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CHAPTER I
INTRODUCTION

In order that the investigation described in the following pages
may appear in its proper perspective, it should be viewed as a part of
a more ambitious undertaking whose goals are as follows:

(1} the solution of certain infinite systems of first- and
second-order linear ordinary differential equations with constant
coefficients;

(2} the investigation of physical phenomena of which such
systems are thought to be appropriate mathematical models; and

(3) the use of the solutions of the infinite systems as
approximations to the more cumbersome solutions of related finlte
systems involving many equations {perhaps several hundred thousand).

A method which has proved successful in solving some technically
significant infinite systems of ordinary differential equatiens con-
sists of truncéting the infinite system after K equations, solving
the resulting finite system, and then allowing K to increase without
bound. In solving the finite system, it 1s necessary to know the
zeros of the corresponding secular polynomial. For various physical
systems involving only linear nearest-neighbor coupling, the secular

polynomials corresponding to increasing values of K are elements of a
(=]

n=o of polynomials generated by a three-term recur-

sequence {cpn(x)}

sive relation of the form




p,(x) = 1, , (1)
¢l(x) =AXx+B ,

~¢n+1(x) N (Anx + Bn)mn(x) - Cn¢n_l(x), nzl,

in which Ao # 0 and AnCn # 0 (n>1), Here both x and the coefficients
Ajs By, C; may be complex. If the polynomials generated by (1) are
Sturm-Liouville polynomials associated with a second-order ordinary
differentlial equation, much is known about their zeros. In order to
take advantage of thls knowledge iIn prosecuting the larger project of
which the present study is a part, it seemed desirable to investigate
Sturm-Liouville polynomials which are recursively generated and then
to begin the study of infinite systems of ordinary differential
equations by first considering systems which, when truncated, have
such polynomials as their secular polynomials. N

The results of the study of recursively generated Sturm-
Liouville polynomials are contained in the doctoral dissertation of
J. W. Jayne [2], of which the present paper makes extensive use.
It is assumed that the reader is familiar with Jayne'g woerk; and
wherever possible, the notation used here agrees with his.

Jayne showed

(1) that if an infinite_ééquence of Sturm-Llouville poly-
nomials associated with a linear ordinary diffe;ential equation of

the second order is generated by the recursive relation (1), then

the polynomials of the sequence are of one of four types (Hermite,




extended generalized Laguerre, generalized Bessel, or generalized
Jacobi); and

(2) that for physical systems of which the dissipationless
mass-spring combination is the prototype, the only infinite sequences
of second-order Sturm-Liouville secular pelynomials which can be
generated by successively increasing the size of the system are of
Laguerre or Jacobi type.

He also raised the following question [2, p. 28]:

For an arbitrary preassigned positive integer N, is it possible
to construct successively larger spring-mass systems of order up to
and including N for each of which the secular polynomial is of Hermite
or Bessel type?

Though the question arose initially simply as a matier of intellectual
curiosity, from the standpoint of physical applications an answer

to it was desirable for the following reason: The study of infinite
systems of differential equations which, when truncated, lead to
Hermite or Bessel secular polynomials would hold little promise of
applicability unless physical systems occur in which the secular poly-
nomial is a Hermite or Bessel polynomial of high degree. Thus, an
answer to the question would serve as a gulde for future effort.

In the present study this question is answered affirmatively.
Various additional questions which arose as the study progressed are
outlined in the next few paragraphs.

As a prelude to that outline, the reader is asked'to bear in
mind that the essential difference between the theory and applications

developed by Jayne [2] and those to be presented here is that Jayne




dealt with infinite sequences of Sturm-Liouville polynomials generated
by the recursive formula (1) while the present study is concerned with
finite sequences of Sturm-Liouville polynomials generated by (1). In
the sequel such finite sequences are referred to as proper three-term
recursive finite Sturm-Liouville polynomial sequences. The adjective
proper is prefixed to emphasize the requirement that no A; nor C; in
(1) may be zero.

In Chapter I1 theorems and definitions necessary for the later
work are stated. The material presented is much like a synopsis of
Chapter II of [2]; the only essential difference is that indices have
a finite rather than an infinite range. Proofs of the theorems are
omitted since they are, except for appropriate changes in the range of
the indices, identical to those in (2].

Chapter III answers affirmatively the following question:

If a finite sequence of Sturm-Liouville polynomials is recursively
generated by (1), can the polynomials be of types other than Hermite,
extended generalized Laguerre, extended generalized Bessel, or
generalized Jacobi? Since the answer is somewhat detailed, the

reader is referred to the last few pages of the chapter. Necessary

and sufficient conditions that a proper three-term recursive finite
Sturm-Liouville polynomial sequence be -- aside from a possible

linear change of variable and nonzero multiplicative factors -- a
sequence of Hermite, extended generalized Laguerre, extended generalized
Bessel, or generalized Jacobi polynomials are also stated and proved.

A complete mathematical classification of all proper three-term

recursive finite Sturm-Liouville polynomial sequences is made,




but the chapter is not concerned with physical realizability.

Chapter IV is addressed to the simplification of certain
theorems appearing in Chapter III. More specifically, a relevant
difference equation is solved in order to facilitate application of
those theorems. It is pointed out how the theorems may be use& to
decide whether a given spring-mass system is of Hermite, Laguerre,
Bessel, or Jacobi type; and groundwork is laid for Chapter V, in
which it is shown that spring-mass systems having Nth-degree
secular polynomials of Hermite, Laguerre, Bessel, or Jacobi type
are physically realizable (N being preassigned).

In Chapter VI numerical examples are given, and comments are
made on the somewhat subjective question of how "reallstic" the
physically realizable systems described in Chapter V actually are.
Finally, there is a brief discussion of the possibility of devising
an efficient numerical procedure for constructing "realistic"
physical systems of the types known from Chapter V to be realizable.

Chapter VII is a brief resume’ of all major results of pre-

ceding chapters. It appears for the convenience of the reader.




CHAPTER II
PRELIMINARY THEOREMS AND DEFINITIONS

Let N be an integer greater than or equal to three and let
{?n(x)}2=o be a finite polynomial sequence generated as in (1). Defi-
nitions and theorems pertaining to this sequence which will be needed
in later work are stated in this chapter. The most important theorem
gives a necessary and sufficient condition that {¢n(xi}§=o form a
finite Sturm-Liouville system.

Theorem 2.1. Suppose that for n = 0,1,2,...;N, ¢n(x) is a

solution of

2
d d
00 L4 0100 84 Lo #uJy =0,

where “n is a parameter depending en n but not on x. Then ao(x),
al(x), and az(x) + 1, must be of the form Yx2 +Bx+a, ex +3, and
Kn’ respectively, where Kn is a parameter depending on n but not
on X, and a, B, ¥, d, and e are constants.

Theorem 2.2. If pn(x) is a solution of

2
(Yx2+sx+a):—§+(sx+b)3—§+xny=o (2)
X

for n = 0,1,2,...,N, then




A
. 2 2, 2
(i) yx“ +px+a = (xl - —5-)x + [xl(AoBl-+3AlBO)

A1B02
Bo)]x/QAoAl + [kl(BoBl + )

(AR + 4y X

kQ(BOBl - cl)]/onAl R

(ii) ex + &

n
'
>

\
(ii1) A = n(n - 1)(75 Y- nln - 2A., D= 0,1,2,00.,N .

1’

In the sequel, whenever reference is made to the differential
equation (2), it will be understood that ‘¢, B, ¥, b, €&, and A,

have the values prescribed by Theorem 2.2,

B
Definition 2.1. Let b = Kﬂ , n=0,1,2,..., N-1, and

3

c
c, = AnA:_l , n=1,2,...,N-1. Define gl(n) and gQ(n) as follows

for n=1,2,...,N-2.

g;(n) =L (n#1)b_, + (-n#l)b_ - b, - b I,

+ [(-2n - 1)bn+1 + (2n - 3)bn +b + 3b0]x1

_— - 2_ -
gz(n) = [(n+l)bnbn+l nbn bob + ¢ (2n+1)

1 1 Chtl

+ (2n-1)b 2

+ (2n—3)cn]x2 + [(-2n - l)bnbn+1 o

2
+bby + b+ 4n c +(-4n+8)cn]7\l

1 n+l

Theorem 2.3. The polynomial ¢n(x) is a solution of (2} for




n = 0,1,2,0..,8 if and only if gl(n) = g2(n) =0 for n=1,2,...,N-2,
To insure that equation (2) is nontrivial, at least one of M

or KQ must be nonzero, By use of the argument advanced in [2, Pp. 9-10],

. _ N _ 2
the choices A, =1, K2 = [(bl bo) + 4(01 + 62)]/30

1 and

2 b

fut
]|

(25, - b, - bo)[(b

2 _
1 -bo) +4{c +02)] + 902(b0~b2) =0

1 1

are justified. With these values of kl and AQ inserted in the expres-
sions for gl(n) and gQ(n), Theorem 2.3 provides a necessary and suf-
ficient condition that ¢n(x) be a solution of the nontrivial differential
equation (2) for n = 0,1,2,...,N. In all that follows, the values above
for hl and KQ and the condition & =0 will be assumed.

Another fact will prove to be of importance in future analysis.

With Ko = 0 and kl =1 it follows from (iii) of Theorem 2.3 that

Ki s kj (i # 35 1,3=0,1,2,...,N) if and only if
20i+3 -2 . L o
Kzi‘ ——L—)-(i+j-1 (1 £ 3, 1+3225 1,5 =20,1,2,...,N).

/’

Consequéntly, Theorem 2.3 and the results following it can be summarized
as a single theorem.

Theorem 2.4, qpn(x), n=20,1,2,...,N, is a solution of the non-
trivial differential equation (2), in which N # Rj (1 # 33 1,320,1,2,...,N),

if and only if

(i) 4=03
) 2(m -2

(ii) [(bo - bl) + 4(01 + C2)]/3C2 is different from 1

fOr m = 2,3,.&0,2N'1;

S TR R e




(ii1) gl(n) = gg(n) =0, n=1,2,...,N=2, where gl(n) and
. _ _ 2
gQ(n) are evaluated with A, =1 and A, = [(bo -bl) -+4(cl +c2)]/3c2.
As an important cleosing remark to this chapter, it should be
noted that the equations gl(n) =0 = gQ(n), n=1,2,...,N-2, c¢an be

regarded as a system of linear first-order nonhomogeneous difference

equations:
[(n+1)x2 - {2n + 1)]bn+l -[{n - DA, - (2n - 3)]bn (3)

= (bo + bl)x2 - b, -3b,

[(2n+1)l2 - 4n]cn+1 -[(2n -3)&2 - (4n -8)] <,

_ 2
=[(n+Dbb - nb"-bb +c ],

2 2
- - - +
+ (-2n l)bnbn+1-+(2n l)bn + bobl bO ’

n=1,2..., N-2 .

Again, it is understood that A = 0 and that kl and k2 have the
values prescribed:in part (iii) of Theorem 2.4. The requirement that
k2 be different from 2ﬁ?§2l for m = 2,3,.}.,2N -1 implies that the

difference equations (3) have no singular points; hence, the unique solu-

tion to gl(n) = 0 (for given b,s by, and Kz) is

X =[(b0+bp(h2-2)-+(bl—bo”[(n-lﬂk2-2)-F2]n-2on2—2)+2bo
n 2An(r, = 2) +1][(n - 1), - 2) +1]

n = 2,3,-.-,N'l »

,» (4)
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as deduced in [2, p. 12]. The equation gQ(n) = 0 for the unknown cn
is considerably less tractable because of the more complicated nonhomo-
geneous term. However, this equation has been solved in the special
cases A, =2 and b = b, (2, pp. 12-13]. The solution in the gen-

eral case will be given in Chapter IV.
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CHAPTER 111

PROPER THREE-TERM RECURSIVE

FINITE STURM-LIOUVILLE POLYNOMIAL SEQUENCES

fhe objects of Chapter III are as follows:

(1) +to give necessary and sufficient conditions that a proper
three-term recursive finite Sturm-Liouville polynomial sequence be of Her-
mite, extended generalized Laguerre, extended generalized Bessel, or gen-

eralized Jacobi type; and

(2) to give a complete mathematical classification of all proper

three-term recursive finite Sturm-Liouville polynomial sequences.

Characterization of Finite Hermite, Laguerre, Bessel
and Jacobi Polynomial Sequences

Defipition 3.1. Let n be a nonnegative integer. The Hermite

polynomial of degree n, denoted by Hn’ is defined by

n
(3
N GILEY
H(8) = ) oo o207 (2t
k=0

[}=]

where [ %] means the greatest integer less than or equal to

— A

Lemma 3.1. Let n be a nonnegative integer. Then Hn t) sat-

isfies the differential equation

4° d
—l-zta%f+2ny = 0

= 5 (5)
dt?
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and if Wn(t) is a polynomial of degree n in t which also satisfies
(s}, &n(t) = Dan(t), where D is a term depending possibly on n but
not on t.

Both of the results above are well-known [4]; so they are not
re-proved here,

The following two theorems provide a necessary and sufficient

condition that a finite sequence {¢n(x:}N generated as in (1) be --

) n=o
apart from a linear change of variable and multiplicative factors inde-
pendent of x -- a finite sequence of Hermite polynomials in the variable
x. Here, as in all that follows, N 1is a fixed but arbitrary integer
greater than or equal to three, and Dn denotes a nonzero term indepen-
dent of x.

Theorem 3.1. If for n = 0,1,2,...,N the coefficients of @n(x)

satisfy @ by = b, @ X,=2, and @ gl(n) = gQ(n) = 0,

2
© b
. 0= 0,1,2,...,N,

' 1 o
= ces - = -+
n=1,2, JN-2, then qn(x) Dan ( = X =
1 ¥l
where the principal square root is taken.

Proof. If conditions @ - (@ hold, Theorem 2.3 implies that

@n(x) satisfies a differential equation of the form (2) in which kl =1,

k2 = 2, and b1 = bo' Consequently, ¢n(x) is a solution of

d’y dy
c) ) 5 - (x + bb) gx Foy =0, (6}
x
n=20,1,2...,N. Under the change of variable ¢t = 1 (x + bo), where
2c
1

again the principal square root is taken, (6) becomes (5); hence,

¢n(t) =9, ( /2;1 t - bo) is a polynomial of degree n in t which
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satisfies (5), n=0,1,2,...,N. By Lemma 3.1, ‘¢n(t) = Dan(t); that

b
X o]
is, ¢ (x) =DH ( + . no=0,1,2,...,N.
n nn\ /oo foe
1 ]

Theorem 3.2. If there exist a nonzero constant p and a con-

stant v such that ¢ (x) = Dan(ux +v), n=0,1,2,...,N, then the
coefficients of Qn(x) satisfy conditions @ - @) of Theorem 3.1.
Proof. If such constants p and v exist, it follows from

Lemma 3.1 that ¢ (x) is a solution of

1 g2 v\ dy
~3 —-% + {-x - = )a§‘+ ny = 0, (7)
0n° dx W

n=201,2,...,N. Equation (7) is a nontrivial differential equation of
the form (2) in which Al =1 and hQ = 2. Hence, by Theorem 2.3,

gl(n) = 92(n) =0, n=1,2,...,N-2; and, from part (i) of Theorem 2.2,

I
0=p=0(apB +3aB)-2(aB + AlBo)]/QAOAl = 3(b, -b)).

Clearly Theorems 3.1 and 3.2 can be combined into an "if and
only if theorem" as follows:
For n = 0,1,2,...,N the coefficients of ¢n(x) satisfy
conditions (@ - @ if and only if there exist a nonzero
constant B and a constant v such that mn(x) =Dan(uX'+V)}
n=0,1,2,...,N.
However, for clarity and ease in applying these theorems, it seems
better to state the results separately. For if @O , ® , and @
hold, Theorem 3,1 specifies @n(x), n=20,1,2,0..,N to within a multi-
plicative factor independent of x; and Theorem 3.2 -- in contrapositive

form -- states that if any of @ , @ , or @ fail to hold, it is
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impossible for {?n(xi}ﬁ=o to be ~=- within a linear change of varlable --
{ann(xi}ﬁ=o. It should be noted that if conditions @ and @ are
true and 1f @  holds only for n = 1,2,..45k, 1 < k <N - 3, then the
conclusion of Theorem 3.1 is valid for n = 0,1,2,...,kt+t2.

The remaining part of this sectlon is devoted to theorems which con-
cern the existence of finite Laguerre, Bessel, and Jacobi polynomlal
sequences, These theorems are much like Theorems 3.1 and 3.2 both in
formulation and method of proof. For each of the three types of poly-
nomial sequences mentloned, there are two applicable theorems which can
be combined, if desired, into an "if and only if theorem." However, in
order to facllitate their application and improve the clarity of the
exposition, they are stated separately. This format is consistent with
that followed for the Hermite case,

Definition 3.2. Let n be a nonnegative integer and a any
complex number. The extended generalized Laguerre polynomial of degree

n, denoted by l}?, 1s defined by

n k. k
& - a+n -1t
L= ) I SHE,
k=0

where (:'t: ) is a generalized binomial coefficlent defined by

n=k
n (a+k+3)
a+n 3=l
(n -k } = CEE If 0<kg<n-1

and (a;n) =1,

The definition of LT? given here agrees with that of the classical
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generalized Laguerre polynomial of degree n whenever a > - 1. Because
no such requirement is made of a in this development, the adjective
"extended" has been added in the definition.

Lemma 3.2. Let n be a nonnegative integer and a any complex
number. Then L % (t) satisfies the differential equation

N

d? d
t=%+(a+1-1t)T4+ny = 0; (8)
12 dt

and if vn(t) is a polynomial of degree n in t which also satisfies
_ a
(8), ¥, (t) =DL ().
The conclusions of Lemma 3.2 are well-known if a > - 1[4]. For

the general case, direct substitution shows that LT?(t) satisfies (8).

oo
If \]/n(t) = z .snktk is substituted in (B) (with a
k=o

if 3 is expressed in terms of a s and if the resulting expression for

K= 0 for k> n+1),

a, is compared with the coefficient of t° in the definition of L *(t),
the second conclusion of Lemma 3.1 follows.

Theorem 3.3. If for n = 0,1,2,...,N the coefficients of q)n(x)

satisfy Q@ b, # b, ® N, =2, and €)) gl(n) = gQ(n) = 0,

dc
n=1,2,...,N-2, then ¢ (x) =D L2(ux +v), where a = ———r - 1,
n nn (b -b )2
2¢ 4] 1
k=5 -2b , and v = E_Q-b- bo + b————-}]; >, for n=0,1,2,...,N.
0 1 o 1 o 1

Proof. If conditions @ - & are satisfied, it follows from

Theorem 2.3 that Qn(x) is a solution of (2) in which kl =1, A, =2,

2

and b, 7 b,- Hence, for n = 0,1,2,...,N ?n(x) is a solution of




2
[(bo -b))x (b -1bb + 2cl)] a2y

dy _
+ - (x-+bo) I + ny =
dx

2 2

4cl

(bo -b,

which transforms to (8) -- with a = 5
)

b -b b -b

2 2%
of variable t = 7——— [x + bo + - . By Lemma 3.2
o 1 o 1

s W) T
n 2 o b, - b

or, in terms of x, ¢n(x) = DnL;a(ux +v), n=0,1,2,...,N,

‘l'n(t) = Dn]'na(

B, v, and a are as specified in the theorem.
Theorem 3.4. If there exist a nonzero constant @ and
a
v and a such that ¢n(x)v= DL (px +v), n=0,1,2,...,N,
coefficients of @n(x) satisfy cenditions @ - @ of The
Proof. If such constants pu, v, and a exist, it fol

emma 3.2 that x is a solution o
L 3.2 th @n( ) i luti £

{px + v) d2y + (a + 1 - px -v) dy

p2 dx2 I dx

+ny =0,

n=20,1,2,...,N. Equation (10) is of the form (2) in which hl

A, = 2. Consequently, by Theorem 2.3, gl(n) = gQ(n) =0, n=
by - b1

and from part (i) of Theorem 2.2, O # & =p = 5

Definition 3.3. Let n be a positive integer, b a no

complex number, and a & complex number not an integer in [-2

-(n-1)]. The extended generalized Bessel polynomial of degree

(a,b)

denoted by Bn

is defined by

16

o, (9)

- 1 -- under the change

t) ;

where

constants
then the
orem 3.3.

lows from

(10)

=1 and

1,2,...,N=-2;

nzero

(n'l)s

n,
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n
B (a’b)(t) = E: (:) (n+k+a- 2)(k)(%)k s

n
k=0
h 0y = (n +k + 2)(k)—;‘1(n+k+ -3 -1)
wnere k-k_!_(n—_k)!_’ n a - —j=l a N

(0)

if 1<k<n, and (n+k+a~2) = 1. For nonzero complex b,

the generalized Bessel polynomial of degree zero is defined as

(a,b) -
B, (t) £ 1.
The definition above agrees with that of the generalized Bessel
polynomial of degree n provided a is other than a nonpositive integer
[3]. Because a less stringent requirement is placed on a 1in the present

work, the adjective "extended" has been added. The condition imposed on

a for n>» 1 is the minimal one which guarantees that the expression

Bn(a,b)

for is a polynomial of degree exactly n.
Lemma 3.3. Let n be a nonnegative integer, Then Bn(a’b)(t)

is a solution of the differential equation

2 d2 d
t“ SL + (at +b) X - n(n -1 + aly = 0 ; (11)
2 dt
dt
and if $n(t) is a polynomial of degree n in t that also satisfies
(11}, in which a and b fulfill the requirements of Definition 3.3,
_ (a,b)
then ¥ (t) =DB_ (t). |
The results of Lemma 3.3 are indicated in [ 3] for the case in
which a 1is not a nonpositive integer and b # 0. For the general case
in which it is assumed only that a 1is not an integer in [-2(n*l),—(n~l)]

(n>1) and b # 0, use of the techniques outlined in the remarks fol-

lowing Lemma 3.2 suffices to prove the lemma. When
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(=]
¢n(t) = Z:aktk is substituted into (11), the recurrence formula for
k=0

the coefficients a

k 18

ba

n
K+l - k 2y (12)

k =0,1,2,...,n-15 and a =0 for k> n+l. Equation (12) is of
importance in the next section of this chapter.
Theorem 3.5. If for n = 0,1,2,...,N the coefficients of ¢n(x)
. 2 2 _
satisfy @ k2 £2, ® (Kz - 1) (b0 - bl) + 4&2(k2 - 2)c1 = 0,

2g -2)
® gl(n) = 92(n) =0, n=1,2,...,N-2, and @ 7\2 # : -1 for

m= 2,3,...,2N-1, then ¢n(x) = Dan(a’2)(ux;+ v) for n = 0,1,2,...,N,

20\, - 2)2
where a = f_—%_ﬁ" k= b -b ?(h ) and
2 0 1 2
- (A, - 2)[(bo +b A, - (3b_ + bl)]
(xz - 1)(b0 - bl)
Proof. Whenever conditions @ - @ hold, Theorem 2.3
implies that ¢n(x) satisfies {2) with SR I PR 9 #2, and
2 2
(A, - 1)°(b_=b, ) +4rn_(N, - 2)c
0=D=p2- 4oy = —= 2 22 1. (a

Therefore, for n

091,25404,N mn(x) is a solution of

(2 -x,) 2
———??—g_ (x - x*)2 g—% - (x + bo) g% +[:-r1-‘(--r:%—--ll KQ -n(n-2)]y =0, (14)

dx
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H Ag(bo + bl) - (3b0 + bl)

® R
where x = (o - kz) . If the change of variable
t = x - x¥ is made, equation (14) transforms to an equation of the

2 (b, - by)(Ay - 1)
form (11) in which a = and b = . Clearly

A, -2 2

2 (, - 2)

b # 03 for if it were, (@ would become kz(kz - 2)01 = 0, which is

a contradiction because X, # 0, A, #2, and ¢, #0 (note that this
is the first place in the proof that @ has been utilized, an obser-

vation which will prove useful in the next section of the chapter). Also,

a is not an integer in [-2(N-1), 0] ; for if N %_2 =a= -j, where
' 2
j 1is an integer satisfying 1 < j < 2N -1, then A, = gilgl—il , which

contradicts @) . By Lemma 3.3 ¢n(t + x¥) = Wn(t) DnBJa’b)(t) =

(a,2) (2t B _ (a,2)r 2(x-x")
DB, (7). Hence, for n =0,1,2,...,N g (x) =DB_ [ c 1.

The conclusion of the theorem follows immediately.
Theorem 3.6. If there exist a nonzero constant p and constants

(a’b)(px +v), n=0,1,2,...,N,

v, a, and b such that ¢n(x) =DB_
then the coefficients of @n(x) satisfy conditions @ - @ of
Theorem 3.3.
Proof. The existence of such constants, Lemma 3.3, and the fact
that a cannot be zero imply that pn(x) satisfies
1 v\ 2 gfx v b \dy n-1

-E(X+|.-L) dx2+(-x-;-a‘g)dx+n(—g‘+l)y=0, (15)

n=0,1,2,...,N. Equation (15) is a nontrivial differential equation of

the form (2) in which A, =1, A, = 2(:+1) #2, and the discriminant
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(, - 1)2(b0 - b1)2 + a0, - 2)c)
D=20-= 2 . By Theorem 2.3

2 .
gl(n) = gz(n) =0, n=1,2,...,N-2;5 and because - = a is

(from Definition 3.3 applied to n = 1,2,...,N) not an integer in

[-2(N-1), 0], it follows that A, f 2%%f21 . omo= 2,3,...,N-1.

Definition 3.4. Let n be a positive integer and let a and
b be any two complex constants such that n+ a +b + k # 0 for each
integer k between one and n inclusive -- so that a + b 1is not an

integer in [-2n, -(n+1)]. The generalized Jacobi polynomial of degree

n, denoted by Pn(a’b), is defined by

1

n (a+j) n-1

- k n-k 1k
plaad)yy =L, L Y | (n+atb+s) @ (a+k+mM1JJ]

n ni n. k o) n=1 2
k=1 J
n
T{(n+a+b+ j)
j=1 t-1,"
¥ nt ),

where it is understosd that a summand is omitted when n = 1. For any two
complex numbers a and b, the generalized Jacobi polynomial of degree
zero is defined as Pga’b)(t) =1,

Definition 3.4 agrees with that of the classical Jacobi polynomial
of degree n provided a > -1 and b > -1. The adjective "generalized"
has been added to indicate a relaxation of these restrictions. The con-

dition imposed on a +b for n > 1 is the minimal one which guarantees

(a,b)

that Pn

is of degree n.
Lemma 3.4. Let n be a nonnegative integer. Then Prfa’b)(t) is

a solution of the differential equation
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2
(1-t2) 9-—325+[b-a-(a+b+2)t]%‘tl+n(n+a+b+1)y=0; (16)
dt

and if ¢n(t) is a polynomial of degree n in t that also satisfies
(16), in which a and b fulfill the requirements of Definition 3.4,
then y _(t) = ann(a’b)(t).

The assertions of Lemma 3.4 are verified in [4 ] for the case in
which a > -1 and b > -1, For the case in which it is assumed only
that a +b 1is not an integer in [-2n, -(n + 1)] (n > 1), the remarks

made after the statement of Lemma 3.2 again apply. In this connection,

=]
use of the solution wn(t) = E:a
[’} k=0
rather than wn(t) = Z:aktk simplifies the verification.
k=0

t -l)k, where a, = 0 for k > n+tl,

k( k

Theorem 3.7. If for n = 0,1,2,...,N the coefficients of @n(x)

. 2 2
satisfy @ Ay # 2 2 (x2-1) (bo-bl)

Q@ gl(n) = g2('-1) =0, n=1,2,...,N-2, and @ J’\2 ¥ 2rnm---:l.2 for

+ 4}.2(x2-2)c1 # 0,

m=1,2,...,2N-1, then for n = 0,1,2,...,N (pn(x) = DnPn(a’b)[l-Q(px +v)],

| 2(x, + b)) 2(x. + b )
i 1 0 2 o) 1
, where a = -1, b= -1, =
(x2-2)(x1-x2) ? (K2—2)(x2-x1) ’ Xp = %)
X
v=-7 { < ! and
2 1
2 2
. >.2(bo+bl) - (bl+3bo) L1 (>.2-1) (bo-bl) +4a2(A2-2)cl
2 2(2 -x2) 2 (2 - "2)2

7\2(190 + b)) - [bl + 3b0)
and x, = - X are the two distinct zeros of
1 2 - KD 2
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2
the coefficient of dy in (2) (the square root used being the principal

dx2
one). Moreover, neither a nor b 1is an integer in [-{N-1), - 1].
Proof. If conditions @ - @ hold, Theorem 2.3 implies
that Qn(x) is a solution of (2) in which A, =1, A, #2, and D # O,

Consequently, ¢n(x) satisfies

k2 QEX dy n{n-1)x
(1 - - ) (x - xl)(x - x2) dx2-m(x+b9 Ix +[ 5 - n{n-2)]y =0,
(17)
n=20,1,2,...,N, where the unequal quantities Xy and X, are as
specified in the statement of the theorem. If the change of variable
t=1-+ ?_ (x - xl) is made, (17) transforms to an equation of the
2 7
g (”“; 2(xl + bo) 2(x2 + bo)
form (16) in which a = -1 and b = - 1.
(kz -2)(x1 -x2) (K2<-2)(}2 fxl)
Condition @) , used in this proof for the first time, forces
at+bs= k2?-2 - 2 +to be other than an integer in [-QN, -2]; therefore,

by Lemma 3.4,

(x, - x,)(1 -t)
®n [ - é ¥ x;] E'wn(t) - ann(a’b)(t)

so that

{a,b X 1
tpn(x) = ann 4 )[1 - 2 = 1 ] I n=0,l,2,...,N.

The condition concerning a and b 1is now easy to prove. From

P(a’b) in terms of P (a,b)

n+l n and

the general recursion formula for

PnE?’b) [ 4] , which is valid for all values of a and b permitted in
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(a,b)

Definition 3.4, one need only note that the coefficient of pn-l

includes multiplicative factors nt+a and ntb., The assertion is now
evident since £Qn(xx}§=o = DnF}fa’b)[ 1 - 2(ux + v)j}i=o is to be a
proper three-term recurcive finite sequence. The last sentence in
Theorem 3.7 is of consequence in the next section of this chapter.

Theorem 3.8. If there exist a nonzero constant @ and con-
stants v, a, and b such that pn(x) = DnPJa’b)[l -2(px+v)]
n=20,1,2,...,N, then the coefficients of Qn(x) satisfy conditions
@® - @ of Theorem 3.7.

Proof. The existence of such constants, Lemma 3.4, and the fact

that a + b + 2 cannot be zero imply that mn(x) is a solution of

2
(px + v){1 -ux -v) d%y + at 1l _olpx + v)] dy (18)
p.2(a+b+2) a2 nia +b+2) N dx
n{n +a+b+1) _
* at+b+2 y=20,

n=0,1,2,...,N. Equation (18) is a nontrivial differential equation

of the form (2) in which A =1, A, = %ﬂ;’;’%l #£2, and D £ O.

Therefore, gl(n) = gz(n) =0, n=1,2,,,.,N-2, by Theorem 2,3; and,

since -2=a+b is not an integer in [-2N, -2], K2 # Zégle’

2
KQ -2 1

m = 2,3,---,2N-ln

Classification of the Polynomials Generated

In this section all types of proper three-term recursive finite
sequences of polynomials whose coefficients satisfy the hypothesis of
Theorem 2.3 are identified. Diagrams summarize the results at the end

of the discussion.
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For the case in which k2 = 2, the classification has already

been completed. Specifically, if b1 = bo Theorem 3.1 settles the

issue; and if b1 # bo Theorem 3,3 applles. Suppose that kz F 2

and A, # gé%fgl for m = 2,3,...,2-1,. If the discriminant D of

2
the coeffictent of S% in (2) is zero, Theorem 3.5 provides the
dx '

answery and if D £ 0, Theorem 3.7 suffices. Consequently, the fol-

lowing two cases remain to be considered: (a) Ny B2, A, =
2(mo -2)
7 for some integer m_ 1in [2, 2N-=1], D =03 (b) Ny B2

m -
0
2(m° -2)
hem -1 0 DA

From the proof of Theorem 3.5, whenever the first case occurs
qn(t + x*) E\pn(t) js a polynomial of degree n in t which satisfies
(b, - by)(A, - 1)

(g - 2)2

and b =

{11) in which a = , n=0,1,2,000,N.

2
hz -2

. -]

Suppose first that b £ 0. Then substitution of wn = E: aktk, where
k=0

a, =0 for k2n+1l, into (11) leads to recursion formula {12) in

which b £ 0. It is clear from (12) that ¥ (t) 1is of degree n 21 if

and only if f—%TE = a f -2(n-1); and, because this inequality must be
‘ 2

true for n = 1,2,...,N, x—g—- cannot be an integer in [-2(N-1), 0].

-2
This result implies that N, ¥ gﬁﬂfigl for m= 2,3,...,2201 == a con-
tradiction.
(bo - bl)(k2 - 1)
If 0=b = — s the condition D = O reduces to
Ahy = 2) ¢ =0 so that A, = 0; hence, b =0 implies A, =0 and
by, = b,. Furthermore, a = f'%TE = =1 so that (12) reduces to

2

e
b=
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ak(k -n)k - {(2-n)] =0 (19)

for 0< k € n. Since wn(t) is to be of degree n for n = 0,1,2,...,N,

s . n 2
(19) implies that wn(t) =dt, n=0,1,3,...,N, and wz(t) = d t" +e,,

where each dj # 0 and e, is arbitrary. Suppose that N > 4. Then,

2
since (x) must be generated as in (1) and { (x)}N =‘{¢ (x-x*)}N
?n , 9 ®n n=¢ ~ Ll'n n=o ?

)2

d4(x - x*)4 (A.x + Ba)da(x -x*)3 - qa[dz(x-x* + e2] (20)

3

3

[Aa(x - x*) +(BS-+A3X*)]d3(x - x%)

{(x - x*)2— C.e

-C3d 385 -

2

But {20) implies that C3 = 0 -- a contradicticn; so N must be equal

to three. If N =3 and ey = 0, a contradicticn arises because ¢2(x)

is not generated from Qo(x) and ¢1(x) as prescribed in (1) with

s 3 . .
Alcl # 0. If e, # 0, the finite sequence {qn(x)} is easily seen

n=o0
to be a proper three-term recursive finite polynomial sequence. Egqua-
tions (3) with A, =1, A\,=0, b =b_, and N =3 are equivalent

to b,=b_ and c, = -c It follows from (1) that ¢n(x) = Dn(x-+bo)n,

2 ) 2 1°
n=0,1,3, and gy(x) = Dz[(x-+b0)2 - ¢,], where D_ = 1. Thus, the
discussicn of the first case is complete.

Before undertaking the analysis of the remaining case, it is help-
ful to verify the following lemma.

Lemma 3.5. Let n be a positive integer, and let a and b be
any two complex constants such that n+ a + b+ k =0 for some integer

k satisfying 1 < k < n. If wn(t) is a polynomial of degree n in t

which satisfies (16), then a must be an integer lying in [-n, -1] such
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that 1 < k € -a < n. Moreover, when all of the above conditions on a

and b are fulfilled, =r(t) = (1 -t)-aF%+§-a’b)(t) is a polynomial of

degree n in t and s(t) = Pk_ia’b)(t) is a polynomial of degree k -1

in t.
o0
Proof. The recursion formula occurring when wn(t) = z:am(t-l)m
m=0
is substituted into (16) is
: [n-(m-lﬂ(n+a+b+m%W1
(m+a)a = - (21)

for 1<{m<n, and a, = 0 for m2n+1. If a is not an integer

in [-n, -1], it follows from (21) that a, = a = ...=a_ =0 so

that (t) is not of degree n. If a is an integer in [-n, -1],
n

say a = -1 where i+ 1< k< n, (21) shows that 3,58 Tees T =0,

a, 1is arbitrary, 3,410 3gpprcecs ¥, are expressible in terms of

i

a, (provided i+2 < k < n), and 8 = 8, = --- =a = 0. Again, Wn(t)

is not of degree n. Finally, if a = -i is an integer in [-n, -1] and

1<k<i<n, (21) implies that a,, a are expressible in

12 %2008

terms of a_ (provided k > 2), 3, =34 T eee =2 _; =0 (provided

i>k+1), a; is arbitrary, and a are expressible

i+1’ ai+2,.-., an

in terms of a, (provided i< n -1). In this case

k-1 n
_ 1y M
v, (t) = E a {t-1)" + z a (t-1)7, (22)
m=0 m=i=-a
where a is arbitrary, a; is nonzere, and the remaining a, - if

any =-- are expressed in terms of a, or a by means of recursion for-

i
mula (21).
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If a = -n the assertion for r 1is trivial. If 1< -a<n-1,
n+a-a+b+3j3=n-n-a-k+j=(a-k)+3i>j#0 for each

integer j such that 1< j < n + a. By Definition 3.4 and the remark

(-2:0)(4)

concerning a + b in the paragraph following that definition, Pn+a

is a polynomial of degree n + a in t. The assertion concerning r 1is
then immediate. Similarly, if k =1 the assertion for s is trivialj;
and if 2<k<-a{n, k-1+a+b+j=k-1l+a-a-n-k+3j-=
-{n +1) +j £0 for each integer j satisfying 1< j < k - 1. There-
fore, s(t) is a polynomial of degree k -1 in t.

It is interesting to nete in the special circumstances of Lemma
3.5 that the expression for Pﬁa’b)(t) reduces to the zero function. Thus,
in some instances there is a polynomial solution to (16) of degree n in

(a’b)(t). This peculiar polynomial will later be

t which is not Pn

identified as a linear combination of two functions -- one a Jacobi poly-

nomial and the other a product of a Jacobi polynomial and a power of 1 -t.
The necessary mathematical machinery is now available for study

of the second case. As in the proof of Theorem 3.7, the conditions

2(m_-2)
g,(n) = 92(n) =0, n=1,2,...,N-2, A, #2, DFO, and Ny = g
o

for some integer m  in [2, 2N - 1] imply that

(x, - x,)(1 - t})
? 2 ; +x E‘Vn(t)

is a polynomial of degree n in t which satisfies (16) in which

2(x1 + bo) 2(x2+b0)
a = -1 and b = ‘ - 1. From this start-
(Xz-2)(x1 -x2) (h2 -25()(2 —x17

ing point all but two sets of circumstances c¢an be shown not to exist,
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First, it is noted from the discussion in [2, pp. 18 - 23] that

2{m - 2)
- _ 0o . . -

KQ = n_ - 1 implies cmo+1 0. Hence, in order to guarantee <, £ o0,
n=1,2,3,...,N-1, m, must satisfy N -1 < LR < 2N -1, Next,

2(mo -2)
A, = ——— implies the existence of a first integer n_, 1 < n_ <N,
2 m, - 1 0 - o~
and a corresponding integer ko, 1< ko < n, < N, such that n0+a+b+ko

For if not, it follows as in the proof of Theorem 3.7 that ¢n(x) =

X
ann(a’b)[l -2 (5 "_x - _lx )], n=0,1,2,...,N; consequently, by
2 71 2 7
Theorem 3.8 A, # 2m-2) , m=2,3,...,2N-1 -- a contradiction. In fact,
m -1 ? ’
the integer n, must be strictly greater than one; for if n, = 1, ko =1
so that 0 =a +b + 2 = 2 .
h, =2
2
By Lemma 3.5 a must be an integer in [-no, -1] and must satisfy
1<k, <-ag<n. Moreover, since wn(t) is a polynomial of degree n
which satisfies (16) for n = 0,1,2,...,n -1, Lemma 3.4 implies
(a,b .
¢n(t) =DP 7 )(t), n=0,1,2,.,.,n -13  that is, @n(x) =
(a,b) p X) .
ann ? 1 -2 e T T ox s h = O,:1,2,...,no - 1. By replacing
2 1 2 1/~
N by n, -1 and assuming that no > 4, 1it follows from the last state-

ment of Theorem 3,7 that a cannot be an integer in [-(no -2), -1].

2 and n
o

The subcases

n, = = 3 are taken up in subsequent paragraphs.

The discussion of the preceding paragraph proves that either

n,= =28 or n, = 1l -a when n, 2 4. Thus, by the definition of n,s
n, = -a3 and consequently, from n,tad+ b + ko = 0, ko = -b so that
b 1is an integer in [-n_, -1]. In fact, if a + b = 2__2-= -(m_+1)
o ‘ 12<-2 o
iseven, n +t+a+b+k =0 implies k =n_= - (8 L b)° and if
* Yo o o 0 2 7

=0,
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a+b 1is odd, n, +a+b+ ko = 0 implies ko n -1 = .:ié;thl;tl - 1.

i

0 2
Since a 1is an integer in [-n_, -1] and 1<k < -a=n <n, (22}
with n = nys 3= 7N, and k = ko yields
ko-1 _ ny
¥y (0 - e (23)
m=o

where a = wno(l) = mno{xl), an0 # 0, and the remaining a =-- if any --

are determined via (21) in which n 1is replaced by nys 2@ by Ny and
b by -ko.

n n {(n_,-k )
Clearly a_(t-1)°=E (1-t) °P_ ©* 70%(¢), where E_ is
8] o) ¢

a nonzero term independent of t. Also, a routine computation utilizing

recursion formula (21) with n = ngs 8= -ng, b = -ko and a comparison
k_-1
0 n (-no,-ko)
of like terms yield E: a{(t-1)"=F P (t), where F is
m n, ko-l R
m=0

a term independent of t which is nonzero if and only if a # 0. There-
(ngs-k,) (-n_,-k

0
(t)+ F P
¢ o

o’ O)

fore, (23) becomes I (t) = E (1 -t)no P, (t).

o) o)

- : N . . .
If n, = N, the nature of the sequence {¢n(x)}n=o is determined;

if not, the case n = n, + 1 must be considered. In this situation
(-n_,-k_)

{ng*+) +a+b+{k -1)=0 If k =1, ¥ (t) =DP_ (t),

n=n, +1, No + 2,...,N, as guaranteed by Lemma 3.4. If k0 2 2,

(no +1)+a+b+ (k0 -1) =0, a-= -n, is an integer in [-(no+l), -1],

and 1 < kO -1 -a-= n, <n 1. Hence, Lemma 3.5 with n =n + 1

and k = ko - 1 applies so that (22) becomes
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ko-2 no+l
’qfn +l(t) = Z am(t -l)m + Z a'm(t-l)m , (24)
° m=9Q m:no

where a = ¢n°+l(l) = ?mo+l(xl)’ ano # 0, and the remaining a are

determined from (21) in which n is replaced by N, +1, a by 03

and b by -ko. With the aid of recursion formula (21), one can show --

as in the preceding case when n equaled n, and k equaled ko -

n n_, -k -n_,-k,)
. . ) © or%p 0?0
that (24) yields A +l(t) = E_ +1(1 t) P (t) + FooPx o 1),
o 0 0 o
where Eno+1 is a nonzero term independent of t and Fn0+l is a term
independent of t which is nonzero if and only if a_ £ 0.
The process of reasoning indicated above for values n = n,s k = ko

and n = n°1+1, k = ko-+l can be repeated verbatim for values ef n
and k increasing and decreasing respectively in steps of unity until
either n, + j>N or ko - J £ 0 for some positive integer j. After
this point is reached, the remaining polynomials generated in the finite
sequence {W (ti}N if any, are guaranteed by Lemma 3.4 to be

n=o ?
_ko?

-n
D P o’ (t) . For the general case in which wn(t) is different

(-n_,-k,)

from D P_ '°’ (1),
n n_,-k_) {(-n_,~k.)
- 0 0’ o o* "o
Vo +mtt) = B 4p(1-t) © P (1) + FL y P (mi1) (B)s ()
) o o 0
where Eno+m is a nonzero term independent of ¢, Fn°+m is a term

(1) =

independent of t which is nénzero if and only if a, = ¢n0+m
?n0+m(x1) # 0, and integer m satisfies 0 < m < j = min(N -no,ko-l) <

N - 4. As before, (25) is verified in a routine fashion by using (21)
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in which n = Ny +m, a-= ny» b = -ko to determine the coefficients

of ¥ 4y 1IN (22) with k = k,-m and a =-n and then comparing
o]

like terms in (25). That the Jacobi polynomials displayed in (25) are
of degree indicated by their subscripts is a consequence of Lemma 3.5.

The nature of '{Wn(ti}§=o has now been specified; therefore

- X XI "
{q)n(X)}I::O = ﬁjn[l -2 <x2 - xl - X2 -XD]}IFO‘

is also determined. This completes the analysis of the second case

except when no =2 or no = 3.

If Ny = 2, then 2+a+Db+ ko =0 for 1 X k0 <2<N so

‘that either k0 1 or k_ = 2. Moreover, by Lemma 3.5, a must be

e}
an integer in [-2, -1] and satisfy 1 < k,<-a<n =2¢&N, If

k, =1, either a=-1 or a=-2. Suppose a = -l. Then, by (21)

and (22) with n = N, =2 k=k =1, and a=-l,

Yo(t) =a +a(t-1)[1+ iﬁgll] , (26)

where a_ = wz(l) = ¢2(x1) and a, # 0. A simple comparison shows that

- (1,-2) (-1,-2) .
¢2(t) = 52(1 -t)Pl ’ (t)-+F2PO *7¢(t), where E, 1is a nonzero term

independent of t and F2 is a term independent of t which is non-

zero if and only if a, # 0. Also, since -3 =‘-(no + ko) =a+bs=

2. ' -
—-'4 L = - = = - -
- 2 (mo-+1), m =2 so that A, =0; and, since N-1<m <
2N -1 is to be satisfied, N = 3. A similar analysis can be performed
for the case n =2, k =1, and (a,b) = (-2, -1).

In addition to the two sets of circumstances listed above, the
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following can arise: n =2, k =2 (a, b) = (-2, -2); n_= 3,

k
0

(a,b) = (-2, -3) or (-3, -2); and n, = 3, k_=3, (a,b) = (-3, -3).

1, {a, b) = (-1, -3) or (-2, -2) or (-3, -1); n_ =3, k_ =2,

For each possibility a set of permissible values of N can be deduced

by means of the relations -(n_+k_ ) =a +b = —;g—f -~ 2= «(m ¥'1) and
o] 0 h2'-2 o]

N-1< m, < 2N -1, In general the following representations are found:

wno(t) =E Q1 -t) @ Pn(;:’b)(t) +F_ pkif;b)

0 ¢} o}

(t) ,

where En is a nonzero term independent of % ahdaiFn is a term inde-
o o}

pendent of - t which is nonzero if and only if a_ = Ve (1) = o (xl) #0;
Q Q

-3 (-a,b) (a,b)
a ’ ’
Voo (t) =E L (1-t}°P (£) + F_ P, 27 ()
n0+1 n0+1 -n0+a+l n0+1 ko 2
provided k,22 and N2 n°-+1 3 and
('ayb)

(t) + F P(a’b)(t)

_ -4
(t) = ) ,,(-t) P n +2k -3
o) o] o]

wn +2 n t+a+2
o o

provided N > n, + 2 and kD = 3, 1In the preceding expressions, the
Jacobi polynomials displayed are of degree indicated by their subscripts --

by Lemma 3.5. The remaining polynomials in the finite sequence

N . _ (a,b) N
{wn(ti}n=o satisfy wn(t) = ann (t). The structure of {Qn(xi}n=o
for the exceptieonal values n, = 2 and n, = 3 is thus known.

The results of the classification above are represented schematically

in the following figures. The constants u, v, a, b, Ny and ko appearing
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Ay = 2
by = b, b, # b,
\ a
@n(x) = Dan(px +v) vn(x) = DnLn (px + v)
} 2{m_ - 2)
)\.2 £ 2 and X2 }‘ -TT
D=0 DO
L/ !
|
9 (x) = DnBr(la’b)(ux +v) 9 (x) = anfla’b)[l - 2{px +v)]
2(m0 - 2)
N2 Myt Ty D=0
Q \
A,=0 and N =3 Either xzfo or N> 4
P, (x) =1 N
¢1(X) = Dl(x+ bo) No Such Case

?2(X) D2[(x+b0)2 -cl]

i - 3
i q’s(x) = Ds(x + bo)

Figure 1. Classification of the Polynomials Generated
by the Recursive Relation (1).
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2(m0 - 2)
ANy F 2 Ay=———7—, DO
)
/ \
2<m_ < N=2 N-1<m <2N-1
-0 —- / - o \
No Such Case a not an a an 1nteger
integer in [-no, in [- -n, s -1]
No Such Case ng 24 n, ‘"2orn =
("no,'ko) \
mn(x) = [1 -2(ux+v)](n=0,1,2,...,n0-1) As indicated
on page 32
LN (no’-ko)[l-Q( x+v) ]
o (x) =E [2(pxtv)] " P .
n n, 0
. Gno “k )
+F P ° [1-2(px+)]
. o 0
: n_ -k ) (-n_,~k )

( 0, (no" 0 o' "o
¢no+m x) = Eno+m[2(px+v)] P [l-2(px+v)]+Fno+mpko_(m+l)[1-2(px+v)]

n, (no,-ko) or g
®, +J(x) = E_ , j[Q(px+v)] Pj [1-2(px+v)]+Fno+ij (§41) [1 2(ux+v)],

where j = mip (N - ngs ko - 1),

(-n_,-k_)
?n(x) =DP % [1-2{(pxtv)] (n =n +j+l, n +j+2,...,N -- provided

nn
F 3 <N
O J )

Figuré 2. Classification offthe Polynomials Generated (cont.).
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are as previously defined in the text; the index n runs from zero
through N, inclusive; and the integer m, lies in [2, 2N - 1], It
is assumed that { (x)}N is generated as in (1) and that its coef-
Pn n=o
ficients satisfy gl(n) = 92(n) =0, n=1,2,...,N-2.
As a point in passing, it should be noted that the set of all
finite sequences {¢n(x)}:=o satisfying the conditions indicated in
. . a2 . N . .
Figure 2 is nonempty; that is, a finite sequence {qn(xj}ngo in which
some of its members are a linear combination of two types of Jacobi
polynomials (rather than one only) does exist. An example follows.
Let m, = 2k + 1, where k 1is an integer such that N -1«

2k+1 < 2N -1. Then choose bn = b

cl(2k-1)(2k+2-n)n
e T R Ierrm ey S L 1,2,...,N -1, where clfo.

or N 7™ 0,1,2,...,N -1, where bo;éo,

and ¢

The coefficients bn and ¢, SO chosen satisfy gl(n) =0 and
g,{n) =0 (n=1,2,...,N-2), respectively (2, pp. 18 - 21]3 c £ o

2 2
(x2 -1) (bo_ -bl) +4x2(x2 - 2)"'1

for n=1,2,...,N«13 and D = 2 - =

k2(k2 - 2)¢; # 0. Moreover, the equation 0 = n+ta+b+k =

) ] ) .
no+h2_2-2+ko-no-(mo+l)+ko—no-(2k+2)+ko for
2(bo + xl)
1< k0 < Ny < N implies n, = k+1-= ko; and a = o -2 (x =) -1 =
2 1 2
-{k +1) = -n, is an integer in [-no, ~1]. Consequently, if

N .
{§n(xi}n=o is generated as in (1) with the above set of <, and bn’

n=1,2,,..,N-1, the finite sequence will be of the desired type.
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CHAPTER 1V

SIMPLIFICATION OF THE THEORY

AND DISCUSSION OF SOME APPLICATIONS

Solution of the Equation gz(n) = Q

The solution of equations (3) is obtained in this section under

2§m -22
m-1 ’

tion when A, = 2 is already known [2, equations (11)], and the remain-

ing stipulation -- equivalent to A\, £ A (1 #3514, j=0,1,2,00.,N) --

the conditions A £ 2 and k2 # m=2,3,.4.,2N-1, The solu-

is the minimal one which guarantees that these equations have no singular
points. The solution of the system clearly facilitates usage of the
theorems developed in Chapter I1I; for instead of testing the coefficients
<, and bn one by one in the relatively complicated difference equa-
tions gl(n) = 92(n) =0, n=1,2,...,N-2, one can merely check whether
c and bn are of the proper form.

As was indicated in Chapter II, the first of equations (3) has
previously been solved under the stipulation A, # 2%?%%21 , m=2,3,...,
2N-1. Its solution appears as equation (4), Chapter II.* It remains,
therefore, to consider only the coupling equation of the system m-gz(n) =0,

The difference equation g2(n) =0, n=1,2,.,.,N-2, can be

rewritten as

»*
Even if the difference equation g¢,(n) = O has a singular point,
its solution is still known (see [2], pp. b7 - 20).
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[(2n+1)(n,-2) +2]c ) ~[(2n-3)(x,-2) +2]c_ = bn{t(n+1)(x2-2)+1jbn+l (27)

- [n(y2) #1230} = B[ (-1)by # BT # x5

Then, after the shift in index m =n + 1, (27) can be shortened to

bm-l(fmbm = fp-1Pne1

) (28)

%n’m T m-2%m-1 T
- bo(flbl - fobo) *t 9,4

m=2,3,...,N-1., It wilil be convenient in what follows to allow m to
take on the value 1. If <, is defined to be zero, (28) reduces to the

identity X A when m = 1, Therefore, nothing is lost by this

21 T MY
expansion of index range.

If (28) is multiplied by g__,, the left-hand side can be written

as V(gmgm_lcm), where V 1is the first-order difference operator
defined by Vh =h - h ;. Since
n
Ev(gmgm-lcm) = 993-1% ¢
m=1

n = 2,3,...,N-1, the problem of solving (28) for ¢, in a tractable
form reduces to summing the right-hand side of (28) multiplied by 9

To begin this task, it is noted from (4) that for m = 1,2,...,N-1

= Jm 1
pm-bo+f(1+f ), (29)
m m-1
=1 - m D SR | A -1
where J = 3 (b1 ‘ bo)fl. Also, since g (1 + 7 } Yy {1+ T ),
m m=1 m m=l




38

b o=i|pa+ge2zl) | (30)
m A 0 f f
m m-1
m=1,2,...,N-1. From {29), fmbm = bofm +J (m+ ?JE* } § conse-
m-1
quently,
V(fmbm) =bok+J-M . (31)

fm—lfm-Q

Equations (30) and (31) yield an expression for the first term on the

right-hand side of (28):

y 2
Sl PR (S O I 2
bpar V (£.0) = % [1 (2 g2 J+ box+ 2bJ (32)
m=-1"m=-2

. 2
hence, the last two terms of the right-hand side of (32) will eliminate
the second term on the right-hand side of (28)., Therefore, after mul-

tiplying (28) by 9,.1» ©One obtains

f

72 (k-l)ggm_1
v(gmgm—lcrn) "N %12 2 | Y 9% e (33)
m=1"m=2

m=1,2,...,N=1. With the aid of the difference formula

0 [m(fm_2-+l)] _ (k-l)ng_l

f2 2 2 ’
m-1 m=1"m=2

(33) can be rewritten:as
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12 m(t, ,+1)]
Viongny o) = X (%01 T YT 2 t 9109 (34)
m-1
n
m=1,2,,..,N-13 and sirce E:gm-l = n(fn_2 + 1), one can now sum
m=1
both sides of (34) from 1 to n to obtain
JQ 1
IIn-1% © n(fn-2 + 1)[:77 (- £2 )+ glc{] ' (35)
n-1

n = 2,3,...,N-1. The condition X, / 2m-2) 2,3,...,2N-1,

m-1
implies that 9.9,-1 £#0, n=2,3,...,N-1. Consequently, in terms of

the original notation,

n[ (n=2) (A -2) + 2] {
{"2‘:1 + (36)

“n T (1Y ,-27 2] (2n-3) (% ,-2) +2]

(n=1)(A.-2) +2
1 2 2 2
L (b, -b,)2(n,-1)(n-1) j

[ (n-1)(r-2)+1]°
n=23,...,N-1. It should be noted here that if x2 = 2, (36) reduces

to the known solution of Jayne. Hence, equations (36) and (4) can be

taken as the unique solution (for given b_s bl, ¢, and XQ) of (3),

the only restriction being that Aoy # gégf%l s M= 2,3,,..,2N-1.

Applications of the Theory
A discussion of some uses of the previous theory is now given.
These applications will be concerned with a class of coupled linear

systems of which the coupled harmonic oscillators shown in Figure 3 may




40

be regarded as a prototype.

k kl k k
220 . | m 222 .| m b ——— — =l | .20 m 202

Figure 3. A System of Coupled Harmonic Oscillators.

The system indicated is assumed to be dissipationless, gnd the springs
are linear and massless. The term ko may be zeroj all other kn and
all m, ~are to be positive.

Starting with a mass m and two springs having spring constants

k0 and k one can, by successively adding a mass mj and a spring

l’

with spring constant k.,,., j =1,2,...,N=-1, <construct a finite sequence
j+l e

{?n}N of systems., The characteristic polynomials for such systems -~
n=1

obtained by assuming solutions to the differential equations of motion

int . R o
of the form X, = Tne where Tn is real, w 1is positive, and X,

is the displacement of mass LR from equilibrium -- are polynomials in
w2 which satisfy a three-term recursion formula of the type studied in

previous chapters with

-k +k ..)
+
b = B0 n=0,1,2,...,N00, (a7)
n
and

kn2

cn=mm ] n=1,2,-o.,N-l - (38)
n n-1

These results have, over an infinite index range, been noted earlier by
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Jayne [2, PP, 26-28].

N

In the sequel, the finite sequence {Sé} of systems will be

=
referred to as a physical Hermite sequence of o:dér N if, for
n=1,2,,..,N, the characteristic polynomial of system Sn is a
polynomial @n(wQ) which is -- apart from a linear change of variable

and a multiplicative constant -- Hn(uz). Similar definitians are to

hold for the terms "physical generalized Laguerre system of order N,"
"physical extended generalized Bessel system of order N," and

"physical generalized Jacobi system of order N."

There are at least two types of situations which can be encountered
while anmalyzing the configuration of Figure 3 with n = N-1. First, one
can be given a particular system and asked if it is of Hérmite, Laguerre,
Bessel, or Jacobi type of order N. In this instance the question of

physical realizability does not arise; the system is already built. So

the spring constants and masses are, a priori, positive except possibly

for ko. Hence, Theorems 3.1 - 3.8 can be utilized to give a complete
answer., If a certain set of conditions is satisfied, the answer will

be "yes"; and the type, the linear change of variable, and appropriate
parameters, if any, will be uniquely specified. If any one of the condi-
tions is not satisfied, the answer will be "no." If the coefficients

b and ¢, of pn(u2) satisfy all conditions except (4) and (36}, and
if these equations hold for n = 2,3,...,i, 2< j <N -2, then the
system obtained by detaching masses My_12 mN_Q,..a,mj+1, and springs
with spring constants kN, kN-l""’kj+2 will be one of the four types

of order j + 1. On the other hand, one may wish to construct his own

physical system of order N which is one of the four types. In this
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case physical realizability is an added factor. Theorems 3.1 - 3.8

_(kn + kn+l)
state necessary and sufficient conditions on bn = = and
n
k? |
c = which must be met in the choice of k_ and m_3; but the
nTomemo ) n n

added physical requirements that kn >0, n-=1,2,...,N, k_ >0, and

0
m_ >0, n=0,1,2,...,N«1, must also be taken into account.

Jayne [2, Chapter IV] dealt with the latter sort of problem when
the system is to be of infinite order and deduced existence theorems for

each of the four types. Specifically, he proved that only the Jacobi-and

Laguerre-type systems of infinite order can ever be generated, and the

mn+l

latter case can occur only if 1lim = 1, He then posed the same sort

n—» mn

of existence question for the general finite case. Constructions of
physical systems of arbitrary preassigned order N which exemplify each
of the four types will be performed in the next chapter. Thus, Jayne's
existence question can be answered affirmatively in all four cases for
the general finite system.

One advantage which occurs when the system is one of the four
types is the ease with which its natural frequencies can be calculated.
For example, if the configuration is a pﬁysical Hermite system of order
N, and if {ia}N represents the finite sequence of zeros of Hy(t),

m=

1
2 bo
then the equations

l W + f= tm’ m = 1,2,.-.,N - Obtained
/2c1 ‘/2cl
by setting the argument of characteristic polynomial N equal to tm --
will yield the desired frequencies. Since the zeros of the Hermite

polynomials are tabulated to a high degree of accuracy in many places,

{%ﬁ}N may be considered as known for all practical purpdses. Similar
m=1
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remarks hold for the Laguerre, Bessel, and Jacobi cases. In this con-
nection it should be pointed out that much is known about the zeros of
these classes of polynomials [4]; and, therefore, if a tabulation of
the zeros of the particular polynomial involved is not available, such

a compilation could easily be performed with the aid of an electronic
computer and standard numerical procedures. Of course, if one wishes

to compute the natural frequencies of any subsystem Sj (1 < j<N -1},
he need only think of detaching masses M1 ? mez,...,mj and springs

k k and then analyzing the

having spring constants k N-17""" %50

N?
truncated system as before with N replaced by j.

For the sake of completeness in this chapter, two final facts
are pointed out. First, no spring-mass combination of order three can
ever be constructed in which the characteristic polynomials Qn(ug) are
as listed on the bottom of Figure 1 (see p. 33). This conclusion fol-

(bO -b1)2 + 4((_‘,1 +62)
lows from the fact that O < k2 = = e = in any spring-
2

mass configuration while A\, = 0 for the polynomials in question. Sec-

2

ondly, the existence question for a spring-mass combination in which the
conditions of Figure 2 hold (see p. 34) is not considered in this paper;
because even if such a system were constructable, a knowledge of the

zeros of the component terms of P would not aid in the determination

of the zeros of ?, unless F =0 for m=0,1,2,...,), where

n_+m
o]

j=min (N - ngr kg, = 1),
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CHAPTER V

PHYSICAL HERMITE, LAGUERRE, BESSEL, AND
JACCBI SYSTEMS OF FINITE ORDER

Necessary Conditions for the Construction of Such Systems

As was pointed out in the second section of Chapter IV, the con-
struction of a physical Hermite, Laguerre, Bessel, or Jacobi system of
order N <c¢an be performed only if the added restrictions bn < 0,
n=20,1,2,,..,N-1, and C, >0, n=1,2,...,N-1 are taken into
account. These restrictions arise because of the physical interpreta-
tion of kn and m_ as positive quantities (except possibly for ko)
and the relationships between kn’ m bn’ and . expressed by

(37) and (38). In the next four theorems the constraints on bn and

<, will be transformed into equivalent conditions involving only bo,

bl’ €ys K2’ and N.
Notice first that if %, = 2, equations (4} and (36) reduce to
b =b_ + (b1 - bo)n, n = 2,3,...,N-1, (39)
and
£n2 - n} 2
c, = 7 (bl ~b0) +nc;, n=2,3,...,N-1, (40)

respectively. From these relations the first of the four theorems fol-
lows as a trivial consequence; it is stated simply for completeness.

Theorem 5.1. If k2 =2 and b1 = bo’ then €y > 0,

n=1,2,...,,N~1, and bn <0 n=0,1,2,...,N-1, 1if and only if c, >0

1
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and bo < 0. Thus, if a physical Hermite system of order N is con-

structed, bo <0 and > 0 must occur in addition to the hypothesis

‘1
of Theorem 3.1.
When b, 7 b,» the right-hand side of (39) is negative for
n = 2,3,...,N-1 if and only if b, < bo(l - %), and this is true if
and only if b, < b_(1 - _1_ ) since b, and b_ are negative. The
1 0 N - 1 0
following result is then evident.

Theorem 5.2. If kz = 2 and b1 Z bo’ then <, >0, n=1,2,...,

N-1, and b <0, n=0,1,2,...,N-1, if and only if b_ < 0, b <0,

1
b1 < bo (1 - ﬁ%jr), and N > 0. Thus, if & physical extended gener-
alized Laguerre system of order N is constructed, bO < 0, bl <0,
b1 < b0 (1 - ﬁ—%iﬂ), and <) > 0 must occur in addition to the hypothe-

sis of Theorem 3.3.

It is worth noting that any Laguerre-type system of order N
which is constructed will fall into the classical generalized Laguerre
category and cannot be of the extended generalized Laguerre type. For

suppose that such @& system is built. Then, by Theorems 3.3 and 3.4, its
2

characteristic polynomials Qn(w2) are the polynomials DnL}?(pu +v),
4c1 .
where a = ———— - 1. The conditieons b_< 0, b, <0, and ¢, >0
2 ) 1 1

imply a > -l. Hence, the polynomials are of the classical type.
Theorem 5.3. If X, #2, if A, # 2#3}%1 , M= 2,3,...,20-1,
and if D = 0, then b expressed in (4) is negative for n = 0,1,2,...,
N-1 and q expressed in (36) is positive for n = 1,2,...,N-1 if and
5 :

only if b0 <0, bl < 0 < >0, 2- N3 < xz < 2, and either
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3 - "2) 2
by <b, K, -1 {1 HSEICEAICENICEY (41)

or

(3-’\2 1 2 < b <b(3-k2 . (42)
Po\R; - 1 >{: ) [2-+(N-2)(x2-2)](N-1i} AN '1,>

¢ - Errm)
[2+(N-3)(x2—2)](N~2)

Thus, if a physical extended generalized Bessel system of order N is

2
constructed, then b0 < 0, b1 < 0, < N -3 <{k2 < 2, ard

either (41) or (42) must all occur in addition to the hypothesis of

>0, 2-

Theorem 3.5.
Proof. Suppose first that ch >0, n=1,2,,..,N-1, and

bn < O, n-= O,l,2,loo,N"l¢ Then

(1% (b b))% + ar,(n, - 2,

=D y

n

implies 0 <\, < 2; and the solution for c¢_ = displayed in (36) reduces

to

cl"zn[ (n-2) (x2-2) + 2]

C

n (43)

= ; ’
[(2n-1)(x2-2)+2][(2n-3)(n2-2)+2][(n-1)(x2-2)+1]2
n=2,3,...,N-1. Denote the bracketed expression in the numerator of

(43) by (C)n, the left bracketed expression in the denominator of (43}

by (A)n and the middle bracketed expression in the denominator of (43)
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by (B)n. If n=2, (B)2 and (C), are positivej and, since ¢, > 0,

2

(43) implies (A), > O. Thus, % < Ape If N =3 the assertion concern-

2

ing X, is verified. Suppose that N > 4 and that (A)j, (B)., and

J
(C)j are positive for some integer j satisfying 2 < j < N-2. Then

(B)j+l > 0 because (B)j+1 = (A)j. Since kz - 2<0, (B)n < (C)n for

n > l; consequently (C)j+1 > 0. Since Cj+l > 0 by hypothesis, (43)
implies (A)j+l > 0. Hence, by finite induction, (A)n, (B)n, and (c)n

are positive for n = 2,3,...,N-13 that is, L > 2 - Eﬁgrf RN > 2 - 5#%5,

and (n-2)k2 > 2(n-2) -2, n=2,3,...,N-1. The last three inequalities

are equivalent to X\, S 2 - To deduce (41) or (42), first set

2N -3

822-X%, Then 0<3< 55375 , 0<(n-1)8 <1 for n=2,3,...,N-1,

and 0<nd <1 for n = 2,3,...,N-2. In terms of &, (4) can be

written as

[bl(l-b) —b0(1+6)][2-(n-l)b]n + 2b0(1+6)
n 2(1 -m)[1 - (n-1)4]

b

, (a4)

n=23,...,N-13 Qnd the denominator will be positive for
n=2,3,...,N-2, According to whether (N-1)3 < 1 or (N-1)3 > 1,
(41) or (42) will occur. For suppose (N-1)5 < 1. Then b, < 0 for
n=2,3,...,N-1 if and only if the numerator of (44) is negative for
n=2,3,...,N=1. This is true if and only if

b, < b (3—1-2) {} - 2 v-j} (45)
1 o 'l -3 [2 _ (n-l)p]n

which is equivalent to

1+ 2
by < b, (%) {} “[Z- (N-Q)b](N-li} ’ (46)
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since the expression in braces in (45) is a positive strictly increasing

function of n and b and b, are negative. If 1< (N-1)3, b, <0

1
for n=2,3,...,N-1 if and only if (46) holds with N replaced by

N-1 and

[bl(l-b) - b0(1+b)][2 - (N-2)8J(N-1) + 2b (143} > 0 . (47)

Inequality (47) is true if and only if

l +3 2
by > by (T3 {; i [2 -(N-2)b](N-li} ' (“e)

-

Inequality (46) {with N replaced by N-1) and (48) yield (42). Note

that the case (N-1)3 =1 cannot occur since (N-1)% = 1 implies

. = A (N-1) - 2]
27 (N -1)-1

-- a forbidden value of k2'

>0, 2 -

Conversely, suppose that bo <0, b, <0, ¢ 2 <

1 1 N -3

A~ < 2, and that either (41) or {42) holds. All steps taken in the neces-

2
sity part of the proof for the derivation of (4l) and (42) are reversible.

2
Hence, bn <0 n-=20,1,2,...,N=-1. When 2 - N-3 < h2 < 2, terms

(A)n, (B)n, and (C)n are positive for n = 2,3,...,N-1. Conse-

quently, by (43), c >0, n=1,2,...,N-1. This completes the proof.
Theorem 5.4. If X\, # 2, if A, 7 gémrﬁgl , M= 2,3,...,N-1,

and if D # 0, then bn expressed in (4) is negative for n = 0,1,2,...,

N-1 and c_ expressed in (36) is positive for n = 1,2,...,N-1 if and

c 2
1 2N -3 2?

(42) holds. Thus, if a physical generalized Jacobi system of order N is

2 .
< 0, ¢y >0, 2- N -3 < k2, and either

only if b, <0, by <0, >0, 2 - <\ and either (41) or

1

constructed, then b0 <0, bl

(41) or (42) must all occur in addition to the hypothesis of Theorem 3.7.
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Proof. The proof is similar to that of Theorem 5.3 and there-

fore will be somewhat brief. 1In (36) let [(2n-1)(k2-2) + 2] =

L

(A)» [(2n-3)(r,-2) + 2] = (B) , [(n-2)(r,-2) +2] =(C),, and

[(n-l)(x2-2) +2] = (D)n, and suppose first that c > 0, n=1,2,...,N-1
2
(bo-bl) + 4(c1+c2)

3c2

so that (B)2, (C)2, and (D)2 are positive. Since ¢, > 0,

and bn <0, n=0,1,2,...,N-1. Then k2 = >0

(A)2 > 03 so the case N = 3 is settled. If N > 4 and (A)j, (B)j’
(C)j" and (D)j are positive for some integer j such that 2 < j <
N-2, (B)j+l = (A)j >0. If A,> 2 (A)j+1, (C)j+1, and (D)j+l
are all positive; and if 0<%, < 2, (B)n < (D)n < (C)n for n > 2.
Consequently, both (C)j+1 and (D)j+l are positive; and since
i > 0, (A)j+l > 0. Hence, whenever X, > 0 each of the four terms
is positive for n = 2,3,...,N-1. It follows that k2 > 2 - Eﬁgrg . The
verification of (41) and (42) can be repeated verbatim from the proof of
Theorem 5.3 as can the sufficiency part of this theorem.

Now suppose that a physical Jacobi-type system of order N is

built. It will next be shown that the Jacobi characteristic polynomials

generated are of the classical type if and only if RQ > 2. Thus, if

: 2 2im -2

2 - 2N _3 < k2 < 2 and )\2 f J“!-—l—l ’m = 2,3,000,2N-1, the CharaCteI‘-

istic polynomials will fall into the generalized Jacobi category. The

last two conditions are clearly equivalent to 2 - QN%-S < A, < 2 and
2N -3

NFFTT

Whenever a Jacobi-type system of order N 1is constructed, Theorems
3.7 and 3.8 imply that for n = 0,1,2,...,N-1 @n(uQ) = DnPn(a’b)[l-Q(pu2+v)],
2(x, + bo) 2(x2-+b0)
where a = 7 -1 and b = -1. If b, =b
A - - N - z 9
(A -2) (x, -x,) (& -2) (x,-%, ) 1" "o
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a+l=b+1-= X 1*2 so that a » -1 and b > -1 4if and only if
2
k2 > 2. If bl £b_,
(b,-b_}(n, -2}
at+l=—2—|14+—0o Lo 2 (49)
Ao =2
2 2 X, 2)c
b, -b |In, -2] /1 + ===
] o' 172 2
(b, b)) (r,m1)2
and
. b, -b ) (x,-2)
b+l =s=——7]|1- » (50)

My -2 ZWEW 2Tc
| -b ”’\ '2| 2

where the square root used in both cases is the principal one. If KQ > 2,

the right-hand side of (49) and (50} is positives and, consequently, the

Jacebi polynemials in question are of the classical type. If 2 - 55%5 <

A, <2 and 1\, # N - 3 , the bracketed expressions in (49) and (50) can-

not simultanecusly be negative; so a > -1 and b > -1 cannot occur,
The Jacobi polynomials in this case must be of the geperalized type.
As a final remark in this section, the significance of the param-

eter A, is mentioned. Mathematically, the division in the classifica-

2
tien scheme when 12 = 2 and xz # 2 1is to be expected. For with

2

kl =1, 2 1is the only value of k2 for which the coefficient of 9—%

dx

in (2} does not involve x2; and therefore the character of the poly-

nomial solutions of (2) will be decidedly different in the cases xQ = 2
and A\, # 2. Moreover, the omitted values 2Am=2) m = 2,3,.0.,2N-1,
2 m-1 2

in the Bessel and Jacobil cases are a direct reflection of the requirement




51

that o be of degree n, n = 0,1,2,...,N. On the other hand, when bn
and c, are identified with spring constants kn and masses m, as
prescribed in (37) and (38), the question of a meaningful physical
interpretation of the important cases 12 = 2 and 12 # gé?}%l )

m = 2,3,...,2N-1, arises. Such an interpretation, if it exists, has

not yet been found; it remains an open question.

Some Constructions ¢f the Four Types of Systems

The last section contained a listing of all conditions on bn and

h which must be satisfied in order to construct finite physical systems

of the desired types. Unfortunately, the satisfaction of these condi-
tions does not guarantee the positiveness of kn and m. in (37) and

(38). For suppose all necessary conditions on b, and c = are met.

With bo’ b Cys and X, specified, the quantities bn and ¢, are

1? 2
completely determined by (4) and (36) for n = 2,3,...,N-1. Equations
(37) and (38) then form a finite system of coupled nonlinear difference
equations in the variables kn and m . Failure to satisfy the restric-
tions on kn and m in the term-by-term computation of these quantities
can only occur if in (37) kj < 0 for some integer j in [0, N]. In
this case the system will be one of the four types of order j-1, pro-
vided j > 43 but it will not be of order N.

The possibility of constructing one of the four types of systems
hinges on the answer to the following question: Is it possible to choose
b b

c and A such that all necessary conditions on bn and

1? 1’ 2
<y for the particular type of system hold and such that, with the pos-

o’

sible exception ko = 0, the solution pair {kn, mn} to the finite
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difference system (37) and (38) is positive? This existence query was
first posed by Jayne [ 2, p. 28]. It will be answered here for all four
types of systems. In each case the affirmative answer is proved by a
certain class of examples, Thus, not only is the question of physical
realizability answered; a method of selecting bo’ bl’ Cis and kz is
also given. To begin the discussion an important equation 1s derived.

Suppose that the existence question can be answered affirmatively.

knz '(kn—l + kn)
Then k + k., = -m b and =m = for 1 <n<N-1,
0 1 o0 cm n-1 b - -
nn n-1
' kn2 bn l(n-l * kn
It follows that T Yy = 5 for 1 < n<N-1. Ifitis
n n ntl n-1

further assumed that k0 is chosen as positive, the last equation can

be rewritten as

k b_ b
1+ :“I’l = kn'l n , (51)
n c (l + n 1 J
n ko l+kn/kn p -1
kn+1
1 <n<N-1. For 0 < n<N-l, let v =1 + . Then (51}
- - - - n+l kn
becomes
b_ .b
_ _n-1"n A1
Vibl T g (1 -3 ), (52)
n n
ky
1 <n<N-1 with v, ) + = . Equation (52) provides the key for the
o

forthcoming development of examples.
For the Hermite-type system, Theorem 5.1 specifies the conditions

on bn and <h which must be satisfied for any successful construction.




In this case b and ¢
n n

1

k +k . =-mb, n=0,1,2,...

n n+l

and

and (52) becomes

for 1 {n<N-1 with v, =1+

no

2
v __E?——-(l_—l—
n+l nc v
1 n
5
1 k
0
-{k + k,)
2 1 . Then set
mO

be chosen and set bo =

k is a number in (0, 1]

induction,

v .. == (1

for 1 < n<N-1l. Hence

kn >0 for 0< n<N.

is positive and satisfies

. With these choices

53

are determined by (39) and (40) in which

b, = b 3 the difference system of (37) and (38) reduces to

,N-1, (53)
.o,N=13 (54)
(35)

Let k0>0, k Zko’ and m0>0

1
Kb 2
Q

1 a1 where

C

v > 235 and, by finite

b 2 (
1 0 1 _ 2N -1 2
T v ) 2 nc (2 ) = kn 2 k 2 2
n 1
kn+l .
, kn =V T 1> 1l; and, since k1 2 ko > 0,

Consequently, if kn

is computed from (5%), it

(56)
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for 1 < n<N-1l. Use these quantities in (53) to compute m  for

1 <ng<N~-l. The m_ so calculated will all be positive; and (54)

will be satisfied by virtue of (56), It follows that the indicated
choices for bo’ bl’ Cis and kz guarantee that the quantities kn
and m computed by means of (53) and (54) are all positive. By Theorem

3.1, the members of the resultant class of Hermite systems of order N

have characteristic polynomials

o W2 =Dt ( w? B0 N_ . (2 2 J2ZN-12) ’
n nn JEEI GZ:; nn b /e S

(o}

n=20,1,2,...,N.
The existenée guestion in the Laguerre case can be handled readily
by means of the system of infinite order given by Jayne. 1In that example

o=
{kn’ m;} = {h, iy:=o' Thus, in order to produce a finite Laguerre
=0

system of order N, one need only select kn =n for 0<n<N and
m = 1 for 0<n<N-1, The resultant characteristic polynomials are
¢n(w2) = DnL;)(m2), n=0,1,2,...,N. However, in order to afford some
variety of choice in the constructions, other examples are now given.
The necessary conditions on bn and <, for the Laguerre—type
system are provided by Theorem 5.2. Under these stipulations, bn and

¢, are prescribed by {39) and (40) in which b, # b3, the difference

system of (37) and (38) reduces to
k_ +k = mn[(n-l)bo - nbl], n=0,1,2,...,N-1, (57)

n “ntl

and



2%

)2

2
5 i [(n -n)(bo-bl
Mh-1"n 4

+ ncé} , 0= 1,2,,..,N-1; (58)

and (52) becomes

_ 4L (n-1)b -nb ][ (n-2)b - (n-1)b,]

ntl (nz_n)(bo_b 2

(1-+ (59)

+ 4ncl n

v
1

for 1 <n<N-1. In order to help make clear an appropriate choice

of bo’ b and ¢, 2 lemma is first proved.

l’

Lemma 5.]1. Let bo’ bl’ and 5 satisfy only the requirements

b1 < b0 < Q0 and cl > 0, Then a choice of such quantities can be made

so that [ ]n >[ - ]N-l =4 for 1<n<N-1, where [ °* ]n is

the coefficient of (1 - éL } in (59).
n

Proof. The conclusion of the lemma is valid if and only if

2 2 2 2 2
(n -n)(bo-bl) +(2n-l)bo(bl—bo)+bo (n -n}(bo—bl) +4ncl

3 5 . 72 5 2 ’
[ (N-1) -(N-l)](bo-bl) +(4N—3)bo(bl-bo)+bo [ (N-1) -(N-l)](bo—bl) +4(N-1)c1

(60)
n= 1,2,000’N-l’ and
2 2 2
[(N-1)°=(N-1}](b _-b,)“+ (2N-3)b_(b,-b_) +b
o] l ‘ [e] l Q 0 =1 (61)
[ (N-1)%-(N-1)](b_-b,) 2 +4(N-1)c
o 1 1
To satisfy (60) and (61), it is sufficient to require that
2
b (b =b ) (20-1) + b > anc, , (62)

n = 1,2,ICO,N-1’ and
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2_' -
bo(bl-bo)(QN—s) + b = 4{N Le, (63)
If (62) and (63) are satisfied, bo(bl - bo)(N -1-n) < 2cl(N -1-n)3
bo(bl ~ bo)
and, consequently, ¢y 2 5 Write
kb (b, = b )
__o 1 0
LT T2 ’ (64)
where k > 1. Then (63) is satisfied if and only if
kbéz
“ T AN (k-1 *+ 2 (65)
Substitution of (65) into (64) yields
b, =b_ |1+ 1 : (66)
1 o 2(N-1)} (k-1) + 1
The above choices of bl and < in terms of k and the negative quan-
tity b~ satisfy ¢, >0, b <b_ <0, and (63)3 and substitution of

these values into the left and right-hand sides of (62) verifies the
correctness of that inequality. The proof of Lemma 5.1 is now complete.
To return to the question of constructing systems of Laguerre

type, the technique demonstrated in the Hermite case for the choice of

bo’ bl, and ¢, can again be used, Lemma 5.1 providing a guide.
Ch 0 oo tk)
oose ko > 0, kl > ko’ L > 0 and set b0 s T en
kb 2 °
= 2 =
choose k 2> 1 and set c, = AN (k1) 72 Finally, set bl

1
b, [1+ From the proof of Lemma 5.1, v ., > 4(1 -)

n
22, v_22 for 1< n<N.

1
2(N-1)(k-1) + 1 1.

for 1 < n<N-1. Therefore, since vy
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It follows that if k_ = is computed from (59), it will be positive and

satisfy

for 1 <n<N-1. Use these guantities in (57) to compute m  for

1 <n<N-1. The m_ so calculated will all be positive; and (58)
will be satisfied by virtue of (67). Thus, the selection process given
for bo’ bl’ s and 12 yields a class of finite Laguerre systems.
By Theorem 3.3, the characteristic polynomials of these systems are

@n(wz) = DnLna(w2 +v) for 0< n<N, where a = 2k[2(N-1){k-1)+1]-1,

H

b= - gﬂ [2(N-1)}(k-1) + 1], and v = 2(k-1)[2(N-1)(k-1) + 1].

o

Two other cobservations of interest in the Laguerre case may be
noted, First, another example of an infinite-order Laguerre system can

be given. To see this, set k =1 in the foregoing discussion. Then

2
b
b, =2 and ¢, = -%~ are independent of N, and {59) reduces to
- Y - :
vie =41 - 5) for 1<ngN-1. If one continues to compute Vil

n

for n >N in the last equation, Vi 22 for n2 1 results. Therefore,
if kn and m. are computed for n > O from (57) and (58), the solution

pair {kn’ mé}m to the extended finite system of difference equations
n=o

remains positive. In particular, if kl = k0 > 0, then v T 2 for

m [= ]
n> 1l so that {kn’ mé}m = {ko, ;f% . The characteristic polynomials
n=o n=o

-mQ
for the case k =1 are ¢n(w2) = DnL;'( e )

for n > 0. Secondly,
0

there are many examples of Laguerre systems of order N in the class

previously developed which cannot be extended to an infinite-order Laguerre
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system. A proof of this assertion by contradiction follows,

Let bo’ b and hz be determined as in the foregoing

1, Cl’

class of examples but restrict k only by

255 - D +,/ — &z(g-é) ’ (68)
16(N-1) 4{a-4)
where ¢ 1s some chosen integer greater than or equal to 3. That k
is greater than 1 is evident. It will be shown that no member of this
subcollection of finite Laguerre systems can be extended to an infinite-
order Laguerre system. For suppose the contrary. Then, for each nonnega-
tive integer n, k_~and m_ of the hypothesized system satisfy (37)

n

and (38) and are positive. Consequently,

-k “b_ k. -b_
kn+1 - T mnbn - kn ) c_ kn N kn[ m (1;_) ) 1] (69)
n=1"n n-1 n

must hold for n > 1. Now in any infinite-order Laguerre system in

which k_> 0,

1(n knbn 1 bn 1
= - - 2 m  e—eer—— - 7
o Y k< Ppo) (70)
n-1 -1 n-1
1 +
k
n

for n > 1. Hence, from (39), (40), (69), and (70),

4[n+2(N-1) (k-1)][n +1 +2(N-1) (k-1)] _ , (71)

k <k >
n° - n + 2nk[2(N-1)(k-1) + 1]

n+l n

must hold for n > 1. The expression in braces in (71) must be positive

for n > 1. In particular, this must be true if n = a(N-1) so that
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ala(N-1) + 2(N-1) (k-1)[a(N-1) +1 +2(N-1) (k-1)] > (72)

a(N-1) {u(N-l) -1 +2k[ 2(N-1){k-1) +1]} .

Inequality (72) is equivalent to

4(N-1)2(4-0)k2 + [-4(N-l)2(5a-8) + 2(N-1){(4-a) ]k (73)

2

F [(-1)2(3a% - 160 + 16) + (N-1)(5a-8)] >0 ;

and, for fixed integers N > 3 and a > 5, the left-hand side of (73)
is a parabola in the variable k that opens downward. The larger zero
of this parabeola is given by the right-hand side of (68). Equation (73)
therefore furnishes the desired contradiction.

The analysis in the Bessel case is much more difficult to perform
than in either the Hermite or Laguerre case. The added difficulty stems
from the relatively complicated expressions for bn and C in {4) and

(43) and the greater number of conditions on b, b and A, that

1>
must be satisfied. However, a technique similar to that illustrated in
the prior two developmentis of examples again proves successful in producing
a class of examples of Bessel-type systems of order N,

To satisfy the conditions D =0, A, #0, and 1, £ 2, b, can-

not equal b1 and bo’ bl’ c and k2 must be related by

l’

4c1 ‘
7\2 =] + 5 . {74)
(bo-bl) + 4cl

. 2 . . 4
The COndltloﬁj 2 - N =3 < x2 < 2 implies AQ > 3

expression coﬁtaining the positive square root term is acceptable in (74).

Hence, only the
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Set kz =2 - N+l " Then all necessary conditions on Xz are met; and,

in fact, A, # 2%25%1 for m = 2,3,4,... . With this choice of \,,

the relationship between bo’ bl’ and < given by (74) is
(b_-b. )2(an-3)?
¢, = =21 ; (75)
1 32(4N - 1) ’

and, since (N-l)(2-h2) < 1, the proof of Theorem 5.3 shows that b_

and b, must be related by (41). Thus,

(N-2) (2N+3) (4N+5)
o (N-1) (2N+5)(4N-3)

by <b (76)

must be true. As in the Laguerre case, a lemma is advantageous at this

point.

Lemma 5.2. Let b, b,, and ¢, be related by (75) and (76)
and subject also to b0 < 0, b1 < 0. Then a choice of such quantities
: bn-lbn 1
can be made so that ——=——- , the coefficient of (1 - =) in (52),

n n

is greater than or equal to 4 for 1 { n < N-1, where bn is determined

X . - 4
by (4), ¢, 1is determined by (43), and 12 =2~ AN +] °
Proof. Let
2N3b0
b, = (77)
oo
and
(aN -3)2 b02
: . (78)

- 32(N +1)%(aN - 1)
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Then {75) and (76) hold; and a straightforward calculation shows that the

proposed inequality is equivalent to

2

)2+4BNS(N-n) +10N3 - 16N2n+8in? (79)

8l 4(N-n)+7][ 4(N-n)+3] 32N3(N-n

+ 16N2 - 32Nn +10n2 + 24N - 15n +5} {3243(N-n)2+112N3(N-n)

2

+ 9oN7 - 16N%n + 8Nn + 32N - 48Nn +10n° + 64N - 35n +3o} >

[4(N-n)+1][4 tN-n) +9](aN-3) 2(4{~1+1) 2(4nn - 2n® +5n)

for 1 < n<N-1., The minimum value for each of the two terms in braces
in {79) occurs at n =N - 1, and these minimum values are positive.
Thus, for 1 < n <N -1, each term in parentheses, brackets, or braces
in (79) is positive., Since [4{(N-n)+7][4(N-n)+3] > [4(N-n)+1][4(N-n)+9]
for 1 <n<N-1, it follows that (79) can be proved by verifying a
modification of (79) in which the two bracketed terms on either side of
the inequality sign have been deleted. Since both terms in braces are
positive, the minimum value of the left-hand side of (79) with the two
bracketed terms deleted occurs when n = N ~1; and the maximum value of
the right-hand side of {79) with the two bracketed terms deleted also
occurs when n = N -1. Consequently, to verify (79) it is sufficient
only to verify (79) less the four bracketed terms when n = N -1. Another
routine computation shows that when this last condition is expanded, it

is equivalent to the inequality

6 2

49,248 -5,1848° + 32,820 +32,400N° + 6,546N% + 11,097N +6,021 > O ,

which is obviously valid. The choice of b1 and 2 in terms of the

negative quantity b0 therefore satisfies the conclusion of the lemma.

1]
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With the aid of Lemma 5.2, examples of Bessel systems of order N

F(ko+k

m
(o}

can easily be given. Choose ko > 0, kl > ko’ m, > 0 and set bo =

Let b, and c, be given by (77) and (78), respectively. Then, by

1 1
Lemna 5.2, v . > 4(1 - ﬁi) for 1< n<N-1l; and therefore, since
vi 22 v 22 for 1 <n<N. Thus, if k_ is computed from (52) in
which b~ is given by (4), c, is as specified in (43), and Ay =
2 - 4N§F1 s then kn will satisfy
2 “n
l(n - bnbn—l (kn-l * kn)(kn * kn+l) (80)

for 1 <n<N-1 and will be positive. Use these quantities in (37) to
compute m_ ~ for 1 <n<N-1l. The m_ S0 calculated will all be posi-
tive; and {38) will be satisfied by virtue of (80). By Theorem 3.5, the
characteristic polynomials of the resultant generalized Bessel systems

are Qn(wg) = DnBrfa’Q)(uw2-+v) for 0 <n<N, where a = -:Lﬂﬂétll s

416N +4N +5)

3
32(2N7+1) and v = (4N -3) (4N+1)

W= (aN+1y (4N=3)b_ °

The existence question in the Jacobi case is easy to handle because

of prior results by Jayne. Let r be an arbitrary positive constant.

Then the systems obtained by selecting positive spring constants kn =k0rn

cys n P
and positive masses m, = mT for n > 0 form a class of infinite-

order Jacobi systems. Hence, in order to produce finite Jacobl systems

of order N, one need only select kn = korn for 0< n<N and m, =

morn for 0 < n<N-1. By Theorem 3.7, these systems have character-
(a,b

N )[1-2(um2-+v)] for 0 < n <N, where

istic polynomials ¢n(w2) = DnP

1{
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1 "o 1 2
a=b= 5 b=——, and v = - (vT - 1)%. Thus,
T

4k NCS 4,\/_

mn(w2) = DnUn[1 - 2(um2 +v)] for 0<n < N, where Un is the

Tchebycheff polynomial of degree n of the second kind. An appreciable
variety of constructions is afforded by the above class of systems. Hence,

no further examples of the Jacobi type are given in this paper.
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CHAPTER VI

COMMENTS ON THE CONSTRUCTIONS OF THE
FOUR TYPES OF SYSTEMS

In Chapter V the question of theoretical realizability for the
construction of Nth order systems of each of the four types was answered.
In this chapter some remarks are made about possible criteria for
deciding whether the theoretically realizable systems previously pro-
posed are, in some practical sense, realistic. The discussion applies to
linear systems of which the dissipationless spring-mass combination is the
prototype and is predicated upon the thought that a system in which a
hair spring is attached to a hundred-ton mass should probably not be con-
sidered realistic. In addition, comments and numerical examples are given
that illustrate certain properties of the classes of examples presented
in Chapter V.

The guestion of whether a given construction is physically real-
istic ultimately depends on the situation for which the spring-mass com-
bination is purported to be a suitable model. One possible set of cri-

teria for realisticness is

m k
1 i+1 1 i+l
3S m 5‘3: 53 k. Sss (81)
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where integers 1 and j wvary over the full index range in a system of
order N, the lower bound being 1 in the requirements invelving spring
constant ratios when ko = 0. 5Such conditiens imply that masses which
are near each other in the system and springs which are near each other
in the system do not differ by "too much," that the overall growth (or
decay) of the mass and spring constant values remains "reasonable," and
that the natural frequencies of subsystems consisting only of a mass and
its two adjoining springs are limited to a range of the kind often
observed. Fof certain situations, these five requirements might net be
appropriate for physical realism. 1In the following discussien, however,
most of the attention is focused on this set of properties.

For the class of Hermite systems presented in Chapter V, k,l 2k02>0,

~(k, + k) kb2

m >0, b, = ——~TE;—-—— R ) for some number k in (0,1],
and succeeding kn and m_ = are determined by (53) and (54). Set

-(141)k k(r+1)2k02
kl=rko, where r > 1. Then b0=“—m-—*—, ¢) = 7% >

o 4(N -l)mo

k ‘m k
i N L r 2 (N-1) - _4%N-l}r
kg-er, mo_4(l+r) ” > N-1, kourE(:H_r -IJZ\QN-%

N
1] b

m 2 k .
_ 4N -1)r 2 o "3 _[4(N-Dr - 2(N-1
m, 2|kl *r 1] 25 (A -3)7, and ko“[ktln) -1}{:[ k

- %] - %}zz(m-‘a) (N-2). Lf all five of conditions (81) must hold for
the spring-mass combinatien to be considered realistic, the preceding
inequalities imply that theée systems do not qualify except possibly
when N = 3, 1In this case, if r and k are both taken to be one,

g
k. =k, k, = 3k°, k, = 6ko, m, = 2m0, my = 5 My and
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k., + k.+1 2k
A 2= - _p =—2 for i =0,1 23 and such a system is acceptable
m, ] m e
i 0
2 ko 2
provided k0 and m, are positive and satisfy %5 < — < 800n~. It

(=

is interesting to note, however, that even though the rate of growth
of the spring constants and masses in this class of examples is perhaps
unrealistically rapid, the natural frequencies of many of the systemé
fall within a physically plausible range. For example, if r =k =1
27 bo

My
Jch 2c1

and N = 20, the equatiens wn(uz) = Dner( , n=0,1,2,...,20,

2 . mJJQ
become mn(w )} = DH A38 =
8]

frequencies of this 20th order Hermite system are determined from

- l):], n=201,2,...,20, The natural

1 Qko tm 20
o=k /ol B L0l n-1,2,...,20, where {tm} is the finite
o L~/38 tm=1

sequence of zeros of H20(x); and a brief calculation shows that they

m

/ k k k
satisfy 0.079 Tfl < fm < 0.309 /=% . 1If 59 is chosen so that
o 0 0

k
10 ¢ /=% <60, then %,—<fm<20 for 1 <m< 20. If 3<NKI19
J ) !

and if r =k =1, the same type of behavior for fm, m=1,2,...,N,
can be guaranteed., This is easily verified by inspection of a table of
zeros of Hn(x) for 3 < n < 19 [1] or by use of known bounds for the
largest and smallest zeros of Hn(x) [4].

Although the existence question for Hermite systems of order

N > 3 has been answered affirmatively, the last paragraph points out
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that it remains an open question as to whether Hermite systems of order
N can ever be "realistic" in the sense described earlier, since the
systems of the class used to prove realizability do not seem to be
realistic, For a low-order system this question can easily be answered
after some insight is gained into what relationships between ko, kl’

and m, are conducive to a successful construction. For example,

Mo 1
k., + k'+l k + k
if —1-5——5—- = - b0 = —25 is large encugh to satisfy the natural
i °

frequency requirement, if kl is chosen as relatively small, and if

¢y is taken large enough so that the value of m, used in the calcu-

lation of k2 forces k to remain small and less than or equal to

2
kl, Hermite systems of the desired type of order 6 or less can be pro-
duced. Specifically, set k =2, k =%, m =-=, -b_ = 144, and
' ? o 27 "1 2* "o 48° 0 ?
- 3 . =1 = L = "
¢ = (12)7. Then m =q37, ky =35, m=gz, ky=1, my=1gz,
k, =2, m, = =2 R - . | and k, = o
4 3 4 E1445285 ’ 5 24 ? 5 (144) (30) °* é a0 *

: _ 1 s s : .
Since me = 56) (40 and k7 < 0, this is the maximum size system for

such a choice of k_, k m, and c Notice that the system of (53)

1? 1*
and (54) is homogeneous in kn and m for fixed b0 and €, so that

the values of kn and m, may be scaled as desired. Hence, for any

positive number s, k = % S, k1 = % y m o= ﬁ% s My = I%Z , et cetera,
are "realistic" values for the masses and spring constants in a Hermite

system of order 6 or less. The characteristic polynomials generated

’ 2
in this example are given by mn(u2) = Dan[,fé (T%z -], n

1}
o
)
—
-
N
-

n
Ao
s
+
—

..+,63 and the six natural frequencies are determined from fm
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where {fm}6 is the finite sequence of zeres of H6(x), It follows
m=1

that 0.381 < frn < 2.674 for 1 <m< 6. If a large-order Hermite con-
figuration satisfying these restrictions is required, it seems likely

that a systematic search procedure for determining appropriate values

of ko’ kl’ mos and m, <an be incorpeorated into a computer program.

The procedure described in Chapter V for the construction of a

class of Nth order Laguerre systems was to choose ko > 0, kl 2 ko’

. 2
(k_ + k) kb

m, >0, set b = —-E;-_-__’ choose k > 1, set ¢, = 4(N-1) (k-1)+2 *

1
= +
set b, bo[l SN (o) 71 ] 5, and then compute subsequent ks

m from equations (57) and (58). For systems of order ten or lower,
many combinations of ko’ kl, m s and k lead to spring-mass config-
urations satisfying each of the five conditions.(Bl). For example, if

k=1 and kl = ko’ the resultant infinite-order Laguerre system has

m
values k_ =k and m_ = = for n > 0., The bound on the overall
n o n n+l -
1 M
growth of the masses -- T < oy <10 for 1i,j = 041,2,...;,N-1 -- can be
3

met only if N < 10. 1In this case, the natural frequency restriction --

ki ki
r < — < 40 for 1 =0,1,2,...,N-1 = 9 =- can be satisfied only
i
5 2ko(i+1) 5
if =7 < — € 1600 n~ for i = 0,1,2,...,9. The last condition

©

is fulfilled whenever ko > 0 and m0 > 0 are chosen so that

e

2
L-<2<80m° If k =k, and if k> 1 1is chosen sufficiently

Q

close to 1 so that (k-1)(N-1) remains "small," other Laguerre systems
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of the desired type having order less than 10 can be given. As to be
expected, these systems have values of kn and m much like those of

the preceding example whenever (k-1)(N-1} < < 1. As another example,

the infinite-order Laguerrs system in which {kn, m&I:_0= ﬁiﬁm}:_b can be con-

sidered,. In this case all restrictions are satisfied for 3 < N < 20 pro-

39 5 < m < L If Laguerre systems

1600n nz

of order larger than 20 that satisfy all five conditions are required,

vided m > 0 is chosen so that

no example given in this paper fulfills the need. 1In this case, whether
such a system can ever be constructed is still an open question. Again,
however, because of the still relatively simple expressions for bn and

¢ it seems likely that a search procedure for appropriate values of

n,

k., k

o Mgy My and k., can be programmed to a computer in order to

1? o 2

resolve this question.

. . _ 4
For the Bessel examples given, k2 =2 - NI’ kl > ko >0,
~(k_ + k) (4N -3)2 b 2 b
. 0 1 _ ¢} . 4]
m, >0, b0 B, 6 < 3 s bl = —3 , and
0 32(2N7 +1) (4N - 1) N +1
kn, m  are computed from (37) and (38), where bn is determined by (4)
(l+r)ko
and ¢ by (43). Set k, =rk_, where r > 1. Then b_ = - ———a;—— s
2 2, 2
(4N-3)"(14x) kg ky m r (2 [oN31]2(an-1)
€ = 3. .2 5 o =r2l, and o= =32y 2
32(2N7 + 1) (4N-l)m0 0 o (4N - 3)

> 8N5. Consequently, no one of the given examples of Bessel spring-mass
combinations falls within the bounds prescribed by the five criteria (81).
Small-oxrder Bessel systems can be produced that lie within the tolerance

limits, but the computation involved is tedious. A computer search
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program for developing examples of Bessel systems having the required
properties might be possible, but it would probably be more sophisticated
than one for the Hermite or Laguerre cases because of the greater com-
plexity ef the equatiens involved.
The Jacobi systems presented have ko = korn for 0 <n<N and
n

m, = mT for 0<n<N -1, where r 1is an arbitrary positive con-

stant, The five stipulatiens to be met imply that ko, m,s and r

must satisfy %g r<a3, 71'16 <r*"0 <10 for i,5 =0,1,2,...,N-1,
1 N 2 K 2
55 <T <20, and x® < = (14r) < 1600 n°. Many such values of ko>

[v]

ms and r can be chosen for a specified value of N, but the range
of permissible values of r 1is clearly dictated by the size of N.

For large values of N, r 1is forced te be very close to 1.
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CHAPTER VII
A SUMVARY OF THE MAJOR RESULTS

The purpose of Chapter VII is to provide a concise listing of the
major conclusions-of this paper. Relevant chapter and page numbers are
included within the list t¢ serve as an aid to the reader.
(1) Hermite, extencded generalized Laguerre, extended generalized
Bessel, and generalized Jacobi polynomial sequences, each having more than
three terms, can be characterized in terms of the coefficients eccurring
in the recursive relation {1) to within a determinable linear change of
variable and computable multiplicative factors independent of x (see
Chapter III, Theorems 3.1 - 3.8). Note: For infinite sequences, the i
integer N appearing in these theorems must be thought of as having
increased without bound before the theorems are applied.
(2) A proper three-term recursive finite Sturm-Liouville polynomial

sequence {?n(x)}N in which N > 3 must be exactly one of six types:
n=o

Hermite, extended generalized Laguerre, extended generalized Bessel, gen-
eralized Jacobi, or one of two other unnamed kinds {see Chapter III, pp.
23-35).

{3) The system of difference equations gl(n) = 92(n) = 0 that
first arose in Chapter II of [2] can be solved in closed form over either
a finite or infinite index range, provided that neither of the equations
has a singular point (see Chapter IV, pp. 36-39). This solution simplifies

the application of the theory developed in Chapter III and some of the work




72

done in [2]. Note: Even if the difference equation gl(n) = 0 has a
singular point, its solutien is still known (see [2], pp. 17-20).

(4) For an arbitrary preassigned positive integer N, it is pos-
sible to build linear dissipationless spring-mass systems Sn having
secular polynomials of Hermite, Laguerre, Bessel, or Jacobi type for
1 <n<N (see Chapter V, pp. 51-63).

(5) Linear dissipationless spring-mass systems of Laguerre type
always lead to classical generalized Laguerre secular polynomials, but
linear dissipationléss spring-mass systems of the Jacobi type can lead
to either classical Jacobi or generalized Jacobi secular polynomials (see
Chapter V, pp. 45, 49, and 50). Note: 1In the infinite-order system,
generalized Jacobi polynomials cannot occur; for in this case lg > 2
{see Theorem 5.4 and let N tend to infinity), and the result on pages
49 and 50 can be applied.

(6) A further investigation into the possibility of devising
efficient numerical procedures for the construction of "realistic" finite
linear dissipationless spring-mass combinations of each of the four types

(Hermite, Laguerre, Bessel, and Jacobi) remains to be performed.
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