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SUMMARY 

As a consequence of the recent deregulation in the electrical power production 

industry, there has been a shift in the traditional ownership of power plants and the way 

they are operated. Many new private entrepreneurs with no prior experience in power 

plants operation have entered into the power plant business. Thus, to hedge their business 

risks, they enter into long-term service agreement (LTSA), which can last as long as 

twenty years, with third parties for their operation and maintenance (O&M) activities. 

They share not only the rewards of plant performance surplus, but also the risks of any 

performance shortfall. As the major LTSA providers, original equipment manufacturers 

(OEM) have invested huge amounts of money to develop preventive maintenance 

strategies to minimize the occurrence of costly unplanned outages resulting from failures 

of the equipments covered under LTSA contracts. As a matter of fact, a recent study by 

the Electric Power Research Institute (EPRI) estimates the cost benefit of preventing a 

failure of a General Electric 7FA or 9FA technology compressor at $10 to $20 million.  

Therefore, in this dissertation, a two phase data analytics approach is proposed 

that first uses the existing monitoring gas path and vibration sensors data to develop a 

proactive strategy that systematically detects and validates catastrophic failure precursors 

so as to avoid the failure; then secondly estimate the residual time to failure of the 

unhealthy items. To achieve the goal of this research, a step by step methodology is 

developed for each of the two phases. For the first part of this work, the time-frequency 

technique of the wavelet packet transforms is used to de-noise the noisy sensor data. 

Next, the time-series signal of each sensor is decomposed to perform a multi-resolution 

analysis to extract its features. After that, the probabilistic principal component analysis 

is applied as a data fusion technique to reduce the number of the potentially correlated 

multi-sensors measurement into a few uncorrelated principal components. The last step of 

the failure precursor detection methodology, the anomaly detection decision, is in itself a 

multi-stage process. The obtained principal components from the data fusion step are first 
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combined into a one-dimensional reconstructed signal representing the overall health 

assessment of the monitored systems. Then, two damage indicators of the reconstructed 

signal are defined and monitored for defect using a statistical process control approach. 

Finally, the Bayesian evaluation method for hypothesis testing is applied to a computed 

threshold to test for deviations from the healthy band. 

To model the residual time to failure, the anomaly severity index and the anomaly 

duration index are defined as the defects characteristics. Two modeling techniques are 

investigated for the prognostication of the survival time after an anomaly is detected: the 

deterministic regression approach, and parametric approximation of the non-parametric 

Kaplan-Meier plot estimator. It is established that the deterministic regression provides 

poor prediction estimation. The non parametric survival data analysis technique of the 

Kaplan-Meier estimator provides the empirical survivor function of the data set 

comprised of both non-censored and right censored data. Though powerful because no a-

priori predefined lifetime distribution is made, the Kaplan-Meier result lacks the 

flexibility to be transplanted to other units of a given fleet that were not included in the 

failure data. The parametric analysis of survival data is performed with two popular 

failure analysis distributions: the exponential distribution and the Weibull distribution. 

The conclusion from the parametric analysis of the Kaplan-Meier plot is that the larger 

the data set, the more accurate is the prognostication ability of the residual time to failure 

model. 



 

CHAPTER 1 

1INTRODUCTION 

 

In recent years, a paradigm shift has been occurring in the role played by complex 

system designers and manufacturers in many different fields. For the most part, major gas 

turbine designers and manufacturers do not just produce and sell new gas turbines to 

customers, they are becoming involved in the total life cycle of the products from 

designing and manufacturing to providing the after sale operation and maintenance of the 

systems for several years. The trend is valid for civil aviation applications as well as for 

electrical power production applications. Particularly in the heavy-duty gas turbine for 

electricity production, the need to outsource plants operation and maintenance (O&M) 

arose as plant owners sought to hedge some of the normally high financial risk of power 

plant operation by paying for some type of insurance premium in return to have insurance 

providers to share the potential risks.  

In general, the electricity production industry is a much-deregulated one in many 

ways with an extensive competition between producers. The reason for that is local and 

federal governments are very much involved at different stages from the production of 

electricity with its efficiency requirements and environment restrictions to the reliability 

and availability of the distribution. The rationale behind the government’s involvement is 

understandable because our modern society depends heavily on reliable and continuous 

power guarantee for businesses, hospitals, airports, school, public transportation systems, 

etc. Therefore, municipalities and electrical power regulatory authorities put strict 

requirements on the minimum acceptable efficiency, reliability and availability, making 

them ones the highest requirement metrics for power plant ability to be dispatched.  

To diverge some of the continuous business risk, plant owners enter into complex 

and specific long-term contractual agreements that can last for several years with third 
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partied O&M providers. The contractual agreements work like insurance policies where 

the manufacturers guarantee a given level of power output and/or efficiency over several 

years. They also provide repair, replacement, and upgrade parts to the degrading power 

plant. Overall, it is supposed to be a win-win partnership for both parties by sharing the 

operation risks and the rewards. On one hand, plant owners don’t have to carry all alone 

the burden of potential investment failures, and also the long-term contractual agreement 

raises the re-sale value of the plant.  

On the other hand, gas turbine manufacturers became the natural fits for new and 

lucrative insurance business ventures because they are the ones who know and 

understand their designed products and will be willing to guarantee its operations. In 

addition to that, by entering into the operational partnership with the plant owners, the 

manufacturers have unprecedented access to “a live laboratory” that should allow them to 

learn from eventual design shortcomings made in previous gas turbine designs in order to 

improve upon future ones, ultimately giving them a competitive advantage.  Also, it is 

important to note that being the plants owners’ partners provide the gas turbine 

manufacturers with a reliable customer base when new parts are needed for upgrade over 

the life of the contract. 

Although there have always been third party players in the gas turbine for 

electricity power plants long-term contractual agreements, the most important players are 

the major gas turbine original equipment manufacturers (OEM) such as General Electric 

Energy (GE Energy), Siemens Power Generation, Alstom Power, Mitsubishi Heavy 

Industries, and Ansaldo Energia. Together, these major OEMs represented about 94% of 

the global market for the period of 2000 through 2004 [1]. Each of these main gas turbine 

original equipment manufacturers has its own definition and the foreseeable benefits to 

the plant owners of their long-term service agreement (LTSA).  
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1.1 Power plant operation and maintenance trend  

With the deregulation of the electrical power production market, private 

ownership of power plants occurred, that introduced new attitudes towards the operation 

and maintenance of those plants, mainly outsourcing. Outsourcing the O&M came as a 

way to face the unprecedented level of competition in the power plant business. Because 

third party O&M deem lucrative for the service providers, a consequence was a 

generation of an environment of competition among independent third party O&M 

provider and OEM, with the competitive hedge to OEM which can assume bigger risk. 

Then the role played by OEMs moved from transactional risk management mindset of 

building and selling gas turbines to end owners, to a long-term contractual risk 

management or partnership with the equipments buyers, see illustrative figure 1 below.  

 

Figure 1: Spectrum of OEM risk mitigation adapted from [2] 

 

In the past, the transactional approach to risk management was the way power plant 

operation business was done, which is fundamentally different from the now common 

contractual service. In the context of gas turbine usage in power plants, the transactional 

approach can be defined as the plant owner with an outage who can shop around and buy 

the parts, repairs and services as the plant requires. Therefore, the main goal of the plant 
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owner is to find the lowest price bids for services that makes the transactional approach a 

very price focus strategy with little to no ownership interest to the vendors [2]. In the 

contractual approach by contrast, the vendor is a partner who has the same end goal for 

the plant operation and maintenance as the plant owners do. Though the basics of the 

long-term service agreement (LTSA) [3] is similar in nature for all majors OEMs, each of 

them has its own tailored version of definition based on its offerings and the level of 

commitment it is willing to assume as the provider of operation and maintenance. Thus, 

the contractual agreement definition for each of the major gas turbine OEM for power 

plant applications is different and is provided below. 

General Electric Energy promotes its Contractual Service Agreement (CSA) as 

“changing the focus from minimum price to maximum value by aligning the risk/reward 

goals.”[2] GE offers customized CSA in the forms of LTSA and operation and 

maintenance agreement (O&MA) to plant owners. GE defines LTSA as fixed-price 

maintenance contract, based on performance recovery at the key gas turbine inspections, 

over 3 years or longer for planned and/or unplanned maintenance, including all parts, 

repairs and servicing of the equipment. While, GE describes O&MA as a fixed-price total 

O&M and performance guarantee that guarantees the daily performance. The O&M is 

aimed at reducing the risks to the plant owner for future total plant price uncertainty, 

plant technology changes and equipment life. In general, GE Energy offerings are 

flexible and its CSA can be customized to cover what the plan owner deems necessary. 

At the end, GE and the owner share the common goal profit maximization for each other.  

Siemens Power Generation calls its version of the long-term service agreement 

the Long Term Maintenance Agreement (LTMA). Siemens defines its LTMA as: “offers 

of power plant owners with turnkey outage services and equipment, long-term surety of 

pricing, priority emergency support, remote monitoring, and OEM technical support for 

base load gas plants”. Siemens offers LTMA contracts typically over a period of six to 
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twelve years and the contract could be extended to cover generators, steam turbine, and 

balance of plant (BOP) in combined cycle operation [4]. 

Alstom Power sells its long-term service agreement under the umbrella of its 

“Full Turnkey capabilities” with the marketing slogan of “You deserve the best” [5]. 

Alstom offers a customized partnership of total customer solutions, from components to 

full turnkey power plant [6]. The service available to customers is a complete portfolio of 

maintenance services, ranging from spare parts, repair and field services to full-range of 

operation and maintenance packages. The service can also include the refurbishment and 

modernization of existing plants; all of this flexibility is intended to meet specific 

customers’ needs. Furthermore, Alstom differentiates itself from other major OEMs with 

its concept of “Plant Integrator” which covers all aspects of power plant phases from 

design of plan component beyond providing the gas turbine through the commissioning 

process to the plant operation. The end goal of the Alstom strategy is to keep the plant 

owner competitive through the long term O&M by optimizing the capital investment and 

lowering operating and maintenance costs while guaranteeing plant operation and 

performance for the length of the long-term contract. 

Like other major OEMs, Mitsubishi Heavy Industries (MHI) customizes its 

available options to meet customer needs from a simple long-term part supply contract 

(LTPS) which is a 4years to 6 years contract of guarantee parts supply and engineering 

support to a more complex long-term service agreement (LTSA). MHI provides its LTSA 

for its gas turbine and other power plant equipments for normally six years to twelve 

years term. Typically the LTSA of MHI consists of supplying necessary manpower, 

replacement parts, and maintenance engineering support. Specifically under its LTSA, 

MHI provides: maintenance management that is planning of scheduled inspection and hot 

gas parts management; maintenance engineering service that consists of having a site 

service director for daily support stationed at the customer power plant; a continuous 

remote monitoring service [7]. 
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Ansaldo Energia acquired its full technological independence in 2004 with the 

termination of the Siemens license, becoming one of the major OEMs [8]. In its new 

position, Ansaldo Energia created the concept of OSP (Original Service Provider) to 

support its non-OEM service portfolio. Thus, it can provide service from on-call daily 

technical representative field dispatch to long-term turnkey maintenance contract. Under 

its LTSA, Ansaldo Energia engages in business partnerships with plant owners to share 

the revenues and the operational risks, to optimize costs of operation, to tailor 

maintenance policies and to meet the most demanding environmental regulations. Also, 

Ansaldo will guarantee throughout the duration of the contract the plant output, 

efficiency, technology upgrades and availability.  

Because the competition among OEMs has become fierce with the LTSA offerings 

becoming comparable in scope, there are qualified third party consultants like Electric 

Power Research Institute (EPRI) which can help customers choose the right O&M 

strategy that meet their needs by providing unbiased comparative study of the offerings. 

EPRI typically assesses competitive offerings using they own tools for neutral decision in 

the best interest of its customers [3]. Thus, LTSA contracts are becoming more complex, 

creative, and flexible in their terms and can be individually customized. Therefore, OEMs 

are much more willing to take higher financial risks by guaranteeing the LTSA 

stipulations for several more years than their typical offerings to win contracts. 

 

1.2 Motivation 

 

As a result of the growing competition, non-OEMs and OEMs alike are exposing 

themselves to increasingly high financial risks by guaranteeing plant performance output, 

efficiency, environmental requirements in some cases, and taking on the risk associated 

with O&M for several decades. In fact, the maintenance costs and availability are two of 
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the most significant apprehension a heavy-duty gas turbine that plant owners faces [9] 

because of the financial consequence of unplanned outages. Thus for plant owners the 

LTSA is an insurance policy to mitigate their financial risk associated with wear and tear 

and/or equipment and component failure. Currently, O&M expenditures is a very 

important part of total life cycle cost consisting of 15% to 20% of total life cost cycle 

cost, while the equipment maintenance costs account for approximately 10% to 15% of 

total life cycle cost [2] as illustrated on figure 2 below along with the fuel cost and the 

cost of running the plant.  

 

 

Figure 2: Cost of electricity trend with the O&M expenses [2] 

 

Also a further decomposition of O&M expenses shows that there is always a cost 

associated with an outage whether it is a planned or unplanned one. 

In return, the plant owner enters in a partnership with the LTSA provider in the form of 

revenue and risk sharing. Typically, the partnership works as a stick and carrot policy 

where any extra revenue due to savings on O&M or the excess of performance over the 

guaranteed level after an upgrade is considered a bonus and is shared between both 

parties. However, any loss of revenue due to an unplanned outage or a performance 

shortfall from the expected guaranteed level corresponds to a penalty. Furthermore, if the 
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plant owner is required under contract to provide a set level of electrical power to a 

district when the forced outage occurs, he or she will be obligated to buy the 

corresponding electrical power from other power plans at higher rates. Consequently, the 

LTSA provider has to compensate for the loss revenue to the plant owner and/or the cost 

to buy from other power plants for the necessary electrical power that the plant was 

dispatched for as a liquidated damage. It is clear that the liquidated damage can grow 

quickly and become very expensive for the provider in the case of extended forced 

outage. In general, a forced outage cost includes: loss production, repair cost, and 

eventual penalty. 

1.2.1 The reasons for OEMs to enter in LTSA 

Despite the risks involved with LTSA contracts, they are an enormous revenue 

stream for OEMs. Over the years, the profit margin on sale of new gas turbines has been 

shrinking for OEMs, while LTSA for the most part assured OEMs of the sale of upgraded 

components to sustained degrading gas turbine performance throughout the duration of 

the LTSA. The market of LTSA can be a very lucrative one as illustrated through the 

following example: 

• On November 25th 2008, Business Wire reported that GE Energy and the 

Algerian state-owned power company Sonelgaz entered in a contractual 

service agreement (CSA) worth more than US $1 billon for a period as 

long as 18-years [10]. 

Once a CSA or a LTSA contract is set, the goal of the provider (third party non-OEM or 

OEM) is to design ways to help reduce and manage to lower the level of maintenance 

costs which as shown on figure 2 is typically 15 to 20% of power plant life cycle cost. 
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1.2.2 OEMs develop strategy to make LTSA profitable 

Like in any business endeavor, the main goal of OEM in providing LTSA is to 

make it profitable for both parties. With the steep liquidated damage amounting to multi-

millions of dollars associated with not meeting the reliability and durability requirement, 

LTSA providers need to develop strategies so that the revenues generated from the 

contracts exceed the costs of the involved risks. Thus, OEMs have been investing huge 

amounts of money to develop strategies to avoid unplanned plant outages in the first 

place, or to be as well prepared as possible to mitigate the effects for those unavoidable 

ones. Thus, OEMs like GE Energy created a Power Answer in Atlanta, GA, where all 

power plants under the CSA contracts are continuously monitored using installed sensors; 

the data is recorded and stored for post processing to detect any abnormal trend.  

 

Figure 3: GE Monitoring & Diagnostics concept adapted from [2] 

 

On the illustrative Figure 3 shown, the on-site monitor compares the actual unit 

performance with baseline predictions and provides the first level of anomaly detection 

and notification. The field service engineer is on hand to assess the equipment health, 
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while the engineer at the power answer center reviews the overall performance data on a 

daily basis and considers all abnormal events. There is an ongoing communication among 

the three parties for an adequate health parameters assessment of the covered equipments 

of the plant to identify signs of any equipment malfunction.  

However, with the length of the LTSA contracts becoming longer with some them lasting 

more than twenty (20) years, the task of detecting all potential anomalies of gas turbine 

health is becoming daunting. There are many explanations for the difficulties in 

recognizing some of the rare or short lasting fault events that might lead to engine trips 

such as the machine-to-machine variation, uncertainties of machine degradation and 

power plant operating conditions (i.e. load condition).  In addition, OEMs like GE 

Energy services provides long-term contractual service agreement to hundreds of utility 

companies throughout the world based on different power plants design and operating 

condition, making each CSA contract to be individually written to suite the plant owner 

interests and needs (e.g. plant Power, plant efficiency, plant emission, etc). On top of that 

gas turbine designs are becoming more complex in order to meet higher requirements for 

efficiency, output, and environmental regulations. All these constraints will add to the gas 

turbine vulnerability to uncommon faults. The strategy of continuously monitoring the 

plant equipment to detect early indication of faulty behaviors has become widely popular 

in the industry. However, although many companies have invested huge amounts of 

money in sensor technology, sensor accuracy, and other monitoring devices, and have 

significantly improved the storage capacity and access of the collected data in the past 

several years, advanced analysis of the accumulated monitored data is still in its infancy 

stage and very limited to simple data post-processing techniques like data trending.  

As a consequence of the limited extraction of useful information out of the collected data 

and due to not taking full advantage of the capability acquired from the monitoring in real 

time, many failures such as first row (R-0) of both 7FA and 9FA of GE gas turbine 

compressors are still happening as reported in the EPRI report titled “GE FA Compressor 
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Dependability (Phase 2)” [11]. Those undetected failures defeat the goal of the power 

answer which goal is to detect anomalies that may have led to them, so to avoid them in 

the first place. Thus, in recent years, there have been new and improved techniques such 

as condition based monitoring (CBM) and prognostics health management (PHM), to 

detect anomalies in their early stages of development. Currently, the new techniques have 

not allowed to totally solving the issue of missed early detection of all the anomalies; 

although the merit of their concept is well accepted, their practical implementation is still 

not done in real time for the most part. Therefore, as a solution to avoid failure, in this 

work a twofold systematic approach to take full advantage of the real-time monitoring 

process is proposed. First, the equipment health in real-time using advance data 

processing techniques is continuously assessed. Then, once a fatal anomaly is detected, 

an estimation of the remaining useful life (RUL) is provided. 

 

1.2.3 Relevance of Potential impact of research 

The aim of this thesis is to propose a process to systematically detect anomalies at 

their earliest possible stage and to evaluate their severity. In the case where a detected 

anomaly is deemed fatal, then the potential survival time of the faulty equipment is 

estimated as to allow the power plant operators to make the appropriate decision whether 

to conduct an emergency shut down or to call for another power plan to come online to 

assume their power production.  

The most significant accomplishment of this work will be the ability to capture the thus 

far undetected precursory events to catastrophic failures and shut down power plant so to 

avoid them. The ability to avoid or even decrease the number of catastrophic gas turbine 

failures has an immense economically consequence considering the steep cost of 

unplanned power plant outages to LTSA providers. It is understandable that detected and 
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replacing a faulty compressor blade would have cheaper cost in consequence to replace 

than to letting the blade detached and destroy the entire compressor. Because, the total 

cost of replacing a whole gas turbine compressor instead of a single compressor blade can 

add up quickly with a loss of revenue due to an extended outage, the cost of a 

maintenance crew for a longer period of time, and the cost of entire compressor 

equipment. As a matter of fact, EPRI estimates the cost benefit from preventing a General 

Electric gas turbine 7FA and 9FA technology compressor failure at around US $10-20 

millions [11].   

Therefore moving the maintenance strategies from a concept of preservation and 

protection to that of asset management and optimization [8] will be the key for earlier 

detection of maintenance need.  Overall, given that the LTSA contracts are as long as 

over twenty years, it is important for the O&M providers to become proactive to avoid as 

much as possible catastrophic failures that would consume their potential profits or even 

produce a negative return on investment on the long run as repeated costly failures would 

defeat the capitalist purpose of their prospect as insurance providers. 

          

1.3 Research Organization 

As stated previously, this research offers a methodic process for early failure 

precursor detection and model the residual time to failure once an anomaly is detected as 

a tool to decrease the cost of power plant outages.  The remainder of this thesis is 

organized in six more chapters.  

In chapter 2, the research is put in context with its background and the research goals are 

defined. The chapter 3 is an overview of the mathematical aspect of the time-frequency 

techniques, with the emphasis on the Wavelet Transform. Then, the chapter 4 is devoted 

to the first part of the proposed methodology, where each step of the failure precursor 

detection is presented.  
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Next, the chapter 5 is dedicated to the second part of the methodology, which is to model 

as accurately as possible the prognostication of the residual time to failure of gas turbine 

compressor after the detection of a failure anomaly. Thus, the deterministic regression, 

the non-parametric Kaplan-Meier, and the parametric survival analysis techniques are 

investigated. The chapter 6 is about implementing the proposed methodologies to a fleet 

of 7FA type technology of the General Electric gas turbines compressor as a proof of 

concept. Finally, in the chapter 7, a brief recapitulation of the proposed approach is 

provided will the successes and the challenges, followed by a few recommendation for 

future work to complement this research. 
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CHAPTER 2  

2BACKGROUND AND RESEARCH OBJECTIVES 

 

2.1 Context 

As explained in the introductory chapter, as a consequence of the deregulation of 

the electricity power generation, many new private investors coming into the electricity 

generation industry had no previous power plant operation management experiences. As 

a way to circumvent some of the financial risks associated with the power plants O&M, 

private investors outsource the operation and maintenance activities of their power plants 

to third parties and focused on the management side of the plants that led to the 

conception of third party insurance providers.   

2.2 Background  

Original equipment manufacturers (OEM) are the third parties natural fit to 

becoming insurance providers to cover power plant equipments like gas turbines. 

Therefore, the major gas turbine OEMs are also the main long-term service agreement 

(LTSA) provider. The LTSA contracts can usually last as long as over twenty years. 

There are expensive financial and reputational consequences for the OEMs in the cases 

where failures of equipments under coverage are the cause of unplanned outages.   

Accordingly, OEMs are investing substantial amount of money to develop maintenance 

strategies to avoid unplanned power outages or in case they were to occur to keep the 

disruptions as short as possible and the consequences to a minimum. So far the strategies 

have mainly been to establish rigorous maintenance plans and more proactive ways such 

as the installation of sensors and other monitoring devices to remotely assess the 

condition of the covered equipments. Thus, the next few paragraphs will devoted to an 

overview of the different traditional maintenance plans, then an OEM in-house 
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maintenance strategy will be presented, and some other proactive ways to improve the 

overall plants availability. 

2.2.1 Traditional maintenance policies 

2.2.1.1 Run-to-failure  

Run to failure is the oldest and simplest type of maintenance strategies. It requires 

a repair, a replacement, or a restorative action be performed on a machine or a facility 

after the occurrence of a failure in order to bring this machine or facility to at least its 

minimum acceptable condition. Run-to-failure is a corrective maintenance policy also 

called "crisis maintenance" or "hysterical maintenance" because of its nature of being 

unplanned. When the run to failure strategy is in place, the equipment is used until failure 

occurs then the failed component is either repaired or replaced [12] (e.g. light bulb). 

The run to failure method has some advantages [13]:  

• It maximizes the useful life of the equipments 

• It is a low cost strategy  

•  It requires a minimal management 

• It can be useful on small non-integrated plant 

On the other hand, the run to failure strategy has many disadvantages: 

• It is not applicable in cases of irreversible damage 

• It usually has a high downtime because maintenance crew are often not on hand 

• It is done on an ad-hoc basis with a high cost of repairs 

• It requires an unnecessary crisis management when failure occur 

• It requires a large volume of spare inventory, which can be very expensive  
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2.2.1.2 Standard preventive maintenance 

Preventive maintenance can be defined as a schedule of planned maintenance 

actions aimed at the prevention of breakdowns and failures. The main goal of preventive 

maintenance is to catch a potential failure of equipment before it actually occurs. There 

are two main preventive maintenance plans: periodic preventive maintenance and 

sequential preventive maintenance [14]. Unfortunately, because both types of preventive 

maintenance rely on schedule planned inspection to observe an imminent fault, there is 

still a possibility for a catastrophic failure happening between two inspections [12]. 

Preventive maintenance is an improvement over the run to failure strategy. Thus some of 

the advantages of the preventive maintenance are: 

• Outages can be planned ahead of time with the possibility of logistic planning 

• The downtime of maintenance can be reduced  

• The maintenance occurs under the management control 

But there are still some disadvantages to the preventive maintenance strategy: 

• It leaves some unused useful life of the equipment 

• It can be difficult to implement for varying failure patterns 

• It can be expensive in terms of over maintenance 

• It does not  eliminate all catastrophic failures because they can still happen 

between scheduled maintenance 

2.2.1.3 Condition-based maintenance 

This is planned 

Condition-based maintenance can be defined as a planned maintenance based 

upon measuring the condition of all machine elements during the normal operation of the 

machine [13]. The goal of these measurements is to permit the prediction of the time to 

failure for all elements and thus to allow the maintenance activities to be planned before 

any elements fail. However, the concept of condition-based maintenance relies on the 
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recognition of a change in condition and/or performance of an equipment to trigger the 

implementation of the maintenance [15].  

The condition-based maintenance is a more active strategy than the previous two. A 

number of the condition-based maintenance advantages [13] are: 

• It decreases overall maintenance costs because maintenance is performed as 

needed when equipment deterioration is detected 

• It can extend system life  

• It has the ability to be machine specific 

• It  allows management  and logistic control by planning maintenance operation 

ahead of time 

There are disadvantages as well to condition-based maintenance: 

• It still requires inspection of the equipment to assess potential faulty conditions, 

so catastrophic failures can still happen between inspections  

• It relies on equipment deterioration, thus there is a chance to miss hard failure 

because of the short deterioration time see figure (4). 

• It requires a continuous management effort  

For the CBM to be successfully implemented, it is important to know the items failure 

modes in order to understand whether or not a given maintenance strategy would 

appropriately prevent the failure from happening.  

 

In essence, the field of maintenance has been an evolving one as illustrated on Figure 4 

[16]. Overtime, as systems became more complex, the maintenance strategies followed 

suit and became more proactive. 
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Figure 4: Paradigm shift in industrial maintenance [16] 

 

Hence, advanced maintenance strategies such as CBM+ (developed by the DOD) and 

PHM are becoming widely accepted and implemented on complex systems because their 

maintenance policy decision is based on systems a health centric approach.  Thus, a brief 

overview of the failure categories is presented followed by a manufacturer developed 

specific maintenance plan for its systems.  

2.2.1.4 Types of failure [13]  

There are two types of failure as illustrated on Figure 5: 

 

Figure 5: Illustration of Hard and Soft failures [13] 
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2.2.1.4.1 Soft failure:  

It develops gradually over time. It is usually a characteristic of mechanical 

elements as the wear of the elements is the basis of a gradual degradation of its operation. 

Its signature is much easier to observe because of the trend in the performance 

degradation. Thereby, soft failure allows that a fault prediction could be remedy through 

an adequate implementation of preventive maintenance and the condition-based 

maintenance. 

2.2.1.4.2 Hard failure:  

Contrary to soft failure, hard failure tends to happen instantaneously. It is more a 

characteristic of electrical circuit. But it can occur in mechanical elements when the 

change in equipment performance is a short lasting one and/or a precursory  catastrophic 

failure goes undetected [13]. Evidently, neither the preventive maintenance nor the 

condition-based maintenance would be suitable to avoid elements failure in the case of 

hard failure. 

 

2.2.2 A OEM customized maintenance 

Besides the well-known maintenance strategies introduced above, maintenance 

plans can be customized toward given interests of the users. Thus, in their 2006 paper 

titled “A Profit-Based Approach for Gas Turbine Power Plant Outage Planning”, Zhao et 

al. presented a method to plan maintenance actions so to maximize the profit of power 

plant operation [17]. Also in [14], Zhao et al proposed a way to plan preventive 

maintenance schedule with economic factors as the decision driver. General Electric, one 

the major OEMs has developed more tailored preventive maintenance techniques to meet 

its LTSA contracts commitment as an O&M provider. Therefore, based on its extensive 

experience acquired through the wide range of gas turbines it has sold and it is currently 

maintaining worldwide, GE bases its gas turbine maintenance need on the criteria of 
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independent counts of starts and hours. Whichever criteria limit is first reached 

determines the maintenance interval as shown on figure (5) [9], instead of the normal 

performance degradation trending as a tool to make a preventive maintenance decision. 

 

  

Figure 6:GE gas turbine maintenance need based on counts of starts and hours adapted from [9] 

 

2.2.3 Remote Monitoring center 

Thanks to the complex maintenance strategies developed by OEMs like GE, they 

are able to improve their preventive maintenance for soft equipments failure where there 

is usually a noticeable fault signature over time. However, those strategies can hardly 

prevent equipments hard failures. Therefore, there is a need to find more proactive ways 

to handle that type of failures. Hence as reported in the chapter 1, GE has invested 

resources in the creation of a monitoring center called “Power answer”  to improve its 

ability to expand the existing maintenance plans to be more proactive by detecting 

indicative events in real time that might have led to catastrophic hard failure.  
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2.3 Observations 

Through an analysis of the context and background a few observations can be 

made: 

2.3.1 Observation 1  

Even though a lot of the efforts and resources have been deployed through the 

development of complex and customized maintenance policies, and the creation of a 

monitoring center, there are still failure precursors going undetected. Indeed as reported 

by the EPRI in its report 1016159 in 2007, the GE gas turbines 7FA and 9FA technology 

compressor tilted:  “blade cracks and several failure incidents prompted an independent 

root cause investigation” [18]. Furthermore, the fact that there was a second phase 

documented in report 1016269 [19] in 2008 to further  study the same problem of 

compressor failure implies that the issue has become increasingly troublesome. 

2.3.2 Observation 2 

Usually all the machines covered under the LTSA contracts are continuously 

monitored in real time using installed sensors on the gas turbines and the readings have 

been stored for years in most of the cases. The stored sensors measurements data can be 

accessed at any time for post-processing of signals. Therefore, full advantage should be 

taken of the stored data, especially since there is no extra cost to be inquired for the 

monitoring process (i.e. use of existing sensors).  

2.3.3 Observation 3 

  The sensors are set to make measurements at a regular interval of time. Among 

the sensors, there are sensors that measure the machine health condition, some sensors 

measure the vibration level of different subsystem (compressor, combustor, and turbine) 

of the gas turbine, other sensors measure the overall condition of the gas turbine 

performance (e.g. power output, efficiency), and some other sensors measure the 
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operating condition (e.g. load) and the environment condition (e.g. ambient condition 

measurement).  Based on a definition of a time series as a sequence of data points, 

measured typically at successive times, spaced at (often uniform) time intervals, it can be 

concluded that sensors measurements overtime represent a time series signal [20].  

 

 

2.4 Research Objectives and questions 

 

Based on the observations, even with the existence of well-established preventive 

maintenance techniques in its arsenals, including its capability to monitor the gas turbine 

online monitoring, the GE 7FA and 9FA gas turbine compressor catastrophic hard failure 

has remained a problem. It is true that it could be difficult to avoid unplanned failure all 

together given the hundreds of gas turbines worldwide under GE’s LTSA contracts. 

However if there can be a way to make sense of the events that preceded the known 

compressor failure, an approach could be developed to recognize similar signs in the 

future in other gas turbines so to avoid the same failure from happening. Thus, the main 

research objectives can be defined:  

2.4.1  Objective 1: 

Develop a process to find precursory failure signatures as early as possible in order to 

avoid systems catastrophic failure. 

2.4.2 Objective 2: 

After an anomaly is detected, develop a strategy to prognosticate an estimation of the 

residual time to failure. 

 



 23 

As a consequence of the defined research objectives, the following research questions can 

be formulated: 

2.4.3 Research question 1:  

How can a precursory anomaly that might lead to a gas turbine catastrophic failure be 

detected?  

2.4.4 Research question 1a: 

How can a failure precursor detection method be made robust? 

 

After a failure precursor is detected, it is important to confirm that any detected anomaly 

is indeed a true failure sign so to reduce or eliminate the number of false alarms. Because, 

a high number of false alarms can be detrimental to the practical implementation of any 

diagnostics techniques as the system operators in charge of taking required actions when 

warning signs are identified, may start to disregard those warning alerts after a given 

number of false alarms, which may defeat the purpose of the earlier detection of failure 

precursors. Thus, a second research question can be formulated: 

2.4.5 Research question 2: 

 How can a detected precursory event be statistically validated? 

2.4.6 Research Question 2a: 

How does the sampling interval impact on the quality of detection? 

 

Once a failure precursor is validated, the much more valuable information to plant 

owners is the time left before the unhealthy items actually fail. That yields to the third 

research question  
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2.4.7 Research question 3:  

If a failure precursor event is validated, how can the residual time to failure of the item 

be estimated? 

Since for power plants emergency shut downs can be costly, it is imperative to assess the 

probability of a health-compromised item ability to survive through the estimated 

remaining life. That concern lead to the fourth research question:  

2.4.8 Research question 4:  

How can the confidence level of the estimated residual time to failure be determined? 

 

An attempt to answer these posed research questions leads to organizing the research 

approach into two main parts: 

 

1) Failure precursor detection, followed by the validation of the detection  

 

2) Estimation of the residual time to failure of a precursory anomaly, followed by the 

confidence level of the estimation. 

 

In the contest of industrial and technology, and based on the following formal definitions: 

• Prognostics is defined to be the detection of failure precursor followed by the 

prediction of remaining useful life (RUL) [21], 

• Prognosis is defined to be detecting the precursors of a failure, and predicting how 

much time remains before a likely failure [22], 

• Prognosis as the answer of the question: what is the remaining useful life of a 

machine or a component once an impending failure condition is detected and 

identified? [23], 
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The scope of the undertaken work to respond the research questions can be formally 

defined as a prognostics problem.  

 

2.5 Previous work on fault diagnostics of time-frequency processing techniques 

 

To answer the posed research questions, there is a need to review how time series 

data have been dealt with in the past to extract useful information about the content of the 

signals. Signal analysis is one of the most important methods used for condition 

monitoring and fault diagnostics [24] . In the literature, there exist many signal 

processing techniques that have been efficiently used to extract information from time 

series signal. As a way to process the  time series data, Carden and Fanning recommend 

to convert the data from the time domain into the frequency domain using the Fourier 

transform [25]. Fourier transform is one of the oldest and the most used of the time-

frequency domain analysis techniques. However, the Fourier transform is limited as it 

erases all time dependence once the data is converted in the frequential representation  

[26]. Accordingly, Peng and Chu provide an extensive review of other signal processing 

methods in  [24].  In the past Fast Fourier Transform (FFT) which is an efficient 

algorithm to compute the discrete Fourier transform (DFT) and its inverse has been one 

of the signal analysis methods used for fault diagnostics [24]. But FFT is limited in 

dealing with non-stationary signals [24]. Because the sensor data are non-stationary, 

other methods have been contemplated like the Wigner-Ville distribution (WVD) [27, 28] 

and the short-time Fourier transform (STFT) [29, 30] that are able to transform one-

dimensional temporal signal into a two-dimensional function of time and frequency [24, 

31]. Though, the WVD and STFT are true-time frequency representations for the sensor 

data, they have some drawbacks. For instance, the STFT can only provide a constant 

resolution for all frequencies because it uses the same window for the entire signal 
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analysis. To address those flaws,  other methods were brought about like the Choi-

Williams distribution (CWD) [32] and the cone-shape distribution (CSD), but they all 

had some sort of disadvantages.  

Therefore, to deal with the shortcomings enumerated with previous techniques, the 

wavelet theory has become the signal processing method of choice for time series 

analysis. Mallat and Hwang successfully used the wavelet to detect signal singularities 

[33]. Also, Jiang et al used wavelet methodology to detect damage in the thermal 

protection system panels [34]. Wang and McFaden had a series of publications on the use 

of wavelet to successfully detect mechanical failure [35, 36]. Boulahbal et al. found that 

the wavelet transform was appropriate for the detection of vibration transients generated 

by developing localized faults in gear trains [37]. Also, different modifications of the 

wavelet method and particular wavelet have been rightfully applied for fault detection. 

That is, Butler and Dey used the discrete wavelet to detect equipment failures for the 

purpose of preventive maintenance [38]. Then, Lin and Qu used the Morlet wavelet for 

mechanical fault diagnosis [39]. Saxena et al also used the complex Morlet wavelet to 

extract useful features to distinguish between faulty and healthy gear plates [40]. Mufti 

and Vachtsevanos applied a fuzzy-wavelet for fault detection [41, 42], while Wu and Du 

used the wavelet packets to extract signal features [43], which were necessary 

information for fault detection. Sun and Chang [44] also used the wavelet packet for 

damage assessment. Others like Pittner and Kamarthi used the wavelet coefficients 

instead of the wavelet transform components to extract signal feature [45]. One of the 

combinations much used for fault diagnostics and prognostics is the wavelet transform 

augmented with the neural networks, like in [46, 47]. 

The literature on the successful use of wavelet and its variants for the purpose of fault 

detection and prognostics is enormous. 

Since the goal in signal processing for fault diagnostics is to extract dominant features so 

to make the accurate decision, it is important to choose an appropriate technique that 
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would not arbitrarily truncate some useful information. Because, there are many factors, 

like changing environment and faults from the machines themselves that make the output 

signals of the running machines contain non-stationary components, time-frequency 

analysis is a better choice for non-stationary signal analysis.  

As a summary of the literature review for fault detection, it can be safe to say that 

though in the past dynamic systems based on vibration signatures and other health 

monitoring sensors data have generally relied on Fourier transforms type of analysis as a 

means of transforming time series signals from the time domain into the frequency 

domain, Fourier analysis proved to be limited as it provided poor representation of 

signals well localized in time. Therefore, it is difficult to detect and identify the signal 

pattern from their expansion coefficients. As a remedy, the wavelet methods in general 

and the wavelet packet transforms in particular appear to be a successful alternative 

means of  extracting time-frequency information from vibration  signatures and health 

sensors [48]. 

 

 

Table 1: Comparison of the different time-frequency method adapted from [24] 

 

Methods Resolution

Interference 

term Speed

CWT

STFT

WVD

CWD

CSD

           Excellent         Good        Fair           Poor       

 

The Table 1 above compares the different time-frequency methods for the adaptive time–

frequency analysis skill. The wavelet performs better than other methods, such as the 



 28 

STFT, WVD, CWD and CSD. That explains the fast expansion of the wavelet techniques 

for fault diagnostics [24].  

2.6 Literature review on residual life estimation 

There are a fair amount of techniques in the literature used to estimate the 

remaining life of component after a failure precursor is detected. Many entities have in-

house proprietary tools to assess the remaining life of their systems like the life extension 

analysis and prognostics (LEAP) developed by the Pacific Northwest National 

Laboratory [49]. Otherwise in general the prognostics techniques can be organized into 

three major groups [22]:  

1. data-driven 

2. Model-driven  

3. Hybrid of data-driven with model-driven 

2.6.1 Data-driven:  

In a 2005 paper entitle “A survey on data-driven prognostics”, Schwabacher 

reports a list of fairly recent data-driven studies [22]. Vachtsevanos et al [50] report that 

artificial neural networks (ANNs) is a good candidate for prediction because the ANNs 

are self-adaptive and make few assumptions about the models. However, a major 

drawback is that standard statistical method for confidence estimation is not applicable to 

ANN. Thus, Vachtsevanos et al [50]  and also Zhang [23] present the  dynamic wavelet 

neural network (DWNN) as a tool that successfully accomplishes the prediction of the 

remaining useful life.  Fuzzy logic has been selected as a way to make a component 

failure prediction [23, 51, 52]. Byington et al [53] put the neural networks and fuzzy logic 

as viable methods. And in [54] Byington et al maintain the neural network as a data-drive 

methodology for remaining life predictions for aircraft actuator components. 
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2.6.2 Model-driven: 

In his PhD thesis, G. Zhang  [23] defines the model-based approach as a physical 

model based that requires detailed and thorough understanding of the system as opposed 

to the data-driven approach. Also, Vachtsevanos et al define model-based as physics 

based [50]. Therefore in this research a model-based prognostics techniques is considered 

to be necessary a physics-based model. A list of recent works on artificial intelligence 

that is a model-based method can be found in [55]. 

 

2.6.3 Hybrid of data-driven with Model-driven: 

The mixture of the data-driven and the model-driven approach can be very 

powerful as it makes use of the best of both worlds. Thus, Gebraeel [56] and Gebraeel et 

al  [57] use a statistical approach with a preset threshold to compute residual life 

distribution. Peng and Vachtsevanos chose DWNN as the tool to address the problem of 

assessing the remaining useful life of critical components [46]. Suarez et al use the notion 

of damage accumulated to calculate the remaining life estimate of the components [58]. 

 

2.7 Assumptions 

 

In this research, the following assumptions are considered: 

• The required sensors (vibration, health, and operating condition) to continuously 

monitor the system are installed and working as intended.  

• The required sensors are installed at appropriate position 
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• The proposed process to be hypothesized is based on the gas turbine current 

operating profile (e.g. gas turbine load)    

• For a relatively short period of time, the number of starts and stops has no impacts 

on the remaining life of the machine.  

• For the remaining life estimation, the gas turbine operating conditions remain 

unchanged after the estimated remaining life (e.g. the gas turbine continuous to 

operate after the remaining useful life is estimated as it did before the failure 

precursor was detected during its healthy period)  

This work is not intended to deciding on the number or the position of monitoring sensors 

as other works that have focused on the optimal number of sensors needed and their 

location like in [23], or in the paper [59] that was devoted to the sensor location for the 

purpose of fault diagnostics study. 

 

2.8 Hypothesis 

 

Based on the literature review for time series signal analysis, the Wavelet 

transform methods are clearly the best choice for time-frequency analysis. As Percival 

and Walden stated in [60] wavelet is a powerful technique for signal processing, which  

was reiterated by Jiang and Adeli in  [61]. Therefore, the following hypothesis is stated: 

2.8.1 Research Hypothesis 1:  

A multi-step process that relies on the Wavelet transforms theory can be used to detect a 

precursory anomaly that might lead to the catastrophic failure of a gas turbine 

compressor. 
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As the result of the literature review on the estimation of residual time to failure 

and remaining useful life, a method that relies on the artificial neural networks will be 

used. Therefore a second hypothesis can be formulated: 

2.8.2 Hypothesis 1a:  

Combining the information from the two types of sensors could decrease the number of 

missed precursory anomalies 

 

2.8.3 Research hypothesis 2: 

The X-bar control chart type of  statistical process control can be utilized to establish the 

anomaly threshold, and thus distinguish  the faulty events from the non-defective ones. 

 

2.8.4 Research Hypothesis 2a: 

The smaller the time step (the higher the frequency) is, the more accurate the detection 

quality will be. 

 

2.8.5 Research hypothesis 3: 

Survival analysis techniques such as deterministic regression, non-parametric and 

parametric analysis of failure data can be used to build models that estimate the residual 

time to failure. 

2.8.6 Research hypothesis 4: 

Existing mathematical techniques can be used to compute the confidence interval of the 

survival time estimation. 
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CHAPTER 3  

3MATHEMATICAL BACKGROUND OF WAVELETS  

 
 

The goal of this research going forward is to answer the research questions and to 

validate the proposed hypothesis. Thus, the first hypothesis, which states that the wavelet 

transform theory could be used for the detection of a precursory anomaly that might lead 

to a gas turbine compressor catastrophic failure, has to be confirmed. First an overview of 

the time-frequency techniques for signal analysis is given, followed by a step by step 

explanation of the proposed approach to the detection failure precursor. 

 

3.1 Analysis of Time-frequency of high frequency signals 

The monitoring sensors types dictate the signal frequencies to being dealt with in 

this work. In general, the sensor measurements can be classified in two different groups: 

• The static or process-related measurements which are typically used for 

temperature measurements, pressure measurements, flow rate measurements 

• The sensors characterized by their high bandwidth used for vibration 

measurements, ultrasonic measurement [50].  

The measurements illustrated by their high bandwidth are particularly high-frequency 

devices. That is, the vibration sensors measurements are necessary high-frequency 

measurements. Therefore to encompass all the different types of sensor measurements, 

the high-frequency signal processing techniques are retained. Among them, the Fourier 

transforms is one of the well known, though in recent years the wavelet transforms has 

been taking over as the premier choice, which coincidentally is based on the underlining 

idea of Fourier transforms. 
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3.1.1 Fourier transforms overview  

Fourier transforms (FT) is the most popular frequency domain analysis technique 

because of its ability to decompose an energy limited signal ( )tf  by its Fourier transforms  

( )ωF  so to analyze the signal in the time domain ( )tf  for its frequency contents  ( )ωF  as 

defined by the following equation below:  

( ) ( ) ωϖ
π

ω deFtf ti∫
∞

∞−
=

2

1
      (1) 

Where, ( ) ( ) dtetfF tiωω −∞

∞−∫=       (2)                                       

However, the Fourier transforms gives global information on the frequencies of the 

investigated signal, it can not give local information if the spectra composition of a signal 

changes rapidly with time [62]. To address some of the limitations of the Fourier 

transforms, some particular cases have been developed like the Fast Fourier Transform 

[63] which is an efficient algorithm to compute the discrete Fourier transform (DFT) and 

its inverse.  Whereas the short time Fourier transform (STFT) or windowed Fourier 

transform (WFT) is a true time-frequency analysis method [31]. The STFT concept 

consists of multiplying the signal to be analyzed ( )tf  by an analysis window ( )bt −*γ , 

then calculate the Fourier transform of the windowed signal as followed:  

( ) ( ) ( ) dtebttfbF ti
f

ωγ γω −∞

∞−∫ −= ][, *
      (3)  

 The main weakness of the STFT is that it can only provide a constant resolution for all 

frequencies because it uses the same window for the entire signal analysis [24, 64]. 

Although, any time-frequency analysis techniques like the FT and STFT could 

theoretically be used for the signal content investigation, the need to know the frequency 

content along with the location in time of where there exists an anomaly at different 
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resolutions make both the FT and the STFT unappealing. Consequently, those limitations 

of the Fourier transform and its special cases make the wavelet transform particularly an 

attractive time-frequency analysis technique.  

3.1.2 Mathematical overview of wavelet transforms  

There is a panoply of literature that explain the theory of wavelet transforms and 

its applications, going from the most basic presentations [65] to the more mathematically 

rigorous ones discussed in [66-68]. In a similar manner as for the Fourier transforms, the 

wavelet transform can be defined [43] for any function square-integrable function ( )ℜ2L . 

But instead of using the harmonics
tie ω
, the wavelet transforms use wavelet 

basisψ defined in equation (4) and called a mother wavelet function is used for the 

decomposition:   

Error! Objects cannot be created from editing field codes.      

 (4) 

        

Where: a is the dilation or scaling parameter and b is the time location or translation 

parameter. Thus a signal ( )tf  can be decomposed as [67]:  
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The wavelet transform ),( baW f of a signal ( )tf  is computed as shown in equation  

          (6) 

Error! Objects cannot be created from editing field codes.           

(6) 

Contrary to the Fourier transforms, the wavelet transforms is suited for approximating 

data with sharp discontinuities [69]. One of the main disadvantages of the Fourier 
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transforms compared to the wavelet transforms is that once a signal is Fourier 

transformed from the time domain to its frequency domain, all the information related to 

the time are lost, while the wavelet transforms preserve both the frequency-domain as 

well as the time-domain information. In other words, the wavelet transforms conserve the 

location and time of anomalies. Though the wavelet transforms were established on the 

model of Fourier transform, they decompose a signal into a wide range of basis as 

opposed to Fourier which decomposes signal into basis generated by the sine and cosines 

functions only; making the wavelet transforms such an improvement over the Fourier 

transforms for time series analysis. Wavelet transforms decomposes time series signal 

into two parts: a low frequency part that trends and smoothes the original signal 

(approximations) and a high frequency part that shows local properties such as anomalies 

(details). The wavelet transform decomposes signals by taking the original signal through 

two complementary filters introduced by Mallat [70]: a low pass filter that gives the 

approximation component (or scale) and a high-pass filter that yields the detail 

components as illustrated on figure (7) below: 

 

Figure 7: Notion of filtering for wavelet decomposition 

 

One of the strengths of the wavelet transform is that the decomposition process 

can be iterated to obtained multi-resolution, with the approximations being successively 
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decomposed in turn, so that one signal can be broken down into many lower resolution 

components. Figure (8) is called the wavelet decomposition tree.  

 

 

 

Figure 8: Illustration of the multiple-level decomposition 

 

The multi-resolution decomposition is also referred to multi-resolution analysis (MRA) 

and can be formulated mathematically as well. Thus, first let j be a given decomposition 

level such that all details of the data series on scales smaller than j−2 are suppressed at 

resolution j. The MRA decomposes the function space into a sequence of scaling function 

subspace jV  (subspace of functions that contains the information all the way down 

to j−2 ). By definition of the MRA, jV is contained in the higher subspace 1+jV  

(e.g. 1+⊂ jj VV ) so that the information at resolution j is included within the information at 

any higher resolution [71]. Let jW  be   the wavelet subspace at level j and orthogonal to 

jV . Then the following relation is established: 

 jjj WVV ⊕=+1               (7) 

That is  1+jV is the sum of jV and jW at the immediate lower level 

For j=1: the preceding equation becomes:   



 37 

100112 WWVWVV ⊕⊕=⊕=                       (8) 

This equation can be generalized as:  

jjJjJjjjjjjj WWWVWWVWVV ⊕⊕⊕⊕==⊕⊕=⊕= −−−−−+ 1111 .......          (9) 

Thus a nested relationship [72] can be written: 

( )RLVVVV jjjJj
2

11.... ⊂⊂⊂⊂⊂ +−−            (10) 

Also, a charm of the wavelets is its ability to act as a “mathematical microscope”, where   

through the multi-resolution “the big picture” or “the context” is seen at coarse resolution 

or scale (large window)  while the fine details are observed at the finest resolution (higher 

frequency or small window) [65] as illustrated in Figure 9. Graps refers to this wavelet 

features as the ability to see both the “forest” and the “trees” [69]. A result of the wavelet 

capability to gradually increase the resolution from coarse to fine enables many direct 

applications like in the pattern recognition algorithms [70]. 

 

Figure 9: Illustration of Time-Frequency domain of Wavelet Transform 

 

Like for the Fourier transforms, there are many specific wavelet transforms like the 

discrete wavelet transform (DWT), fast wavelet transform, and the wavelet packet, each 

of which is suitable for different applications. 
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3.1.2.1 Comparison between wavelet transform and Fourier transform techniques 

There are some similarities as well as differences between the wavelet transform 

and the Fourier transform. As far as similarities, both the fast Fourier transform (FFT) 

and the discrete wavelet transform (DWT) are linear operations that generate a data 

structure that contains n2log segments of various lengths. Also, the matrices used for the 

transforms have similar mathematical properties, while the transpose of the original 

matrix is the inverse transforms of the FFT and DWT.  

However, the dissimilarities are many. The most obvious one is that the individual 

wavelet functions are localized in space contrary to the Fourier sine and cosine functions. 

Another difference between the two transforms is that while the window size is constant 

for the Fourier transforms it varies for the wavelet transform [73] as illustrated on figure 

(10). This specific feature of the wavelet transform allows to have on one hand short 

basis functions to be used on short (i.e. over time) high-frequency to isolate signal 

discontinuities, and on the other hand to have long basis functions to be used on long 

low-frequency to get more detailed frequency analysis.  

 

 

Figure 10: Illustration of the difference between Fourier transforms and Wavelet transform 
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3.1.2.2 Wavelet packet  

One of the limitations of the standard wavelet is that only the approximations are 

decomposed into the subsequent subspaces (see Figure 8). Thus, Coifman and 

Wickerhauser [74] introduced the notion of wavelet packet to address that limitation in 

order to allow the details as well as the approximations to be further decomposed for 

permitting finer resolutions for both of them [61]. As such, the wavelet transform 

materializes as a subset of the wavelet packet [75], because wavelet transform is just a 

part of the wavelet packet (see Figure 11). The wavelet packets are particular linear 

combinations or superpositions of wavelets [76].  

 

Figure 11: Wavelet Packet decomposition [77] 

 

A Signal S can be decomposed at the level 3 as: S=A1+ +AAD3+DAD3+ADD3+DDD3. 

Similarly to the MRA using wavelet, the MRA can be performed using the wavelet 

packet and can be written as the sum of the components it is decomposed into. That is for 

j=1: the following equation is obtained:   

111000112 WWWVWVV ⊕⊕⊕=⊕=             (11) 

Where 001 WVV ⊕=  and  11101 WWW ⊕=  

This process of simultaneously splitting both the scaling function jV  and the wavelet 

subspace jW can theoretically be repeated indefinitely. But in practice the decomposition 

is repeated until a desirable level of resolution is attained. Thereby, the ability of the 
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wavelet packets to decompose both the approximations and the details parts provide more 

details about the signal than the standard wavelet transform can. Just like for its standard 

wavelet counterpart, which has the DWT, the wavelet packet also has the discrete 

wavelet packet transform (DWPT) [76].  
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CHAPTER 4 

4PROPOSED APPROACH FOR FAILURE PRECURSOR 

DETECTION 

 

To efficiently tackle the posed problem, the proposed approach will be organized 

along two major axes: the identification of failure precursor and the prediction of the 

remaining life as illustrated in Figure 12. In the first step the inputs are the data from the 

system monitoring sensors, while the second step is initiated once there is validated 

information about the existence of a failure precursor. The output of the proposed process 

is the remaining useful life of an unhealthy item with its corresponding probability of 

successful survival through the entire estimated remaining life. Therefore the worth of the 

output is linked to the accuracy of step 2, which in turn depends on the quality of step 1 
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Figure 12: Illustration of the proposed approach organization 
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In this thesis, a detailed methodology is proposed to detect the precursors of 

catastrophic failure. The proposed process is presented following a step-by-step 

approach, where each step has been conceived to make the approach robust and efficient 

in terms of both cost and ease of use. Most damage monitoring techniques rely either on 

vibration-based damage detection [78-80] or health performance soft failure [81], or on 

some type of limited combination of both [82-84]. This research gets its strength from the 

combination of both the vibration sensors and the performance sensors measurements.  

 

4.1 Detection of failure precursors 

 

Though in recent years there have been new and improved techniques such as 

condition-based monitoring (CBM) to help detect anomalies in their early stages of 

development, the new techniques have not totally resolved the issue of missed detections 

for all the anomalies.  Although the techniques’ merit is well accepted, their practical 

implementation is still inefficient because these techniques tend to be theoretical, 

difficult, and/or expensive to apply to real world problems. Therefore, the method 

proposed herein intends to take advantage of the monitoring sensors to capture 

catastrophic failure precursors. 

In general, the health and condition of power plants are monitored using two types of 

sensors:  

• Static or process-related sensors (used to measure temperature, pressure, and 

flow);  

• Sensors, characterized by their high-bandwidth, are used for high-frequency 

signals like the vibration measurements.  
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4.2 Steps for failure precursor detection  

The approach presented in this thesis has been well thought out and methodically 

organized. Each step is a natural progression of the previous one, which enables the 

approach to handle precursor failure detection in complex systems with enough installed 

monitoring sensors. As mentioned above, the proposed approach intends to take 

advantage of monitoring sensors to capture catastrophic failure precursors. Therefore, the 

proposed process does not require any new financial investment in monitoring sensors; 

the existing ones will be used. 

A step-by-step explanation of each block in the flowchart is presented in the 

subsections below. Also, the different steps of the proposed approach have been 

summarized in [85].  

The process of failure precursor detection can be implemented as a systematic method, as 

shown on Figure 13, which starts with the identification and collection of the raw data 

from the sensors of interest using the monitoring procedure. Then, the selected time 

series sensors go through a pre-processing step where the raw data is transformed into a 

useful form of data. Then, the time series is de-noised using a discrete wavelet packets 

transform de-noising scheme. Next, the multi-resolution analysis (MRA), which is 

decomposed at an appropriate pre-defined level for maximum useful signal features 

extraction, is applied to the de-noised signal.. After that, the multi variables sensor 

measurements are fused into fewer uncorrelated variables. The reduced number of 

variables resulting from the data fusion process goes through the anomaly detection 

procedure.     
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Figure 13: Precursor failure detection steps 

 

The next few sections provide a detailed explanation of each of the failure precursor 

detection steps. 

4.2.1 Raw sensors data collection 

 

Modern systems have become more complex and integrated than ever before. It is 

very common to see failure-critical systems that have as high as several hundred sensors 

installed to monitor all facets of their health and operation conditions. Thus, one of the 

very first things to do in any practical health monitoring implementation is to identify the 

list of relevant sensors to be observed. Typically systems or subsystems with large 

numbers of monitoring sensors may require that some type of screening process be 

performed. When there are sensors that represent some type of response, techniques 

whose outcome is the identifications of main effects can be considered (e.g. Pareto plot, 
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multivariable analysis, scatterplot matrix, etc). This thesis will be applied to heavy-duty 

gas turbines that typically have two types of installed monitoring sensors: static or 

process-related sensors and high-bandwidth sensors used to measure high-frequency 

measurements. Furthermore, this study is limited to base load operation only of heavy-

duty gas turbines. Also, the assumption is made that all the necessary sensors needed to 

perform the diagnostic and prognostic appropriately are installed at the appropriate 

location, as there are many other projects that have centered on the optimization of 

number and localization of  monitoring sensors [23].  

To illustrate how one decides on the different sensors to be included in a given study, let 

us consider a GE 7FA technology heavy gas turbine compressor as the subsystem of 

interest. Thus, the sensors that may be directly affected by anomalies in the subsystem of 

interest are selected. A quick screening of the sensor data, performed using a scatterplot 

matrix such as the one shown in Figure 14, reveals that two of the sensors did not 

correlate to any other sensors. Therefore, those two sensors may be eliminated, as they 

don’t provide any useful information about monitored condition of interest (e.g. base 

load operation), and any changes in the other sensors that may indicate an anomaly will 

not have a signature in those sensors. Typically, a scatterplot matrix can be used as a very 

fast tool to look at trends and correlations between parameters, providing valuable 

information for making decision about which sensors will be monitored. The systems 

health and operating condition parameters are continuously monitored and collected 

using installed sensors and stored for potential post-processing.  

The results of the screening process will determine which sensors will be included in the 

study.  
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Figure 14: Scatterplot Matrix of raw data 

 

 

4.2.2  Data Pre-Processing 

 
The pre-processing of the raw data is a necessary step for a study that relies on 

any type of data mining or data driven technique. Therefore, in the context of this work, 

which is a data driven methodology, the pre-processing stage is an essential one for a 

couple of important reasons. First, the OEMs will not want to share their proprietary data 

on equipment malfunctions because that may affect their competitive advantages due to 
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the risk of reverse engineering. More importantly the pre-processing is needed to avoid 

undesirable scaling effects [86].  The approach outlined in this paper intends to detect 

anomalies based on different types of sensor measurements, such as health monitoring 

sensors, which are static, process-related sensors (e.g. pressure, temperature, flow, etc), 

system condition sensors, which are also static (e.g. gas turbine output, gas turbine 

efficiency), and high bandwidth sensors (e.g. vibration sensors). However, these sensor 

values are recorded in different units and with different orders of magnitude. 

For instance, a typical normal base load operation of GE’s 7FA+e gas turbine technology 

can have a compressor discharge temperature measurement in the range of 600 to 800 

degrees Fahrenheit, while the vibration sensor measurements could be on the order of 

1/10 of an inch per second.  Therefore, an analysis with the raw measurement could be 

artificially skewed towards the variables with higher absolute values. Care should be 

taken when deciding the type of data normalization techniques, because data 

normalization has a very visible effect on the results of given experiments and the 

validity of the conclusions drawn [87] . While there are many data normalizing 

techniques, whose corresponding robustness and efficiency are summarized in the Table 

2 below [88], the pre-processing step used in this work consisted of normalizing each 

measured parameter value by the mean value of that variable measurement. That 

approach put all the different types of sensors readings in the same order of magnitude, 

and thus eliminated the potential outlier measurements that would misrepresent the 

findings and affect the accuracy of the conclusion.  
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Table 2: Summary of Normalization Techniques [88] 

 

Normalization Technique Robustness Efficiency

Min-Max No N/A

Decimal scaling No N/A

z-score No High

Median and MAD Yes Moderate

Double sigmoid Yes High

tanh-estimators Yes High

Biwieght estimators Yes High  

The min-max normalization, which is the simplex normalization widely used, is 

defined as: 

minmax

min'

−

−
= k

k

S
S         (12)  

Where '

kS is the normalized value of a value kS of attribute A and for k=1, 2, …n 

The min-max normalization technique performs linear transformation of the original data; 

therefore, it can only shift the minimum and maximum to 0 and 1 [88]. 

As for the decimal scaling normalization, it normalizes a value v of an attribute A by 

moving the decimal point, computing normalized v’ as: v’ = (v / 10n) [89].  

In practice, the decimal scaling normalization can be applied when the scores of different 

matchers are on a logarithmic scale. 

The z-score is the most commonly used score normalization technique, and it is 

calculated using the arithmetic mean and standard deviation of the given data. It can 

perform well if prior knowledge about the average score and the score variations of the 

matcher is available. However, to work well, it relies on prior knowledge of the nature of 

the matching algorithm.  The normalized value v’ of a z-score normalization of a value v 

of an attribute A is calculated as: v’ = (v – µ)/ σ. The z-score  method  of normalization  

is  useful when  the  actual minimum  and maximum of attribute A are unknown. 

However, the z-score normalization does not guarantee a common numerical range for 

the normalized scores of the different matchers because if the input scores are not 
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Gaussian distributed, z-score normalization does not retain the input distribution at the 

output [88]. 

The median and MAD (Median Absolute Deviation) normalization is more robust 

(has more insensitivity to outliers and to the points in the extreme tails of the 

distribution) than the previous methods. The disadvantage is that the median and the 

MAD estimators have a low efficiency compared to the mean and the standard deviation 

estimators, and when the score distribution is not Gaussian, median and MAD are poor 

estimators of the location and scale parameters [88]. This method normalizes a value v of 

a given attribute A by computing v’ as follows: v’ = (v – median)/ MAD, where MAD = 

median (|v − median|) [90]. The major drawback of this normalization technique in the 

context of the study is that it does not retain the input distribution and does not transform 

the scores into a common numerical range.   

The double sigmoid normalization is based on the use of the double sigmoid 

function [91].   It transforms the normalized scores into intervals with values between 0 

and 1. The double sigmoid normalization is not as straightforward and simple as the 

previous methods, as it requires a careful tuning of the parameters needed to calculate the 

normalized value in order to achieve a good efficiency. It works by providing a linear 

transformation of the scores in the region of overlap, while the scores outside this region 

are transformed non-linearly.  

The tanh-estimators is one of the  robust normalization techniques [92]. It was 

introduced by Hampel et al. and it relies on the influence function (ψ) [93] . It is a highly 

efficient technique; the influence of the points at the tails of the distribution during the 

estimation of the location and scale parameters makes this method insensitive to outliers. 

However, the parameters needed to estimate the normalized value must be carefully 

chosen in order to ensure the amount of robustness required, which in turn depends on 

the estimate of the amount of noise in the available training data. Consequently, because 

there are so many conditions needed to have a good normalization, this technique is not 
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appropriate for the proposed study, as there is little knowledge of the parameters. 

Furthermore, one of the goals of this thesis is to achieve a methodology that can easily be 

implemented on other systems even with little background knowledge, so the ability to 

apply the characteristics of the raw data to the normalized data is paramount. 

The Biweight estimator was introduced by Mosteller and Tukey [94] and is based 

on the biweight location and scale estimators, which are robust and efficient. The 

Biweight estimator normalization techniques are iterative in nature; that is, an initial 

estimate of the biweight location and scale parameters is chosen, and this estimate is 

updated based on the training scores. Because the major drawback is that it is only 

applicable to Gaussian data, the Biweight estimator technique is not appropriate for the 

current study. 

Although all the normalization techniques presented above have some features 

that make them attractive, a much simpler normalization scheme is used in this study. 

In this thesis a defect will depend on derivatives and the scaling of the variables so that 

having them over the same range ensures that the derivatives will not be biased by the 

magnitude of a particular variable. Therefore, each variable will be normalized using the 

following very simple equation, one that shifts the mean value of each of the sensors to 

be monitored to a value of 1: 

µS

S
S M

N =            (13)  

Where : NS : is the normalized sensor value 

MS : is the actual sensor measurement 

µS : is the mean value of the actual sensor measurements 

As a result of the normalization, the following figures show that the characteristic 

distributions of the actual sensor measurements are conserved after normalization. 
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That is, Figure 15 shows a health sensor that has preserved the same distribution for the 

actual measurement (Figure 15-a) and the normalized measurement (Figure 15-b) 
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Figure 15: Actual and Normalized Health sensor distributions 

 
Similarly, Figure 16 shows a vibration sensor that has preserved the same distribution for 

the actual measurement (Figure 16-a) and the normalized measurement (Figure 16-b) 
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Figure 16: Actual and Normalized Vibration sensor distributions 

 

 

4.2.3 De-noising 

 

After making the decision about the different sensors to be included in the study, 

and after each sensor measurement has been normalized following the scheme presented 

in the previous section, each sensor normalized value must be de-noised. 

The de-noising step is an essential one because it is not possible to know with certainty 

that the signal of a sensor measurement is not tainted by noise [50]. As a matter of fact, 

in [95] the authors argue that sensor signals are always inevitably corrupted by noise.  
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4.2.3.1 Time series de-noising techniques 

Research in signal de-noising is a very active area within the signal processing 

field. Sriram et al. present a list of de-noising techniques for signal processing in [96] that 

is summarized in  

 

 

 

 

Table 3 below. Each of the signal denoising techniques in this table has its own 

advantages, and some limitations, depending on the type of application.   

 The first category of techniques in the table is the Fast Fourier Transform (FFT)-

based technique; this category can be implemented using either a constant threshold or a 

frequency-dependent threshold. The use of the FFT expedites the denoising process 

because the FFT is a discrete Fourier transform (DFT) algorithm that reduces the number 

of computations for N points from 2N2 to 2N*log2(N). The FFT-based denoising works 

the following way for a given signal:  

- First, the FFT of the signal is taken, and the FFT coefficients that fall above a 

determined threshold are dropped;  

- Then, the signal is reconstructed using the inverse FFT. 

The difference between the two FFT-based techniques is that, in the first, the threshold 

remains constant for all frequencies, while in the second the threshold varies according to 

the principle:  threshold = (j-1)2 * 60 + 10 (j=1,…, n. with n: the n-point FFT is taken).  

This method is mainly used to remove the sinusoidal noise [96], which has pronounced 

peaks in the frequency domain. Thus, this method will not be used in our study, because 

the noise type is not predetermined. 
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Table 3: Categories of Signal Denoising Techniques (adapted from [96]) 

Category Signal Denoising Techniques

1 Fast Fourier Transform (FFT) -Constant Threshold

1 Fast Fourier Transform (FFT) - Frequency-dependent threshold

2 Low-pass Filtering (Butterworth filter)

2 Low-pass Filtering (Chesbyshev filter)

2 Low-pass Filtering (Inverse Chesbyshev filter)

2 Low-pass Filtering (Elliptic filter)

3 Wigner-Ville Distribution (WVD)

4 Short-Time Fourier Transform (STFT)

5 Least Mean Square (LMS)

5 Leaky LMS

5 Sign-error LMS

5 Sign-data LMS

5 Sign-sign LMS

5 Mormalised LMS

5 Kurtosis-driven LMS

5 Adaptive Recursive LMS

5 Cascade adaptive filtering

6 Frequency-Domain Adaptive Filtering (FDAF) using DFT

6 Frequency-Domain Adaptive Filtering (FDAF) using DCT

6 Frequency-Domain Adaptive Filtering (FDAF) using DWT

7 Recursive Least Squares (RLS)

7 Exponentially-weighted Recursive Least Squares (EWRLS)

8 Matched Filtering

9 Notch Filtering, direct implementation

9 Notch Filtering, lattice filter implementation

9 Notch Filtering, direct implementation

10 Wavelet-based (Thresholding)

10 Wavelet-based (Mallat's algorithm)  
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 The next category is low-past filtering methods. In general, low levels of noise 

are concentrated in the low frequency region, while the sinusoidal components are 

usually in the high frequency region. For this reason, when dealing with low levels of 

white noise, a low pass filter can be used to extract the noise efficiently. The “Digital 

Filter Design” by Parks et al. [97] contains details about digital low pass filters. 

Typically, increasing the filter order improves the performance of the filter. However, the 

low past-past filtering methods will not be used as the de-noising technique in this thesis. 

 The Wigner-Ville Distribution (WVD) of a given signal is a time-frequency 

representation of that signal [98]. The basis for using WVD as a de-noising technique is 

that WVD is quadratic in nature, so a signal is divided into blocks, and the WVD of each 

block is taken and processed. At every time step t the block is integrated in a small range 

around the center frequency by adding (for upper value) and subtracting (for lower value) 

the step frequency; if the value exceeds the predetermine threshold, it means the presence 

of a signal at time t. The other alternative to this WVD-de-noising technique is based on 

masking the time-frequency [99]. Like in the first method, the signal is divided into 

blocks, and the blocks are multiplied by a 2-D matrix with ones in the frequency range of 

the signal and zeroes elsewhere, which masks the noise components [96]. Finally, the 

desired de-noised signal can be reconstructed by the synthesis algorithm presented in 

[99]. 

The Short-Time Fourier Transform (STFT)-based de-noising relies on the STFT 

of a signal, which is another time-frequency representation of the signal. In the STFT, a 

given preset length window is used, where the length of the window determines the time 

and frequency resolutions of the STFT. Thus, the first of the two STFT de-noising 

techniques is based on the calculation of the STFT of the input signal, multiplying it by a 

2-D array of ones and zeroes (masking) and then reconstructing the signal from the 

modified STFT as outlined in [100]. The second alternative for STFT de-noising is based 

on the estimation of the signal from the modified STFT magnitude. After the calculation 
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of the STFT magnitude of the input signal, a first estimate of the actual signal x is 

computed. Then that STFT magnitude is replaced by the available STFT magnitude. The 

signal is estimated, and that value is used as the next estimate of the signal. The process 

is then repeated.  

Though the STFT de-noising technique is a true time-frequency method, it relies on a 

fixed value of window size. Consequently, it will not be retained as the de-noising 

technique of choice in this thesis.  

The next technique is the Least Mean Squares (LMS) de-noising approach which 

has many variants. All the LMS-based de-noising techniques are based on the least mean 

square process which is an adaptive iterative gradient search method [96]. It works by 

using a filter coefficient vector, an error vector, and an input vector. The desired de-

noised signal is the input itself or the input delayed by one sample. Its first alternative in 

the above table is the leaky LMS, which modifies the main LMS approach by using a 

constant leakage factor that has a value between 0 and 1. As consequence, the leakage 

allows the impact on the filter coefficient vector of any single input sample to decay with 

time. The remaining alternatives of the LMS-based de-noising techniques have the 

advantage of reducing the computational burden however, they are not nearly as efficient 

[101]. Thus, the sign-error LMS, the Sign-data LMS, the Sign-sign LMS, the Normalized 

LMS, and the Kurtosis-driven LMS all have a similar expression but different filter 

length and mean value. The Normalized LMS, on the other hand, is used to prevent 

instability in the LMS algorithm, while the two Kurtosis-driven LMS alternatives use the 

‘kurtosis’ of the error. The Adaptive recursive LMS relies on a set of equations. In the 

case of the Cascade adaptive filtering, the convergence can be improved by cascading a 

number of adaptive filters. 

The next de-noising technique is the Frequency Domain Adaptive Filtering 

(FDAF). The FDAF is explained in [101, 102].  When the adaptive filtering is done in 

the frequency domain FDAF it is computationally more efficient than when it is done 
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using the LMS algorithm [96]. The FDAF relies on an equation based on input from the 

discrete Fourier Transform (DFT), discrete cosine transforms (DCT), or discrete wavelet 

transforms (DWT) concerning the corresponding quantities in the time-domain for a 

given filter length. A main advantage of the FDAF over the LMS algorithm is that the 

FDAF (using FFT) necessitates 3*N*log2(N/2) whereas the LMS requires 2N2+ N 

multiplication. 

The Recursive Least Square (RLS) and the Exponentially Weighted Recursive 

Least Square (EWRLS) methods are used to alleviate the weaknesses of the LMS 

methods [96, 101] because they are faster and have better uniform convergence. 

However, these de-noising techniques rely on cumbersome recursion procedures. Also 

their computation burdens are much higher.  

The Matched Filtering technique uses a matched filter. This technique works with 

a matched filter arrangement, where the impulse response of the filter is matched to the 

signal input. The underlying decision is based on the fact that the output signal-to-noise 

ratio is maximal for a matched filter [96]. 

The notch filtering-based de-noising techniques rely upon the fact that a notch 

filter can be used to remove the sinusoidal noise present in the signal [96]. The notch 

filtering has to meet a set of constraints presented in [103]. The variation between the 

different notch filtering-based techniques is the use of two different algorithms; one uses 

the filter directly, and the other uses lattice filters. 

The wavelet-based de-noising techniques are among the newest and most elegant 

time-frequency de-noising techniques because they address many of the limitations of the 

traditional signal de-noising methods. One of the reasons wavelet-based de-noising 

techniques have gained popularity very quickly is that they perform so much better than 

other methods like the Fourier-based ones. The Fourier-based techniques do pretty well 

when the signal and the noise are located in different bands of the spectrum; however, 

they do not work well when the time series is chaotic [61]. Furthermore, in the context of 
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this work, the Fourier-based de-noising approach is not appropriate because there are 

quick changes in the frequency domain of a signal; they are spread out over the entire 

spectrum. Thus, the use of Wavelet-based techniques for de-noising is a fairly active area 

of research because of the ability of wavelet techniques to address the limitation of 

traditional de-noising techniques. Chapter 3 of this thesis has an extensive explanation of 

wavelet theory. The first of the two de-noising methods based on wavelets uses 

thresholding of wavelet coefficients, and the second one uses Mallat’s algorithm 

presented in [104]. 

The wavelet-based de-noising method that uses thresholding is based on a scheme 

called “Wavelet Shrinkage and Thresholding Methods,” proposed by Donoho [105, 106].   

Thus, Donoho further shows that wavelet can be used to optimally de-noise a 

noisy signal using a thresholding in a three-step process [107]: 

 1) Apply the wavelet decomposition of the noisy signal to obtain wavelet 

coefficients. 

 2) Apply: 

• The soft thresholding nonlinearity  
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Where δ  is the threshold parameter for de-noising. 

 

 3) Reconstruct the signal using the inverse wavelet decomposition with the 

thresholded coefficients. 

The de-noising technique using Mallat’s algorithm works by decomposing the 

signal into several scales (wavelet decomposition). Then, the detail coefficients are 
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neglected and the signal is reconstructed using only the approximation coefficients. The 

reasoning behind this approach is that the major part of the noise components is 

contained in the detail coefficients; therefore , by eliminating the detail coefficients, the 

noise will be eliminated. The problem with this approach is that the detail coefficients 

can contain more than noise alone. 

Based on the advantages and disadvantages of the different de-noising techniques, 

the wavelet thresholding-based approach will be appropriate in this work because little is 

known of the form of time series signal. In fact, the wavelet shrinkage and thresholding 

methods have been successfully applied to de-noising noisy data [69, 105, 107]. Also 

because it is known that the two types of monitoring sensors are static and high 

bandwidth, wavelet-based de-noising can remove the low amplitude and high frequency 

noise effectively [61]. In the previous chapter on wavelet theories it was demonstrated 

that, for the standard discrete wavelet transform, only the scaling functions are 

decomposed into subspaces. The resulting time-frequency resolution has narrow 

bandwidths in the low frequencies and wide bandwidth in the high frequencies.  

Consequently, it is not sufficient for de-noising  time series that contain a low signal-to-

noise ratio [109]. Thus, the wavelet packet decomposition introduced in [74] allows a 

finer and more adjustable resolution that yields a better level of detail about the noisy 

signal. Therefore, instead of decomposing the noisy signal using the wavelet as proposed 

by Donoho, the discrete wavelet packet decomposition should provide extra details. Thus,  

Jiang et al. have used the discrete wavelet packet transform (DWPT) instead of the 

conventional discrete wavelet transform (DWT) [61, 109]. Also, in  [110]  the authors 

present a signal de-noising method based on wavelet packet transform. 
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4.2.3.2 Signal De-noising using DWPT and Bayesian Thresholding  

In [109] Jiang et al. took the idea of using the wavelet thresholding approach 

proposed by Donoho even further by making use of prior knowledge by replacing the 

conventional discrete wavelet transform with discrete wavelet packet transform and soft 

thresholding with Bayesian thresholding.  

The result of combining the discrete wavelet packet transform (DWPT) and 

Bayesian thresholding is the adequate removal of the noise, whether it is in the low or 

high frequency domains. Thus, Jiang et al. proposed applying Bayesian DWPT de-

noising procedure for time series signal f(t) in a five step process as shown on Figure 17. 

The interested reader can see a detailed explanation of the Bayesian wavelet theory in 

[109]. 

 

Figure 17: Bayesian DWPT de-noising procedure for times series [109] 

 

 

A brief account of the five steps of Bayesian DWPT de-noising techniques follows. 

4.2.3.2.1 Step 1: the noisy signal is decomposed into series wavelet coefficients by a 

DWPT 

Let’s assume a signal representing a time series is contaminated by an additive white 

Gaussian noise  

)()()( iii ttgtf ε+=  , with i=1, 2, …, N 
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Where: )( itf is the noisy experimental signal, )( itg is the noise-free signal.  

The noise )( itε being assumed as a Gaussian noise, it has the distribution ),0( 2σN of 

mean 0 and standard deviationσ .  

It is interesting to note that )( itf , )( itg  and )( itε are all time series data of their own. 

Jiang et al. argue that the de-noising problem becomes a univariate non-parametric 

regression problem, in which the goal of the Bayesian DWPT de-noising approach is to 

recover the underlying noise-free time series )( itg from the noisy )( itf . 

The noisy signal is decomposed using the DWPT and the wavelet coefficients are 

obtained using the decomposition scheme presented in Chapter 3.  

4.2.3.2.2  Step2:  Prior distributions on the decomposed coefficients 

Because the noise )( itε is also a time series, it can looked at as having a noise level jkε  so 

that it can be decomposed in turn into coefficients jkd̂  

 

jkjjkjk dd εσ+=ˆ , With j=j0, …., J-1; and k=0, 1, …, 2j-1 

Now jkε  can be considered in turn. The distribution )1,0(N and jkd are the noise-free 

coefficients. Also, the decomposed coefficients conditionally on jkd and 2

jσ can be: 

 2,|ˆ
jjkjk dd σ  is a Gaussian distribution ),(

2

jjkdN τ  

Furthermore, the assumption that a non-informative prior distribution of jkd is: 

jkjkd γ| is a Gaussian distribution ),0(
2

jjkN τγ  

Where jkγ is a binary random variable with independent Bernoulli distribution jπ ; that is, 

the probability jjkjk PP πγγ ==−== )0(1)1( . Consequently, the determination of 

whether the coefficients jkd  are zero )0( =jkγ  or non-zero, )1( =jkγ  and the 

variance
2

jτ , represents the magnitude of jkd  at the jth decomposition level. 
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4.2.3.2.3 Step 3: Posterior distributions of the coefficients using the Bayes’ theorem 

The third step is based on the use of the Bayes’ rule and the combination of these two:  

– 2,|ˆ
jjkjk dd σ  is a Gaussian distribution ),(

2

jjkdN τ   

– jkjkd γ| is a Gaussian distribution ),0(
2

jjkN τγ  

To evaluate the posterior distribution: 

2,ˆ,| jjkjkjk dd σγ  is a distribution ),ˆ(
22

22

22

2

τσ

τσ
γ

τσ

τ
γ

++
jj

jkjk
j

jk dN   

4.2.3.2.4 Step 4: Remove the noise from the coefficients using a Bayesian hypothesis 

testing 

 

The decomposed coefficients are thresholded by testing the following two hypotheses:   

 Null hypothesis  0:0 =jkdH  

 Alternative hypothesis   0:1 ≠jkdH  

The hypothesis is tested using a thresholding rule to threshold the wavelet coefficients as 

follows: )1(ˆ~
<= jkjkjk Idd η , called the Bayes factor thresholding [111]. 

Where: )(⋅I is an indicator function, which is equal to 1 when 1<jkη  ( jkη is defined as 

the posterior odds ratio of jkγ = 0 versus jkγ =1). 

The results of the hypothesis testing are:  

1) H0 is rejected and the coefficients jkd is estimated by jkd̂  

2) Otherwise, H0 is not rejected jkd =0 and jkd̂ is thresholded 

4.2.3.2.5 Step 5: The de-noised data is reconstructed through an inverse wavelet 

transform 
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Finally, after the result of the hypothesis is established that the thresholded 

coefficients jkd
~

 are the wavelet coefficients that survived thresholding [112], the 

coefficients are used to reconstruct the noise-free signal by using the inverse discrete 

wavelet packet transform. Finally, the signal-to-noise ratio can be used to assess the 

goodness of the de-noising process. 

 

  To illustrate the step of the Bayesian DWPT de-noising procedure for times 

series, let’s assume a function )(tg is of the Mexican family defined as: 

)1()2/exp()( 22 ttctg −⋅−⋅= , with t = [-5, 5]; 

Where the constant  
4

1

3

2

π⋅
=c  

Then, let’s add some noise with variance randnt *1.0)( =ε  

Let us define the noisy data as: )()()( ttgtf ε+=  

The application of the Bayesian de-noising process has been applied to )(tf , with the 

Daubechies 10 discrete wavelet decomposition. 

Figure 18-a and Figure 18-b below represent the noise-free Mexican hat signal 

corresponding to )(tg and the noisy signal (noise added) )(tf  respectively. 
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Figure 18: Original signal and Noise added signal 
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Figure 19: Denoised signal using the Bayesian DWPT denoising procedure 
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As illustrative Figure 19 shows, the Bayesian DWPT denoising method has 

successfully removed the noise from the original data. Therefore, the proposed Bayesian 

DWPT denoising procedure is a sufficient noise removal. The issue with many de-

noising algorithms is that they either remove too much useful information while taking 

out the noise, or they remove too little while leaving some noise in the signal. For this 

illustrative example, the signal-to-noise ratio is about 10.99 decibel units. 

 
 

4.2.4 Multi-resolution analysis using discrete Wavelet packet decomposition 

 
The goal of this step is to extract the feature of the signal to be used in the subsequent 

step. In the literature there are many feature extraction techniques for the time series 

signals. Among the most popular are the discrete Fourier transform (DFT) [113], the 

discrete wavelet transform (DWT),  and the discrete Gabor transform (DGT) [114]. A 

short description of the popular feature extraction techniques is as follows 

4.2.4.1 Discrete Gabor Transform 

The Gabor distribution was introduced by Gabor, and works by mapping a time domain 

signal s(t) into the joint time and frequency domain [115] as follows: 

∑ ∑
∞

−∞=

∞

−∞=

=
m n

nmnm thCts )()( ,,  Where ( ) tjn
nm emTthth Ω−=)(,  

With T and Ω  representing respectively the time and frequency sampling intervals. Also, 

the synthesis function ( )th  has the constraint energy of unity. The DGT has the powerful 

ability to represent the time history of the frequency content of a signal, using the data as 

a superposition of uniform and frequency translates of a window function. Although that 

ability allows the DGT to be an effective technique in signal detection, feature extraction, 

and identification [116], it has limitations. The major issue with the DGT is that its 

coefficients nmC ,  are uniquely defined. Due to the difficulty of computing its unique 
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coefficients [114], the DGT has been very limited in its usefulness. Therefore, the DGT 

will not be used as the feature extraction technique in this thesis.  

 

4.2.4.2 Discrete Fourier Transform  

The Discrete Fourier Transform (DFT) was briefly explained in the previous chapter. The 

DFT has been successful and widely used as a signal feature extraction technique. The 

DFT is the projection of a signal from the time domain into the frequency domain.  

Recall that the Fourier transform of a signal ( )tf  is defined as:  

( ) ( ) dtetfF tiωω −∞

∞−∫=  , where ( )tf  can be calculated in turn as ( ) ( ) ωϖ
π

ω deFtf ti∫
∞

∞−
=

2

1
 

The FT can be generalized to the case of discrete function, ( ) ( )ktftf →  by 

allowing ( )kk tff ≡ , where ∆≡ ktk (time step), with 1,...,0 −= Nk . Therefore, the 

discrete Fourier transform [117] can be derived as: 

∑
−

=

⋅⋅−=
1

0

/2
N

k

Nnki
kn efF π

 

The energy content of a sampled signal ( )tf  can be easily evaluated:  

( )( ) ( )( )∑
=

=
n

t

tftfE
1

2
 

One of the main attractions of the DFT in general and its application as a feature 

extraction method is the fact that its coefficients can be calculated very fast using the Fast 

Fourier Transform (FFT) [118]. Thus, there is extensive literature on the different ways 

the DFT  has been used as a feature extraction tool  [113, 118]. 

However, with the introduction of the wavelet transform, which addresses some of the 

limitation of the Fourier transform, the DFT is no longer the technique of choice in many 

data mining problems. In fact, a good feature extraction technique is very important in 

any mining problem. The DFT can only project a signal into the frequency domain, while 
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the DWT can project the same signal into a tiling of the time-frequency plane [113]. 

Furthermore, there are many studies that have qualitatively compared DFT and DWT 

[119], and which emphasize the advantages of DWT over DFT. Thus, the DWT-based 

techniques are the natural choice because they enable an advanced level of feature 

extraction to be accomplished.  

 

4.2.4.3 Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is a particular form of the family of the 

wavelet transform. Similar to the DFT, the DWT is a discretized version of the 

continuous wavelet transform (CWT). However, the DWT provides sufficient 

information both for analysis and synthesis of the original signal, with a significant 

reduction in the computation time, which is one reason it is so attractive for signal feature 

extraction applications. The DWT of any integrable real function ( )tf  can be represented 

as: 

( ) ( )∑=
kj

kjkj tctf
,

,, ψ , where the basis functions are ( ) ( )ktt j
j

kj −= 22 2
, ψψ ,  

with ψ  as the mother wavelet function and kjc ,  as the coefficients of the DWT. Or, the 

DWT coefficients can be calculated as the inner product ( ) ( )〉〈= tftc kjkj ,,, ψ . 

 The value of the DWT is that it is considerably easier to implement than is the CWT. As 

a consequence of its capability to measure frequency at different time resolutions and 

locations, the DWT has enabled the MRA.  

Furthermore, the advantage of using the discrete wavelet packet transform (DWPT) 

instead of the conventional discrete wavelet transform DWT has been explained in the 

chapter on the wavelet overview; therefore, the DWPT will be used for the MRA 
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4.2.4.4 The multi-resolution analysis (MRA) 

The multi-resolution analysis (MRA) was thoroughly explained in the chapter on 

the wavelet overview. This multi-resolution analysis (MRA) using the wavelet transforms 

was introduced by Mallat [70]. The MRA , when it uses signal decomposition, is a very 

powerful technique in providing unprecedented understanding of time series sensor 

signals because of its “zoom-in, zoom-out” property [120]. Since its introduction, the 

MRA, when it uses wavelet packet distribution, has been used extensively in research 

that focuses on sensor-based techniques such as diagnostic and prognostic.  

In this step, called “the multi-resolution analysis using the discrete wavelet packet 

decomposition”, each of the de-noised sensor signals obtained as the result of the 

denoising step will be decomposed at different levels in terms of the scaling function 

(approximation) and wavelet functions (details).  

Then, the content of each the components resulting from the decomposition can be 

analyzed. The first necessary step in the MRA is to determine the appropriate level of 

decomposition. Although in theory a MRA can be decomposed indefinitely, in practice 

the number of levels of decomposition is defined based on the type of signal and the goal 

of the analysis to be achieved, such that the signal representation minimizes some cost 

function [72]. That is, the appropriate level of decomposition will be set when further 

decomposition cannot yield any further details. In [74] Coifman and Wickerhauser 

developed entropy-based algorithms to determine the best basis. 

In this work the energy content of the scale function (approximations) and wavelet 

function (details) of each node of the decomposed tree will be utilized to determine a 

suitable level of decomposition. Once the decomposed tree is obtained using the wavelet 

packet (approximation and details), the energy content at each node is calculated [48] as:  
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( ) ∑∫
∞

∞−
==

k
knjknjnj WdtdtWE 2

,,

2

,,, )(             (14) 

 Where knjW ,, is the wavelet packet coefficient, j is the level, k is the translation, n is the 

modulation parameter (approximation or detail). The energy content of each node will 

then be used as the signal feature.  

As applied to this thesis, the de-noised signal is decomposed at an appropriate level of 

resolution to get the approximation and the detail components. The resulting content of 

each component can be analyzed using the calculated energy content. Furthermore, there 

are readily available MATLAB® source codes such as “wenergy” that implement 

Coifman and Wickerhauser’s algorithm for given a time series. As previously stated, the 

main advantage of using the wavelet packet for the MRA instead of the standard wavelet 

transform is that the wavelet packet analysis allows “for a finer and adjustable resolution 

of frequencies at high frequency (details)” [61].  

 

As an illustrative MRA decomposition, let us decompose the de-noised signal of a 

vibration sensor X1 from the list of the monitored sensors at different levels of 

decomposition: 

1) When we apply level-2 decomposition using the Daubechies 7 (db7) wavelet 

function, we get the tree decomposition shown on Figure 20 with the signal of the 

first detail node (2,1).  
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Figure 20: Level-2 Tree DWPT decomposition of vibration sensor X1 

 

The corresponding energy calculated at each node is shown in Table 4 

 

Table 4: Level-2 decomposition Node energy content for vibration sensor X1 

Decomposed 

tree Node (2,0) (2,1) (2,2) (2,3)

Energy 

Content (%) 99.945 0.0269 0.011 0.0168  

 

Figure 21 shows the corresponding MRA figures of the original de-noised signal (black). 

The second figure is the approximation signal (red), and the remaining three signals are 

the details signals (blue). 
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Figure 21: MRA level-2 DWPT decomposition of vibration sensor X1 signal 

 

2) Similarly, the level-3 decomposition is done using the Daubechies 7 (db7) wavelet 

function. The decomposed tree is shown in Figure 22 with the first detail signal of the 

node (3,1)  
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Figure 22: Level 3 Tree DWPT decomposition of Vibration sensor X1 
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The corresponding energy calculated at each node of level-3 decomposition is shown in 

Table 5. 

Table 5: Level 3 decomposition Node energy content of vibration sensor X1 

Decomposed 

tree Node (3,0) (3,1) (3,2) (3,3) (3,4) (3,7) (3,6) (3,7) 

Energy 

Content (%) 99.92384 0.021543 0.011609 0.015248 0.004727 0.006283 0.00965 0.007101  

 

Figure 23 shows the corresponding MRA figures of the original de-noised signal (black), 

The second figure is the approximation signal (red), and the remaining three signals are 

the details signals (blue). 
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Figure 23: MRA of level-3 DWPT decomposition of Vibration sensor X1 signal 

 

Thus, the level-2 decomposition gives three details nodes while the level-3 

decomposition yields seven details nodes. That is for the level-2 DWPT decomposition, 
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the original signal is represented by four different wavelet components, while in the 

level-3 DWPT decomposition the original signal is represented by eight wavelet 

components.  

Also, the energy contained at the approximation node of the level-3 decomposition 

(energy at node (3,0) is 99.924% ) is smaller than that contained at the approximation 

node in the case of the level-2 decomposition (energy at node (2,0) is 99.945%).  

 In this step, each of selected sensors to be included in the study will go through this 

MRA process once the appropriate level of DWPT decomposition for MRA is set. Also, 

the level of decomposition needs to be chosen carefully, as a higher level of 

decomposition may not necessarily bring in a better understanding of the signal, whereas 

decomposing on too few levels may not yield the necessary level of detail. 

 

 

4.2.5 Data Fusion using Probabilistic Principal Component Analysis 

 

The step of data fusion is an important one, because if it is not done or not done 

right, the anomaly detection may not be accurate. In general, when analyzing data mining 

problems, where there are many different types of sensors used to extract usable and 

useful information, the appropriate data fusion technique is crucial. Indeed, not only does 

the fusion of multi-sensor data provide major advantages over individual source data, the 

use of multiple sensor sources may increase the accuracy with which a phenomenon can 

be observed  [121].  

Therefore, the success of this proposed methodology is dependent on the effective 

accomplishment of this step. The field of data fusion has become a very important and 

active area in Research I, so much so that the U.S. Department of Defense created a Joint 

Directors Laboratory subpanel to assemble a uniform set of technical definitions for use 
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among researchers. In fact, J. Llinas et al. argue that the lack of unified terminology has 

been one of the historical barriers to technology transfer in data fusion [122]. For 

example, data fusion is defined by the U.S. Department of Defense Joint Directors of 

Laboratories Data Fusion Subpanel as: “a multilevel, multifaceted process dealing with 

the automatic detection, association, correlation, estimation, and combination of data and 

information from single and multiple sources to achieve refined position and identity 

estimates, and complete and timely assessments of situations and threats and their 

significance” [123]. Therefore, J. Llinas et al. attempted and defined fusion as: “the 

integration of information from multiple sources to produce the most specific and 

comprehensive unified data about an entity”, which goes along the same line as the U.S 

Department Joint Directors’ definition. The terms “data fusion” and “sensor fusion” are 

used interchangeably. The data fusion step remains a vital one if the goal is to make the 

best possible judgment. In fact, Yan and Goebel assert that most single sensors cannot be 

relied on to deliver accurate information all the time [57]. The goal of the data fusion step 

is to combine pieces of information from a multi-sensory data set system into fewer 

variables, which allows researchers to draw a more accurate conclusion than one could 

get from an individual sensor. Thus, the data fusion process produces knowledge that is 

not otherwise obtainable from a narrow wavelength-band sensor, or is more accurate than 

information gathered from single sensor systems [124]. The literature extensively 

discusses data fusion techniques; this can be seen in [122, 124].  Data fusion can be done 

at different stage of data analysis. Thus, in [125] Carvalho et al. propose a three-level 

data fusion framework based on both data and variables, where the data fusion can be 

classified as low level, high level, or mixture level. When the data fusion is performed 

before analysis, it is classified as low level. When the data fusion is performed after some 

data analysis, it is classified as high level variable fusion. In situations where the data and 

variables can be fused, it is defined as mixture level data fusion.  
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4.2.5.1 Overview data Fusion Techniques 

There are many data fusion techniques in the literature that have been used for 

different applications. Thus, some data fusion techniques are more mathematically 

intensive than others. The reader interested in some mathematical background for data 

fusion can see [126, 127], among many other papers.  

Ultimately, the key to any successful study where data fusion is needed is to find a 

technique that is suitable for one’s  problem.  

The data fusion architecture can be divided into three main groups: detection, 

classification, and identification algorithms [124]. The main algorithms can either be 

physical models, feature-based inference techniques, or cognitive-based models. Each of 

these three models can cover a different application field, as summarized on Figure 24. 

 

Figure 24: Data fusion for detection, classification, and identification algorithms [124] 

 

Besides the three groups mentioned above, there are other mathematically-based 

techniques for data fusion, such as the random set theory, conditional algebra, and 

relational event algebra [127]. 
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The following section is a brief literature review of some of the most commonly used 

data fusion techniques used to analyze multi-sensors systems, where the classical 

inference, Bayesian inference, and Dempster-Shafer inference are referred to as 

parametric techniques.   

4.2.5.1.1 The classical inference 

The classical inference is mainly used when only a small representative random sample 

of the population can be obtained to estimate the statistical characteristics of a large 

population. That is, the classical inference calcualtes the probability that an observation 

can be attributed to the presence of an object or event, given an assumed hypothesis. 

However, its applications are limited due to many disadvantages such as:  

– The difficulty of obtaining the density function that describes the observable    

– The complexity of the application of  multivariate data the classical inference 

theory becomes complex,  

– It can only assess two hypotheses at a given time 

– It cannot utilize the knowledge of a priori and likelihood probabilities 

Furthermore, another important limitation of the classical inference is that it cannot be 

used when the data are collected with bias of unknown size. Outliers have to be identified 

and removed. However, in the study of anomaly detections, the anomalies may well 

remain within the outliers. 

4.2.5.1.2 The Bayesian inference fusion 

The Bayesian inference comes from the Bayes theory, so it is a probability-based 

reasoning technique that relies on a priori knowledge about events. Ultimately, the 

Bayesian inference provides a method for calculating the conditional a posteriori 

probability of a hypothesis, given supporting evidence. Although the Bayesian inference 

has the ability to address some of the difficulties with classical inference (it updates for 
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example, the a priori given a previous likelihood estimate and additional observations, 

unlike other hypotheses), the Bayesian inference has its own set of disadvantages: 

– It is difficult to define the prior probability and likelihood function 

– The computation scheme becomes complex when multiple potential hypotheses 

and multiple conditionality-dependent events are evaluated 

– There is a requirement that competing hypotheses be mutually exclusive  

– The Bayesian inference cannot account for general uncertainty 

Thus, the Bayesian inference can be applied only outside of its limiting factors.  

4.2.5.1.3 The Dempster-Shafer evidential theory: 

This theory is a probability-based data fusion; therefore, the most advantageous 

application is when the sensors or the information sources contributing information 

cannot associate a 100 percent probability of certainty to their output decisions [124]. The 

Dempster-Shafer generalizes Bayesian inference, and both methods produce identical 

results when all singleton propositions are mutually exclusive and there is no support 

assigned to uncertainty.  The Dempster-Shafer method must define processes in each 

sensor that assigns the degree of support for a proposition. Despite this, the Dempster-

Shafer ameliorates some of the limitation of the classical inference. Its main disadvantage 

is that it is unable to make direct use of prior probability when this probability is known. 

Because of that limitation, many techniques have been introduced to improve the 

Demspter-Shafer. 

4.2.5.1.4 The Voting logic data fusion technique 

This technique combines detection and classification from multiple sources (e.g. 

sensors) by treating each sensor’s declaration as a vote, from which the majority, 

plurality, or decision-tree is used. Its approach to voting is based on Boolean algebra. 

Some of the main advantages of the voting logic are: 

– It handles false alarms better than the other techniques   
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– It may be an appropriate data fusion technique to apply when a multiple sensor 

system is used to detect, classify, and track objects 

However, voting logic has its share of disadvantages as well: 

– It has a poor rejection of cluster-induced false alarms when sensors are 

assembled in parallel and their functions are independent of each other 

– It has poor detection of suppressed targets when the sensors are in series and the 

system output is dependent on output from each sensor 

– It can increase the complexity of signal processing when the system output is 

dependent on combinations of multiple sensor outputs  

 

4.2.5.1.5 The fuzzy logic data fusion technique 

The fuzzy logic data fusion technique is based on fuzzy logic [128]. Contrary to 

the other methods, the fuzzy logic technique offers the ability to represent analog 

processes in a digital framework. Hence, the fuzzy logic technique has the capacity to 

solve the problems of imprecise knowledge or indistinct boundary definitions of 

mathematical treatment. It permits uncertainties in knowledge or identity boundaries to 

be applied to diverse applications. However, the fuzzy logic data fusion technique also 

has some drawbacks:  

– It may not be easily separated into discrete segments and may be difficult to 

model with conventional mathematics 

– It has to be applied within boundary sets of values that have not been sharply 

defined. 

The data fusion techniques presented in this overview are far from being comprehensive, 

as there are many combinations of the main techniques that can be used to meet 

researchers’ goals. As a matter of fact, there  are many other techniques being developed 

currently by different researchers throughout the world; for example, the AUG (Airborne 
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Underwater Geophysical) Signals has a toolbox containing algorithms with the following 

data fusion techniques [129]: 

• Statistical methods 

• Markov Random Fields 

• Dempster-Shafer Theory 

• Neural Networks 

• Fuzzy Logic 

• Wavelets 

• Super-resolution 

• AUG Signals’ Super-resolution  

In fact, the data fusion techniques can be as specific as one’s specific field of interest. For 

example, the passive data associated with unambiguous location of targets, which is very 

specific to military applications, is shown in Table 6 below.  
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Table 6: Fusion techniques for associating passively acquired data to locate and track targets [124] 

 
Fusion Level Data Fusion Technique Advantages Disadvantages

All avalabile sensor 

information used

Large bandwith communications 

channel required

Unambiguous target 

location obtained
Auxiliary sensor required

data are processed in 

real time

One coherent processor for each 

beam in the multibeam antenna 

required

3D position of target 

obtained

Communication 

channel bandwith 

reduced

3D position of target 

obtained

Communication 

channel bandwidth 

reduced even further

Received Signal 

(pixel-level 

fusion)

Coherent processing of data 

received from two types of 

sensors: a scanning 

surveillance radar and a 

passive receiver with high-

directivity multibeam antenna

Angle Data 

(feature-level 

fusion)

Maximum likelihood or 

relaxation algorithm using 

direction angle measurements 

to the target

Ghosts created that have to be 

removed through increased data 

processing

Target Track 

(decision-level 

or sensor-level 

fusion)

Combining of distributed 

target tracks obtained from 

each surveillance radar

Many tracks must be created 

stored, and compared to eliminate 

false tracks

 

 

Despite the panoply of the data fusion techniques, each technique has advantages as well 

as drawbacks. That is, some of them have very cumbersome implementation, when their 

application is not limited by restrictions. Since the main goal of this thesis is to have 

mathematical computations that can be done fairly quickly, to ensure the quick detection 

of anomalies during the monitoring of a system, the chosen data fusion technique will be 

one that is simple and transparent to implement. The number of sensors to monitored may 

be large, so it is important to be able to easily exclude or add given sensors based on their 

contribution. Thus, the Probabilistic Principal Component Analysis, which is an 

extension of the conventional Principal Component Analysis, altered by the incorporation 

of the fact that sensor measurements have uncertainties, will be used in this work.   

 

4.2.5.2 Overview of Principal Component Analysis 

The Principal Component Analysis (PCA) is based on a mathematical process 

whose main objective is to reduce the dimensionality of a data set that has a large number 
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of potentially correlated (or interrelated) variables by condensing these variables into a 

smaller number of uncorrelated principal components. In this process, the first principal 

component accounts for as much of the variability of the data set as possible, and each 

subsequent component accounts for as much of the remaining variability as possible. The 

PCA achieves this goal by identifying patterns in the data set and expressing the data in a 

way that highlights their resemblances and differences [130]. Thus, the main 

attractiveness of the PCA lies in the fact that once the patterns in the data are found, the 

data can be compressed. The PCA is also called the discrete Karhunen-Loève expansion 

(or transform), the Hotelling transform or Proper orthogonal decomposition depending 

on the area of application. There is quite a large amount of literature on PCA and its 

application. In [131], I. Jolliffe explains the underlying concept of the PCA technique 

and its application to time series data. The popularity of the PCA as an information 

fusion technique may be explained in part by the fact it is a fairly simple technique that is 

based on simple linear algebra. Moreover, it is a non-parametric method for extracting 

relevant information from confusing data sets [132]. That is, it allows the identification 

of patterns in data, and then expresses the data in a way that highlights their similarities 

and differences. Once the patterns in the data are found, the data can be compressed (the 

number of dimensions can be reduced) while conserving much of the original 

information. It is easier to infer characteristics from the reduced data set than from the 

original. 

Some of the tutorials of PCA [130, 132] are among the simplest ones to follow, where 

the  PCA is presented as follows: 

– Step 1: Get data composed of multiple variables. 

– Step 2: Calculate the mean of each variable and subtract it from the entry 

element of the variable (Row data Adjust) 

– Step 3: Calculate the covariance matrix, which is an n-by-n matrix (for n-

dimensional data set) 
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– Step 4: Calculate the eigenvalues and eigenvectors of the covariance matrix, 

where the eigenvectors represent the axes of the principal components. Also, the 

eigenvectors are perpendicular to each other (i.e. forming a basis). 

– Step 5: Choose the components and form a feature vector, which in turn decides 

the number of eigenvectors (k, with n>= k) to be kept. Therefore, the number of 

disregarded eigenvectors represents the number of eliminated variables 

 Feature Vector = (eig1 eig2 … eigk) 

– Step 6: Derive the new data set. The new data set is generated using simple linear 

algebra:  

Final data = Row Feature Vector * Row Data Adjust 

When engineering practical problems, programming software is utilized to write 

algorithms to perform the PCA. 

Although data set dimensionality reduction is the principal application of the 

PCA, it has many other applications, including exploratory data analysis (e.g. detection of 

outliers), data compression and data reconstruction, image processing, visualization, 

pattern recognition, time series prediction, and data feature extraction. In fact, Table 7 

shows a summary of PCA variants used as feature extraction and projection techniques.  
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Table 7: Feature Extraction and Projection Methods [133] 

 

Method Property 

Principal Components 

Analysis (PCA)

Linear map; fast; eigenvector-

based

Linear Discriminant Analysis
Supervised linear map; fast, 

eigenvector-based

Projection Pursuit
Linear map; iterative; non-

Gaussian

Independent Component 

Analysis (ICA)

Linear map; iterative; non-

Gaussian

Kernel PCA
Nonlinear map; eigenvector-

based

PCA Network Linear map; iterative

Nonlinear PCA
Linear map; non-Gaussian 

criterion; usually iterative

Nonlinear auto-associative 

network

Nonlinear map; non-Gaussian 

criterion, iterative

Multidimensional scaling 

(MDS), and Sammon's 

projection

Nonlinear map; iterative

Self-Organization Map (SOM) Nonlinear, iterative

Auto-associative neural network with linear transfer 

functions and just one hidden layer

Neural network approach, possibly used for ICA

Bottleneck network with several hidden layers; the 

nonlinear map is optimized by a nonlinear

Often poor generationn; sample size limited; noise 

sensitive; mainly used for 2-dimensional visualization

Based on a grid of neurons in the feature space; suitable 

for extracting spaces of low dimensionality

Comments

Traditional, eigenvector based method, also known as 

Karhunen-Loeve expansion; good for Gaussian data

Better than PCA for classification; limited to (c-1) 

components with non-zero eigenvalues

Mainly used for interactive exploratory data-analysis

Blind source separation, used for de-mixing non-

Gaussian distributed sources (features)

PCA-based method, using a kernel to replace inner 

products of pattern vectors

 

 

The choice of one technique over the others in Table 7 is primarily based on the goal and 

speed of execution of each method. 

Recall that the fundamental goal of the data fusion step is to combine pieces of 

information from a potentially correlated multi-sensory data set into fewer uncorrelated 

variables that allow for drawing a more adequate conclusion than one could get from 

each individual sensor. Therefore, based on the simplicity of the PCA on one hand, and 

its ability to reduce the dimensionality of a data set on the other, the PCA is a good 

choice for data fusion. Despite all the qualities the PCA mentioned above, it has some 

limitations that must be improved upon. In fact, the following are some of the main 

limitations of the PCA [134]: 

– It assumes approximate normality of the input space distribution, which implies 

that the PCA may still be able to produce a good low dimensional data set even 

though the data may not be normally distributed. 
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– It can fail for data that lies on a complicated manifold. 

– Its makes the assumption that the input data is real and continuous. 

– It is non-parametric (i.e. no probabilistic model for observed data). 

– It doesn’t handle uncertainty in sensor data. 

Although the PCA performs fairly well with many types of data set, because of its last 

stated limitation, a technique that can handle uncertainty must be explored. The fact that 

the PCA cannot handle data uncertainty because it doesn’t take into account the 

probabilistic model for the observed data [135, 136] cannot be overlooked in this thesis. 

It is a necessity for data uncertainty to be taken into account in the study, since power 

plants monitoring sensor measurements would most likely have uncertainties due to 

many intrinsic phenomena of power plant operations such as different operating regimes 

(a wide range of sensor readings at the different load conditions), operating environment 

(summer vs. winter), sensor built-in uncertainty, machine-to-machine variation, etc. 

Thus, the Probabilistic Principal Component Analysis (PPCA), which was introduced in 

order to deal with sensor data uncertainty, emerged as an improvement over the standard 

PCA, as it has the advantage of taking into account data uncertainty [136]. 

 

4.2.5.3 Probabilistic Principal Component Analysis overview 

The primary goal of the PPCA in the dimensional reduction application is to 

make up for the absence of a probabilistic model in the PCA methods. To achieve that 

objective, the PPCA utilizes the notion of maximum likelihood and the variance of the 

reduced data matrix, which means that it uses only the most significant weights obtained 

from the conventional PCA. The PPCA is definitely an improved version of the standard 

PCA, as it has the advantage of taking into account data uncertainty [136]. Some of the 

advantages of the PPCA can be summarized as follows: 

– It addresses limitations of the regular PCA. 
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– It can be used as a general Gaussian density model in addition to reducing 

dimensions. 

– The maximum-likelihood estimates can be computed for elements associated 

with principal components. 

– It captures dominant correlations with few parameters. 

– It permits multiple PCA models to be combined as a probabilistic mixture. 

– It can be used as a base for a Bayesian PCA. 

Because of all these capabilities, the PPCA is a good candidate for many applications in 

practice as reported by M. E. Tipping et al. in [136]. Some possible applications are:  

– The PPCA can be used to estimate the principal axes for missing data by making 

use of the standard methodology of the maximum likelihood of a Gaussian model 

as presented in the very popular book by R. J. Little and D. B. Rubin [137].  

– Through the use an example in [138], the author demonstrates a successful use of 

the standard PCA to handle missing data.  

– The PPCA can be used through the mixtures of PPCA models. Since the standard 

PCA consists of a single linear projection, more complex models that combine 

many PCA models have been used in practice in fields such as image 

compression [139] and visualization [140].  

– The PPCA can be used as a constrained Gaussian density model, with the benefit 

that the maximum likelihood estimates for the parameters associated with the 

covariance matrix can be efficiently computed from the principal data 

components. 

Nevertheless, in this work the PPCA will be used for its dimensionality reduction ability, 

especially when the speed of the execution of the analysis is the foremost important 

factor, because the early detection of an anomaly can avoid potential catastrophic failure 

down the road. Therefore, a reduced number of variables will lead to decrease of the 

computational burden.  
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The underlying mathematical background of PPCA is based on a few considerations, 

which will be briefly presented in the next section. The interested reader can also access 

a more detailed approach in [135, 136].  

 

4.2.5.4 Mathematical Background of PPCA (with all the equations) 

The very first step of the PPCA consists of performing the computation of the 

conventional PCA on a given data set. That is, the PCA involves a matrix analysis 

technique called eigenvalues decomposition. The PPCA mathematically derives from the 

notion of the Gaussian latent variable model, which in turn is related to statistical factor 

analysis [135]. 

4.2.5.4.1 Factor analysis 

Factor analysis is a mathematical approach used to reduce the number of observed 

vectors t (d-dimensional) to a corresponding number of vectors (q-dimensional) of latent 

(unobserved) variable x, where q<d is defined as [136, 141]: 

εµ ++=Wxt        (15) 

Where ( ) µ+=WxWxy ,   is a function of the latent variable x with parameters W. 

W is the qd ×  matrix  

The parameter vector µ allows the model to have a non-zero mean.  

By definition ( )INx ,0~ , with the restriction that the latent variables be independent and 

Gaussian with unit variance. The noise or error ( )ψε ,0~ N  is also Gaussian distribution 

with zero mean, and a variance ofψ .  

Consequently, the corresponding observation ( )ψµ +TWWNt ,~  is Gaussian as well, 

and the model can be determined by the maximum likelihood. M.E. Tipping et al. [136] 

argue that “the distinction made between variance and covariance in the standard factor 

analysis model, the subspace defined by the maximum likelihood estimates of the 
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columns of W will generally not correspond to the principal subspace of the observed 

data.” Furthermore, they establish that the isotropic noise covariance and the variance be 

equal ( ψσ =I2 ) with the residual variance 2σ  assumed known. Then, they show that the 

observation covariance model IWW T 2σ+ can be calculated exactly, allowing W  and 

2σ to be determined analytically. 

The latent variable x  is conventionally defined as independently distributed Gaussian 

with zero mean and unit variance ( ( )INx ,0~ ). Then, the observable t can be written in 

Gaussian distribution form as follows from the equation      

 (16) 

( )ψµ,~| +WxNxt          (16) 

Where I2σψ +Λ= , which is the combination of the measurement (or prediction) error 

Λ that is unique to the response, and the variability 2σ that is unique to x  (i.e. the 

isotropic noise covariance). 

Λ is a diagonal matrix with each diagonal element representing the data uncertainty of 

the corresponding variable. Also, Λ is the variance of the additional error which has zero 

mean ( ( )Λ,0~* Nε ). 

In [135], Jiang et al. stress that the latent variable x in the PPCA is intended to explained 

the correlations between observed variable t, while the error variable ε  represents the 

variability unique to x , which is different from the standard PCA, which treats 

covariance and variance identically. 

The unadjusted conditional distribution of the latent variable x can be calculated given 

observation t using the Bayes’ rule. It is also Gaussian: 

( )121 ,~| −− MtWMNtx T σ      (17) 

Where IWWM T 2σ+=  

M.E. Tipping et al. show that the likelihood is maximized when the weight matrix is:  
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( ) RIUW qqML

2/12σ−Λ=          (18) 

qU is the matrix of the principal eigenvectors with jλ the corresponding eigenvalues, and 

R is an arbitrary q*q orthogonal rotation matrix; IR = can be assumed in practice. 

Jiang et al suggest calculating the q-dimensional data matrix as follows: 

MLML
T

MLML WWI 11 −− +=Σ ψ         (19) 

Where IMLML
2σψ +Λ= , and  

∑
+=−

=
d

qj
jML qd 1

2 1
λσ is the maximum likelihood estimate of 2σ  

 

Thus, the unadjusted data in the lower dimensional latent space is calculated as: 

n
T

MLnn tWMtx 1| −=          (20) 

Where IWWM ML
T

MLML
2σ+= . Let us rename nn tx | as *Φ  

Thus, the parameters calculated for the PPCA will be applied in the model. 

The parameters nn tx |  or *Φ , called the data matrix, represent the entry of the PPCA’s 

principal components. 

The data fusion step involves fusing the signal features of each variable obtained 

from the MRA using the PPCA technique, which is an improvement over the standard 

principal component analysis (PCA). Thus, the probabilistic principal component 

analysis (PPCA) is used to merge the information from the sensors of interest.  To 

perform the PPCA, the steps of the principal components analysis are executed, and then 

the notion of maximum likelihood and the variance of the reduced data are calculated 

using matrices, where only the most significant weights obtained from the standard PCA 

are used as entries in a maximum likelihood matrix. The next section presents an 

application of the PPCA data fusion technique to an illustrative example of sensor data 

set. 
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4.2.5.5 Illustration of Data Fusion PPCA (with all figures & tables) 

The original data set of twelve sensors (x1, …, x12) has been normalized, de-noised and 

the MRA step has been completed. 

1) First, the conventional PCA steps are done: 

The conventional PCA is performed on the retained signal feature (approximation) to 

determine the principal components (PC). 

The covariance matrix of the processed 12 variables is calculated, as shown in Table 8 

 

Table 8: Covariance Matrix for eigenvalues calculation 

 

 

Then, the eigenvalues, their respective contributions, and the corresponding 

eigenvectors for the covariance matrix are obtained and ranked from the highest value to 

the lowest value, as illustrated on  
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Table 9. Thus, the highest value of the eigenvalues 1λ represents 71.862% of the 

12-variable combination signal; the second highest 2λ represents 13.511%; and so on. 

 

 

 

 

 

Table 9: Pareto chart of eigenvavlues contributions 

1

2

3

4

5

6

7

8

9

10

11

12

Number

0.0169

0.0032

0.0023

0.0010

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

71.862

13.511

9.948

4.060

0.532

0.038

0.029

0.011

0.006

0.002

0.001

0.000

Percent 20 40 60 80

71.862

85.373

95.322

99.382

99.914

99.952

99.981

99.991

99.997

99.999

100.000

100.000

Cum Percent

 

The original twelve eigenvectors and their corresponding eigenvalues are shown in Table 

10. However, to retain at least 95% of the information contents (i.e. 95% confidence 

level), only the first three eigenvalues, representing 95.32% of the information content, 

are needed. Consequently, the eigenvectors corresponding to those three eigenvalues, 

which represent the principal components, are chosen as shown in the red rectangle in 

Table 10.  

Table 10: Original twelve eigenvectors 

0.11163

0.00063

0.53611

0.41406

0.64797

0.09165

-0.02942

0.08733

-0.00002

-0.29391

0.07437

-0.00159

-0.04960

0.00001

0.44731

0.59490

-0.61745

-0.03798

0.03416

-0.04653

0.00007

0.23822

-0.02580

0.01089

-0.24283

0.00212

-0.07759

0.14483

0.44181

-0.18695

0.08944

-0.14856

0.00010

0.78966

-0.17164

-0.02809

-0.05772

0.00228

0.70935

-0.67302

-0.05191

-0.01204

0.02006

-0.02495

0.00003

0.18877

-0.02906

0.01353

0.41572

0.00651

-0.05629

-0.01381

0.00375

0.56166

0.10971

0.27663

0.00082

0.39979

0.43791

0.26104

0.78553

0.05804

0.01080

-0.02075

0.00264

-0.49463

0.13193

-0.23984

0.01022

0.07501

0.07016

-0.22088

0.04222

0.04774

-0.00300

-0.00714

-0.03088

0.03764

0.08150

0.69296

0.00364

0.08759

-0.22926

-0.66815

-0.32684

0.16821

0.00006

-0.00504

0.00364

-0.18124

0.69772

-0.00752

-0.01495

-0.10941

0.55784

-0.14749

0.15429

0.09238

-0.00331

0.00213

0.00118

0.25345

0.65425

-0.07239

0.04026

-0.11084

-0.63215

0.23790

-0.00937

0.97844

-0.00165

0.00332

-0.00066

0.03669

-0.19476

-0.01878

0.00304

0.01599

-0.03118

0.04096

0.00485

0.00953

0.00024

0.00037

0.00022

-0.54319

0.01949

0.58946

0.02618

-0.00519

-0.03573

0.59582

-0.01971

-0.00521

0.00005

0.00004

0.00010

0.00569

-0.01760

-0.01287

0.99867

0.00140

0.03464

-0.02305
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Thus, the original twelve sensor data sets can be reduced into three principal 

components. 

2) Steps for PPCA:  

Once the PCA steps are completed, the PPCA will add the probabilistic component.  

The entries of the eigenvectors are the weights that will be applied to their corresponding 

variables in order to obtain the principal component that is the combination of the twelve 

variables. At this point, the PPCA procedure will be implemented. The major weight 

contributors are identified in order to calculate the maximum weight that will be allowed 

as an entry value of an eigenvector; let’s say less than 0.1 is set to 0, while any value 

greater than 0.1 is kept. This is to say that the maximum likelihood depends on the 

meaningful weights. Consequently, for the PPCA, the following principal components 

are obtained:   

 
 

Table 11: Maximum likelihood weight for principal components 

Variables PC1 PC2 PC3

DWATT 0.11163 0 -0.24283

TNH 0 0 0

BB1 0.53611 0.44731 0

BB2 0.41406 0.5949 0.14483

BB4 0.64797 -0.61745 0.44181

CPD 0.09165 0 -0.18695

CTD 0 0 0

CPR 0 0 -0.14856

CSGV 0 0 0

CTIM -0.29391 0.23822 0.78966

AFQ 0 0 -0.17164

AFPAP 0 0 0  
 

After obtaining the maximum likelihood weight matrix and calculating the remaining 

parameters for the PPCA using a developed MATLAB® code, the result of the three 

principal components kept using the PPCA steps are shown in Figure 25a, b, and c 

representing the first, second and third principal components respectively. 
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Figure 25: PPCA result principal components 

 

 

The result of the PPCA data fusion is that the study will go from twelve potentially 

correlated sensor values (the original number of sensors of interest) to a much more 

manageable three uncorrelated variables, which are now called the principal components.  

In general, there exist rules to determine the number of components to be kept. Usually 

this is dictated by the level of confidence that needs to be achieved in the study; that is, 

the ratio of the original information to be kept. In this example, a confidence level of 95% 

was used. 

 

4.2.6 Anomaly detection decision  

 

The last step of the proposed methodology for early precursor detection is to 

make the correct assessment of the anomaly identification in the appropriate time series. 

Anomaly detection has been a fascinating and active field of research in the research 

community for many years. A. Lazarevic et al. provide the following definition: 
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“anomaly is a pattern in the data that does not conform to the expected behavior.” Also, 

anomalies can be considered outliers in some cases [142]. Thus, based on the anomaly 

definition, it is understandable why the anomaly detection is of such interest to so many 

fields of research. In fact, almost every complex systems developer or operator allocates 

resources to anomaly detection in order to avoid the possibility that a missed anomaly 

lead to a catastrophic systems failure. As a consequence of the interest in anomaly 

detection, there exists plenty of literature [143, 144] on the subject. In [143], V. Chandola 

et al. present a fairly broad survey of the current anomaly detection decision approaches. 

Among some of the most common in the engineering field are the accuracy-based 

metrics, precision-based metrics, and robustness-based metrics [145]. Some of the current 

active areas of anomaly detection research are engineering, statistical, economic, health 

care, etc. There are many fault decision metrics; some of them are summarized in [145].  

In general, anomaly detection methods are faced with a set of challenges that must be 

overcome in order to achieve any meaningful type of results. Those challenges may 

include but are not limited to [142]: 

– Defining a representative normal region can be difficult. 

– The boundary between normal and outlying behaviour can be imprecise. 

– The exact notion of an outlier is different for different application domains. 

– The availability of labelled data for training/validation can be limited. 

– One might have malicious adversaries. 

– Data might contain noise. 

– Normal behaviour keeps evolving. 

There are three major types of anomaly [142]: 

– Point anomalies, which occur when individual data points are anomalous with 

the data set. 

– Contextual anomalies, which occur when an individual data instance is 

anomalous within a context; the context needs to be understood. 
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– Collective Anomalies, which occur when a collection of related data points is 

anomalous. The relationship among data points must be known.  The 

individual points within a collective anomaly may not be anomalous by 

themselves. 

For the purpose of this study, which relies on a data-driven approach, a precision-

based metrics type [21, 145] will be utilized in the proposed process to make the decision 

of whether a found outlier is an anomaly or not. The advantages of using a precision-

based metric are that it is simple to implement within the context of a statistical approach 

based on historical knowledge of given systems, and it is suitable for time series types of 

study. Furthermore, a statistically-based technique for anomaly (i.e. outlier) detection will 

first be utilized, followed by the precision based metric for the decision. 

Typically the statistically-based technique is a very suitable anomaly detection technique 

for time series. It works by modeling data points using stochastic distribution, where the 

points are determined to be outliers depending on their relationship with an established 

threshold model. Although statistically-based techniques have many advantages, they 

have some drawbacks that one must be mindful of when using these techniques. 

Statistically-based techniques have the following characteristics:  

• Advantage: they utilize existing statistical modelling techniques to model various 

types of distributions. 

• Drawbacks: it is difficult to estimate distributions with high dimensions, and their 

underlining parametric assumptions often do not hold for real data sets. 

 

4.2.6.1 Statistically-based approach to anomaly detection 

There are other practical advantages of using a statistically-based technique in this 

thesis. For example, a statistically-based method does not require sophisticated modeling 

of the data set, such as a neurally-based network would require. The calculations and 
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recalculations of statistical parameters needed to set the threshold are fairly simple and 

fast, which is very important for implementation in systems monitoring. In fact, any time 

there is an exterior intervention to the system (such as water watch for a heavy gas 

turbine, installation of a new part, completion of scheduled maintenance, or completion 

of a recovery of degradation action); the statistical parameters will need to be 

recalculated. 

4.2.6.1.1 Reconstruction of representative signal 

The procedure for anomaly detection decision is a multi-steps approach. 

After the completion of the PPCA step, when the different principal components of the 

signal have been determined, the reduced dimensionality data set is in turn combined into 

a one-dimensional signal calculated as follows: 

)(*

1

iRS k

n

i
kΦ=∑

=

λ                       (21) 

Where: n: is the number of retained principal components (PC) 

 kλ : is the contribution of Eigenvalues (k) 

 )(* ikΦ : is the signal corresponding to PC(k) of the data matrix 

  RS: is the reconstructed signal     

That is, the original N-dimensional data set was first reduced to a q-dimensional data set 

using the PPCA data fusion technique, and it is now reduced to a one-dimensional 

reconstructed signal RS. The eigenvalues corresponding to each principal component are 

used as weight to consolidate the q-dimensional system into a one-dimensional system. 

4.2.6.1.2 Statistical Process Control for threshold setting 

The statistical process control, which relies on quality control theories [146], is used to 

set up the threshold level through a calculation as follows: 
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Step1:  

The obtained reconstructed signal RS is decomposed using the discrete Wavelet packet 

decomposition (similar to the MRA step). Then, the energy content of each node is 

calculated (similar to the multi-resolution analysis step) using the equation to calculate 

the energy content as follows at each time step t:  

( ) )()()( 2

,,

2

,,, tWdtdtWtE
k

knjknjnj ∑∫
∞

∞−
==  

 

Step 2:  

Once a system representative signal RS is calculated, the two damage indicators SAD and 

SSD are calculated to be monitored instead of directly monitoring the change of the 

energy content [147].  SAD and SSD are defined as follows: 

Sum of Absolute Difference (SAD) and computed as: 

refEkEkSAD −= )()(                     (22) 

Square Sum of Difference (SSD) and computed as: 

( )2)()( refEkEkSSD −=                  (23) 

Where: 

refE  is the reference signal energy content, calculated over a healthy period before the 

monitoring for potential anomaly starts. 

)(kE : is the RS energy content obtained from the subsequent measurement.  

The monitoring of SAD and SSD is a popular approach in practice because these sums 

permit the easy capture of deviations from target monitoring bands. In fact, an important 

part of accomplishing any good anomaly detection method is to figure out the best feature 

to be tracked; thus, SSD is constantly recommended as one such trackable feature [148]. 
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Since the selection of the right feature is key to successful monitoring in general, there 

are many algorithms developed to track signal or image features [148, 149].  Thus, the 

two damage indicator parameters SAD and SSD chosen to be track fit that requirement. 

It is important to note that the calculations of the damage indicators SAD and SSD have 

been modified from the ones proposed [44] by Sun, because in the case of a larger size 

data set, the required computation time becomes a limit to the monitoring. Thus, Sun 

proposes:   ∑
=

−=
m

i
refEkESAD

1

)(        (24) 

and  

( )
2

1

)(∑
=

−=
m

i
refEkESSD        (25) 

Step 3:  Conventional Apply SPC (Statistical Process Control) 

The X-bar control chart concept [150] is used to establish the threshold of damage 

indication. Thus Ang et al. suggest the following threshold calculation for a one-sided 

upper (1-α) upper confidence limit for the damage indicator SAD (a similar formula is 

calculated for SSD) [151]: 











+=

q
ZUL SAD

SADSAD

σ
µ α

α
                        (26) 

Where:  

α
SADUL  : Upper Confidence Limit 

SADµ : is the value toward which the mean value of the parameter SAD converges  

 αZ : is the value of standard normal distribution with zero mean and unit 

variance, so that the cumulative probability is 100*(1-α)  

SADσ : is the value toward which the standard deviation of the parameter SAD 

converges 

q: interval of monitoring time  
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Then, the X-bar control chart upper limit is used to monitor the damage indicators over a 

given period of time. 

4.2.6.1.3 Modified threshold calculation 

 

In general, the control charts are effective in defect prevention [150] when used in 

the context of manufacturing, for example. However, because of the constraint of the 

execution speed, the choice has been made in this work to modify the conventional SAD 

and SSD formulas. Therefore, instead of directly using the conventional statistical 

process control where the mean value of the SAD ( SADµ ) is used to calculate the upper 

specific limit, it is proposed that one uses a modified version of the SPC formula. The 

reasoning behind the proposed change is simple; because the conventional SPC is a sum 

of absolute values, it converges to a maximum value of the mean value of the SAD 

( SADµ = MAXSAD _µ ). Thus, it is proposed that one uses the same thought process applied to 

the maximum mean value to calculate the upper specific limit, which will be used as the 

threshold value, because before the mean values of SAD (and SSD) converge toward a 

given value, there is an overshoot in the value of SAD before it stabilizes. Therefore, for 

the determination of the upper specification limit, the original formula must be modified 

to address the modifications proposed in the calculation of the damage indicators, SAD 

and SSD.  By doing so, the number of false-positive alarms, which would have been 

arbitrarily high, decreases. That appears to reduce considerably the number of false 

alarms. Therefore, the modified upper confidence limit for the damage indicator SAD is 

defined as: 











+=

q
ZUL SAD

MXSADMXSAD

σ
µ α

α
__                     (27) 
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In sum, the proposed approach is one step better than the current industry standard 

practice because it has a better execution (i.e. run faster) time. 

The proposed threshold calculation is also machine specific, because different machines 

in a given fleet can have many differences, such as machine-to-machine variations, 

operating condition variations, and environmental condition variations. Therefore, the 

threshold is established from the test machine during its healthy operation time and 

conditions.  This allows for the avoidance of some of the practical issues of fleet 

management. 

4.2.6.1.4 Bayesian Hypothesis for monitoring time 

Finally, the Bayesian evaluation method is applied to the modified threshold 

value αε MXSADUL _= . Thus, the Bayesian evaluation method for hypothesis testing can be 

conducted.  The anomaly function is defined as H(t), which is the vector of the Bayesian 

hypothesis testing result with null and alternative hypotheses defined as follows. 

Once the threshold is set as a positive value, the decision criterion is based on a Bayesian 

binary type of hypothesis assessment [34] at each time step: 

• The null hypothesis H0 is defined as:  

  ( ) ( ) 1, =≤ tHtSAD ε                                   (28)    

That is, at any monitoring time step, if the sum of the absolute difference SAD (or 

SSD) is less than or equal to the calculated threshold, then the measurement at that 

point is considered good (i.e. the point is within the preset acceptable band).  

• The alternative hypothesis Ha is defined as:  

( ) ( ) 0, => tHtSAD ε                                     (29)  

That is, at any monitoring time step, if the sum of the absolute difference SAD (or SSD) 

is greater than the calculated threshold (i.e. outside of the pre-set band), then the 

measurement is rejected as a defect. 
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Hence, at each time step a defect judgment is made, so that all the defective data points 

are identified.  

As a result of the hypothesis testing, a binary type of function is obtained as outcome 

over a giving period of monitoring time.  Thus, the function H(t)  has values of 1 or 0 and 

can be plotted over time for visualization. An H(t) value of 1 is a healthy state, and an 

H(t) value of 0 is an abnormal one.  Therefore, the appearance of the value of H(t) = 0 

can be considered a failure precursor. The function H(t) can be visualized and tracked 

over time because it is also a time series function.  

 

Thus, the steps of the anomaly detection decision can be summarized and organized as 

shown on Figure 26 
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Figure 26: Anomaly Detection Decision Flowchart 
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4.2.6.2 Different error types (or confidence level) calculations 

Any decision making process needs to provide the confidence level associated 

with its conclusions. Thus, an immediate advantage of the statistically-based techniques 

is that the confidence levels are easily determined. Moreover, the proposed approach 

provides an easy, fast, and robust calculation of the different types of errors. 

4.2.6.2.1 Calculation of the Confidence Level for type I error  

Recall that the probability of type I error or false-positive is defined as:  

α = P{reject H0|H0 is true}; that is, the probability of rejecting H0 while is indeed true. 

In other word, type I error is the probability of detecting a failure precursor while there is 

no defect.  

In the proposed process, the statistical confidence level is an input from the system 

monitor, calculated as 100*(1-α)%.  In other words, the system monitor decides the level 

of type I error acceptable to him/her; then, that value is input in the threshold calculation. 

Consequently, the type I error is a controlled parameter in the proposed process.   

4.2.6.2.2 Type II errors calculation 

Conversely, the type II error or false-Negative is defined as: 

β = P{fail to reject H0|H0 is false}; that is, the probability of not rejecting H0, while H0 

is false. In other words, the type II error is the probability of missing a defect when one is 

present. In fact, determining the type II error is crucial in systems where failures have 

huge consequences.   

To estimate the type II error, let us assume the following conceptual approach to 

determine the probability type II error. 

Let null hypothesis H0 and the alternative hypothesis H1 be defined as: 

H0: 0µµ =           (30) 

H1: 0µµ ≠           (31) 
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The procedure for testing is to take a random sample of n observations on the random 

variable x; the test statistic is then calculated as: 

n

x
Z

σ

µ0
0

−
=  and reject H0 if 20 αZZ >  

Where σ : is the standard deviation and 2αZ  is the upper 2α percentage point of 

the standard normal distribution. 

By recalling the central limit theorem, ( )nNx 2,~ σµ  , we can see that for cases 

H0: 0µµ =  is true ( )1,0~0 NZ and the probability of the successful H0, 100*(1-α) of the 

values of 0Z must fall between 2αZ− and 2αZ  

Then, the probability type II error assumes H0: 0µµ = is false, then the 

corresponding 0Z is :  











1,~0 σ

δ n
NZ , where δµµ += 01 , therefore H1: 0µµ ≠ is true.  

The type II error is the probability that the test statistic will fall between 2/αZ−  and 2/αZ  

when H1 is true, as illustrated in Figure 27. A more detailed explanation of the concept of 

determination can be seen in [152]. Finally, the probability can be evaluated as  

( ) ( )2/2/ αα ZFZF −− ,  

F is the cumulative distribution function of the distribution 









1,

σ
δ n

N . 

 

Figure 27: Graphical representation of type II Error [152] 
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Then, by changing from the cumulative distribution function to the standard normal 

cumulative function, the type II error can be deduced as:    











−−Φ−










−Φ=

σ
δ

σ
δ

β αα
n

Z
n

Z 2/2/  (32) 

Where:  

Φ  is the cumulative standard normal distribution 

δ is the difference between the mean value used to calculate the threshold value 

and the mean value of the monitored interval of time of damage indicators SAD and SSD. 

σ  is the standard deviation 

n  is the sample size 

 

 

 

 

Table 12: Summary of type I and type II errors in decision making (adapted from [124]) 

H0 True H1 True

Reject H0

Type I error 

Probability = α

Correct decision 

Probability = 1-β

Accept H0

Correct decision 

Probability = 1-α

Type II error 

Probability = β

Decision

Truth about the population 

 

 

Another interesting statistical parameter is the process power defined as:  

Power = 1–β = P{reject H0|H0 is false}; it is the probability of correctly rejecting H0 

when H0 is false. It is desirable to have a higher value of Power. In other words, the 

power is the probability of making the right decision. 
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4.2.6.3 Illustration of anomaly detection step 

As it done with previous step, let use an illustrative example to show the anomaly 

detection steps. Thus the input to the anomaly detection decision is the PPCA data fusion 

step. By using the same data set as an example as in the data fusion step, the result of the 

PPCA was three principal components. 

  Step 1:  

The signal representing the system is reconstructed using the three principal components 

shown on Figure 25 (a), (b) and (c). Thus the reconstructed signal is shown on Figure 28 

below  
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Figure 28: Reconstructed 1-dimensional signal from the 3 PPCA 

 

Step 2: 

The convergence of the statistical parameters for SAD and SSD is obtained as shown in 

Figure 29. 
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Figure 29: Converged statistical parameters 

 

Step 3: 

The upper specific limits for SAD and SSD are computed for a value of α of 2%that 

serves as the threshold as well: α
SADUL  is 0.20126 and α

SSDUL is 0.04295. Thus, Figure 30 

shows the reference time series signal used to determine the statistical parameters (blue), 

monitor time series (green) and threshold (red dash) for SAD damage indicator. Also, 

Figure 30 shows the magnitude of the anomalies. 
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Figure 30: Monitoring of the damage indicator SAD 

Threshold 
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Similarly, Figure 31 shows the reference time series signal used to determine the 

statistical parameters (blue), monitor time series ( green) and threshold (red dash) for the 

SSD damage indicator. 
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Figure 31: Monitoring of the damage indicator SSD 

 

After setting the threshold, the result of the hypothesis testing is shown in Figure 32 
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Figure 32: H-Function of the hypothesis testing result 
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4.2.7 Combining both types of information 

 

After completing all the steps of the precursor detection, let us address the 

research question 1a. Recall that the research question 1a stated: “How can a failure 

precursor detection method be made robust?” 

– Why is the current industry standard missing many early precursory signs 

of catastrophic failure? 

– Can combining both vibration sensors and performance sensors decrease 

the number of missed detections? 

To address this research question, let’s use an example with eleven monitored sensors 

(three vibration sensors and eight performance sensors). 

4.2.7.1 Vibration sensors only 

After the preprocessing and de-noising of each of the three vibration sensors, the PPCA 

step is done. The eigenvalues contribution is shown in Table 13. 

 

Table 13: Pareto plot of Eigenvalues contribution for vibration sensors only 

1

2

3

Number

0.4254

0.0784

0.0035

Eigenvalue

83.850

15.461

0.689

Percent 20 40 60 80

83.850

99.311

100.000

Cum Percent

 

 

After the conventional PCA, the PPCA is done, using the maximum likelihood for weight 

matrix and with entry (W>=0.1), for the two retained principal components (99.31% of 

information content). This is shown in Table 14 
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Table 14: two retained principal components from the PPCA step for vibration sensors only 

BB1

BB2

BB4

0.67079

0.71260

0.20550

-0.10819

-0.18010

0.97768  

 

 

The reconstructed signal is shown in Figure 33. 
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Figure 33: Reconstructed signal for vibration sensors only 

 

Finally, the hypothesis testing is performed and show in Figure 34. 
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Figure 34: H-function for vibration sensors only 
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4.2.7.2 Performance sensors only 

In a similar fashion, all the steps are repeated with the eight performance sensors only. 

The eigenvalues contribution is shown for performance only in Table 15 

 

Table 15: Pareto plot of Eigenvalues contribution for performance sensors only 

1

2

3

4

5

6

7

8

Number

0.1717

0.0089

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

94.989

4.928

0.069

0.006

0.004

0.003

0.001

0.000

Percent 20 40 60 80

94.989

99.917

99.986

99.992

99.996

99.999

100.000

100.000

Cum Percent

 

 

After the conventional PCA, the PPCA is done, using the maximum likelihood for weight 

matrix and with entry (W>=0.1), for the two retained principal components (99.917% of 

information content). This is shown in Table 16. 

 

Table 16: Two retained principal components from the PPCA step for performance sensors only 

PC1 PC2

DWATT 0.4769 -0.13152

TNH 0.40805 0

CPD 0.47494 0

CTD 0.4299 0.18129

CPR 0.44293 0

CSGV 0 0

CTIM 0 0.96825

AFPAP 0 0  

The reconstructed signal is shown for performance only in Figure 35. 
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Figure 35: Reconstructed signal for performance sensors only 

 

 

Finally, the hypothesis testing is done for performance sensors and shown in Figure 36. 

8/3/2009  12:42:00 PM 8/5/2009  3:17:00 PM 8/12/2009  5:18:00 PM 9/10/2009  12:09:00 PM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H - function

One set of anomaly detected

 

Figure 36: H-Function for vibration sensors only 

 

4.2.7.3 All sensors (vibration and performance) combined  

Now, let us combine all the sensors and perform all the steps of the anomaly detection 

process. The eigenvalues contribution is shown for the combination of all the sensors 

together in Table 17. 
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Table 17: Pareto plot of Eigenvalues contribution for all sensors 

1

2

3

4

5

6

7

8

9

10

11

Number

0.4846

0.1679

0.0238

0.0082

0.0035

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

70.425

24.402

3.456

1.188

0.508

0.017

0.001

0.001

0.001

0.000

0.000

Percent 20 40 60 80

70.425

94.827

98.283

99.471

99.979

99.997

99.998

99.999

100.000

100.000

100.000

Cum Percent

 

 

After the conventional PCA, the PPCA is done, using the maximum likelihood for 

weight matrix and with entry (W>=0.1), for the three retained principal components 

(98.283% of information content). This is shown in  

Table 18.  

 

Table 18: Three retained PC from the PPCA step for ALL sensors combined 

PC1 PC2 PC3

DWATT 0.1897 0.34279 0.28134

TNH 0.1664 0.28797 0.22198

BB1 0.60303 -0.30941 0

BB2 0.63522 0.36886 0

BB4 0.26122 0.5137 -0.80535

CPD 0.19144 0.33751 0.28019

CTD 0.17847 0.29981 0.21548

CPR 0.1778 0.31576 0.26381

CSGV 0 0 0

CTIM 0 0 0

AFPAP 0 0 0  

 

The reconstructed signal is shown for all the sensors combined in Figure 37 
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Figure 37: Reconstructed signal for ALL sensors combined 

 

Finally, the hypothesis testing is done for all the sensors combined and shown in Figure 

38.  
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Figure 38: H-Function for ALL sensors combined 

 

 

Figure 38 above shows that the anomaly signature that was not in the vibration-based 

analysis appears in the analysis based on the combination of all sensors. Similarly, the 

three anomalies detected during the vibration-based analysis, whose signatures were not 
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visible in the performance-based analysis, were detected in the combination of all 

sensors. 

. 

Recall hypothesis 1a: “Combining the information from the two types of sensors could 

decrease the number of missed precursory anomalies” 

 

Thus, hypothesis that stated: “the combination of the two type of sensors through the 

proposed approach can decrease the number of missed precursory anomaly” has been 

verified.   

Therefore, although there are damage diagnostic method that rely solely on vibration 

sensors [80], the combination of the vibration with the performance yields a much mmore 

robust anomaly detection methodology. 

4.2.8 Effect of sampling interval on the proposed anomaly detection methodology  

Recall research question 2a: “How does the sampling interval impact on the quality of 

detection?” 

– Does the sampling time have any impact on the quality of detection? 

To study the effect of the sensor sampling interval on the proposed anomaly detection 

technique, let us consider the following three sampling intervals: five seconds, one 

minute, and five minutes. Furthermore, let us perform the study through the use of an 

example. In this example, there are thirteen sensors that are being monitored. In each of 

the three cases, the normal steps of data preprocessing, de-noising, fusion, and anomaly 

detection are applied.   

4.2.8.1 Five minute sampling interval 

 

In this case, the data set is collected using sensors reading at five minute intervals. 

Table 19 shows the Pareto plot representing the contribution of each of the eigenvalues.  
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Table 19: Pareto plot for five minute sampling interval 

1

2

3

4

5

6

7

8

9

10

11

12

13

Number

0.0843

0.0428

0.0018

0.0015

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

64.645

32.802

1.344

1.135

0.050

0.012

0.005

0.003

0.002

0.001

0.001

0.000

0.000

Percent 20 40 60 80

64.645

97.447

98.791

99.927

99.977

99.988

99.993

99.996

99.998

99.999

100.000

100.000

100.000

Cum Percent

 

 

 

 

The Figure 39 below shows the magnitude of the anomaly in the five minute sampling 

interval of the SAD damage indicator.  
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Figure 39: Monitoring of the damage indicator SAD for five minute sampling intervals 

 

 

The result of the hypothesis shown in Figure 40 indicates, that the detected anomaly 

started on 008/21/2008 at 12:05AM.   
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Figure 40: H-Function for five minute sampling interval 

  

 

 

4.2.8.2 One minute sampling time 

In an approach similar to the one minute sampling interval case, the one minute interval 

is performed. Table 20 shows the Pareto plot representing the contribution of each of the 

eigenvalues  

 

Table 20: Pareto plot for one minute sampling interval 

1

2

3

4

5

6

7

8

9

10

11

12

13

Number

0.0848

0.0430

0.0018

0.0015

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

64.686

32.775

1.341

1.126

0.049

0.012

0.005

0.003

0.002

0.001

0.001

0.000

0.000

Percent 20 40 60 80

64.686

97.461

98.802

99.927

99.977

99.988

99.993

99.996

99.998

99.999

100.000

100.000

100.000

Cum Percent
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Figure 41 below shows the magnitude of the two anomalies in the one minute sampling 

interval of the SAD damage indicator.  
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Figure 41: Monitoring of the damage indicator SAD for one minute sampling interval 

 

 

In the case of the one minute sampling interval, the result of the hypothesis testing shown 

in Figure 42  indicates that an anomaly was detected that started on 008/21/2008 at 

12:05AM (same as in the five minute sampling interval case), but a  short anomaly was 

also detected on 08/14/2008 from 23:05 to 23:06 (lasting only one minute). 
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Figure 42: H-Function for one minute sampling interval 
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4.2.8.3 Five second sampling time 

Finally, the five second sampling interval was performed in a similar fashion to the 

previous tests.  

Table 21 shows the Pareto plot representing the contribution of each of the eigenvalues. 

  

Table 21: Pareto plot for five second sampling interval 

1

2

3

4

5

6

7

8

9

10

11

12

13

Number

0.0389

0.0305

0.0018

0.0011

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

53.781

42.128

2.437

1.565

0.046

0.020

0.009

0.005

0.004

0.003

0.001

0.000

0.000

Percent 20 40 60 80

53.781

95.909

98.346

99.911

99.957

99.977

99.987

99.992

99.996

99.999

100.000

100.000

100.000

Cum Percent

 

 

 

Figure 43 below shows the magnitudes of the anomalies in the five second sampling 

interval of the SAD damage indicator. It is seen in the figure that there are many more 

anomalies than in either the five or one minute sampling interval case. 
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Figure 43: Monitoring of the damage indicator SAD for five second sampling interval 

 

Recall the stated research hypothesis 2a: “The smaller the time step (the higher the 

frequency) is, the more accurate the detection quality will be.” 
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This research question investigated whether or not the sampling interval had an impact on 

the anomaly detection, and the hypothesis stipulated that: “the smaller time step (the 

higher frequency) will have better detection capability.” Through the study of the three 

different time intervals, it is clear that the smaller sampling interval leads to better 

detection capabilities, we see that the finer the interval, the more accurate the anomaly 

detection decision.   Also, we see that the smaller the sampling interval, the higher the 

sensitivity to anomaly detection. However, the smaller the sampling interval, the longer 

the analysis execution time will be. More importantly, the higher the sensitivity, the more 

the detection is prone to false alarms. 

In sum, the stated research hypothesis 2a is justified through the above experiment of 

assessing the sampling interval effect on the quality of the detection.  
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CHAPTER 5 

5PROGNOSTICS AND HEALTH MANAGEMENT APPROACH TO 

RESIDUAL TIME TO FAILURE MODELING 

 

After developing the process of anomaly detection, the next interesting question 

that arises is whether or not the residual time to failure may have been predicted using an 

understanding of the detected anomaly signatures. Thus, this chapter is devoted to 

addressing that thought.  

 

5.1 Importance of Prognostics and Health Management  

The ability to predict the residual life of a system after the observation of a certain 

anomaly has always been of interest to the research community. Thus, whenever there 

has been the opportunity to monitor systems and collect characteristics of those systems, 

the question of what can be done with that knowledge to avoid surprise system failures 

has been raised. In other words, in the unfortunate situation where an irreversible failure 

precursor is observed, how can the acquired knowledge allow the prediction of the 

remaining life of that system?  

The medical field has been the pioneer in the prognostication of remaining 

lifespan. These estimates are made when certain potentially life-ending diseases like 

severe acute strokes or “advanced cancers,” known to the general public as “terminal 

cancers,” are diagnosed in patients. In fact, for a century the medical field has committed 

a lot of studies to the accurate prediction of the length of time remaining for certain 

patients with terminal illness, because it is important “for clinical, organizational, and 

ethical reasons, especially in helping to avoid harm, discomfort, and inappropriate 

therapies in vulnerable patients and, conversely, in planning specific care strategies” 

[153]. Moreover, knowledge of survival time can influence many important personal 
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decisions the patients and his/her love ones might make to enhance the end-of-life 

experience. In order to improve the accuracy of the prognostication, there are many 

studies that have particularly focused on determining the factors or health predictors that 

may be used to correctly predict survival time after the detection of fatal diseases [153-

155]. 

However, as a result of those studies, it was learned that the predictors that may be useful 

in predicting survival time when a fatal illness is caught at an early stages may be totally 

different from those that are useful when the discovery is made at a later stage. For 

instance, in the case of advanced cancers, the prognostication is typically based on tumor 

development at the earlier stages, whereas at advanced stages (defined as median survival 

time of no more than 90 days), prognostication is based on many more factors.  In [153], 

Maltoni et al. report that the remaining life estimation is still feasible, but it depends on 

many other health parameters, which are summarized in Table 22. 
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Table 22: Factors Subdivided on the Basis of Level of Evidence Obtained by a Correlation With 

Actual Survival [153] 

Factor for which a definite 

correlation with prognosis has 

been identified

Factors for which a correlation has been indicated 

but not confirmed or for which a statistical 

significance has been identified in patient 

populations with lass advanced disease or for 

which contradictory data have emerged

Factors with controvesial 

indications

Clinical prediction of survival Pain

Performance status Nausea

Tachycardia

Fever

Neoplastic pattern (primary and secondary sites)

Comorrbidity

delirium Anemia

Dyspnea Hypoalbuminemia

Prehypoalbuminemia

Proteinuria

Prognostic scores Serum calcium level

Serum sodium level

Lactate dehydrogenase and other enzymes

Multidimensional 

quality-of-life 

questionaire; it is 

possible that their 

prognostic capacity is a 

result of the identifying 

components of physical 

Signs and symptoms of cancer 

anorexia-cachexia syndrome 

lanorexia, weight loss, 

dysphagia, and xerostornia

Some biologic factors 

(leukocytosis, 

Patient characteristics (age, sex, and marital 

status)  

 

In a similar fashion, as designed systems became more complex and expensive, 

the ability to detect abnormalities that may lead to their failure arises as a necessity. For 

example, in an industrial application, for systems in which an emergency shutdown may 

create disruption or may be costly (e.g. heavy duty gas turbine for electrical production), 

it is important to know the level of risk of continuous safe operation, until it becomes less 

disruptive to shut the system down. The ability to prognosticate the remaining useful life 

(RUL), or the amount of time left before system health will deteriorate below a defined 

failure threshold, is important for critical systems. RUL prediction becomes especially 

valuable in cases of expensive systems such as gas turbines where the failure threshold 

could be an irreversible catastrophic mechanical failure. Additionally, RUL estimation is 

necessarily a prediction or forecasting endeavor; that is, it is an extrapolation for the 

future process [21] from what is believed to be the system current health, as illustrated in  
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Figure 44 below. For that reason, Vachtsevanos stated that RUL prediction is the most 

challenging part of the prognostic development [50], because the future is never known 

with certainty. Therefore, any prediction would be essentially based on models that 

would have architecture similar to the one shown in Figure 44, and would be built to 

represent the system behavior based on past knowledge of causes and their resulting 

effects.  

 

RUL 

Prediction

Health Index

Operation 

Condition

Estimated 

Remaining Life

 
Figure 44: Schematic of the RUL architecture 

 
 
There are many ways to predict the residual time to failure or to foresee how a system or 

component may behave during its remaining useful life, as one can see from the literature 

[156-158]. Furthermore, there are regression models that can serve as templates or 

starting points for further development [159]. 

In the modern literature, the field of prognostics that is dedicated solely to studying the 

residual time to failure of systems or components, based on their intrinsic health from 

monitoring, is referred to in the general sense as Prognostics and Health Management, or 

PHM. The PHM field is so vibrant and active that organizations have been created 

exclusively for its advancement, such as the National Society of PHM. Journals and 

magazines like the the International Journal of Prognostics and Health Management 

(IJPHM), and professional meetings and conferences such as the annual conference of the 

PHM or the IEEE International Conference on Prognostics and Health Management, just 
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to cite a few, are also signs of the vibrancy of the field. PHM applications and research 

are thriving in many different fields, ranging from big, general areas such as aircraft 

systems[160], to some of the narrower and more specific fields such an avionics systems 

[161] and electronic systems [162]. Current research in the field of PHM is being done 

both at the systems level, as illustrated in Figure 45, and at the component level [163, 

164]. Generally, “PHM includes every method used to assess the health of systems 

elements beginning with the manufacturing process and continuing through all levels and 

elements of operation” [165].  

 

Figure 45: Example of PHM System Architecture for a fighter aircraft [165] 

 

In an example illustrating the broad need for and application of the PHM, shown in 

Figure 46, B. Ferrell states that PHM is a system function that touches every element of 

the weapon system in some way. 
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Figure 46: PHM operations in military application [165] 

  

Regardless of the way PHM is implemented or studied, it remains strategically based, in 

one form or another, on detecting and understanding the signature of anomalies. 

One thing is for certain: the more complex a system is, and the more critical its safety and 

reliability are, the greater the need is to implement PHM, and the more the related cost 

can be justified. 

5.1.1 Data generation process for PHM analysis 

The very first issue in any regression building model is to identify the predictors 

and their corresponding responses. In the case of deterministic prediction, only after the 

data set of paired inputs and outputs is defined and generated can a regression model be 

built. The output of interest in this work is the residual time to failure after a failure 

precursor is detected. The preliminary problem remains in defining a system’s health 

index so that it can be used as an input or predictor factor.  

The underlining assumption made here is that the signature of the residual time to failure 

can be observed in the health indexes. Therefore, the identification of the appropriate 
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health indexes should allow the building of a residual life estimation regression model, 

which would map the health indexes after a diagnosed precursory event in order to 

determine remaining time to failure.  

  

The following health indexes were identified and observed: 

• The Anomaly Severity Index (ASI), which records highest value reached during 

an anomalistic period. This index is referred to as the severity index because it 

provides an idea of how bad the damage is. It is defined as: 

( ) ( )
USL

kSAD
kASI =          (33) 

Where:  

– ( )kSAD  is defined as the sum of the absolute difference between the 

reconstructed signal (representing the system) energy content at the thk  time 

step after the threshold value is set, and the reference energy refE . 

– USL  is the calculated upper specific limit that corresponds to the anomaly 

threshold.  

• The Anomaly Duration Index (ADI) 

ADI (k) is thk the length of time the monitored signal (reconstructed signal) stays 

above the anomaly threshold after any crossing of the threshold. That is, the amount 

of time between the point of detection of an anomaly and the end of that anomaly. 

That is: 

TkADI ∆=)( , while USLkSAD >)(  

• The Residual Time to Failure, RTTF (k), is the time between the detection of the 

thk anomaly and the time of the system failure. 

 

Figure 47 illustrates all the parameters defined above for the residual life analysis. 
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Figure 47: Illustration of the prognostics parameters 

 

So the defined health indexes (ASI, ADI) are mapped into the output or response. The 

output target is defined as the interval of time between the moment the first failure 

precursor is detected, and the time of the system failure. In other word, the problem in 

hand can be represented as follows: 

( ) ( ) ( )( )kADIkASIfkRTTF ,=      (34) 

Thus, the first attempt to resolve the problem posed in equation (34) is the deterministic 

approach, which is presented in the next section. 

5.2 Deterministic approach to modeling and simulation for estimation of residual 

life 

Ideally, it is desirable to be able to deterministically estimate the residual life of a system 

or component based on an assessment of its current level of health. In practice, this 

means the development of the capability to model responses giving a set of determined 

corresponding predictors. Although the idea of developing regression models for residual 

life estimation is not new, there have always been many challenges to overcome, like in 

any regression problem, including knowing all the predictors that affect a given response. 
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The regression modeling works by mapping a set of causes and their corresponding 

effects. Typically, models to represent causes and deduced effects are constructed by 

applying statistical regression techniques to experimental data. In general, regression 

techniques can be subdivided into two main families: parametric regressions and non-

parametric regressions. Among the most commonly used regression techniques are the 

Response Surface Equation (RSE), the Gaussian Process, and the Artificial Neural 

Networks (ANN). Thus, a brief overview of each of the three regression techniques will 

be given in the following sections. 

5.2.1 Parametric Regression 

5.2.1.1 Response Surface Equations (RSE)  

Response Surface Equations are simplified polynomial equations used to model 

the behavior of complex systems. RSE are obtained through multivariate regression 

techniques known as Response Surface Methodology (RSM) [166, 167]. RSM is a 

collection of statistical or mathematical techniques useful for developing, improving, and 

optimizing processes [166]. Typically, RSM is used to relate the factors (or predictors) to 

the measured responses over some specified region of interest [168].  The underlying 

principle of the RSM is that it is an experimental strategy that consists of exploring the 

factors, empirical statistical modeling to develop an appropriate approximation between 

the yield and the process variables, and optimization methods for finding the values of 

the process variables that produce desirable response values [169]. The RSE technique 

models equations through the usage of design of experiment (DOE). The most popularly 

used RSE is the second-order Taylor series approximation because it requires a minimal 

computational investment and is as follows:   
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Where, 

R  is the dependent parameter (response) of interest. 

ob is the intercept term. 

ib are regression coefficients for the first order terms. 

iib are coefficients for the pure quadratic terms. 

ijb  are the coefficients for the cross-product terms. 

ji xx ; are the independent variables. 

k is the number of factors. 

ε  is the error associated with neglecting higher order effects 

RSE assumes that for any model the error, ε, should be distributed as N(0,1). 

The RSE approach has many advantages, such as:   

• It provides a rapid correlation between design variables or technology metrics and 

the system level impacts. 

• It uses a simplified equation to represent a complex system. 

• Its sensitivities are easily obtained. 

• Its optimization process is easily obtained. 

• It is rapid and efficient. 

• It provides instantaneous evaluations. 

However, RSE has a series of limitations as well: 

• Large variations in the factors can be misleading and generate error or bias 

• Critical factors may not be correctly defined or specified.  
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• If the range of levels of factors is too narrow or too wide, the optimum cannot be 

defined. 

• There is a lack of use of good statistical principles.  

• There is an over reliance on computers (e.g. one can only make sure the 

regression results make sense using a computer). 

In order to achieve a satisfactory result when using RSE, the following assumptions need 

to be verified: 

• The critical factors are known.  

• The region of interest is known.  

• The factors vary continuously throughout the experimental range tested. 

• There is a mathematical function that relates the factors to the response. 

• The response defined by the function is a smooth curve.  

Besides the listed drawback, one of the chief limitations of the RSE method is that it 

relies on linear requirements, so it can’t handle non-linear behaviors of the system 

parameters, which non-parametric techniques like the artificial neural networks can. In 

sum, because of the many advantage of the RSE, it should always be considered during 

regression problems. In fact, because RSM approximates the behavior of a response with 

respect to certain specific design parameters, it has the capability to quickly give a system 

analyst insightful knowledge into a problem when the proprietary models are not 

available for use.  

 

5.2.2 Non-parametric Regression 

5.2.2.1 Artificial Neural Networks   

The Artificial Neural Networks (ANN) is a non-parametric regression technique 

that can be used for highly non-linear parameters or discrete problems.  Thus, ANN has 
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the capability to address one of the major limitations of the response surface equation: the 

inability to handle non-linear problems.  

Typically, ANN works by trying to mimic the way a brain functions. Artificial neurons 

are usually simplified versions of a brain cell. The reason for trying to create a technique 

that imitates the functional processing approach of the brain is that the replication of the 

structure of the brain is the best way to achieve artificial intelligence. A human’s brain 

has several billion neurons. Each neuron can have thousands of connections, and each has 

an axon that serves to transmit a signal, and dendrites that receive signals from other 

neurons. The signals that are received through the dendrites of a neuron pass a set 

threshold value; the neuron in turn fires a signal through its axon. Although each 

connection is simple alone, when a large number of them are put together it leads to fairly 

complex behavior [170]. Though the structure of a neural network can be complex, 

Figure 48 shows a simple artificial neuron that is the nuclei of the most complex 

structures: 

 

Figure 48: Illustration of an artificial neural from [171] 
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In the illustrative Figure 48, the ix  are the network inputs, the iw are the weights, y is the 

weighted sum of inputs, and also the input to the transfer function f , while a is the 

network response. That is:  

wxwxy i

n

i
i ⋅==∑

=0

             (36) 

Where: { }xxxxx ,....,,,1 21= is the vector of inputs and { }xwwwww ,....,,, 210= is the 

vector of weights. 

Several neurons can be grouped in layers to construct structures as complex as needed. 

Typically, functions can be represented as the weighted sum of orthogonal basis 

functions [47]. The weights used to model a neural network are obtained during the 

learning (or training) process. Ultimately, the structure and dynamics of the network and 

the learning (training) process are the major components defining a neural network. The 

power of neural networks lies in their ability to combine logical parallel computations 

with serial operations [172]. All the neuron layers can run in the same direction (i.e. feed-

forward) or they can feedback from layers to preceding layers (dynamic or recurrent). In 

general, ANN requires a training of the neural nets with examples of input-output pairs of 

data [51]. After an adequate training, neural networks can be readily used for process 

parameter (or state) assessment without requiring any knowledge of the underlying 

system. This capability makes the neural networks a very powerful tool for pattern 

recognition [45]. Usually, the accuracy of the regression can be improved by increasing 

the number of neurons, which comes with the cost of an increase in the computational 

burden. A conceptual diagram showing the different components and connections 

between neural network layers is shown in Figure 49. 
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Figure 49: Neural Network Conceptual Diagram [170] 

 

Although the conceptual neural network in Figure 49 has a simple structure, neural 

networks can be classified into two major categories: the static neural network and the 

dynamic neural network [173].  

1) Static neural networks, also called feed-forward neural networks, have no 

feedback elements and contain no time delays, as illustrated in Figure 50 

 

 

Figure 50: Feed-Forward Neural Network 
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The static network is trained through a scheme called backpropagation, which relies on 

determined training algorithms such as the Levenberg-Marquardt to obtain the weights. 

2) Contrary to the static neural network, the outputs of dynamic networks 

depend on the current or previous inputs, outputs, or states of the network. Furthermore, 

the dynamic network can in turn be divided into two subgroups: 

• Dynamic networks with feed-forward connections only. In this case, the 

output response depends not only on the inputs, but also on time. Moreover, the 

application is more common when the inputs also depend on time. A depiction of a 

dynamic feed-forward network in shown in Figure 51.  

 

Figure 51: Depiction of a dynamic feed-forward network [174]  

 
 

• Dynamic networks with feedback or recurrent connections. In 

this case, the output state depends on the previous states and the time. In [175], the author 

explains that recurrent neural networks (RNN) are neural networks with one or more 

feedback loops, where the feedback can be of a local or global kind. The RNN has the 
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ability to store memory of preceding states, which allows the RNN to record the 

characteristics of a system it represents over time [174].  Figure 52 shows an illustrative 

representation of the general structure of a recurrent network. Obviously, that makes the 

RNN the structure of choice when modeling a dynamic system in which current output 

depends on past as well as present information. This unique ability makes the RNN very 

powerful and popular. 

 

 

Figure 52: Recurrent Neural Network [176] 

 

There are many training algorithms for the dynamic neural network. A list of them and 

their implementations can be seen in [177]. 

It is worth noting that even though the simple structure of neural networks is 

shown in previous figures, the two most popular types of neural network are the multi-

layer perceptron (MLP) and the radial basis function (RBF) [51]. Therefore, it is possible 

to create structures as complex as necessary using multiple layers. 

Regardless of the type of neural network needed for a system modeling, there are two 

types of learning procedures: supervised and unsupervised learning [171].  
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1) In case of supervised learning, the input values which have known target outputs 

are used. Then, the network error is computed using the difference between the 

target values and the network-predicted output values. Backpropagation is most 

frequently used for supervised training where network error is propagated back 

through the different layers of the network. Finally, different optimization 

methods can be use to minimize the network error.  

2) In unsupervised learning, the weights are adjusted depending on the value of the 

network-predicted value because there is no use of target values. Another 

particularity of the unsupervised learning case is that the learning process never 

stops. 

 

Commonly classical orthogonal functions such as the sinusoids function and the Walsh 

function are used as the activation functions of the neural network. Though they have 

been popular, they are global approximators (i.e. use global functions), which can be 

disadvantagous. A specific field of artificial neural network research that is getting a lot 

of attention is the use of wavelet family functions as activation functions. In contrast to 

the classical activation functions, the wavelet functions aren’t limitated by global 

approximators because they have good localization properties and orthonormal bases. 

When wavelets are utilized as the activation functions of a neural network, it is called a 

Wavelet Neural Network (WNN) [46, 47]. WNN theory was developed as an alternative 

to the standard feed-forward neural networks for modeling nonlinear functions [178]. The 

wavelet neural network has been used in a fairly high number of research projects 

recently, particularly in the field of fault diagnosis [179, 180]. A general illustration of 

the WNN is shown in Figure 53, where the structure is similar to the conventional static 

neural network, only the activation function is replaced with a wavelet family function.  
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Figure 53: General structure of WNN [181]  

 
Just like in the conventional neural network case, when a wavelet family is used as an 

activator in a dynamic network, the network is called a Dynamic Wavelet Neural 

Network (DWNN). 

 

5.2.2.2 Gaussian process 

The Gaussian process is a stochastic process which has the following formal 

definition: “A Gaussian process is a collection of random variables, any finite number of 

which have (consistent) joint Gaussian distribution” [182]. Training in a Gaussian 

process involves maximizing the logarithmic likelihood that the predicted process 

matches the training data [183]. The Gaussian process has several advantages: 

• Its models can be used to formulate a Bayesian framework for regression 

• It can handle non-linearity 

• It can be easier to work with in practice than ANN  

However, it has disadvantages as well, as it assumes a “Gaussian distribution”, an 

assumption which is not valid for a typical power plant operation because periodic shut-

downs and turn-ons of a gas turbine [9] are a regular occurrence, which keeps its 

operation from being a continuous process. 
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5.3 Implementation of deterministic modeling for estimation of residual life 

Based on the literature review and an analysis of the regression techniques (RSE, 

ANN, and the Gaussian Process), the artificial neural network appears to be the most 

suitable non-parametric regression technique for the modeling and simulation necessary 

for the remaining useful life estimation. However, for the sake of completeness, both the 

RSE (parametric regression) and ANN (non-parametric regression) techniques will be 

investigated.  

 

5.3.1 Residual life modeling using RSE  

Once the RSE is selected as the parametric regression technique, the modeling 

and simulation tool is built. The inputs will be the system health characteristics (health 

indexes) and the system operating conditions at the time the first failure precursor is 

detected and validated, while the responses will be the interval of time between the 

precursor detection point and the system failure point. A diagram of the conceptual M&S 

for residual estimation using RSE is shown in Figure 54.   

RSE
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Condition

Estimated 

RUL

INPUTS RESPONSESM &S ENVIRONNEMENT

 

Figure 54: Schematic of conceptual M&S for residual life estimation using RSE 
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As indicated above, even though the RSE can be a polynomial of any order, it is 

typically of the second order. 

The equation that will be used to approximate the target output is the second-order Taylor 

series approximation of the following form:  
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      (37) 

The estimated coefficients of the response equation will be determined via an Analysis of 

Variance (ANOVA) approach, in which an appropriate Design of Experiments table is 

utilized to analyze the different variable settings. The statistical software package of the 

JMP by SAS® will be used in conjunction with other software in order to achieve the 

residual life modeling using the RSE regression method. 

5.3.2 Non-parametric RUL estimation 

In a similar fashion, a modeling and simulation tool is built for the residual life 

estimation using artificial neural networks as the regression technique. The ANN will be 

trained using a training data set collected while the item is healthy. The inputs will be the 

system health characteristics (health indexes) and the system operating conditions at the 

time the first failure precursor is detected and validated while the responses will be the 

interval of time between the precursor detection point and the system failure point. A 

diagram of the conceptual modeling and simulation for residual life estimation using 

ANN is shown in Figure 55. 
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Figure 55: Schematic of conceptual M&S for residual life estimation using ANN 

 
Because the neural network approach has been so commonly used, there exists much 

customized, ready-made software developed by organizations to meet their specific 

needs. Thus, for the ANN use, a software called BRAINN [170], developed in the 

Aerospace Systems Design Laboratory (ASDL) at the Georgia Institute of Technology, 

will be used. The software BRAINN is capable of creating regression formulas for a set 

of input-output pairs under certain conditions.  It can handle the two types of neural 

networks for different response types [170], which are: function approximation (used for 

continuous response, highly non-linear) and classification (used for discrete responses).  

The sigmoid transfer function defined below in equation      

     (38) is one of the most commonly used in the neural 

network, because it can approximate any continuous function so long as the number of 

neurons in the hidden layer is sufficient and the weights of the neuron connection are 

adjusted. Therefore, the sigmoid transfer function is utilized by BRAINN. 
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Then, the sigmoid transfer function is used to compute the characteristic of each value for 

hidden nodes using equation         (39) 

below:  
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Where: ja  is the intercept term for the thj  hidden node. 

 ijb  is the coefficient for the thi  design variable. 

 iX  is the value of the thi  design variable. 

N is the number of input variables. 

 jH  is the value of the thj hidden node. 

   

If the regression problem is for a function approximation, the value of the response is 

computed using equation         (40) 
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Where: ke  is the intercept term for the thk  response. 

 jkf  is the coefficient for the thj  hidden node and thk  response 

 HN  is the number of hidden nodes 

Otherwise, if the regression problem is a classification problem, the value of the response 

is computed using equation       (41). 
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Finally, it must be kept in mind that the function approximation requires no post-

processing, while the classification needs post-processing.  
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5.3.3 WAVELET Neural Network (WNN) 

 
Though the wavelet neural network is not applied in this thesis, it has become a 

good alternative when dealing with systems for which the conventional activation 

function does not work well. This is because the conventional back-propagation  (BP) 

training that has been the most used in practice has low learning speed and easily falls 

into local minima as reported in [181]. The Wavelet NN handles some of those 

deficiencies by using wavelet function as the activation function of the neurons. Also, 

one major advantage of the WNN is that for systems that are dynamic (time dependent) 

in nature, the dynamic wavelet network provides much better results than does the 

conventional dynamic neural network. A conceptual representation of the Dynamic 

Wavelet Neural Network (DWNN) is shown in Figure 56. 

 

 

Figure 56: Conceptual representation of Dynamic Wavelet Neural Network [46] 

 

After the models for both the parametric and non-parametric regressions are created, they 

will be assessed to see if they provide an acceptable way to estimate the residual life of 

the system.  In the case that they are deemed acceptable based on the accuracy of the 

prediction, the two type of regression will be compared in order to decide which of the 

regression techniques yields a better prediction model. 
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On the other hand, if the two regression techniques fail to provide acceptable 

prognostication estimation, either an empirical cumulative distribution function or the 

Kaplan-Meier data analysis technique will be used to establish the distribution of the 

collected residual time to failure data. In effect, all time experimental and empirical 

failure data are available, and so a priori specific parametric distribution is assumed. The 

non-parametric and Kaplan-Meier are appropriate approaches to estimating the survival 

function. Accordingly, the next section is committed to an overview of the Kaplan-Meier 

method. 

 
 

5.4 Empirical or non-parametric approach to residual life estimation: Kaplan-

Meier  

 
The Kaplan-Meier estimator is one of the most popular statistical data analysis 

methods for many reasons. In fact, the merit of the Kaplan–Meier estimator of the 

survival function (also known as reliability) is that it is an empirical or non-parametric 

method of estimating the survival probability for either non-censored or right-censored 

data. Because of its ability to handle right-censored data, the Kaplan-Meier is used in this 

work. This is because in the field currently under study, when an anomaly is detected in a 

timely fashion, the system’s operator must automatically shut it down to avoid the 

expensive risk associated with catastrophic failure. 

5.4.1 Censored data  

Before continuing to an overview of the Kaplan-Meier estimator, let us briefly review 

the notion of censoring data. Censoring can be defined as the fact that the life data of an 

observed item or system is not complete. In other words, the residual time to the item 

failure is not known because the observation was stopped. Censoring occurs 

predominantly in the engineering and medical fields.  
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There are many types of censoring.  

• Right-censored: an observation is right-censored if it is known that the failure 

time occurred after time t, but the actual time is not known. Most survival time 

data are right-censored, because when the decision is made to stop the operation 

of an item before failure occurs, the cut off is made at the right side [184]. Right-

censoring is common in medical applications. 

• Left-censored: a survival time is left-censored when at a given time t, it is known 

that the failure has already occurred, but the actual failure time is not known. In 

other words, a data point is below a certain value, but it is unknown by how 

much. 

• Type-I censored: data is type-I censored when n items being tested are stopped at 

a predefined fixed time t0, at which point any subjects remaining are right-

censored. An application of type-I censoring is conventional preventive 

maintenance, where, after a predefined lifetime, any remaining operating 

components are taken off and replaced. 

• Type-II censored: data is Type II censored when right-censoring is performed on 

the remaining number of items (n-k) from a set of n items (original number of 

tests at start time) after a predetermined number of items (k<=n) have failed. 

• Interval-censored: data is interval-censored when a failure time T cannot be 

observed, and the only known information is that the survival time is between X 

and Y (X<Y) [185]. 

• Random (or non-informative) censored: data is random-censored when each item 

has a censoring time Ci that is statistically independent of its failure time Ti. The 

observed value Yi = min{Ci, Ti}; any item whose failure time is greater than its 

censoring time is right-censored. 
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Based on all the definitions of the different types of censoring, we can see that the 

survival time data modeled in this thesis belongs to the random censoring category, 

because each test item is either right censored or it failed. Also, it is worth noting the 

following points regarding the items or units being considered in this work: 1) they have 

different anomaly detection times (calendar times); 2) the censoring occurs because a 

failure signature was detected, the unit was shut down, and the anomaly was fixed. An 

illustrative concept of the censored survival data is shown in Figure 57 

 

Figure 57: Censored data with different beginning of experiment time [186] 

 

It is important to handle a censored data set with greater care, because deriving a survival 

function from censored data is not straightforward [186].Therefore, since the Kaplan-

Meier has been used successfully with the same data type, it is an appropriate technique. 

5.4.2 Kaplan Meier overview 

Edward Kaplan and Paul Meier developed the non-parametric estimation for 

right-censored lifetime data analysis [157]. It is crucial to have an acceptable level of 
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confidence in the estimation of the residual life or survival time of critical components 

because over-estimating the survival time could lead to catastrophic failure. For the given 

fleet of systems for which the RUL estimation was developed using a non-parametric 

model, the Kaplan-Meier estimator can be utilized to assess the likelihood of that 

estimation [112]. The goal of the Kaplan-Meier estimator is to evaluate the maximum 

likelihood of an estimated survival time. In general, the Kaplan-Meier’s plot is dynamic 

and can be updated with both the right-censored data (units whose survival time was 

truncated before failure and therefore they did not fail) as well as units that failed. Once a 

Kaplan-Meier plot is established, the probability that a unit will survive through its 

estimated RUL can be easily determined, based on the historical behavior of similar units 

in the fleet. The Kaplan-Meier plot is used for a population with similar characteristics 

(e.g. for the same type of diseases in the medical field).  

5.4.2.1 Estimation of the survivor function 

Before proceeding to some mathematical background of the Kaplan-Meier, let’s make a 

few assumptions: 

• It is assumed that the time to failure of the different units (n total) after an 

anomaly is detected can be sorted and rearranged in an ascending fashion: 

nn tttt <<⋅⋅⋅<< −121      (42) 

• The residual time to failure (RTTF) is assumed to be independent and identically 

distributed.   

• It is assumed that there are no ties in the data set. 

Therefore, the probability of survival or the empirical survivor function (ESF) can be 

estimated as follows: 

1) When there are no censored observations,  
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Where:  

in  is the number of units at risk just prior to it . 

ip̂ is the probability of exactly one item failing right after time it . 

Equation           (43) is defined by Kaplan and 

Meier as the conditional probability of surviving just past time it ; mathematically that is 

written: 

ip̂ estimate of ( )iFiF tTttTP >+> |δ     (44) 

Where tδ is an arbitrary small time interval in which no censoring occurred.  

Recall the conditional probability for two independent events A and B: 

( ) ( ) ( ) ( ) ( )BPAPABPAPBAP ⋅=⋅=∩ |     (45) 

Now, if the definition of conditional probability is applied to the time it ,  

where ni tttt <⋅⋅⋅<<⋅⋅⋅<< 21  

then: 
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Recall that the survival function or the reliability function is the probability in equation  

 (46).  

Then, by replacing each factor in equation   (46) with its expression in equation    

       (43), we find the survivor function 

that is the Kaplan-Meier estimate: 
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In other word, the Kaplan-Meier estimate is 

( )
n

tservationsNumberofob
tS

≥
=ˆ                  (48)  



 147 

 , for 0≥t  

Thus, equation                 (48) represents a step function 

that decreases by n1  just after each observed lifetime [187], as illustrated in Figure 58. 

 

 

Figure 58: Illustration of empirical survivor function with no censored observations [186]  

 

However, if there are d lifetimes equal to t , then the step function decreases by nd just 

past time t . 

 

2) When there are censored observations with id failed items at the time it , the 

Kaplan-Meier estimate becomes: 
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Where  

( )tŜ  is the estimated function curve. 
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in is the number of units at risk just prior to it . 

id is the number of units failed at it . 

An illustrative example showing the Kaplan-Meier plot for censored survival data is 

shown in Figure 59 
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Figure 59: Illustrative example of Kaplan-Meier plot for censored data  

 

 

It is important to note that in the case of non-censored observations, the Kaplan-Meier 

estimator reduces to a regular Maximum Likelihood Estimate (MLE). The difference 

between the Kaplan-Meier and the MLE is that when there is censored observation, the 

Kaplan-Meier takes the weight which would have been normally assigned to that 

observation and distributes it evenly among all observed values to the right of that 

observation [112]. 
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5.4.2.2 Estimation of Kaplan-Meier Confidence Interval 

Any rigorous scientific approach requires that, when one is dealing with an 

approximation or estimation, one must provide the confidence level of that estimation. 

Since the Kaplan-Meier estimator is simply an estimation of the actual survivor function, 

a confidence level calculation is necessary.  

The problem is that, in the case of right-censoring, the variance does not have a simple 

form when the Kaplan-Meier estimator is used. Fortunately, a formula developed by 

Greenwood, and known as Greenwood’s formula, can be used to determine the 

( )α−1 confidence interval [112]. 

Recall that the survival function is FS −= 1  where F is the cumulative distribution 

function. Therefore, under the right-censoring, the confidence interval (upper and lower) 

becomes: 

( ) ( )ii tZtS σα ˆ
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A 95% confidence interval can be determined as shown in equation  (51): 

( ) ( ) ( )iii ttStS σ96.1ˆ
%95 ±=  (51) 

Although this is a good confidence interval calculation method, it is important to note 

that the confidence interval is a pointwise confidence interval based on fixed values of 

time  t  in the CDF ( )tF  [112]. 

 

5.5 Parametric analysis for assumed distributions  

In cases where the regression model does not yield a satisfactory residual life 

estimation model, and the Kaplan-Meier provides only a non-parametric empirical 

survivor estimator, it is interesting to investigate conventional survival data distribution. 

This is because, although the non-parametric estimator is not constrained to any 
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particular predetermined lifetime distribution, it is not flexible enough to be used for 

another purpose. A parametric analysis, on the other hand, allows for the use of a finding 

from a given data set and for its implementation on other units within a given fleet of 

units. 

However, because there are no previous studies on the type of residual time to failure 

being undertaken in this thesis, nor is there any knowledge of the underlying distribution 

form of that residual time to failure, few of the most commonly used distributions in the 

field of survival function parametric analysis will be investigated.   

 

 

5.5.1 Exponential Distribution  

5.5.1.1 Exponential distribution overview 

The first distribution to be considered when there is no previous knowledge is 

exponential distribution, because it is simple and can give a first level of understanding.  

The probability density function (PDF) of an exponential distribution is defined as:  
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where λ is the hazard function. 

The major assumption of the exponential function is that the hazard function or hazard 

rate is constant over time and can be defined as: 

 λλ == )()( tth  (53) 

For non censoring cases with n units, the maximum likelihood estimate (MLE) of the 

hazard function can be determined as follows: 

One assumes that n units X with identical independent distribution (iid),   
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Sample X = {X1, X2, …,Xn). The maximum likelihood estimate is: 
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Since the MLE is reached when the derivative vanishes, the MLE is: 

 
x

1ˆ =λ    (57) 

Recall that x  is the average of the n units X. Therefore, x is also the mean time to failure 

(MTTF) in the context of time to failure, FT being the variable of interest. 

 
MTTF

1ˆ =λ   (58) 

However, since there are censored units among the data to be analyzed, the use of  λ̂  as 

determined in equation   (58) is not appropriate.  

Instead, the approach will assume the general form of an exponential distribution. When 

the exponential plot of the Kaplan-Meier estimated survival data is complete, the best 

linear least squares fit to the data set is found, and the estimatedλ̂  from the curve fit is 

deduced. If the exponential distribution assumption was a good one, then the estimatedλ̂ will 

be close to the λ̂  calculated from the maximum likelihood analysis. To plot the survivor 

or reliability function, one must then perform an exponentially distributed function:  

tetS λ−=)(  (59) 

Taking the natural logarithm of both sides of equation  (59) yields the following: 
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( ) ( )tetS λ−= ln)(ln     (60) 

Then, the equation    (60) becomes: 

 ( ) ttS λ−=)(ln         (61) 

The following variable changes are then made: 

tx =  (62) 

xy λ−=  (63) 

 

It is important to note that the intercept in equation  (63) is 0 [188].  

Equation  (63) shows the best linear least squares fit of the exponential plot of the 

Kaplan-Meier estimated survivor function. When this is determined, the goodness of fit 

can be estimated. The coefficient of determination, 2R , will be used as a metric for 

goodness of fit. 

 
 

5.5.1.2 Exponential Confidence Interval 

 
Depending on the size of the data set, the confidence level can vary. Also, it is 

obvious that the confidence level for a small data set will be lower than that for a larger 

data set. The 100(1 − α)% confidence interval can be calculated for exponential 

distribution estimation as:  
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Where λ̂  is the MLE estimate, λ is the true value of the parameter, and 2

;xkχ  is the value 

of the chi squared distribution with k degrees of freedom, which gives x cumulative 

probability. Fortunately, the confidence interval can be ready obtained using a Matlab® 

built-in function expofit. 

 

5.5.2 Weibull Distribution 

5.5.2.1 Weibull distribution overview 

The next distribution to be considered is the Weibull distribution, because it is one 

of the two most frequently used distributions in the reliability and survival analysis field.  

Additionally, exponential distribution has a constant failure rate or hazard function, while 

Weibull has a time-dependent hazard rate.  

The Weibull distribution has the following probability density function: 
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Where:  

θ  is defined as the scale parameter (expressed in units of time).  

β  is the shape parameter (dimensionless). 

The hazard function is defined as:  
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The survivor function or reliability is defined as:  
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( )βθtetS −=)(  (67) 

 

To get the Weibull plot, one must take a logarithm of both side of equation  (67), as 

follows:  

( ) ( )( )βθtetS −= ln)(ln  (68) 

Then, equation  (68) becomes equation  (69):  

( )
β

θ







−=
t

tS )(ln  (69) 

By taking the logarithm of both sides of the equation  (69) one more time, it 

becomes: 

( )[ ] ( ) ( )θββ lnln)(lnln −=− ttS  (70) 

 

Then, by making the following variable changes, shown in equation  (71), 
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Equation  (70) becomes:  

( )θββ ln−= xy  (72) 

 

In equation  (72), which is the equation of a straight line, β  represents the slope, and 

θ  can be deduced from the intercept of equation  (72) using the following equation: 
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Therefore, the Weibull distribution estimate that corresponds to the Kaplan-Meier 

estimate, or the RTTF, can be obtained.  

Similarly, equation  (72) represents the best linear least squares fit of the Weibull 

distribution plot of the Kaplan-Meier estimated survivor function. Once this is 

determined, the goodness of fit can be estimated. The coefficient of determination, 2R , 

will be used as a metric for the goodness of fit. 

 

5.5.2.2 Weibull Confidence Interval 

As in the exponential distribution case, the quality of the Weibull distribution 

estimation is dependent on the size of the data set being studied. Consequently, the 100 

(1 − α)% confidence interval needs to be calculated for the Weibull distribution 

estimation. The determination of the confidence interval for the Weibull estimate is not 

trivial. The two sides (1 − α) of the scale and shape parameters can be calculated as  

( )µθ exp=   and σβ 1=  , where µ is the extreme value location parameter and 

σ is the extreme value scale parameter. 

Then, the lower and upper bounds of the Weibull parameters can be obtained, as shown 

in equations  (74) and  (75): 

 

[ ] [ ])exp(),exp(, ULUL µµθθ =  (74) 

 

[ ] [ ]LUUL σσββ 1,1, =  (75) 
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Likely, the confidence interval can be readily obtained using a MATLAB® built-in 

function, “wblfit” in MATLAB version 7.8.0 (R2009). 
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CHAPTER 6 

6IMPLEMENTATION OF THE PROPOSED METHOD FOR GAS 

TURBINE COMPRESSOR CATASTROPHIC FAILURE  

 

 

This chapter concerns the application of the proposed methodology, as described 

in chapter 4 and chapter 5, to a fleet of eleven failed or right-censored 170MW rated 

heavy duty gas turbines, in order to demonstrate the viability of the proposed 

methodology to efficiently handle compressor failure problems. Each unit in the 

considered fleet has either failed or has displayed failure signatures due to a compressor 

issue. 

The failure precursor detection methodology explained in chapter 4 is first applied to 

each unit in order to identify the time of the precursory failure events. The characteristic 

signature of each of those failure precursors is computed and tabulated. Then, the 

accumulated survival data is analyzed using deterministic regression techniques, non-

parametric techniques, and parametric techniques, which produces models for the 

residual time to failure, as elucidated in the chapter 5.  In short, this chapter is divided 

into three parts: 1) implementation of catastrophic failure precursor detection on the 

eleven units of a fleet; 2) modeling of the residual time to failure, as obtained from the 

failure anomaly characteristics; and 3) discussion of the findings and the key challenges 

of the proposed methodology and its implementation. 

6.1 Implementation of failure precursor detection 

 
The proposed approach for failure precursor detection is applied to General Electric 

7FA gas turbine compressor failures. There were a fleet of eleven units that were 

monitored and analyzed.   
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6.1.1 Assumptions made for proposed approach implementation 

It is important to enumerate a list of implicit assumptions made when conducting 

this implementation: 

1) The test units are not picked in any particular order. 

2) The failure precursors independent and identically distributed (iid), which 

means there is no distinction made between the type and mode of failure. 

3) Each unit is a test subject. 

4) Units are operated in a similar manner (mostly at based-load operation). 

5) Units’ owners perform the appropriate scheduled maintenance. 

6) Monitoring sensors are performing as planned. 

 

 

6.1.2 Inspection background of General Electric gas turbine 

 

Figure 60: GE gas turbine inspection scope [9] 

 

GE has different inspection scopes for its gas turbines: combustion inspection, hot gas 

path inspection, and major inspection. Each inspection covers specific parts of the gas 

turbine, as shown in Figure 60. 
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Each category of inspection is performed at predefined intervals of time. The combustion 

inspection is the most frequently done, the hot gas inspection is done the second most 

frequently, and the major inspection is the least frequently done. Table 23 below shows 

the recommended inspection intervals for the GE 7FA gas turbine, given the following 

inferences: 

• Combustion inspection should be done every 8000 factored hours (machine 

running time) or 450 factored starts, whichever occurs first. 

• Hot gas path inspection is recommended every 24000 factored hours or 900 

factored starts, whichever occurs first. 

• Major inspection is recommended every 48000 factored hours or 2400 factored 

starts, whichever occurs first. 

 

Table 23: GE technology specific baseline recommended inspection intervals [9] 

 

 

As one can observe from Table 23, the compressor, which is normally covered under a 

major inspection, could develop anomalies that might lead to component failure during a 

major inspection interval of 48000 factored hours or 2400 factored starts. 

Therefore, the proposed approach could help detect compressor failure precursors. 
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6.1.3 Failure precursor detection process applied to a gas turbine compressor for 

data collection 

Each of the test units is monitored using several sensors. However, because the 

compressor is the subsystem of interest, only sensors that are affected by the compressor 

operation are selected. The locations of the monitored sensors are shown in Figure 61.  

Based on the answer to a previous research question, the sensors measurements are 

recorded at a one minute sampling time. Because all eleven units will go through the 

same process, the steps of the proposed failure precursor detection method are applied to 

the first test unit, as seen below. The application of the failure detection to the other ten 

units can be seen in Appendix A.  
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Figure 61: Layout of monitored sensors for gas turbine compressor anomaly detection 
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6.1.3.1 Backgrounds of the failed units 

 
Test unit 1 had a hot gas path inspection in July 2005. The unit had 34638 factored fired 

hours (much less than the recommended 48000 FFH for the next major inspection)   and 

140 factored starts (much less than the recommended 2400 FS required for the next major 

inspection). In other words, the machine was not close to it required major inspection (i.e. 

machine has not gone through any major inspection) at the time of the compressor 

failure. The machine had a compressor catastrophic failure on July 4th 2009 at 2:55 AM. 

6.1.3.2 Steps of the anomaly detection methodology 

6.1.3.2.1 Step 1: Query data 

The sensors that measure the health of the gas turbine compressor, the overall 

heath of the gas turbine, and the operation conditions are identified and summarized in 

Table 24. 

Table 24: Monitored Gas turbine compressor sensors 

Variable Variables Description

X1 Overall  system health parameter 1

X2 Overall  system health parameter 1

X3 Compressor seismic vibration 2

X4 Compressor seismic vibration 2

X5 Turbine seismic vibration 3

X6 Compressor health parameter 1

X7 Compressor health parameter 2

X8 Compressor effectiveness health parameter 1

X9 operating condition (load)

X10 operation condition 1 (environment)

X11 Compressor effectiveness health parameter 2

X12 operation condition 2 (environment)
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After the sensors are identified, a query is made to the stored database for information 

from the sensors of interest at a one minute sampling interval from the period of 

6/01/2009 at 12:00 AM to 7/04/2009 at 3:00 AM, soon after the time of failure. 

 

6.1.3.2.2 Step 2: Pre-processing 

At the pre-processing step, the raw data is normalized using the mean value of 

each variable. The normalized sensor readings are within the same value range. It is 

observed that the normalized data set has the same characteristics as the raw data, and the 

normalized data has a mean value of 1 for all the sensors. 

Then, the data set is filtered to eliminate outliers.  

By observing the distribution of the twelve pre-processed sensors, shown in Figure 62, it 

can be noticed that the distributions are almost normally distributed and centered on the 

value 1, with the exception of the operating conditions that have a uniform distribution, 

which indicate that the analysis is done during constant operating conditions.  
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Figure 62: Distribution of the 12 sensors pre-processed 
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6.1.3.2.3 Step 3: Signal de-noising using the DWPT  

At this step, each of the twelve normalized sensor data sets is de-noised using the 

discrete wavelet packet transforms (DWPT) and the Daubechies 10 Wavelet. 

As an illustrative example, Figure 63 shows the noisy and noise-free sensor X3 signals, 

which will be used in the subsequent steps, with a signal to noise ratio of 13.445 decibels   
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Figure 63: Noisy and de-noised sensor X3 

 

6.1.3.2.4 Step 4: Multi-resolution Analysis 

At the MRA step, each sensor signal is decomposed into a three-level tree using 

the DWPT with the “Daubechies 7”, which leads to eight different wavelet components 

(1 approximation, and 7 details) as shown on the tree decomposition of the Figure 64: 
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Figure 64: Tree decomposition of sensor X3 signal with the wavelet component at node 7 

 

Figure 65 below shows the original de-noised signal and each of the eight wavelet 

components (original de-noised sensor signal shown in black, approximation in red, and 

the details in blue). 
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Figure 65: DWPT at 3-level MRA of sensor X3 

Then, the energy content at each node of level 3 is evaluated and grouped into two 

groups: approximation (node 7 or (3,0)) and details (sum of the details of node 9 through 

14). This is shown in Table 25 below.  

 

Table 25: Node energy content of each sensor at level-3 DWPT decomposition  

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
100 100 99.983 99.988 99.99 100 100 100 100 99.999 100 100

Sum of details   

(% of Original)
2.33E-04 1.49E-06 0.0165 0.011548 0.010464 5.93E-05 2.72E-05 5.10E-05 4.86E-06 7.59E-04 3.33E-05 1.92E-06

 

 

For each of the twelve sensors, the energy contained within the approximation node is 

over 99.9% of the total energy of the original signal. Therefore, the approximation signal 

(or scale function) will be used as the representative of the actual signal in the subsequent 

steps. That is, the energy content in each of the wavelet components will serve as the 

signal feature characteristic.  
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6.1.3.2.5 Step 5: PPCA data fusion 

First, the standard PCA is performed on the retained signal feature (approximation) to 

determine the principal components (PC). 

The covariance matrix of the processed twelve variables is calculated, as shown in Table 

26.  

Table 26: Covariance Matrix for PCA 

 

 

Then, the eigenvalues with their respective contributions and the corresponding 

eigenvectors for the covariance matrix are obtained and ranked from highest value to 

lowest value, as shown in Table 27. 
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Table 27: Pareto chart of eigenvavlues contributions 

1
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0.0000

0.0000

0.0000
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0.0000
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76.016
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0.023

0.020

0.009

0.008

0.001
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0.000
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 To retain at least 95% of the information content (i.e. 95% of the confidence 

level, which is shown with a red bar), only the first three eigenvalues representing 

95.908%, are needed. Consequently, the eigenvectors corresponding to those three 

eigenvalues, which represent the principal components, are chosen, as shown in the Table 

28:  

Table 28: Eigenvectors or weight matrix for three principal components 

Variables
PC1    

(76.01%)

PC2  

(13.79%)

PC3    

(6.10%)

X1 0.00441 -0.04005 0.23462

X2 -0.00016 -0.00003 -0.00048

X3 0.70473 -0.27312 -0.52123

X4 0.64907 -0.12295 0.58098

X5 0.2856 0.95059 -0.07837

X6 0.00059 -0.03636 0.14895

X7 0 -0.00058 -0.07432

X8 -0.00039 -0.02236 0.1228

X9 0.00001 0.00013 -0.00033

X10 -0.02169 -0.04877 -0.51587

X11 0.00232 -0.02716 0.14269

X12 0.00094 -0.01109 0.018  
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The entries of the eigenvectors are the weights that will be applied to their corresponding 

variables in order to obtain the principal component; that is, the combination of the 

twelve variables.  

At this point, the Probabilistic Principal Component Analysis (PPCA) procedure will be 

implemented. First, the major weight contributors are identified. This establishes the 

maximum weight likelihood; that is, any entry value of an eigenvector less than 0.1 is set 

to 0, while any value greater than 0.1 is kept. Consequently, the following principal 

components are obtained for the PPCA and shown in Table 29. 

 

Table 29: Maximum likelihood weight for PPCA principal components 

 

Variables
PC1    

(76.01%)

PC2  

(13.79%)

PC3    

(6.10%)

X1 0 0 0.23462

X2 0 0 0

X3 0.70473 -0.27312 -0.52123

X4 0.64907 -0.12295 0.58098

X5 0.2856 0.95059 0

X6 0 0 0.14895

X7 0 0 0

X8 0 0 0.1228

X9 0 0 0

X10 0 0 -0.51587

X11 0 0 0.14269

X12 0 0 0  

 

As can be noticed from Table 29, the major effects occur along the vibration sensors 

(X1,X2, and X3) for the two heavily contributing principal components, while the 

performance parameters have some impact as well along the third component. 

Next, the remaining PPCA parameters are computed (i.e. the isentropic noise covariance, 

the prediction error unique to response, the data matrix and the variance of reduced 
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dimension). An algorithm that will implement the PPCA steps is created using the 

MATLAB ® software, and the signal along the three principal components is obtained. 

The three signals obtained from the PPCA process are shown in Figure 66 
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Figure 66: Signal obtained from PPCA process 

 

6.1.3.2.6 Step 6: Anomaly detection decision  

 

Anomaly detection decision is a multi-stage statistical process. The first stage is 

the reconstruction of a one-dimensional signal, followed by the threshold calculation and 

so on. 

• Computation of reconstructed signal 

Since the three most important principal components (shown in Figure 66) are kept, the 

reconstructed one-dimensional signal is obtained using a linear combination:  
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11 ttttRS Φ+Φ+Φ= λλλ               (76) 

With 1λ =76.01%, 2λ =13.79% and 3λ =6.10%. These percentages are the total 

information content in each of the three major eigenvalues. Figure 67 is the 

reconstruction of the three principal components, which are, in themselves, the 

representation of the original twelve sensor signals.  
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Figure 67: Reconstructed 1-dimensional Signal 

 
 

 
• Threshold calculation  

 
 

To compute the damage indicators SAD and SSD, Eref needs to be established. To that 

end, the following steps are taken:  

1) The reconstructed signal is decomposed using DWPT and the Daubechies 6 (db6) 

wavelet. 
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2) The reference energy, Eref, is calculated as the average energy content of the 

reconstructed signal for the first ten hours of healthy operation. Thus, a value of 

Eref=1.2943 is obtained.  

3) Next, to calculate the threshold a converged value of the statistical parameters 

( SADµ , SADσ  and SSDµ , SSDµ ) need to be determined. The convergence criteria are 

strictly enforced; that is, the parameter values need to remain static for three hours 

of operation for each parameter, and then converge after more than eighty hours 

of operation.  Figure 68 shows the point at which all four parameters converge.  
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Figure 68: Statistical parameters for SAD and SSD 

 

 

Then, the modified statistical parameters are obtained and used to calculate the threshold. 

A value of α = 0.02 for a confidence level of 100*(1- α) (i.e. corresponding to 98% 

confidence level) is assumed, and monitored until the failure occurs.  
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That corresponds to the SAD threshold values: a α
SADUL of 0.22664 and a α

SSDUL of 

0.051105 for the SAD and SSD respectively. 

4) After the threshold value is set, the statistical process control kicks in, where the 

damage indictors are monitored over time. Figure 69  below is a graph presenting 

the monitoring of the damage indicator SAD, and Figure 70 shows the data from 

the damage indicator SSD. In both figures, the red dash is a visual representation 

of the threshold, while the signal is in red.  
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Figure 69: Monitoring of damage indicator SAD 
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Figure 70: Monitoring of damage indicator SSD 

 
 
Both Figure 69 and Figure 70 show the threshold, magnitude length of the anomalies. 

5)  Bayesian Hypothesis Testing  

Finally, Bayesian hypothesis testing is performed using the following two equations: 

( ) ( ) 1, 0.22664 =≤ tHtSAD  (77) 

( ) ( ) 0, 0.22664 => tHtSAD  (78) 

The result of the Bayesian hypothesis test is the binary function H(t), with entry values of 

“1” and “0” obtained and shown in Figure 71.  As shown in the Figure 71, there were five 

abnormal events during the monitoring periods. This should have allowed the gas turbine 

operator enough time to avoid a catastrophic failure.  

In a post-processing analysis, the gas turbine manufacturer established that there was a 

failure precursory event on 06/17/2009 at 19:45. The proposed approach has successfully 

identified at least one previous defect event, as early as 06/12/2009 at 23:09. 

Furthermore, the proposed process has captured three other defects, missed by the gas 



 175 

turbine manufacturer’s procedure, which should have alerted the manufacturer. Each 

defect was severe, with the final defect being the most severe.  
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Figure 71: Result of the Bayesian hypothesis testing 

 
Finally, the errors associated with the statistical calculation of the threshold are computed 

as well. Thus, the probability of a false-positive is an input that is decided by the analysis.  

It represents 2% in this example. As for the probability of a false-negative or type II 

error, it is less than 10e-4 for both damage indicators SAD and SSD, which is very small. 

The corresponding powers are around 1.0. It can be concluded that type II errors are 

insignificant compared to type I errors, which is desirable for any statistical process. 

 

6.1.4 Data collection procedure for RTTF modeling 

After the implementation of the precursor detection, the failure data needs to be 

collected in order to model the residual time to failure. Recall that the plan is to map the 

defect characteristics (the inputs) into the observed length of time (the response) between 

detection and time of failure. 
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Thus, using the same test unit 1 as an example, the health characteristics, as defined in 

the previous chapter, are determined. 

The Anomaly Severity Index (ASI) for the SAD damage indicator is computed as: 

( ) ( )
 0.22664

)(kSAD

USL

kSAD
kASI == , where k=1 is the first time step of the 

monitoring period (shown as a green curve in Figure 69). 

The Anomaly Duration Index (ADI) for the SAD damage indicator is the length of time a 

defect is continuous. It can be measured using either set of damage indicator figures, or 

using the results of the Bayesian hypothesis testing figure. 

Finally, the response parameter, or the time to failure FT , is determined for each detected 

anomaly. The failure time for test unit 1 is illustrated in  Figure 72.  

The use of both type of figures-Figure 69 for the monitoring of the damage 

indicator and Figure 71 for the result of Bayesian testing- provides a better visual 

representation of the anomaly magnitudes (severity and duration). Additionally, the two 

health indexes can be merged in order to look at as the intensity of the severity. 
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Figure 72:  Illustration of the time to failure parameter 

 

The inputs for and response to a detected anomaly are summarized in Table 30. The ASI 

is dimensionless, while ADI and RTTF are in hours. 

 

Table 30: Summary of first detected anomaly 

Anomaly ASI ADI RTTF

1 2.42 0.7 507.76
 

 

The process applied to unit 1 to make Table 30, which consists of the first detected 

anomaly, can be repeated (see Appendix A) for the other ten units in order to produce a 

table of first anomalies.  

If all the detected anomalies were to be considered, an extended data set could be 

obtained, since there are five anomalies for unit 1, as shown in Table 31.  
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Table 31: Summary of all detected anomalies  

Anomaly ASI ADI RTTF

1 2.42 0.7 507.76

2 1.149 1.583333 342.6667

3 2.582 1.183333 233.0667

4 2.814 1.433333 209.85

5 3.0298 1.366667 161.1667
 

 

In a similar way, by considering not only the first anomaly and its real time to failure, but 

also each subsequent anomaly, the table can be extended as well. 

Finally, the table can be altered by doing some tweaking, and disregarding the 

marginal health indexes in cases where there are many anomalies detected. Practically, 

this would eliminate the anomalies with small ASI and ADI values (when there are other 

anomalies detected within the same unit), which would base the prognostic model on the 

more pronounced health indexes. 

By making the proposed changes to the test unit, Table 30, which represents the 

first anomaly, changes so that the data summarized in Table 32 now represents the first 

anomaly.   

Table 32: Actual first anomaly to be used for PHM model 

Anomaly ASI ADI RTTF

3 2.582 1.183333 233.0667
 

 

In a similar fashion, Table 31 is changed into and replaced by Table 33, which will be 

used as the extended data set for prognostication purposes.  
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Table 33: Actual extended data set representing all anomalies for PHM model 

Anomaly ASI ADI RTTF

3 2.582 1.183333 233.0667

4 2.814 1.433333 209.85

5 3.0298 1.366667 161.1667
 

 

6.2 Modeling of Residual Time to Failure 

 
After repeating the data generation process for all eleven units, as underlined 

above, with the health indexes and time to failure (see Appendix A) the data in Table 34 

is compiled, representing the failure data for the modified first anomaly detected. 

However, test units 10 and 11 were censored after failure signatures were identified. 

Thus, the entries in the column labeled “censored” are either “0,” representing an 

observed failure, or “1,” representing a right-censored anomaly. 

 

Table 34: First anomaly 

Data point ASI ADI (hr) RTTF (hr) Censored

1 2.548228 1.183333 233.0667 0

2 1.036524 0.216667 332.15 0

3 1.282236 3.6 232.1167 0

4 1.165099 1 339.6833 0

5 1.184042 1.033333 578.2833 0

6 1.062287 0.066667 458.6833 0

7 1.551326 0.833333 35.2 0

8 1.12047 0.183333 119.5167 0

9 1.130492 0.233333 3.183333 0

10 2.335767 2.366667 85.18333 1

11 1.006843 0.033333 124.4 1  
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6.2.1 Implementation of the deterministic approach to residual lifetime modeling 

As presented in the previous chapter, the response surface equation will be used 

as the parametric regression technique, while the artificial neural network will be used as 

the non-parametric regression technique. 

 

6.2.1.1 Parametric regression: RSE 

 

For the RSE regression, let us assume a second order polynomial as follows: 
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In the case of only two inputs, X1 and X2, for ASI and ADI, equation  (79) becomes: 

2112
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1112211 xxbxbxbxbxbbR o +++++=  (80) 

The goal is to solve for the different regression coefficients 0b , 1b , 2b , 11b , 22b , 12b . Then, 

the JMP software is used to determine the coefficients, as shown in Table 35. 

 

Table 35: RSE fit coefficients 

b0 b1 b2 b3 b4 b5

2526.01 -3103.46 675.8822 810.1705 -87.9684 -129.022  

 

Table 36: Contribution of each term and cross terms to the RTTF prediction 

 

Figure 73 represents the profiler, and shows how RTTF varies with each of the predictors 

ASI and ADI. 
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Figure 73: Prediction profiler of RTTF (ASI,ADI) using RSE 

 

The next figures, Figure 74 and Figure 75, are the “actual versus predicted” and “residual 

versus predicted” plots, respectively. They show the quality of the fit of the eleven point 

data set regression, performed using the response surface equation. 
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Figure 74: RSE fit Actual vs. Predicted 
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Figure 75: RSE fit Residual vs. Predicted RTTF 

 

The coefficient of determination that corresponds to the fit quality is 2R =0.52, which is a 

poor fit, as can be seen from Figure 74 and Figure 75. 

Therefore, it is safe to say that the RSE modeling of the RTTF is not acceptable. Next the 

neural network, which is a non-parametric regression technique, is used to predict the fit 

of the RTTF for given pairs of ASI and ADI. 

 

6.2.1.2 Non-parametric regression technique: neural network 

The non-parametric regression technique to be implemented is the artificial neural 

network (ANN). For the prediction of the RTTF response, using ASI and ADI as 

predictors, a network with one hidden layer, comprising six nodes, is built as shown in 

Figure 76. 
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Figure 76: Neural Network for modeling RTTF 

 

Figure 77 represents the profiler that shows how RTTF varies as ASI and ADI change. 
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Figure 77: Prediction profiler of RTTF (ASI,ADI) using ANN 

 

Again, the software JMP is used to perform the regression. Figure 78 and Figure 79  

show the quality of fit for the eleven point data set regression performed using the 

artificial neural network. 
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Figure 78: Actual vs. Predicted plot of NN regression 

 

R
T

T
F

 R
e

s
id

u
a

l

 

Figure 79: Residual vs. Predicted plot of NN regression 

 

 

In the case of the ANN, the coefficient of determination that corresponds to the fit quality 

is 2R =0.59. Although slightly better than the regression fit, the fit is still a poor one, as 

can be seen from Figure 78 and Figure 79. Consequently, the ANN modeling of the 

RTTF is not acceptable. It must be noted that there was an attempt to utilize other readily 

available neural network regression tools such as the BRAINN [170] and the MATLAB 

® GUI “nftool”. Both tools failed to provide adequate fitting results due to the limited 

size of the data set. 
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6.2.1.3 Implementation of the extended data set 

After the realization that the limited data set size is a constraint when performing 

acceptable deterministic regressions, the question arises whether or not a larger data size 

would provide a better fit.  For the sole purpose of checking the impact of the limited data 

set, let us build a table where not just the actual time to failure of the first detected 

anomaly is considered, but all of the anomalies are included, as described above in Table 

33, where the extended data set for test unit 1 is summarized. By adding the extended 

data for the other ten test units,  Table 37 is obtained. 

Table 37: Extended data set of ALL the anomalies 

Data point ASI ADI (hr) RTTF (hr) Censored Data point ASI ADI (hr) RTTF (hr) Censored

1 2.548228 1.183333 233.0667 0 21 1.165099 1 339.6833 0

2 2.81397 1.433333 209.85 0 22 1.065159 0.6 318.9833 0

3 3.029187 1.366667 161.1667 0 23 1.036482 0.083333 675.4333 0

4 1.036524 0.216667 332.15 0 24 1.184042 1.033333 578.2833 0

5 1.18051 0.166667 469.4833 0 25 3.623064 0.716667 37.31667 0

6 1.132413 0.2 438.5667 0 26 1.062287 0.066667 458.6833 0

7 1.137 0.116667 353.2667 0 27 2.240944 1.016667 1 0

8 1.183305 0.133333 284.4167 0 28 1.106504 0.166667 85.98333 0

9 1.258377 0.366667 252.65 0 29 1.551326 0.833333 35.2 0

10 1.282236 3.6 232.1167 0 30 1.580428 1.066667 11.05 0

11 1.496119 2.133333 212.0167 0 31 1.12047 0.183333 119.5167 0

12 1.246279 3.766667 208.0167 0 32 1.016824 0.05 49.38333 0

13 1.369278 2.266667 201.6333 0 33 1.130492 0.233333 3.183333 0

14 1.252208 2.016667 182.45 0 34 1.18496 2.8 2.783333 0

15 1.151164 2.15 160.9333 0 35 2.335767 2.366667 85.18333 1

16 1.208265 4.65 113.6667 0 36 1.637981 16.38333 78.46667 1

17 1.279143 4.766667 64.81667 0 37 1.626708 22.18333 22.16667 1

18 1.218381 2.283333 41.98333 0 38 1.006843 0.033333 124.4 1

19 1.140144 1.6 17.11667 0 39 1.23587 0.683333 48.36667 1

20 1.359802 0.3 359.9 0  

 

Let us repeat the deterministic regression techniques using the extended data set. 
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6.2.1.3.1 Parametric regression of extended data set using RSE 

Again using the JMP statistical software package, this time to determine the RSE 

regression coefficients for the extended data set, Figure 80 and Figure 81 illustrate the 

quality of the regression. 
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Figure 80: Actual vs. Predicted regression of extended data set using RSE 
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Figure 81: Residual vs. Predicted regression of extended data set using RSE 

 

The corresponding coefficient of determination of the fit is 2R =0.22, which is an 

extremely poor fit of the response using the two inputs ASI and ADI. 

 



 187 

6.2.1.3.2 Non parametric regression of extended data set using ANN 

Similarly, the JMP statistical software package is used to perform the regression 

of the extended data set; Figure 82 and Figure 83 illustrate the quality of the regression 

using the ANN. 
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Figure 82: Actual vs. Predicted regression of extended data set using ANN 
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Figure 83: Actual vs. Predicted regression of extended data set using ANN 

 

The corresponding coefficient of determination of the fit is 2R =0.36, which is an even 

worse fit of the response RTTF by the two inputs ASI and ADI than limited data set 

produced. 

 

However, an implicit assumption was made to build the extended data set: that 

each anomaly and the subsequent anomalies of a given machine were independent. The 
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resulting regression is even worse. That means that the assumption of independence is not 

legitimate. Now, let’s assume that an anomaly and its subsequent anomalies are not 

independent. Thereby, let’s define a new predictor that is only valid in the case of the 

extended data set, called the Number of Previous Anomaly” (NPA). NPA is a metric that 

gives more weight to an anomaly than to its predecessors if they occur on the same test 

unit. Table 38 is produced with the addition of the third input (NPA). 

 

Table 38: Extended data set with 3 inputs 

Data point ASI ADI (hr) NPA RTTF (hr) Data point ASI ADI (hr) NPA RTTF (hr)

1 2.548228 1.183333 1 233.0667 21 1.165099 1 2 339.6833

2 2.81397 1.433333 2 209.85 22 1.065159 0.6 3 318.9833

3 3.029187 1.366667 3 161.1667 23 1.036482 0.083333 1 675.4333

4 1.036524 0.216667 1 332.15 24 1.184042 1.033333 2 578.2833

5 1.18051 0.166667 1 469.4833 25 3.623064 0.716667 3 37.31667

6 1.132413 0.2 2 438.5667 26 1.062287 0.066667 1 458.6833

7 1.137 0.116667 3 353.2667 27 2.240944 1.016667 2 1

8 1.183305 0.133333 4 284.4167 28 1.106504 0.166667 1 85.98333

9 1.258377 0.366667 5 252.65 29 1.551326 0.833333 2 35.2

10 1.282236 3.6 6 232.1167 30 1.580428 1.066667 3 11.05

11 1.496119 2.133333 7 212.0167 31 1.12047 0.183333 1 119.5167

12 1.246279 3.766667 8 208.0167 32 1.016824 0.05 2 49.38333

13 1.369278 2.266667 9 201.6333 33 1.130492 0.233333 2 3.183333

14 1.252208 2.016667 10 182.45 34 1.18496 2.8 3 2.783333

15 1.151164 2.15 11 160.9333 35 2.335767 2.366667 1 85.18333

16 1.208265 4.65 12 113.6667 36 1.637981 16.38333 2 78.46667

17 1.279143 4.766667 13 64.81667 37 1.626708 22.18333 3 22.16667

18 1.218381 2.283333 14 41.98333 38 1.006843 0.033333 1 124.4

19 1.140144 1.6 15 17.11667 39 1.23587 0.683333 2 48.36667

20 1.359802 0.3 1 359.9  

 

The entire study with the two main predictors (ASI, ADI) is repeated by adding a third 

parameter, NPA, to the original two parameters. 
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6.2.1.3.3 Parametric regression of the extended data set with three inputs using RSE 

The JMP statistical software package is used to determine the RSE regression 

coefficients of the extended data set with the three inputs. Figure 84 shows the 

contribution of each of the terms of the RSE. 

 

 

Figure 84: Pareto plot of the terms contribution for 3 inputs 

 

A visual representation of the quality of the extended data set regression using three 

inputs is shown in Figure 85 and Figure 86. 
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Figure 85: Actual vs. Predicted regression of extended data set with 3 Inputs using RSE 
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Figure 86: Residual vs. Predicted regression of extended data set with 3 Inputs using RSE 

 

The corresponding coefficient of determination for the regression fit of the extended data 

set using, the three inputs (ASI, ADI, NPA) is 2R =0.27, which is a very poor fit. 

 

6.2.1.3.4 Non-parametric regression of extended data set using ANN 

A similar approach is taken for the extended data set with three inputs using the 

ANN regression.  Figure 87 and Figure 88 show the quality of the regression. 
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Figure 87: Actual vs. Predicted regression of extended data set with 3 Inputs using ANN 
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Figure 88: Actual vs. Predicted regression of extended data set with 3 Inputs using ANN 

 
 

 
The corresponding coefficient of determination for the regression fit with three 

inputs using the ANN is 2R =0.51, which, though better than the coefficient of 

determination using two inputs, is still not an acceptable quality of fit. 

 

Ultimately, the deterministic regression approach to the residual time to failure is 

not appropriate. Although the non-parametric regression (ANN) is slightly better than the 

parametric (RSE) one, the qualities of the respective fits ironically get worse for both 

regression techniques when the data size gets larger. 

Therefore, as predicted in the previous chapter, the non-parametric data analysis is 

appropriate for failure data, as it can provide the empirical cumulative distribution of any 

survival or reliability data.  

 

6.2.2 Implementation of non-parametric data analysis using the Kaplan-Meier 

estimator 

Though the deterministic regression approach not appropriate, the Kaplan-Meier 

is appropriate to provide the estimate of the survival function plot because the data set is 

composed of both non-censored and censored data. 
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Thus, let us compute the Kaplan-Meier estimator with the obtained failure data. The 

actual failure data is referred to as the table of first anomaly data. The tabular data for the 

Kaplan-Meier plot of survival time, obtained using the application of the Kaplan-Meier 

estimation calculation, is shown in Table 39. 

 

 

Table 39: Tabular data for the Kaplan-Meier plot of residual time after the first detected anomaly 

Failure 

Time 

(RTTF)

Number 

failed

Number 

censored At Risk

Survival 

(S_hat)

0 0 0 11 1

3.183 1 0 11 0.909091

35.2 1 0 10 0.818182

85.183 0 1 9 0.818182

119.517 1 0 8 0.715909

124.4 0 1 7 0.715909

232.117 1 0 6 0.596591

233.067 1 0 5 0.477273

332.15 1 0 4 0.357955

339.683 1 0 3 0.238636

458.683 1 0 2 0.119318

578.283 1 0 1 0  

Figure 89 shows the Kaplan-Meier plot of residual time to failure after the first detected 

anomaly. 
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Figure 89: Kaplan-Meier plot of the residual time to failure for first detected anomaly 

 

However, as stated in the previous chapter, Figure 89 is an estimate; therefore, the 

confidence level of that estimation needs to be established. In order to achieve a 95% 

percent confidence interval, section C.1 in the appendix is calculated. Figure 90  shows 

the Kaplan-Meier plot, shown in Figure 89, with the addition of a 95% confidence band. 

As one can see, the uncertainty is large. 
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Figure 90: Kaplan-Meier plot of the RTTF from first detected anomaly with 95% confidence band 

 

Since the anomaly detection analysis showed that most of the units had more than one 

anomaly before failure, it is interesting to see how the Kaplan-Meier plot for the second 

detected anomaly compares to that for the first detected anomaly. Table 40 shows the 

tabular data for the Kaplan-Meier plot of residual time after the second detected anomaly. 

 

Table 40: Tabular data for the Kaplan-Meier plot of survival time after the second detected anomaly 

Failure 

Time 

(RTTF)

Number 

failed

Number 

censored At Risk

Survival 

(S_hat)

0 0 0 11 1

1 1 0 11 0.909091

2.783 1 0 10 0.818182

11.05 1 0 9 0.727273

37.317 1 0 8 0.636364

48.367 0 1 7 0.636364

49.383 1 0 6 0.530303

78.467 0 1 5 0.530303

161.167 1 0 4 0.397727

201.633 1 0 3 0.265152

318.983 1 0 2 0.132576

332.15 1 0 1 0  
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Similarly, Figure 91 shows the Kaplan-Meier plot of the residual time to failure after the 

second detected anomaly. 
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Figure 91: Kaplan-Meier plot of RTTF for second detected anomaly 

 

By proceeding as we did for the first anomaly, the 95% confidence interval for the 

Kaplan-Meier plot in Figure 91 is tabulated in the section C.2 in the appendix C.  
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Figure 92: Kaplan-Meier plot of the RTTF from SECOND detected anomaly with 95% confidence  
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Figure 92 shows the Kaplan-Meier plot from Figure 91 with the addition of its 

corresponding point-wise 95% confidence interval. There is still a large uncertainty 

interval. 

Although the first and second detected anomalies have a similar shape, plotting them 

together will provide a visual comparison, as shown in Figure 93. 
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Figure 93: Comparison of the first and second anomalies 

 

As it may be intuitive to many, Figure 93 shows that fact that the sooner an anomaly is 

detected the more time is given back to the decision makers to shut down the unit so as to 

avoid catastrophic failure. 

As in the case of the deterministic regression, let’s investigate the impact of the extended 

data set on the Kaplan-Meier plot for RTTF. The tabular data for the Kaplan-Meier plot 

of the extended residual time to failure data set is compiled in section C.3 of Appendix C. 

Also, Figure 94 is the graphical representation of the Kaplan-Meier plot in section C.3. 
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Figure 94: Kaplan-Meier plot for RTTF with extended data set 

 

Again, because Figure 94 represents an estimate, the confidence level needs to be 

established. The tabular extended data set for the 95% confidence interval is shown in 

section C.4 of Appendix C. Figure 95 shows the Kaplan-Meier plot of the extended data 

set with its corresponding 95% confidence interval. 
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Figure 95: Kaplan-Meier plot of the RTTF for extended data set with 95% confidence 

 

Contrary to the deterministic case, the nonparametric approach to the extended data has a 

tighter uncertainty band, clearly indicating that the larger, the data set, the more 

accurately the Kaplan-Meier plot can be estimated. 

 

6.2.3 Parametric Distribution 

Although the non-parametric approach provides an empirical plot, which is the 

best representation of any failure data, the non-parametric approach is not flexible 

enough to be applied to other units of a given fleet not included in that failure data set. 

Thus, it is inappropriate for the purpose of this thesis, which is to find a way to guide the 

gas turbine manufacturers and unit owners to avoid catastrophic failure after a failure 

precursor is detected. A parametric analysis using different distributions than the ones 

presented in the previous chapter will be implemented in this section. 
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6.2.3.1 Exponential Distribution 

When there is no knowledge of a time-based distribution, as is the case here with 

the residual time to failure, the use of exponential distribution as a first estimate is always 

appropriate. The goal is to try to fit the Kaplan-Meier estimate data using the exponential 

distribution. That is, if it is assumed that the Kaplan-Meier data is exponentially 

distributed, then the probability density distribution of the first anomaly is shown in 

Figure 96. 
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Figure 96: pdf of the first Anomaly using Exponential distribution 

 
 

By plotting the equation xy λ−=  with tx = , one can create an Kaplan-Meier 

estimated exponential plot. This is shown in Figure 97. 
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Figure 97: Exponential plot of the Kaplan-Meier estimation of the RTTF 

 
 
The linear least square fit of the Kaplan-Meier estimated exponential plot of the RTTF 

has the equation: 

xy 0033.0−=  with a corresponding 869.02 =R . 

Although the coefficient of determination is not as bad as in the deterministic regression 

case, it is not perfect. Figure 98 also provides another visualization of the Kaplan-Meier 

estimate and the exponential fit. 
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Figure 98: Kaplan-Meier estimated RTTF of first anomaly and exponential fit 

 

Let’s analyze the impact of the exponential distribution assumption using the extended 

data set. First, the pdf of the exponential assumption better matches the extended data set 

than does the limited (first anomaly only) data set, as illustrated in Figure 99. 
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Figure 99: pdf of extended data set using the exponential distribution 
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We then plot the equation xy λ−=  with tx = . The Kaplan-Meier estimated 

exponential plot of the extended data set is shown in Figure 100 
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Figure 100: Exponential plot of the Kaplan-Meier estimated of the RTTF using the extended data set 

 

The linear least square fit for the exponential plot of the Kaplan-Meier estimated of the 

RTTF has an equation xy 0046.0−=  with a corresponding 9386.02 =R . 

The coefficient of determination in the extended case is much better than in the case of 

the limited data set. This stresses the fact that for a larger data set, exponential 

distribution fits the Kaplan-Meier estimate better.  

Again, the visual representation of the Kaplan-Meier estimate and the exponential fit 

shown in Figure 101 is better. 

 
 
 



 203 

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Kaplan-Meier and Exponential

 
Figure 101: Kaplan-Meier estimated RTTF for extended data set and exponential fit 

 
 

6.2.3.2 Weibull Distribution 

The Weibull is the second distribution to be implemented. Figure 102 shows the 

pdf of the first detected anomaly. 
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Figure 102: pdf of the first anomaly using the Weibull distribution 
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In the case of the Weibull plot, the linear least square fit of the Kaplan-Meier 

estimation of the RTTF has an equation in the form: 

( )
( )




⋅−⋅=

=

θββ ln

ln

xy

tx
 

Therefore, the Weibull plot of the Kaplan-Meier is shown in Figure 103. 
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Figure 103: Weibull plot of the Kaplan-Meier estimated RTTF 

 
 
The equation of the linear fit is: 

9275.36512.0 −= xy with a corresponding 7492.02 =R  

A plot of the Kaplan-Meier estimated RTTF of the first anomaly and the Weibull 

fit that serves as a visual, is shown in Figure 104 
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Figure 104: Kaplan-Meier estimated RTTF of first anomaly and Weibull fit 

 

As we did in the exponential case, let’s investigate the impact of the extended and 

Weibull distribution assumptions. The pdf of the Weibull assumption, shown in Figure 

105, better matches the extended data set than it does the limited (first anomaly only) data 

set.. 
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Figure 105: pdf of extended data set using the Weibull distribution 
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One must then plot the equation. 

( )
( )




⋅−⋅=

=

θββ ln

ln

xy

tx
   

The Weibull plot of the Kaplan-Meier estimation of the extended data set is shown in 

Figure 106. 
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Figure 106: Weibull plot of the Kaplan-Meier estimation of the RTTF using extended data set 

 

 
 
The best linear least square fit of the Weibull plot of the Kaplan-Meier estimation of the 

RTTF has an equation: 233.47624.0 −= xy , with a corresponding 9313.02 =R . 

Again, the coefficient of determination in the extended case is much better than it was in 

the case of the limited data set for the Weibull distribution. This shows that, in the case of 

a larger data set, a Weibull distribution fits the Kaplan-Meier estimate better.  
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Again, the visual representation of the Kaplan-Meier estimate and the Weibull fit, as 

shown in Figure 107, is better. 
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Figure 107: Kaplan-Meier estimated RTTF for extended data set and Weibull fit 

 

6.3  Results Discussion 

This section serves to recapitulate the chapter on the implementation of the 

proposed methodology. It is shown that the deterministic regression approaches, both 

parametric and non-parametric, are not adequate for accurately predicting the residual 

time to failure; even when the number of predictors is increased to three, by taking into 

account the fact that a detected anomaly is not an event independent of its predecessors, 

the regression quality worsens. One way this observation could be explained is the 

challenge of knowing with certainty all the predictors that affect a response.  

Secondly, the non-parametric analysis using the Kaplan-Meier estimate, which is 

an empirical plot of the residual time to failure, was conducted. As any estimation 

requires, a 95% confidence level was computed for both the limited data set and the 

extended data set. As expected, the larger data set had a reduced uncertainty band. Also, 
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the first and second detected anomalies were compared to each other. It was revealed that 

the impact of early anomaly detection is that the gas turbine operation decision maker 

could take less disruptive actions. In other words, the sooner an anomaly is detected, the 

more time is given to the decision maker to avoid a catastrophic failure. 

Although the non-parametric analysis using the Kaplan-Meier provides a great 

result because the computation of the residual time to failure does not make any 

predefined distribution assumption, it cannot be used as an effective prediction tool for 

other units in a given fleet. This does not fulfill all the self-imposed goals of the thesis, 

one of which is to predict the residual time to failure for other fleet units based on the 

knowledge gathered from the analysis of previous failures. Thus, it was imperative from 

that point of view to investigate some parametric distributions, such as the exponential 

distribution and the Weibull distribution. The implementation of the parametric 

distributions was promising but did not fit well enough with the limited data set for either 

the exponential or Weibull distributions, as shown in Figure 108. 
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Figure 108: Comparison of exponential and Weibull distribution fits with the Kaplan-Meier 
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Both the exponential and the Weibull distribution have a much better fit to the non-

parametric extended data set, as illustrated in Figure 109. The goodness of fits was 

assessed using the coefficient of determination 2R , which yield larger values with the 

extended data set. Another metric that was used to check how the fit quality gets better 

with the size of the data set was the Residual vs. Predicted plots shown in the Appendix 

D for the both data set. Also, a fact worth noting is that both distributions become very 

similar with larger distributions.  

The takeaway is that the larger the data set used for the Kaplan-Meier, the better the 

parametric distributions fit the Kaplan-Meier. 
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Figure 109: Exponential and Weibull distribution fits with the Kaplan-Meier for extended data set 
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The parametric analysis using the exponential and Weibull distributions for both the 

residual time to failure data set and the extended data set version is summarized in Table 

41 

 
 

Table 41: Summary of parametric survival data analysis 

Sampling Size
Exponential 

Parameter

Exponential Weibull lambda Beta Theta(hr)

Limited data set 0.869 0.7492 0.0033 0.6512 416.16

Larger data set 0.9386 0.9313 0.0046 0.7624 257.86

Weibull Parameters
Coefficient of 

determination
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CHAPTER 7  

7CONCLUDING REMARKS 

 

7.1 Revisiting the research objectives and questions  

7.1.1 Revisiting the research objectives  

The foremost goal of this dissertation is to develop an approach to detect 

precursory anomalies as early as possible in order to avoid the catastrophic failure of gas 

turbines. To focus the thesis on that goal and to meet the requirement for scientific 

approach research set by the institution, two major objectives are defined: 

7.1.1.1.1 Objective 1: 

Develop a process to find precursory failure signatures as early as possible in order to 

avoid systems catastrophic failure.  

7.1.1.1.2 Objective 2:  

After an anomaly is detected, develop a strategy to prognosticate an estimation of the 

residual time to failure. 

 
The first research objective is the main driver of this research, and the ability to achieve it 

gauges the success of this work. The second objective provides the necessary information 

to make a system shut down as undisruptive as possible. 

In order to look for a way to meet the imposed objectives, a series of research questions 

are asked and using the literature review and industry practices, potential hypotheses are 

formulated. 
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7.1.2 Revisiting research question 1, 1a and hypothesis 1, 1a 

The research question 1 and its sub-question 1a are about investigating ways to meet the 

first objective of this thesis. They are recalled here with their corresponding hypotheses: 

7.1.2.1.1 Research question 1:  

How can a precursory anomaly that might lead to a gas turbine catastrophic failure be 

detected? 

Though the ability to detect an anomaly as early as possible (i.e. almost real time) is in 

itself an advancement of the current industry practice, the ability to reduce the number of 

false alarms is also desirable. Thus the research question 1a is necessary.  

7.1.2.1.2 Research Hypothesis 1:  

A multi-step process that relies on the Wavelet transforms theory can be used to detect a 

precursory anomaly that might lead to the catastrophic failure of a gas turbine 

compressor. 

7.1.2.1.3 Research question 1a: 

How can a failure precursor detection method be made robust? 

7.1.2.1.4 Hypothesis 1a:  

Combining the information from the two types of sensors could decrease the number of 

missed precursory anomalies. 

The proposed methodology presented in chapter 4 is a multi-step process that has 

successfully captured known anomalies detected by a team of gas turbine manufacturers 

in a post-failure analysis, and has also captured other less severe anomalies that they 

missed. Specifically, the proposed methodology is a six step approach: 1) raw data 

acquisition of appropriate sensors, 2) sensor normalization, 3) de-noising of each sensor 

signal, 4) multi-resolution analysis using the discrete wavelet transform, 5) sensor data 

fusion into a few uncorrelated principal components, 6) anomaly detection decision. 
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It is shown in chapter 4 that the combination of the two types of monitoring sensors 

measurement (vibration and performance) improves the capability to detect failure 

precursors. Though a study of a group of eleven failed turbines has revealed that most of 

the failure precursor anomalies have signatures in the vibration sensors measurement, 

there are few cases where specific failure signatures were detected entirely by the 

performance sensors. In the case of the latter, any process solely based on the sensor 

measurements would miss those failure signs. 

 

7.1.3 Revisiting research question 2 and hypothesis 2 

Research question 2 and sub-question 2a refer to the ability to determine the level of 

confidence of the statistical technique used to make the anomaly detection decision.  The 

two questions and hypotheses are as follows: 

7.1.3.1.1 Research question 2: 

 How can a detected precursory event be statistically validated? 

7.1.3.1.2 Research hypothesis 2: 

The X-bar control chart type of  statistical process control can be utilized to establish the 

anomaly threshold, and thus distinguish  the faulty events from the non-defective ones. 

7.1.3.1.3 Research Question 2a: 

How does the sampling interval impact on the quality of detection? 

 

7.1.3.1.4 Hypothesis 2a 

The smaller  the time step (the higher the frequency) is, the more accurate the detection 

quality will be. 
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The research question 2 and sub-question 2a are important ones in any event detection 

process because the ability to keep the number of false alerts low is the key to the 

successful implementation of any new process. Thus, to reduce the risk of the conflicting 

interpretation of many sensors signals, a process is underlined in chapter 4, to reconstruct 

a one-dimensional signal representing the overall health of the system, monitor two 

damage indicators calculated from the reconstructed signal are monitored and calculate 

the defect threshold using the x-bar chart of the statistical process control. Also, in 

chapter 4 it is explained that  the proposed methodology is designed so that  the 

calculated defect threshold depends on the risk a system analysis is willing to run (as type 

I error) of interrupting the system operation when anomalies may not be present. The 

type II error is then deduced. 

As for the impact of the sampling time, the decision is made to use the 1 minute time 

interval because it has been proven adequate. In fact, there is an important trade-off to be 

made between the accuracy and the speed of execution of the anomaly detection; the 5 

minute time interval is not accurate enough because it misses short lasting anomalies, 

while the 5 second interval is more accurate but is also more sensitive and prone to false 

alarms. 

 

7.1.4 Revisiting research question 3 and hypothesis 3 

The research questions 3 and 4 and their respective corresponding hypotheses 3 and 4 are 

intended to meet the second defined thesis objective.  

7.1.4.1.1 Research question 3:  

If a failure precursor event is validated, how can the residual time to failure be estimated? 
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7.1.4.1.2 Research hypothesis 3: 

 
Survival analysis techniques such as deterministic regression, non-parametric and 

parametric analysis of failure data can be used to build models that estimate the residual 

time to failure. 

 

The ability to predict the residual time to failure after an anomaly is detected puts more 

power in the decision markers’ hands. In fact, based on the presented methodology in 

chapter 5, and the application in chapter 6, not all the anomalies are equal. Indeed, the 

two defined health indexes (anomaly severity and anomaly duration indexes) showed that 

for the eleven units covered  under this study, the failure always happened after a fairly 

important defect intensity (either high severity or long duration).  

However, the deterministic regression techniques implemented in chapter 5 did not yield 

acceptable residual life estimations. While the Kaplan-Meier provides a true picture of 

the residual time to failure of the units studied, it is not flexible enough to provide a 

prediction for the residual time for future units with a detected anomaly, so the 

parametric analysis of exponential and Weibull distributions provides fairly decent fits. 

The quality of the prediction model using exponential and Weibull distribution as 

parametric data analysis techniques gets much higher with the larger data set. Therefore, 

it can be concluded that for a larger data set, the parametric failure data analysis can be 

used.      

7.1.5 Revisiting research question 4 and hypothesis 4 

Research question 4 and hypothesis 4 are necessary for any estimation. In fact, the value 

of any estimation lies in the confidence interval associated with it. 

7.1.5.1.1 Research question 4:  

How can the confidence level of the estimated residual time to failure be determined? 
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7.1.5.1.2 Research hypothesis 4: 

Existing mathematical techniques can be used to compute the confidence interval of the 

survival time estimation. 

 

Although the non-parametric Kaplan-Meier estimator does not have a close form to 

compute the confidence interval, the Greenwood formula can be used to estimate the 

variance so that the confidence interval can be calculated. The parametric survival 

distributions of exponential and Weibull have readily available confidence interval 

computation forms.  

Thus, it can be stated that based on the revisions of the research questions and 

hypotheses, each stated hypothesis verified has verified. 

 
 

7.2 Summary of Findings and Research Contributions 

 
This research has produced a number of contributions to the current industry standard. 

The first contribution is the creation of a systematic methodology, following a step by 

step approach that can be applied and made easily transferable to other sensor- monitored 

systems. The second contribution is that the proposed methodology provides a way to 

combine information from different type of sensors to create a much more robust 

precursory failure events detection of systems.  

The third contribution of this dissertation is that, contrary to other early defect detection 

techniques that rely on sophisticated mathematical underlying approaches, such as the 

neural network, this proposed method uses a statistical process control that is more 

flexible, faster,  and easier to implement. Furthermore, the proposed detection scheme is 

machine specific, which addresses the issues linked to machine-machine variation.  
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The fourth contribution of this thesis is the idea that the deterministic approach is not 

adequate to model the residual time to failure, even with a large data set, because it 

typically does not have a hazard function. 

The fifth contribution of the study is that the residual time to failure prognostication can 

be modeled fairly well with a large data set.  

 
 

7.3 Conclusion 

Despite the risks involved with the LTSA contracts, they can be an enormous 

revenue stream for OEMs. Over the years, the profit margin for the sale of new gas 

turbines has been shrinking for OEMs, though LTSA for the most part assured OEMs of 

the new sale of upgraded components to sustain degrading gas turbine performance 

throughout the duration of the LTSA. The market for LTSA can be a very lucrative one if 

the level of liquidated damages is held to a minimum.  

In this thesis, a systematic multi-step data analytics prognostic and health 

management approach is presented, which could be used to detect precursory anomalies 

that could lead to catastrophic equipment failure. This could reduce or even eliminate the 

unplanned power plant outages. The approach is divided into two parts: failure precursor 

detection and residual life estimation.  

In general power plants have two main types of monitoring sensors: the process-

related measurements and high bandwidth measurement sensors which are high 

frequency sensors. This study required a time-frequency technique that could process 

high-frequency signals. Therefore, the proposed approach started with the pre-processing 

of the raw data from the system-monitoring sensors, which ensured that the analysis 

outcome would not be skewed toward the variables with high absolute value. Then the 

discrete wavelet packet transform was used to both remove the noise from the data and to 

decompose the signal in order to extract the signal features. After that, the multi-sensor 
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time series variable was fused into a few uncorrelated principal components using the 

probabilistic principal component analysis technique. Finally, the anomaly detection 

decision was made based on the Bayesian evaluation method, applied to a precision-

related metrics, for hypothesis testing to successfully detect failure precursors. 

The proposed process has shown promising results in its application to a GE 7FA gas 

turbine compressor failure because it has captured known failure precursors.  

The proposed approach uses an elaborate statistical process control technique to 

set the defect threshold. As a result of this utilization of the statistical process control, the 

proposed methodology can be easily implemented, unlike techniques that rely on the use 

of a neural network, in which a high fidelity mathematical model is required. 

Furthermore, the process is robust with few false alarm and a much lower false-negative 

for given false-positive probability. Additionally, the use of the statistical approach 

allows the handling of practical issues such machine-to-machine variation, both in the 

design and the operation, because the abnormality threshold is machine specific. 

Importantly, the proposed methodology has the ability to not just detect an anomaly, but 

also to determine its severity through two defined anomaly indexes. Moreover, the 

statistical approach to threshold determination allows the computation of both the type I 

and the type II error associated with the detection process.  

After a failure precursor is detected, different techniques are used to model the 

residual time to failure. First, the deterministic regression, which used the response 

surface methodology and the artificial neural network, was investigated; however, that 

method did not yield an acceptable accuracy for the residual life prediction. Then, the 

non-parametric survival data analysis using the Kaplan-Meier estimator provided the 

empirical fit, and its corresponding confidence interval was determined. Also, by using 

the Kaplan-Meier to compare multiple anomalies detected on the same unit, in the cases 

in which there were multiple defects before the catastrophic failure of the unit, the 

method showed that the earlier an anomaly was detected, the more time was given back 
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to the decision makers to limit the impact of disruption associated with the unplanned 

outage of a power plant. Despite the fact that the Kaplan-Meier is not constrained by any 

predefined residual lifetime distribution, it does not provide an indication of the survival 

time of other fatally defective units not included in the data set.  Therefore, two very 

popular parametric survival analyses, the exponential and the Weibull distribution, were 

used. For a smaller data set, both the exponential and Weibull distributions provided a 

better fit to the empirical Kaplan-Meier than did the deterministic regression techniques. 

Furthermore, for a larger data set, the two parametric failure data analyses provided even 

better fits to the empirical data, thereby providing the ability to model the residual time to 

failure after a failure anomaly is detected. 

 

7.4 Recommendations for Further research  

 

Incorporation of physical aspect of failure and failure modes to data driven to 

improve the quality of PHM: 

 
Although the proposed methodology has proven promising, the assumption that the 

failures are independent and identical distribution (iid) may not be adequate. Indeed, 

there are many different failure modes within a gas turbine compressor. The 

incorporation of information from physic-based models is desirable in order  to improve 

the estimation of the residual time to failure. 

 
 

Investigate Ways to reduce the current number of required steps of the proposed 

method:  

It would be desirable to find ways to accelerate the failure precursor detection approach. 

It would be interesting to investigate, for example, how to go from the multi-resolution 

analysis to the reconstructed one-dimensional signal of overall system health without 
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losing the added capability to carry over the data uncertainty provided by the 

Probabilistic Principal Component Analysis step. One suggestion for such a study is the 

use of eigenvalues from the covariance matrix as the weight for each variable.  

  

Pattern recognition:  

It would be very interesting to expand the proposed approach to another larger data set as 

a way to perform pattern recognition. One such an application would be the early 

detection of natural disasters such as earthquakes, in which the response decision is made 

based on the recognition of a certain recognizable signature. 

 

Life Extension:  

This work could be used as a starting point for life extension strategies, in which events 

that might affect a system’s lifetime could be detected as early as possible, and action 

could be taken to reverse an undesirable course. It is worth noting that life extension is 

very crucial for critical and often expensive systems. Currently, major life extension 

research is conducted for the US Nuclear Weapon systems. 

 

Semi-Parametric approach for residual time to failure modeling 

 

Subsequent researchers could repeat the study presented in this thesis for other gas 

turbine fleets like the 9FA. One could use the semi-parametric approaches of the 

proportional hazard and the accelerated failure time model to investigate how the residual 

time to failure of different fleets of gas turbines compare to each other. 
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APPENDIX A- EXPERIMENTS 
 
 
The list of variable is the same as shown on Table 42 for each unit unless specified 

otherwise 

Table 42: Monitored Gas turbine compressor sensors 

 Variable Variables Description

X1 Overall  system health parameter 1

X2 Overall  system health parameter 1

X3 Compressor seismic vibration 2

X4 Compressor seismic vibration 2

X5 Turbine seismic vibration 3

X6 Compressor health parameter 1

X7 Compressor health parameter 2

X8 Compressor effectiveness health parameter 1

X9 operating condition (load)

X10 operation condition 1 (environment)

X11 Compressor effectiveness health parameter 2

X12 operation condition 2 (environment)
 

 

A.1-  Test unit 1 

Test unit is as used as a demonstration unit in chapter 6. 

 

A.2-  Test unit 2  

 

At the MRA step, each sensor signal is decomposed into 3-level using the DWPT 

with the Daubechies 4, that lead to 8 different wavelet components (1 approximation, and 

7 details as shown on the tree decomposition of the Figure 110: Unit 2-Tree 

decomposition of sensor X3 signal with the wavelet component at node 7: 
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Figure 110: Unit 2-Tree decomposition of sensor X3 signal with the wavelet component at node 7 

 

The Figure 111 below shows the original de-noised signal and each of the 8 wavelet 

components (original signal in black, approximation in red, details in blue) 
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Figure 111: Unit2- DWPT 3-level MRA of sensor x3 

 

Then the energy content at each of the node at the level 3 is evaluated and grouped into 

two groups: approximation (node 7) and the details (sum of the details of node 9 through 

14) is shown in the table below:  

 

Table 43: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 2 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
99.999 100 99.963 99.962 99.982 99.999 100 100 100 99.994 100 100

Sum of details   

(% of Original)
1.00E-03 3.27E-06 3.60E-03 3.70E-03 1.80E-03 4.81E-01 1.64E-04 2.74E-04 1.47E-07 6.30E-03 2.44E-01 2.99E-06

 

 
For each of the 8 sensors, the energy contained within the approximation node is over 

99.9% of the total energy of the original signal. Therefore, the approximation signal (or 

scale function) will be used as the representative of the actual signal in the subsequent 
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steps. That is, the energy content in each of the wavelet components will serve as the 

signal feature characteristic.  

 

Step 5: PPCA data fusion 
 
Then the eigenvalues and their respective contributions and the corresponding 

eigenvectors for the covariance matrix are obtained and ranked from the highest value to 

the lowest value:  

Table 44: Pareto chart of eigenvavlues contributions of UNIT2 

 

To retain at least 95% of the information contents (i.e. 95% of confidence level), only the 

first 3 eigenvalues that represent 98.269% is needed. Consequently, the eigenvectors 

corresponding to those three eigenvalues represent the principal components are chosen 

as shown on this Table 45 
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Table 45: PCA weight matrix for UNIT2 

Variables
PC1    

(85.58%)

PC2  

(8.023%)

PC3    

(3.665%)

X1 -0.00053 0.05 -0.29211

X2 0.00011 0.00008 -0.00018

X3 0.68666 -0.13455 -0.01526

X4 0.68685 -0.19962 -0.02309

X5 0.23808 0.96099 0.13268

X6 0.00228 0.01872 -0.16403

X7 -0.00275 -0.02153 0.11613

X8 0.00304 0.02187 -0.16519

X9 0 0 -0.00006

X10 -0.00473 -0.12068 0.8959

X11 -0.00031 0.01389 -0.16063

X12 -0.0009 -0.00222 0.01349  

 

The entries of the eigenvectors are called the weights that will be applied to their 

corresponding variables to obtain the principal component that is the combination of the 

8 variables. 

At this point, the PPCA procedure will be implemented. First, the major weight 

contributors are identified to get the maximum likelihood of weight that is any entry 

value of an eigenvector less than 0.1 is set to 0 (W_ML=0.1), while any value greater 

than 0.1 is kept. Consequently, for the PPCA the following principal components are 

obtained:   
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Table 46: PPCA Maximum likelihood weight matrix for UNIT2 

Variables
PC1    

(85.58%)

PC2  

(8.023%)

PC3    

(3.665%)

X1 0 0 -0.29211

X2 0 0 0

X3 0.68666 -0.13455 0

X4 0.68685 -0.19962 0

X5 0.23808 0.96099 0.13268

X6 0 0 -0.16403

X7 0 0 0.11613

X8 0 0 -0.16519

X9 0 0 0

X10 0 -0.12068 0.8959

X11 0 0 -0.16063

X12 0 0 0  

Step 6: Anomaly detection decision  
 

• 1-d Reconstructed signal  
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Figure 112: Reconstructed 1-dimensional Signal for Unit 2 
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• Monitoring of Damage indicator 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SAD

 
Figure 113: Monitoring of damage indicator SAD for unit 2 

 

 

• Residual time to failure data table 
 

Table 47: Actual first anomaly to be used for PHM model for unit 2 

Anomaly ASI ADI RTTF

1 1.036524 0.216667 332.15
 

 
 

• Residual time to failure extended data table 
 
 

Table 48: Actual extended data set representing all anomalies for PHM model for unit 2 

Anomaly ASI ADI RTTF

1 1.036524 0.216667 332.15
 

 

A.3-  Test unit 3 

 

Multi-resolution Analysis: Energy Content of each Sensor 
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Table 49: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 3 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
99.999 100 99.837 99.995 99.953 100 100 100 100 99.998 100 100

Sum of details   

(% of Original)
7.52E-04 4.92E-06 1.63E-01 5.00E-03 4.70E-03 8.07E-05 5.21E-05 6.88E-05 9.88E-06 1.20E-03 5.86E-05 3.32E-07

 
 
 
PPCA data fusion 
 
 

Eigenvalues 
 

Table 50: Pareto chart of eigenvavlues contributions of UNIT3 

1

2

3

4

5

6

7

8

9

10

11

12

Number

0.0402

0.0100

0.0023

0.0015

0.0001

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

74.116

18.399

4.302

2.821

0.221

0.109

0.016

0.010

0.004

0.001

0.000

0.000

Percent 20 40 60 80

74.116

92.515

96.818

99.638

99.859

99.968

99.984

99.994

99.998

99.999

100.000

100.000

Cum Percent
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PCA: Eigenvectors 
 

Table 51: PCA weight matrix for UNIT3 

Variables
PC1    

(74.11%)

PC2  

(18.39%)

PC3    

(4.302%)

X1 0.00292 0.04306 -0.11075

X2 -0.00061 0.00009 0.00271

X3 0.98394 0.15459 -0.06909

X4 0.09968 -0.07233 0.84134

X5 -0.1467 0.97058 0.16285

X6 -0.00316 0.03165 -0.09364

X7 -0.00405 -0.01844 0.044

X8 0.00203 0.03152 -0.07455

X9 0.00014 0.00016 0.00027

X10 0.01488 -0.15314 0.46741

X11 -0.01147 0.03482 -0.11652

X12 -0.00403 -0.00046 -0.01627  

 

• PPCA (W_ML>=0.1) 

Table 52: PPCA Maximum likelihood weight matrix for UNIT3 

Variables
PC1    

(74.11%)

PC2  

(18.39%)

PC3    

(4.302%)

X1 0 0 -0.11075

X2 0 0 0

X3 0.98394 0.15459 0

X4 0 0 0.84134

X5 -0.1467 0.97058 0.16285

X6 0 0 0

X7 0 0 0

X8 0 0 0

X9 0 0 0

X10 0 -0.15314 0.46741

X11 0 0 -0.11652

X12 0 0 0  

 
Step 6: Anomaly detection decision  
 
 
 

• 1-d Reconstructed signal  
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Figure 114: Reconstructed 1-dimensional Signal for Unit 3 

 
 

• Monitoring of Damage indicator 
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Figure 115: Monitoring of damage indicator SAD for unit 3 

 

• Residual time to failure data table 
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Table 53: Actual first anomaly to be used for PHM model for unit 3 

Anomaly ASI ADI RTTF

1.282236 3.6 232.1167  
 

• Residual time to failure extended data set table 
 
 

Table 54: Actual extended data set representing all anomalies for PHM model for unit 3 

Anomaly ASI ADI RTTF

1.18051 0.166667 469.4833

1.132413 0.2 438.5667

1.137 0.116667 353.2667

1.183305 0.133333 284.4167

1.258377 0.366667 252.65

1 1.282236 3.6 232.1167

1.496119 2.133333 212.0167

1.246279 3.766667 208.0167

2 1.369278 2.266667 201.6333

1.252208 2.016667 182.45

1.151164 2.15 160.9333

1.208265 4.65 113.6667

1.279143 4.766667 64.81667

1.218381 2.283333 41.98333

1.140144 1.6 17.11667
 

 
 
 
 

A.4-  Test unit 4  

 
Multi-resolution Analysis: Energy Content of each Sensor 
 

Table 55: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 4 

 Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
99.999 100 99.92 99.93 99.86 99.999 99.99 99.999 100 99.99 99.99 100

Sum of details   

(% of Original)
6.56E-04 1.55E-07 8.02E-02 6.91E-02 1.35E-01 2.52E-04 1.40E-04 2.35E-04 5.14E-05 9.30E-03 2.34E-04 5.98E-06

 
 
PPCA data fusion 
 
• Eigenvalues table: 
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Table 56: Pareto chart of eigenvavlues contributions of UNIT4 

 

 

 

• PCA: Eigenvectors 

Table 57: PCA weight matrix for UNIT4 

Variables
PC1    

(57.44%)

PC2  

(35.82%)

PC3    

(5.101%)

X1 -0.02597 -0.00802 -0.23687

X2 0.00006 -0.00007 0.00014

X3 0.18902 0.733 0.05655

X4 0.14329 0.63699 -0.10909

X5 0.96947 -0.23804 -0.05664

X6 -0.01425 0.00014 -0.15419

X7 0.00987 0.00767 0.11073

X8 -0.0085 -0.00033 -0.13352

X9 0.00013 0.00008 0.00003

X10 0.05136 0.01252 0.92201

X11 -0.0127 -0.00168 -0.14664

X12 -0.00527 0.00051 -0.01109  

 

 

• PPCA (abs(W_ML)>=0.1) 

Table 58: PPCA Maximum likelihood weight matrix for UNIT4 
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Variables
PC1    

(57.44%)

PC2  

(35.82%)

PC3    

(5.101%)

X1 0 0 -0.23687

X2 0 0 0

X3 0.18902 0.733 0

X4 0.14329 0.63699 -0.10909

X5 0.96947 -0.23804 0

X6 0 0 -0.15419

X7 0 0 0.11073

X8 0 0 -0.13352

X9 0 0 0

X10 0 0 0.92201

X11 0 0 -0.14664

X12 0 0 0  

 
 
Step 6: Anomaly detection decision  
 

• 1-d Reconstructed signal  
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Figure 116: Reconstructed 1-dimensional Signal for Unit 4 

 
 
 

• Monitoring of Damage indicator 
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Figure 117: Monitoring of damage indicator SAD for unit 4 

 

• Residual time to failure data table 
Table 59: Actual first anomaly to be used for PHM model for unit 4 

Anomaly ASI ADI RTTF

1.165099 1 339.6833  
 
 
 

• Residual time to failure extended data set table 
 

Table 60: Actual extended data set representing all anomalies for PHM model for unit 4 

Anomaly ASI ADI RTTF

3 1.359802 0.3 359.9

4 1.165099 1 339.6833

5 1.065159 0.6 318.9833  
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A.5-  Test unit 5 

 
Unit 5 has eleven monitored sensors. The sensor X11 (Compressor effectiveness health 

parameter 2) did not record properly.  

 
Table 61: Monitored sensors for unit 5 

Variable Variables Description

X1 Overall  system health parameter 1

X2 Overall  system health parameter 1

X3 Compressor seismic vibration 2

X4 Compressor seismic vibration 2

X5 Turbine seismic vibration 3

X6 Compressor health parameter 1

X7 Compressor health parameter 2

X8 Compressor effectiveness health parameter 1

X9 operating condition (load)

X10 operation condition 1 (environment)

X12 operation condition 2 (environment)
 

 
 
Multi-resolution Analysis: Energy Content of each Sensor 

 
Table 62: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 5 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X12

Approximation         

(% of Original)
99.976 99.984 99.491 99.417 99.131 99.979 99.982 99.982 100 99.988 100

Sum of details   

(% of Original)
2.41E-02 1.57E-02 5.09E-01 5.83E+03 8.69E+03 2.08E-02 1.78E-02 1.81E-02 2.56E-05 1.17E-02 7.87E-06

 
 
 
PPCA data fusion 
 
• Eigenvalues table: 
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Table 63: Pareto chart of eigenvavlues contributions of UNIT 5 

 

 

• PCA: Eigenvectors 

Table 64: PCA weight matrix for UNIT 5 

Variables
PC1    

(70.43%)

PC2  

(24.40%)

PC3    

(3.456%)

X1 0.1897 0.34279 0.28134

X2 0.16644 0.28797 0.22198

X3 0.60303 -0.30941 -0.03406

X4 0.63552 -0.36886 0.0079

X5 0.26122 0.5137 -0.80535

X6 0.19144 0.33751 0.28019

X7 0.17847 0.29981 0.21548

X8 0.1778 0.31576 0.26381

X9 -0.00004 0.00007 -0.00046

X10 0.02073 -0.01968 -0.16502

X12 0.00086 -0.00089 -0.00246  

 

• PPCA (abs(W_ML)>=0.1) 
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Table 65: PPCA Maximum likelihood weight matrix for UNIT 5 

Variables
PC1    

(70.43%)

PC2  

(24.40%)

PC3    

(3.456%)

X1 0.1897 0.34279 0.28134

X2 0.16644 0.28797 0.22198

X3 0.60303 -0.30941 0

X4 0.63552 -0.36886 0

X5 0.26122 0.5137 -0.80535

X6 0.19144 0.33751 0.28019

X7 0.17847 0.29981 0.21548

X8 0.1778 0.31576 0.26381

X9 0 0 0

X10 0 0 -0.16502

X12 0 0 0  

 
 

Step 6: Anomaly detection decision  
 

• 1-d Reconstructed signal  
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Figure 118: Reconstructed 1-dimensional Signal for Unit 5 
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• Monitoring of Damage indicator 
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Figure 119: Monitoring of damage indicator SAD for unit 5 

• Residual time to failure data table 
 

 
Table 66: Actual first anomaly to be used for PHM model for unit 5 

Anomaly ASI ADI RTTF

1.184042 1.033333 578.2833  
 

• Residual time to failure extended data set table 
 

Table 67: Actual extended data set representing all anomalies for PHM model for unit 5 

Anomaly ASI ADI RTTF

3 1.036482 0.083333 675.4333

4 1.184042 1.033333 578.2833

5 3.623064 0.716667 37.31667  
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A.6-  Test unit 6 

 
 
Multi-resolution Analysis: Energy Content of each Sensor 
 
 

Table 68: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 6 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
99.999 100 99.096 99.2714 99.944 99.999 99.999 99.994 100 99.991 99.999 100

Sum of details   

(% of Original)
1.10E-03 4.94E-06 9.04E-01 7.29E-01 5.60E-02 6.45E-04 1.92E-04 5.30E-03 1.71E-05 9.10E-03 4.49E-04 2.67E-05

 
 
 
PPCA data fusion 
 
• Eigenvalues table: 

Table 69: Pareto chart of eigenvavlues contributions of UNIT 6 

1

2

3

4

5

6

7

8

9

10

11

12

Number

0.2796

0.0281

0.0058

0.0030

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

88.304

8.876

1.834

0.938

0.036

0.006

0.004

0.001

0.001

0.001

0.000

0.000

Percent 20 40 60 80

88.304

97.179

99.013

99.951

99.987

99.993

99.997

99.998

99.999

100.000

100.000

100.000

Cum Percent

 

 

• PCA: Eigenvectors 
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Table 70: PCA weight matrix for UNIT 6 

Variables
PC1    

(88.30%)

PC2  

(8.87%)

X1 -0.00777 -0.0137

X2 0.00004 -0.0001

X3 0.75108 -0.06791

X4 0.65259 -0.07354

X5 0.09936 0.99447

X6 -0.00455 -0.00323

X7 0.00258 0.01013

X8 -0.00364 -0.00504

X9 0 -0.00005

X10 0.0004 0.02559

X11 -0.00421 -0.00395

X12 -0.00215 0.00225  

 

• PPCA (abs(W_ML)>=0.1) 

Table 71: PPCA Maximum likelihood weight matrix for UNIT 6 

Variables
PC1    

(88.30%)

PC2  

(8.87%)

X1 0 0

X2 0 0

X3 0.75108 0

X4 0.65259 0

X5 0 0.99447

X6 0 0

X7 0 0

X8 0 0

X9 0 0

X10 0 0

X11 0 0

X12 0 0  
 

 
 
 
 
 

Step 6: Anomaly detection decision  

• 1-d Reconstructed signal  
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Figure 120: Reconstructed 1-dimensional Signal for Unit 6 

 
 

• Monitoring of Damage indicator 
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Figure 121: Monitoring of damage indicator SAD for unit 6 
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• Residual time to failure data table 
 

Table 72: Actual first anomaly to be used for PHM model for unit 6 

Anomaly ASI ADI RTTF

1.062287 0.066667 458.6833  
 
 

• Residual time to failure extended data set table 
 

Table 73: Actual extended data set representing all anomalies for PHM model for unit 6 

Anomaly ASI ADI RTTF

1.062287 0.066667 458.6833

2.240944 1.016667 1  
 
 
 
 
 
 

A.7-  Test unit 7  

 

Unit 7 has eleven monitored sensors. The sensor X11 (Compressor effectiveness health 

parameter 2) did not record properly.  

Table 74: Monitored sensors for unit 7 

Variable Variables Description

X1 Overall  system health parameter 1

X2 Overall  system health parameter 1

X3 Compressor seismic vibration 2

X4 Compressor seismic vibration 2

X5 Turbine seismic vibration 3

X6 Compressor health parameter 1

X7 Compressor health parameter 2

X8 Compressor effectiveness health parameter 1

X9 operating condition (load)

X10 operation condition 1 (environment)

X12 operation condition 2 (environment)
 

 
 
Multi-resolution Analysis: Energy Content of each Sensor 
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Table 75: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X12

Approximation         

(% of Original)
99.999 100 99.951 99.949 99.979 99.999 99.999 99.999 100 99.996 100

Sum of details   

(% of Original)
6.78E-04 1.08E-06 4.87E-02 5.02E-02 2.08E-02 2.34E-04 1.73E-04 2.20E-04 1.59E-06 4.00E-03 2.40E-06

 

 
 
 

PPCA data fusion 
 
• Eigenvalues table: 

Table 76: Pareto chart of eigenvavlues contributions of UNIT 7 

 

• PCA: Eigenvectors 
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Table 77: PCA weight matrix for UNIT 7 

Variables
PC1    

(68.99%)

PC2  

(13.13%)

PC3    

(10.42%)

PC4    

(6.933%)

X1 0.02585 -0.11531 -0.07147 -0.21823

X2 -0.00037 0.00018 0.0004 -0.00016

X3 0.65133 0.71098 -0.12597 -0.23312

X4 0.75635 -0.59349 0.07415 0.26235

X5 0.03799 0.04331 0.95795 -0.27949

X6 0.01954 -0.07014 -0.05275 -0.12858

X7 -0.01022 0.04424 0.03495 0.10793

X8 0.00888 -0.04667 -0.04843 -0.10464

X9 -0.00003 -0.00001 0.00007 0.00002

X10 -0.03041 0.34311 0.22248 0.84368

X12 0.01037 -0.01821 0.00033 -0.01271  

• PPCA (abs(W_ML)>=0.1) 

       
Table 78: PPCA Maximum likelihood weight matrix for UNIT 7 

Variables
PC1    

(68.99%)

PC2  

(13.13%)

PC3    

(10.42%)

PC4    

(6.933%)

X1 0 -0.11531 0 -0.21823

X2 0 0 0 0

X3 0.65133 0.71098 -0.12597 -0.23312

X4 0.75635 -0.59349 0 0.26235

X5 0 0 0.95795 -0.27949

X6 0 0 0 -0.12858

X7 0 0 0 0.10793

X8 0 0 0 -0.10464

X9 0 0 0 0

X10 0 0.34311 0.22248 0.84368

X12 0 0 0 0  
 
 

Step 6: Anomaly detection decision  
 

• 1-d Reconstructed signal  
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Figure 122: Reconstructed 1-dimensional Signal for Unit 7 

• Monitoring of Damage indicator 
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Figure 123: Monitoring of damage indicator SAD for unit 7 
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• Residual time to failure data table 
 

Table 79: Actual first anomaly to be used for PHM model for unit 7 

Anomaly ASI ADI RTTF

1.551326 0.833333 35.2  
 

• Residual time to failure extended data set table 
 

Table 80: Actual extended data set representing all anomalies for PHM model for unit 7 

Anomaly ASI ADI RTTF

1.106504 0.166667 85.98333

1.551326 0.833333 35.2

1.580428 1.066667 11.05  
 
 
 
 
 
 
 

A.8-  Test unit 8 

 
 
Multi-resolution Analysis: Energy Content of each Sensor 
 

Table 81: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 8 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
99.999 100 99.953 99.974 99.966 100 100 100 100 99.998 100 100

Sum of details   

(% of Original)
2.88E-04 1.26E-06 4.72E-02 2.56E-02 3.44E-02 9.58E-05 8.33E-05 1.08E-04 4.68E-06 2.20E-03 1.05E-04 4.10E-04

 
 
 
 

PPCA data fusion 
 
• Eigenvalues table: 
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Table 82: Pareto chart of eigenvavlues contributions of UNIT 8 

1

2

3

4

5

6

7

8

9

10

11

12

Number

0.0157

0.0088

0.0027

0.0009

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

55.771

31.062

9.479

3.340

0.227

0.074

0.024

0.013

0.006

0.003

0.000

0.000

Percent 20 40 60 80

55.771

86.833

96.313

99.652

99.880

99.954

99.977

99.991

99.997

100.000

100.000

100.000

Cum Percent

 

• PCA: Eigenvectors 

 

Table 83: PCA weight matrix for UNIT 8 

Variables
PC1    

(55.77%)

PC2  

(31.06%)

PC23 

(9.48%)

X1 -0.0238 0.01697 -0.00237

X2 -0.00016 -0.00011 -0.00009

X3 0.64911 0.36963 -0.66389

X4 0.58148 0.31655 0.74687

X5 -0.48381 0.87318 0.01024

X6 -0.01524 0.00621 -0.00467

X7 0.01185 -0.00543 0.01085

X8 -0.02172 0.01416 0.01098

X9 -0.00001 -0.00003 0.00011

X10 0.06941 -0.00756 0.02525

X11 -0.01085 0.00326 -0.00453

X12 0.01092 -0.01033 -0.02003  
 

 

• PPCA (abs(W_ML)>=0.1) 
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Table 84: PPCA Maximum likelihood weight matrix for UNIT 8 

Variables
PC1    

(55.77%)

PC2  

(31.06%)

PC23 

(9.48%)

X1 0 0 0

X2 0 0 0

X3 0.64911 0.36963 -0.66389

X4 0.58148 0.31655 0.74687

X5 -0.48381 0.87318 0

X6 0 0 0

X7 0 0 0

X8 0 0 0

X9 0 0 0

X10 0 0 0

X11 0 0 0

X12 0 0 0  
 
 
 
 
 
Step 6: Anomaly detection decision  
 
 

• 1-d Reconstructed signal  
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Figure 124: Reconstructed 1-dimensional Signal for Unit 8 
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• Monitoring of Damage indicator 
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Figure 125: Monitoring of damage indicator SAD for unit 8 

 
 
 
 
 

• Residual time to failure data table 
 

Table 85: Actual first anomaly to be used for PHM model for unit 8 

Anomaly ASI ADI RTTF

1.12047 0.183333 119.5167  
 

• Residual time to failure extended data set table 
 

Table 86: Actual extended data set representing all anomalies for PHM model for unit 8 

Anomaly ASI ADI RTTF

1.12047 0.183333 119.5167

1.016824 0.05 49.38333  
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A.9-  Test unit 9 

 

Multi-resolution Analysis: Energy Content of each Sensor 

Table 87: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 9 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
100 100 99.92 99.946 99.885 100 100 100 100 99.999 100 100

Sum of details   

(% of Original)
4.52E-05 1.65E-06 7.52E-02 5.40E-02 1.15E-01 1.81E-05 1.45E-05 1.63E-05 3.15E-06 1.10E-03 9.89E-06 3.75E-05

 
 
 
 
 
 

 
PPCA data fusion 
 
• Eigenvalues table: 

 

Table 88: Pareto chart of eigenvavlues contributions of UNIT 9 

 

 

• PCA: Eigenvectors 
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Table 89: PCA weight matrix for UNIT 9 

Variables
PC1    

(64.73%)

PC2  

(32.79%)

X1 -0.00443 -0.03771

X2 -0.00001 0.0001

X3 -0.10883 0.70891

X4 -0.08136 0.68477

X5 0.99044 0.13562

X6 -0.00191 -0.02272

X7 -0.00088 0.01143

X8 -0.00183 -0.02298

X9 -0.00001 0

X10 -0.02222 0.08342

X11 -0.00617 -0.02416

X12 0.00033 0.00141  

 

• PPCA (abs(W_ML)>=0.1) 

     
 

Table 90: PPCA Maximum likelihood weight matrix for UNIT 9 

Variables
PC1    

(64.73%)

PC2  

(32.79%)

X1 0 0

X2 0 0

X3 -0.10883 0.70891

X4 0 0.68477

X5 0.99044 0.13562

X6 0 0

X7 0 0

X8 0 0

X9 0 0

X10 0 0

X11 0 0

X12 0 0  
 
 
 
Step 6: Anomaly detection decision  
 
 

• 1-d Reconstructed signal  
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Figure 126: Reconstructed 1-dimensional Signal for Unit 9 

 

• Monitoring of Damage indicator 
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Figure 127: Monitoring of damage indicator SAD for unit 9 

 

• Residual time to failure data table 
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Table 91: Actual first anomaly to be used for PHM model for unit 9 

Anomaly ASI ADI RTTF

1.130492 0.233333 3.183333  
 

• Residual time to failure extended data set table 
 

Table 92: Actual extended data set representing all anomalies for PHM model for unit 9 

Anomaly ASI ADI RTTF

1.130492 0.233333 3.183333

1.18496 2.8 2.783333  
 
 
 
 
 
 
 
 

A.10-  Test unit 10 

 
Multi-resolution Analysis: Energy Content of each Sensor 
 

Table 93: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 10 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
99.999 100 99.991 99.994 99.99 99.999 100 99.999 100 99.998 99.999 100

Sum of details   

(% of Original)
1.66E-04 7.91E-06 9.10E-03 5.60E-03 1.00E-02 9.08E-05 2.81E-05 7.16E-05 2.06E-06 1.50E-03 6.91E-05 9.80E-07

 
 

 
 

PPCA data fusion 
 
• Eigenvalues table: 
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Table 94: Pareto chart of eigenvavlues contributions of UNIT 10 

 

 

 

• PCA: Eigenvectors 

 

Table 95: PCA weight matrix for UNIT 10 

Variables
PC1    

(71.86%)

PC2  

(13.51%)

PC23 

(9.95%)

X1 0.11163 -0.0496 -0.24283

X2 0.00063 0.00001 0.00212

X3 0.53611 0.44731 -0.07759

X4 0.41406 0.5949 0.14483

X5 0.64797 -0.61745 0.44181

X6 0.09165 -0.03798 -0.18695

X7 -0.02942 0.03416 0.08944

X8 0.08733 -0.04653 -0.14856

X9 -0.00002 0.00007 0.0001

X10 -0.29391 0.23822 0.78966

X11 0.07437 -0.0258 -0.17164

X12 -0.00159 0.01089 -0.02809  

• PPCA (abs(W_ML)>=0.1) 
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Table 96: PPCA Maximum likelihood weight matrix for UNIT 10 

Variables
PC1    

(71.86%)

PC2  

(13.51%)

PC23 

(9.95%)

X1 0.11163 0 -0.24283

X2 0 0 0

X3 0.53611 0.44731 0

X4 0.41406 0.5949 0.14483

X5 0.64797 -0.61745 0.44181

X6 0 0 -0.18695

X7 0 0 0

X8 0 0 -0.14856

X9 0 0 0

X10 -0.29391 0.23822 0.78966

X11 0 0 -0.17164

X12 0 0 0  
 
 
 
 
 
 

Step 6: Anomaly detection decision  
 

• 1-d Reconstructed signal  



 256 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6
Reconstructed Signal

 

Figure 128: Reconstructed 1-dimensional Signal for Unit 10 

 
 

• Monitoring of Damage indicator 
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Figure 129: Monitoring of damage indicator SAD for unit 10 

• Residual time to failure data table.  
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 Table 97: Actual first anomaly to be used for PHM model for unit 10 

Anomaly ASI ADI RTTF

2.335767 2.366667 85.18333  
 

• Residual time to failure extended data set table 
 

Table 98: Actual extended data set representing all anomalies for PHM model for unit 10 

Anomaly ASI ADI RTTF

2.335767 2.366667 85.18333

1.637981 16.38333 78.46667

1.626708 22.18333 22.16667  
 

 

Note: Unit 10 is considered censored 

 

 

 

 

 

 

A.11-  Test unit 11 

 

Multi-resolution Analysis: Energy Content of each Sensor 
 
 

Table 99: Nodes energy content of each sensor at level-3 DWPT decomposition of Unit 11 

Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Approximation         

(% of Original)
99.999 100 99.559 99.653 99.7691 99.999 100 99.999 100 99.996 99.999 100

Sum of details   

(% of Original)
1.74E-04 1.96E-04 4.41E-01 3.47E-01 2.31E-01 8.65E-05 2.53E-05 8.16E-05 1.50E-07 3.90E-03 6.84E-05 9.15E-06

 
 
 
 

PPCA data fusion 
 
• Eigenvalues table: 
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Table 100: Pareto chart of eigenvavlues contributions of UNIT 11 

1

2

3

4

5

6

7

8

9

10

11

12

Number

1.1500

0.0249

0.0064

0.0015

0.0002

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Eigenvalue

97.211

2.108

0.539

0.127

0.014

0.001

0.000

0.000

0.000

0.000

0.000

0.000

Percent 20 40 60 80

97.211

99.319

99.858

99.984

99.998

99.999

100.000

100.000

100.000

100.000

100.000

100.000

Cum Percent

 

 

• PCA: Eigenvectors 

Table 101: PCA weight matrix for UNIT 11 

Variables
PC1    

(97.21%)

X1 0.00247

X2 -0.00001

X3 0.76441

X4 0.64436

X5 0.02129

X6 0.0027

X7 0.00103

X8 0.00181

X9 -0.00002

X10 -0.00092

X11 0.00225

X12 0.00079  

• PPCA (abs(W_ML)>=0.1) 
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Table 102: PPCA Maximum likelihood weight matrix for UNIT 11 

Variables
PC1    

(97.21%)

X1 0

X2 0

X3 0.76441

X4 0.64436

X5 0

X6 0

X7 0

X8 0

X9 0

X10 0

X11 0

X12 0  
 
 

Step 6: Anomaly detection decision  
 

• 1-d Reconstructed signal  
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Figure 130:  Reconstructed 1-dimensional Signal for Unit 11 

 
 

• Monitoring of Damage indicator 
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Figure 131:  Monitoring of damage indicator SAD for unit 11 

 

• Residual time to failure data table.  
 

Table 103: Actual first anomaly to be used for PHM model for unit 11 

Anomaly ASI ADI RTTF

1.006843 0.033333 124.4  
 
 

• Residual time to failure extended data set table 
 

Table 104: Actual extended data set representing all anomalies for PHM model for unit 11 

Anomaly ASI ADI RTTF

1.006843 0.033333 124.4

1.23587 0.683333 48.36667  
 
 

 

Note: Unit 11 is right-censored 
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APPENDIX B- MRA LEVEL DECISION 
 
 

The test unit 1 is used as an example to assess the effect of decomposition level 

on the multi-resolution analysis to determine the appropriate level of decomposition.  

The same de-noised signal used in Chapter 6 is used and decomposed into a two-level, 

three-level and four-level tree using the DWPT and the “Daubechies 7”. The energy 

content of the approximation is calculated on one had and the sum of the energy content 

of the details nodes is calculated on another hand. 

 

B.1-  Level-2 multi-resolution analysis 

Tree Decomposition

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

1000 2000 3000
1
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2
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3.5
data for node: (3) or (2,0).

 

Figure 132: Level-2 tree decomposition of sensor X3 signal with the wavelet component at node 3 
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Figure 132 is the two level tree decomposition whereas Figure 133 is the multi-resolution 

analysis plot of the sensor X3 with the original de-noised signal (black), the 

approximation node signal (red) and the three details (blue).  
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Figure 133: DWPT at level-2 MRA of sensor X3 

 
 
 

Table 105: Node energy content of each sensor at level-2 DWPT decomposition 
Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Aproximation 

(% of original)
100 100 99.994 99.996 99.994 100 100 100 100 99.9997 100 100

Sum of details 

(% of original)
1.08E-04 4.23E-07 0.0065 0.0045 0.0062 2.38E-05 8.56E-06 2.10E-05 3.55E-06 2.61E-04 1.19E-05 7.64E-07

 
 
 
Table 105 shows the energy content of the approximation node as well as the sum of the 

detail nodes of each of the twelve monitored sensors at two-level decomposition.  

 

 

 

 

 



 263 

B.2-  Level-3 multi-resolution analysis  
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Figure 134: Level-3 tree decomposition of sensor X3 signal with the wavelet component at node 7 

 
 

Figure 134 is the three level tree decomposition whereas Figure 135 is the multi-

resolution analysis plot of the sensor X3 with the original de-noised signal (black), the 

approximation node signal (red) and the seven details (blue).  
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Figure 135: DWPT at level-3 MRA of sensor X3 

 

 

Table 106: Node energy content of each sensor at level-3 DWPT decomposition 
Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Aproximation 

(% of original)
99.9998 100 99.9835 99.9885 99.9895 99.9999 100 99.9999 100 99.9992 100 100

Sum of details 

(% of original)
2.33E-04 1.50E-06 0.0165 0.0115 0.0105 5.93E-05 2.72E-05 5.09E-05 4.86E-06 7.58E-04 3.33E-05 1.92E-06

 

 

Similarly, Table 106 shows the energy content of the approximation node as well as the 

sum of the detail nodes of each of the twelve monitored sensors at three-level 

decomposition.  
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B.3-  Level-4 multi-resolution analysis   
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Figure 136: Level-4 tree decomposition of sensor X3 signal with the wavelet component at node 15 

 
 

The four-level tree decomposition is shown on Figure 136 and Figure 137 represents the 

multi-resolution analysis plot of the sensor X3 with the original de-noised signal (black), 

the approximation node signal (red) and the seven details (blue).  
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Figure 137: DWPT at level-4 MRA of sensor X3 

 

 
 

Table 107: Node energy content of each sensor at level-4 DWPT decomposition 
Sensor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Aproximation 

(% of original)
99.9996 100 99.9699 99.976 99.986 99.9999 99.9999 99.9999 100 99.9984 99.9999 100

Sum of details 

(% of original)
4.32E-04 2.08E-06 0.0301 0.024 0.014 1.20E-04 5.44E-05 1.03E-04 5.97E-06 1.60E-03 7.37E-05 3.65E-06

 

 

 
 
Table 107 shows the energy content of the approximation node as well as the sum of the 

detail nodes of each of the twelve monitored sensors at four-level decomposition.  

 

B.4-  Level of decomposition decision for multi-resolution analysis  

After the decomposition of each of the twelve sensors to two-level, three-level, four-level 

and the calculation of the energy content each node, it is noticed that the approximation 

node conserves over 99.9% of the total energy of the original signal in each case. 
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However, for sensitive sensors such as vibration sensors, the higher the level of 

decomposition (finer details), the more energy is contained at the details nodes is. 

Theoretically, a sensor signal could be decomposed a level much higher, but there is a 

need for a trade-off between the amount of information gained at higher decomposition 

level and the complexity of high decomposition level.  

For example, the sensor vibration sensor X3 has the following: 

• Approximation node energy: 99.994 and detail nodes energy: 0.0045 for 

level-2 DWPT 

• Approximation node energy: 99.9835 and detail nodes energy: 0.0165 for 

level-3 DWPT 

• Approximation node energy: 99.9699 and detail nodes energy: 0.0301 for 

level-4 DWPT 

Though the level-4 yields a higher details energy content value than the level-3, which in 

turn has a higher value than level-2, as it can be inferred by comparing Figure 135 and 

Figure 137, the higher the level of decomposition, the more cumbersome the multi-

resolution analysis becomes. Moreover, based on the value of the energy content at the 

approximation node that is over 99.9% in each of the three case, it is concluded that 

level-four decomposition does not provide much more information compared to the level-

three for its associated complexity to justify its use. Consequently, the decision is made to 

use the level-three decomposition, which yields more information about the signal 

content than the level-two. 
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APPENDIX C- KAPLAN-MEIER TABLES 
 

C.1-  First Anomaly tabular data with its corresponding confidence interval 

Failure Time 

(RTTF)

Survival 

(S_hat)

Lower 

bound

Upper 

Bound

3.183 0.909090909 0.739204 1

35.2 0.818181818 0.590255 1

85.183 0.818181818 0.590255 1

119.517 0.715909091 0.442171 0.9896474

124.4 0.715909091 0.442171 0.9896474

232.117 0.596590909 0.284162 0.9090197

233.067 0.477272727 0.151353 0.8031924

332.15 0.357954545 0.040514 0.675395

339.683 0.238636364 0 0.5236734

458.683 0.119318182 0 0.3376221

578.283 0 0 0.3376221  

 

C.2-  Second Anomaly tabular data with it corresponding confidence interval 

Failure Time 

(RTTF)

Survival 

(S_hat)

Lower 

bound

Upper 

Bound

1 0.909091 0.739204 1

2.783 0.818182 0.590255 1

11.05 0.727273 0.464086 0.99046

37.317 0.636364 0.352089 0.920638

48.367 0.636364 0.352089 0.920638

49.383 0.530303 0.226775 0.833831

78.467 0.530303 0.226775 0.833831

161.167 0.397727 0.077631 0.717824

201.633 0.265152 0 0.566069

318.983 0.132576 0 0.370057

332.15 0 0 0.370057  
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C.3-  Extended tabular data  

Data point ASI ADI (hr) RTTF (hr) Censored

1 2.548228 1.183333 233.0667 0

2 2.81397 1.433333 209.85 0

3 3.029187 1.366667 161.1667 0

4 1.036524 0.216667 332.15 0

5 1.18051 0.166667 469.4833 0

6 1.132413 0.2 438.5667 0

7 1.137 0.116667 353.2667 0

8 1.183305 0.133333 284.4167 0

9 1.258377 0.366667 252.65 0

10 1.282236 3.6 232.1167 0

11 1.496119 2.133333 212.0167 0

12 1.246279 3.766667 208.0167 0

13 1.369278 2.266667 201.6333 0

14 1.252208 2.016667 182.45 0

15 1.151164 2.15 160.9333 0

16 1.208265 4.65 113.6667 0

17 1.279143 4.766667 64.81667 0

18 1.218381 2.283333 41.98333 0

19 1.140144 1.6 17.11667 0

20 1.359802 0.3 359.9 0

21 1.165099 1 339.6833 0

22 1.065159 0.6 318.9833 0

23 1.036482 0.083333 675.4333 0

24 1.184042 1.033333 578.2833 0

25 3.623064 0.716667 37.31667 0

26 1.062287 0.066667 458.6833 0

27 2.240944 1.016667 1 0

28 1.106504 0.166667 85.98333 0

29 1.551326 0.833333 35.2 0

30 1.580428 1.066667 11.05 0

31 1.12047 0.183333 119.5167 0

32 1.016824 0.05 49.38333 0

33 1.130492 0.233333 3.183333 0

34 1.18496 2.8 2.783333 0

35 2.335767 2.366667 85.18333 1

36 1.637981 16.38333 78.46667 1

37 1.626708 22.18333 22.16667 1

38 1.006843 0.033333 124.4 1

39 1.23587 0.683333 48.36667 1  
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In the “censored column, a value of “0” corresponds to an observed failure events, while 

a value of “1” corresponds to a censored events. 
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C.4-  Tabular data for the Kaplan-Meier plot of residual time for extended data set 

 

Failure 

Time 

(RTTF)

Number 

failed

Number 

censored At Risk

Survival 

(S_hat)

0 0 0 39 1

1 1 0 39 0.9744

2.783 1 0 38 0.9487

3.183 1 0 37 0.9231

11.05 1 0 36 0.8974

17.117 1 0 35 0.8718

22.167 0 1 34 0.8718

35.2 1 0 33 0.8454

37.317 1 0 32 0.819

41.983 1 0 31 0.7925

48.367 0 1 30 0.7925

49.383 1 0 29 0.7652

64.817 1 0 28 0.7379

78.467 0 1 27 0.7379

85.183 0 1 26 0.7379

85.983 1 0 25 0.7084

113.667 1 0 24 0.6789

119.517 1 0 23 0.6493

124.4 0 1 22 0.6493

160.933 1 0 21 0.6184

161.167 1 0 20 0.5875

182.45 1 0 19 0.5566

201.633 1 0 18 0.5257

208.017 1 0 17 0.4947

209.85 1 0 16 0.4638

212.017 1 0 15 0.4329

232.117 1 0 14 0.402

233.067 1 0 13 0.371

252.65 1 0 12 0.3401

284.417 1 0 11 0.3092

318.983 1 0 10 0.2783

332.15 1 0 9 0.2474

339.683 1 0 8 0.2164

353.267 1 0 7 0.1855

359.9 1 0 6 0.1546

438.567 1 0 5 0.1237

458.683 1 0 4 0.0928

469.483 1 0 3 0.0618

578.283 1 0 2 0.0309

675.433 1 0 1 0  
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C.5-  Extended tabular data for confidence interval 

 
Failure 

Time 

(RTTF)

Survival 

(S_hat)

Lower 

bound

Upper 

Bound

1 0.9744 0.924752 1

2.783 0.9487 0.879492 1

3.183 0.9231 0.839447 1

11.05 0.8974 0.802219 0.992653

17.117 0.8718 0.766871 0.976719

22.167 0.8718 0.766871 0.976719

35.2 0.8454 0.731571 0.959183

37.317 0.819 0.697501 0.940417

41.983 0.7925 0.664438 0.920643

48.367 0.7925 0.664438 0.920643

49.383 0.7652 0.630794 0.89963

64.817 0.7379 0.598 0.877766

78.467 0.7379 0.598 0.877766

85.183 0.7379 0.598 0.877766

85.983 0.7084 0.562608 0.854127

113.667 0.6789 0.528123 0.829581

119.517 0.6493 0.494457 0.804216

124.4 0.6493 0.494457 0.804216

160.933 0.6184 0.459497 0.777336

161.167 0.5875 0.425378 0.749613

182.45 0.5566 0.392051 0.721098

201.633 0.5257 0.359483 0.691824

208.017 0.4947 0.327651 0.661815

209.85 0.4638 0.296542 0.631082

212.017 0.4329 0.266155 0.599627

232.117 0.402 0.236496 0.567445

233.067 0.371 0.207583 0.534516

252.65 0.3401 0.179442 0.500815

284.417 0.3092 0.152116 0.4663

318.983 0.2783 0.125662 0.430913

332.15 0.2474 0.100158 0.394575

339.683 0.2164 0.075715 0.357176

353.267 0.1855 0.052488 0.318562

359.9 0.1546 0.030703 0.278505

438.567 0.1237 0.010709 0.236657

458.683 0.0928 0 0.192431

469.483 0.0618 0 0.144688

578.283 0.0309 0 0.090522

675.433 0 0 0.090522  
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APPENDIX D- RESIDUAL PLOTS FOR PARAMETRIC ANALYSIS 
 
 

D.1-  Residual plots for limited data set: first detected anomaly 
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Figure 138: Residual by Predicted for Exponential distribution assumption for limited data set 
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Figure 139: Residual by Predicted for Weibull distribution assumption for limited data set 
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D.2-  Residual plots for extended data set 
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Figure 140: Residual by Predicted for Exponential distribution assumption for extended data set 
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Figure 141: Residual by Predicted for Weibull distribution assumption for extended data set 
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