates language similarity using newly initialized models. These

agents have about a uniform distribution over words at every utterance, so their

languages are both very similar and useless. For each model these baselines act

like practical (not strict) upper and lower bounds on D, respectively.

(Fig. 3.3) shows this language dissimilarity metric for all our settings. As

we expect, the paired Single Agents are highly dissimilar compared to agents

from Multi Agent populations. Further, all the replacement strategies result

in increased language similarity—although the degree of this effect seems

dependent on vocabulary setting. This provides some evidence that cultural

transmission is occurring in Multi Agent settings and is encouraged by the

replacement strategy in our approach. While all Multi Agent settings resulted in

language transmission, our replacement strategies results in more compositional

languages due to repeated teaching of new generations of agents.
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Fig. 3.4.: All conversations between Q-bot 4 and Q-bot 3 for the (shape, color)
task. These bots were trained in the Multi Agent Oldest setting. The fig-
ure shows A-bot’s utterances for each object and whether or not Q-bot
guessed the object correctly, as described in Section 3.5.3. This language is
compositional because each token refers to a color or shape.

3.5.3 Visualizing Emergent Languages

In this section we visualize the language learned by a pair of bots to show its

compositionality. In the appendix we compare these bots to others at different

stages of learning and from earlier generations to help understand how the

language developed over generations.

Figure 3.4 shows all 64 conversations between Q-bot 4 and A-bot 3 for the

(shape, color) task. These bots are from the 8th generation of the Multi

Agent Oldest setting.

To interpret the visualization, start by looking at only the dashed blue circle

in the top left. To the right of it are the two tokens “0” and “3”, which are the

words A-bot used to describe the object in the two dialog rounds. The green

check one more step to the right indicates that Q-bot was able to guess the

circle blue from these tokens. Now look at all 4 blue circles in the top left

grid cells. Only shape and color matter for this task, so A-bot uttered “0 3”

for every blue circle, appropriately ignoring style (i.e., dashed, dotted, filled, or

solid).

51



By looking at the entire visualization with its 4x4 grid delineated by black

separators we can see that the language is indeed compositional. Rows of the

4x4 grid group objects by shape and columns group objects by color. This

makes it convenient to qualitatively evaluate language compositionality with

respect to the (shape, color) task. If A-bot’s language is compositional

then it should use one token to indicate row / shape and one token for column /

color.

Looking at the first row, A-bot’s first utterance is always “0”, but is not “0”

anywhere else, so when “0” is uttered first it means circle. Similarly, A-

bot’s second utterance is always “3” in the first column, so “3” means blue.

Continuing with this analysis we find each character has meaning: (0=circle,

2=square, 1=star, 3=triangle), and (3=blue, 2=green, 1=purple,

0=red). Individual symbols have meaning, so the language is compositional.

3.6 Related work

Language Evolution Causes Structure. Researchers have spent decades

studying how unique properties of human language like compositionality could

have emerged. There is general agreement that people acquire language using

a combination of innate cognitive capacity and learning from other language

speakers (cultural transmission), with the degree of each being widely dis-

puted [Per02; PB90]. Both innate cognitive capacity and specific modern

human languages like English co-evolved [Bri00] via biological [PB90] and

cultural [Tom99; Smi06] evolution, respectively.

In particular, explanations of how the cultural evolution of languages could cause

structure like compositionality are in abundance [NK99; NPJ00; SKB03; Bri02;

Vog05; KGS14; Spi+17]. An important piece of the explanation of linguistic
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structure is the iterated learning model [KGS14; Kir01; KCS08] used to motivate

our approach. Indeed it shows that cultural transmission causes structure in

computational [Kir01; Kir02; CK03; SKB03] and human [KCS08; CTK09;

SPK10] experiments. Even though cultural transmission may aid the emergence

of compositionality, recent results in evolutionary linguistics [RMLA18] and

deep learning [Kot+17; MA18] also emphasize other factors.

While existing work in deep learning has focused on biases that encourage

compositionality, it has not considered settings where language is permitted to

evolve over generations of agents. We have shown such an approach is viable

and even complementary with other approaches.

Language Emergence in Deep Learning. Recent work in deep learning has

increasingly focused on multi-agent environments where deep agents learn to

accomplish goals (possibly cooperative or competitive) by interacting appro-

priately with the environment and each other. Some of this work has shown

that deep agents will develop their own language where none exists initially

if driven by a task which requires communication [Foe+16; SSF16; LPB17].

Most relevant is work which focuses on conditions under which compositional

language emerges as deep agents learn to cooperate [MA18; Kot+17]. Both

Mordatch and Abbeel [MA18] and Kottur et al. [Kot+17] find that limiting

the vocabulary size so that there aren’t too many more words than there are

objects to refer to encourages compositionality, which follows earlier results in

evolutionary linguistics [NPJ00]. Follow up work has continued to investigate

the emergence of compositional language among neural agents, mainly focusing

on perceptual as opposed to symbolic input and how the structure of the input

relates to the tendency for compositional language to emerge [CLF18; HT17;

Laz+18]. Other work has shown that Multi Agent interaction leads to better

emergent translation [Lee+18], but it does not measure compositionality.
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Cultural Evolution and Neural Nets. Somewhat recently, Bengio [Ben12]

suggested that culturally transmitted ideas may help in escaping from local

minima. Experiments in Gülçehre and Bengio [GB16] support this idea by

showing that supervision of intermediate representations allows a more complex

toy task to be learned. Unlike our work, these experiments use direct super-

vision provided by the designed environment rather than indirect and implicit

supervision provided by other agents.

Two concurrent works examine the role of periodic agent replacement on lan-

guage emergence – albeit in different environments. In Li and Bowling [LB19]

replacement is used to encourage languages to be easy to teach, and this in

turn causes compositionality. In Dagan et al. [DHB19] neural language is trans-

mitted through a bottleneck caused by replacement. The resulting language

has increased efficiency and effectiveness, with further results showing that

co-evolving the agents themselves with the language amplifies the effect. Both

of these works support our central observations.

3.7 Conclusion

In this work we investigated cultural transmission in deep neural dialog agents,

applying it to language emergence. The evolutionary linguistics community

has long used cultural transmission to explain how compositional languages

could have emerged. The deep learning community, having recently become

interested in language emergence, has not investigated that link until now.

Instead of explicit models of cultural transmission familiar in evolutionary

linguistics, we favor an implicit model where language is transmitted from

generation to generation only because it helps agents achieve their goals. We

show that this does indeed cause cultural transmission and compositionality.
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Future work. While our work used an implicit version of cultural transmis-

sion, we are interested in the effect of explicit versions of cultural transmission

on language structure. Cultural transmission may also provide an appropriate

prior for neural representations of non-language information.
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4
Dialog Without Dialog:

Learning Image

Discriminative Dialog

Policies from Single Shot

Question Answering Data

4.1 Introduction

One goal of AI is to enable humans and computers to communicate naturally

with each other in grounded language to achieve a collaborative objective.

Recently the community has studied this in the context of goal oriented dialog,

where agents need to talk to perform tasks like booking a flight or searching

through a database of images [Mil+17].

A popular approach to these tasks has been to observe humans engaging in

dialogs like the ones we would like to automate and then train agents to mimic

these human dialogs [Das+17a; Lew+17]. Mimicking human dialogs allows

agents to generate interpretable language (i.e., meaningful English, not gibber-

ish). However, these models are typically fragile and generalize poorly to new

tasks. As such, each new task requires collecting new human dialogs, which is a
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1 2

3 4

What is behind the bird?

SandP: 4

What is the color of collar?

Not relevant

What kind of bird is in the image?

crow

What is the bird sitting on?

What is in the birds beak ?

BugP: left

What kind of flower are these?

BugP: right

VQA

Visual Dialog

COCO Image

CUB Image

Pre-training

Fine-tuning

P: 4

P: 3

Fig. 4.1.: (Top - 2 pools) We train our questioner to ask questions that can discriminate
between pairs of images by mimicing questions from the VQAv2 dataset.
(Bottom - 1 pool) Our proposed model generalizes to new settings in a way
that humans can understand without additional language supervision (i.e.,
without dialog).

laborious and costly process often requiring many iterations before high quality

dialogs are elicited.

A promising pragmatic alternative is to use goal completion as a supervisory

signal to adapt agents to new tasks. That is, after training dialog agents to

mimic human dialogs for one task, fine-tune them on a new task by simply

rewarding the agents for solving the task regardless of the dialog’s content.

This approach can indeed improve task performance, but language quality

suffers even for similar tasks. It tends to drifts from human language, becoming

ungrammatical and loosing human interpretable semantics – sometimes even

turning into unintelligible code. Though bots might understand it, humans

cannot, so humans will not be able to use it either. Both effects have been

observed in prior dialog work [Das+17a; Lew+17].

In this work, we consider an image guessing game as a test-bed for balancing

task performance and language drift. Our Dialog without Dialog (DwD) task

requires agents to generalize from single round visual question generation with

full supervision to a multi-round dialog based image guessing game without

direct language supervision. Specifically, as illustrated in (Fig. 4.1) (top), agents

57



are trained to mimic human-generated, visually-grounded questions that when

answered can discern which of two images is secretly indicated to the answerer.

We then develop techniques to transfer these agents to a multi-round, QA-based

image guessing game over pools of various sizes, difficulties, and even image

domains.

To solve this task we propose an architecture for the questioner agent, Q-bot,

that decomposes generating question intent from the words used to express that

intent. It does this by introducing a discrete latent representation that is the

only input to the language decoder. We pair this with an incremental learning

curriculum that adapts the single round Q-bot to dialog in stages – first learning

simply to follow the dialog and then to influence question intention.

We show that our model can be fine-tuned to increase task performance while

maintaining human interpretable language. To measure interpretability we take

a two pronged approach, getting humans to evaluate the fluency and relevance

of questions generated by our model on one hand and using automatic measures

of fluency, relevance, and diversity to help scale our analysis. To summarize,

our contributions are:

– We propose the Dialog without Dialog (DwD) task, where the goal is to

balance task performance with human interpretability in a multi-round image

guessing game while only using non-dialog language supervision and task

level dialog feedback.

– We propose a questioner model for DwD that factorizes task-specific and

task-agnostic components using discrete latent variables and an incremental

training regime.

– We perform extensive experiments that consider tasks increasingly distant

from the one in which we have language supervision. Our baselines general-
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ize poorly to these tasks, loosing interpretability or task performance, but

our model achieves a better balance of task performance and interpretability.

4.2 Dialog-based Image Guessing Game

Our objective is to examine how to transfer grounded language models from one

task to another by training agents only to maximize task success. We consider

an image-guessing communication game as the context for our experiments. In

this section, we introduce this game and a model for this multi-round dialog

task. In the following sections, we will discuss how to train such a model using

non-dialog data.

4.2.1 Game Definition

We consider a conceptually simple image guessing game demonstrated in

(Fig. 4.1). In each episode, one agent (A-bot in red) secretly selects an im-

age y (starred) from an image pool (in the dashed green box). The other agent

(Q-bot in green) must identify this image by executing a multi-round question-

answer based dialog with A-bot. To succeed, Q-bot will need to understand the

image pool, generate discriminative questions, and interpret the answers A-bot

provides to identify A-bot’s selected image.

At a high-level functional view, we can consider the dialog as following a

simple structure. At each round r, Q-bot observes the pool I = {I1, . . . , IP }

and dialog history q0, a0, . . . qr−1, ar−1 and produces a question

qr = QBot.Ask(I, q0, a0, . . . qr−1, ar−1). (4.1)
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Given this question qr, A-bot provides an answer ar based on its selected image

Iy:

ar = ABot.Answer(Iy, qr) (4.2)

Once Q-bot receives the answer from A-bot, it makes a prediction ŷr+1 about

the target image:

ŷr = QBot.Predict(I, q0, a0, . . . , qr, ar) (4.3)

where the task performance of Q-bot can be calculated by comparing ŷr and

y.

Comparison to GuessWhich.. Das et al. [Das+17a] presented a similar dialog-

based guessing game called GuessWhich. In GuessWhich, Q-bot initially

observes a caption describing A-bot’s selected image and must predict the se-

lected image’s features to retrieve it from a large, fixed pool of images. The

inclusion of the caption leaves little room for the dialog to add information

[Mir+17] and the fixed-pool would not enable us to inspect how Q-bot’s be-

havior generalizes to different pools. As described above, we drop both these

assumptions to enable our analysis.

4.2.2 Modelling A-bot

In this work, we focus primarily on Q-bot agent rather than A-bot. We set A-bot

to be a standard visual question answering agent, specifically the Bottom-up

Top-down [Ten+17] model; however, we do make one modification. Q-bot may

generate questions that are not well grounded in A-bot’s selected image (though

they may be grounded in other pool images) – e.g. asking about a surfer when

none exists. To enable A-bot to respond appropriately, we augment A-bot’s

answer space with a Not Relevant token. We augment every image with an
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Fig. 4.2.: A single round of our Q-bot which decomposes into the modules described
in Section 4.2.3. This factorization allows us to fine-tune just the intention
of the model for task performance, limiting language drift.

additional, randomly-sampled question and set Not Relevant as its target

answer. A-bot is trained independently from Q-bot on the VQAv2 dataset and

then frozen.

4.2.3 Modelling Q-bot

We conceptualize Q-bot as having three major tasks: encoding the state of the

game to decide what to ask about, actually formulating this intent in language,

and making predictions about A-bot’s selection. Respectively, these correspond

to planner, speaker, and predictor modules. As we focus on language transfer

across tasks, we make fairly standard design choices here.

Pool & Image Encoding. We represent the pth image Ip of the pool as a set

of B bounding boxes such that Ib
p is the embedding of the b-th box following

[And+18]. Note that we do not assume prior knowledge about the size or

composition of the pool.

Planner

The planner’s role is to encode the dialog context (image pool and dialog history)

and decide what to ask about in each round. To limit clutter, we denote the QA

pair at round r as a ‘fact’ Fr = [qr, ar].
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Context Encoder. Given the prior dialog state hr−1, Fr−1, and image pool I,

the context encoder performs hierarchical attention to identify image regions in

the pool that are most relevant for generating the next question. As we describe

in appendix A, Fr−1 and hr−1 to query the image to compute an attention

distribution over both set of images (αj) and P distributions over the bounding

boxes in each image (βi
j). The overall image encoding v̂r at round r is computed

as

v̂r =
P∑

j=1

B∑
i=1

αjβ
i
jv

i
j (4.4)

where both image and region attentions are combined. We leave the details on

computing these attention distributions to the appendix to conserve space. We

note that this mechanism is agnostic to the pool size.

History Encoder.. To track the state of the game, the planner applies an LSTM-

based history encoder that takes v̂r and Fr as input and produces an intermediate

hidden state hr+1. Here hr+1 includes a compact representation of question

intent and dialog history, providing a differentiable connection between the

intent and final predictions through the dialog state.

Question Policy.. The question policy transforms hr+1 to a question represen-

tation zr that will be passed to the speaker model to generate the actual question

text. In some sense, zr corresponds to the “intent” of the question (e.g. checking

the existence of surfers) that triggers the speaker to produce corresponding

text (e.g. “Is anyone surfing?”). A default choice for zr is identity function

(i.e., zr = hr+1). Later we explore choices where zr is a random variable

(continuous or discrete) parameterized by hr+1.
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Speaker

Given an intent zr, the speaker generates a natural language question. We model

the speaker as a standard LSTM-based decoder with an initial hidden state equal

to zr (or an embedding of zr for discrete zr).

Predictor

The predictor uses the planner’s hidden state to guess which image A-bot has

selected. The predictor takes a concatenation F = [F1, . . . , Fr+1] of fact

embeddings and the dialog state hr+1 and computes an attention pooled feature

F̂ using hr+1 as attention context. A score is then computed for each image in

the pool based on the image features, the pooled representation, and the dialog

state (see appendix for full model details). These scores are normalized via a

softmax to predict the target image. The model can then be trained end-to-end

to minimize a cross-entropy loss on this prediction. Note the model is agnostic

to the pool size.

4.3 Dialog without Dialog

Aside from some abstracted details, the game setting and model presented in the

previous section could be trained without any further information – a pool of

images could be generated, A-bot could be assigned an image, the game could

be rolled out for arbitrarily many rounds, and Q-bot could be trained to predict

the correct image given A-bot’s answers. While conceptually possible, there

is an obvious shortcoming – it would be nigh impossible for Q-bot to learn to
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produce interpretable questions. Nobody discovers French. They have to learn

it.

At the other extreme – representing standard practice in dialog problems –

humans could be recruited to perform this image guessing game and provide

dense supervision for what questions Q-bot should ask to perform well at this

specific task. However, this suggests a machine learning paradigm that requires

collecting language data for every new task. Aside from being costly, it is

intellectually dissatisfying for agents’ knowledge of natural language to be so

inseparably intertwined with individual tasks. After all, one of the greatest

powers of language is the ability to use it to communicate about many different

problems.

In this section, we consider a middle-ground – training our agents with single-

shot question answering data and then learning an agent that can carry on our

task-driven dialog without further supervision.

4.3.1 Stage 1: Language Pre-training

We want Q-bot’s language to be interpretable – in this paper we take that to

mean it should be understandable by and semantically meaningful to humans, so

it has to be something like a meaningful subset of a known human language. To

pre-train the model to use interpretable human language, we design a supervised

learning task for a single-round version of our game.

We leverage the VQAv2 [Goy+17] dataset as our language source to learn how

to ask interpretable questions. By construction, for each question in VQAv2

there exists at least one image pair which are visually similar but have different

ground truth answers to the question. This somewhat mirrors our dialog game
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– the image pair is the pool, the question is guaranteed to be discriminative,

and we can provide an answer depending on A-bot’s selected image. We can

view this as a special case of our game that is fully supervised but contains

only a single round of dialog. We can then train our Q-bot to mimic the human

question (e.g. via cross-entropy teacher forcing) and to predict the correct image

given the ground-truth answer.

4.3.2 Stage 2: Transferring to Dialog

The VQA dataset contains simple questions about images, but they are not

aimed at accomplishing our image guessing task. Consequently, the goal of

Dialog without Dialog is to transfer this learned language understanding to

new tasks and demonstrate generalization in terms of interpretability and task

performance across many task variations (e.g. multiple rounds of conversation

and new pools of images).

As an initial setting, we could take the pre-trained weights from Stage 1 and

simply fine-tune for our full image guessing task. However, this agent would

face a number of challenges. It has never had to model multiple steps of a dialog.

Further, while following the task objective of predicting A-bot’s selected image,

there is little to encourages Q-bot to continue producing interpretable language.

We consider a number of modifications to address these problems.

Discrete Intention z Representation.. Rather than a continuous vector passing

from the question policy to the speaker, we consider a discrete random variable.

Specifically, we consider a representation composed of N K-way Concrete

variables [MMT17] so zn ∈ [0, 1]K is a distribution over K objects.
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We learn a linear transformation from the intermediate dialog state h̄r to a set

of logits lzKn:K(n+1)−1 for each variable n in z:

lzKn:K(n+1)−1 = LogSoftmax(hKn:K(n+1)−1)∀n (4.5)

This parameterizes encoder distribution p(zr).

To provide input to the speaker, zr is embedded using a learned dictionary

of embeddings. In our case each variable in z has a dictionary of K learned

embeddings. The value of zn (∈ {1, . . . ,K}) picks one of the embeddings for

each variable and the final representation simply sums over all variables:

ez =
N−1∑
n=0

Ez
n(zn). (4.6)

VAE Pre-training. When using this representation for the intent, we train Stage

1 by replacing the likelihood with an ELBO loss to restrict information flow

through z. This requires an encoder and a decoder. The decoder is the speaker

and the encoder is a new module q(z|q0, I) that forms a conditional distribution

over z. For the encoder we use a version of the previously described context

encoder that uses just the question q0 as attention query and parameterizes this

Concrete distribution with a linear transformation of the resulting hidden state.

The resulting ELBO loss is like the Full ELBO described (but not implemented)

in [ZXE19]:

L =Ez∼q(z|q0,I) [log p(speaker(z))] (4.7)

+ 1
N

N−1∑
n=0

DKL [q(zn|q0, I)||U(K)] (4.8)
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The first term encourages the encoder to mimic the VQA question. The second

term pushes the distribution of z close to a K-way uniform prior, which forces z

to only carry relevant information. Combined, the first two terms form an ELBO

on the question likelihood given the image pool [JGP17; Kai+18; ZXE19].

Fixed Speaker. Since the speaker contains only lower level information about

how to generate language, we freeze it during task transfer. We want only

the high level ideas represented by z and the predictor which receives direct

feedback to adapt to the new task. If we updated the speaker then it could overfit

its language to the sparse feedback available in each new setting.

Adaptation Curriculum. As the pre-trained model has never had to keep track

of dialog contexts beyond the first round, we fine-tune in two stages. In Stage

2.A we fix the Context Encoder and Question Policy parts of the Planner so

the model can learn to track dialog effectively without trying to generate better

dialog at the same time. This stage takes 20 epochs to train. Once Q-bot learns

how to track dialog we update the entire planner in Stage 2.B for 5 epochs.1

4.4 Experiments

4.4.1 Settings

We consider experimental settings which test generalization along four dimen-

sions: dialog round, pool type, pool size, and image domain. We can control

the difficulties of the proposed DwD task by setting the number of dialog round,

number of type of images in the pool and whether the task is operate on a

different image domain. We consider three image sources – COCO [Lin+14b],

1We find that 5 epochs stops training early enough to avoid the significant overfitting that can
otherwise occur.
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CUB [Wah+11], and AWA [Xia+18]. We vary pool size to be either 2 or 9

images either randomly selected or a contrasting pair (the synthetic VQA pools

from Stage 1, only defined for VQA pool size 2). Unless specified, performance

is reported for Q-bot’s final guess at the last round.

4.4.2 Metrics

We consider metrics addressing both Task performance and Language quality.

While task performance is straightforward, language quality is harder to mea-

sure. We use multiple metrics including human evaluations reported in Section

4.4.4.

Task - Guessing Game Accuracy via A-bot.. The point of transfer is to

improve task performance so we report the accuracy of Q-bot’s guess at the

final round of dialog.

Language - Question Relevance via A-bot.. To be human understandable, the

generated questions should be relevant to at least one image in the pool. We

measure question relevance as the maximum question-image relevance across

the pool as measured by A-bot, i.e. 1 − p(Not Relevant). We note that

this is only a proxy for actual question relevance as A-bot may report Not

Relevant erroneously if it fails to understand Q-bot’s question; however, in

practice we find A-bot does a fair job in determining relevance. We also provide

human relevance judgements in Section 4.4.4.

Language - Fluency via Perplexity. To evaluate Q-bot’s fluency, we train an

LSTM-based language model on the entire corpus of questions in VQA. This

allows us to evaluate the perplexity of the questions generated by Q-bot for

dialogs on its new tasks. Lower perplexity indicates the generated questions are
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similar to VQA questions in terms of syntax and content. Questions generated

for the new tasks could have lower perplexity because they have drifted from

English or because different things must be asked for the new task, so lower

perplexity is not always better [TOB15].

Language - Diversity via Distinct n-grams. This considers the set of all

questions generated by Q-bot across all rounds of dialog on the val set. It counts

the number of n-grams in this set, Nn, and the number of distinct n-grams

in this set, Dn, then reports Nn
Dn

for each value of n ∈ {1, 2, 3, 4}. Note that

instead of normalizing by the number of words as in previous work [Ash+18;

Li+15], we normalize by the number of n-grams so that the metric represents

a percentage for values of n other than n = 1. Generative language models

frequently produce safe standard outputs [Ash+18], so diversity is a sign this

problem is decreasing, but diversity by itself does not make language meaningful

or useful.

4.4.3 Results

Baselines.. We compare our proposed approach to two baselines – Stage 1

and Non-Var Cont – each ablating some aspects of our design choices.The

Stage 1 baseline is our model after the single-round fully-supervised pretraining.

Improvements over this model represent gains made from task-based fine-tuning.

The Non-Var Cont baseline is our model under standard encoder-decoder

dialog model design choices – i.e. a continuous latent variable, maximum-

likelihood pre-training, and fine-tuning the speaker model.

Results. . (Tab. 4.1) presents results for our model and baselines in different

settings. Starting from the first setting and moving downward, agents are tasked

with generalizing further and further from their source data – from setting A
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Tab. 4.1.: Performance of our models and baselines in different experimental settings.
From setting A to setting F, agents are tasked with generalizing further
from the source data. Our method strikes a balance between guessing game
performance and interpretability.

Accuracy ↑ Perplexity↓ A-bot Relevance ↑ Diversity↑

V
Q

A
2

C
on

tr
as

t
1

R
ou

nd A1 Stage 1 0.73 2.62 0.87 0.50

A2 Non-Var Cont 0.71 10.62 0.66 5.55
A3 Ours 0.82 2.6 0.88 0.54

V
Q

A
2

C
on

tr
as

t
5

R
ou

nd
s B1 Stage 1 0.67 2.62 0.87 0.50

B2 Non-Var Cont 0.74 10.62 0.66 5.55
B3 Ours 0.87 2.60 0.88 0.54

V
Q

A
2

R
an

do
m

5
R

ou
nd

s C1 Stage 1 0.64 2.64 0.75 1.73

C2 Non-Var Cont 0.86 16.95 0.62 8.13
C3 Ours 0.95 2.69 0.77 2.34

V
Q

A
9

R
an

do
m

9
R

ou
nd

s D1 Stage 1 0.18 2.72 0.77 1.11

D2 Non-Var Cont 0.78 40.66 0.77 2.57
D3 Ours 0.53 2.55 0.75 0.95

AW
A

9
R

an
do

m
9

R
ou

nd
s E1 Stage 1 0.47 2.49 0.96 0.24

E2 Non-Var Cont 0.48 12.56 0.64 2.21
E3 Ours 0.74 2.41 0.96 0.28

C
U

B
9

R
an

do
m

9
R

ou
nd

s F1 Stage 1 0.36 2.56 1.00 0.04

F2 Non-Var Cont 0.38 20.92 0.47 2.16
F3 Ours 0.74 2.47 1.00 0.04
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which mimics the human data pretraining to setting F where agents must carry

on a nine round dialog about 9 images containing only different bird species.

Our final model uniformly performs well on both task performance and language

fluency across different settings in terms of the automatic evaluation metrics

(see bolded results). Other key findings are:

Ours vs. Stage 1:. To understand the relative importance of the proposed stage

2 training which transferring to dialog for DwD task, we compared the task

accuracy of our model with that of Stage 1. In setting A which matches the

training regime, our model outperforms Stage 1 by 9% on task performance. As

the tasks differ in settings B-F, we see further gains with our model consistently

outperforming Stage 1 by 20-38%. Despite these gains, our model maintains

similar language perplexity, A-bot relevance, and diversity.

Ours vs. Non-Var Cont:. Our discrete latent variable, variational pre-training

objective, and fixed speaker also play a important roles in avoiding language

drift. Compared to the Non-Var Cont model without these techniques, our

model achieves over 4x lower perplexity and 10-53% better A-bot Relevance.

Our model also improves the averaged accuracy over the Non-Var Cont model,

which means more interpretable language also improves the task performance.

Note that Non-Var Cont has 2-100x higher diversity compared to our model,

since the language is shifted away from English (and towards gibberish).

Game Variations:.

– Dialog Rounds: Longer dialogs (more rounds) achieve better accuracy (A3

vs B3).

– Pool Type: Random pools are easier compared to contrast pool (B3 vs C3

accuracy), however, language fluency and relevance drop on the random

pools (B3 vs C3 perplexity and a-bot relevance).
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Tab. 4.2.: Human evaluation of language quality – question fluency (top) and relevance
(bottom). Each row compares a pair of agent-generated questions, asking
users which (or possibly neither) is more fluent/relevant. The values report
the percentage of times the option represented by that column was chosen.

Neither Stage 1 Non-Var Cont Ours

Stage 1 vs Non-Var Cont 31.7% 48.1% 20.2% –
Stage 1 vs Ours 49.0% 26.2% – 24.8%
Non-Var Cont vs Ours 32.7% – 17.9% 49.4%

Stage 1 vs Non-Var Cont 19.6% 48.8% 31.7% –
Stage 1 vs Ours 25.0% 38.4% – 36.6%
Non-Var Cont vs Ours 22.0% – 30.2% 47.8%

– Image Source: CUB and AWA pools are harder compared to COCO

image domain (D3 vs E3 vs F3). Surprisingly, our models maintains similar

perplexity and high a-bot relevance even on these out-of-domain image

pools. The Stage 1 and Non-Var Cont baselines generalize poorly to these

different image domains – reporting task accuracies nearly half our model

performance.

4.4.4 Human Studies

In addition to the automatic metrics, we also evaluate our models through human

studies. Specifically, we use workers (turkers) on Amazon Mechanical Turk to

evaluate the relevance, fluency, and task performance of our models. We discuss

each study below.

Human Study for Question Relevance.. To get a more accurate measure of

question relevance, we asked humans to evaluate questions generated by our

model and the baselines (Stage 1 & Non-Var Cont). We curated 300 random,

size 4 pools where all three models predicted the target correctly at round 5. For

a random round, we show turker’s the questions from a pair of models and ask

"Which question is most relevant to the images?" Answering the question is a
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forced choice between three options: either of the pair of models or an “equally

relevant” option. More details including an example of the interface can be

found in appendix C. (Tab. 4.2) (bottom) shows the frequency with which each

option was chosen for each model pair. Our model is considered more relevant

than the Non-Var Cont model (47.8% vs. 30.2% preference) and about the same

as the Stage 1 model (36.6% vs. 38.4% preference).

Human Study for Fluency.. We also evaluate fluency by asking humans to

compare questions. In particular, we presented the same pairs of questions to

turkers as in the relevance study, but this time we did not present the pool of

images and asked them "Which question is more understandable?" As before,

there was a forced choice between two models and an “equally understandable”

option. This captures fluency because humans are more likely to understand

grammatically correct. (Tab. 4.2) (top) shows the frequency with which each

option was chosen for each model pair. Our model is considered more fluent

than the Non-Var Cont model (49.4% vs. 17.9% preference) and about the same

as the Stage 1 model (49.0% neither question more fluent).

Human Study for Task Performance.. What we really want is for humans

to be able to collaborate with bots to solve tasks. Therefore, the most direct

evaluation of our the DwD task is to have humans interact dynamically with

Q-bot. We implemented an interface that allowed turkers to interact with Q-bot

in real time. Q-bot asks a question. A human answers it. Q-bot asks a new

question in response to the human answer and the human responds to that

question. After the 4th answer Q-bot makes a guess about which target image

the human was answering based on. Our interface is described in section C of

the supplement. We perform this study for the same pools for each model and

find our approach achieves an accuracy of 69.39% – significantly higher than

Non-Var Cont at 44.90% and Stage 1 at 22.92%. This study shows that our

model learns a strategy for this task that is amenable to human-AI collaboration.
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Non-Var Cont Stage 1 Ours

Q0: what is the boy in?

Q1: how many objects can be
breadsticks?

Q2: sweetest meters what is the 
color?

Q3: diving what day is the 
cabinet?

Q4: equestrian pads what can 
be seen ? 

not relevant : A0

2 : A1

white : A2

oval : A3

1 2

3 4

P0: 4

P1: 1

P2: 4

P3: 2

no : A0

not relevant : A1

light : A2

not relevant : A3

Q0: is there a reflection?

Q1:what fruit is walking across 
the right?

Q2:what is bright in the corner?

Q3: is it time?

Q4: is there a cat in this photo? 

P0: 2

P1: 2

P2: 2

P3: 3

not relevant : A0

not relevant : A1

white : A2

bathroom : A3

Q0: What color are the wheels ?

Q1: what is the color of the 
white fence ?

Q2: how many people in the 
room?

Q3:which room is this ?

Q4: is this picture taken during a 
day?

P0: 4

P1: 1

P2: 4

P3: 2

Q0: what color is the photo?

Q1: is the boy’s collar on the
right?

Q2: what color is the thing?

Q3: what is the color?

Q4: what is the first?

gray : A0

not relevant : A1

black : A2

black : A3

P0: 3

P1: 3

P2: 3

P3: 3

Q0: what is on the bowl?

Q1: how is the sitting on water?

Q2: what kind of birds are these?

Q3: what is the bird eating?

Q4: does the bird have a
sheep ’s tail toy? 

bird : A0

sand : A1

crow : A2

nothing : A3

P0: 1

P1: 4

P2: 4

P3: 3

Q0: what is behind the bird ?

Q1: what is the color of the collar?

Q2: what kind of bird is in the
image ?

Q3: what kind of bird is this ?

Q4: what is the bird sitting on ?

P0: 4

P1: 4

P2: 3

P3: 3

sand : A0

not relevant : A1

crow : A2

crow : A3

1 2

3 4

1 2

3 4

Q0: how many legs are visible?

Q1: how many different pillows
are in the pic?

Q2: what is the animal that is next
to the blue animal’s leg?

Q3:what number is on the boogie
head?

Q4: is this animal hungry?

2 : A0

not relevant : A1

bear : A2

not relevant : A3

P0: 2

P1: 3

P2: 4

P3: 3

Q0: what kind of animal is this?

Q1: how many little dogs are
laying around?

Q2: what color is the bear?

Q3: what is the animal holding?

Q4: can the animal be seen in
the water?

Polar bear : A0

0 : A1

white : A2

nothing : A3

P0: 4

P1: 4

P2: 4

P3: 4

Q0: what color is the photo?

Q1: what is the on the bottom
person?

Q2: what shape is this light?

Q3: what shape is the train?

Q4: what shape of this?

not relevant : A0

not relevant : A1

not relevant : A2

not relevant : A3

P0: 4

P1: 4

P2: 4

P3: 4

Fig. 4.3.: Qualitative comparison of dialogs generated by our model with those gen-
erated by Non-Var Cont and Stage 1 baselines. Top / middle /bottom rows
are image pool from COCO / AWA / CUB images respectively. Our model
pretrained on VQA (COCO image) generates more interpretable questions
for the DwD task which is semantic meaning and generalize well to out-of-
domain images.

This is in contrast to prior work [Cha+17] that showed that improvements

captured by task-trained models for similar image-retrieval tasks did not transfer

when paired with human partners.

4.4.5 Qualitative Results

Figure 4.3 shows example outputs of Non-Var Cont baseline, Stage 1 model

and our proposed models on three different image sources – COCO, AWA and

CUB datasets. We can see that COCO images contains varieties of concepts

while AWA images contains on different animals and CUB images contains on

different species of birds. The A-bot is not accurate, which introduces noisy

signals for Q-bot to learn the DWD tasks. Compared with the baselines, our

approach asks more relevant and interpretable questions in the dialog.
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4.4.6 Model Ablations

We investigate the impact of our modelling choices from Section 4.3. In

(Tab. 4.3) we report the mean of all four automated metrics averaged over

pool sizes, pool sampling strategies, and datasets.2Next we explain how we vary

each of these model dimensions

– Our 128 4-way Concrete variables require 512 logits (Discrete). Thus we

compare to the standard Gaussian random variable common throughout

VAEs with 512 dimensions (Continuous). This just removes the KL term

((4.8)).

– In both discrete and continuous cases we train with an ELBO loss (ELBO),

so we compare to a maximum likelihood only model (MLE) that uses an

identity function as in the default option for the Question Policy (see Section

4.2.3).

– We consider checkpoints after each step of our training curriculum: Stage 1,

Stage 2.A, and Stage 2.B. For some approaches we skip Stage 2.A and go

straight to fine-tuning everything except the speaker as in Stage 2.B. This is

denoted by Stage 2.

– We consider 3 variations on how the speaker is fine-tuned. The first is our

proposed approach of fixing the speaker (Fixed). The next fine-tunes the

speaker (Fine-tuned). To evaluate the impact of fine-tuning we also consider

a version of the speaker which can not learn to ask better questions by using

a parallel version of the same model (Parallel). This last version will be

described more below.

Discrete Outperforms Continuous z.. By comparing our model in row 1 of

(Tab. 4.3) to row 7 we see that our discrete model outperforms the corresponding

2This includes 10 settings: {random 2, 4, 9 pools }× {VQA, AWA, CUB} and 2 contrats pools
on VQA
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Tab. 4.3.: Various ablations of our training curriculum.

z Structure Loss Curriculum Speaker Accuracy Perplexity Relevance Diversity

1 Discrete ELBO Stage 2.B Fixed (Ours) 0.81 2.57 0.89 0.86
2 Discrete ELBO Stage 2 Fine-tuned 0.82 2.54 0.85 0.59
3 Discrete ELBO Stage 2 Parallel 0.78 2.60 0.88 0.73
4 Discrete ELBO Stage 1 Fixed 0.72 2.60 0.91 0.48
5 Discrete ELBO Stage 2.A Fixed 0.80 2.59 0.89 0.81
6 Discrete ELBO Stage 2 Fixed 0.80 2.53 0.85 0.62
7 Continuous ELBO Stage 2.B Fixed 0.75 2.45 0.66 0.23
8 Continous MLE Stage 2.B Fixed 0.78 4.27 0.83 4.33

continuous model in terms of task performance (higher Accuracy) and about

matches it in interpretability (similar Perplexity and higher Relevance). This

may be a result of discreteness constraining the optimization problem to prevent

overfitting and is consistent with previous work that used a discrete latent

variable to model dialog [ZXE19].

Stage 2.B Less Important than Stage 2.A. Comparing rows 4, 5, and 1 of

(Tab. 4.3), we can see that each additional step, Stage 2.A (row 4 -> 5) and Stage

2.B (row 5 -> 1), increases task performance and stays about the same in terms

of interpretability. However, most gains in task performance happen between

Stage 1 and Stage 2. This indicates that improvements in task performance

are mainly from learning to incorporate information over multiple rounds of

dialog.

Better Predictions, Slightly Better Questions. To further investigate whether

Q-bot is asking better questions or just understanding dialog context for pre-

diction better we considered the Parallel speaker model. This model loaded

two copies of Q-bot, A and B both starting at Stage 1. Copy A was fine-tuned

for task performance, but every z it generated was ignored and replaced with

the z generated by copy B, which was not updated at all. The result was that

copy A of the model could not incorporate dialog context into its questions

any better than the Stage 1 model, so all it could do was track the dialog better

for prediction purposes. By comparing the performance of copy A (row 3 of
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(Tab. 4.3)) to our model (row 1) we can see a 3 point different in accuracy, so

the question content of our model has improved after fine-tuning, but not by a

lot. Most improvements are from dialog tracking for prediction (row 3 accuracy

is much higher than row 4 accuracy).

Fine-tuned Speaker. During both Stage 2.A and Stage 2.B we fix the Speaker

module because it is intended to capture low level language details and we do not

want it to change its understanding of English. Row 2 of (Tab. 4.3) does not fix

the Speaker during Stage 2 fine-tuning. Instead, it uses each softmax at each step

of the LSTM decoder to parameterize one Concrete variable [JGP17] per word.

This allows gradients to flow through the decoder during fine-tuning, allowing

the model to tune low-level signals. This is similar to previous approaches

which either used this technique [Lu+17] or REINFORCE [Das+17a] This

model is competitive with DWD in terms of task performance. However, when

we inspect its output we see somewhat less interpretable language.

Variational Prior Helps Interpretability. We found the most important factor

for maintaining interpretability to be the ELBO loss we applied during pre-

training. Comparing the continuous Gaussian variable (row 7) to a similar

hidden state (row 8) trained without the prior term (4.8) we see drastically

different perplexity and diversity. Perplexity and diversity drop because the

model has drifted far from English. This is similar to the effect in the Non-Var

Cont, which is the model from row 8 with a fine-tuned speaker.

4.5 Related Work

We uses a visual reference game to study question generation, and in particular

we are interested in interpretable and efficiently learning language. This interest

is mainly inspired by problems encountered when using models comparable to
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the Stage 1 baseline from Section 4.4.3. In [Lew+17] a dataset is collected with

question supervision then fine-tuning is used in an attempt to increase task per-

formance, but the resulting utterances are uninterpretable. Similarly, [Das+17a]

takes a very careful approach to fine-tuning for task performance but finds that

language also diverges, becoming difficult for humans to understand.

Visual Question Generation.. Other approaches like [Mis+18] and [Yan+18]

also aim to ask questions with limited question supervision. They give Q-bot

access to an oracle to which it can ask any question and get a good answer

back. This feedback allows these models to ask questions that are more useful

for teaching A-bot [Mis+18] or generating scene graphs [Yan+18], but they

require a domain specific oracle and do not take any measures to encourage

interpretability. We are also interested in generalizing with limited supervision,

using a standard VQAv2 [Goy+17] trained A-bot as a flawed oracle, but we

focus on maintaining interpretability of generated questions and not just their

usefulness.

Latent Action Spaces.. Of particular interest to us is a line of work that uses

represents dialogs using latent action spaces [ZLE18; ZE18; YL17; Wen+17;

Ser+16; YL17; Hu+19; Kan+19; Ser+17; WAZ17]. Recent work uses these

representations to discover interpretable language [ZLE18] and to perform zero-

shot dialog generation [ZE18], though neither works consider visually grounded

language as in our approach. Most relevant is [ZXE19], which focuses on

the difference between word level feedback and latent action level feedback.

Like us, they use a variationally constrained latent action space (like our z)

to generate dialogs and find that by providing feedback to the latent actions

instead of the generated words (as opposed to the approaches in [Das+17a]

and [Lew+17]) they achieve better dialog performance. Our variational prior is

similar to the Full ELBO considered in [ZXE19], but we consider generalization

from non-dialog data and generalization to new modalities.
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Reference Games.. The task we use to study question generation follows a

body of work that uses reference games to study language and its interaction

with other modalities [Lew69]. Our particular task is most similar to those

in [Vri+16] and [Cha+17]. In particular, [Vri+16] collects a dataset for goal

oriented visual dialog using a similar image reference game and [Cha+17] uses

a similar guessing game we use to evaluate how well humans can interact with

A-bot.

4.6 Conclusion

In this paper we proposed the Dialog without Dialog (DwD) task along with

a model designed to solve this task and an evaluation scheme that takes its

goals into account. The task is to build a dialog agent that generates meaningful

and useful dialogs without dialog level language supervision. This balance is

hard to strike, but our proposed model manages to strike it. We find it helps to

represent dialogs with a discrete latent variable and carefully transfer language

information via multi-stage training. While baseline models either perform well

at new tasks through fine-tuning or maintain interpretability, our model achieves

the goal of DwD by doing both. We hope both our task and our model help

inspire useful dialog agents that can also interact with humans.
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5
Conclusion

„You can build crystal palaces of thought,

working from first principles, then climb up

inside them and pull the ladder up behind

you.

— Maciej Cegłowski [Ceg16]

Neural networks have supported significant progress on perceptual AI tasks, but

there are still challenges scaling them to increasingly complex tasks. As task

complexity increases so does the cost of collecting data and the need for data

to feed these hungry models. We showed how the problem can be alleviated

by adding new inductive biases centered around the idea of disentanglement

to our models. The thesis investigated three ways of disentangling neural net

representations and showed that in each case better generalization resulted.

In Chapter 2 we considered statistical independence, or redundancy, as a notion

of disentanglement. We learned more general image classifiers by adding a loss

that discouraged redundant image representations.

In Chapter 3 we considered compositionality as a notion of disentanglement

and we were interested in whether neural nets could discover compositional

language. We found that the language discovered by neural nets tended to be

non-compositional, but that we could improve its compositionality by adding a
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context where language could be transferred across generations in a population

of agents. This resulted in disentangled language that could better generalize to

new compositionally novel examples.

Finally, in Chapter 4 we disentangled intention from language in question asking

agents. Here the goal was to achive high accuracy on an image guessing task

while maintaining high language quality. We proposed a model that disentangles

intention from language and showed that baselines can either solve the image

guessing game or maintain language quality, but only our model does both.

As a high level intuition, disentanglement is not directly useful. It needs to be

implemented in a design mechanism like those showcased above, which is a

non-trivial step. However, by highlighting disentanglement as a perspective

around which to focus neural net designs we hope this thesis can inspire new

implementations of the high level intuition and can help practitioners connect

different research directions in new ways.

5.1 Implications and Future Work

5.1.1 Inductive Biases

Together, these chapters illustrate different instantiations of an inductive biases.

Yet it is unclear what role inductive biases like these have to play, and in partic-

ular how important they are for designing neural networks. Often increasing

the amount of training data results in a similar improvement in learning per-

formance. But despite the simplicity of that approch, it can have substantial

disadvantages:
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1. Data collection is inefficient, especially compared to the ease with which

we can add many inductive biases to our model. For example, DeCov

may only require changing a couple lines of code in modern frameworks.

2. Furthermore, we do not generally know how much data is needed to get

the desired level of generalization. Sometimes an order of magnitude

more data may offer significant improvements and other times gains from

the same approach can be marginal.

3. In some cases it may even be impossible to solve a learning problem by

collecting more data. Take the compositional generalization considered

in Chapter 3 and illustrated by Fig. 5.1 (copied from Fig. 1.4 in Chapter

1). The sets of hyperplanes in both subfigures identify the triangles and

the blue square unambiguously, but Fig. 5.1a cannot disambiguate the

red square while Fig. 5.1b can. The two models can perform perfecty

on training data but not equally well on the test data, so another criteria

decides between them. We expect the test data to be novel compositions of

already seen attributes, so we use that to design a corresponding inductive

bias.

(a) (b)

Fig. 5.1.: As described in Fig. 1.4, Fig. 5.1a represents objects in a one hot fashion
and Fig. 5.1b represents objects as compositions of attributes. In both
figures the training data (the triangles and the blue square) can be perfectly
distinguished from one another, but they do not generalize equally well to
the test data (red square). An inductive bias like the population dynamics of
Chapter 3 is needed to pick representations like the one in Fig. 5.1b.
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This last point is echoed by results like the no free lunch theorem for machine

learning [Wol96]: without any assumptions about the world or the learning

problem, all approaches to learning from data are equally good on average.

Superior models – e.g., convolutional neural nets trained on ImageNet (as in

Chapter 2) – are only superior because of the structure of the world (natural

images) and the problems we choose to solve within it. Inductive biases encode

more assumptions about the world into our models, and thus allow even better

solutions to learning problems.

The world we design agents for implies certain inductive biases which we

then encode into our model to increase its performance in that world. Current

research projects focus on one model, measuring its performance in the world

and finding inductive biases that improve the model. Engineers find these

inductive biases by leveraging intuitions they have built up by observing the

world, and how the model and its components have performed on the current

task and on related tasks. This is the art of building intelligent systems. Part

of what makes this an art is that the connections between performance in the

world to inductive biases, and then changes to the model are both intuitive.

Instead, if we studied inductive biases more directly, then these connections

might be made more scientifically. Given an inductive bias, we could try to

measure aspects of the world and task to which it applies. Given an inductive

bias, we could try to find many ways to implement it in a variety of models. In

the long term this understanding would help us solve new tasks more quickly

be decoupling these two parts of the design process. When we want to create a

new model for a new task we could first predict which inductive biases would

be useful, and then using a different mechanism we could predict how best

to implement that inductive bias in a model. Having studied inductive biases

instead of models instead of specific prediction steps for specific tasks, each of
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these predictions might be more robust, relying less on the artful intuition of the

engineer.

For example, take a relatively well understood inductive bias: convolution.

Almost all the time convolutional layers are necessary for neural networks to

achieve good performance on tasks involving natural images and we think this

corresponds to the local spatial invariance of natural images. We could design

metrics to try to measure properties like this – to measure the “naturalness”

of images – and judge the metrics based on their ability to predict whether a

convolution bias will make a big difference (comparing the best models) for

a particular task. Non-convolutional and convolutional techniques work very

well on classification of MNIST digits, so a metric might rate convolution as

relatively unimportant for that task while it rates convolution as very important

for classification of ImageNet images. Given such a metric we might be able to

predict the importance of the convolution bias for images from a new domain,

and thus know whether or not to include it in our model designs.

Convolution is relatively well established, but that’s because we have tested it

over many datasets (different perspectives on the world) and many models. If

we could do that for other properties of the world then maybe we could predict

what inductive biases to use or not to use for each new task we see. A robust

implementation of predictors like this might reduce the experience and intuition

needed to design models, making it easier to design new models and maybe

also making it easier to scale existing models to more complex problems.
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5.1.2 Dual Process Theory, Deep Learning, and the

Trajectory of AI

Dual process theory has categorized human thinking into system 1 thinking

and system 2 thinking [Kah11]. System 1 uses intuition that is fast, automatic,

parallel, unconscious, familiar, and bottom up. It is used to recognize objects,

localize sounds, and even shortcut common problems like "2 + 2 = ?". System

2 reasons in a slow, effortful, serial, conscious, unfamiliar, top down manner.

It is used to communicate your phone number, follow logical reasoning, and

solve more complex math problems like "17 * 24 = ?". These categories transfer

well to AI, where both types of thinking have been present since it emerged as a

field.

Initially more popular, Good Old Fashioned AI (GOFAI) focuses on system 2

thinking. GOFAI representations like frames [Min74] and scripts [SA77] might

represent entities in using a set of slots filled with different kinds of values.

For example, a person might have a slot called "Name" filled in with the value

"John" and another slot called "Is-A" filled with the value "Human" and that

person can be further understood by placing them in a script which has them

follow a sequence of steps like "Go To Seat" and "Order Food". An inference

engine, like a production system, can use representations like these to specify a

set of rules (if-then statements) and then deduce actions to take or properties of

the world.

These examples are only a slice of existing work, but approaches like these

have also been used to create large scale systems that encompass a surpassing

amount of knowledge or capability. Long term projects like Cyc [Len95] have

tried to accumulate knowledge targeted to system 2 processing in an attempt to

provide a comprehensive knowledge base on top of which to build applications.
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Furthermore, a variety of cognitivie architectures like SOAR [Lai12] have

provided frameworks for implementing a variety of AI tasks and even for

implementing embodied agents that acquire their own tasks [ML16].

While there are many kinds of representation and inference that could cate-

gorized under GOFAI and be broadly related to system 2, for the most part

they rely on symbolic semantic representations. However, the world does not

present us with symbolic semantic representations, rather it presents us with

raw observations like the pixels of an image which have little meaning on their

own. Symbolic semantic representations are implied from these raw data only

after a significant amount of processing. Hence, systems like the aforemen-

tioned SOAR rely on a perception component. When built to perceive known

toy environments, perception modules can easily be manually coded, and this

makes sense when the goal is to study post-perception problems. But in general,

perception requires system 1 thinking.

Thus system 1 thinking and system 2 thinking sometimes depend on one another.

For example, consider a problem like "17 * 24 = ?" written on a sheet of paper.

The writing could be perceived as a string of characters: “1”, “7”, “ ”, “*”, “ ”,

“2”, “4”, “ ”, “=”, “ ”, “?”. Or it might be perceived as numbers and symbols:

“17”, “*”, “24”, “=”, “?”. In the latter case the string might be fed directly in to

an arithmetic module, but in the former case the system needs to first understand

how characters are composed to create meaning (e.g., how “1” followed by

“7” means “17”). Some thinking can be delegated to system 1 or system 2,

depending on one’s perspective.

To figure out how this interface should work, these systems need to interact.

System 1 needs to provide semantics that are compatible with the system 2’s

knowledge. While system 2 may know how to add numbers, it may not know

how to parse sequences of characters into addition problems. System 2 needs
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to provide top down feedback that guides the semantics system 1 learns or

discovers; it could reward system 1 for perceiving addition problems instead of

sequences of characters. Like the work in this thesis, this top down feedback is

a form of inductive bias which guides the world’s representation.

This interaction isn’t a particularly new idea, but taking a large step back sug-

gests leveraging existing approaches to do this integration rather than arranging

neural networks in some simplified and perhaps naïve version of system 2. If

cognitive architectures like SOAR represent system 2 and deep learning rep-

resents system 1 then we could try to build an agent that uses both. A direct

implementation would look like a SOAR agent which uses deep learning to do

perception. The deep learning perception module would be continually updated

to support the goals the SOAR agent is trying to accomplish, making those

goals easier by providing representations that support reasoning efficiently. In

general, sharing expertise may benefit models by making their semantics more

flexible and adaptive [Bar99].

At the beginning of “Artificial Intelligence: A Modern Approach” [RN03], AI

research is categorized on two axes.

1. human-like – rational Some research cares more about building human-

like machines and other research cares more about building rational

machines whether they think like humans or not.

2. thinking – embodied Some research cares more about building machines

that think, and other research cares more about acting effectively, only

thinking to the extent it benefits action.

The system 1 - system 2 distinction could join these axes.
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3. system 1 – system 2 Some research cares about system 1 tools that are

fast, automatic, parallel, unconscious, familiar, and bottom up. Other re-

search cares about system 2 tools that are slow, effortful, serial, conscious,

unfamiliar, and top down.

Humans are often rational and thinking is often required to act effectively.

Similarly, system 1 and system 2 sometimes need to interact to most effectively

solve problems. These ways of thinking about AI help provide a vision to orient

research and engineering over an extended perspective, and maybe for some

that vision will include experts that specialize in both system 1 and system 2.
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A
Appendix

A.1 Appendix for Chapter 2

A.1.1 Details of the bias in the MNIST experiment

Recall that in Section 2.4.1 we generate biased pairs of MNIST digits by

defining

P (l) = 0.1 and P (r|l) =



0 if l ∈ {0, . . . , 4} and r ∈ {0, . . . , 4}

0.2 if l ∈ {0, . . . , 4} and r ∈ {5, . . . , 9}

0.1 if l ∈ {5, . . . , 9}

(A.1)

and sampling left then right digits. To show that this creates a larger bias on the

right than on the left, we show there is more uncertainty about left digits given

right ones than right ones given left ones. That is, we show the conditional

entropy H(l|r) is greater than H(r|l).

To compute the conditional entropies, we first derive

P (r) =
∑

l

P (r|l)P (l) =


0.05 if r ∈ {0, . . . , 4}

0.15 if r ∈ {5, . . . , 9}
(A.2)
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and

P (l|r) = P (r|l)P (l)
P (r) =



0 if l ∈ {0, . . . , 4} and r ∈ {0, . . . , 4}

2
15 if l ∈ {0, . . . , 4} and r ∈ {5, . . . , 9}

3
15 if l ∈ {5, . . . , 9} and r ∈ {0, . . . , 4}

1
15 if l ∈ {5, . . . , 9} and r ∈ {5, . . . , 9}

. (A.3)

Using the convention 0 log 0 = 0, we can now compute

H(l|r) = −
∑

r

P (r)
∑

l

P (l|r) logP (l|r) ≈ 2.0868 (A.4)

H(r|l) = −
∑

l

P (l)
∑

r

P (r|l) logP (r|l) ≈ 1.9560 (A.5)

(A.6)
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A.2 Appendix for Chapter 3

A.2.1 Results on Novel Instance Dataset of

[Kot+17]

In section 2 of the main paper we discuss the difference between the novel

instance and novel pair datasets. Our novel pair dataset is a more difficult

compositional split, than the one in Kottur et al. [Kot+17]. For comparison, in

this section we train and evaluate our models on the novel instance from Kottur

et al. [Kot+17] to show that our approach still improves compositionality in this

setting and to show that our new dataset is indeed more difficult.

In (Fig. A.1) test set accuracies (with standard deviations) are reported by

training and evaluating the same models as in our main results (figure 2 main

paper) against the dataset from [Kot+17]. These results do not perform cross-

validation, following [Kot+17]. They only vary across 4 different random

seeds. Our proposed approach still outperforms models without replacement

and without multiple agents. Furthermore, by comparing the approaches from

(Fig. A.1) to figure 2 from the main paper we can see much lower performance

across the board on the novel pair than on the novel instance dataset used here.

This indicates the novel instance dataset is significantly easier than our new

dataset, and that our models encourage compositionality in both settings.

A.2.2 Replacement Strategies

Our approach to cultural transmission periodically replaces agents by re-initializing

them. The approach section outlines various replacement strategies (policy π),

but does not detail their implementation. We do so here.
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Fig. A.1.: Test set accuracies (with standard deviations) are reported by training and
evaluating the same models as in our main results (figure 2 main paper)
against the dataset from [Kot+17]. These results do not perform cross-
validation, following [Kot+17]. They only vary across 4 different random
seeds. See Section A.2.1.

These strategies depend on a number of possible inputs:

• e the current epoch

• E the period of agent replacement

• vQ
i /v

A
i the validation accuracy of agent i for Q-bots/A-bots. For Q-bots

this is averaged over all potential A-bot partners, and vice-versa for

A-bots.

• aQ
i /a

A
i the age in epochs of agent i for Q-bots/A-bots

Single Agent strategies are given in Algorithm 2 and Algorithm 3. Multi Agent

strategies are given in Algorithm 4, Algorithm 5, and Algorithm 6. Note that

Single Agent strategies always replace one agent while Multi Agent strategies

always replace one Q-bot and one A-bot.

Algorithm 2: Single Agent - Random Replacement

1 d ∼ U{0, 1}
2 if d = 0 then
3 return { A-bot }
4 else
5 return { Q-bot }
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Algorithm 3: Single Agent - Alternate Replacement

1 Input: e
2 if be/Ec = 0 then
3 return { A-bot }
4 else
5 return { Q-bot }

Algorithm 4: Multi Agent - Uniform Random Replacement

1 iA ∼ U{1, NA}
2 iQ ∼ U{1, NQ}
3 return { A-bot iA, Q-bot iQ }

Algorithm 5: Multi Agent - Epsilon Greedy Replacement

1 Input: vQ
i ∀i, vA

i ∀i, ε ∈ [0, 1) (usually 0.2)
2 d ∼ U [0, 1)
3 if d < ε then
4 iA ∼ U{1, NA}
5 iQ ∼ U{1, NQ}
6 else
7 iA = argmini v

A
i (unique in our experiments)

8 iQ = argmini v
Q
i (unique in our experiments)

9 return { A-bot iA, Q-bot iQ }

Algorithm 6: Multi Agent - Oldest Replacement

1 Input: aQ
i ∀i, aV

i ∀i
2 iA = U{argmaxi a

A
i }

3 iQ = U{argmaxi a
Q
i }

4 return { A-bot iA, Q-bot iQ }

A.2.3 Visualization for Language Comparison at

Dififerent Training Stages

In this section we visualize the language learned by agents at various stages of

training to reinforce our previous conclusions and build intuition. This builds

on the visualization described in section 5.3 of the main paper, so reference that

section to individually understand the three sub-figures in (Fig. A.2).
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Each of the three sub-figures in (Fig. A.2) summarizes all of the conversations

between a particular pair of bots for the (shape, color) task. From left

to right: (Fig. A.2a) summarizes the single pair from a Single Agent No Re-

placement run (3000 iterations old); (Fig. A.2b) summarizes dialogs between

an old Q-bot (about 23000 iterations) and a recently re-initialized A-bot (about

3000 iterations) at the 8th and final generation of a Multi Oldest run; (Fig. A.2c)

summarizes dialogs between the same old Q-bot as in (Fig. A.2b) and an old

A-bot (13000 iterations) from the same Multi Oldest experiment.

Even though the A-bots in (Fig. A.2a) and (Fig. A.2b) have trained for about1

the same number of iterations, the A-bot trained in the presence of other bots

which already know a functional language has already learned a somewhat

compositional language whereas the Single Agent A-bot has not (Q-bot’s gets

almost all star instances wrong in (Fig. A.2a), but not in (Fig. A.2b)). Further-

more, by comparing the old A-bot’s language (Fig. A.2c) with the new one

(Fig. A.2b) we can see that they are extremely similar. They even lead to the

same mistakes (green circles, purple circles, red triangles). This correlation in

mistakes again suggests that language is transmitted between bots, in agreement

with our previous experiments.

A.2.4 Detailed Results

In our experiments we compare models and we compare replacement strategies.

We ran dependent paired t-tests across random seeds, cross-val folds, and

replacement strategies to compare models. We ran dependent paired t-tests

across random seeds, cross-val folds, and models to compare replacement

strategies. The p-values for all of these t-tests are reported here.

1Due to the stochastic nature of our Multi Agent approach.

94



(a) Gen 1 (Single) - New
A-bot

(b) Gen 8 (Multi) - New
A-bot

(c) Gen 8 (Multi) - Old A-
bot

Fig. A.2.: Each sub-figure summarizes an A-bot’s language, as described in section
5.3 of the main paper. By comparing the baseline of (Fig. A.2a) to a similar
pair of bots from our approach (Fig. A.2b) we can see that our approach
encourages compositional language to emerge. Furthermore, the similarity
between (Fig. A.2b) and (Fig. A.2c) suggests language is indeed transmitted
in our approach.

Replacement strategy comparisons are in (Fig. A.4) (Single Agent) and (Fig. A.5)

(Multi Agent). Model comparisons are in (Fig. A.3).
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Fig. A.3.: Replacement strategy comparison p-values.
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Fig. A.4.: Single Agent model comparison p-values.
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Fig. A.5.: Multi Agent model comparison p-values.
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A.3 Appendix for Chapter 4

A.3.1 Architecture Details

This section describes our architecture in more detail. Algorithm 7 summarizes

our complete Q-bot implementation and subsequent algorithms define the sub-

routines used inside Q-bot. The planner module is described in Algorithm 9, the

predictor is described in Algorithm 8, and the speaker is described in Algorithm

10. Algorithm 11 describes the encoder used for the ELBO loss.

Note that the number of bounding boxes per image is B, the number of images

in a pool is P , and the max question length is T .

There are two notable differences between this section and the main paper:

• In this section there is an additional hidden state h̄r that parallels hr. This

means the query used by the context encoder in the planner to specialize,

allowing hr to focus on representing the entire dialog state. The hidden

state hmain
r from the main paper can be though of as a tuple of hidden

states hmain
r = (hr, h̄r).

• Also note that in the main paper the interface for Q-bot includes all

questions and answers from the dialog history. In our implementation we

only require the previous question and answer, modeling all necessary

history information through hr and h̄.

In the planner Algorithm 9 at lines 5 and 6 g, f1, f3 are all two layer MLPs

with ReLU output and weight norm. Both f2 and f4 are linear transformations
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Algorithm 7: Q-bot

1 Function QBot(I, qr, ar, hr, h̄r)
Input: I
Input: qr

Input: ar

Input: hr

Input: h̄r

Output: qr+1
Output: hr+1
Output: h̄r+1
Output: ŷr

2 hr+1, h̄r+1, z ← Planner(I, qr, ar, hr, h̄r)
3 ŷr ← Predictor(hr+1)
4 qr+1 ← Speaker(z)
5 return qr+1, hr+1, h̄r+1, ŷ

Algorithm 8: Predictor

1 Function Predictor(I, hr+1, q0, a0, . . . , qr, ar)
Input: I, Ib

p ∈ R2048

Input: hr+1
Input: q0, a0, . . . , qr, ar

Output: ŷ
2 Attention(Q,K, V ) = softmaxg3(g1(Q)� g2(K))V
3 fr+1 ← [Eq(qr+1), Ea(ar+1)] /* fact */
4 F ← [f1, . . . , fr+1]

/* Attention over rounds */
5 eF ← Attention(hr+1, F, F )
6 Qy ← [hr+1, eF ]

/* Attention over bounding boxes */
7 eI ← Attention(Qy,x,x) ∈ RP×2048

8 eI ← g1(eI)
9 Qp ← g2(Qy)

10 ly ← g3(Qp � eI)
11 ŷr ← argmax softmaxly
12 return ŷr

with weight norm applied (no activation function). f5 is a linear transformation

without weight norm purely for dimensionality reduction. To compute h̄r+1 we

also add new linear weights W1 and W2 as for a standard LSTM output gate.

Note that for the planner there is an additional residual connection at line 16

which augments the hidden state. This allows gradients to flow through the
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Algorithm 9: Planner

1 Function Planner(I, qr, ar, hr, h̄r)
Input: I, Ib

p ∈ R2048

Input: qr

Input: ar

Input: hr

Output: hr+1
Output: h̄r+1
Output: z
/* Context Coder */

2 eq ← Eq(qr)
3 ea ← Ea(ar)
4 ec ← f5([h̄r, eq, ea])
5 αp ← softmaxf2(g(ec)� f1(Ib

p))
6 βb

p ← softmaxf4(g(ec)� f3(Ib
p))

7 v̂r ←
∑P

p=1
∑B

b=1 αpβ
b
pI

b
p

8 xcontext
r ← [v̂r, eq, ea]

/* Dialog RNN */
9 hr+1, cr+1 ← γ(xcontext

r , hr)
10 hr+1 ← Dropout(hr+1)
11 h̄r+1 ← σ(W T

1 x
context
r +W T

2 hr)� tanh(cr+1)
12 h̄r+1 ← Dropout(h̄r+1)

/* Question Policy */

13 hz
r+1 ←W T

z hr+1 ∈ Rd

14 lzKn:K(n+1)−1 ← LogSoftmax(hz
Kn:K(n+1)−1)∀n

15 zn ← GumbelSoftmax(lzKn:K(n+1)−1)∀n
16 hr+1 ← hr+1 + ReLU

(
W T

l l
z
)

17 return hr+1, h̄r+1, z

question policy parametersWz at line 12 when we fine-tune for task performance

without fully supervised dialogs.

In Algorithm 8 g1, g2 are both 2-layer ReLU nets with weight norm. Also g3 is

a 2-layer net with ReLU and Dropout on the hidden activation and weight norm

on both layers.

In Algorithm 10 β is an LSTM decoder.
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Algorithm 10: Speaker

1 Function Speaker(z)
Input: z
Output: qr+1

2 ez ←
∑N−1

n=0 E
z
n(zn)

3 qr+1 ← β(ez)
4 return qr+1

Algorithm 11: Encoder

1 Function Encoder(I, qr)
Input: I, Ib

p ∈ R2048

Input: qr

Output: z (sample or distribution parameters)
/* Context Coder */

2 eq ← Eq(qr)
3 αp ← softmaxf2(g(eq)� f1(Ib

p))
4 βb

p ← softmaxf4(g(eq)� f3(Ib
p))

5 v̂ ←
∑P

p=1
∑B

b=1 αpβ
b
pI

b
p

6 hz ←W T
z v̂

7 lzKn:K(n+1)−1 ← LogSoftmax(hz
Kn:K(n+1)−1)∀n

8 zn ← GumbelSoftmax(lzKn:K(n+1)−1)∀n
9 return z

A.3.2 Additional Results

Experiments in the main paper considered dialog performance after the first

round (top of Table 1) and at the final round of dialog (either 5 or 9 depending on

pool size). This does not give much sense for how dialog performance increases

over rounds of dialog, so we report Q-bot’s guessing game performance at each

round of dialog in (Fig. A.6). For all fine-tuned models performance goes up

over multiple rounds of dialog, though some models benefit more than others.

Stage 1 models decrease in performance after round 1 because it is too far from

the training data such models have been exposed to.
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Fig. A.6.: Task performance (guessing game accuracy) over rounds of dialog. Perfor-
mance increases over rounds for all models except the Stage 1 models.

A.3.3 Mechanical Turk Studies

In the experiments section we described two studies where we asked humans to

compare questions.

In the relevance study turkers were presented with the interface depicted in

(Fig. A.7). It asked them to compare questions based on their relevance to any

image in the image pool. The question with higher relevance should have been

picked even if the question was not very grammatical. All model pairs were

evaluated for each pool of images. The questions were presented in a random

order, though the Equally relevant option was always last.

103



Fig. A.7.: An example of the interface used to ask humans to evaluate question rele-
vance.
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Fig. A.8.: An example of the interface used to ask humans to evaluate question fluency.

In the fluency study ((Fig. A.8)) turkers were presented with the same pairs of

questions as in the relevance interface but they were not given image pools with

which to associate the questions. We asked them to compare questions based on

how well they could be understood. As in the relevance study questions were

presented in a random order.

In the figure 4, we display the interface which was used to pair up the Q-bot

with a human in real time. The Q-bot asks a question in order to guess the target

image and a human answers the question by looking at the target image. This

sequence of question/answer starts with a random guess from Q-bot and goes

on for 4 Rounds.
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Fig. A.9.: An example of the interface subjects used to interact with our Q-bot models.
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