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SUMMARY 

 

 Epilepsy is a highly prevalent disease affecting 50 million people worldwide, and 

3 million domestically in United States of America. About one-third of the epileptic 

population does not respond to pharmacological treatment and are classified as medically 

refractory. Surgical intervention is the alternative solution for this population, however it 

is not effective in the whole population and leaves 10-15% of the patients deprived of 

relief from seizures. Deep Brain Stimulation is a novel treatment that is being 

investigated for this disease. In order to fully understand this treatment, one needs to be 

informed about the neural circuitry and downstream effects of the stimulation. A 

powerful investigation needs to be done in closed-loop fashion to tie the stimulation with 

onset of the seizure, without otherwise affecting the brain. This study evaluates the 

proper metrics for a real-time algorithm with high detection sensitivity and low latency 

for a closed-loop setup to be used in the experimental setups of epilepsy research. The 

study first investigates the previous features used for seizure detection, and implements 

Line-Length (LLN), Mean Power Spectral Density (MPSD) in 12-25 Hz and Maximum 

Cross Correlation in its algorithm. Offline performance evaluation of candidates 

identified LLN and MPSD as powerful features with high sensitivity and low detection 

latency, which could be implemented in future online algorithms for closed-loop 

experimental setup. 
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CHAPTER 1 

INTRODUCTION 

 

 Epilepsy affects approximately 3 million people in the United States, and 50 million 

worldwide [1].  About one-third of patients do not respond to current drug treatments and are 

categorized as medically refractory [2].  Surgical intervention is another approach for this 

group of patients, however only about 60% respond to this treatment, leaving 10 to 15% of 

total patients deprived of proper treatment [2].  There is thus a need to develop effective 

therapies to control epileptic seizures in patients.  

 Brain stimulation is one emerging technology used in the treatment of various 

neurological and psychiatric disorders, such as Parkinson’s Disease (PD), Alzheimer 

Dementia (AD), Obsessive Compulsive Disorder (OCD), depression, as well as epilepsy [3].  

Each of these diseases requires unique targeting and stimulation patterns, which can be 

investigated for effectiveness through various animal models as well as clinical trials.  

 With regards to epilepsy, promising experiments suggest that inducing theta 

oscillations in the hippocampus can reduce epileptic seizures [4], but the mechanism and 

circuitry involved is unclear. In fact, despite advancements in the field of epilepsy, the 

cellular mechanisms underlying the disease itself are also equivocal. Consequently, a 

mechanistic investigation of the relevant circuitry would provide insight on the disease and 

advance the therapies available.   

 Seizures are accompanied by electrographic changes in the electrical recordings from 

the brain. Both open-loop (e.g. Deep Brain Stimulation (DBS)), and closed-loop (e.g. 

Responsive Neural Stimulation (RNS)) electrical stimulation devices have been implanted in 



 2 

clinical cases for the treatment of epilepsy. Their results suggest that the closed-loop systems 

did not negatively impact cognitive function, whereas during continuous open-loop 

stimulation in the anterior thalamic nucleus resulted in more subjective depression and 

memory impairments compared to controls [5]. It is clear that an ideal intervention is capable 

of interrupting the seizure without otherwise affecting the patient.  

 In order to best determine targets for neuromodulation and reduce the occurrence of 

side effects from stimulation, we are investigating optogenetic activation of specific neuron-

types in the medial septum for modulation of hippocampal epileptiform activity in the rat 

tetanus toxin model of epilepsy. Optogenetics is a novel neuromodulatory tool in the field of 

the neuroscience that enables neuron-type specificity as well as millisecond temporal 

precision, and has been widely applied in the study of various brain diseases [6]. In order to 

temporally bind optical intervention with the onset of a seizure, a closed-loop system design 

is required. A functional closed-loop setup needs an effective real-time seizure detection 

algorithm that is closely tuned with the experimental model, hardware, and desired outputs 

stimulation accordingly. 

 This project is aiming at characterizing seizure events in the tetanus toxin model of 

epilepsy in rats and developing offline algorithms that are capable of capturing seizure 

events. Furthermore, by evaluating the offline performance of the algorithms, the ultimate 

goals of this project are to develop an optimal real-time seizure detection algorithm and 

implement it in C♯ as a part of the NeuroRighter electrophysiology platform [7] in order to 

produce an in vivo closed-loop optogenetic set-up. This algorithm needs to be capable of 

identifying a seizure within an effective time window that would allow timely delivery of 

seizure-arresting stimulation. The goal is to design an algorithm that will be robust and 
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applicable to different models of epilepsy, such as the tetanus toxin and kainic acid models of 

temporal lobe epilepsy. Adoption of this system would add temporal specificity of the 

optogenetics intervention to the onset of the seizure, and will be of use in future optogenetic 

experiments for epilepsy therapy. 

 There is extensive literature focused on problem of seizure detection. This thesis will 

start with a discussion and evaluation of the established methods used for seizure detection, 

and then to the specific circumstance of Gross Lab experimental setup. It will introduce the 

methods of the study and further characterize the epileptic data recorded from the rat tetanus 

toxin model of epilepsy. The investigation continues with choosing metrics for offline 

analysis and evaluation of performance of these metrics. At the end this thesis I discuss costs 

and benefits of each of these measures and provide suggestions for future direction in order 

to get an effective online algorithm for closed-loop optogenetics. 



 4 

CHAPTER 2 

IMPLEMENTED METHODS OF SEIZURE DETECTION 

 

 According to International League Against Epilepsy (ILAE), epilepsy is a brain 

disorder characterized by susceptibility to epileptic seizures and occurrence of at least one 

epileptic seizure [8]. While there is disagreement over the definition of an epileptic seizure, it 

is generally defined as abnormal excessive synchronous activity of neurons [8]. This 

pathologic activity can be observed and quantified in a number of ways, particularly in 

heterogeneous patients, animal models, and observational methods. More precise definitions 

are thus subject to more objective requirements based on the general principle of abnormal 

synchronous activity.  

Seizures can be detected in a variety of ways, such as behavioral monitoring, 

electrocardiogram monitors, and electrographic identification [8]. In the context of this work, 

seizure detection will consist of an algorithm that identifies the occurrence of ictal events. 

Offline detection is often sufficient for post-event analysis and quantification purposes. 

However for the real-time intervention applications, online detection will be required, and it 

will be necessary to perform this detection as fast, efficiently and precisely as possible. 

Online analysis and real-time detection of the signal would affect the quality of life of the 

patients; as it will increase understanding of the disease and make warning systems and 

closed-loop therapies possible [9]. Online analysis often consists of either seizure detection 

or seizure prediction, or a combination of the two. Seizure detection identifies a seizure event 

after its electrographic onset, whereas seizure prediction predicts the occurrence of a future 

seizure event before its onset [10]. Due to the computational power required for prediction 
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methods, they are not currently practical for use in an implantable system [11], although 

there is extensive research on making them computationally efficient.  

Work done by Krook-Magnusun et al. [12] is an example of a closed-loop 

optogenetics system used for study of an effective intervention to stop seizures in an animal 

model of temporal lobe epilepsy. In their intervention they used kainic acid model of 

epilepsy in the mouse, and showed that effective optogenetics targeting of neuronal 

population is capable of stopping seizures. The Neuropace Inc. RNS closed-loop brain 

stimulation device [13] is an example of clinical closed-loop system for human epilepsy, 

which showed in a two-year clinical study a statistically significant decrease in the frequency 

of the seizures. This closed loop system – in contrast to open-loop stimulation systems – 

benefits from increased battery life, temporally localized and limited stimulation, and 

decreased side effects associated with long-term continuous stimulation [14]. 

 As a result of the highly non-stationary nature of epileptic seizures, and inter- and 

intra- individual variability in signal characteristics, automated detection of seizures is 

difficult and requires a robust and adaptable algorithm [15]. Another obstacle in seizure 

detection are the inter-ictal activities similar to the seizure onset but which do not fully 

manifest as seizures [16]. Furthermore, there is no unified definition of the seizures, which 

makes seizure detection algorithms variable and dependent upon the specific experimental 

setup and objectives of the study [16]. As a result it is necessary to identify features that 

make the seizure signals distinct from the other modes of brain activity, as well as signal 

artifacts, and that apply to our specific experimental paradigm.  
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Seizure Features 

 Several studies suggest different identifiable features of seizures in the time-domain, 

frequency-domain, time-frequency analysis, energy distribution in the time-frequency plane, 

wavelet features, and chaotic features such as entropy [17].  The following sections provide a 

brief overview of the analyses that can be performed in order to extract distinct features of 

the seizure signal and distinguish it from interictal periods. These features can be extracted 

from various recorded brain signals such as electroencephalography (EEG), electricography 

(EcoG), as well as the local field potential (LFP), the latter of which will be used in our 

investigation.  

 

1. Time-domain analysis 

Time domain analysis examines a variable in the signal during the time course over 

which it has been recorded. In time-domain analysis features such as signal amplitude, 

regularity, synchronicity, and line-length are shown to be effective measure of signal change 

[17].  

 

1.1. Amplitude 

 Amplitude is a measure of the instantaneous power of the signal and is historically 

one of the first measures used in seizure detection [18]. The only problem with this method 

when employed alone is the high false positive rate due to the noise present in the signal. But 

this measure serves as an effective feature when used in combination with other measures 

[19-21]. Generally the amplitude during a seizure signals is higher in comparison to non-

seizure activity. This metric is quantified by various means, such as normalized average 
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amplitude [21], standard deviation from mean [19] and Hajorth parameters [22]. 

 

1.1.1.  Hajorth parameters  

 Hajorth parameters are widely used in seizure detection as a measure for quantifying 

the rate of amplitude changes in the signal, and are defined as activity, mobility and 

complexity [22]. Since the seizure signal shows faster rate of change, these metrics are 

shown to be effective measures to distinguish seizure events. 

Activity refers to the standard deviation of the signal (σs). Mobility is defined as the 

activity of the first derivative of the signal over the activity of the original signal: 

 

Mobility = σ!’  𝜎!  

 

Complexity is the ratio of the first derivative activity over the original signal activity:  

 

Complexity = 
𝜎!!! 𝜎!!
𝜎!! 𝜎!

 

 

1.2. Autocorrelation 

Autocorrelation analysis is comparison of the signal with itself over a certain time 

lag, and provides insight over the periodicity of the signal [19]. The electrographic seizure 

signal is less random and would consequently demonstrate higher autocorrelation values over 

certain time lag; the proper choice of time lag depends on specific recorded signal. 
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1.3. Synchronicity  

 Synchronicity indicates similarity of the two signals, or binding of occurrences of two 

events [17]. Seizures are primarily characterized by synchronous burst of neurons, besides 

this activity would spread to further areas and cause the similar synchronous oscillations in 

the proceeding structures, as a result synchronicity serve as a good indicator of seizure 

activity. 

 

1.3.1.  Phase synchronization and mean phase coherence 

 Phase synchronization is a measure of how the phases of two oscillators are locked to 

each other. This concept is applied to the non-linear biological time series and is quantified 

by the mean phase coherence (R) [23]. This quantity for two time series Sa and Sb is defined 

as: 

 

R = | !
  !
   𝑒!  [!"   !  !" !  !"   !  !"   ]  !!!

!!! | = 1 – VC 

 

 For the discrete time series of length N, 1/Δt is the sampling rate and VC is the circular 

variance calculated from transformation of phase difference to the complex plane unit circle.  

 

1.3.2.  Lag synchronization and maximum linear cross correlation 

 Lag synchronization indicates the similarity of two signals, depending on the acquired 

signal; this metric can be used to characterize how well two activities are related to each 

other [23]. As an example, when there are signals from different nearby brain regions, the lag 

synchronization could be used to determine how the activity of these two regions is related. 
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One common way to calculate lag synchronization is by cross correlation.  

 

Sa (t + τ) = Sb (t) 

Corr (Sa, Sb) (τ) =   !
!! Sa (t + τ) Sb (t) dt 

 

As [23] suggests, maximum cross correlation could be serve as actual measure of degree of 

lag synchronization. 

 

Corrmax =  max! 𝐶𝑜𝑟𝑟   𝑆𝑎, 𝑆𝑏 𝜏  

 

1.4. Line-length  

 Line-length is a computationally efficient feature of the LFP time-series that is used 

for seizure detection. Previous analysis has shown that seizure events are accompanied by 

increase in rate of change distance between consecutive points of the recorded signal and 

consequently in value of normalized line-length [24]. Line-length is defined as the distance 

between the successive points and captures the rate of change in the signal. For seizure 

detection in sliding window analysis of the signal, normalized line-length is defined as 

below:  

 

LL (n) = !
!

 𝑎𝑏𝑠     𝑥 𝑘 − 1 − 𝑥 𝑘   !
!!!!!  

 

 LL (n) is the normalized line-length that is average value of the distance between 

successive points inside the sliding window of size N.   
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2. Frequency-domain analysis 

  In frequency domain analysis power spectral density (PSD) of the signal is calculated 

to illustrate the distribution of power in various frequency bands. Various features derived 

from the PSD can be used for the detection analysis, such as average band frequency, 

maximum power and dominant frequency [17].  Visual inspection of the PSD from a rat 

tetanus toxin model of epilepsy shows that in case of the seizure events, power of the signal 

in 20-40 Hz frequency band is increased.  

 

3. Time-frequency plane 

  Time-frequency analysis combines frequency domain and time domain analysis 

resulting in both temporal and frequency specificity that is important in case of the seizures, 

since they happen at specific time and possess distinct properties in specific frequency bands. 

 

3.1.  Spectrographic analysis 

 Spectrographic analysis decomposes the signal into its power in each frequency band 

and shows how it varies with time. This analysis is performed via various methods such as 

Fast Fourier transform (FFT) and short window Fourier transform, Wigner-Ville distribution 

(WVD), and Reduced Interference (RI) [25]. 

3.2. Wavelet decomposition 

In comparison to the spectrographic analysis using Fast Fourier transform, or the short-

time Fourier transform that exhibit a trade off between time and frequency resolution, 

wavelet decomposition provides a higher resolution analytical alternative [26]. In wavelet 
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decomposition the signal is approximated in different frequency bands. Debauchies functions 

are most widely used for seizure detection [17].  

 

4. Chaotic features 

  Brain activity signals are considered to be chaotic; as a result non-linear dynamics 

could be applied for effective quantitative analysis of these signals [17]. One of the most 

widely used chaotic analyses in the seizure detection literature is entropy.  

 

4.1. Entropy 

 Entropy is a measure of order and disorder in the system, and this concept is developed in 

information theory, defining the concentration of data in a probability distribution. Since the 

seizure signal, compared to the normal brain activity is more synchronous and less random, it 

will show lower entropy values and be distinguishable.  

 Entropy estimators are categorized into two groups, spectral entropies and embedded 

entropies. Spectral entropies use the amplitude component of power spectrum while the 

embedded entropies use the time series directly. Performance analysis of different entropy 

estimators as presented in Kannathal et al. 2005 shows that although all of the entropy 

estimator methods yield satisfactory results (above 90% accuracy), Kalmogorov - Sinai 

entropy, which is representation of the predictability of the signal, demonstrates better 

performance [27].  

 

Implemented detection algorithms 

 Historically automatic detection of seizures from EEG recordings started in 1970s 
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using EEG amplitude, large-amplitude spikes, and spectral analysis [18]. Computational 

improvements led to the development and implementation of more advanced methods. In 

general, approaches for seizure detection can be classified in two different categories: 

threshold based and classifier methods. Examples and practical implementations of both 

approaches are discussed below.  

 

1. Threshold 

 In threshold analysis, a segmented signal is analyzed in consecutive windows and 

compared to either an adaptable or pre-defined threshold. Several studies used threshold 

based methods for their detection algorithm; summary of some of these approaches can be 

found in Orosco et al.[17]. An important consideration in using the threshold-based detection 

is finding the features that are significantly different in seizure versus non-seizure intervals, 

as well as defining an effective threshold value. Usually these methods are not as highly 

adaptable or accurate as classifier methods, and they may not serve as an effective approach 

when high accuracy is a crucial feature for the system. 

 

2. Machine-learning classifiers 

  Machine learning algorithms are widely used for both seizure detection and 

prediction. Machine-learning methods are automatic and adapt to the data by learning, and as 

a result provide a general adaptable framework for seizure detection. These algorithms have 

three different stages: feature extraction, data training, and classification analysis. Artificial 

Neural Network (ANN) and Support Vector Machines (SVM) are the most commonly used 

algorithms for seizure detection problems. Many of the implemented system’s performances 
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are discussed and compared in Tzallas et al. [28] and Orosco et al. [17]. 

 

2.1. Artificial	
  Neural	
  Networks	
  (ANN)	
  

  An artificial neural network is a mathematical description of a biological neural 

analogy, which uses the information that is fed into it to build a network of neurons and 

connections to classify the data. In the training phase features used as input to the network in 

order to make it self-organize and achieve the desire input-output relationship [17]. Due to its 

high learning capability, ANNs are very useful in seizure detection task, although 

implementation of the system is more computationally intensive, and depending on the 

requirements and experimental setup might not be the best solution.  

   

2.2. Support	
  Vector	
  Machines	
  (SVM)	
  

Support vector machines are supervised learning algorithms. During the training 

phase, SVM algorithm use the solution to the well known optimization problem and build an 

optimal high dimensional hyperplane that categorizes data into seizure and non-seizure 

events [17].  
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CHAPTER 3 

MATERIALS AND METHODS 

 

This project aims to characterize the seizure events in the rat tetanus toxin model of 

temporal lobe epilepsy in order to identify proper metrics for real-time automated early 

detection of seizures. Further efforts would make progress towards a real-time 

implementation of the algorithm for closed-loop optogenetic experiments studying epilepsy. 

The implemented system will be capable of timely identification of seizure events and 

delivering stimulation upon onset of these events. This chapter describes the experimental 

setup for recording the data, analysis methods for characterizing data, and the offline 

detection algorithm. 

 

1. Experimental setup 

1.1.  Epilepsy model 

The epilepsy model used in this study was the tetanus toxin model of the temporal 

lobe epilepsy. Anesthetized rats were injected with 25 ng of tetanus toxin in 0.5 µl phosphate 

buffered saline with 0.2% bovine serum albumin in the dura [29].  The rate of spontaneous 

seizures in this model are about 30 seizures per day for two weeks following the occurrence 

of the first seizure [30]. Seizures were defined as epileptiform events lasting more than five 

seconds [29]. 

  

1.2.  Recording 

In the experimental setup a 16-channel microelectrode array, with two rows of 
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electrodes capable of recording simultaneously from the hippocampal CA1 and CA3 layers, 

was implanted into the dorsal hippocampus. The signal that was used for the detection of the 

seizures is the local field potential (LFP) of the hippocampus neurons. Multi-channel LFP 

recordings contain information about small number of the neurons with high spatial 

resolution, and are a monitor of the local electrogenesis activity [31]. LFP recordings were 

captured using NeuroRighter (NR), an open-source hardware and software platform for 

stimulation and recording experiments [32]. Samples were recorded at rate of 2000 samples 

per second (2 kHz). 

 

1.3.  Software 

 Detection algorithms were implemented in MATLAB platform, and used Chronux 

signal processing toolbox [33] for cross correlation and spectral analysis. The custom 

software is capable of identifying seizure events in a LFP recording input and providing time 

points for the onset and offset of these events.   

 

2. Data analysis 

 Data analyses of the recorded voltage traces were performed for identifying potential 

metrics to distinguish seizure events.   

 

2.1.  Spectrographic analysis 

Spectrographic analysis was performed utilizing Fast Fourier Transform (FFT) in 

order to break LFP signals into their frequency contents. FFT was done using 10 seconds 

moving window with 1-second overlap, and with zero padding for a better frequency 



 16 

resolution. Signal was filtered for frequency band of interest including only 0-70 Hz 

components. LFP signal was averaged from channels 1-8 for CA1 region and channels 9-16 

for CA3 region. For calculation of spectrograms, Chronux mtspectrogramc function was 

used. This function is a multi-taper time-frequency spectrum calculator for continuous 

processes.  

For coherogram calculations, LFP data from channel 1 for CA1, and LFP data from 

channel 9 for CA3 regions were used as the inputs for Chronux cohgramc function; this 

function is a multi-taper time-frequency coherence calculator. The coherencies between the 

two regions were calculated and mapped in a coherogram.  

 

2.3. Cross-­‐correlation	
  	
  

Cross-correlation was calculated between consecutive 1-second windows of LFP 

signals. Chronux xcorr function was used for estimating the correlation between the two 

signals. In each of these windows, maximum and average correlation values were calculated. 

 

2.4.  Line-length 

 Line-length values were calculated using 1-second windows of the signal. In each 1-

second window, difference between the consecutive points were calculated and averaged for 

the total duration. 

 

3. Offline	
  seizure	
  detection	
  algorithm	
  

Identified features were implemented in an algorithm to detect the seizure events in 

recorded data. The input for this program was a 30-minute long, 16 channels of recorded LFP 
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data. These data were divided into 3 different 10 minutes long sections that were analyzed 

separately. Line-length, maximum cross-correlation and mean power spectral density in 12-

25 Hz were calculated for channels 1 and 9 of the recorded LFP as a representative for CA1 

and CA3 regions of the hippocampus. The algorithm outputted detection of seizure event for 

each of the features separately by indicating starting and end time point of the seizure event. 

 

3.1. Detection	
  criteria	
  

Custom thresholds were chosen for each of the three metrics. In the algorithm, seizure 

events were defined as parts of the signal that exhibited values above threshold for greater 

than 5 second.  A secondary criterion for an event to be considered as a seizure was presence 

of the event in both CA1 and CA3 analysis.  
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CHAPTER 4 

SEIZURE SIGNAL CHARACTERIZATION 

 

 

Seizures in general are characterized by fast, excess neuronal activity in a 

synchronous manner. They are more synchronous oscillations in comparison to other signals 

from the brain. This chapter aims at electrographic investigation of the seizure events in the 

tetanus toxin model of the epilepsy, and extracting temporal and spatial features that could be 

used for distinguishing seizure events from the rest of the brain activity.  

  Local field potential is an electrophysiological signal recorded using depth 

electrodes. This signal represents the voltage produced by sum of the synaptic activity from 

all the nearby dendrites [31]. In case of the seizure, there is a prolonged increase in LFP 

amplitude as illustrated in Figure 1. Figure 1 a, c are showing the inter-ictal activity, and 

Figure 1 b, d are representing presence of a seizure event as marked by a red line. By 

comparing these 4 graphs, one can distinguish the seizure based on the increased amplitude. 

Another change that is seen in epileptic animals is the occurrences of inter-ictal spike; these 

spikes are short duration, large amplitude events that appear in the signal during non-seizing 

states. Inter-ictal spikes are marked by a red star in the Figure 1 a, c..Note how these events 

are observed at a similar time in signals from both CA1 and CA3 regions of the 

hippocampus. This is due to the fact that pathologic features of the epileptic signal 

synchronize across the different hippocampal cell layers. As shown in Figure 1 b, d the 

seizure events also occur in timely fashion in both cell layers, demonstrating the synchronous 

spatial spread of these events in the brain. 



 19 

 

 

Figure 1 - Voltage trace for 150 seconds segments of the signal- (a) And (c) are representing the inter-ictal 
period in CA1 and CA3 regions of hippocampus respectively. Red stars in the figure mark inter-ictal spikes. (b) 
And (d) are representing the ictal activity with occurrence of one seizure event (marked by red line) in CA1 and 
CA3 regions of hippocampus respectively, note the similar timing of the events. The convention of green color 
for CA3 signals and blue for CA1 signals are maintained throughout this work. 
 

 In order to have a more quantitative understanding of unique characteristics of seizure 

events in terms of their amplitude and synchronicity, LFP signals were characterized in both 

time and frequency domains.   
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1. Frequency domain analysis  

1.1.  Power Spectral Density 

 First step in frequency domain characterization of the signal was breaking the LFP 

recordings into their frequency contents using a Fast Fourier Transform (FFT). FFT was done 

with zero padding for a better frequency resolution using 10 seconds moving window with 1-

second overlap. The signal was filtered for the frequency bands of interest including only 0-

70 Hz components.  

 The signal was initially mapped in its frequency domain by means of a power spectral 

density (PSD) plot as illustrated in the Figure 2. PSD plots are capable of showing the power 

associated with each frequency components of the signal. Maximum power for the signal was 

observed in hippocampal theta range (6-10 Hz) corresponding to awake and behaving 

animals. Comparison of the ictal and inter-ictal states showed a detectable increase in power 

associated with higher frequency bands (15-40 Hz). In the inter-ictal states in both 

hippocampal regions, all the power was only concentrated in 0-15 Hz, and power for 

frequencies above 20 Hz was zero (Figure 2 a, c). While in seizing state in addition to the 

first power peak at 7 Hz, there is a second peak in 17 Hz (Figure 2 b, d). Also the overall 

power of the signal is greater across all the frequency ranges for the seizing state.  
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Figure 2 - Power spectral density of ictal and inter-ictal signal in CA1 and CA3 regions – As shown in the 
figure in case of ictal activity (c, d), in addition to increased power in the frequency components presented in 
the inter-ictal activity, there is an increase in power for higher frequency components of the spectrum (red 
arrows). 
 
 
2. Time-Frequency domain analysis 

2.1.  Spectrogram  

PSD plots have a good frequency domain resolution and provide insights on power 

associated with each frequency, but in order to specifically understand the changes during the 

seizure events, one needs to be able to link the changes in seen in frequency domain with 

temporal appearance of the seizure events.  As a result the spectrographic analysis of the 
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signal was performed. Inter-ictal (Figure 3) and ictal (Figure 4) signal are illustrated in their 

time-frequency domain in spectrograms. These graphs clearly illustrate the increased power 

associated with the seizure events, as well as a similar effect during inter-ictal spikes.  

 

 
Figure 3- Inter-ictal spectrogram- Spectrogram for 150 seconds of an inter-ictal recording is shown. Parts a 
and b are showing the LFP in CA1 and CA3 region of hippocampus respectively. Under each LFP there is the 
associated spectrogram. As shown the power is concentrated in theta range (6-10 Hz) and during the inter-ictal 
spike events increase power is noticable.  
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Figure 4 – Ictal spectrogram Spectrogram for 150 seconds of an ictal signal is shown. Parts a and b are LFP in 
CA1 and CA3 region of hippocampus respectively. Under each LFP there is the spectrogram. As shown during 
the seizure event there is an increase in power across all the frequency components with most of the power 
concentrated in 0-30 Hz frequency band. 
 
 
 
2.2.  Coherogram 

 The analysis done in the time and frequency domains so far only provided 

information about the power changes during the seizure events in relationship to time and 

frequency contents of the signal. Comparing data from both cell layers of the hippocampus 

(CA1 and CA3) indicated that these events are seen at the same time in both regions. 

However, a more in-depth quantitative analysis is required for understanding this 

relationship. Coherency is an effective measure to show the relationship between the timing 

of the two signals, and how often they occur together. Coherogram computes coherency 
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between two different signals in time-frequency domain and indicates the cross-spectral 

coherency. Figure 5 calculates the coherogram between the two spectrograms for CA1 and 

CA3 shown in Figure 3 and Figure 4. In Figure 5 during the inter-ictal state there is high 

coherency in all times across many different frequencies, while in the ictal segment during 

the seizure event, high coherency is localized in a narrow frequency band (0-30 Hz). The 

narrow band localization of coherency is an indication of synchronous activity between two 

signals in a defined frequency. As a result the coherogram quantitatively confirms 

synchronicity of the activity between CA1 and CA3. 

 

3. Time domain analysis 

3.1.  Cross-Correlation 

 As discussed at the beginning of this chapter, another feature of the seizures is the 

rhythmic pattern of the signal. Unlike the other periods of the LFP signal, activity during 

seizure is more regular. In chapter 2, cross correlation was introduced as a metric for 

capturing rhythmicity of the signal. This metric was calculated for comparing 1-second long 

consecutive windows of the LFP signal. Then in each window maximum and mean values of 

the cross correlation were calculated.  
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Figure 5 – Cross-spectral coherogram between CA1 and CA3 in inter-ictal and ictal states. Raw LFP 
recording and corresponding spectrogram of inter-ictal and ictal signals used for calculation of coherogram are 
shown in Figure 3 and 4 respectively. As shown in part a, in case of inter-ictal signal there is spread high 
coherency across all the frequency components, while in part b, during the seizure event (marked by black line) 
higher value of coherency (darker red) is concentrated in a narrower frequency band (0-30 Hz), indicating 
coherency between CA1 and CA3 regions spectrogram. 
 

 Figures 6 and 7 are illustrating the difference between the non-seizing and the 

seizing states for this measure. As indicated by these figures during the seizure event there is 

an increased cross-correlation corresponding to a less random signal. Value of the maximum 

cross-correlation is higher and more distinguishable during the ictal activity in comparison to 

the mean value of cross-correlation.  
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Figure 6 - Cross correlation of the inter-ictal signal – Cross correlation for a 1 second sliding window is 
calculated for the signal; mean and maximum value of the cross-correlation is calculated for each window. 
There is an increase in maximum cross-correlation during inter-ictal spikes. Part a shows the values 
corresponding to CA1 region and part b shows them for CA3 region. As shown similar activity is observed at 
similar timing in both regions.  
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Figure 7 - Cross correlation of the seizure signal – Cross correlation for the 1 second sliding window is 
calculated for the signal; mean and maximum value of the cross-correlation is calculated for each window. The 
value of maximum cross correlation increases abruptly during the seizure event. Part a shows the values 
corresponding to CA1 region and part b shows them for CA3 region. As shown similar activity is observed at 
similar timing for both measures. 
 
 

3.2.  Line-Length (LLN) 

 Another time domain analysis that was used to characterize the seizure events was 

line-length (LLN). In chapter 2 LLN was introduced as a measure capable of capturing rate 
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of change of the data by measuring the difference between the consecutive points. Since in 

the seizure state neurons are firing faster [34], rate of change of the signal is expected to be 

higher. LLN value was calculated for the LFP recording in a 1 second time windows by 

averaging the difference between the consecutive points of data in each window. Figure 8 

illustrates how the fast activity is demonstrated by the LLN; as shown during both inter-ictal 

spikes as well as seizure events LLN value is an order of magnitude higher in seizing states 

than in non-seizing states.  
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Figure 8 - Line-length analysis – LFP values for in case of inter-ictal and ictal activity are shown for both CA1 
(a, b) and CA3 (c, d) regions. Corresponding line-length value is calculated in 1-second windows of the signal 
for both inter-ictal (e) and ictal (f) cases; there is a prolonged increase in this value during the seizure events, 
and a smaller increase during the inter-ictal spikes. The value for both CA1 and CA3 regions are similar and 
increased at the same time.  
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Summary of seizure events characteristics 

 In this chapter time, frequency and time-frequency domain metrics were used in order 

to characterize the seizure signals in attempt to identify potential markers for detecting 

seizures. Frequency and time-frequency domain analysis, using PSD and spectrograms, 

showed clear increases in the power of higher frequency (15-25 Hz) content of the signal 

associated with the seizure events. Moreover we used a coherogram to evaluate the 

coherency between CA1 and CA3 regions of the hippocampus in ictal and inter-ictal periods, 

and determining that spectrographic changes are appearing synchronously in the two regions 

during seizure events. Furthermore, results of time domain analysis using cross correlation 

and line length demonstrates that changes in these measures can be correlated with the onset 

of seizure events.  
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CHAPTER 5 

OFFLINE ANALYSIS 

 

 In the previous chapter, electrographic analysis of the recorded data helped with 

identifying several effective measures for isolating seizure events. In order to assess the 

efficacy of these measures in identifying the seizure events, they were implemented in a 

MATLAB program for offline analysis of 480 minutes of recorded LFP. Visual examination 

of this data indicated the presence of 27 seizure events, as well as numerous inter-ictal 

spikes.  

 

Metrics 

 In accordance with the initial characterization of the seizure signal, mean power 

spectral density (MPSD) in the 12-25 Hz frequency band, maximum cross correlation 

(MCC), as well as line length (LLN) were chosen as metrics in the algorithm to distinguish 

the seizure and non-seizure events. These metrics were independently applied on the data. In 

order to have a close resemblance of the real-time situation, analysis was done in 1 second 

sliding windows. Most of these metrics were unable to distinguish seizure events from inter-

ictal spikes; consequently a duration of >5 seconds was implemented as an additional 

criterion to distinguish these two.  

 Moreover since the seizure events are synchronously occurring throughout the 

hippocampus, presence of the event in both cell layers of CA1 and CA3 of hippocampus was 

considered as another criteria for identification of seizure events. However, in order to 

minimize the computational cost, rather than all 16 channels, only channel 1 and channel 9 – 
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as representative recordings from CA1 and CA3 regions of hippocampus – were used for 

seizure detection. 

 

Performance Assessment 

 Performance of the algorithm was assessed for sensitivity, specificity and detection 

latency. Detection latency was determined by calculating difference between start time by 

visual inspection and the algorithms determination of the start time point. Sensitivity and 

specificity were calculated based on the following formulas: 

 

Sensitivity = !"#$  !"#$%$&'
!"#$  !"#$%$&'  !  !"#$%  !"#$%&'"

  ×  100 

Specificity = !"#$  !"#$%&'"
!"#$  !"#$%&'"  !  !"#$%  !"#$%$&'

  ×  100 

 

 In the ultimate experimental setup the goal is to capture all the seizure events and 

deliver stimulation shortly after onset of every seizure. As a result, a sensitive algorithm with 

low detection latency was favored. Lower values of specificity corresponding to a high rate 

of false positives, but these were considered acceptable. 

 

Line-Length 

 As discussed earlier LLN serves as a measure for capturing the rate of change in the 

voltage data. With adjusted threshold, this measure is capable of effectively identifying 

seizure events (Figure 9) and has perfect sensitivity (100%) and low detection latency (0.76 

± 0.52 s).  
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Figure 9 - LLN detection performance. LLN is capable of identifying seizure event with perfect sensitivity 
(100%), and relatively low detection latency. In this figure, black arrow shows visual inspection for determining 
event start (84.6 s) and the red line shows duration that event is identified by the LLN measure (starting at 85.7, 
1.1 s detection latency). This is illustration of the LLN performance in determining beginning and end of 
seizure event. 
 
 
 However the major deficiency of this measure is high rate of false positives that is 

caused by fast changing data during inter-ictal spikes.  This similarity causes consecutive 

inter-ictal spikes to be considered as a seizure event by the algorithm (Figure 10). But using 

spatial information from both CA1 and CA3 of hippocampus helped with decreasing the rate 
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of false positives, and increased specificity from 8.7% to 16.7%.  

 

	
  

Figure 10 - False positive reduction with inclusion of spatial information for LLN. Events indicated with 
red stars, were previously considered as seizure events by line-length metric; however including spatial 
information from both CA1 and CA3 regions of the hippocampus decreased the incident of these false positives. 
Parts a and c are showing the recorded LFP from these two regions, parts b and d shows calculated LLN for 
these two regions; note the amplitude difference of LLN between CA1 and CA3. 
 

Maximum Cross-Correlation 

 MCC was used as an indicator of regularity of the recorded data, that means how 

similar are different periods of the signal to itself. This measure was calculated based on 1 

second sliding window comparison of cross-correlation value of data with itself by a 1 

second lag. As discussed before, seizure events are highly regular, and as shown in Figure 5, 
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this value increases during the seizure events. Thus, MCC was used for distinguishing 

seizure events. Even though this metric showed high specificity (90-100%), but it is 

considered as an ineffective measure due to high detection latency and low sensitivity. 

Delays in detection were caused by high computational cost associated with calculations of 

this measure. The low sensitivity of the algorithm comes from the non-uniformity of this 

measure during different events. As an example, as shown in Figure 12, the algorithm is not 

able to pick up a seizure event due to low values of MCC in the CA3 region. These 

deficiencies suggest that MCC could not be use as a universal indicator of seizure events in 

this experimental setup. 
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Figure 11 – MCC inability to identify seizure events. MCC values for the two different regions of the 
hippocampus (CA1 and CA3) are not the same, and value corresponding to CA3 region does not cross thet 
threshold resulting in undetected event. Sezizure event is marked by red line in the voltage trace in CA1 and is 
not detected by the CA3 measure. Black arrow represents start of the seizure event with visual inspection. 
 

Mean Power-Spectral Density 

 MPSD was calculated by averaging power associated with 12-25 Hz frequency band 

in 1 second sliding window analysis of data. As shown in Figure 2, there is increased power 

in higher frequency components (15-40 Hz) of the LFP signal during seizure events. MPSD 

was effectively capable of capturing seizures with high specificity (96.43%) and low 
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detection latency of less than a second (0.24	
  ±	
  0.17	
  s).	
  Moreover	
  unlike	
  LLN,	
  MPSD	
  has	
  a	
  

relatively	
  high	
  specificity	
  of	
  70%.	
  As	
  you	
  can	
  see	
  in	
  the	
  Figure	
  12,	
  during	
  the	
  seizure,	
  MPSD	
  

value	
  is	
  higher	
  than	
  threshold	
  in	
  both	
  CA1	
  and	
  CA3	
  regions	
  of	
  the	
  hippocampus.	
  Threshold	
  for	
  

this	
  measure	
  is	
  set	
  really	
  low	
  due	
  to	
  the	
  fact	
  that	
  when	
  there	
  is	
  no	
  seizure,	
  MPSD	
  value	
  is	
  close	
  

to	
  0.	
  

	
  

Figure 12 - MPSD identifying the seizure. MPSD is capable of effectively identifying seizure events early 
during the onset (0.85 s). Black arrow corresponds to visual detection of seizure onset and red line corresponds 
to the event as defined by the algorithm. As it is illustrated in the figure, since the threshold is really low for 
MPSD,  although mean power in the CA3 region is lower than CA1 region,  it is still effectively capable of 
identifying the event using the spatial information. 
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Comparison of the detection features 

 Each algorithms detected seizure events depending on a pre-defined threshold. The 

choice of threshold was a crucial factor in detection performance. Two different choice of 

threshold for LLN and MCC, and one threshold value for MPSD and algorithm performance 

are described in Table 1. As illustrated in this table, decreasing the value of the threshold 

was accompanied with smaller detection latency and enhanced sensitivity. Increased 

specificity of the algorithm in the second choice of the threshold was due to inclusion of 

spatial information in determining the seizure events.  

 

	
  
LLN	
   MCC	
   MPSD	
  

Threshold	
   3	
  E-­‐05	
   2	
  E-­‐05	
   5	
  E-­‐03	
   4	
  E-­‐04	
   0.2	
  E-­‐08	
  
Sensitivity	
  (%)	
   54.55	
   100.00	
   60.87	
   67.86	
   96.43	
  
Specificity	
  (%)	
   8.70	
   16.67	
   90.00	
   100.00	
   70.00	
  

Latency	
  (s)	
   1.05	
  ±	
  0.24	
   0.76	
  ±	
  0.52	
   1.28	
  ±	
  0.71	
   0.92	
  ±	
  0.84	
   0.24	
  ±	
  0.17	
  
 
Table 1 – Offline performance analysis of different detection features – Performance of each feature line-
length (LLN), Maximum Cross Correlation (MCC) and maximum power spectral density in 12-25 Hz (MPSD) 
are shown in this table. For LLN and MCC two different choices of threshold are compared. 
 
 
 Between	
  these	
  three	
  features	
  MCC	
  shows	
  the	
  least	
  efficacious	
  results,	
  with	
  lower	
  value	
  

of	
  sensitivity	
  (67.86%)	
  and	
  higher	
  detection	
  latency	
  (0.92	
  ±	
  0.84).	
  Comparing the three 

features’ performance illustrate that MPSD has lowest detection latency, with high sensitivity 

and acceptable specificity. Performance of the LLN is similar to the MPSD with exception of 

lower specificity. Figure 13 represents the difference between MPSD and LLN in terms of 

detecting inter-ictal spikes as potential events. Not detecting the inter-ictal spikes is what 

makes MPSD a powerful metric for recognizing seizure events. 
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Figure 13	
  -­‐ Comparison of LLN and MPSD in distinguishing the inter-ictal spikes. As illustrated in the 
figure, in case of inter-ictal spikes, MPSD values are significantly lower than threshold resulting in exclusion of 
the spikes from seizure events. However in case of LLN, this is not true and two of these spikes that are longer 
are identified as seizure events.  
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CHAPTER 6 

DISSCUSSION AND CONCLUSIONS 

 

 The goal of this thesis was to identify an effective method or methods capable of 

distinguishing between ictal and non-ictal activity in an animal model of epilepsy. In order to 

reach this goal, a literature review and data analysis were performed, leading to the 

identification of possible features for detection. These features were then implemented in an 

offline setting in a custom MATLAB program for seizure detection. In the previous chapter 

Line-Length (LLN), Maximum Cross Correlation (MCC), and Maximum Power Spectral 

Density (MPSD) were introduced as the selected features, and used independently in the 

detection algorithm to evaluate their performance.  

 The implemented program analyzed the input signal in a sliding window, and by 

comparing calculated values to the threshold, as well as considering duration and spatial 

information from both CA1 and CA3 regions of hippocampus, it identified the presence of a 

seizure event.  

The goal of the real-time algorithm is to be capable of identifying the seizure events 

early in their onset and deliver stimulation. Hence the desired algorithm for our experimental 

setup needs to have a high sensitivity (above 90%) and low detection latency. This would 

give the experimenter the desired controlled delivery of the stimulation that helps with tying 

the stimulation with onset of the seizures without otherwise affecting the brain. High 

specificity is desired, but is of lower importance, because it is more important to capture all 

seizure events than to not have any false positives. This is because of the fact that numbers of 
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the seizures are limited so the experimenter desires to arrest all of these events. Further the 

stimulation is supposed to not have a significant effect when they are not chronically applied 

on the animal.   

 The first step in reaching the goal was proper choice of threshold; higher values of 

threshold yielded to a more specific performance but this was at a cost of low sensitivity and 

high latency. As a result, the value of threshold was lowered and spatial information was 

incorporated in the analysis to enhance the execution.  

 Results of analyzing offline performance of LLN, MCC, and MPSD showed that with 

lower values of threshold LLN and MPSD are effectively capable of event identification with 

almost perfect performance (100% and 96.43% respectively). Lowering the threshold 

improved the MCC performance as well (67.86% from 60.87%), but not as much as desired. 

 Value of detection latency was lowest for MPSD, with a below 0.5 second latency 

(0.24 ± 0.17), while LLN, with mean value of 0.76 ± 0.52 s, and MCC, with mean 0.92 ± 

0.84 s delays, were slower at identification of seizure events.  

 Lastly in terms of false alarm rates, MCC had the lowest rate of false positives with 

perfect specificity of 100%, while MPSD and LLN showed lower specificities. MPSD was 

better than LLN, with 70% specificity in comparison to 16.67% specificity for LLN. LLN 

identified many consecutive inter-ictal spikes as seizure events, while this was not the case 

for MPSD (see Figure 13).  

 These results illustrate that MCC is not a suitable feature for seizure detection in this 

experimental setup due to high latency, low spatial resolution, and low sensitivity. Further 

both MPSD and LLN are identified as proper features in the early determination of ictal 

activity, and could potentially be implemented in real-time algorithms. They both have low 
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detection latency, high sensitivity, and meet the desired criteria for experimental setup. 

 The next goal of this study is aimed at implement LLN and MPSD as effective 

seizure detection features as part of a real-time seizure detection algorithm to be used in 

closed-loop experiments. 
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CHAPTER 7 

FUTURE DIRECTIONS 

 

 Developing a powerful method with low computational power that is capable of early 

seizure detection is a subject of interest in epilepsy research. Such algorithms would make 

implementation of closed-loop setups possible both for clinical and research applications. 

This study established line-length and mean power spectral density in 12-25 Hz band as 

powerful features, that are capable of detecting seizure events early in their onset in the 

tetanus toxin model of rat epilepsy. Performance of the system is in line with desired output 

for a real-time setup.  

 In this study, choice of threshold was based on visual inspection of the signal and 

calculated parameters. Although this approach provided a desired output, in order to achieve 

the optimum choice of threshold a more systematic approach is required. Using automated 

assessment algorithms one could test a range of logical thresholds for each feature. Results of 

this analysis could be visualized by means of receiver operating characteristic (ROC) graphs 

for sensitivity, specificity and detection latency. Comparing the three plots together, one 

could make a conclusive statement about choice of the optimum threshold resulting in the 

optimum performance. 

 Optimum choice of threshold is a crucial factor in order to move toward the real-time 

implementation, because several features that were used in the offline analysis are 

unavailable in the online setting. As an example, in the offline analysis presented in this 

work, one of the criteria for considering an event as seizure was having greater than 5 

seconds duration; in the online setting for delivering the stimulation at onset of the seizure 
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this information is not accessible. Moreover, having lowest value of the detection latency is 

another crucial factor which is going to be changed in the online setting; in a real-time 

algorithm the latency would be greater because of the delay caused from receiving the data as 

well as computational delay caused by the MATLAB wrapper.   

 Currently the MATLAB code based on a threshold method for seizure detection using 

LLN and MPSD as detection parameters is ready to be compiled and implement in C#. 

However, time limitations prevented real-time implementation and assessment of the 

algorithm. Further studies could continue the project by starting with the real-time 

implementation of the algorithm and testing the online performance. 	
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