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SUMMARY

The primary objective of this dissertation is to design and implement a fast and

effective computational method of computing offsets for a solid object represented

volumetrically. Our approach uses a data structure known as a hybrid dynamic tree

(HDT), and the dissertation research contributes the development and analysis of

a tunable offset computation algorithm that trade-offs speed, storage efficiency, and

geometric accuracy. By “fast” we mean using scalable parallel algorithms that are

well-suited to modern massively parallel processors, especially the ubiquitous graphics

processing unit (GPU) co-processors available in all modern systems; by “compact”

we mean a storage-efficient voxel representation with a low memory footprint; and by

“accuracy” we mean the quality of the computed result. Offsetting is a key geometric

operation that lies at the heart of various applications, such as toolpath planning in

CNC machining and accessible space analysis in robotics, among others. This work

is about the application of offsetting in multi-axis CNC toolpath planning, where

the offset surface controls the center of the ball-end tool cutters along a collision-

free trajectory. At the target resolution of 40963 (69 billion voxels in a naive dense

representation), we can compute large-scale offsets in minutes, match or beat the

number of bits of the representation compared to state-of-the-art alternatives, and

experimentally characterize any trade-offs among speed, storage, and accuracy.

In this dissertation, we present a set of practical approaches to efficiently compute

the offsets of a voxel model represented in resolutions up to 40963. Using the HDT as

the underlying data structure leads naturally to a compact representation. However,

the challenge in developing a high-performance offsetting implementation is choosing

an optimal configuration of the HDT parameters. These parameters not only govern

the memory footprint of the voxelized representation of the solid, but also control the

parallel code execution efficiency on GPUs.
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This dissertation presents a tunable offsetting method based on mathematical

morphology that works on the HDT. Using a convolution-based technique to com-

pute the offsets of a volumetrically represented solid makes the computational com-

plexity tunable, essentially through changing the size of the morphological filters. In

general, a smaller kernel results in faster execution due to lower number of neighbor-

ing elements in the spherical stencil; however the geometric accuracy scales inversely

with the increasing number of morphology operations. Hence, our research analyzes

the impact of the decomposition of a large offset distance into a series of offsetting

with smaller distances. Such a tuning of the size of the filter kernel further makes

our implementation platform-adaptive in that it allows the algorithm to be adjusted

depending on the peak performance of the underlying hardware.

Besides trading some geometric accuracy for improved performance, we explore

algorithmic speedup through a load-balanced implementation of morphological voxel

offsetting across multiple GPUs. Dynamic load-balancing needs estimatation of the

cost of the entire computation and consideration of the disparity in the peak through-

put (often measured in FLOPS) of the underlying GPU devices. In contrast to a

boundary-representation, such as a polygonal mesh, voxel-based computation is more

amenable to load-balanced execution due to its homogeneous.

While performance and accuracy are the key metrics for the presented offset

method, the storage required to represent the HDT at high-resolution is equally

important, particularly if the application needs to manipulate multiple HDTs si-

multaneously in the GPU buffers. This is essential in our target computer-aided

manufacturing (CAM) applications, where a sequence of HDTs are managed concur-

rently in the GPU memory so that the CNC-codes can be ‘played back’ to visualize

the impact of multiple iterations of toolpath with respective tool selections. This

also allows ‘rolling back’ an offset operation to a prior state in the toolpath planning

system, which helps the design of automated manufacturability analysis. Thus, a
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final contribution of this dissertation is to explore the HDT configuration space to

optimize storage, and to efficiently construct the HDT at extreme resolutions with

high speed-ups on GPU.
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CHAPTER 1

INTRODUCTION

1.1 Problem Context

In recent years, advancement in 3D printing has liberated digital manufacturing—

fabricating arbitrarily complex free-form shapes is no longer constrained by the man-

ufacturing process. While the layer-by-layer additive 3D printing has revolutionized

the landscape of rapid prototyping, the technology is limited in terms of the materials

that can be used, the finishing quality that can be achieved, and relatively slow print-

ing speeds; thus limiting applicability in many areas. By contrast, classical subtractive

manufacturing techniques, such as CNC milling, turning and casting are complemen-

tary in many aspects. Computer Numerically Controlled (CNC) machines can be

considered as one of the most important innovations in the manufacturing industry

in the 20th century that helped morphing the manual hand-driven products manu-

facturing process to the contemporary automated production systems. CNC based

manufacturing technologies are applicable for a large variety of materials, demonstrate

high-quality surface finishes, and result into parts with robust structural properties.

However, these subtractive processes are severely limited in terms of the shapes that

can be produced.

Conceptually, CNC based subtractive manufacturing can be described as an in-

cremental material removal process from a solid workpiece where a rotating cutter

intersects the surface of the stock to wear away material; thus, layers of surface get

exfoliated in multiple iterations, and incrementally shaped to the target geometry. A

fundamental limitation to realize the fullest capability of multi-axis CNC machines for

the fabrication of free-form geometric shapes arises from the conventional approaches

of machine program (called G-code) generation that control the tool movements.

Through computer aided design (CAD) tools an engineer visualizes and designs the
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object to be manufactured, and a CNC controller sequences a motor driven machine

tool through specific path trajectories to create the desired object. Linking these two

is a process where a toolpath is generated through computer-aided manufacturing

(CAM) software.

As the subtractive process differs from the additive technique, for manufacturabil-

ity the shape has to be a height field so that each of the machining surfaces is accessible

to the tool cutter [44]. Broadly speaking, there are two general approaches adopted

to respect the constraint on shapes to be a height field. The shapes either have to

be designed in a way so that they constitute height fields, or they have to be divided

into multiple components that fulfill the constraint individually. For the majority

of the industrial products the former approach is adopted, where the shapes respect

the height field constraint. By contrast, rapid prototyping of free-form shapes using

CNC requires specialized machining expertise to segment a given design into multiple

components, and the toolpath for each segment is generated independently. Besides

human expertise, it needs tremendous time investment for tuning the path-planning

parameters manually to generate collision-free tool trajectories. Though the state-of-

the-art CAM packages have significantly streamlined manufacturing pipelines from

the CAD to the CNC stage through improved features to decrease the toolpath plan-

ning time, yet there is a steep productivity gap. For complex sculptured parts, the

toolpath programming time can exceed the actual machining time by a large margin.

Such intensive expert labor involvement leads to significantly higher manufacturing

cost for CNC based industrial prototyping.

A key reason behind the lack of automation in the CNC path-planning process

is the underlying solid geometry representations used in the CAD/CAM software.

Typically, CAD interfaces are represented in explicit or parametric form that generally

yields high quality in geometric modeling, but challenges the core computations of tool

trajectories generation process, such as, surface offsetting, set union or intersection,
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etc., to be completely automated. Furthermore, by the nature of how these de-

facto solid representations store the core geometric primitives, they are not readily

amenable to parallel editing for accelerated generation of the G-code programs. Thus,

to simplify CNC programmability for the rapid prototyping of free-form shapes we

need an alternative form of solid representation. To bridge the above productivity gap

between these complementary manufacturing technologies, namely, CNC machining

and 3D printing, the adoption of a voxel-based discretized solid representation can

greatly simplify the CNC toolpath planning to fabricate organic free-form shapes [97,

60].

Using a regularly-sampled discrete data representation, such as 3D grid, the voxel

processing becomes embarrassingly parallel and well suited for massively parallel com-

puting hardware, such as graphics-processing unit (GPU). However, a cubic scaling

of the storage growth and the computations thereon restrict the resolution achievable

with a regular grid structure. In practice, a solid that is manufacturable in a CNC

process exhibits ‘sparsity’ in its discretized representation. Informally, a discrete voxel

data structure is sparse if it consists of relatively few boundary voxels (also called

active voxels). Moreover, as the number of boundary voxels scales with the surface

area and the total number of voxels is determined by the volume, the sparsity, i.e.,

the ratio of the total voxels to the boundary voxels in a uniform grid scales with

increasing resolution. Storage of and computation with the non-boundary voxels can

be eliminated by a judicious choice of data structure that stores just the active voxels,

plus some additional indexing information to indicate which volumetric spaces, i.e.,

voxel coordinates have been stored.

Thus, the sparsity in the discretized representation can be leveraged to model

the solid using an adaptive discrete data representation. In an irregularly-sampled

discrete data representation the volumetric space that is uniform, i.e., either com-

pletely interior or exterior to the object, can be represented at coarse resolution, and
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only the boundary surface gets modeled at the finest resolution. However, the price

of a more compact representation in the sparse format compared to that on dense

counterpart is more computational overhead per boundary voxels — overheads in the

form of extra instructions and, critically, extra memory references, which are often

indirect and have an irregular access pattern. While the overhead of extra instruc-

tions, particularly that of homogeneous computations across the threads in a GPU

thread block, can be well-mitigated exploiting the ever-increasing parallel comput-

ing capabilities on GPUs; indirect and irregular memory accesses reduce the overall

performance speedup achievable through massive parallelization.

Although, historically the applications of volumetric modeling have been mostly

limited in medical imaging and visual effects productions due to the high computa-

tional demand for massive 3D data processing, voxelized form of solid representation

has been lately adopted both in additive manufacturing [32] and in CNC machin-

ing [97, 60]. However, to adopt a voxel based solid representation for CNC manu-

facturing, there are two major challenges: (1) how to compactly store the volume at

extreme resolution, and (2) how to efficiently construct and edit the volume interac-

tively. These two objectives are contrasting by nature — storage effective representa-

tions are computationally inefficient, and vice versa. A suitable data structure thus

needs to blend a computation-efficient representation with a compact data organiza-

tion such that both of the objectives are balanced. This dissertation research uses

such a hybrid voxel representation known as a hybrid dynamic tree (HDT) [48, 47, 60]

that targets fulfilling both of these requirements simultaneously through maximizing

the computation efficiency, and minimizing the memory footprint. The name “hybrid

dynamic tree” was first introduced by Konobrytskyi [60], who suggested an adaptive

hierarchical voxel representation, but did not implement the precise way our work is

built upon.

To push the computational capacity beyond the performance limit of multi-core
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CPUs, programmers are increasingly opting for parallel implementation. While coarse-

grained parallelization on modern CPUs can distribute the computation across tens

of processing cores, a graphics-processing unit (GPU) today is equipped with thou-

sands of computing engines. The increased capabilities and flexibility of recent GPU

hardware combined with high level GPU programming languages, such as CUDA and

OpenCL have unlocked this supercomputing-scale computational power to a desktop

workstation. In the context of CNC toolpath automation, prior works have exploited

this massive parallelism to accelerate the application [52, 98].

Because the GPU co-processors are optimized for different application areas than

general-purpose computation, several important factors need to be considered for

developing algorithms and data structures to scale efficiently on these platforms.

First and foremost, not all computational problems are suitable for massively parallel

computing paradigm. Further, since GPU memory is limited, it is important to

maintain the data representation within a strict memory budget. For a specific task,

the acceleration on GPU is limited by several factors: (a) the ratio of parallel to

sequential part of the algorithm that limits the achievable speedup (formulated by

the Amdhal’s Law), (b) branching diversity, (c) global synchronization requirements,

(d) data transfer overhead, (e) the precision in floating point operations (i.e., single-

or double-precision), and (f) the ratio of floating point operations to global memory

accesses.

This dissertation presents an efficient parallel construction of the HDT data struc-

ture, and fast and tunable implementation of voxel offsetting algorithm that heavily

leverage the massively parallel computing platform on GPUs to meet the computa-

tional demand for accelerated geometric editing of billions of voxels — a case that

arises in toolpath planning process with a underlying volumetric representation.
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1.2 The Case for Tunable High-Performance Voxel Offsetting

This dissertation deals with the problem of offset generation of free-form objects

modeled in the HDT representation that is pertinent to more generic problem, known

as offset surface computation. For a given surface, the offset surface is defined as a

surface at equal distance from an original surface. It is often used in CNC toolpath

planning processes, as the center of a ball-end mill cutting tool may be positioned on

the offset surface to move freely without producing overcuts, and yet remaining in

contact with the part surface at the outer radius of the ball [60]. By replacing tool

contact point trajectory planning with tool center trajectory planning it is possible

to eliminate a complicated gouge prevention process and make tool path planning

algorithms simpler. Figure 1.1 demonstrates the application of offsetting in CNC

toolpath generation process. Here, our target is to make a sample 3D part shown in

Fig. 1.1(a). The part is to be manufactured in CNC milling process from a sample

cuboid stock, as we see in Fig. 1.1(b). For a given ball-end tool with radius r and

“maximum depth of cut” parameter d, first the stock is shrunk by r and the part is

expanded by d, as depicted in Figs. 1.1(c) and (d), respectively. Then, a Boolean union

operation between these two volumes, shown in Fig. 1.1(e), defines the contact volume,

i.e., the bounding surface on which the tool center can be positioned without any over-

cuts and simultaneously respecting the values of r and d. Finally, the resultant stock

after the tool paths are applied on the contact volume is presented in Fig. 1.1(f).

Although the offset surface makes toolpath planning algorithms simpler, finding

an offset surface is not a trivial problem for most geometry representations. Special

cases such as holes and self-intersections challenge an efficient and robust offset imple-

mentation. To construct an offset of HDT represented solids, it can be considered as

a composition of geometric primitives, where each primitive defines the offset surface

associated with individual voxel on the original surface. Each geometric primitive is

delineated by the given offset distance and the center of volumetric space of the voxel,
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(a) Target part (b) Part shown inside stock

(c) Shrunk stock (d) Expanded Part

(e) Contact Volume (f) Stock afer toolpass

Figure 1.1: Surface Offsetting in CNC toolpath planning.
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which can be computed applying 3D convolutions. Convolution is a fundamental tool

in digital image processing that can be understood as a linear filter applied to an

input image, parametrized by another image called kernel. At each pixel, it outputs

a weighted sum of the intensities in the neighborhood where the weights are defined

by the kernel.

Algorithms operating on a volumetric representation are generally simple, robust,

and insensitive to model complexity by the very nature of its geometry modeling.

Furthermore, conceptual designs of such algorithms are fairly comprehensible com-

pared to algorithms operating on boundary representations, such as triangle meshes.

However, such design simplicity of complex geometry algorithms comes at the cost

of limited spatial resolution in volumetric representation. In most cases, voxels are

represented on a regular 3D grid, as such a representation based on uniform indexing

is easy to implement. Additionally, most of the volumetric algorithms, such as, convo-

lutional kernels, interpolations, and discretization of differential operators are easier

with a uniform sampling scheme [80]. An inherent limitation of uniform sampling

is that the memory footprint grows in proportion to the volume of the embedding

space. For instance, even with single bit storage per voxel, a uniformly indexed 3D

grid at 8192× 8192× 8192 resolution requires 64 GB storage.

Large resolutions impose challenging requirements on the computation platform

in terms of both performance and memory. To address the ever-increasing perfor-

mance demand, programmers rely on exposing more and more parallelism for future

hardware to exploit. For our target application of 3D convolution on high-resolution

voxel representation, superficially, this seems easy: convolution based image pro-

cessing is enormously data-parallel, which makes it easy to scale on highly parallel

hardware, like GPUs. The main challenge is that at the extreme resolutions the

size of a uniformly-indexed voxel representation hits the capacity of GPU memory.

That requires breaking the data into multiple blocks, and processing the data chunks
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sequentially on the accelerators. There are several bottlenecks in this computation

methodology: (a) significant communication overhead incurred due to large data

transfer over slow PCIe communication channel, (b) reduced locality caused by re-

peated data allocations and deallocations, (c) redundant computation related to non-

boundary (i.e., interior and exterior) voxels processing, and (d) complex out-of-core

algorithm implementation.

The motivation to accelerate the computation of the convolution based offsetting

can be realized by analyzing its computational complexity. With a uniform 3D grid,

the computational complexity of convolution is determined by the target resolution

and the size of the convolution kernel. In general, for a regular grid of size N×N×N

and a kernel of size M ×M ×M , convolution in the spatial domain takes O(N3M3)

time. As a concrete example, we consider the case of 100 voxel offsetting at 40963

resolution. For an offset distance of 100 voxels, the kernel has (2 × 100 + 1)3 ≈

8 × 106 discrete points to convolve around each input voxel. Hence, the complexity

of convolution operation at a resolution of 40963 with 100 voxels offsetting translates

to an order of 4096 × 4096 × 4096 ×(8 × 106) ≈ 5.5 × 1017 computations. This

value is prohibitive to compute voxel offsetting at high resolutions in an interactive

application, like in our target CNC toolpath planning operation.

While the convolution in the spatial domain performs an inner product in each

sample, in the Fourier domain it can be computed as a simple point-wise multipli-

cation [82]. Due to this convolution property and the complexity of the fast Fourier

transform (FFT) [29, 61], 3D convolution can be performed in O(N3 logN) time.

Thus, an FFT based convolution computation, often termed as fast convolution, is

independent of the kernel size, which might be a preferable choice for voxel offsetting

with large kernel size. While the Fourier domain is asymptotically faster than the

spatial domain, it has limitations as well. First, the data set dimensions have to be a

power of two, which is usually not the case for our voxel data. Therefore, one would
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have to pad the data that could cause distortion or noise in the filtered output. This

gives justification that performing convolution in the spatial domain is also useful in

some cases, and particularly for the voxel offsetting in CNC toolpath generation, our

research solely focuses on the spatial domain.

Moreover, storage requirement in the Fourier domain is even more critical due to

signals representation in floating-points. For better insight, let us again consider the

case of offsetting at 40963 resolution. To minimize inaccuracy, assume each sample

is represented in double-precision floating-point numbers consuming 8 Bytes. Thus,

to perform offsetting at a resolution of 40963, general FFT based 3D convolution

requires a storage in order of 4096× 4096× 4096 × 8 Bytes = 512 GB — almost two

orders of magnitude larger than the memory limit of a typical graphics card. Thus,

the scope of this research is confined within the spatial domain that leverages the

presented hybrid dynamic trees as the underlying voxel representation.

In principle, the efficiency and performance of an application are determined by the

algorithm and the hardware architecture that executes the algorithm, but in practice,

critically also by the organization of computations and data on that architecture [87].

Particularly, on graphics hardware the organization of computations and data for a

given algorithm are constrained by fundamental trade-offs between parallelism, stor-

age and redundant computation. In our context, the traditional approach of voxel

representation using a 3D grid unleashes peak parallelism, but the latter two objec-

tives are compromised. Thus, to optimize the storage and redundant computations

both the filtering kernel and the voxel data structure should be represented in some

sparse arrangement that trades off the achievable peak performance. For instance,

to model a spherical filter for convolution operation, the set of discretized boundary

points of the sphere can be considered only instead of using a 3D grid. While the

number of discrete points in a 3D filter scale in cubic with the offset distance, the size

of discretized boundary points on the surface of a sphere only increases quadratically.

10



Furthermore, using the hybrid dynamic trees as the underlying data structure allows

storage-efficient representation and high-resolution volume processing on many-core

graphics accelerators. However, with the adoption of underlying sparse data structure

the applications often perform just at a fraction of the peak theoretical performance.

This thesis argues and demonstrates that the convolution offsetting of high-resolution

HDTs on GPU can be significantly accelerated, and the memory footprint can be

simultaneously optimized through careful selection of tunable parameters—both ex-

ploiting the configurable sparse voxel data arrangement and leveraging the control-

lable convolution parameters. In addition, a judicious selection of underlying data

representation in the HDT allows seamlessly scaling out the accelerations across mul-

tiple GPUs.

1.3 Research Contributions

The main goal of this dissertation is to design and implement a fast and effective

computational method of computing offsets for a solid object represented in high-

resolution hybrid dynamic tree (HDT). In particular, this dissertation deals with the

development and analysis of a tunable offset computation algorithm that trades offs

speed, storage efficiency, and geometric accuracy. By “fast” we mean using scalable

parallel algorithms that are well-suited to modern massively parallel processors, es-

pecially the ubiquitous graphics processing unit (GPU) co-processors available in all

modern systems; by “compact” we mean a storage-efficient voxel representation with

a low memory footprint; and by “accuracy” we mean the quality of the computed

result. At our target resolution of 40963, we aim to compute large-scale offsets in

minutes, match or beat the number of bits of the representation compared to state-

of-the-art alternatives, and experimentally characterize any trade-offs among speed,

storage, and accuracy.

Roughly speaking, our contributions can be divided into four parts. First, we

11



present a parallel algorithm to construct the HDT representation on GPU for a

CAD input modeled in triangle mesh. At a modeling resolution of 81923, our GPU-

acceleration of the mesh to voxelization process achieves over two orders of magnitude

speedup compared to single-threaded CPU implementation. Further, we incorporate

tunability into the HDT parameters to study the complexity of memory footprint

requires in the HDT representation. The developed theoretical storage analysis is

validated with rigorous experiments that helps devising optimal parameter selections

for storage-compact HDT representation. Additionally, we analyze the impact of

tunable HDT configurations on the different phases of HDT construction on GPU’s

massively-parallel computing architecture.

Our second contribution is a tunable offsetting method based on 3D convolutions

and mathematical morphology that works on the compact hybrid voxel representa-

tion. As algorithmic performance depends on many components; such as, layout of

voxel organization, the nature of the computation (such as, HDT construction vs.

offset computation), and the underlying hardware (like, CPU vs. GPU), our research

considers tuning the performance of offsetting operation through the tunable HDT

data structure. While using the HDT as the underlying data structure leads naturally

to a storage-efficient representation, the challenge in developing a high-performance

implementation of an offset algorithm is choosing an optimal configuration of the

HDT parameters. These parameters not only govern the memory footprint of the

voxelized representation of the solid, but also control the parallel code execution ef-

ficiency on GPUs. As diverse HDT configurations affect different steps of the offset

computation differently, this research studies the relationships between the tunable

parameters and individual phases of the offset algorithm to empirically derive an

optimal parameter setup.

The third contribution of this dissertation is to leverage the controllable con-

volution parameters to devise a fast voxel-based offsetting algorithm with tunable
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speed and accuracy. Using a convolution-based offset generation technique makes the

computational complexity tunable, essentially through changing the size of the con-

volution kernel. In general, a smaller kernel results in faster execution due to lower

number of neighboring elements in the spherical stencil; however the geometric ac-

curacy scales inversely with the increasing number of convolution operations. Hence,

our research analyzes the impact of the decomposition of a large offset distance into

a series of offsetting with smaller distances. Further, to analyze the impact of these

parameters on the geometric precision of the computed result, we implement a GPU-

accelerated error measurement technique. Such a tuning of the size of structuring

element as a tuning knob to trade-off performance over precision further makes our

implementation platform-adaptive that allows the algorithm to be adjusted depending

on the peak performance of the underlying hardware.

To devise even faster parallel offsetting algorithm, our final contribution is to

scale-out the offset computation across multiple GPUs in a load-balanced way. We

target a dual-GPU platform to demonstrate near-linear scalability in the offset com-

putation. With more and more GPUs integrated on a single computing node, such

exploration of algorithmic speedup through load-balanced implementation of offset-

ting across multiple GPUs emphasizes the high scalability of the HDT’s hybrid data

representation. In general, load-balancing needs estimation of the cost of the en-

tire computation and consideration of the disparity in the peak throughout (often

measured in FLOPS) of the underlying GPU devices. In contrast to a boundary-

representation, such as a polygonal mesh, voxel-based computation is more amenable

to load-balanced execution.

1.4 Outline

The contents of this dissertation can be divided into three parts. Chapters 2 and

3 focus on presenting hybrid dynamic trees, and reviewing related data structures.
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Chapters 4 uses HDTs as the underlying voxel representation to develop an efficient

and parallel offset algorithm. Lastly, Chapters 5, 6 and 7 present some practical

approaches to devise high-performance dilation and erosion for large-scale offset dis-

tances at high- resolution HDTs. The remainder of this dissertation is organized as

below:

• Chapter 2 presents an overview of the basic data structures for discrete voxel

based solid representations. Further, some compressed data representations are

presented in Chapter 2.

• Chapter 3 describes the fundamentals of the hybrid dynamic tree structures,

and presents GPU-parallel algorithms to construct the HDT from triangle mesh

input. Further, a detailed analysis on the storage of the HDT structure is

presented. Finally, the impact of the tunable parameters on HDT construction

process are analyzed in Chapter 3.

• Chapter 4 presents an efficient parallel implementation of offsetting that adopts

a 3D convolution based mathematical morphology to expand or contract solids

represented in high-resolution HDTs. Coupled with the underlying HDT based

sparse voxel representation, parallel morphological filtering demonstrates sig-

nificant performance acceleration on the many-core GPU hardware as shown in

the comparative studies in Chapter 4.

• Chapter 5 analyzes the computational complexity of morphology based off-

setting algorithm using the HDT as the underlying data representation, and

demonstrates how the offsetting computation can be optimized through careful

parameter selections to the tunable HDT parameters.

• Chapter 6 investigates the opportunity of offsetting optimization through tuning

of the kernel size parameters of the morphological filters. Further, to analyze
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the trade-offs between speed and accuracy, an efficient parallel algorithm to

measure the offsetting error is presented in Chapter 6.

• Chapter 7 presents scaled-out acceleration of the offsetting algorithm on a plat-

form with multiple graphics processing units. Also, an analysis on the scalability

of the convolution based offsetting using HDT is presented in Chapter 7.

• Chapter ?? discusses our experience with HDTs as the foundational data struc-

ture for storage-efficient voxel representation, and analyzes the tunable convo-

lution offsetting algorithm to demonstrate its applicability for interactive CAM

applications.
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CHAPTER 2

LITERATURE REVIEW

2.1 Survey of Basic Voxel Data Structures

As our research considers the problem of how to efficiently represent and compute on

high-resolution volume data, in this section we present a review on the fundamental

voxel data structure.

2.1.1 Uniform Grid

To represent a solid object in cubical domain, uniform grid is the simplistic data

structure, where the axis aligned bounding box of the solid is subdivided into equally

sized cells (i.e., voxels) along each of the three main axis X, Y and Z. Voxels dis-

cretized on a regular 3D grid is easy to implement because of the uniform indexing.

Additionally, most of the volumetric algorithms, such as, convolution kernels, inter-

polations, discretization of differential operators, are inclined to a uniform sampling

scheme [80]. Figure 2.1 shows a uniform voxel grid, along with some Boolean op-

erations operating on two voxel grids to illustrate the simplicity of the underlying

algorithms.

(a) A uniform voxel grid (b) Boolean operations on the voxel grid

Figure 2.1: Uniform grid representation.

16



However, with the surface discretized onto a uniformly-spaced grid, the density

of the volumetric elements (voxel) increase with a cubic order of the resolution. For

instance, to fabricate a 3D part of 1 m3 volume that is discretized on a uniform grid

with a voxel size of 10 µm3. Even with a data size of 1 bit per voxel, it needs over 100

Terabytes just to store the geometry details of 1015 elements. Hence, uniform grid is

only suitable if the target resolution is not high, and thus it is not a practical choice

for high-precision 3D manufacturing as the discretized output lacks sharp and thin

features in geometric modeling with limited volumetric resolution.

2.1.2 Two-Level or Tiled Grid

To mitigate this high memory overhead with a dense uniform grid structure, an obvi-

ous approach is to exploit adaptive refinement in the spatial decomposition. Applying

an adaptive refinement to a uniform grid, we have a two-level nested grid structure,

termed tiled grid, where volume is first divided into uniformly-size cells, also called

blocks, bricks, or tiles. Then, each cell is partitioned into a fixed number of voxels

if it intersects the target object of interest. Figure 2.2(a) depicts a sample 2-level

tiled structure, while in Fig. 2.2(b) a tiled grid is demonstrated on a cross-section

of a sample 3D model, in this case a human upper (posterior) body. In Fig. 2.2(b),

boundary tiles (yellow) are only further decomposed into voxels, while the outer tiles

(red) or the inner blocks (green) are not.

Tiled grid has been used in many production rendering systems, such as, the

open-source Field3D [35]. Kalojanov et al. [55] extended their previous method [56]

for construction of two-level grids targeting faster ray tracing while keeping the data

structure build times comparable to uniform grids. The limitation of a fixed hi-

erarchical structure is obvious; as the available grid resolution is measured by the

product of the branching factors at each level, a higher resolution suggests either

of the branching factors to be increased. A large branching factor at the top level

inflates the number of tiles, and hence the storage. At the bottom level branching
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Tiles 

Voxel Block 

(a) A 2-Level grid structure
with 163 blocks, and each tile
representing 163 voxels.

(b) Tiled grid structure in a sample 2D cross-
section. In this example, the boundary blocks
(yellow) are not shown divided into voxels.

Figure 2.2: Illustration of a tiled grid structure.

factor needs to be relatively small, as the ratio of inactive to active1 voxels needs to

be low for limiting the redundant storage. Hence, for extreme-scale volume modeling

such a fixed two-level hierarchy reduces exploiting adaptivity in the geometry, and

thus inflates topology storage for the active voxels (cf. Section 3.4.1).

To address the requirement of large top-level grid in a tiled grid structure, Kono-

brytskyi et al. [60] presented a GPU centric two-level grid implementation, called

hybrid dynamic tree (HDT). In stead of using a large top-level grid, their implemen-

tation adopted a list of cells (i.e., tiles), and each cell containing the boundary is

partitioned into finer resolution sub-cells (i.e., voxels). The presented two-level HDT

structure scaled up to 2563 cells, where each cell is a block of 163 voxels. While the

two-level HDT implementation achieved up to a resolution of 40963 on a multi-GPU

platform with a combined graphics memory capacity of 9 GB [60], being a variant

of tiled grid structure their HDT inherits the same constraints as uniform 3D grids

exhibit for extreme-scale voxel representation. Our presented HDT design [48] is a
1In this research, we define the voxels lying on the solid boundary as active voxels, while the rest

of the voxels in a tile, located either inside or outside of the object, are termed inactive voxels.
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natural extension to the two-level HDT proposed by Konobrytskyi et al. [60] that

integrates a complete adaptive refinement in between the top grid and the bottom

grid. The details on the completely adaptive HDT design and implementation are

presented in Chapter 3.

2.1.3 Octree and Generalized N3-tree

Given a solid object, to represent its volume in a structured but adaptive way an

intuitive strategy will be to discretize space into voxels where the smallest voxels

correspond to a desired resolution, but with a goal of being memory-efficienct by only

storing voxels necessary to represent the object. This is exactly what is conceived

in a sparse voxel octree (SVO) [76, 53, 89, 39, 38, 33]. Octrees have an especially

long history in the context of rendering, modeling, and mesh extraction. An octree

is a hierarchical space-partitioning data structure that recursively subdivides space

into units of 8 cells, or octants; to make it adaptive, a given cell subdivides only if

it intersects with the target object. Thus, a sparse voxel octree retains the desired

geometric resolution at the lowest level of the tree, while clusters similar regions

(empty or solid) compactly at the nodes in intermediate levels. The memory footprint

in an SVO scales with the number of voxels required to define the solid boundary,

instead of the embedding volume.

With an extremely small branching factor at every level of the tree hierarchy,

octree is clearly optimal for adaptive grid sampling. However, for optimal geometric

processing it is not only the size of the data, but the layout of the computation and

the data that also matters to harness the fullest capability of off-the-shelf hardware

accelerators, such as GPUs. A fundamental challenge in any sparse adaptive data

structure is to properly balance between computational efficiency and storage effi-

ciency: storage effective algorithms tend to lower the computational efficiency, while

computationally efficient algorithms tend to increase the storage requirements. Fig-

ure 2.3(a) demonstrates the concepts of an octree in 2D (i.e., a quadtree) for a sample
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triangle that is spatially decomposed in successive levels of geometry approximations.

The resulting quadtree is shown in Fig. 2.3(b), with the filled cells containing geome-

try, and the rest cells denoting empty space. To illustrate the complexity of algorithms

operating on sparse voxel structure compared to a uniform grid, Figure 2.4 shows the

same Boolean operations (as depicted for the uniform grid in Figure 2.1) that operate

on two quadtree structures.

(a) A quadtree representation of a triangle

(b) Resulting quadtree

Figure 2.3: Illustration of a quadtree.

Figure 2.4: Boolean operations on two quadtree structures (illustration source: [36]).
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While an octree is space-efficient, a relatively small branching factor (of just 2 per

dimension) means that achieving a high resolution will require a relatively deep tree.

Level-by-level tree construction and traversal can be a major bottleneck, especially on

GPU platforms. The two main reasons are that a) the tree depth defines the critical

path length, and b) the degree of parallelism is high near the lower levels (leaves) but

low everywhere else. Hence, tall octrees make the construction and dynamic updates

of the volume data problematic on GPUs. A natural generalization to octree is the

N3-tree [67], where each non-leaf node has N3 children (for instance, an octree has

N = 2). The choice of N trades-off memory efficiency for traversal efficiency: a

relatively small N yields a highly adaptable data structure with the potential for low

storage at the cost of a deep tree with low traversal-efficiency, whereas a relatively

larger N reduces adaptivity, thereby increasing storage but making a more shallow

tree with high traversal-efficiency.

A sparse voxel octree encodes the cubical 3D grid by grouping empty regions,

where each node stores an 8-bit mask denoting for every child if it exists – i.e., the

corresponding voxel space is not empty. A pointer connects the parent to its chil-

dren, which are ordered in memory. Thus, 8 bits are needed for the childmask, plus

a pointer of typically 32 bits. Altogether, it consume 8 + 32 = 40 bits (5 Bytes) per

node in a typical SVO based voxel representation. To optimize the storage require-

ment, Laine et al. [63, 62] presented an efficient sparse voxel octree (ESVO) structure,

where each leaf identifies an active voxel on the surface geometry. As depicted in Fig-

ure 2.5, the authors used a 32-bit child descriptor to store the topology of the octree,

corresponding to every non-leaf node. Leaves (voxels) do not require a descriptor of

their own, as they are described by their parents. The child descriptor contains two

bitmasks, each storing one bit per child slot – valid mask tells whether each of the

child slots contains any boundary geometry, while leaf mask further specifies whether

each of these slots is a leaf (voxel). Based on the bitmasks, the status of a child slot

21



can be interpreted as either of — (a) neither bit is set: the slot is not intersected by

a surface; (b) the bit in valid mask is set: the slot contains a non-leaf node; (c) both

bits are set: the slot contains a leaf voxel. If the voxel contains any non-leaf children,

a 15-bit child pointer is used to reference the descendant node.

leaf maskvalid maskchild pointer far

8 815 1 bits

Child descriptor stored for each non-leaf voxel.

A

B C D

E

F

00000000010010100

10000000100000000

00010100000101000

00010001000110010

00100000001000000

01001000010010101

Far Pointer

A

B

C

D

E

F

Top: Layout of a child descriptor entry. Left: Example voxel hierarchy. Right: Child descriptor 

array containing one descriptor for each non-leaf voxel in the example hierarchy.

Figure 2.5: Efficient sparse voxel octree representation [63].

As Laine et al. [63, 62] analyzed the average storage per active voxel, it requires

only 1.33 Byte (11 bits2) to maintain the topology of the voxel in a sparse 3D space,

and 1 Byte for storing the state of individual voxel. Thus, in total 11 + 8 = 19 bits

is consumed per active voxel in the efficient sparse voxel octree, which is roughly 2×

compact than typical SVOs. While the ESVO is a compact representation and capable

to represent extreme resolution, an SVO-like structure is not well suited for parallel

volume editing application. For parallel voxel offsetting on GPUs, as in the case of our

CAD/CAM application, a sparse data structure needs organizing the active voxels in
2The specific topology storage depends on the sparsity of the nodes in the octree. For an average

four children per node the topology storage is shown to be 1.33 Byte.
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a way to ensure that all the computing threads of a CUDA block must access spatially

adjacent memory addresses to avoid any overhead caused by data divergence. In an

SVO or variants thereon, threads in a CUDA warp access incoherent memory blocks

corresponding to sparsely located voxels that pose computational challenges in time.

2.1.4 Hash Table Representation

In contrast to deep tree based hierarchical structure, voxels can be sparsely repre-

sented using hash tables [65, 13, 34, 24, 81, 59]. Different hashing schemes can be

adopted in conjunction with above discussed voxel data structures to speedup the

traversal for voxel lookup. Generally, a set of indexes referencing an active voxel (or

a group of voxels) is used as the key that the hash function maps to a particular

memory block. As an example, Figure 2.6 shows the voxel hashing data structure

used for real-time 3D reconstruction by Nießner et al. [81].

Figure 2.6: Voxel hashing data structure by Nießner et al. [81]. Here, the voxel world
is conceptually partitioned into an infinite uniform grid. Using the hash function,
integer world coordinates are mapped to hash buckets, which store a small array of
pointers to regular grid voxel blocks. Each voxel block contains an 83 grid of signed
distance field (SDF) values. When information for the red block gets added, a collision
appears which is resolved by using the second element in the hash bucket.
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Spatial hashing allows random access to sparse data in expected constant time,

whereas in a dense voxel grid look-up can be done in worst-case constant time. In

practice, the look-up time for some items in a hash table is Ω(lg lg n) with high

probability [13]. The work by Lefebvre and Hoppe [65], among the first to develop

a hash table on GPUs for efficient access to sparse voxel data, addressed the issue

of variable lookup time by using a perfect hash table. The perfect hash table allows

accessing an item in worst case O(1) time.

Though such sparse voxel implementation is fairly simple and flexible for GPU

parallelization, it suffers several performance issues. Typically, a volume at high

resolutions include tens to hundreds of millions of active voxels, and its fairly difficult,

if not impossible, to avoid hash-key collisions for such large set of elements. Besides,

the time to compute the hash-key for complex hash functions is often non-trivial.

Moreover, as good hash functions in general prefer distributing the keys randomly,

the cache performance is impaired even during sequential accesses. As demonstrated

in the study by Eyiyurekli et al. [24], the experimentations on a two-dimensional

numerical simulation validated that a hash table based solution generally fails to

match the performance of quadree data structure.

2.1.5 Hybrid Representation

As grids have large branching factor and octrees (N3-trees) are with small branching

factor, hybrid schemes that combine the basic ideas underlying regular grids and

octrees (N3-trees) can balance between storage and computation efficiencies. One

such approach is octree-grid (also known as sparse block grids) [23, 74, 30, 26] where

octree-like dyadic spatial division is adopted at top hierarchies, while at the lowest

level of refinement each cell represents a block of non-overlapping voxels. Another

alternative hybrid approach is called grid-octree [79, 99], which is conceptually a grid

of small octrees — at the topmost hierarchy the volume is divided into uniform-shaped

cells, and then each cell is adaptively divided in an octree fashion.
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Though both of these hybrid schemes share a common goal: leveraging the implicit

indexing in grid structure to bypass multiple accesses of slow tree traversals, from the

viewpoint of parallel voxel editing scenario, the former approach is generally better

suited to GPUs than the latter. In a hybrid grid-octree structure each CUDA thread

processes a relatively shallow octree that although spans a quite limited depth, yet

such recursive branchings likely to cause divergences and unaligned memory accesses.

By contrast, for a hybrid octree-grid approach though divergence exists at the upper

hierarchies of tree traversal, at the lowest level the set of grids containing the active

voxels can be processed with tremendous efficiency. This is to be emphasized here that

in our target use case of high-resolution voxel offsetting in CAD/CAM application,

the geometric processing of the boundary voxels are generally the most computation-

demanding operation. Hence, a sparse data organization resembling a hybrid octree-

grid structure could be considered as a preliminary fit to our needs.

Among all the prior sparse data structures, the VDB approach proposed by

Museth et al. [80] is most closely related to our work. Structurally, VDB is a hy-

brid scheme similar to octree-grids. VDB organizes a block of contiguous voxels at

the leaf hierarchy. At intermediate levels VDB divides the spatial range in a large

branching factor similar to B+ trees. Using a B+ tree as the underlying structure

in place of an octree, VDB manages the hierarchical data organization to be shallow

that improves the traversal efficiency as described earlier. Furthermore, the branch-

ing factors across different levels in VDB generally increase from the bottom up.

Such a design is based on multi-level caching policy in modern CPU architecture. As

VDB implements custom-tailored software-level caching, increasing branching factors

from the bottom up improve the cache hit rates for sequential accesses. At the root

level VDB suggests using a hash table based key (e.g., voxel indexes) distribution to

support a virtually infinite resolution at the cost of scattered data allocation.

Figure 2.7 shows a rendering of a dragon model in VDB. In this example, the VDB
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Voxels :  

Leaf Nodes: 43 

Interna l  Nodes :   10243 

 
Interna l  Nodes :   643 

Active voxel span: 7897 x 1504 x 5774 

13 

Figure 2.7: High-resolution VDB created by converting polygonal model from How
To Train Your Dragon. Images are courtesy of DreamWorks Animation.

structure is configured in three levels. At the top level each internal node represents

10243 resolution, and each of the mid-level internal nodes represents 643 resolution.

Thus, the top level node has a branching factor of 1024
64 = 16 along each dimension.

The same branching factor is adopted for the middle level nodes, and thus each of the

leaf nodes represents a volumetric space with a dimension of 64
16 = 4 voxels. Contrary

to the VDB, our HDT design adopts a constant branching factor for the adaptive

refinement of the nodes in between the top grid and bottom grid. A most subtle

difference with our hybrid data structure is that VDB is designed for CPU platforms,

which is typically equipped with an order of magnitude larger system memory than

GPUs. While VDB design is quite sophisticated, the use of software-level caching and

large branching factors introduces storage overhead of 8–9 Bytes per active voxel [80].

2.2 Compressed Voxel Representation through Geometric Re-
dundancy

Although the scope of this dissertation is confined within efficient storage and pro-

cessing of raw voxel data, and hence does not explore any compression mechanism
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to reduce the memory footprint, a vast array of compression schemes are widely

used in diverse application domains. While advanced compression algorithms can

significantly cut down the storage requirement, for high-resolution voxel offsetting in

an interactive CAD/CAM application the overhead of repeated compressions and de-

compressions may impose significant challenge, particularly for accelerated processing

on graphics hardware. Generally compressed size of the data depends on the input,

and hence runtime compressions-decompressions cause memory fragmentation due to

the changing size of the compressed data. Another more subtle issue is that due to

variable size of the compressed data, computation homogeneity across the threads on

GPUs gets degraded. This part of the literature review focuses on voxel compression

techniques that primarily targets optimizing storage of hierarchical voxel representa-

tion, and thus are suitable to sparse voxel octree (SVO) structures, and the variants

thereon. As the hybrid voxel representations discussed above generally use octree

or generalized N3-tree as the underlying data structure to leverage sparsity, these

compression methods can be equally applied to hybrid structures, such as, VDB and

HDT, among others.

Our discussion includes recently proposed state-of-the-art compression mechanism

based on directed acyclic graph (DAG) that targets storing voxel data at extremely

high resolution. While the SVO allows for efficient encoding of empty regions of

space, the DAG additionally allows for efficient encoding of identical regions of space.

Besides the structural sparsity in the voxel grid, recent works [57, 31, 101, 104] have

exploited the resemblance among voxel blocks in disparate volume spaces to compress

the volume data. The idea of compression through region merging has been studied

earlier by Webber and Dillencourt [103], where quadtrees representing binary carto-

graphic images are compressed by merging common subtrees. A similar approach was

further extended by Parker et al. [84] to three dimensions to compress axis-aligned

and regular voxel data. Alternative approaches to compactly representing trees, and
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applications thereof, are presented and surveyed in an earlier work by Katajainen et

al. [58].

Kämpe et al. [57] explored that geometric redundancy in the voxel structure,

particularly in VFX applications, is common. The authors studied that a binary voxel

grid can be represented more efficiently than using an SVO by generalizing the tree to

a DAG,where nodes in a DAG are allowed to share pointers to identical subtrees. The

proposed approach searches the tree for common subtrees in a bottom-up manner,

references only the unique instances, and merge the identical regions. This transforms

the tree structure into a directed acyclic graph (DAG), resulting in a reduction of

nodes without loss of information. Figure 2.8 shows the high-level abstraction of this

compression scheme. While the proposed technique of merging equivalent subtrees in

an SVO demonstrates promising compression rates, it may incur significant overhead

to transform an SVO to a DAG representation. The efficiency of this compression

methodology depends on the geometric resemblance in the input voxel data. When

there are abundant patterns matching, the compression takes typically 1 to 5 seconds

at 81923 resolution, but for irregular models it takes over 40 seconds on a NVIDIA

GTX 680 [57].

Besides the transformation overhead, one disadvantage of the DAG in comparison

to an SVO is that pointers need to be stored for each child, because they can no longer

be grouped consecutively in memory (in which case, a single pointer to the first child

is sufficient). For instance, assuming a node has four children on average, it may

require up to 8 + 4 × 32 = 136 bits per node in DAG (8-bit childmask and a 32-bit

pointer), which would require maximum 40 bits per node in a typical SVO structure.

Schnabel and Klein presented pointerless SVOs [91] that completely removes pointer

overhead and are well suited for offline storage. The authors presented memory

compaction technique of a point cloud of geometry discretized into an octree with

40963 resolution. By sorting the tree in an implicit order, e.g. breadth-first order,
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(a) (b)

(c) (d)

Figure 2.8: Reducing a sparse voxel tree, illustrated using a binary tree, instead of
an octree, for clarity. a) The original tree. b) Non-unique leaves are reduced. c)
Now, there are non-unique nodes in the level above the leaves. These are reduced,
creating non-unique nodes in the level above this. d) The process proceeds until the
final directed acyclic graph is deduced (illustration source: [57]).

they can store it without pointers between nodes. However, the implicit order do not

support random access and cannot be extended to DAGs, as pointerless SVOs require

a fixed, sequential memory layout of nodes. While several reduction approaches for

pointers have been proposed [66, 63], they are typically not applicable to the DAG.

These schemes assume that pointers can be replaced by small offsets, but in a DAG,

a node’s children are not in order but scattered over different subtrees. Another

recent work presented a pointer entropy encoding and symmetry-based compression

for DAGs, but does not support attributes [101].

A further limitation of the DAG based storage compaction proposed by Kämpe

et al. [57] is that it is restricted to the compression of a single bit of (geometry)

information per voxel. As discussed earlier, the method is particularly successful if

the voxel data exhibit geometric repetition. Unfortunately, extending the information
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beyond one bit (e.g., to store material properties) is challenging, as it reduces the

amount of similar subtrees drastically [31]. To address this lack, recent works. [104, 31]

have further extended the applicability of DAG based compression with graphics

rendering attributes, such as, colors, normals etc. resulting into further memory

reduction.
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CHAPTER 3

THE DESIGN, IMPLEMENTATION AND ANALYSIS OF
THE HYBRID DYNAMIC TREE

This chapter presents the hybrid dynamic tree (HDT) data structure, and discusses

its condensed representation, a parallel algorithm for constructing the HDT on GPU,

and thorough experimental evaluations to characterize the HDT.

3.1 HDT Fundamentals
3.1.1 Basic Scheme

The hybrid dynamic tree (HDT) is an adaptive tree based data structure for rep-

resenting high-resolution sparse volumes. The HDT combines two contrasting data

structures – dense grid and sparse octree – in such a way that makes it both more

compact (i.e., storage efficient) and better-suited to GPUs (i.e., computation effec-

tive) than state-of-the-art alternatives. Figure 3.1 illustrates a sample layout of an

HDT structure. Like a tiled grid, the topmost level of an HDT is a root grid (shown

in green). The root grid is a 3D grid of uniformly-sized cells. If a given cell of the

root grid (or root cell) intersects the target object, then it becomes the root node of

an octree. Each cell in octree (octree cell) is then adaptively subdivided just as a

regular octree would be. In the figure, blue and white colored cells represent space

in a uniform state: either completely full (e.g., inside the solid object) or completely

empty (e.g., outside the solid object). Cells in a uniform state are not subdivided,

whereas the remaining cells (light blue) are. This adaptive refinement continues until

the cell size reaches the target resolution, at which point each leaf-level cell represents

a dense block of voxels, or leaf grid.

As the figure shows, an HDT effectively “sandwiches” octrees between the levels

of a tiled grid. Though simple in comprehension, such a hybrid representation is yet

capable of representing extreme-scale resolution with a reasonable memory footprint.
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Root Grid

[16 x 16 x 16]

Level 1 Level 2

Level 3

Octree

Leaf Grid

[16 x 16 x 16]

Figure 3.1: Illustration of HDT representation. Each intersecting root cell represents
the root of an octree that is adaptively refined until the desired resolution is reached.
Each octree (i.e., root cell) in this demonstration represents (16× 23)3, i.e., 1283 sub-
volume, and hence the entire HDT represents a volumetric resolution of 163 × 1283,
i.e., 20483. In this example, two small grids and a three-level octree jointly represent
a volumetric resolution of 20483 that is much shallower than a hierarchy of eleven
with a standard octree.
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The HDT in Figure 3.1 has a root grid and leaf grids all of size 163, but these need

not be the same in general. These are tunable parameters that control the effective

resolution and, given an object, the sparsity of the representation. For instance,

suppose one wishes to represent a cubic volume at a resolution of 81923 ≈ 550 billion

voxels. Choosing a root grid of size 643 and leaf grid of 163 would yield an HDT

whose octrees have at most log2
8192

64×16 = 3 levels. Compare these numbers to pure

tiled grid and pure octree representations. A tiled grid capable of the same overall

resolution would need a top-level grid of size 81923

163 = 5123, which makes it less adaptive

than the HDT1. A pure octree would need a log2 8192 = 13 levels, which makes it

much “taller” (and therefore slower and with reduced parallelism per level) than the

HDT. The impact of deep octree hierarchies will be further analyzed in Section 3.4 to

highlight the choice we made to restrain taller tree structure for efficient construction

and processing on GPUs.

3.1.2 Building Blocks

Conceptually, HDT is composed of two types of abstract data: (1) tree cells and

(2) leaf grids. We store at each tree cell its (x, y, z) coordinates and its depth in

the HDT – that together specify the non-overlapping volumetric space represented

by the corresponding cell in HDT. In addition, each cell is in one of four possible

states: full, empty, branching, and boundary. The full and empty states are terminal,

but the branching and boundary states point to descendent tree cells and leaf grids,

respectively. Our HDT implementation uses 24 Bytes of storage for each tree cell

(Figure 3.2): 4 Bytes for each of the three coordinates, 2 bits to encode the 4-valued

state, 30 bits to encode the depth, and 8 Bytes as a pointer.2 Leaf grids are stored

densely and so voxels within them may be referenced without additional storage or
1Of course root grid size can be reduced by increasing the dimension of leaf grid from default 16.

However, as described earlier arbitrarily large leaf grid size blows up the redundant voxels in HDT.
2These are just choices we made; a more compact representation may be possible using additional

compression or delta encodings.
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pointers.

zyx

Origin (global coordinates)

32 32 3264302 bits

PointerDepthState

Figure 3.2: Compact 192 bits representation of an HDT cell; state (2), depth (30),
descendant pointer (64), and cell origin (3 × 32).

A tree cell in a branching state intersects with the target solid object, and spans

the HDT hierarchy by one level. Thus, each branching cell generates eight child

cells. Our HDT implementation uses only a single pointer to these child cells, since

it also allocates the descendant cells of a given cell together, as is done in prior

studies [30, 63]. Allocation all the child cells in one such contiguous block not only

improves the coherency of memory accesses, but also reduces the storage requirements

tremendously. Finally, a tree cell in the boundary state is linked to a leaf grid,

where each leaf grid subdivides the corresponding cubic space into 2l cells along each

dimension of the cube. Thus, a leaf grid is a small voxel grid of size of 2l × 2l × 2l

voxels, which approximates the part of the original volume that corresponds to the

specific boundary cell. Thus, for l = 4 each leaf grid contains 16×16×16 voxels (i.e.,

total 4096 voxels). Each voxel may be in one of three states: inside the target object,

outside the target object, or at the surface. Thus, we use 2 bits to encode this state

and a leaf grid needs 23l× 2 = 23l+1 bits of storage. For l = 4, 23l+1 = 213 = 8192 bits

= 1024 Bytes. Hence, each leaf grid in our HDT is allocated in a contiguous memory

block of 1024 Bytes. The two-level HDT by Konobrytskyi et al. [60] adopted same

design for the leaf grid, where 2 bits storage per voxel is embodied in the memory

pool of 1024 Bytes.
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3.1.3 Design Principles
3.1.3.1 Root Grid

We choose the root grid in the HDT structure with the same goal as adopted in

the two-level HDT proposal by Konobrytskyi et al. [60]. The root grid servers two

purposes. First and most obviously, the root gird eliminates multiple levels in the

hierarchical tree structure that would otherwise impose significant overhead. For

instance, even a root grid sizes of 323 and 643 can bypass tree traversal of 5 or 6 levels,

respectively. Second, as the HDT is specifically tailored for parallel construction and

processing on GPUs, the root grid exposes significant thread level parallelism (TLP)

to be exploited. For instance, a root grid of 64 × 64 × 64 has up to 262,144 cells in

the grid that can be traversed for geometric processing in parallel on GPU.

3.1.3.2 Octree

To justify the choice of using Octree at the intermediate hierarchies, we show that

a three-level grid is not optimal on storage requirement compared to the approach

we adopt in the HDT. Our proof is based on the assumption that when a cell split

occurs, storage for all the descendant cells are allocated at once. This helps tracking

all the child cells through a single pointer indexing descendants at consecutive memory

locations in the buffer.

For simplicity, let we assume the intermediate grid has a dimension of 4 (i.e.,

22). Hence, a root cell splitting accounts for 43 cell storage. If the intermediate grid

is replaced with a 2-level Octree, a root cell splitting at the first level generates 23

cells. If the state of all these cells are uniform we stop splitting; otherwise each cell

containing some part of the geometry is decomposed into the second level. Maximum

number of such second level cells is (23-1). Each of these (23-1) cells generates 23 cells

when decomposed that results into a total of 23 + (23-1) x 23 = 43 cells. So, we come

up that the number of cells generated in a 2 level octree cannot be larger than 43—

same as the other alternative. We can generalize the proof to an intermediate grid
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of arbitrary size of 2k that can be replaced by an Octree of depth k in HDT, and it

can be guaranteed that the HDT approach consumes no more storage than the grid

alternative.

3.1.3.3 Leaf Grid

The choice of clustering a group of consecutive voxels in a leaf grid is driven by our

underlying GPU computing platform. GPUs are designed for massive parallelism,

where threads in a computing block (called warp) should respect some constraints to

achieve high performance. Using an underlying voxel representation, the computation

across the threads in a warp naturally perform homogeneous computation, i.e., exactly

same set of operations on different voxels. However, the overall performance depends

not only how the operations are executed on the processing core, but also how the

data are fetched (or written back) from (to) the global memory on GPUs.

Let us consider the case of efficient sparse voxel octree (SVO) data structure [63,

62], where a leaf in the octree represents specific voxel in the 3D space. Although

approaches like SVO is compact in memory footprint, they pose challenges on the way

data is fetched on GPUs. For parallel volume editing on GPUs, as in the case of our

CAD/CAM application, threads in a CUDA warp access incoherent memory blocks

corresponding to sparsely located voxels in an SVO organization. For instance, we

assume a simplistic volume representation that stores one bit data per voxel to identify

two possible states — voxel located at boundary, or not on boundary. Without

any coalesced memory addressing, only single bit data is used in this case per 32-

byte device memory read or write — the smallest width of memory transaction3 on

current generation GPUs [4]. This translates to a memory-bus usage efficiency of only
1bit

32×8bits
= 0.4%. Such a low bus utilization incurred by divergent memory accesses

imposes severe performance penalty to achieving peak throughput on graphics devices.
3We consider the transaction between the processing core and the cache; the width of data

transaction between the cache and the memory is even larger (128 bytes).
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Figure 3.3: Distribution of the CUDA threads in the HDT leaf grid space during the
HDT construction and volume processing on GPUs.

To address this limitation pertinent to SVO-like data representation, our HDT

leaf grid adopts a similar principle proposed by Konobrytskyi et al. [60]. In our HDT

design, a leaf grid consists a block of voxels in contiguous volumetric space. There are

two major benefits from the grouping of voxels. First, as the state of multiple voxels

are packed in a memory word (four Bytes), the data, fetched or written back, contain

no redundant bits. Second and more importantly, as the adjacent threads access

word-aligned and contiguous memory addresses, the memory read/write requests can

be coalesced to achieve optimal bus utilization. Figure 3.3 illustrates how the GPU

threads get distributed to the specific voxel coordinates in a leaf grid for parallel

HDT construction and processing with a default leaf grid size of 163. In our design,

the leaf dimension in the HDT is a tunable parameter, unlike the two-level HDT by

Konobrytskyi et al. [60] that works only with a fixed leaf size of 16× 16× 16.
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3.1.4 Sturcutre Storage: Memory Pools

Throughout the HDT construction process, multiple dynamic buffers are consistently

used for storing constructed tree cells and leaf grids, and maintaining in-process split-

ting cells. A natural consequence of dynamic memory management is that it leads

to memory fragmentation. Fragmentation is a critical performance limiter for GPU-

algorithms [50, 95] than its impact on CPU counterpart, as the available memory

on graphics device is generally an order of magnitude smaller than the system mem-

ory. Therefore, we need an efficient dynamic buffer management to reduce memory

fragmentation on GPU.

For each type of the building blocks in HDT, i.e., the tree cell and the leaf grid,

two memory pools are consistently managed on the graphics device. Our custom

memory manager implementation maintains two buffers – the element pool for the

tree cells, and the leaf pool for the leaf grids. During the HDT construction process,

both the element pool and leaf pool buffers are continuously expanded. Element pool

is initialized with the total number of cells in the root grid. The descendants of a

branching tree cell are stored in a contiguous block of 2×2×2 cells inside the element

pool. On the other hand, leaf pool is initialized empty, and each boundary tree cell is

mapped to an entry inside the leaf pool. Figure 3.4 demonstrates these two memory

pools for sample HDT construction process.

For dynamic volumes in which both the topology and the values of the data can

change over time, the layout of the tree cells and the leaf grids in HDT will alter dur-

ing geometric processing. Due to such consistent allocations and deallocations, the

memory pools gradually become fragmented. Hence, the specifically tailored memory

manager periodically cleans the buffers, and consolidates empty slots to prevent frag-

mentation. Further, previous researches [50, 95] have observed that CUDA memory

allocation (e.g. cudaMalloc) is order of magnitude slower than native CPU memory

allotment. Therefore, allocating a small chunk of memory by each of the thousands
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Figure 3.4: Storage implementations for HDT structure on GPU memory. Demon-
stration shows a sample root cell (C ) branching into eight octree cells – all allocated
in a contiguous block in the element pool. Two of these first-level octree cells (i.e.,
C1 and C5) get branched into eight octree cells in deeper hierarchy. Out of the eight
octants of cell C1, four cells (C1

1 , C1
2 , C1

5 and C1
7) are in boundary state, and each is

mapped to a leaf grid in the leaf pool. Similarly, for the cell C5 three descendants (C5
1 ,

C5
3 and C5

5) are mapped to respective leaf grids in the leaf pool. Except the purple
(branch) and blue (boundary) blocks in the element pool, the rest blocks (green) are
either full or empty, and not partitioned.
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of CUDA threads impose severe performance penalty. To alleviate this bottleneck,

HDT allocates a large chunk of GPU memory at a time, and then uses CUDA atomic

operations to grant access to the shared memory pool. In the current implementa-

tions, GPU memory is allocated for 8,192 entries at a time both for the element pool

and the leaf pool.

3.1.5 Storage per Active Voxel

This section presents a theoretical analysis on the storage for each active voxel in

HDT. In a sparse voxel representation, such as, HDT, storage can be classified into

two types: (1) data and (2) topology. Data storage is pertinent to the memory

required to store the states of all the cells in the leaf grids in HDT. This includes the

storage overhead of non-active voxels in the leaf grids.

In order to approximate the memory consumption for the topology of each active

voxel in HDT, we must first estimate how many cells there are in total in a hierarchy,

compared to the number of leaf grids. If we assume an active branching factor of K

for every HDT cell4, and a perfectly balanced hierarchy, we see that for each leaf grid,

its parent is shared among K leaves; the parent’s parent among K2 leaves; and so

on. Figure 3.5 demonstrates such a perfectly balanced hierarchy for K = 4. During

HDT branching, at each hierarchy all the eight child cells are allocated together in

the element pool that collectively accounts for 24 × 8, i.e., 192 Bytes. Then, for an

HDT with a depth d we can formulate the per leaf grid storage (in Bytes), SL as

below:

SL = 192
K

+ 192
K2 + 192

K3 + ...+ 192
Kd

(3.1)

Simplifying Eq. 3.1 results:

SL = 192
K − 1

(
1− 1

Kd

)
(3.2)

4This assumption implies that among the eight descendants of an HDT cell, K cells are of
branching state, while the rest (8−K) cells are of non-branching states.
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Root Cell

Octree Cells

Leaf Grids

Figure 3.5: Storage analysis of active voxels in HDT. In this example, a balanced
octree partitioning (with K = 4) for a given root cell is illustrated. Here, a leaf grid
is shown as a block of 4× 4× 4 voxels instead of general convention (i.e 16× 16× 16)
for better visualization.

At high-resolutions the value of 1
Kd can be neglected to derive an approximate

storage per leaf grid in HDT to be 192
K−1 Bytes, assuming K > 1. For possible values

of K in range of 2 to 8, Table 3.1 reports the topology storage per leaf grid required for

correspondingK. If we assumeK = 4, similar to the assumption presented in [63, 62],

Table 3.1 suggests an average storage of 64 Bytes per leaf grid for maintaining the

topology in the sparse hybrid dynamic trees.

Table 3.1: Topology storage per leaf grid for different values of active branching
factor.

Active Branching Factor (K) 2 3 4 5 6 7 8
Storage per leaf grid in Bytes (SL) 192 96 64 48 38 32 27
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Now, for the default leaf grid configuration of 16× 16× 16, our evaluations (Sec-

tion 3.3) observe that out of 163 voxels in a leaf grid on average roughly 162 voxels

are active voxels5. Considering this observation, we find that each active voxel needs

a topology storage of 64×8
256 = 2 bits. Finally, we need to account for the data storage

for each active voxel. As each leaf grid with size of 16 × 16 × 16 takes 1024 Byte

in the leaf pool, per active voxel data storage is 1024×8
256 = 32 bits. Hence, with the

default leaf grid configuration, it requires in total 2 + 32 = 34 bits of storage per

active voxel. We will further show in Section 3.4.3 how the storage can be condensed

with alternative leaf grid configuration.

5Due to the approach of surface representation in the HDT structure, it can be generalized that
a leaf grid of size 2l × 2l × 2l contains on average 2l × 2l active voxels.
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3.2 HDT Construction

To make the use of HDTs practical, one needs a scalable way to build it. We present

such an algorithm to construct an HDT at high-resolution from a triangle mesh

represented in STL (STereoLithography6 [5]) format. In this voxelization process the

input mesh geometry is defined with a set of HDT cells and a set of leaf grids that

combinedly capture the surface of the solid object. The STL input is represented

as an indexed mesh in CUDA memory, termed as triangle pool. And, the resultant

HDT is constructed on the two buffers, namely, the element pool and the leaf pool –

both buffers are dynamically built during the HDT construction process. Figure 3.6

shows a sample STL input (left), and an HDT representation of the mesh at specific

resolution (middle); the part of which is zoomed in (right) for better visualization of

the voxelized surface.

(a) Model in 

Triangle Mesh 

(b) Model in HDT 

Representation

(c) Voxelized surface

(zoomed in)

Figure 3.6: Demonstration of a sample 3D model in HDT (source: [2]).

First, we present a high-level illustration on the HDT construction processes in

Figure 3.7 on the same 2D cross-section earlier presented in Figure 2.2(b). At the top-

most level of HDT construction, each triangle of the mesh is checked for intersection

with the bounding box of each root cell [Figure 3.7(a)]. Root cells with no surface
6STereoLithography format is one of the most common standards mesh layout widely used in

rapid prototyping, where meshes are represented as triangle soups, i.e., as sets of triangles without
any additional connectivity information.
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intersection (i.e., no overlapping triangle in the input mesh) are not subdivided: the

red outlined cells are outside, whereas the green regions lie within the object. In this

2D case, the overlapped root cells are partitioned into four child cells. The cells after

two levels of subdivision are shown in the middle [Figure 3.7(b)]. The subdivision

continues until the desired resolution is achieved; for this example, the completely

refined HDT after another two levels of partition is shown in the right [Figure 3.7(c)].

In the resultant HDT the cells appeared in yellow are the leaf grids each representing

a block of 16× 16× 16 voxels. For each leaf grid, the triangle intersection check [12]

sets the state of individual voxel. The voxels with at least one overlapped trian-

gle are determined as ‘boundary’ (i.e., active). Collectively the set of active voxels

defines the solid surface at the finest approximation. Any algorithm operating on

HDT represented models requires processing these yellow leaf grids, along with the

tree cells that lay out the topology of these leaf grids in the sparse HDT hierarchy.

We implemented our parallel HDT construction procedure for NVIDIA GPUs using

CUDA. Our implementation consists of three kernels, corresponding to the three ma-

jor steps of the procedure described below: triangles mapping, HDT branching, and

leaf processing.

(a) HDT non-splitting  

root cells 

(c) HDT  

(completely refined) 

(b) HDT  

(partially refined) 

Figure 3.7: HDT construction on a 2D cross-section of a sample 3D model (source: [2]).
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3.2.1 Triangle Mapping

HDT construction starts with mapping the triangles of the input mesh to the root

cells in the output HDT. As exploiting fine-grained parallelism is a key ingredient to

unlock the concurrent processing capability on GPUs, it is critical to distribute the

workload across as many CUDA threads as possible. For the triangle mapping, we

have two choices: each thread can either process a mesh primitive (i.e., triangle), or

an HDT element (i.e., root cell). For a typical configuration, the number of triangles

generally outnumbers the the number of root cells by two orders of magnitude. Hence,

the most suitable approach to mapping the mesh primitives is to parallelize on the

triangles.

Root Cells 

Figure 3.8: HDT triangles mapping.

To map each triangle efficiently onto root cells, the idea is to compute an axis-

aligned bounding box for each triangle, and then only check root cells that lie within

the bounding region. This step can be performed efficiently using the triangle-box

overlap test [12, 11]. Figure 3.8 illustrates this check for a sample triangle. The

bounding box is outlined in red; only root cells within this bounding box need to be

checked for possible intersection with the triangle boundary. In reality, each triangle

overlaps only a small fraction of the total number of root elements (in this example

a gigantic triangle is shown for better visual illustration). Then, for each root cell

that does intersect, this step records the index of the root cell and a list of indexes of
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the overlapping triangles in the triangle pool. To sum up, in first part of the triangle

mapping step, we compute the list of root cells each triangle intersects; and then

subsequently we have to generate the list of triangles that each root cell overlaps.

Our approach is similar to the scheme presented by Kalojanov et al. [56] in context

of a GPU-centric uniform grid construction.

3.2.2 HDT Branching

We refer to the second step as the HDT branching step. It constructs the HDT level-

by-level, as other hierarchical tree construction methods for GPUs have done [106, 64,

49]. Unlike the triangle mapping phase, this step parallelizes the computation over the

HDT cells. At every iteration, the HDT branching kernel processes the tree cells of the

current level in parallel, and generates the child cells for the next iteration. This level-

order construction approach removes inter-level data dependencies. At successive tree

levels, the size of the cells are halved along each of the three dimensions. Once the size

of the cell reaches the target resolution, the hierarchal HDT spanning is terminated;

the cell then refers to a leaf grid in the leaf pool.

Figure 3.9: Hierarchical branching in HDT construction.

Figure 3.9 demonstrates an example with an HDT cell having two overlapped

triangles (left). When this ‘parent’ cell splits into eight child cells (right), all the

descendant cells need to check for intersection with the two triangles that intersect

their parent. Thus, for the successive level of HDT branching the element pool size

is expanded by a factor of eight. Recall that all the device (GPU) memory allocation
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is carried on the host (CPU) side at the synchronization point, which is in between

the CUDA kernel invocations for successive hierarchies.

3.2.3 Leaf Processing

The third step is to process each voxel in the leaf grids to determine its state (inside,

outside, or boundary). As noted above, the voxels in a leaf grid are stored contigu-

ously, and the state of each voxel uses 2 bits. So, a leaf grid of 163 voxels would require

163× 2 bits or 1024 Bytes. Each leaf grid is assigned to a CUDA thread block. In or-

der to achieve best performance using the CUDA programming model, it is necessary

to arrange sequential threads to perform sequential write operations, thus enabling

the hardware to amortize memory latency by coalescing several small write requests

into one large memory operation. This optimization cannot be achieved when CUDA

threads in a warp write to incoherent memory addresses.

Voxels 

CUDA 
thread 

Figure 3.10: Leaf grid processing in a CUDA thread block.

For the leaf processing, each CUDA thread block is configured with 16×16 threads.

As, we have 163 voxels in a leaf grid, each CUDA thread processes 16 consecutive

voxels as illustrated in Figure 3.10. As each voxel state is encoded in 2 bits, the

states of 16 contiguous cells are stored in a block of 16× 2 bits or 4 Bytes in GPU

memory. Hence, each thread in a CUDA warp reads a 4 Byte word, works on the 16

corresponding voxels, and writes back the modified word to memory. Thus, a CUDA

thread block processes altogether 256 x 4 bytes, i.e., 1024 bytes data of 163 cells of a
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grid. To optimally utilize the GPU memory bandwidth, any CUDA kernel working on

the leaf grids adopts such GPU execution-model centric design and implementation.
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3.3 Experiments and Analysis

We analyzed the GPU implementation of our HDT construction procedure on a bench-

mark suite of freeform CAD models [60], suitable for rapid prototyping by 3D printing

and computer numerical control (CNC) milling. The experiments were carried out on

a workstation with a quad-core Intel Core i7-4770K 3.5 GHz CPU and an NVIDIA

GTX 780Ti GPU with 3 GB of GPU memory.

3.3.1 HDT Benchmarking

A summary of the input meshes and their detailed characteristics after conversion to

HDT appears in Tables 3.2 and 3.3. Each model name is appended with the number

of triangles in respective STL inputs. The first row in the tables shows the mesh

surface area, followed by two rows presenting the model’s physical dimension and

the bounding volume, respectively 7. For each model, we evaluated 4 different HDT

configurations, specified by target resolution (10243 to 81923), assuming root grid and

leaf grid dimensions of 163. Thus, the maximum height of the octree in the respective

HDT configurations falls between 2 to 5 levels, shown as “HDT Octree-Height” in the

tables. The “Voxel Size” row lists the corresponding effective physical voxel sizes, set

between 120 µm and 15 µm across the HDT configurations.

Tables 3.2 and 3.3 also report the total number of tree cells and the number

of leaf grids in the HDT at each resolution. As expected, the number of leaf grids

correlates with the surface area of the triangle mesh, showing that sparsity is being

exploited. For instance, the Head model has 6× the number of triangles as Candle

Holder, but the mesh surface area in the latter is 22% larger than the former. The

leaf grid counts in Candle Holder proportionally (20%) higher than Head at 81923

resolution. Moreover, as the surface voxels of a solid geometry increase quadratically,

at 2× grid resolution the number of leaf grids grows by a factor of four.

The total number of leaf voxels is the product of the leaf grid count and the voxels
7The dimensions are arbitrary to within a constant scaling factor.
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Table 3.2: Geometric statistics of CAD models: Head and Dragon.

Head (230k) Dragon (173k)
Mesh Surface Area (mm2) 8,956 10,747
Dimensions XYZ (mm) 48.6 x 46.0 x 64.4 46.7 x 74.6 x 50.4
Bounding Volume (mm3) 143,923 175,577
Effective Resolution 1024 2048 4096 8192 1024 2048 4096 8192
HDT Octree-Height 2 3 4 5 2 3 4 5
Voxel Size (µm) 120 60 30 15 120 60 30 15
HDT Cells (x 103) 10 37 146 581 10 36 150 621
HDT Leaf Grids (x 103) 3.32 13.7 54 218 3.33 14.3 60 240
HDT Leaf Voxels (x 106) 14 56 223 894 14 59 245 985
Active Voxels in HDT (x 106) 0.87 3.51 14.0 56.0 0.98 3.96 15.8 63.4
Topology Storage (bits) 2.21 2.01 1.99 1.99 1.92 1.74 1.82 1.88

Table 3.3: Geometric statistics of CAD models: Turbine and Candle Holder.

Turbine (58k) Candle Holder (38k)
Mesh Surface Area (mm2) 12,346 10,987
Dimensions XYZ (mm) 48.9 x 48.9 x 31.1 48.4 x 48.9 x 57.7
Bounding Volume (mm3) 74,367 136,515
Effective Resolution 1024 2048 4096 8192 1024 2048 4096 8192
HDT Octree-Height 2 3 4 5 2 3 4 5
Voxel Size (µm) 120 60 30 15 120 60 30 15
HDT Cells (x 103) 8 36 153 684 11 44 172 698
HDT Leaf Grids (x 103) 3.03 14.9 66 291 3.99 16.6 65 262
HDT Leaf Voxels (x 106) 12 61 271 1193 16 68 267 1074
Active Voxels in HDT (x 106) 1.17 4.67 18.7 74.7 1.05 4.20 16.8 67.2
Topology Storage (bits) 1.30 1.46 1.57 1.76 1.94 1.99 1.96 1.99
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per grid (163 = 4096). Thus, at an effective 81923 resolution with the Turbine model,

the HDT stores 1.19 billion voxels instead of 8192 × 8192 × 8192 ≈ 550 billion in

a fully dense representation. To study the storage effectiveness of HDT, the final

two rows of Tables 3.2 and 3.3 show the number of active voxels and the topology

storage per active voxel, respectively. At 81923 resolution, each boundary voxel in

HDT accounts for an average of 1.76 – 1.99 bits storage, which closely matches with

the theoretical analysis on the topology storage presented in Section 3.1.5.

3.3.2 Storage Comparisons

We compare the storage requirement in the HDT with prior state-of-the-art voxel

data structures suited for high-resolutions volume modeling. The efficient sparse

voxel octree (ESVO) representation by Laine et al. [63, 62] derived an storage of

1.33 Byte ≈ 11 bits for the topology of each active voxel. For the data storage,

each voxel requires a minimum of 1 Byte memory in the ESVO representation, thus

consuming a total of 11 + 8 = 19 bits per active voxel. It is no surprise that per

active voxel storage in the ESVO is significantly lower than that is required in the

HDT with the default configurations of root grid and leaf grid. The HDT is designed

to harness the power of massive parallel computing fabric on GPUs to push the

capability of the computation efficiency beyond the realm of multicore CPUs. On

the other hand, while spatial structure like VDB [80] is amenable for parallelization

on graphics hardware, it consumes significant storage overhead than that of HDT.

The per active voxel storage in VDB is in range of 60-72 bits due to the use of

large branching factors, custom-tailored software-level caching, among others. Thus,

HDT demonstrates much efficient storage-compact representation, which is critical

for extreme-scale volume modeling on GPUs equipped with an order of magnitude

smaller memory than the system memory available to CPUs.
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3.3.3 Discussion on HDT Construction

The execution time of the three HDT construction steps versus resolution appears in

Fig. 3.11. We denote the triangles mapping time by T1, the HDT branching time by

T2, and the leaf processing time by T3. Per Section 3.2.1, triangles mapping scales

with the product of the face count by the number of elements in the root grid. Hence,

for a specific model the triangles mapping time is independent of the target resolu-

tion, which appears as T1 remaining unchanged across different HDT configurations.

However, T1 does vary with the number of triangles. At 81923 resolution, T1 consumes

about 2% of total HDT construction time for Head and Dragon, whereas for Turbine

and Candle Holder T1 is less than 1% of total GPU time. Nevertheless, T1 is overall

a small fraction of the total HDT construction time.
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Figure 3.11: Measurements on HDT construction time.
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The HDT branching time (T2) tends to dominate the total time. As shown in

Fig. 3.11, the relative magnitudes of T2 values for different models correlates with

the number of tree elements reported in Tables 3.2 and 3.3. For instance, at 81923

resolution, the Dragon, Turbine and Candle Holder models have 621, 684 and 698

thousands tree elements respectively; and this trend in HDT cell counts scales with

the corresponding T2 values of 1.93 seconds, 2.17 seconds and 2.39 seconds.

Similarly, the HDT leaf processing times (T3) correspond to the number of leaf

grids. However, the differences in T3 across models is hardly distinguishable in

Fig. 3.11. Since the leaf processing step parallelizes relatively easily, the GPU can

process several hundreds of millions of voxels per second. Hence, the T3 values lie in

a tight interval; for example, at 81923 resolution, the T3 measurements for the four

models all lie between 1.23 to 1.29 seconds.

One notable observation in Fig. 3.11 is that the complete HDT construction times

across different CAD models are not directly related to the triangle counts. For

instance, consider the comparative measurements of T1, T2 and T3 for Head and

Candle Holder at 81923 resolution: the total construction times for Head and Candle

Holder are similar, even though the former makes up 6× the number of triangles

than the latter. The triangles mapping time only accounts for 1-2% of total time,

which is the only component of HDT construction affected by triangle count. Also,

the 20% higher leaf grid counts in Candle Holder relative to Head make no noticeable

difference in leaf processing time (T3). Lastly, the branching time (T2) in Candle

Holder is marginally higher due to more tree cells that offset the timing difference of

triangles mapping time (T1). These findings are consistent with those of the efficient

sparse voxel octree study, where two particular models take similar amounts of time

while they differing in triangle count by 3× (“Fairy” and “Conference” models [63]).
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3.3.4 Discussion on GPU Speedups

We also measured the speedups of the GPU-accelerated HDT construction against a

single-thread CPU implementation, and report these results in Figure 3.12. GPU im-

plementation of triangles mapping is 2.9–4.7× faster; and curiously, higher speedups

are demonstrated for meshes with more triangles. These experimental results corrob-

orate a general hypothesis in GPGPU parallelization that suggests a higher acceler-

ation with larger parallel workloads [43]. Due to amortization of the CUDA related

overhead across massive workloads, the speedups in triangle mapping step are higher

when the number of faces are higher; e.g., compare Head and Dragon to Turbine and

Candle Holder.
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Figure 3.12: GPU-speedups of HDT construction at 8192× 8192× 8192 resolution.

For HDT branching, GPU computation demonstrates a modest speedup between

1.8 and 3.2×. Unlike the speedups of triangles-mapping step, the HDT branching

phase achieves higher acceleration for models with lower number of tree cells. This

is due to the level-order HDT branching that incurs significant overhead for repeated

transfers of memory pools across the boundary of the host and the device, particu-

larly for the test configuration at 81923 resolution where the octree height in HDT

reaches a depth of 5 levels. Lastly, as shown in Fig. 3.12(b) (on a logarithmic scale),
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leaf processing benefits significantly from GPU parallelization, exceeding over 500×

speedup for all the sample models. Since the overall speedups are closer to the leaf

processing speedup than the triangles-mapping and HDT branching speedups, leaf

processing evidently dominates the CPU implementation’s execution time by a large

margin. Interestingly, leaf processing becomes so much faster on the GPU that it

no longer dominates the execution time (cf. Figure 3.11). Comprising all the three

operations, it should be noted that the overall speedups are very high, in the range

of 173–187×.
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3.4 Tunable Hybrid Dynamic Tree
3.4.1 Impact of the Root Grid Dimension

No single configuration of any spatial data structure can claim to handle all applica-

tions equally well, and HDT is no exception. Different combinations of the cells and

their parameters can alter the tree depth and branching factors, which in turn impact

characteristics like adaptivity, performance of tree traversal, memory footprint, avail-

able grid resolution, and even hardware efficiency. Conceptually, the characteristics

of the HDT structure can be tuned by varying three parameters: (1) the root grid

dimension, (2) the branching factor of intermediate-level tree cells, and (3) the leaf

grid dimension. For the convenience of discussion, let we first formulate a notation to

specify an HDT configuration with these three parameters. Let we assume an HDT

with configuration of root grid dimension R = 2r, branching factor B = 2b and leaf

grid dimension L = 2l, then for a given resolution X we get an HDT with height h

that satisfies the following condition:

2(r+b×h+l) ≥ X (3.3)

For a modeling resolution X and particular assignments to two of the three pa-

rameters, the remaining parameter can be tuned to realize its impact. A particular

interest is to study the impact on the storage required for HDT representation, and

the behavior of HDT branching time, which is the dominating part among the HDT

construction steps. Our first study focuses on the root grid dimension (R), which

affects the depth of the HDT hierarchy that in turn impacts the HDT branching

time. For a default leaf grid dimension (L) of 16 and branching factor (B) of 2, we

analyze the impact of the root grid dimension in Fig. 3.13 with R set in between 128

and 4. Hence, the HDT hierarchy spans between 2 (for dimension of 128) and 7 (for

dimension of 4) at 81923 resolution.

For all the four test models, we observe a similar trend in HDT branching time and
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Figure 3.13: Impact of different root dimensions at 8192× 8192× 8192 resolution.

the topology storage requirement per active voxel. HDT branching time is optimal

for R in between 16 and 64. With smaller R, HDT gets taller; that slows down

HDT branching process. On the other hand, with a very large root grid dimension

(R = 128) the adaptivity in spatial refinement decreases, which leads to the rise

in HDT branching time as shown in Fig. 3.13. Curiously, the reduced adaptivity

at larger R translates to relatively higher number of tree cells in the HDT. This is

reflected in Fig. 3.13 with the jump in bits per active voxel for the topology storage.

Here, an interesting observation is that with very small root grid dimension, such

as, R = 4, HDT branching takes significantly longer than the optimal configuration
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for the models with non-regular pattern, such as, Head and Dragon, compared to the

trend observed in models having a repeated pattern, like, Turbine and Candle Holder.

Our experimentation on the HDT height with tunable root dimension parameter thus

validates the choice for HDT’s shallow hierarchy in extreme-scale volume representa-

tion. These results suggest that a shallower tree is preferred. However, one cannot

necessarily choose arbitrarily large root grid, since storage overhead grows with the

root grid dimension. In this case, a root grid dimension of 128 is exactly the point

at which storage per active voxel begins to increase for this input model, as Fig. 3.13

demonstrates.

3.4.2 Impact of the Branching Factor

In this study, with the root grid dimension (R) set to 8 and the leaf grid dimension

(L) set to default 16, HDT branching time and topology storage are analyzed at two

branching factors: for B = 2 (i.e., b = 1) and B = 4 (i.e., b = 2). For these settings,

the tree hierarchy in HDT is respectively 6 and 3 (cf. Eq. 3.3). From the HDT

branching times shown in Fig. 3.14(a), we see that with larger B branching takes

longer due to decrease in spatial adaptivity. Interestingly, for the models with regular

patterns (i.e., Turbine and Candle Holder) larger B does not impact the adaptivity

noticeably, unlike in the case of Head or Dragon.

However, for the topology storage the bits per active voxel increase in similar scale

for all the models, as depicted in Fig. 3.14(b). With a larger branching factor, for

instance B = 4, a cell is decomposed into 43 child cells. As each cell occupies 24 Bytes

in the element pool, each cell partitioning consumes a total storage of 43 × 24 Bytes

= 1536 Bytes. As with larger B, the adaptivity in spatial partitioning scales down,

thus the ratio of the number of HDT cells to the number of leaf grids increase. For

instance, with Candle Holder the above ratio rises to 4.23 (for B = 4) from 2.66 (for

default B = 2) that translates to the proportionate increase in the topology storage

with larger B.
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Figure 3.14: Impact of different branching factors at 8192× 8192× 8192 resolution.
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3.4.3 Impact of the Leaf Grid Dimension

In this study, with the tree branching factor fixed to B = 2 (i.e., b = 1), the root grid

dimension (R) and the leaf grid dimension (L) are set to two different settings. In

the first configuration, R and L are set to 8 and 16 respectively, while in the second

configuration R and L are set to 16 and 8 respectively. Such assignments to R and

L are chosen so that for these two configurations, the tree hierarchy in HDT remains

fixed to 6 (cf. Eq. 3.3) to avoid any discrepancy incurred on HDT branching time

due to different depths in HDT hierarchy.

With the dimension of leaf grid gets halved, the number of leaf grids in HDT

roughly increases by a factor of four8. With the leaf grids count increased to 4×, the

number of the cells in HDT roughly increases by a similar factor with the L = 8 com-

pared to L = 16. This translates to 4× bits required for the topology storage of each

active voxel in the HDT configured with L = 8, as shown in Fig. 3.15(b). From the

branching times presented in Fig. 3.15(a), as we expect branching takes significantly

longer with L = 8 due to processing approximately 4× more tree cells during the

HDT construction. Curiously, for the CAD models with non-regular patterns, such

as, Head and Dragon HDT branching times increase modestly (2.0− 2.8×) than the

models with repeated patterns, like, Turbine and Candle Holder where the branching

times jump to roughly 4×.

To complete the analysis on different leaf dimensions, we studied the total storage

requirement per active voxel for L = 8 relative to that with L = 16. As described

earlier, with L = 8 the topology storage goes up by 4×. Thus, with reference to

the theoretical storage analysis in HDT as presented in Section 3.1.5, we get an

average topology storage of 8 bits per active voxel with L = 8. Then, to quantify the

data storage per active voxel, we need to count two measurements: (a) the storage
8As HDT models the surface of a solid, this trend in number of leaf grids with smaller leaf

grid dimension mimics the trend in statistics of the leaf grids at successively higher resolutions (cf.
Tables 3.2 and 3.3).
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requirement for each leaf grid with L = 8 in the leaf pool, and (b) the average number

of voxels in each leaf grid with ‘boundary’ state. With dimension set to 8, each leaf

grid accounts total 83 × 2 bits, i.e., 1024 bits = 128 Bytes. Now, for the leaf grid

configuration of 8× 8× 8, on average roughly 82 voxels are active among 83 voxels in

a leaf grid. Considering this observation, we find that per active voxel data storage

is 128×8
64 = 16 bits.

Hence, with the leaf grid dimension of L = 8, it requires in total 8 + 16 = 24

bits of storage per active voxel, which is 29% smaller than the total storage needed

with the default leaf grid configuration of L = 16. Thus, HDT is designed as a

configurable sparse data structure to trade-off between computation efficiency and

memory efficiency. As we have just analyzed here, while the use of a smaller leaf

grid dimension takes longer to construct the HDT, voxels can be presented more

compactly to improve the memory efficiency of the underlying data representation.

Further, a smaller grid dimension of L = 8 bridges the gap between the per active

voxel storages between HDT and that of the efficient sparse voxel octree [63, 62], as

presented in Section 3.3.2.

By contrast to other approaches, like SVO [63] or VDB [80], different components

in HDT cell are assumed to be extensible beyond the practical resource limits. For

instance, in SVO a non-leaf node uses 16-bit pointer to locate the descendants that

can be extended to maximum 32 bits using a level of indirection through “far” flag

bit. The size of this pointer field indicates how far two related parent-child nodes can

be spaced in the buffer. Practically, in HDT we can adopt 32-bits pointer in place

of 64-bits that seems perfectly sufficient, as the number of tree cells for the highest

resolution is less than even 220. Hence, the maximum possible distance between

index of two cells in the memory pools can be well accommodated in far less bits

than currently used 64 bits pointer.

Similarly, for “depth” field adoption of even 5 bits can hold the depth information
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of an octree with 25− 1 = 31 levels. In practice, for instance at 81923 resolution with

a root dimension of 64, and leaf dimension of 16, the tree depth is only log 8192
64∗16 =

3. Finally, 19 bits for each of X, Y, and Z coordinates can represent up to 219 =

512K resolution along each dimension; which is in line with VDB’s 20 bits for each

coordinate.

With such more realistic assumption, per cell storage in the HDT can be reduced

to 2 (state) + 5 (depth) + 32 (pointer) + 3 × 19 (x, y and z) = 96 bits = 12 bytes.

Using 12 bytes storage per cell, in stead of previously adopted 24 bytes per cell, the

average topology storage with default leaf dimension of 16 reduces to 1. Table 3.4

reports the average data, topology and total storage per boundary voxel with leaf

dimensions of 16 and 8. Using a compact cell storage and adopting a smaller leaf

dimension of 8, thus the theoretical voxel storage per active voxel in HDT comes to

20 bits — closely matched with that of SVO’s 19 bits.

Table 3.4: Total storage per active voxel with different leaf dimensions using the
compact storage for cell components.

Average Data
Storage

Average Topology
Storage

Average Total
Storage

Leaf dimension of 16 16× 2 bits = 32
bits

1 bit 33 bits

Leaf dimension of 8 8× 2 bits = 16
bits

4× 1 bit = 4 bits 20 bits
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CHAPTER 4

VOXEL OFFSETTING USING HYBRID DYNAMIC
TREE

4.1 Overview on Offsetting Techniques

The goal in this dissertation is to enable the execution of computation-intensive voxel

offsetting within a practical time period in interactive CAM applications. Offsetting is

a fundamental geometry processing, and has been studied in CAD/CAM, robotics and

related areas for more than three decades [?]. The mathematical basis for offsetting

of solids was comprehensively studied in an earlier work by Rossignac and Requicha

[88]. There the offseting operation is introduced as a new solid-to-solid transformation

and associated with methods like filleting and rounding of solids. While the offsetting

operation for curves and surfaces is well known [45, 75], the complexity of offsetting

increases significantly for a 3D model, because the offsetting must handle both the

individual surfaces in the model as well as topological reconstruction by trimming

and reconnecting the offset surfaces into a closed model.

Although an offsetting operation is mathematically well defined, existing state-of-

the-art CAD/CAM packages lack the capability of automatic computation of offset

surface for a free-form solid. Such a lack of automation in modern CAD/CAM soft-

ware increases manufacturing costs, because it takes more human time and expertise

to generate collision free tool trajectories manually. For a given triangle mesh input,

the offset can be represented as a composition of the primitives associated with each

component of the input. For two-dimensional case, as shown in Figure 4.1, every

point is associated with a circle and every line is associated with a rectangle. Simi-

larly, generating offsets of a triangular mesh for a given 3D model can be decomposed

into a set of spheres, cylinders, and prisms corresponding to respectively vertices,

edges, and faces of the mesh.A constructive solid geometry approach to offset surface
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computation can be defined with the union of all these elements. Though this looks

simple mathematically, a robust and efficient implementation of the union operation

of a large number of higher order surfaces has been proven difficult because of its

computational complexity and numerical instability.

a

b c

Figure 4.1: Offsetting a triangle in 2D.

4.1.1 Exact Offsetting

Early approaches rely on convolutions to compute offset surfaces and Minkowski

sums [6, 94]. These methods obtain a superset of primitives of the offset surface that

are trimmed and filtered to form the final boundary [37]. The Minkowski sum of

two sets A,B ∈ IR3, denoted A ⊕ B, is defined as the set {a + b | a ∈ A, b ∈ B}.

Planar Minkowski sums are used in many applications, such as, motion planning and

computer-aided design and manufacturing. If A and B represent polygons in IR2 or

polyhedra in IR3, A ⊕ B can be generated by sweeping A along the boundary of B

and then taking the union of the sweep with B (or vice versa). From the definition of

Minkowski sum, offsetting can be considered as a special case, with one operand be-

ing an origin-centered disc (in two-dimensional case) or sphere (in three-dimensional

case). In the general case, the actual offset surface of a polygonal surface is not polyg-

onal: it contains cylindrical and spherical parts. However, polygonally approximated

spheres can be used to obtain (arbitrarily precise) polygonal approximations of an

offset surface.
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Although the Minkowski sum of two convex polyhedra has complexity of O(mn)

(here m and n denote the numbers of triangles of each input polyhedron) and can be

computed very efficiently [40], the Minkowski sum of two non-convex polyhedra can

have complexity as high as O(m3n3) and becomes much more difficult to compute.

Most algorithms for non-convex objects first decompose the input non-convex poly-

hedra into convex pieces, computing all the pairwise Minkowski sums of these convex

pieces, and then taking their union. As there are O(mn) pairwise Minkowski sums,

and for given p polyhedral objects their union can have combinatorial complexity of

O(p3), the union step dominates the whole algorithmic complexity [17].

4.1.2 Approximate Offsetting

To overcome the difficulties with exact offset computation, many offset computation

methods based on the discrete representation of the 3D model have been proposed.

These representation schemes utilize points, voxels [85], dexels [100] and rays [77],

among others. As discrete 3D models do not have surface elements, the topological

reconstruction step, which is the most critical process in conventional offsetting, is

not necessary. After offsetting, a polyhedral model of the offset shape is derived

by applying some surface extraction technology, such as marching cubes [73] to the

discrete model.

4.1.2.1 Point-based Offsetting

Chen et al. proposed a point-based offsetting method [27, 28] in which points are

densely sampled on the surface of the input polyhedral model. Candidate points

on the offset surface are generated by simply shifting the points on the polygon or

replacing points on the vertices and edges with points on spheres and cylinders. After

removing points located inside the offset model, a polygonal offset mesh is generated

by connecting the remaining points. The authors used a regular voxel grid, i.e., the

complexity grows cubically with the voxel resolution.

66



As offsetting a 3D object can be recognized as a Minkowski sum between the ob-

ject and a sphere of the offset radius, Lien [71] proposed a point-based Minkowski sum

operation whereby the surfaces of two objects are converted to two groups of points

and then summed. Points located inside the Minkowski sum object are discarded by

applying a series of filters to determine the offset surface. The most expensive pro-

cess in point-based offsetting is this filtering step. An inherent limitation with point

set based representation is that analyzing a point cloud is challenging as no explicit

topological space is available. Recently, Calderon and Boubekeur [25] introduced a

morphological analysis framework for point clouds, which is able to perform morpho-

logical dilations and erosions. These operations remain expensive on point sets as the

interior of the solid is not explicitly available.

4.1.2.2 Voxel-based Offsetting

Another group of methods generates a voxelization of the offset surface. Li and

McMains [68, 69, 70] presented GPU approaches to compute the Minkowski sum of

polyhedra by computing pairwise Minkowski sums, and obtaining a voxelization of

its union. Unfortunately, the use of such spatial grid-based offsetting methods can

only support mid-scale resolution, as the memory requirements of these methods rise

rapidly as the voxelization resolution increases. The authors demonstrated GPU-

accelerated Minkowski sum computation in tens of seconds for two triangle meshes

having small number of faces at resolutions up to 5123 [70].

4.1.2.3 Ray-based Offsetting

There exist few offsetting methods that consider ray representations. VanHook in-

troduced the dexel structure [100] as a medium of ray representation of solids. For

a single direction and a uniform grid of rays parallel to that direction, the dexel

structure stores the intervals of the rays lying inside the solid. These intervals, called

dexels (depth elements), collectively represent the solid. Menon and Voelcker [78]

suggested approximating the Minkowski sum between A and B by computing the
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union of some ray-rep instances of A over the boundary of B.

4.1.2.4 Offsetting with Distance Field

The offset surface can also be extracted from the distance field of the embedding

space of the solid. A distance field can be represented as a spatial grid structure that

implicitly represents the shape, in which the distance from the point to the closest

surface of the object is recorded at each grid point. The distance may be signed to

distinguish between the inside and outside of the shape. Among other operations,

distance field is able to perform surface offsetting [22, 21, 96, 54, 83, 72]. For a given

offset radius r, the offset surface of the model goes across an edge connecting a grid

point with a distance greater than r with another point whose distance is less than r.

While the distance field is an effective representation of shape, regularly sampled

distance fields have drawbacks because of their size and limited resolution. Because

fine detail requires dense sampling, immense volumes are needed to accurately rep-

resent classical distance fields with regular sampling when any fine detail is present,

even when the fine detail occupies only a small fraction of the volume. To over-

come this limitation, Frisken et al. [39] presented the adaptively sampled distance

field (ADF) that uses adaptive, detail-directed sampling, with high sampling rates

in regions where the distance field contains fine detail and low sampling rates where

the field varies smoothly. The demonstrated approach of ADF implementation stores

distance values at cell vertices of an octree data structure.

Although ADF based implicit model representation is storage-efficient, yet the

offsetting construction on an adaptively sampled distance-field still can be extremely

computation intensive [96, 18]. To address the computational challenge, Bastos and

Celes [18] leveraged GPUs to speedup the adaptive distance field computation that

employed a 3D hashing scheme to store the underlying data structure. For the Stan-

ford Armadillo model [1], the authors reported an execution time of 562 seconds

to compute the ADF at a resolution of 2373. Pavić and Kobbelt [85] presented an
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hierarchical algorithm where the offset surface is intermediately represented by an

adaptively refined octree. Their approach traverses an octree and splits each cell

depending on min/max operations applied to distance functions. For a given off-

set distance r, a cell is potentially intersected by the offset surface if the minimum

distance is less than r and the maximum distance is greater than r. The authors

reported an execution time of 3100 seconds to compute the dilated surface of the

Stanford Buddha model [1] at a resolution of 4783 for an offset distance of 2% of the

diagonal length of the bounding box of the model. Inspired by the work of Bastos and

Celes [18], another GPU-accelerated implementation of ADF was presented by Yin

et al. [105] that used octrees as the underlying data representation. Use of an octree

in place of 3D hashing based data representation proved to be effective to sparsely

represent and compute the adaptive distance fields that scale the problem size to a

resolution up to 5123.

69



4.2 Convolution and Mathematical Morphology
4.2.1 Convolution

Convolution is an important mathematical tool heavily used in both fields of signal

and image processing. Since our use case lies in discrete domain, convolution in 3D

space can be defined as Eq. 4.1. In Eq. 4.1, w(x, y, z) is a filter of size (2a + 1) ×

(2b + 1) × (2c + 1) that will be convoluted with a 3D grid f(x, y, z), denoted as

w(x, y, z) ? f(x, y, z).

w(x, y, z) ? f(x, y, z) =
a∑

r=−a

b∑
s=−b

c∑
t=−c

w(r, s, t)f(x− r, y − s, z − t) (4.1)

The direct approach to solving the 3D convolution will be implementing the above

mathematical definition. For a filter size of M ×M ×M and grid size of N ×N ×N ,

this gives an asymptotic running time of θ(N3M3). In our use case for an offset

distance of 100 voxels at 4096 × 4096 × 4096 resolution, the grid has 4096 discrete

points and the kernel has a 2×100+1 = 201 discretized values along each of the three

dimensions. This leads the complexity of a naive 3D convolution to an order of 40963

×(2× 102)3 ≈ 5.5 × 1017 computations. Even an accelerator-integrated advanced

computing platform with a sustained throughput of 1 TFLOPS (1012 floating point

operations per second) will take over six days to compute single convolution.

While convolution is a general technique applicable to diverse types of inputs,

our application deals with a particular type of 3D data. In our use case of voxel

offsetting, the voxels represented in the HDTs can be considered as binary data,

where the voxels with boundary state define the solid geometry and the rest of the

voxels are non-boundary (i.e., either interior or exterior to the object). Thus, to cope

with the performance requirement of 3D convolution, we could use mathematical

morphology to compute the offsets of the 3D voxel model [46].
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4.2.2 Mathematical Morphology

Mathematical Morphology (MM) appears as one of the most powerful tool among the

various shape analysis frameworks that has been extensively studied in [92, 93, 41].

MM mostly deals with the mathematical theory of describing shapes using sets and is

used to simplify, enhance, extract or describe structured 2D and 3D geometrical data.

Although MM is most commonly used in digital images, it can be equally applied to

surface meshes, solids, and many other spatial structures [7]. It has been used in

a number of applications, including image filtering, segmentation, skeletonization

among others, in medical imaging, metrology, video surveillance, industrial control,

video compression, to name a few.

As the morphological operators are only defined for sets, we can define a relation-

ship between sets and 3D voxels to comprehend the interpretation of these operation

on our HDT-represented voxel models. In general, MM is often used for binary im-

ages, where the set of all black (or white) pixels defines a complete morphological

description of the image. In binary images, the sets are members of the 2D integer

space Z2, where each element of the set is a tuple whose elements are the (x, y)

coordinates of a black (or white) pixel in the image. Similarly, our application of

mathematical morphology lies in the binary domain, where the set of the boundary

voxels in the HDTs completely define the solid geometry. Here, the sets are members

of the 3D integer space Z3, where each element of the set is a tuple whose elements

are the (x, y, z) coordinates of the boundary voxel in the solid.

In morphology, non-linear transformation operators are used to intuitively alter

the object at every point with another set of a known shape, generally known as

structuring element (SE) or template. In the case of digital data, typically simple

binary structuring elements are used. The shape of the SE defines the result of any

morphological operation. Each SE has one particular element marked as the origin. In

Figure 4.2, a 3×3 SE is shown, where each shaded block denotes a member of the SE,
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and the center block containing the black dot is the origin of the SE. Conceptually, a

SE in morphological filtering serves the same purpose as a kernel does in convolution.

In this thesis, the scope has been limited to binary morphology with ring structuring

element of different radii, where each radius corresponds to an offset distance. The

ring SE captures the connectedness relationship between the origin of the SE, and

any point on the surface of the 3D sphere having specific distance from the origin in

the voxel unit.

Figure 4.2: 3× 3 morphology kernel.

4.2.3 Dilation and Erosion

The dilation and erosion are fundamental operations of mathematical morphology,

and are frequently used in convolution based image filtering. In our context of HDT-

represented voxel offsetting, these operations add or delete extra layers of voxels

around the existing boundary cells of the solid, analogous to adding or removing

rings of an onion. Since offsetting can be understood as a morphological operation,

it is intuitive to extend the 2-D pixel based erosion and dilation operations to 3D

resulting in a very simple volumetric offsetting approach, where the 26-neighborhood

in a voxel-grid is used to propagate distance information [42].

Given the shapeA of an object, the two basic operators are the dilation DA,S = A⊕

S and the erosion EA,S = A	S where ⊕ and 	 are Minkowski sum and subtraction

respectively. The binary dilation answers the question “Does the structuring element

hit the set?” (quote from Soille et al. [93]). The result set contains the points where

the answer is affirmative. The dilation δS(X) of a set X by the structuring element
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S is defined by Eq. 4.2.

δS(X) = {x+ s|x ∈ X ∧ s ∈ S} (4.2)

Figure 4.3: Illustration of morphological dilation and erosion [3].

The dual operation of dilation is called erosion. The output of the binary erosion

is a set of points where the answer to “Does the structuring element fit the set?” is

positive. The binary erosion εS(X) of a set X by a structuring element S is defined

by Eq. 4.3. In our context of HDT based voxel representation, morphological dilation

and erosion add or delete extra layers of voxels around the existing boundary cells,

analogous to adding or removing rings of an onion. An example of morphological

dilation and erosion is illustrated in Figure 4.3, where a disc structuring element

(colored in red) is applied to the image.

εS(X) = {x|∀s ∈ S, x+ s ∈ X} (4.3)

Let we revisit the case of a triangle offsetting in discrete representation as depicted

in Figure 4.4. In Figure 4.4 (a), a triangle is shown discretized on a 2D grid, where the

set of red pixels define the boundary of the geometry. Like the state of voxel in the
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(a) Triangle discretized on a 2D grid (b) The output of the morphological filtering

Figure 4.4: The case of convolution filtering on a discretized triangle to dilate by one
voxel.

HDT, we assume the pixels enclosed within the geometry are set to FULL state and

the pixels exterior to the geometry are set to EMPTY state. Our goal is to dilate the

triangle by one voxel, for which we can apply the above 3×3 SE (shown in Figure 4.2)

such that the origin of the SE coincides with each of the red pixels. Now, for the

given 3× 3 SE, the two horizontal and the two vertical blocks define the connectivity

or neighborhood relationship with respect to the origin. All the neighboring cells with

originally EMPTY state are colored in blue that define the dilated geometry as shown

in Figure 4.4 (b).
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4.3 HDT Offsetting using Mathematical Morphology

Given a solid represented in high-resolution HDT, our aim is to develop an efficient

and robust implementation of morphological dilation and erosion on GPUs that gener-

ates the expanded or contracted representation of the input HDT. Figure 4.5 visually

demonstrates this objective, where the cross-section of a 3D solid is shown getting

dilated for a given offset distance. Thus, our offset algorithm takes an input HDT and

an offset distance r, and produces another hybrid dynamic tree called offset HDT.

The offset HDT maintains the property that every boundary voxel in the offset HDT

has a minimum distance of |r| from any boundary voxel in input HDT. Positive values

of r correspond to dilation, while negative values correspond to erosion. Without loss

of generality, only the case of dilation is considered in this discussion.

Figure 4.5: 3D Illustration of offsetting. The dilated portion is colored in green, and
the original component is colored in red. The surfaces of these two HDTs maintain
the given offset distance.

In Figure 4.6, we illustrate the offsetting operation on a 2D cross-section of an

HDT representing a 3D cube. A 2D ring structuring element (magnified for better

visualization) is shown in Figure 4.6(a). In this 2D illustration, the radius of the

ring corresponds to the offsetting distance in pixels . Figure 4.6(b) shows a cross-

section of the input HDT, where the yellow blocks represent the leaf grids containing

the boundary voxels. The cross-section of the dilated HDT is shown overlaid with
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the original HDT in Figure 4.6(c), where the outer yellow blocks are generated from

sweeping the ring template, i.e. convolving the the boundary voxels of the input HDT

with the morphological filter. Conceptually, our HDT offsetting algorithm consists of

two steps. Algorithmic details of these two computations are presented below.

(a) A two-dimensional ring
template (or structuring ele-
ment)

(b) 2D cross-section of input
HDT to be swept with ring
template

(c) Cross-section of dilated
HDT overlaid with the origi-
nal HDT

Figure 4.6: Offsetting illustration on HDT.

4.3.1 Constructing the Skeleton of the Offset HDT

In the first step of offset computation, a skeleton of the dilated HDT1 is built that

contains a conservative estimate of all the leaf grids necessary to represent the bound-

ary of the offset HDT. As listed in Algorithm 1, the skeleton of the offset HDT

(hdtSkeleton) is first initialized with an empty HDT (line 1) that has the same

number of root cells as in the original HDT and no leaf grids. For all the root cells in

the skeletal HDT, the cell boundaries are expanded by the given offset distance (line

4), and the dilated cell boundaries are checked for overlap with any leaf grid in the

original HDT. A resulting intersection with the expanded root cell indicates the pos-

sibility of having an active voxel within the offset value (distance) from the surface

of the original HDT. Such an intersecting root cell is processed in Split procedure.

Otherwise, the state of the root cell is set to either full (inside) or empty (outside)
1The terms dilated HDT and offset HDT are used synonymously in this description.
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depending on its location relative to the surface (line 8 in Algorithm 1).

Algorithm 1: Compute the Skeleton of the Dilated HDT
Input: A hybrid dynamic tree hdtOriginal and an offset value distance

Output: A skeleton of the offset hybrid dynamic tree hdtSkeleton and a list

of leaf grids leafList

1 hdtSkeleton← empty HDT

2 leafList← empty list

3 foreach root cell elem in hdtSkeleton do

4 elemBound ← GrowCellBounds( elem, distance )

5 if elemBound overlaps any leaf in hdtOrig then

6 Split( hdtOriginal, elem, distance, hdtSkeleton, leafList )

7 else

8 elem.state ← either FULL or EMPTY

9 end

10 end

11 return hdtSkeleton and leafList

The Split procedure takes in a root cell that overlaps the original HDT when

dilated by distance, and it recursively subdivides the cell and its descendants so long

as a cell overlaps with any leaf grid in the original HDT. It should be emphasized

here that during the construction of the skeletal HDT the intersection of a cell in

hdtSkeleton is checked with all leaf grids in original HDT, not with all the boundary

voxels in the original HDT. The latter is prohibitively expensive computation, as the

set of boundary voxels typically includes tens to hundreds of millions of voxels.

The Split routine executes MakeBranch procedure (line 7) to subdivide each

cell into eight child cells in the skeletal HDT. Now, like the parent cell, if a descendant

child overlaps with any leaf grids in the original HDT when dilated by distance, the

child is recursively partitioned in Split (line 10). This recursive hierarchical cell

partitioning continues until the cell size reaches the target resolution. Finally, at the
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deepest hierarchy in the skeletal HDT the state of a cell is set to boundary (line

2), as it is estimated to have boundary voxels in the resultant offset HDT. For each

boundary cell, a leaf grid is allocated in the Leaf Pool, as discussed in Section 3.1.4,

and the boundary cell is mapped to the allocated empty leaf grid, which is a block of

voxels where the state of each voxel is set to the default. The index to the allocated

leaf grid is added to a list (line 5), which is passed back to Algorithm 1 along with

the skeletal HDT that will be further processed in the following step to construct the

offset HDT.

Procedure Split(hdtOriginal, elem, distance, hdtSkeleton, leafList)
Input: An HDT hdtOriginal along with a given cell elem to be dilated, an

offset value distance, an HDT under construction hdtSkeleton along

with its list of leaf grids leafList

Output: A hierarchical dilated representation of the given cell elem in the

hdtSkeleton

1 if depth of elem ≥ MAX_DEPTH then

2 elem.state← BOUNDARY

3 allocate an empty leaf grid

4 elem.pointer ← pointer to the allocated buffer

5 leafList← leafList
⋃ index of the grid in the Leaf Pool

6 else

7 MakeBranch( hdtOriginal, elem, distance, hdtSkeleton )

8 foreach child of elem do

9 if child.state is BOUNDARY then

10 Split (hdtOriginal, child, distance, hdtSkeleton, leafList)

11 end

12 end

13 end

Next, in MakeBranch procedure the state of each branching cell is set to branch
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(line 1), and memory is allocated for the eight2 descendants in the Element Pool, as

detailed in Section 3.1.4. The branching cell stores the address of the allocated

memory (line 3) to access the descendants through linear addressing. Finally, the

state of each child cell is set to the corresponding state based on the intersection

between the dilated bounds of the child cell and leaf grids in the original HDT, and

the cells with BOUNDARY state are processed in SPLIT routine as described above.

Procedure MakeBranch(hdtOriginal, elem, distance, hdtSkeleton)
Input: An HDT hdtOriginal along with a given cell elem to be dilated, an

offset value distance, an HDT under construction hdtSkeleton

Output: One level branching of the given cell elem in the hdtSkeleton

1 elem.state← BRANCH

2 allocate BranchingFactor * BranchingFactor * BranchingFactor child cells

in contiguous memory block

3 elem.pointer ← pointer to the allocated buffer

4 for i← 1 to BranchingFactor do

5 for j ← 1 to BranchingFactor do

6 for k ← 1 to BranchingFactor do

7 set the state of child cell indexed at [i, j, k]

8 end

9 end

10 end

4.3.2 Constructing the Offset HDT through Morphological Filtering

The second step of our offset algorithm performs the morphological filtering on each

voxel in the leaf grids of the input skeletal HDT, and produces the offset HDT where

the state of each voxel is set to appropriate value (inside, outside, or at the boundary).

Algorithm 2 presents the high-level abstraction of the CUDA implementation of the
2In general, for a branching factor of b the number of descendant cells are b3.
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Algorithm 2: Compute the State of Voxels in the Dilated HDT
Input: An HDT hdtOriginal, an offset value distance, list of leaf grids in

skeletal HDT leafList, and the skeleton of the offset HDT

hdtDilated

Output: The offset HDT hdtDilated with the voxels state set to either

FULL, EMPTY or BOUNDARY

1 kernelHalfSize← distance
voxelSize

2 kernelSize← 2× kernelHalfSize+ 1

3 kernelPoints← FillKernel (kernelSize)

4 Allocate and Initialize CUDA buffers

5 numLeafs← leafList.size()

6 numPoints← kernelPoints.size()

7 Offset( hdtOriginal, hdtDilated, numLeafs, leafList, numPoints,

kernelPoints )

morphological filtering. The execution starts at the host side (i.e., on CPU) that

takes in the original HDT, the offset distance, the skeletal HDT (hdtDilated), and

the list of leaf grid indexes in the skeletal HDT. It should be noted that we denote

the skeletal HDT with hdtDilated here, as opposed to hdtSkeleton in Algorithm 1,

because the output of the Algorithm 2 represents the dilation of the input HDT. For

a given offset value (distance), first the offset radius in voxel unit is computed (line

1); and then the kernel size is measured (line 2) as twice the radius (in voxel unit) plus

one (for the center voxel). In FillKernel, the discretized kernel boundary points

are computed (line 3), which defines the boundary of the 3D ring structuring element.

Once the buffers are allocated and initialized on GPU, these relevant parameters are

passed to the device side Offset routine.

Offset procedure configures the CUDA execution parameters: (a) the number

of blocks in the CUDA grid is set to the number of leaf grids in skeletal HDT, and

(b) the number of threads per block is set to LEAF_BRANCHING × LEAF_BRANCHING.
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Thus, for the default LEAF_BRANCHING value of 16, each CUDA block is configured

with 16 × 16 = 256 threads, which is mapped onto eight CUDA warps each of 32

threads on the GPU.

Procedure Offset(hdtOriginal, hdtDilated, numLeafs, leafList, numPoints,

kernelPoints)

1 blocksInGrid← numLeafs

2 threadsPerBlock ← LEAF_BRANCHING× LEAF_BRANCHING

3 MorphCUDA <<< blocksInGrid, threadsPerBlock >>> (hdtOriginal,

hdtDilated, numLeafs, leafList, numPoints, kernelPoints)

Procedure MorphCUDA(hdtOriginal, hdtDilated, numLeafs, leafList,

numPoints, kernelPoints)

1 blockId← CUDA block id

2 x← threadIdx.x

3 y ← threadIdx.y

4 if blockId ≥ numLeafs OR x ≥ LEAF_BRANCHING OR y ≥ LEAF_BRANCHING

then

5 return

6 end

7 leafElem← GetElement( hdtDilated, leafList[blockId] )

8 for z ← 0 to (LEAF_BRANCHING - 1) do

9 cellIndex← make_int3 (x, y, z)

10 cellCenter ← ComputeCellCenter (hdtDilated, leafElem, cellIndex)

11 cellState← MorphFilter (numPoints, kernelPoints, cellCenter,

hdtOriginal)

12 SetLeafState (hdtDilated, leafElem, cellIndex, cellState)

13 end

The entry point for each thread on GPU is MorphCUDA procedure that is exe-

cuted in parallel, where each thread processes specific block of voxels in the assigned
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leaf grid. In MorphCUDA procedure, first each thread retrieves the information

(i.e., memory address) of the assigned leaf grid (line 1), and the X-Y indexes of the

thread in the CUDA block (lines 2-3), and then the boundary conditions are checked

(line 4). Similar to the leaf processing in HDT construction (cf. Section 3.2), each

CUDA thread works on 16 neighboring voxels (all Z values) for fixed <X, Y> loca-

tion. To determine the state of each voxel, MorphFilter procedure is invoked for

all the voxels located at <X, Y, Z> positions (line 11). MorphFilter iterates over

all the kernel points, and checks if specific voxel, convolved with any point in the

kernel, belongs into the set of boundary voxels in the original HDT. Thus, the state

of a voxel in the offset HDT is set to BOUNDARY based on the existence of any

active voxel within distance in the original HDT. Collectively, all these boundary

voxels define the surface of the dilated HDT.
Procedure MorphFilter(numPoints, kernelPoints, cellCenter, hdtOriginal)

1 for i← 0 to (numPoints - 1 ) do

2 lookUpPoint← add3 (kernelPoints[i], cellCenter)

3 if StateOfPoint(hdtOriginal, lookUpPoint) , EMPTY then

4 return BOUNDARY

5 end

6 end

7 return EMPTY
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4.4 Experimental Results and Analysis

This section presents performance evaluations of the presented morphological offset-

ting algorithm on HDT based voxel representations. We perform the experiments

both for dilation and erosion at 10243, 20483 and 40963 resolutions with offsetting

distance up to 100 voxels. These magnitudes of resolution are much higher than used

in prior works [85, 72], which demonstrated evaluations only in low to mid-range voxel

resolutions. For the experimental evaluations reported in the following Section 4.4.1

and Section 4.4.2, a NVIDIA GTX 780Ti GPU is used as the underlying CUDA plat-

form. Finally, as the input models, we considered the same CAD data sets used in

Chapter 3. As a visual demonstration of offsetting, dilations and erosions for Candle

Holder model with an offset distance of 10 voxels, 20 voxels and 40 voxels are shown

in Figures 4.7 and 4.8 respectively.

(a) 10 voxels (b) 20 voxels (c) 40 voxels

Figure 4.7: Dilations of Candle Holder at 20483 resolution.

4.4.1 Dilation Performance Evaluations

At different modeling resolutions, Table 4.1 (for model Head and Dragon) and Ta-

ble 4.2 (for model Turbine and Candle Holder) report the offset computing time

(middle five rows) and the number of leaf grids processed (last five rows). To keep

the offset distance independent of the physical dimension of specific model, the algo-

rithms are tested at five different offset distances: 20 voxels, 40 voxels, 60 voxels, 80

voxels and 100 voxels.
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(a) 10 voxels (b) 20 voxels (c) 40 voxels

Figure 4.8: Erosions of Candle Holder at 20483 resolution.

Table 4.1: Dilation results: Head and Dragon.

Head Dragon
Resolution 1024 2048 4096 1024 2048 4096

Offsetting Time (sec)
20 voxels 4 15 59 4 17 75
40 voxels 15 61 254 17 71 325
60 voxels 38 151 612 42 172 762
80 voxels 81 289 1147 85 325 1416
100 voxels 186 629 2295 194 674 2731

Leaf Grids Processed (thousand)
20 voxels 12.1 44.2 168.4 13.6 52.4 214.2
40 voxels 17.7 61.8 229.3 19.7 72.9 287.6
60 voxels 24.2 81.0 293.0 26.7 94.6 364.5
80 voxels 31.6 101.8 359.9 34.5 117.9 444.1
100 voxels 49.0 148.6 503.0 53.1 168.9 611.1
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Table 4.2: Dilation results: Turbine and Candle Holder.

Turbine Candle Holder
Resolution 1024 2048 4096 1024 2048 4096

Offsetting Time (sec)
20 voxels 3 15 76 4 19 77
40 voxels 13 57 314 17 78 347
60 voxels 28 119 703 40 184 843
80 voxels 57 207 1273 80 325 1531
100 voxels 132 408 2323 178 645 2885

Leaf Grids Processed (thousand)
20 voxels 11.2 51.1 214.8 14.3 57.5 220.4
40 voxels 15.2 66.5 289.2 19.8 77.9 307.6
60 voxels 20.0 81.3 360.0 26.1 99.0 390.1
80 voxels 25.4 96.5 426.0 33.2 120.4 470.9
100 voxels 38.7 130.4 546.0 50.3 166.5 635.1

By our approach of voxel offsetting using morphology filtering, the computation

complexity to generate the dilated HDTs scales in proportion to two parameters: a)

the number of leaf grids created in ComputeSkeleton procedure that are pro-

cessed in following ConvolutionCuda procedure (Section 4.3), and b) the number

of boundary points on the discretized structuring element. At our target resolutions,

the number of boundary points on the discretized structuring element—shorthand

as kernel boundary points— can be considered invariant across the modeling resolu-

tion. Table 4.3 reports the kernel boundary points for different offset distances. By

the depiction of the ring morphological filter in Figure 4.6 (a), a two-fold increase of

the radius of the structuring element indicates the number of discretized points rises
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approximately to 2× (in 2D case) and 4× (in 3D space)3. In our target application

of offsetting in toolpath generation, conceptually the kernel represents the spherical

surface of a ball-end milling tool. Thus, the number of boundary points in the struc-

turing element roughly increases by a factor of four at 2× offset distance, as shown

in Table 4.3. For instance, the ratio of the kernel boundary points between offset

distances of 40 voxels and 20 voxels is 2375
581 = 4.09. Similarly, the ratio of the kernel

boundary points between offset distances of 80 voxels and 40 voxels is 9674
2375 = 4.07.

For a given offset distance, understanding how the time to compute offset scales

with the target resolution is useful on two grounds. First, it helps to validate the

parameters that define the theoretical complexity of the morphological offsetting.

Second, it helps to predict the growth in offsetting time at finer target resolutions. To

address that goal, we analyze the dilation computation times at different resolutions

for the individual models. As the number of kernel boundary points remain almost

same across the target resolutions, the dilation times for a given offset distance is

expected to scale in proportion to the number of leaf grids processed. As an example,

consider the case of 100 voxel dilations at 20483 and 40963 resolutions. The ratio of

the number of processed leaf grids for the Head, Dragon, Turbine and Candle Holders

are respectively 3.73, 3.62, 4.19 and 3.81, while the ratio of the dilation times for the

models are 4.11, 4.05, 5.70 and 4.47 respectively. Thus, the offsetting time at 40963

grow faster than the scale of processed leaf grids. As at the 2× resolution the HDT

depth increase by 1, the average processing time for each leaf grid increases at the

higher resolution. We will revisit the impact of the HDT depth in details in Chapter 5.

Now, for a given target resolution, understanding how the dilation computa-

tion scales with the offset distance is crucial to comprehend the aspects of parallel-

execution efficiency of the morphological filter based offsetting algorithm on GPU
3These are analogues, respectively, to the ratio of the circumferences of a circle (in 2D case) and

the surface areas of a sphere (in 3D case) with the radius gets doubled.
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Table 4.3: Boundary points of the structuring element at different offset distances.
Offset Distance (in
voxel unit) 20 40 60 80 100

Number of Kernel
Boundary Points 581 2375 5370 9674 14948

hardware. For instance, 100 voxel offsetting at 40963 resolution takes about 48 min-

utes for the Candle Holder. To develop a deep insight into the parallelization efficiency

of our implemented morphological offsetting on the HDT, we study the dilation com-

putation times at the same resolution for different offset distances. For instance, con-

sider the dilations of the Candle Holder at offset distances of 20 voxels and 40 voxels

at 40963 resolution. For these tests, the number of leaf grids processed are 220.4 and

307.6 thousands (Table 4.2), while the numbers of kernel boundary point are 581 and

2375 for corresponding offset distances (Table 4.3). Taking these values into analysis,

the theoretical computational complexity uplifts by a factor of 307.6
220.4 ×

2375
581 = 5.7 for

offsetting 40 voxels relative to 20 voxels. Now, the ratio of the execution times for

the Candle Holder at these configurations is 346.5
76.8 = 4.5, which lies within the bound

of the theoretical complexity in order of 5.7.

By contrast, the same comparative analysis between the offset distances of 20 vox-

els and 100 voxels, depicts a different scenario. As it appears, the dilation time with

100 voxels at 40963 resolution grows by 2885
76.8 = 38 times, whereas the complexity scales

by a factor of 635.1
220.4 ×

14949
581 = 74. This demonstrates that with larger problem size, the

algorithmic acceleration increases significantly compared to their theoretical complex-

ity. With larger workload the overhead of pre-processing operation (i.e., the skeletal

HDT construction), the overheads of CUDA related issues, such as, data allocation on

GPUs, data transfer between CPU and GPU, etc. are amortized over larger number

of computing threads. Thus, the computation efficiency of the offsetting kernel on

GPUs generally scales with larger offset distances.
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4.4.2 Erosion Performance Evaluations

Similar to the dilation experiments, erosion computation times at different modeling

resolutions are presented in Table 4.4. Unlike the dilation experiments, erosions are

evaluated at three different offset distances in voxel units: 10 voxels, 20 voxels and

40 voxels, and at resolutions of 20483 and 40963 only. This is because for our CAD

models large-scale erosion shrinks the solid entirely, and so does not reflect a practical

offset operation. Figure 4.8 depict the outcome of erosions on Candle Holder with an

offset distance of 10 voxels, 20 voxels and 40 voxels.

Table 4.4: Erosion results: Head, Dragon, Turbine and Candle Holder.

Resolution 2048 4096 2048 4096 2048 4096 2048 4096
Offsetting Time (sec)

10 voxels 3.0 13.0 2.1 9.1 1.5 8.5 3.2 15.6
20 voxels 11.6 55.6 5.7 32.6 2.9 22.1 10.5 57.2
40 voxels 40.5 226.3 12.4 104.2 5.2 60.3 28.1 211.5

Leaf Grids Processed (thousand)
10 voxels 25.4 105.8 18.6 86.5 17.7 88.4 26.8 118.9
20 voxels 35.1 152.6 20.3 103.7 18.2 100.6 31.5 161.0
40 voxels 43.0 195.3 20.5 114.8 18.2 107.0 32.7 189.3

As it is expected, erosions are faster to compute than dilations for corresponding

offset distances (i.e., offset distances of 20 and 40 voxels). This is because the sample

inputs require more leaf grids to represent the dilated surface compared to the shrunk

surface for a given offset distance, that in turn implies less leaf grids are processed

in the offset algorithms for erosions. These can be validated by comparing the leaf

girds count processed for the dilation relative to that for the erosion with the offset
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distance of 20 voxels and 40 voxels (cf. Tables 4.4 with Tables 4.1 and 4.2).

4.4.3 Computational Complexity of HDT Offsetting

The asymptotic complexity of the presented morphological offsetting scales inO(L3NM),

where L is the size of the leaf grid, N is the number of leaf grids processed in the

computation, and M is the number of kernel boundary points. While M depends

on the offset distance in voxel unit, N depends on the target resolution and the ge-

ometric sparsity in the input voxel representation. Hence, we pursue a model-driven

computational comparison between the morphology algorithm with the underlying

HDT representation compared to the complexity of 3D convolution.

For comparison, we consider the test case of 100 voxel offsetting at 40963 resolu-

tion. Out of the four inputs, the Candle Holder model requires processing the highest

number of leaf grids—approximately 637 thousands leaf grids, where each grid con-

sists of 16×16×16 voxels. Now, the kernel with a radius of 100 voxel comprises about

15× 103 boundary points as shown in Table 4.3. Thus, the theoretical complexity for

the Candle Holder model lies in order of (637× 103 × 163)× (15× 103) ≈ 3.9× 1013.

Compared to a computational complexity in order of 5.5×1017 with a dense 3D grid,

as presented Section 1.2, for our benchmarked CAD models the theoretical complex-

ity is about four orders of magnitude faster. However, as dicussed in Chapter 1, while

the use of the HDT as the underlying data structure solves voxel offsetting problem at

higher resolutions than the prior state-of-the-arts, it comprises the peak parallelism

available with a regular 3D grid based voxel representation.

4.4.4 Cross-Platform Scalability

To investigate the performance scalability of our offset algorithm on different GPUs,

we conduct the dilation experiments on another graphics hardware of comparable

performance with that of a GTX 780Ti (the default setup). As the second GPU we

chose a GTX Titan card. Figure 4.9 highlights the comparative performance of the
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dilation algorithm for the four models at 20483 resolutions. For all the four models,

the performance gap between the execution times on 780Ti and Titan increases with

larger offset distances. For instance, for 20 voxel offsetting Titan takes respectively

16%, 16%, 20% and 16% more time than 780Ti for the Head, Dragon, Turbine and

Candle Holder, whereas for 100 voxel offsetting the former takes respectively 21%,

41%, 40% and 22% longer than the latter.
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Figure 4.9: Dilation times comparison between GTX 780Ti and GTX Titan.

Now, to rationalize these relative performance gap between these two tested GPUs,

we analyze the key architectural specifications [8, 9] of these selected cards as reported

in Table 4.5. As Table 4.5 provides, a GTX 780Ti unleashes 5040
4494 ≈ 1.12× peak

throughput of a GTX Titan, and on memory bandwidth the former demonstrates
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336.0
288.4 ≈ 1.16× higher bandwidth than the latter. Thus the performance gap, as ob-

served in Figure 4.9 seems to be well justified—particularly for small-scale offsetting—

that fall in line with the differentiable key metrics appeared in Table 4.5. With larger

offset distance, the size of the morphological filter increases roughly quadratically,

as we reported in Table 4.3. This results in an order of magnitude higher data to

be loaded from the global memory on GPU. Our experimentation and analysis on

the CUDA profiler outputs demonstrate that the memory throughput on GTX Titan

significantly under perform at these test scenarios. Thus, with larger offset distances

the performance penalty incurred due to lower memory bandwidth seems obvious in

some cases, like we observed with the Dragon and Turbine models.

Table 4.5: Key architectural specifications of NVIDIA GTX 780Ti and Titan.
GTX 780Ti GTX Titan

Number of streaming multi-processors (SM) 15 14
Number of CUDA cores per SM 192 192
Total CUDA cores 2880 2688
Floating-Point4 performance (GFLOPS) 5040 4494
Memory bandwidth (GB/s) 336.0 288.4
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4.5 Comparison with Prior Studies
4.5.1 Multi-Core CPU Offsetting on Distance Field based Representation

To demonstrate the relative performance of the presented GPU accelerated surface

offsetting algorithm, a recent CPU based study [72] is considered as the basis for

comparison. Since the work of Liu et al. [72] uses a publicly available CAD model

from the Stanford Repository [1] for their experimental analysis, it makes possible

to conduct apples-to-apples comparison with a complex mesh input to validate the

relative speedup achieved through GPU acceleration. Liu et al. benchmarked the

performance of their offsetting algorithm on a distance field based volume representa-

tion. The experiment used the Buddha model [1], and the offsetting operation dilated

the model at 5123 resolution with an offset distance of 2% of the diagonal length of

the bounding box. The same test configuration is used for our offsetting experiments.

The resultant dilated model appears in Fig. 4.10.

(a) Original (b) Dilated

Figure 4.10: Surface dilation of a Buddha model (polygonal mesh comprising 1.1
million triangles).

The work by Liu et al. achieved significant speedup compared to another prior

study [85] that took over 3000 seconds. To realize the comparison fair, only the time

of distance field computation is considered here, and the times of auxiliary filtering

steps and mesh reconstruction are excluded from the reported results. Table 4.6 shows
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the comparative measurements of our GPU accelerated offset implemented relative

to the single-core and eight-core CPU implementations. The leftmost two columns

in Tab. 4.6 present offsetting times for CPU implementations at 5123 resolution as

reported in [72], while the rightmost three columns present offsetting times for the

proposed GPU algorithm at 5123, 10243 and 20483 resolutions respectively. Here,

the reported GPU offsetting times sum up the execution times of Algorithm 1 and

Algorithm 2.

Table 4.6: Time comparison for dilation of Stanford Buddha [1]

CPU Offsetting Time at 5123 [72] GPU Offsetting Time at Resolution

Single-core Eight-core 5123 10243 20483

114.5 22.8 0.46 7.6 109

Liu et al. reported 114.5 seconds with a single-core CPU, and 22.8 seconds on

a dual-socket quad-core CPU for computing the distance field. First, the relative

computation times on single-core and octa-core (2 x quad core) CPU emphasize that

the computational performance not necessarily scales proportionately to the number

of cores used. For instance, as the single-core and 8-cores timing results of Liu et.

al. reflect with employing eight cores, the performance could be accelerated only by

a factor of (114.5 sec / 22.8 sec) ≈ 5 only. By contrast, our GPU implementation

of morphology based offsetting takes only 0.46 second at 5123 resolution leading to

respectively 50× and 249× speed-up than eight-core and single-core CPU results [72].

Further, at two-fold resolution presented algorithm achieves a speedup of 3× and 15×

relative to eight-core and single-core CPU implementations respectively. Even at four-

fold resolution it takes almost similar time relative to the single-core implementation.

It should be emphasized here that in 3D space a four-fold resolution along each

dimension raises the complexity of the problem by a factor of 4× 4× 4 = 64.

Although both approaches work with volumetric representations, the presented
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GPU implementation of the offsetting algorithm achieves significant speedup due to

following reasons. First, use of a voxel based solid representation in the hybrid dy-

namic trees allows storing high-resolution volumetric data very compactly compared

to the distance field based representation used in [72]. As a distance field represents

3D volume implicitly, volume processing algorithm, such as, surface offsetting is more

computation intensive compared to voxel based alternatives. Secondly, presented

scheme benefits from GPU acceleration. The peak throughput on a GTX 780Ti card

is over an order of magnitude higher than the dual-socket quad-core CPU used in the

study by Liu et al. Finally, as Liu et al. adopted a uniformly-indexed 3D grid to rep-

resent the distance field, it incurs high redundancy in computation due to processing

of each point in the volume space. To the contrary, our presented technique repre-

sents the 3D space adaptively in HDT structures, and thus can eliminate avoiding

redundant computations. Due to the use of a uniform grid, the works by Liu et al.

scaled only up to a resolution of 5123 on a CPU platform with much larger system

memory than the graphics cards used in our benchmark results.

Table 4.7: Test configurations for 2% dilation of the diagonal length at different
resolutions.

Target Resolutions on GPU 5123 10243 20483

Offset Distance (number of voxels) 12 23 46

Number of Kernel Boundary Points 251 842 3210

Processed Leaf Grids 4933 18192 72304

To understand how the morphological offsetting scales for the same offset distance

across multiple resolutions, we investigate the GPU offsetting times at the tested con-

figurations for the specific offset distance of 2% of the diagonal length. As, the dimen-

sion of voxel gets halved at 2× resolution, two-fold more number of voxels are required

to make up the same offset distance as observed in Table 4.7. With 2× larger offset

distance (in voxel unit), as detailed earlier, the number of kernel boundary points
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roughly increases by four times, specially for high target resolutions. Further, the

leaf grid count processed during this dilation process grows approximately four-fold

with increasing resolution. These contributing components raise the computational

complexity of voxel offsetting approximately by 4× 4 = 16 times for the same offset

distance at twice higher resolution, which is reflected in the results shown in Table 4.7.

For instance, the comparisons between the test data at resolutions 10243 and 20483

reveal that the complexity to compute the same dilation distance scales by a factor

of 3210
842 ×

72304
18192 ≈ 15.2, whereas Table 4.6 reports 109

7.6 ≈ 14.3× more computation time

at the 2× resolution. However, it should be pointed that the real offset computation

time may vary from the theoretical complexity depending on the parallel execution

efficiency on the target graphics hardware.

4.5.2 Comparative Performance Analysis with GPU-Accelerated 3D Con-
volution

While a tight bound between the computational complexity of morphology based

HDT offsetting and 3D convolution is not quite viable, we yet contrast our results

with prior performance benchmarks conducted by Aqrawi et al [16]. The authors

evaluated the performance of highly-tuned 3D convolution (in spatial domain) both

on multi-core CPU and many-core GPU, and experimented resolution up to 20003

with a filter size up to 133. It took 4,000 seconds to compute the 3D convolution on

a quad-core Intel i7 CPU, and approximately 820 seconds on a NVIDIA Tesla C2050

GPU [10].

As we discussed earlier, the complexity of convolution depends on the target

resolution and the size of the kernel. With higher resolution there are more voxels

in the grid. Besides, the larger the filter, the more computation there is to do per

voxel. To investigate the execution efficiency between our methodology and that

by Aqrawi et al. [16], the target problem configurations and peak throughput of the

respective GPU hardwares are enlisted in Table 4.8. As Table 4.8 reports, at our target
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Table 4.8: Comparisons of the target problem configurations and respective GPU
platforms.

Work by
Aqrawi [16]

Our Study Corresponding
Ratio

Resolution (along each dimension) 2000 4096 2.0

Filter Size (along each dimension) 13 100 7.7

Floating-Point Performance (GFLOPS) 1030 5040 4.9

resolution of 40963 with a filter size of 1003 the complexity of the problem increases

by 4096
2000×

100
13 ≈ 2.0×7.7 = 15.4 times along each dimension. Considering the problem

space of three dimensions, we evaluate the problem at a scale of 15.4 × 15.4 × 15.4

≈ 3, 652 times more computationally intensive.

From Table 4.8 it should be noted that the Tesla C2050 is roughly 4.9 times less

powerful than a GTX 780Ti. Hence, the normalized time for the GPU convolution

translates to 820
4.9 = 167 seconds. Now, multiplying the scale of the problem size, we

can estimate an execution time5 of 3652 × 167 = 609, 884 seconds (over 7 days) to

compute 3D convolutions at 40963 resolution with a filter size of 1003. This is roughly

211× larger than our peak reported time of 2,885 seconds (Candle Holder) for offset

computation at 40963 resolution with a distance of 100 voxels (cf. Table 4.2). Thus,

even compared to a hand-tuned GPU implementation of 3D convolution, our tech-

nique demonstrates two orders of magnitude faster offsetting on the hybrid dynamic

trees. Further, compared to the quad-core CPU measurement, our approach gains a

speedup of 4000
820 × 211 ≈ 1031 (over three orders of magnitude faster).

These observations are not surprising. First, our offsetting approach uses morpho-

logical filtering and only processes a fraction of data compared to the total discrete
5Arguably, this is a simplified estimation where we consider the disparity in peak throughput of

the two GPUs as the only differentiating factor behind the overall computation efficiency. However,
it should be noted that many of the optimization adopted in [16] is not applicable for large problem
size. For instance, the authors used fast constant memory on GPUs to store the convolution kernel.
When the filter size increases, even the latest generation GPUs cannot hold the entire filter on the
constant or shared memory due to limited capacity.
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points in a 3D grid. For instance, to compute 100 voxel offsetting at 40963 resolution,

our algorithm processes roughly (635 × 103 leaf grids) × (40963 voxels/leaf grid) =

2.6 × 1012 voxels for the Candle Holder model, while a 3D convolution deals with

4096 × 4096 × 4096 = 69 × 1012 voxels. Additionally, for 100 voxel offsetting a 3D

convolution iterates over all the (2× 100 + 1)3 = 8, 120, 601 discretized kernel points,

whereas our morphological filtering only iterates over roughly fifteen thousand points

(cf. Table 4.3). Thus, while our comparative analysis in Section 4.5.1 demonstrates

a 50× speedup over the octa-core CPU algorithm that works on the widely-studied

Buddha model at a relatively lower 5123 resolution, current comparison shows much

greater speed-ups over multi-core CPU and hand-tuned GPU implementations of 3D

convolutions at a higher resolution of 20003.
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CHAPTER 5

TUNABLE VOXEL OFFSETTING WITH HDT
PARAMETERS

The process of performance tuning of a computation kernel with a sparse data repre-

sentation is surprisingly complex [102]. The efficiency and performance of an applica-

tion are determined not only by the algorithm and the hardware architecture that runs

the algorithm, but critically also by the organization of computations and data on

that architecture [87]. And, often that performance comes through a rigorous tuning

of optimum trade-offs between the pertinent parameters, like in the Halide work [86]

the authors have analyzed the tensions between parallelism, locality, and redundant

work to maximize the overall efficiency in computational photography applications.

Optimization becomes challenging because the best trade-offs are rarely obvious, and

finding them often requires extensive experimentation. The ideal balance depends

on the interaction between the underlying data structure, individual algorithms, the

hardware architecture onto which they are mapped to.

Superficially, voxel-processing applications appear embarrassingly parallel, as the

operations are often independent and thus perfectly suit to GPU’s parallel archi-

tecture. While GPUs can exploit abundant data-level parallelism to accelerate the

applications, it has limitation as well. For high-resolutions voxel processing the low

memory capacity on GPUs is a severe constraint. Although GPUs aim at hiding the

long memory latency by switching the computing resources effectively across tens of

thousands resident threads, the limited locality, as in the case of our morphological

filter based offsetting algorithm, can throttle the memory throughput and eventually

the execution pipelines. Driven by these challenges, designing high-performance voxel

processing algorithm with a underlying sparse data structure is challenging, because
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it requires a holistic insight into the data representation, and optimum mapping be-

tween the computations and the data to leverage the underlying parallel hardware

most effectively.

Our research leverages the configurability of the HDT structure as a tunable knob

to demonstrate high-performance voxel offsetting at extreme resolution. Selection of

optimal choices for the HDT parameters not only minimizes the memory footprint

of the voxelized representation of the solid, but also maximizes the parallel code

execution efficiency on the parallel GPU hardware. To that end, we conduct offset

experimentations with tunable HDT parameters, namely the size of the root grid,

the branching factor of the nodes, and the size of the leaf grid. While the similar

experimentations as demonstrated in Section 3.4 revealed the relationship between

the memory footprint in the HDT and the tunable parameters of the underlying

HDT data structure, here our goal is to explore similar relationship between the

offset algorithm and the tunable HDT parameters.

First, for the convenience of discussion we revisit the same notations to specify

an HDT configuration, as adopted in Section 3.4. Let, we formulate an HDT with

configuration of root grid size R = 2r, branching factor B = 2b and leaf grid size

L = 2l, then for a given resolution X we get an HDT with height h that satisfies the

following condition:

2(r+b×h+l) ≥ X (5.1)

Our goal in this chapter is to analyze the impacts of the tunable HDT param-

eters to achieve higher computing efficiency in the HDT offset computation. The

morphological filter processing is the most dominating step in the overall HDT off-

set computation; hence we emphasize our experiment and analysis with the tunable

HDT parameters on the filter computation step. The following sections respectively

investigate the impact of the size of the root grid, the branching factor of the nodes

and the size of the leaf grid in HDT.
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5.1 HDT Offsetting with Tunable Root Grid
5.1.1 The Impact of the Root Grid on HDT Offsetting

Our first study focuses on the impact of the root grid dimension (R) in the HDT off-

setting computation. As expressed in Eq. 5.1, the depth of the HDT reduces by one

for a two-fold larger root grid. The impact of the shallower HDT hierarchy in the mor-

phological filter computation can be realized from the pseudocode of MorphFilter

routine presented in Section 4.3.2. As we describe in Section 4.3, the state of individ-

ual boundary voxel in the offset HDT is determined in the MorphFilter procedure.

To determine the state of each voxel, this CUDA routine iterates over all the kernel

points, and checks if specific voxel, convolved with any point in the kernel, belongs

into the set of boundary voxels in the given HDT. As we see in the code snippet of

MorphFilter, the StateOfPoint is invoked to look up for every kernel point for

all the voxels in the skeletal HDT. Thus, the depth of the HDT controls the code

execution efficiency of the morphological filter on the GPUs.

Besides the impact on the depth of HDT, the size of the root grid also dictates

the magnitude of parallelism in the skeletal HDT construction as appeared in Algo-

rithm 1. As we described in Section 4.3.1, Algorithm 1 processes each cell in the

root grid in parallel. Once the dilated bound of the cell intersects with the original

HDT, a hierarchical octree structure is constructed that is estimated to contain some

boundary voxels in the resultant offset HDT. Thus, with a two-fold larger root grid,

the parallel construction of the skeletal HDT can be accelerated up to 8×.

5.1.2 HDT Dilations with Variable Root Grid Size

To study this impact of the HDT depth through tunable size of the root grid, we

configure the HDT with a default leaf grid size (L) of 16 and branching factor (B) of

2, and set the root size (R) in between 8 and 64. As can be derived from the Eq. 5.1,

at a target resolution of 40963 with R = 8, L = 16 and B = 2, the HDT spans a

depth of five, whereas with R = 64 the HDT has a depth of two for the same value of
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Figure 5.1: Impact of different root grid size on 60 voxels dilations at 4096×4096×4096
resolution.

L and B. The dilation times with these different configurations of HDTs are reported

in Figures 5.1 and 5.2. The former shows the offsetting times at 40963 resolution,

while the latter presents the times at 20483 resolution.

As Figure 5.1 shows, all the models demonstrate a similar trend of linear reduc-

tions in the dilation times across the experimented sizes of the HDT root grid at a

resolution of 40963. Compared to the default HDT configuration with a root size of

163, dilatations take 14 − 15% more with a root size of 83. With the scaling of the

root grid size to 323, dilation computations take 15−17% lower, and for the root grid

size of 643 offsetting is 34− 38% faster than the default configuration.

Now, compared to the dilations times at 40963 resolution, the reported times

in Figure 5.2 at 20483 resolution show that offsetting times in general decrease till

some point, and then it observes not significant change in the computation efficiency.

Between the root grid sizes of 83 and 323, the dilation times decreases linearly –
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Figure 5.2: Impact of different root grid size on 60 voxels dilations at 2048×2048×2048
resolution.

similar to the trend as observed with the case of 40963 resolution. The Turbine

model is a outlier here that takes noticeably lower time with the default root grid

of size 163 than the HDTs configured with a larger root grid. At 20483 resolution,

with R = 32, L = 16 and B = 2, the HDT spans a depth of only two, and hence

no noticeable performance gain is observed with a even larger root grid of size 643.

Thus, our offsetting experimentation with tunable size of the root grid in HDTs reveals

the opportunity of high-performance offset computation by adopting a suitable grid

size such that the overall HDT depth is relatively low (typically two for the peak

performance).

5.1.3 Analysis on the CUDA Profiler Statistics

As the filter computation is the dominating component of the overall offset algorithm,

we investigate the impact of the tunable root grid on the parallel execution efficiency
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of the filter algorithm on GPUs with different HDT configurations. For the purpose

of the analysis, we examine two CUDA performance statistics that represent the

execution efficiency of the filter computation on GPUs at different HDT settings —

a) warp execution efficiency, and b) global memory transactions. The warp execution

efficiency indicates the distribution of the availability of eligible warps per cycle across

the GPU. For our study, we investigate the number of cycles that a warp scheduler

had at least one eligible warps to select from. At a given cycle, no warp may be

available for scheduling, where warp can be stalled due to pipeline busy, execution

and memory dependency, memory throttling, synchronization, among others. Thus,

the higher the percentage of cycles with some eligible warps in the GPU the more

efficient the code runs on the target device. Next, the global memory transactions

indicates the pressure of the data read and write request on the GPU memory system.

A lower number of memory transactions are preferred to avoid saturating the memory

pipeline that may eventually throttle the instruction executions.
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Figure 5.3: Impact on CUDA warp issue efficiency and global memory transactions
with different sizes of root grid at 60 voxels dilations for the Candle Holder model.

Figure 5.3 shows the relative warp execution efficiency and relative global memory

transactions performance metrics for 60 voxels dilation of the Candle Holder model.

All these results are averaged across 10 kernel launches to avoid spurious hardware
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statistics. As demonstrated in Figure 5.3, relative to the default size of root grid of

163, the warp execution efficiency increases by 6% and 11% for HDTs with root grid

of 323 and 643 respectively, while warp execution efficiency decreases by 3% in HDTs

with root grid of 83. On the other hand, the global memory requests decrease by

respectively 18% and 32% in HDTs with root grid of 323 and 643 compared to the

default grid size of 163. With increasing depth of the HDT hierarchy, the rate of the

number of memory transactions grow higher, as can be validated that the memory

requests raised by 32% for the next deeper HDTs with root grid of size 83. Thus,

our analysis on the tunable root grid exposes the importance of shallow hierarchy in

the voxel modeling through larger possible root grid to to achieve high-performance

voxel offsetting in HDTs.
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5.2 HDT Offsetting with Tunable Node Branching

As expressed in Eq. 5.1, with a two-fold size of the branching factor, the HDT gets

wider and hence the height of the HDT decreased by half. For instance, if the node

branching is changed to four from the default setting of octree structure (i.e., B = 2),

then the depth of the leaf nodes in the new structure will be h
2 , where h is the

original HDT height with octree configuration. In this study, with the root grid size

(R) set to 4 and the leaf grid size (L) set to default 16, offsetting is performed at

the HDTs with different branching configurations. We experiment and analyze the

dilation experiment at 40963 resolution for three different offset distances (40 voxels,

60 voxels and 80 voxels) with HDTs configured at three branching factors: for B = 2

(i.e., b = 1), B = 4 (i.e., b = 2) and B = 8 (i.e., b = 3). For these settings, the tree

hierarchy in HDT is respectively 6, 3 and 2, as expressed from Eq. 5.1.
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Figure 5.4: Impact of different branching factors on 40 voxels dilations at 4096 ×
4096× 4096 resolution.

105



0

200

400

600

800

1000

1200

2 4 8 2 4 8 2 4 8 2 4 8

Ti
m

e 
(s

ec
) 

 

Node Branching Factor in the HDT 

Head Dragon Turbine Candle Holder 

Figure 5.5: Impact of different branching factors on 60 voxels dilations at 4096 ×
4096× 4096 resolution.

5.2.1 HDT Dilations with Node Branching of 4

The dilation times reported in Figures 5.4, 5.5, and 5.6 show the breakdown of the two

steps of the presented HDT offsetting algorithm in Section 4.3. For each stacked bar in

these figures, the taller component represents the offsetting time with morphological

filters, while the bottom component indicates the preprocessing time to generate

the skeletal dilated HDT. As it obvious that with the default HDT configuration

with a node branching of two, the time to compute the skeleton of the offset HDT

is quite negligible compared to the the computation time of the the morphological

filtering. With larger branching values the skeletal computation time increases, this

observation is similar to what we discussed in Section 3.4.2 as an analysis on the

increases of branching time in HDT construction process.

As detailed in Section 4.3, the construction of the skeletal HDT is a hierarchical
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Figure 5.6: Impact of different branching factors on 80 voxels dilations at 4096 ×
4096× 4096 resolution.

process, where the parallelism at the top levels are severely limited by the low number

of cells in the root grid. With a larger branching factor, both the original HDT and

the dilated HDT contain more tree cells for the same number of leaf grids. This

is due to that each cell partitioning creates 8× more children for a two-fold larger

value of B. For instance, with B = 8 each cell in HDT will have 8 × 8 × 8=512

children. Such proliferation of cells in the underlying HDT result into proportionate

growth in the skeletal computation time. Now, for a larger branching factor, the

HDT gets shallower that positively impacts the filter computation time. As shown in

Figures 5.4, 5.5, and 5.6, the dilation times with B = 4 reduce by 18−26% compared

to default branching of B = 2 across different offset distances. Thus, even with the

overhead of higher skeletal computation time the overall dilation times with B = 4

improves by a factor of 1.22− 1.35×.
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5.2.2 HDT Dilations with Node Branching of 8

However, once the branching becomes too wide (i.e., B = 8), the sharp increase in

skeletal computation time offsets the relative modest gain in the filter computation

time. For instance, the filter computation time for 40 voxels dilation (Figure 5.4)

reduces by 3− 12% with B = 8, however the skeletal computation time increases by

a factor of 7 − 8× compared to that with B = 4. The overall dilation times thus

observe a slowdown between 3% to 15%.

Now, the skeletal computation time increase just modestly for larger offset dis-

tances, whereas the kernel computation time scales at a higher rate with larger filters.

Thus, with larger offset distances, the overall HDT dilation times with a branching

factor of 8 get faster than the results with a branching factor of 4. For instance, as we

see in Figure 5.6, the total offsetting times achieve bit higher performance (2 − 5%)

compared to the results with a branching factor of 4. An interesting observation is

that, for the models with regular patterns (i.e., Turbine and Candle Holder) larger B

in general demonstrate higher performance compared to the non-regular shapes (Head

or Dragon). For instance, as shown with 60 voxels dilation results (Figure 5.5), the

overall offsetting times with B = 8 for the regular shapes are faster than with B = 4,

whereas for the non-regular shapes the former HDT configuration is slower than the

latter.

5.2.3 Analysis on the CUDA Profiler Statistics

As the filter computation is the dominating component of the overall offset algorithm,

we investigate the impact of the tunable node branching on the parallel execution

efficiency of the filter algorithm on GPUs with different HDT configurations. Toward

that goal, similar to the case with tunable root grid size, we analyze two CUDA

performance statistics, namely the warp execution efficiency and the global memory

transactions. Figure 5.7 shows the relative warp execution efficiency and relative

global memory transactions performance metrics for 60 voxels dilation of the Head
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model. To avoid spurious hardware statistics, all these results are averaged across

10 kernel launches. As demonstrated in Figure 5.7, relative to the default branching

factor of 2, the warp execution efficiency increases by 5% and 8% for branching factor

of 4 and 8 respectively. On the other hand, the global memory requests decrease by

respectively 23% and 28% for branching factor of 4 and 8 compared to the default

branching factor of 2. Thus, the compounding impacts with the larger branching

factors demonstrate better code execution efficiency on parallel GPU hardware, which

earlier reflected in the reported results in Figures 5.4, 5.5, and 5.6.
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Figure 5.7: Impact on CUDA warp issue efficiency and global memory transactions
with different branching factors at 60 voxels dilations for the Head Model.

The performance statistic charts closely reflect the observed trend in the dilation

data reported in Figure 5.5. As the depth of the HDT reduces to three with branching

value of 4 that originally spans a deep hierarchy of level six with default octree

setting, both the warp execution efficiency and the relative global memory request

demonstrate noticeable performance improvements. On the other hand, when the

HDT is configured with a branching of 8 the height of the HDT reduces to two from

3 with branching of 4, thus the improvements in performance statistic observe only

modest gain. In Figure 5.5, this gain is reflected in the relative magnitude of the filter

computation times (purple bar with B = 4 and orange bar with B = 8).
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5.3 HDT Offsetting with Tunable Leaf Grid
5.3.1 Parallelism, Redundant Computation and Storage Trade-Offs

As discussed in Chapter 1, on graphics hardware the organization of computations

and data for a given algorithm are constrained by fundamental tensions between par-

allelism, storage and redundant computation. We argued that with the traditional

approach of grid based voxel representation while the parallelism can be best lever-

aged, it imposes tremendous challenge on computational and storage requirement

to deal with the non-active voxels. In Section 3.4.3, we presented detailed analysis

on the trade-offs between parallelism and storage to highlight the need of a hybrid

approach that laid the foundation of the HDT structure. In this section, our study

focuses on trading off the parallelism to optimize the redundant computations in the

voxel offsetting through tunable size of the leaf grid in the HDT.

Table 5.1: Comparisons of different voxel data representations.

Parallelism Storage Redundant
Computation

Uniform Grid High High High

List of Active Voxels Medium Medium Low

Octree (SVO) Low Low Low

For better comprehending these contrasting trade-offs, we enlist some fundamental

choices of voxel data representation in Table 5.1. As obvious, a regularly sampled

3D grid provides perfect parallelizability, while both the storage and redundancy in

computations are high. A simple alternative to a regular grid is a flat list of active

voxels, where each element in the list basically encodes the coordinates of individual

voxels. List based sparse representation avoids redundant computation, as it only

stores the boundary voxels; however the storage requirement could be relatively high

as it requires log2R bits to encode single dimension with R discrete points. Thus,

unlike the octree, the topology storage in a list based representation scales with the
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resolution, and requires a total of 3 × log2R bits for identifying the coordinates in

volumetric space. With sparse voxel octree (SVO), similar to the list based sparse

representation, computations are done only with active voxels and the storage is

optimum as the topology information from the parent to the descendants can be

compactly stored. However, the deep hierarchy of SVO, typically with a tree height

of log2R, challenges the data parallel processing on GPUs.

By design, the HDT structure is a hybrid representation of dense grid and sparse

octree, and hence tuning the size of the leaf grid we can optimize the voxel offsetting

algorithm through fine trade-off between parallelism and redundancy in computation.

While larger size of the leaf grid makes the HDT more towards a uniform grid and

offers generally higher parallelizability, a reduced size of the leaf grid makes the HDT

more akin to a sparse octree and incurs lower computation redundancy.

5.3.2 HDT Dilations with Leaf Grid of 83

In this study, with the tree branching factor fixed to B = 2, the root grid size (R)

and the leaf grid size (L) are set to two different settings. In the first configuration,

both R and L are set to the default values of 16, while in the second configuration

R and L are set to 32 and 8 respectively. Such assignments to R and L are chosen

so that for these two configurations, the depth of the HDT hierarchy remains same.

The dilations times with these HDT setups at 20483 and 40963 resolutions for our

CAD models appear respectively in Tables 5.2, 5.3, 5.4 and 5.5.

As the speedup column in Tables 5.2, 5.3, 5.4 and 5.5 demonstrate, offsetting

can be significantly accelerated using a leaf grid of 8 × 8 × 8. For our experimented

benchmarks, at 20483 resolution an average speedup of 1.7− 1.9× is observed, while

an average speedup of 2.0 − 2.2× is achieved at 40963 resolution. Relatively higher

speedups at 40963 resolution for larger offset distances, i.e., 60− 100 voxels dilations

happen due to relatively greater acceleration in the morphological filtering step of

the HDT offsetting. For instance, the filtering computation for 60 voxels offsetting
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Table 5.2: Dilation times for the Head model with different leaf sizes.

Resolution 20483 40963

Leaf Grid Size L = 16 L = 8 Speedup L = 16 L = 8 Speedup

20 voxels 14.7 6.4 2.3× 59.0 25.8 2.3×

40 voxels 60.7 25.3 2.4× 254.2 99.7 2.6×

60 voxels 151.1 89.8 1.7× 611.9 317.8 1.9×

80 voxels 288.6 187.4 1.5× 1147.1 653.4 1.8×

100 voxels 629.0 417.7 1.5× 2294.5 1347.5 1.7×

Table 5.3: Dilation times for the Dragon model with different leaf sizes.

Resolution 20483 40963

Leaf Grid Size L = 16 L = 8 Speedup L = 16 L = 8 Speedup

20 voxels 17.2 7.5 2.3× 75.2 35.4 2.1×

40 voxels 71.1 29.2 2.4× 325.3 125.2 2.6×

60 voxels 172.0 97.8 1.8× 761.9 376.4 2.0×

80 voxels 325.4 197.2 1.7× 1415.7 759.4 1.9×

100 voxels 674.1 428.5 1.6× 2730.5 1484.0 1.8×

at 20483 resolution with L = 8 accelerates by 1.75×, 1.83×, 1.69× and 1.87× respec-

tively for the Head, Dragon, Turbine and the Candle Holder, whereas we observed

respective speed-ups of 1.98×, 2.08×, 2.02× and 2.05× at 40963 resolution. This

relative acceleration at higher resolution is likely due to the impact of larger root grid

with L = 8 compared to that with L = 16 at different modeling resolutions, as we

experimentally analyzed in Section 5.1.2 (cf. Figures 5.1 and 5.2).

The performance gain in HDT offsetting with a smaller leaf size of 8×8×8 comes

from the optimization in computation redundancy, while maintaining the same level

of parallelism offers with the HDTs configured with default leaf grid size of 16×16×16.

First, the computational redundancy in the HDT stems from the grouping of voxels
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Table 5.4: Dilation times for the Turbine model with different leaf sizes.

Resolution 20483 40963

Leaf Grid Size L = 16 L = 8 Speedup L = 16 L = 8 Speedup

20 voxels 14.7 7.6 1.9× 75.6 32.9 2.3×

40 voxels 56.8 26.2 2.2× 314.2 119.6 2.6×

60 voxels 119.1 73.9 1.6× 702.6 357.3 2.0×

80 voxels 206.9 135.1 1.5× 1273.4 647.1 2.0×

100 voxels 407.5 283.8 1.4× 2322.7 1183.9 2.0×

Table 5.5: Dilation times for the Candle Holder model with different leaf sizes.

Resolution 20483 40963

Leaf Grid Size L = 16 L = 8 Speedup L = 16 L = 8 Speedup

20 voxels 19.1 8.6 2.2× 76.8 33.2 2.3×

40 voxels 77.6 32.4 2.4× 346.5 132.8 2.6×

60 voxels 183.9 102.6 1.8× 843.2 424.5 2.0×

80 voxels 325.4 203.2 1.6× 1531.3 824.4 1.9×

100 voxels 645.3 425.1 1.5× 2885.0 1599.2 1.8×

in the leaf grid. As we earlier discussed in the computational complexity analysis

on the presented morphological offsetting algorithm in Section 4.4.3, the asymptotic

complexity of filter computation scales in O(L3NM), where L is the size of the leaf

grid, N is the number of leaf grids processed, andM is the number of kernel boundary

points. Here, M depends on the offset distance (in voxel unit), and can be considered

unchanged across our experimented modeling resolutions. Now, for a reduced leaf

grid size of L
2 , the number of processed leaf grids N roughly increases by a factor of

four. Thus, the overall computation reduced by a factor of two, which is reflected in

Tables 5.2, 5.3, 5.4 and 5.5.
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As we described in morphological filtering algorithm (Section 4.3.2), in our off-

setting implementation a thread block — unit of workload grouping in CUDA — is

configured with L×L threads for a leaf grid size of L3. Thus, each CUDA block has

total 16 × 16 = 256 threads with the default setting of L = 16. On the GPU hard-

ware, as 32 threads are grouped in a warp, a thread block comprising 256 threads are

mapped to 256
32 = 8 warps that can be concurrently executed on the parallel hardware.

Contrast to the default setting, once the size of the leaf grid is reduced to 83, there

are 8× 8 threads in each thread block that are mapped to 64
32 = 2 warps. While it is

obvious that for peak hardware utilization each warp must be fully occupied with 32

threads, on the macro-level it also requires to have sufficient number of concurrent

warps to be eligible for scheduling to hide long latency operations, particularly, mem-

ory reads and writes, among others. As we process voxel data at high resolutions,

typically our offsetting algorithm deals with tens of thousands of leaf grid with the

default L = 16 setup, and the number of leaf grids with L = 8 is roughly four times

larger. Such a high data-parallel workload ensures that the parallelizability is not

affected while we tune down the leaf grid size to 8 × 8 × 8 for optimization of the

redundant computations.

A natural approach to further optimize the redundant computations in offsetting

is to adopt even smaller leaf grid in the HDTs, for instance, a size of 4× 4× 4. As we

discussed above, the constraint here is that in our filtering algorithm a thread block

consists of L× L threads, and so with L = 4 we get a total of 16 threads per block.

Thus, with L = 4 each thread block becomes too small to fully occupy even a single

warp, as it requires a multiple of 32 threads to optimally map the CUDA threads to

the warps in the hardware. As it is not permitted to bundle threads from multiple

blocks into one warp in the current generation graphics hardware, configuring thread

block to 4 × 4 results into 50% theoretical efficiency on the GPU hardware. Our

experimental evaluations thus suggest the leaf grid size of 8× 8× 8 to be an optimal
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choice that allows perfect mapping of the CUDA threads to the GPU warps, and

simultaneously optimizes the redundancy in the filtering computation.
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CHAPTER 6

VOXEL OFFSETTING WITH TUNABLE SPEED AND
PRECISION

6.1 Offsetting Error Measurement
6.1.1 Errors in Voxel Offsetting

Error or discrepancy in the geometric computations can be generated from diverse

sources. The most obvious source is the approximation error induced from the dis-

cretized representation of the solids. The application of our research is in the field of

rapid prototyping, where approximated geometry with tens of microns discrepancy

is typically permitted. Our objective in this dissertation is to demonstrate the voxel

offsetting at sufficiently high resolutions such that the voxel size inherently meets the

accuracy constraint in the target HDT representation. Hence, in this study we do not

consider analyzing the error caused by the discretization of the triangle mesh model

into the HDT voxel representation.

We confine the scope of the error analysis in the voxel offsetting to be the errors

caused by the limited resolution in the discretization of the different morphological

filters used in our study. As can be realized from Figure 4.6(a), with a larger offset

distance the structuring element introduces less approximation error than a structur-

ing element representing a shorter offset value. Thus, the use of the different sizes of

structuring elements in the morphological filtering introduces different magnitudes of

approximation error in the overall computation.

To study the accuracy of the offsetting results, the distances between all the active

voxels in the dilated HDT and the boundary surface of the given solid are measured.

In our analysis, the offsetting discrepancy is quantified as the average error. Let V

denotes the set of active voxels in the offset HDT, and for an active voxel v ∈ V the

distance to the nearest boundary voxel in the input HDT is denoted by Dv. Then,

for a given offset distance r, the average error, Eavg is defined as below.
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Eavg = 1
|V |

∑
∀v∈V

|Dv − r| (6.1)

As formulated in Equation 6.1, to measure the offsetting error we need an efficient

method to compute the distance to the nearest boundary voxel in the given HDT for

all the active voxels in the dilated HDT. This effectively translates the error analysis

to the nearest neighbor search problem.

The nearest neighbor search is a fundamental computational primitive widely

used in diverse applications dealing with massive datasets [14]. The nearest neighbor

problem can be defined as follows: given a collection of points and a target query

point, find the data point that is closest to the query. A particularly interesting and

well-studied instance is where the data points live in a d-dimensional Euclidean space.

This problem has a broad set of applications in data processing and analysis. For

instance, it forms the basis of a widely used classification method in machine learning:

to give a label for a new object, find the most similar labeled object and copy its label.

Other applications include information retrieval, searching image databases, finding

duplicate files and web pages, and many others.

Many efficient approaches have been proposed in the literature that pre-processes

the dataset so the nearest neighbor can be identified efficiently. The first such data

structure, called kd-trees was introduced by Jon Bentley [20], and remains one of the

most popular data structures used for searching in multidimensional spaces. Since

then many other multidimensional data structures have been proposed [90]. However,

despite the decades of intensive effort, the standard solutions suffer from either space

or query time that is exponential to the size of dimension (d). In recent years, several

researchers have proposed methods for overcoming the running time bottleneck by

using approximation, such as, locality-sensitive hashing [51, 15]. The appeal of this

approach is that, in many cases, an approximate nearest neighbor is almost as good

as the exact one.
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6.1.2 Nearest Neighbor Search in the HDT

Naively implemented, finding a closest boundary voxel requires iterating over the

entire candidate dataset, i.e., it is in O(n), where n is the number of voxels in the

original HDT. At our target resolutions, typically a solid is represented with tens of

millions of boundary voxels, and thus it turns out quite inefficient to iterate over all

the voxels to determine the closest one. As in the HDT the voxels are represented

in a hierarchical form, the search for the closest neighboring voxels in the HDT

can leverage the property of the underlying data structure to avoid the expensive

approach of enumeration of the entire dataset. We present a simple and intuitive

approach of computing the nearest boundary voxel search in the HDT that leverages

GPU’s massive parallelism. Algorithm 3 presents a nearest neighbor search technique

that computes the distance to the closest boundary voxel in the original HDT for all

the boundary voxels on the dilated HDT. Since the HDT is a hybrid representation

combining grid and octree, conceptually our algorithm is similar to prior proposal

that works with underlying octree structure [19].

Algorithm 3: Compute the Offsetting Error
Input: A given HDT hdtOriginal, an offset value distance, and the offset

HDT hdtDilated

Output: The offsetting ereor for the boundary voxels in the dilated HDT

1 leafs← List of leaf grids in hdtDilated

2 errorTable← Buffer that stores the computed error values

3 boundaryV oxels← Buffer that counts the number of boundary voxel in

hdtDilated

4 Allocate and Initialize CUDA buffers

5 FindClosest( hdtOriginal, hdtDilated, leafs, distance, errorTable,

boundaryV oxels )

As listed in Algorithm 3, for the average offset error computation it requires to
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accumulate the individual cell error, and the total number of boundary voxels in

the dilated HDT. Once the buffers are allocated for storing these values on GPU,

the host side FindClosest routine is invoked that configures the CUDA grid and

thread block setup. Like the case of HDT skeleton and HDT offset computation, we

configure each thread block to be 16×16 (for the default leaf configuration 163). The

entry point for the GPU execution is FindClosestBoundayCell procedure that

computes the offsetting error for the adjacent 16 cells sharing the same Z-coordinate

(line 8).

Procedure FindClosest(hdtOriginal, hdtDilated, leafs, radius, errorTable,

boundaryV oxels)

1 blocksInGrid← leafs.size()

2 threadsPerBlock ← LEAF_BRANCHING× LEAF_BRANCHING

3 FindClosestBoundaryCell <<< blocksInGrid, threadsPerBlock >>>

(hdtOriginal, hdtDilated, leafs, radius, errorTable, boundaryV oxels)

The FindClosestBoundayCell procedure checks the state of individual cell in

the dilated HDT (line 12), and for every boundary voxel it increments the local counter

voxelCount (line 13), and invokes the FindClosestInNode routine that finds the

nearest boundary voxel in the original HDT. Depending on the computed distance to

the nearest boundary cell in the original HDT, the cell error is accumulated in the

local counter errorSum (line 17). Finally, the accumulated values of voxelCount and

errorSum are written to the corresponding index on the GPU buffers (lines 22-23).

For a given cell center in the dilated HDT (i.e., the center of a boundary voxel),

the FindClosestInNode procedure computes the dilated bounds of the cell (line

2) depending on the given offset raidus. It checks for possible neighbor search within

the range of overlapped root cells in the original HDT (lines 6-8). For every inter-

secting root cell in the original HDT, SearchNearestNeighbor is invoked (line
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Procedure FindClosestBoundaryCell(hdtOriginal, hdtDilated, leafs, radius,

errorTable, boundaryV oxels)

1 blockId← CUDA block id

2 x← threadIdx.x

3 y ← threadIdx.y

4 voxelCount← 0

5 errorSum← 0

6 leafElem← GetElement( hdtDilated, leas[blockId] )

7 leafGrid← GetLeafGrid( hdtDilated, leafElem )

8 for z ← 0 to (LEAF_BRANCHING - 1) do

9 cellIndex← <x, y, z>

10 cellCenter ← ComputeCellCenter (hdtDilated, leafElem, cellIndex)

11 cellState← GetLeafCellState (leafGrid, cellCenter)

12 if cellState == BOUNDARY then

13 Increment voxelCount

14 foundNeighbor ← FindClosestInNode (hdtOriginal, cellCenter,

shortestDistance, radius)

15 if foundNeighbor then

16 cellError ← |shortestDistance− radius|

17 errorSum← errorSum+ cellError

18 end

19 end

20 end

21 index←

(blockId× LEAF_BRANCHING× LEAF_BRANCHING) + (x× LEAF_BRANCHING) + y

22 boundaryV oxles[index]← voxelCount

23 errorTable[index]← errorSum
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10) that recursively partitions the root cell, and checks for overlapping in the spatial

hierarchy. If any nearest neighbor is found, the shortest distance to the closest voxel

is updated (line 11), which gets accumulated in the caller FindClosestBound-

aryCell routine.

Procedure FindClosestInNode(hdtOriginal, point, shortestDistance, radius)

1 sphereBounds← Box with bounds [point, point]

2 sphereBounds← GrowElementBounds( sphereBounds, radius )

3 foundNeighbor ← FALSE

4 shortestDistance←∞

5 rootRange← FindRootRange( sphereBounds, hdtOriginal );

6 for i← rootRange.min.x to rootRange.max.x do

7 for j ← rootRange.min.y to rootRange.max.y do

8 for k ← rootRange.min.z to rootRange.max.z do

9 root← GetRoot(hdtOriginal, <x, y, z>)

10 if SearchNearestNeighbor( hdtOriginal, root, point,

shortestDistance, radius) then

11 shortestDistance← sqrtf( neighborDistance )

12 foundNeighbor ← TRUE

13 end

14 end

15 end

16 end

17 return foundNeighbor

The SearchNearestNeighbor procedure is a major computation block that

hierarchically subdivides a HDT cell until the leaf grid is reached, and computes

the distance to the boundary voxels in the leaf grid of the original HDT. Out of

the computed distances to the active voxels, it updates the minimum distance that

reflects the nearest boundary voxel in the original HDT for a given active voxel in the
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dilated HDT. As outlined in SearchNearestNeighbor code snippet, depending

on the state of an element in the HDT different actions are taken. As obvious, if an

element with EMPTY or FULL state is reached (lines 2-3), the volumetric space does not

contain any boundary voxels, and hence no closest neighbor is found. If an element

with BRANCH state is reached (lines 4-8), for each of the 23 descendant child cells,

recursively SearchNearestNeighbor is invoked.

Conversely, if an element with BOUNDARY state is reached (lines 9-25), which in-

dicates a leaf grid in the HDT, the search for active voxels are conducted in the

range of overlapped voxels. For each of the voxels of the overlapped region (lines

15-25), if it is is a BOUNDARY voxel, distance to the voxel center is computed, and the

nearest distance to the voxel in the original HDT is updated. This value is passed

to the caller FindClosestInNode, which is eventually accumulated in the caller

FindClosestBoundaryCell routine.

Thus, as expected, the complexity of the closest neighbor search is confined within

the leaf grids in the original HDT that may overlap the bounded region of a cell in

the dilated HDT. In our approach of finding the nearest neighbor in the HDT, at a

particular modeling resolution the computation time is dependent on two factors: (1)

distance of offset distance, as it affects the number of leaf grids in the original HDT

that may contain some overlapping active voxels, and (2) the modeling parameters of

the HDT that govern the depth of hierarchical tree traversal. In the following section,

we study some of these impacts on the nearest neighbor search in the HDT.
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Procedure SearchNearestNeighbor(hdtOriginal, element, point,

shortestDistance, radius)

1 elementBounds← GetElementBounds (hdtOriginal, element)

2 if elementState == EMPTY OR elementState == FULL then

3 return FALSE

4 else if elementState == BRANCH then

5 for i← 1 to 2BranchingFactor do

6 child← GetChildElement(hdtOriginal, element, i)

7 if SearchNearestNeighbor( hdtOriginal, child, point,

shortestDistance, radius) then

8 return TRUE

9 else if elementState == BOUNDARY then

10 neighborFound← FALSE

11 leafV olume← GetLeafVolume( hdtOriginal, element )

12 sphereBounds← Box with bounds [point, point]

13 sphereBounds← GrowElementBounds( sphereBounds, radius )

14 [start, end] ← voxel range leafV olume that overlaps with sphereBounds

15 for i← start.x to end.x do

16 for j ← start.y to end.y do

17 for k ← start.z to end.z do

18 cellBox← cubical space for <i, j, k>

19 if BoxOverlapsSphere( cellBox, point, radius) then

20 cellState← GetLeafCellState( leafV olume, cellIndex)

21 if cellState == BOUNDARY then

22 Compute the distance from point to the center of cellBox

23 Updaate the distance to the shortest voxel

24 neighborFound← TRUE

25 return neighborFound

26 return FALSE
123



6.1.3 Evaluations on Voxel Offsetting Error

To measure the accuracy of the morphological offset operation using the hybrid dy-

namic trees, we consider the average error metric, as defined in Equation 6.1, to

benchmark the experimental evaluations. Figure 6.1 presents the offsetting accuracy

results for dilation at 20483 resolution. Here the normalized average error is reported

with respect to the offset distance. The values of offset distance r are chosen to be 40

voxels, 60 voxels and 80 voxels. As illustrated in the figures, the normalized offsetting

errors linearly decline with larger offset distances, which in turn implies that for a

particular input model the absolute average error remain same for different values of

dilation. For instance, as shown in Figure 6.1 with 80 voxel offsetting the normalized

average errors are in between 0.005 and 0.007, whereas the errors for 40 voxel dilation

are between 0.010 and 0.014.
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Figure 6.1: Offsetting error for different dilation distances.

To understand the complexity of the nearest neighbor computation in the HDTs,

we further study the time required to compute the closest boundary voxel for different

offset distances. Figure 6.2 reports the time of error computation averaged over the

all the boundary voxels in the dilated HDT. Naturally, the dilations with larger
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values take longer to compute the offsetting error, as the number of candidates in

the proximity bound scales with the magnitude of offset distance. An interesting

observation here is that with irregular models, such as, Head and Dragon the relative

computation time scales much faster than the regular models, such as, Turbine and

Candle Holder. For instance, the offset error computation with 60 voxels grow by

a factor of 1.6 − 2.3 compared to the error timings with 40 voxels for the Head

and Dragon, whereas for the Turbine and Candle Holder they increase by a factor

of 1.3 − 1.4. Similarly, relative to the offset error computation with 40 voxels, the

nearest voxel search with 80 voxels dilation takes 2.7− 3.6× longer for the Head and

Dragon, and for the Turbine and Candle Holder it takes 2× higher. This seems to

be due to spatial variation in the geometric patterns of the respective models. For

the Turbine and Candle Holder the boundary voxels on the original HDTs likely to

be in close proximity of the dilated surface than in the case of the Head and Dragon

model.
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Figure 6.2: Offsetting error for different dilation distances.
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6.2 Speed and Precision Trade-Offs in Voxel Offsetting
6.2.1 High-Performance Offsetting with Kernel Decomposition

Voxel offsetting with three-dimensional morphological filtering for a very large offset

distance is computationally challenging, as both the number of processed leaf grids

and the size of the kernel boundary points increase with larger offset values. We

presented in Chapter 5 that voxel offsetting using the hybrid dynamic trees can be

significantly accelerated through careful selection of the HDT configuration param-

eters. For the scenario of 100 voxel dilations at 40963 resolution, we showed that

using a smaller leaf, for instance, can be particularly useful to reduce the dilation

times roughly by a factor of two. Yet a computation time in range of 20−27 minutes

for a single offsetting operation at 40963 resolution deems not to be practical for an

interactive CAM application. To further optimize the computations, particularly for

offsetting at high resolution, a suitable knob is to tune the size of the morphological

filters.

As examined in the Chapter 4, for the ring morphological template the computa-

tional complexity grows quadratically with the size of the structuring element1. The

size of kernel is a critical parameter in morphological filtering, which we can exploit

as a performance tuning knob to trade-off between speed and quality in offsetting

operations. The general approach to deal with the efficiency problem is to decompose

a large structuring element into several smaller ones, as it was explained in Zhuang

and Haralick [107]. The basic relations for morphological decompositions that are

applied here are described in [107] as:

A⊕ (B ⊕ C) = (A⊕B)⊕ C (6.2)

A	 (B ⊕ C) = (A	B)	 C (6.3)

This means, if we have a decomposition of a large structuring element S into
1This is analogues to the ratio of the areas of a sphere (in 3D case) with 2× larger radius.
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several smaller ones:

S = H1 ⊕H2 ⊕H3 ⊕ . . .⊕HN (6.4)

Morphological operation with a large structuring element can be computed effi-

ciently by the application of several smaller ones:

A⊕ S = (((A⊕H1)⊕H2) . . .)⊕HN (6.5)

A	 S = (((A	H1)	H2) . . .)	HN (6.6)

Thus, an offset computation with a distance r can be decomposed into n successive

offsetting operations with distances r1, r2, . . . , rn, if the offsetting distances satisfy:

1) ∑n
i=1 ri = r, and 2) all ris and r have the same sign. The impact of splitting a large

offset distance over a set of successively smaller offset distances can be realized from

Figure 4.6(a) that entails that as the radius of the structure element is reduced by half,

the number of discretized structuring element points also decreases by approximately

by a factor of two for the 2D case, while in the 3D space the number of discretized

structuring element points decreases by factor of four. However, with a halved size

of the kernel, the morphological filtering needs to be applied twice, which introduces

the geometric approximation errors twice in the offset computation.

Figure 6.3 illustrates the impact of successive dilations on the quality of offsetting

outcomes. In each of the six test scenarios in Figures 6.3 (a)-(f), the Dragon model

is dilated by 64 voxels applying different sizes of the filter. Fig. 6.3(a) demonstrates

the dilated Dragon when a small filter size of 2× 2× 2 is applied successively for 32

iterations. Application of a 2× larger filter results into more accurate outcome, as

can be clearly distinguished in Fig. 6.3(b). As expected, the quality of the offsetting

scales with successively larger filters as shown in Figures 6.3(c)-(d). However, after

certain point the outcomes of the voxel dilations using even larger filters can be hardly

distinguishable visually, as the outputs of Figures 6.3(e) and 6.3(f) depict.
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(a) 32× 2 voxels offsetting (b) 16× 4 voxels offsetting

(c) 8× 8 voxels offsetting (d) 4× 16 voxels offsetting

(e) 2× 32 voxels offsetting (f) 1× 64 voxels offsetting

Figure 6.3: Visualization of the impact of filter size in morphological voxel-offsetting.
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6.2.2 Impact of Kernel Decomposition on Offsetting Complexity

As we pointed in Section 4.4.3 that the asymptotic complexity of our presented mor-

phological offsetting scales in O(L3NM), where L is the size of the leaf grid, N is the

number of leaf grids processed in the computation, and M is the number of kernel

boundary points. While in successive offsetting, the size of leaf grid (L) remains un-

changed across different experiments, the number of kernel boundary points (M) and

the number of processed leaf grids (N) are dependent on the size of the morphological

filters.

Table 6.1: Boundary points of the structuring element at different offset distances.

Offset Distance (in voxel
unit) 13 25 50 100

Number of Kernel
Boundary Points 251 946 3720 14948

The impact of the size of the morphological filters on the dilation time can be

realized from the reported number of kernel boundary points used in our successive

offsetting operations. As Table 6.1 reveals that with a two-fold larger offset distance,

the kernel boundary points roughly increase by a factor of four that proportionately

accelerate the computation. For instance, the number of kernel boundary points

increase by 3.93× between filters of size 50 and 25, and by 4.02× between filters of

size 100 and 50 at 40963 resolution. As there are twice number of offsetting operations

with a halved size of filter, the overall dilation time with a 2× smaller filter is expected

to accelerate by a factor of two. However, as shown in Fig. 6.4(a), a speedup over

three is observed with a filter size of 50 voxels compared to that of a filter size of 100

voxels.

Besides the acceleration through reduced kernel boundary points, a secondary

impact of using a smaller filter comes from the reduced number of processed leaf grids

in the offsetting operation. As reported in Table 4.1and Table 4.2 (Section 4.4.1), the
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number of processed leafs for different offset distances not necessarily increase linearly.

For instance, at 40963 resolution with 40 voxel and 80 voxel offsetting respectively

229.3 thousand and 359.9 thousand leaf grids are processed for the Head model, i.e.,

for a 2× larger filter the processed leaf grids increased by a factor of 359.9
229.3 = 1.57. This

observation is consistent for all the models across all the target modeling resolutions.

Thus, the compounding impacts of the reduce filters on the size of the processed leaf

grids and the number of the kernel boundary points unleash noticeable acceleration

in voxel offsetting.

6.2.3 Experimentations on Accuracy and Performance Trade-Offs

We study the impact of successive offsetting at 20483 and 40963 resolutions on the

HDTs with optimal leaf grid size of 8×8×8. In our experiment, successive offsetting

is evaluated on three cases. For a dilation of 100 voxels, the offset distance is split

into 2, 4 and 8 iterations respectively. The dilation times for the different offsetting

choices are presented in Fig. 6.4(a). For the four models, replacing one dilation of 100

voxels with two consecutive dilations each of 50 voxels yields 2.7 − 3.1× speedup as

shown in Fig. 6.4(b). With a smaller distance of 25 voxels in four successive offsetting,

speedups in range of 5.7 − 7.4× are observed. Continuing the successive offsetting

with more iterations, for instance, in eight offsetting operations each of 13 voxels yield

10.0− 13.6× acceleration.

While speedups are possible through successive offsetting, using too many iter-

ations will increase the approximation error as shown in Fig. 6.5. Not surprisingly,

the normalized average errors (Eavg

r
) in Fig. 6.5 monotonically increase with more

convolutions of smaller radius. For instance, the offsetting errors increase three-fold

for the Turbine model between dilations using a filter of size 13 voxels in stead of a

filter of size 50 voxels. Thus, by trading off the geometric quality through successive

offsetting with smaller filters, the performance of offset computing can be enhanced

significantly. As depicted in Fig. 6.5, splitting a dilation of 100 voxels with two
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Figure 6.4: Successive offsetting performance at 20483 resolution.
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Figure 6.5: Successive offsetting error.

successive dilations each of 50 voxels results in over 3× speedup without incurring

noticeable accuracy in the computation.

To investigate the opportunity of high-performance voxel offsetting through filter

decomposition, we further experiment the successive dilations at 40963 resolutions.

The results are appared in Figure 6.6 that shows the breakdown of the two steps of

the offsetting algorithm. For each stacked bar in these figures, the taller component

represents the offsetting time with morphological filtering, while the bottom compo-

nent indicates the preprocessing time to generate the skeletal dilated HDT. While at

40963 resolution with the HDTs configured with leaf of size 8 × 8 × 8, as reported

in Section 5.3, 100 voxel dilation takes between 20 and 27 minutes. Two successive

dilations each of 50 voxel instead take a total of 7.8 − 10.1 minutes. Further, four

successive dilations each of 25 voxel take 3.6− 4.8 minutes in total, and thus make it

suitable for interactive application setup. Applying even larger number of successive

offsetting operations, for instance, eight dilations to replace the single dilation of 100

voxel collectively take between 2.0 to 2.7 minutes, as shown in Figure 6.6.

Overall, at the higher resolution a similar trend in dilation times of that at 20483
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resolution is observed with successive offsetting. However, the rate of acceleration

in offsetting at the 40963 resolution shows relatively lower gain using smaller filters.

For instance, while at 20483 resolution we observed a 2.7 − 3.1× speedup from re-

placing one dilation of 100 voxels with two consecutive dilations each of 50 voxels,

it demonstrates 2.4 − 2.9× speedup at 40963 resolution, as shown in Figure 6.6(b).

The computation breakdowns in Figure 6.6(a) depicts that with increasing number

of dilations, the preprocessing time (lower component in the bar chart) gradually

becomes a significant part of the total offsetting computation.
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Figure 6.6: Successive offsetting performance at 40963 resolution.
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CHAPTER 7

MULTI-GPU VOXEL OFFSETTING

7.1 Scale-Out Voxel Offsetting on Multiple GPUs

In the previous chapters, we have presented that voxel offsetting using hybrid dynamic

trees can be greatly accelerated exploiting the massive parallelism on modern graphics

hardware that can be further optimized through tuning the parameters of underlying

HDT structure, and also by controlling the pertinent algorithmic parameters (such

as, the size of the structuring element in the morphological operation). Naturally,

the next step to unleashing even more computing capacity comes from the effective

use of multiple GPUs, where the execution of the morphological filtering can be

scaled out seamlessly. While multiple GPUs can lead to a significant speedup over a

single GPU, it requires efficient memory management, synchronization-free workload

scheduling, and perfect load balancing to ensure that a program takes full advantage

of the massive computing fabric.

Just as scientific computing can be done on clusters composed of a large number

of CPU nodes, in some cases problems can be decomposed and run in parallel on

multiple GPUs within a single host machine, achieving correspondingly higher levels

of performance. One of the drawbacks to the use of multi-core CPUs for scientific

computing has been the limited amount of memory bandwidth available to each

CPU socket, often severely limiting the performance of bandwidth-intensive scientific

codes. In the recent years, this problem has been further exacerbated since the

memory bandwidth available to each CPU socket has not scaled in proportion to the

increasing number of cores. Since GPUs are packaged with on-board high performance

memory, the usable memory bandwidth available for computational tasks scales with

the number of GPUs deployed. This architectural flexibility allows single-system

multi-GPU codes to scale much better than their multi-core CPU based counterparts.
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Contrary to multi-core CPUs, one of the big benefits of GPU architectures is its

scalability — it automatically scales the number of CUDA thread blocks to be pro-

cessed concurrently onto the number of streaming multiprocessors the GPU contains.

Hence, higher parallelism seems to be readily available with larger number of CUDA

cores across multiple GPUs co-hosted on a single system. However, to achieve linear

scalability leveraging more and more computing resources, not only the hardware but

both the data structure and the algorithms need to be scalable as well.

For the case of voxel offsetting using the hybrid dynamic trees, superficially each

leaf grid in the HDT seems to be independently processable, and hence the scale-out

execution of the morphological filtering appears to be straightforward. However, in

practice the execution scalability of an algorithm that deals with sparse data rep-

resentation is nontrivial. Contrary to a regular 3D voxel grid structure where the

topology of each voxel is implicitly encoded, in our sparse representation the topo-

logy of the leaf grids in the HDT—the path that tracks the nodes from the root to

the leaf—needs to be accessible on all the GPUs. Hence, even though the leaf grids

can be conceptually processed distributedly, the data that encode the HDT represen-

tation need to be replicated across all the GPUs, then get independently updated,

and finally get merged to reflect the combined result. While there may have different

ways to implement the morphological filtering algorithm for computing the offsets

of voxel models, in this chapter we present a simple intuitive method to implement

offsetting on multiple GPUs.
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7.2 Multi-GPU Implementation of Morphological Filtering

To get maximum performance on the many-core graphics processors it is important to

have an even balance of the workload so that all processing units contribute equally

to the task at hand. This can be hard to achieve when the cost of a task is not known

beforehand. With a voxel representation, the computation cost of the morphological

filtering for individual voxel is about to be same. This research explores an intuitive

approach to distribute the computation of voxel offsetting across multiple GPUs.

The conceptual design of voxel offsetting on multiple GPUs is presented in Fig-

ure 7.1. Three key components in the system are shown: Load Distributor, Kernel

Launcher, and Result Merger. As we discussed in Section 4.3.2, the morphological fil-

tering step takes in the list of leaf grids representing the skeleton (i.e., outline without

setting proper state values assigned to the voxels) of the dilated HDT, and produces

the offset HDT where the state of each voxel is set to appropriate value (Algorithm 2).

The task of the load distributor is to divide the given list of leaf grids into a non-

overlapping set of leaf grids, where each set is mapped onto unique GPU device. While

different policies can be adopted that can be configured either statically or dynami-

cally, in our study we contrast between two simple choices: 1) equal distribution, and

2) weighted distribution. While the equal distribution offloads same number of leaf

grids across all the devices, weighted distribution targets optimizing the imbalance

into the execution times caused by the disparity among architectural specifications of

the GPUs. Many sophisticated schemes can be adopted to identify and assign weights

to the respective hardware specifications to devise an intelligent weighted distribution

policy. However, in the following experimental section we demonstrate that even a

simple weighted distribution based multi-GPU voxel offsetting can achieve near-linear

acceleration in practice. We consider solely the difference in the computing through-

puts of the devices as an effective metric to derive a simple weighted load distribution

policy.
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Load Distributor

Kernel Launcher

Result Merger

Leaf Grids in Skeletal HDT

Figure 7.1: The schematic design of the components in multi-GPU offset implemen-
tation.
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Once the load is properly divided across all the devices, the next component is the

kernel launcher that controls how the CUDA kernels on individual GPU are initiated

for execution. First, we need to elaborate how the morphological filtering kernel is

launched on a single device. Although we listed in Offset procedure (Section 4.3.2)

that all the leaf grids are offloaded to the GPU at once, in actual implementation

we have to break down the list of leaf grids in small chunks1. Thus, in practice even

with a single GPU the leaf grids are offloaded into multiple steps, and the kernel is

launched the same number of iterations.

Now, for the controlling of all the kernel launches our research explores two alter-

native choices. In the first scheme, all the CUDA kernel launches are controlled by

a single CPU thread, which requires synchronization after each step of kernel execu-

tion. As our experimentations in the following section reveal that this synchronization

overhead can impose a bottleneck on the achievable peak performance. To avoid this

overhead, in the alternative scheme CUDA kernel launches on individual GPU are

controlled by the corresponding CPU threads.

Finally, once the filtering is done on the devices, the results from all the GPUs

are combined on a single device (called master GPU). In our example of Figure 7.1,

thus the results from the second GPU (called slave GPU) are copied onto the GPU

memory of the master. Figure 7.2 shows an example to demonstrate how the load

distributor, the kernel launcher, and the result merger process the leaf grids of the

input skeletal HDT on a dual GPU setup. The morphological filtering starts with

a list of input leaf grids, as shown in Figure 7.2(a). For efficient dynamic memory

allocation on GPU, in our HDT implementation the buffer on the leaf pool is allocated

at a bigger chunk than the size of a leaf grid, as we discussed in Section 3.1.4. The

example in Figure 7.2(a) depicts each block in the HDT leaf pool comprising four

contiguous leaf grids.
1Offloading all the leaf grids at once makes the device occupied for a very long time that often

triggers GPU driver time out in our test setup
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Block 1 Block 2 Block 3 Block 4 Block 5

Leaf Grids in Skeletal HDT

(a) Weighted Distribution of Leaf Grids (Blocks)

CPU Thread 1 CPU Thread 2

(b) Kernel Launched by Two CPU Threads

CUDA 

Threads

CUDA 

Threads

(c) Kernels Executed by the CUDA Threads

Updated merged result

(d) Modified Leaf Grids are Merged

Figure 7.2: Illustration of how the leaf grids in skeletal HDT are processed on a dual
GPU setup.
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For the purpose of illustration, in this scenario we adopted a weighted load dis-

tribution policy that divides the input five leaf blocks into two sets: one of size 3 and

the other of size 2. Each set of leaf blocks are launched by different CPU threads,

as shown in Figure 7.2(b). Like the single GPU case, all the leaf blocks mapped

to specific device are processed independently (Figure 7.2(c)). Finally, the updated

results are merged as shown in Figure 7.2(d).
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7.3 Evaluations on Multi-GPU Voxel Offsetting

While the presented methodology is applicable to any number of GPUs on a single

node, our experimentations were evaluated on a platform with two GPUs: one GTX

780Ti and one GTX Titan. The comparative specifications of the peak throughput

and memory bandwidth of the two graphics hardware are appeared in Table 7.1.

By aggregating the computing throughputs of the two GPUs, we get the normalized

throughput of the dual GPU platform as: 5040+4494
5040 = 1.89. Similarly, by aggregating

the memory bandwidths of the two GPUs we get the normalized bandwidth of the

dual GPU platform as: 336.0+288.4
336.0 = 1.86.

Table 7.1: Comparative throughput and memory bandwidth of NVIDIA GTX 780Ti
and Titan.

GTX 780Ti GTX Titan Normalized
Dual GPU

Floating-point throughput (GFLOPS) 5040 4494 1.89

Memory bandwidth (GB/s) 336.0 288.4 1.86

7.3.1 Impact of Load Distribution Policy

Our first study on dual GPU offsetting investigates the impact of different load dis-

tributions on the overall computation time. Figure 7.3 shows the results for the two

load distributions policies. With the equal distribution policy, equal number of the

leaf grids of the skeletal HDT are offloaded onto each GPUs in the platform. This

is the simplest policy that work assumed homogeneous set of graphics card in the

cluster of GPUs, and hence distributing equal load to each of them appears to be

optimal. However, as in our experimental setup the GPUs are of different computing

capacity and memory efficiency, an equal distribution policy is sub-optimal. Thus, a

workload distribution policy that takes the disparity of deployed GPU accelerators

into consideration performs superior, as reflected in the comparative speedup results
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in Figure 7.3.
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Figure 7.3: Impact of load distributions on dual GPU setup.

For the dilations of 60-100 voxels at 20483 resolution, our evaluations depict a

relative speedup between 1.05× and 1.26×. A non-obvious observation here is that

with larger offset distances, the gap between the weighted and equal distribution in-

creases. For instance, as Figure 7.3 shows with 60 voxel dilation weighted distribution

achieves 1.05− 1.08× better than equal distribution, whereas with 100 voxel dilation

the former executes 1.21−1.26× faster than the latter. Interestingly this observation

supports the results that we discussed in Section 4.4.4 to study the scalability of the

morphological offsetting across different graphics cards, where we examined that the

performance gap between the execution times on GTX 780Ti and GTX Titan scaled

with the larger offset distances (cf. Figure 4.9). As we rationalized in Section 4.4.4
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that with larger offset distance, both the size of the morphological structuring ele-

ment and the number of the leaf grids in the skeletal HDT increase significantly (cf.

Table 4.3). These result in an order of magnitude higher data to be loaded from the

global memory on GPU, which was validated with our experimentation and analysis

on the CUDA profiler outputs that demonstrated the memory throughput on GTX

Titan significantly under perform for test scenaiors with larger offset distance.

7.3.2 Impact of Kernel Execution Alternatives

In the next study, we examine the impact of different approaches of CUDA kernel

execution on the voxel offsetting computation. As we have two GPUs in the system,

we have two choices here: 1) launching the CUDA kernels from a single CPU thread,

and 2) launching the kernels for respective GPUs from two CPU threads. The com-

parative results for these two alternatives are appeared in Figure 7.4. In both of the

setups, a weighted workload distribution policy is adopted to offload the leaf grids.

With the first option of kernel execution, after each step of the kernel launches

the two devices get synchronized before the the next step can proceed. While in the

weighted distribution, the overall load is distributed in proportion to the computing

capacity of the devices to minimize the imbalance in the overall offsetting time, the

kernel execution times for each individual step may yet differ by large margin. Hence,

such step-by-step synchronization loses some performance as depicted in Figure 7.4.

With a multi-threaded implementation, where each CPU thread controls the spe-

cific kernel launches on the corresponding device, the synchronization overhead after

each iteration can be eliminated. As Figure 7.4 shows this improved approach of voxel

offsetting on dual GPU setup can improve the performance significantly. Among the

evaluated test scenarios, for the case of 60 voxels dilation at 20483 resolution ker-

nel execution by two independent CPU threads can achieve 1.05 − 1.11× speedup.

With larger offset distances, higher relative speedups are observed. For instance, with

the case of 100 voxels dilation dual threaded implementation accelerates the offsetting
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Figure 7.4: Comparisons between single threaded and dual threaded kernel executions
on dual GPU setup.

computation by 16−35%. With larger offset distances, as we just discussed above, the

impact of the lower memory bandwidth on the GTX Titan becomes more prominent,

which supposedly incurs more overhead from the step-wise synchronization between

the launched kernels on the dual GPU setup.

7.3.3 Performance Comparisons between Single and Dual GPU Setups

In this final study, we analyze the performance of voxel offsetting from the scale-out

implementation of the morphological filtering algorithm on the dual GPU platform.

The results appear in Tables 7.2 and 7.3 for offset distances of 60 voxels, 80 voxels

and 100 voxels. The first column represents the dilation times on the default single

GPU setup (i.e., GTX 780Ti), and the second column represents the offsetting times

on dual GPU platform with a weighted load distribution, where the CUDA kernel
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execution is controlled by two independent CPU threads. And, the third “Speedup”

column reflects the ratio of the respective execution times on single and dual GPU

setups.

Table 7.2: Dilation times comparisons for the Head and Dragon models at 20483

resolution.

Head Dragon

1 GPU 2 GPUs Speedup 1 GPU 2 GPUs Speedup

60 voxels 151.1 82.4 1.83× 172.0 93.1 1.85×

80 voxels 288.6 158.6 1.82× 325.4 181.1 1.80×

100 voxels 629.0 346.9 1.81× 674.1 383.5 1.76×

Table 7.3: Dilation times comparisons for the Turbine and Candle Holder models at
20483 resolution.

Turbine Candle

1 GPU 2 GPUs Speedup 1 GPU 2 GPUs Speedup

60 voxels 119.1 65.1 1.83× 183.9 102.0 1.80×

80 voxels 206.9 114.8 1.80× 325.4 180.3 1.80×

100 voxels 407.5 228.2 1.79× 645.3 358.0 1.80×

As depicted in the speedup column in Tables 7.2 and 7.3, dual GPU setup achieves

an acceleration in range between 1.76 and 1.85. These speedups should be contrasted

with the normalized computing throughput of 1.89 and normalized memory band-

widths of 1.86 on the dual GPU platform. Thus, compared to the theoretical nor-

malized computing throughput of 1.89, our multi-threaded dual GPU morphological

offsetting achieves a scalability in between 1.76
1.89 = 93.1% and 1.85

1.89 = 97.8%. Similar

to the observation discussed in Section 7.3.1, with larger offset distances the relative

speedup sometimes deteriorates noticeably, as in the case of Dragon model. As we

pointed earlier, this is due to the same reasoning that with larger offset distance as
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the size of the global memory transaction increases significantly, the lower memory

bandwidth on the GTX Titan incurs noticeable performance overhead. To overcome

this performance drop on dual GPU setup with larger offset distances, one solution

could be to do in-depth analysis on the impact of the disparate memory systems with

the size of the data to be processed on the GPUs for the voxel offsetting computa-

tion. This insight then can be exploited to devise even better distribution policy that

not only considers the disparity of computation throughputs across multiple graphics

cards, but also considers the overall system design towards the development of more

intelligent workload distribution.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

In the recent years, digital manufacturing has experienced the wave of rapid proto-

typing through the innovation and ubiquity in 3D printing technology. While such

advancement liberates the constraints of shape selection in physical objects, 3D print-

ing is yet to mature to match the precision, robustness and vast applicability offered by

the classical subtractive manufacturing process. To simplify the toolpath planning

in conventional multi-axis CNC machining, recent research has proposed adopting

voxel-based geometric modeling. Inherently, such voxel representation is amenable

for parallel acceleration on modern ubiquitous GPU hardware that has grown tremen-

dously in the last few years to the level to offer supercomputing-scale computation

capability of 100 TFLOPS (100×1012 floating-point operations per second) in a single

computing node.

This dissertation has contributed to this nascent field by developing practical

approaches of efficient voxel offsetting computation, which is an integral component

of collsion-free toolpath generation for advanced CAM systems. Below, we summarize

our main results on high-resolution voxel offsetting using the hybrid dynamic trees in

Section 8.1, and sketch future research works in Section 8.2.

8.1 Conclusions

While there can be many different approaches to represent voxel models, our re-

search is based on a novel voxel data structure called hybrid dynamic tree (HDT).

In the first part of this dissertation, in Chapter 3 we presented a parallel method

to construct the HDT representation on GPU for a CAD input modeled in triangle

mesh. At the highest modeling resolution of 81923, we demonstrated the complete

GPU-acceleration of the mesh to voxelization process achieving over two orders of
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magnitude speedup for a practical set of CNC-manufacturable parts. As the memory

footprint of HDT representation can be challenging to offer extreme resolutions, our

research explored theoretical limit on the storage analysis for different active node

branchings in the octree structure. Such tunability into the HDT organization helps

devising the optimal parameter selections for compact HDT representation.

The next part of the thesis presented a mathematical morphology based offset-

ting algorithm using the hybrid voxel representation. For the CAD benchmarks, in

Chapter 4 we showed that large-scale offsetting consumes 7 − 11 minutes for single

dilation of 100 voxels at a resolution of 20483. Our theoretical complexity analysis,

which was further substantiated with experimental results demonstrated that at the

higher resolution of 40963 a dilation of 100 voxels may take impractical time as high

as 48 minutes for one of the four tested models. Thus, we emphasize the need for

practical approaches to develop a robust, efficient and tunable voxel offsetting method

to make large-scale volume dilation and erosion practical at our target resolution of

4096× 4096× 4096.

Capability of fine-tuning of a data structure is crucial for understanding and

thereby optimizing the developed computation-intensive algorithm that uses the HDT

as the underlying voxel representation. Towards that end, the next part of the thesis

has focused on exploring different techniques to achieve high-performance voxel off-

setting. First, we studied the impact of the different HDT configurations on the voxel

offsetting in Chapter 5. Our experimentations with tunable root size revealed up to

34− 38% acceleration by enlarging the size of the root grid four-fold in the HDTs at

40963 resolution, while the evaluations with tunable node branching demonstrated an

attainable speedup of 1.22− 1.35× with twice larger branching in the HDT. Further,

we showed that using a smaller leaf grid can be particularly useful to reduce the

dilation times roughly by a factor of two. For the test scenario of 100 voxel dilations

at 40963 resolution—the most computation intensive benchmark— tuning of the size
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of the leaf grid to 83 in the HDTs reduces the offsetting time to 20− 27 minutes from

the original runtime of 38− 48 minutes.

With the goal of enabling intensive voxel offsetting in an interactive scenario of

CAM applications at a modeling resolution of 40963, in Chapter 6 the thesis focused

on leveraging the controllable size of the morphological structuring element. Further,

to deeply analyze the impact of this tunability of algorithmic parameter on the ge-

ometric precision of the computed result, we implemented a GPU-accelerated error

measurement technique. To devise a fast voxel-based offsetting algorithm, we ana-

lyzed the trade-offs between speed and accuracy through tunable size of the filter.

Our evaluations revealed that by trading away a bit of precision over 6x speedup can

be achieved, just as we studied with successive offsetting for the case of decomposing a

dilation of 100 voxels into 4 successive dilations each of 25 voxels. This constrains the

offsetting time within 5 minutes on a single GPU for a practical set of CAD models.

While higher speedups are attainable by splitting a large structuring element into

even larger number of successive offsetting operations, geometric precisions might

be compromised quite high beyond acceptable level of manufacturing tolerance, as

depicted with the case of 8 successive dilations.

Finally, to enable even faster voxel offsetting, in Chapter 7 we presented the prin-

ciples of offloading the offset computation in the HDTs across a cluster of GPUs

co-hosted on the same computing node. We analyzed the impact of different ap-

proaches for CUDA kernel execution controlled through either single or multiple in-

dependent CPU threads. We experimented with different load distribution policies—

equal workload partitioning and weighted workload partitioning. While different ad-

vanced mechanisms could be adopted to dynamically tune the workload distribution

across multiple GPUs, in our evaluations we observed even a simple multi-threaded

weighted load distribution policy could achieve near-linear (above 90%) performance

acceleration. With more and more GPUs integrated on a single computing node, such
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exploration of algorithmic speedup through load-balanced implementation of offset-

ting across multiple GPUs emphasizes the high scalability of the HDT’s hybrid voxel

representation.

8.2 Future Work

We outline possibilities of future research directions that can be built on the work

and ideas presented in this dissertation.

Although the underlying hybrid dynamic tree structure is a compact volume rep-

resentation, the limited memory capacity on the modern GPUs yet challenges voxel

modeling at extreme resolutions (cf. Section 2.2). Although we confine the scope

of this dissertation within efficient storage and processing of raw voxel data, many

existing voxel compression approaches could be applied to reduce the memory foot-

print in the HDT. While the presented literature reviews on geometric redundancy

compression seem the most promising route, the standard compression techniques,

such as, Arithmetic Coding, Run Length Encoding (RLE), Huffman Coding could be

leveraged to compactly represent the octree cells and the leaf grids in the HDT.

While advanced compression algorithms can significantly reduce the memory foot-

print, for high-resolution voxel offsetting in an interactive CAD/CAM application

the overhead of repeated compressions and decompressions may impose significant

challenge, particularly for accelerated processing on graphics hardware. Hence, an al-

ternative approach to deal with voxel modeling beyond the capacity of the deployed

accelerators, it is possible to construct and process the HDT represented volumes in

a streaming fashion. Out-of-core streaming can reduce the in-memory footprint by

storing the leaf grids out-of-core and only keeping the cell topology in memory. Then,

the leaf grid data, i.e., the states of the voxels are loaded on demand. For out-of-

core voxel construction and processing it is important to efficiently manage the data

transfer between the host and the accelerators to overcome the burden of slow PCIe
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communication channel.

The focus of this dissertation is developing high-performance voxel offsetting on

modern graphics hardware attached to single computing node. As vertical scaling

of computation acceleration is limited, the natural route to extend our work is the

distributed offsetting that exploits GPUs on a cluster of nodes. This can possibly

support the construction of high-resolution HDTs over multiple nodes that effectively

overcomes the limitation of GPU memory capacity. With multiple accelerator devices

deployed across a cluster of nodes, development of load-balanced HDT construction

and HDT offsetting should consider the overhead of inter-node communication. The

research can further explore the scalability of the voxel processing algorithm, such as,

the morphological offsetting studied in this dissertation.
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