A Study of Wait-Free Hierarchies
in Concurrent Systems

D. Scott McCrickard

GIT-CC-94/04

February 15, 1994

Abstract

An assignment of wait-free consensus numbers to object types results in a wait-free
hierarchy. Herlihy was the first to propose such a hierarchy, but Jayanti noted that
Herlihy’s hierarchy was not robust. Jayanti posed as open questions the robust-
ness of a hierarchy he defined and the existence of a robust, wait-free hierarchy.
In this paper, we examine a number of object parameters that may impact on a
hierarchy’s robustness. In addition, we study a subset of Jayanti’s hierarchy intro-
duced by Afek, Weisberger, and Weisman called common2 and extend this subset
to include the seemingly powerful 2-bounded peek-queue. Finally, we introduce a
property called commonness and examine its applications to wait-free hierarchies
and their robustness.

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280

1 Introduction

A concurrent system consists of a set of asynchronous processes that communicate through
shared objects such as registers, queues, and test-and-set bits. Since no system could provide
every type of object, implementations of objects using other objects may be required. In
order for an object implementation to be correct, the method of implementation must be
linearizable: operations on the object by concurrent processes must appear to occur in some
legal sequence [14]. The traditional method, ensuring linearizability using critical sections, is
ill-suited for fault-tolerant systems; a process could crash inside a critical section and prevent
the other processes from accessing that object. Even in a non-faulty system, faster processes
must wait to access an object when a slower process is in a critical section.

A wail-free implementation of a shared object guarantees that any process can complete
any operation on the object in a finite number of its own steps, regardless of the execution
speed of the remaining processes. Such an implementation is resilient to process crashes and
variations in speed. A process that accesses an object implemented in a wait-free manner
can complete all accesses regardless of the actions of other processes. Most recent work on
wait-free implementations has demonstrated how an object can be implemented by a set of
seemingly weaker objects. For example, complex registers can be implemented from simpler
ones [6,9,17,18,19,21] and atomic snapshot objects from registers [1,3,4,5,8]. A number of
object parameters such as determinism, initializability, and breakability must be considered
when constructing a wait-free implementation. These parameters are discussed in Section 2
of this paper.

Herlihy discovered that the existence of a wait-free implementation using a given object
is related to the object’s ability to be used in achieving consensus [12]. A set of processes
achieves consensus when all of the processes agree on a single value. In order to achieve
consensus, the processes must communicate using shared objects. Every object type can be
assigned a consensus number based on the maximum number of processes for which objects of
the type can be used to achieve consensus. Herlihy’s universality result states that an object
of any type has a wait-free implementation in a system with N processes using N-process
consensus objects and registers. The universality result led to the evaluation of types based
on their ability to achieve consensus.

An assignment of consensus numbers to types results in a wait-free hierarchy in which each
level N of the hierarchy contains object types of consensus number N. Since the consensus
number of an object type depends on the number of objects and the number of registers that
can be used in the implementation [15], different consensus numbers could be assigned to a
single type resulting in different hierarchies. Herlihy’s hierarchy, which Jayanti referred to as

1, and Jayanti’s hierarchy A} differ in the number of objects that can be used to implement
consensus. For any type 7', h{(7') is the maximum number of processes for which consensus
can be implemented using just a single object of type T and any number of registers, while
h7. (T) is the maximum number of processes for which consensus can be implemented using
any number of objects of type 7" and any number of registers.

Jayanti asserted that a desirable hierarchy would be fully-refined and robust [15]. A
hierarchy is fully-refined if there is some type at every level {1,2,...,00} of the hierarchy.
A hierarchy h is robust if, for all types T and sets of types S, if h(T) = N and h(T') < N
for all types T’ in S, then there exists no implementation of 7' from S in a system with N
processes. Jayanti showed that a number of hierarchies, including Herlihy’s hierarchy hf, are
fully-refined but not robust, and left as open questions the robustness his own hierarchy A7,
and the existence of a fully-refined, robust, wait-free hierarchy.

An interesting subset of level 2 of Jayanti’s hierarchy is common2. In this paper, common2
is defined as the set of all types at level 2 of Jayanti’s hierarchy whose objects can be imple-
mented by registers and any other object at level 2 in systems with any number of processes.
While Afek, Weisberger, and Weisman defined a specific set of objects as common2, they
proved that our definitive property applies to all of its object types [2]. They conclude with
a challenge to readers to extend common?2 to include more or all of the objects at level 2 of
Jayanti’s hierarchy. Section 3 of this paper extends common?2 to include a seemingly powerful
object, the 2-bounded peek-queue.

Section 4 introduces a property evolved from the common?2 class called commonness. An
object type at level N of a hierarchy is common if its objects can be implemented by registers
and objects of any other type at level N in systems with any number of processes, and a
hierarchy is common if every type in the hierarchy is common. We examine the commonness
of several types in different hierarchies, and we establish that, if a hierarchy is common, then
it is robust. The existence of a common hierarchy remains as an open question.

2 Parameters of Wait-Free Implementations

This section shows that the solvability of consensus is sensitive to the determinism, breaka-
bility, and initializability of the type specification.

Determinism refers to the formal specification of the object; a object that nondeterminis-
tically returns one of a number of values on a given operation from a given state may be less
predictable than a deterministically specified object that always returns the same value in
the same condition. In a deterministically specified object, the process may gain additional
information about the prior and current state of the machine from the value returned.

Breakability is related to determinism. Objects can break when an undefined operation
is invoked; for example, a queue breaks when a dequeue is invoked on an empty queue. The
breaking of an object could result in a system crash or random (nondeterministic) responses
from the object. In these cases, each process must order its operations such that an undefined
operation can never happen. However, deterministically specified objects must have a defined
response for every operation. Processes could perform operations and break the object, then
learn if other processes did (or did not) access the object previously. An example of this
concept is given in Section 2.1.

Initializability refers to the ability of the implementor to start an object in any state in a
wait-free implementation. For example, if a machine supports the stack data object, a stack
could be initialized to contain certain values, and processes could gain information when they
pop these initial values. The examples in Sections 2.1 and 2.2 both discuss initializability.

Since a real system would require objects to be deterministically specified, would allow
initialization of objects, and would handle breakability in a deterministic manner, this paper
will consider objects with respect to these parameters.

2.1 Initialization, Breakability, and Consensus for Queues

Herlihy proved that a queue initialized to contain 0 in the first slot and 1 in the second could
achieve 2-process consensus [12]. Such a queue could be dequeued by each of two processes:
the process that is returned the 0 is the winner and the process returned the 1 is the loser
and knows the other process won. This is enough to implement consensus.

Jayanti and Toueg proved that an initially empty queue could not achieve 2-process con-
sensus [16]. Their proof is based on the observation that each enq by a process could be

A Study of Wait-Free Hierarchies in Concurrent Systems 3

matched with a deq by the same process; thus, neither process would learn from the other
and the processes would never reach consensus.

However, neither of the above directly addressed what happens if the queue is broken;
namely, what happens if a deq is performed on an empty queue. If we assume that a deq on
an empty queue returns L (a special value that cannot be enqueued) and breaks the queue
such that L is returned on all subsequent operations by any process, we can achieve 2-process
consensus as follows:

Two processes, p and ¢, both access an initially empty queue. Process p will try to enq
the value 0 and process ¢ will try to deq.

proc p:
if enq(0) = L
decide ¢
else
decide p
proc ¢:
if deq() = L
decide ¢
else
decide p

Proof of correctness: If process p enqueues before process ¢ dequeues, then the queue will
contain a single element 0 when process ¢ dequeues. Therefore, process p will not receive L
since the queue is not broken, and process ¢ will not receive L because it will dequeue the
value 0, and both will decide on process p. Conversely, if process g dequeues before process
p enqueues, then the queue will break when the dequeue occurs. Therefore, process ¢ will
receive | since it broke the queue, and process p will receive L as well since the queue is
broken when it tries to enqueue; thus, both processes will decide on process ¢. O

2.2 The 2-Set Consensus Object

Recently, there has been interest in a weaker version of the consensus problem called the
k-set consensus problem [10,11]. In this problem, each process begins with a value (as in
consensus) and decides on a single value such that there are at most k decided values. It
has been shown that there is no wait-free solution to k-set consensus using only registers in
systems with more than k processes [7,13,20]. Consider types that support such wait-free
solutions. At what level must they be in a hierarchy such as Al 7 Interestingly, Herlihy and
Shavit [13] showed that knowing type 7" can achieve k-set consensus is not sufficient to show
that AJ, (7") > 1. That is, the ability to achieve k-set consensus (for any number of processes)
does not guarantee the ability to achieve even 2-process consensus!

To address this apparently anomalous situation, it seems reasonable to give a specification
of an object type that performs k-set consensus. The following considers a deterministic
specification of such an object and shows that, if the object can be initialized to any state,
then it can be used to achieve consensus in systems with any number of processes.

Consider the case of 2-set consensus. Two values are stored by the object, VAL1 and VAL2,
the first and second values submitted. It has one operation; submit(n), which returns either
VALL or VAL2. Since the object is deterministic, there must be some fixed order in which
the two values are returned.

Theorem 1: The 2-set consensus object can be used to achieve consensus for any number
of processes and thus is at level oo of h .

Proof: If either VAL1 or VAL2 is returned a finite number of times, then there exists some
k such that all submit after the kth submit will always return VAL1 or always return VAL?2.
Each process P; (proposing value n;) could perform k+ 1 submit(n;) and decide on the result
of the k£ + 1st submit.

If no such k exists, then initialize the 2-set consensus object with a submit(0). Next,
each process P; (i > 0) writes its value to a table in position ¢ and performs submit(i) until
a positive integer is returned. The integer returned is the winning process number. Each
process looks up the value corresponding to the integer, decides on the value, and quits sub-
mitting values. Since VAL2 is returned regularly (that is, there is no k for which all submit
after the kth are returned VAL1), each process will eventually decide, and all of the processes
will decide on the value in VAL2’s table slot. Since the 2-set consensus object can be used to
achieve consensus for any number of processes, it is at level oo of A] . a

3 The 2-Bounded Peek-Queue

When Herlihy defined his hierarchy, he was unable to prove that that there is an object at every
level. Jayanti and Toueg showed that every level N contains the N-bounded peek-queue, a
queue of size N that, instead of a dequeue operation, supports a peek operation which returns
the values currently in the queue [16]. This result suggests that the N-bounded peek-queue
may be the strongest object at level N. If the 2-bounded peek-queue is in common2, then it is
no stronger than any other object. Below is an implementation of the 2-bounded peek-queue
using test-and-set objects and registers for a system with any number of processes, proof that
the 2-bounded peek-queue indeed is in common?2.

3.1 Definition of the 2-Bounded Peek-Queue

Jayanti and Toueg defined a 2-bounded peek-queue as follows:

1. When engq(value) is invoked, if the queue has fewer than 2 items in it, then value
is written to the end of the queue and “completed” is returned; otherwise, the queue
enters a faulty state and returns L.

2. A queue in a faulty state remains faulty forever and returns L to every subsequent
operation.

3. peek returns the state of the queue. If the queue is faulty then L is returned; otherwise,
a list of 0-2 enqueued values is returned.

The above conditions characterize any sequential execution on a 2-bounded peek queue.
Any implementation must be linearizable in the following sense: for any execution of the
implementation, one can give a linear order of its operations such that the order meets the
above conditions and such that for any two operations o; and o, in the execution, if o1 ends
before 0y begins, then o, precedes oy in the linear order. That is, the real-time ordering of
non-overlapping operations must be preserved.

A Study of Wait-Free Hierarchies in Concurrent Systems 5

3.2 Implementation of the 2-Bounded Peek-Queue

The 2-bounded peek-queue can be implemented in a system with k& processes using 2 test-and-
set bits and 2k + 2 registers. Each process P; has an associated “count” register C;, initially
0, that indicates how many times the process has invoked enq; and a “value” register V;,
initially L, that contains the first value the process tries to enq. Two “queue” registers @1,
()2, initially L, will hold the values of the processes that enqueue successfully. Two test-and-
set objects T'1, T2, initially 0, will determine which process’s value gets enqueued to each
queue register.
The 2-bounded peek-queue functions are implemented as follows:

e On peek,
if Y24, C, > 2 return L // queue is broken
else if @1 = L return () // queue is empty

else if @2 = L return (Q1)
else return (Q1,0?2)

e On enq(value) invoked by F;,

increment C; by one

ifC; =1 // this is the 1st time P; has enqueued
write value in V;
ifT&S(T1) =10 // P; is the first to enqueue

write value in Q1
return “completed”
else

examine all proc registers // try to find winner of 7'1

if exactly one C; =1 (j #4) and ! _, Cp, = 2
write V; in Q1 // j was the first to enqueue, write its value in Q1

if T&S(T2)=0
write value in ()2

return “completed”

else // process loses and queue broken
return L

3.3 Proof of Correctness

To prove that the above implementation is linearizable, a method must be described by
which the operations in any execution can be put in a linear order that meets the conditions
in Section 3.1 and that preserves the real-time ordering of non-overlapping operations. The
ordering chosen is such that the following hold:

1. All peeks that return () appear before all other operations.

2. The enq whose value is written to ()1 appears after the operations in 1 but before any
others.

3. All peeks that return ()1) appear after the operations in 1-2 but before any others.

4. The enq whose value is written to Q2 appears after the operations in 1-3 but before
any others.

5. All peeks that return (Q1, ()2) appear after the operations in 1-4 but before any others.
6. One enq that returns L appears after the operations in 1-5 but before any others.

7. Any other enqgs and all peeks that return L appear after the operations in 1-6.

The ordering of operations within items 1, 3, and 5 can be done in any way that preserves
the real-time ordering of non-overlapping operations. The choice of the enq for item 6 and
the ordering of operations in item 7 is chosen similarly. To prove that this ordering is correct,
we need to see that it satisfies the three conditions from Section 4.1 and that it preserves the
real-time ordering of overlapping operations.

To prove that Jayanti and Toueg’s condition 1 is satisfied, we will use the following lemmas:

Lemma 2: For any enq(value),
o If “completed” is returned, then value was written in Q1 or Q2.

o If | is returned, then queue is in a faulty state (i.e.: will always return 1).

Proof: There are exactly two cases in which “completed” is returned; after (1 is written
by the winner of T'1 and after ()2 is written. There is only one case in which L is returned;
when a process loses both 7’1 and 7'2. In that case, the count registers C; of the winning
processes sum to at least 2, and the current enqueue adds an additional 1 to its C, so the
sum of all the registers becomes greater than 2 and peek will always return L. Furthermore,
both T'1 and T2 will always return 1, so all subsequent enqueues will return L. Thus, q is in
a faulty state. a

Lemma 3: All enqgs but 2 return 1.

Proof: An enq returns L if and only if it loses both T'1 and T'2. Since each test-and-set
can be won only once, and each enq results in at most one winner of a test-and-set, only one
enq can produce a winner of 7’1, and only one enq can produce a winner of T2, so all other
engs but 2 return L. a

Lemma 2 proves that “completed” is returned only if the process wrote its value, and L
is returned only if the queue is in a faulty state. Lemma 3 proves that at most two enqs will
return a non-_L value. Thus, condition 1 is satisfied.

We show Jayanti and Toueg’s condition 2 is satisfied as follows:

Condition 1 implies that a queue enters a faulty state when enq is invoked on a
queue with 2 items in it. If a queue has 2 items in it, then the sum of the registers
is greater than or equal to 2 and both test-and-sets have been won. When enq is
invoked, a register is incremented, raising the sum over 2. All subsequent peeks
will see that the sum of the registers is greater than 2 and will return L. All
engs will lose both test-and-sets and will return L. At no point are the registers
decremented. At no later point can a test-and-set be won. Thus, the queue will
return L to every operation and is “broken”, and condition 2 is satisfied.

A Study of Wait-Free Hierarchies in Concurrent Systems 7

Jayanti and Toueg’s condition 3 is satisfied as follows:

A peek will return one of four possible values: (); (Q1); (Q1,Q2); L; where @1
contains the value of the first process to enq and ()2 contains the value of the
second process to enq. If the sum of the count registers C; is greater than 2 when
examined by the peek, then L is returned. () is returned if Q1 = L. If Q1 is
returned, then the process that won T'1 wrote its value in)1 or another process
that lost T'1 wrote the winning process’s value in Q1. If @2 is also returned, then
the process that won 12 wrote its value in (2. (2 cannot be returned unless
@1 has a non- L value written in it. ()2 can only be written by the winner of T2
and can only contain the winner’s process value. ()1 can be written by either the
winner of T'1 or by a process that was able to determine the winner of 11, but
will only contain the winning process’s value. Thus, condition 3 is satisfied.

To show that our ordering of operations preserves real-time ordering, we will use the

following lemmas:

Lemma 4: If process A completes an enqueue before process B starts an enqueue, then

1.

2.

3.

4.

process B does not have its value written to 1.

if process C (A # C') completed an enqueue before process B started, then process B
did not write its value to Q2.

if process B wrote to)2, then process A’s value was written to J1.

if process A returned L, then process B returned L.

Proof:

1.

4.

Since A completes an enqueue before B starts, it executes T'1 before B. Since only the
first process to execute T'1 will win and write its own value to 1, B can not win T'1.
Furthermore, the only other way in which B could have its value written to Q1 is for
another process to read that B is the only other process to increment its counter. Since
A completes an enqueue before B, A increments its counter before B, so no process
could see only B’s counter incremented. Therefore, B cannot have its value written to

Q1.

. Similar to (1). Either A or C' (or both) lost T'1, so at least one of the two executes 12

before B does. Since only the first process to execute T2 will win and write its value to
(2, and no other value is ever written to ()2, B’s value is never written to (2.

. If process B wrote to ()2, then process B must have won 7'2. Since A completes before

B starts, A must not have executed 7’2, but the only process that does not execute 12
must have returned before its execution point, and the only process to do that is the
process that wins T'1 and writes its value to 1. Thus, if B writes to ()2, then A writes
to Q1.

The contrapositive of (4) follows from (1) and (3).

Lemma 5: If peek A ends before peek B begins, then
1. if peek A returned 1, then peek B returned 1.
2. if peek B returned n queue values, then peek A returned m < n values.

3. if peek A returned m queue values, then peek B returned n > m values or L.

Proof:

1. peek A would return L only if the sum of the count registers C} is greater than 2. Since
peek B began after peek A completed and the count registers are never decremented,
their sum was greater than 2 when peek B summed them, so peek B must have returned
1 as well.

2. If peek B returned (), then the sum of the count registers C; must have been less than
or equal to 2 (otherwise, L would have been returned) and 1 must have contained
1 when peek B examined it (otherwise, (Q1) or (Q1,02) would have been returned).
Since a queue register is never overwritten with L and the count registers are never
decremented, the sum of the count registers C; must have been less than or equal to 2
and ()1 must have contained 1 when peek A examined it; thus peek A must have also
returned (). Similarly, if peek B returned one queue element, then the sum of the count
registers must have been less than or equal to 2 and 2 must have contained L when
peek B examined them. As before, peek A could not have returned L or (Q1,Q2)
since the sum of the count registers was less than or equal to two and 2 was empty.
Similarly, if peek B returned two queue values, the sum of the count registers must not
have been greater than or equal to 2 when peek B examined them, so peek A could
not have returned 1.

3. If peek A returned m queue values, since neither (J1 nor 2 can be written with L,
either the sum of the count registers was greater than 2 when peek B read it (and L
was returned) or peek B returned any values in @1 and ()2 that peek A returned (and
possibly other values that had been written after peek A).

Lemma 6: Counsider any execution of the implementation.
1. If a peek completes before any enq begins, then () will be returned.
2. If a peek completes before all but one enq begins, then () or (Q1) will be returned.

3. If a peek completes before all but two enqs begin, then () or (1) or (Q1,Q2) will be
returned.

Proof:

A Study of Wait-Free Hierarchies in Concurrent Systems 9

1. Since no enq has begun when peek examines the count registers C;, the sum of the
registers will be 0. Also, no value will have been written in ()1 since enq is the only
operation that can alter this register. Thus, peek will read the initial value L from Q1
and return ().

2. Similar to 1. The sum of the count registers C; is at most 1, and peek will return (Q1)
if the first enq has won 7'1 and written its value in @1 and () otherwise.

3. Similar to the previous two. The sum of the count registers C; is at most 2, and () will
be returned if no process has written to @1; (Q1) will be returned if no process has
written to Q2; and (@1, Q2) returned otherwise.

Lemma 7: Consider any execution of the implementation.
1. If a peek starts after three enq completes, then 1 will be returned.
2. If a peek starts after two enq completes, then (Q1,Q2) or L will be returned.

3. If a peek starts after one enq completes, then (Q1) or (Q1,Q2) or L will be returned.

Proof:

1. If three enqgs have completed, then each will have incremented a process register, so the
sum of the process registers will be greater than 2; thus L is returned.

2. Similar to above. If two enqgs have completed, then the sum of the count registers C; is
at least 2. If a third enq has begun and incremented its register before the peek reads
it, then the sum of the count registers C; will be greater than 2 and L is returned. If a
third enq has not incremented its register, then the winner of T'1 wrote its value in @1,
and the winner of T2 wrote its value in)2 since both completed, so peek will return

(Q1,Q2).
3. Similar to the previous two.

a

Lemma 4 shows that the enqgs occur in the order specified at the beginning of Section
3.3 relative to other enqs, and lemma 5 shows that the peeks occur in the specified order
relative to other peeks. Lemmas 6 and 7 show that peeks and queues occur in the specified
order relative to each other. Thus, the method specified in Section 3.2 not only meets Jayanti
and Toueg’s three conditions, but also preserves the real-time ordering of non-overlapping
operations. Thus, the implementation is linearizable.

A 2-bounded peek-queue initialized to a non-empty state can be implemented similarly
with appropriately initialized test-and-sets and registers. Thus, the seemingly powerful 2-
bounded peek-queue type is yet another object type in common2. Since no type at level 2
of h;. has been proven to not be in common2, one may surmise that all types at level 2 are
in common2. The next section discusses this possibility and introduces an extension of the
common? class to a property “commonness”.

10

4 An Extension of the Common2 Class

Consider a property evolved from the common?2 class called commonness. A type at level N
of a hierarchy is common if its objects can be implemented with registers and objects of any
type at level NV of b7 in systems with any number of processes. Thus, all types in common2
are common since objects of any type at level 2 can implement common2 objects in systems
with any number of processes.

If objects are not initializable and are nondeterministically specified, a very simple and
general specification of a 2-set consensus object can be given. It follows from the results of
Herlihy and Shavit [13] that this object is at level 1 of A} . However, their results also show
that it cannot be implemented by registers in systems with 3 processes. Thus, this object is
not common. If we restrict our objects to be initializable and deterministic, then the existence
of a non-common object in A}, is an open question.

Jayanti proved that Herlihy’s hierarchy A7 was not robust by showing a type 7, at level
2 of h] such that N T, objects could implement consensus in systems with N + 1 processes
(for any N > 1). If test-and-set could implement the 7, object, then this implementation
could be used to implement consensus with just test-and-sets in systems with N processes.
Since no number of test-and-set objects can implement consensus in systems with more than
2 processes, test-and-set must not be able to implement 7, in systems with more than 2
processes. Thus, T, is not common with respect to Herlihy’s hierarchy Af.

Since commonness is defined in relation to the levels of a hierarchy, it is interesting to
consider the commonness of an entire hierarchy. We define a hierarchy to be common if every
object in the hierarchy is common. Previously, we showed that 7%, was not common with
respect to A} (and thus A} is not common) by using the same type T, that Jayanti used in
his non-robustness proof. That leads us to believe that robustness and commonness may be
related. The following two theorems address this relationship.

Theorem 8: If b is common, then types at level K of h] can implement any object at
level J < K of b}, in systems with any number of processes.

Proof: By definition of common, objects at level K will be able to implement other objects
at level J = K. So consider any object Ok at level K and any object Oy at level J < K.
Since the K-bounded peek-queue is at level K, it can be implemented by object O, assuming
hy. is common. Clearly the K-bounded peek-queue can implement the J-bounded peek-queue
for any J < K in systems with any number of processes. Finally, the J-bounded peek-queue
can implement object O (again assuming commonness). Thus, objects Ok at level K can
implement any object Oy at level J < K in systems with any number of processes. a

Theorem 9: If h], is common, then h, is robust.

Proof: By contrapositive. Assume h]. is not robust. Then there exists a type 7" and a set
of types S for which A(T) = N, h(T") < N for all T’ € S, and there exists an implementation
of T from S in a system with N processes. Consider the type T, € S with the maximum
consensus number. By Theorem 8 all other objects in 5 can be implemented by objects of
type T in systems with any number of processes. Thus, we can consider a new implemen-
tation of T from just T},4, in which all other objects in 5 are replaced with objects of type
Tz Since type T4, can implement type T in a system with N processes and T’ can achieve

A Study of Wait-Free Hierarchies in Concurrent Systems 11

consensus in a system with N processes, 1), can also achieve consensus in a system with
N processes and must be at level N of k] . However, we assumed that all types in 5 were at
levels less than N, a contradiction! Thus, if 2] is not robust, A}, is not common; and if A},
is common, then A, is robust. O

While the commonness of A} implies robustness, the converse is not true. If A7 is robust,
then there could still exist two types at the same level for which one type cannot implement
the other in a system with any number of processes. In order to understand the true power
of the object types in A/ , it is important to study the commonness of the hierarchy.

5 Conclusions and Open Problems

The commonness of a hierarchy is important: it guarantees that objects of one type can
perform the same functions as objects of any type at the same level in a system with any
number of processes. Commonness also implies robustness, an important property of wait-free
hierarchies. With the addition of the 2-bounded peek-queue to common2, the existence of a
type in A}, that is not common remains open Thus, the commonness of A, and the existence
of a common, fully-refined, wait-free hierarchy are also open.

Another important problem is the complexity issues within each level of a hierarchy;
namely, for any given type, how many objects of the type are required to implement consensus?
In proving that A7 is not robust, Jayanti showed that N — 1 T, objects are required to
implement consensus in systems with N processes. Thus, certain types require more than
one object to implement consensus. It might be possible to find a bound on the number of
objects required, perhaps related to the number of processes in the system.

The model discussed in this paper required that objects be deterministic and initializable.
While these qualities exist in a real system, it may be worthwhile from a theoretical point of
view to consider the results when one or more of these parameters is changed.

Acknowledgements

I would like to thank Gil Neiger for all of his comments and suggestions and everyone in the
CoC wait-free seminar for priming my interest in the subject.

References

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.
Atomic snapshots of shared memory. Journal of the ACM, 40(4):873-890, September
1993.

[2] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for
a class of synchronization objects. In Proceedings of the Twelfth ACM Symposium on
Principles of Distributed Computing, pages 159-170. ACM Press, August 1993.

[3] James H. Anderson. Composite registers. Distributed Computing, 6(3):141-154, April
1993.

[4] Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Efficient atomic snapshots using
lattice agreement. In A. Segall and S. Zaks, editors, Proceedings of the Sizth International

12

Workshop on Distributed Algorithms, number 647 in Lecture Notes on Computer Science,
pages 35-53. Springer-Verlag, November 1992.

Hagit Attiya and Ophir Rachman. Atomic snapshots in O(nlogn) operations. In Pro-
ceedings of the Twelfth ACM Symposium on Principles of Distributed Computing, pages
29-40. ACM Press, August 1993.

Bard Bloom. Constructing two-writer atomic registers. In Proceedings of the Sizth ACM
Symposium on Principles of Distributed Computing, pages 249-259. ACM Press, August
1987.

Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for {-resilient
asynchronous computations. In Proceedings of the Twenly-Fifth ACM Symposium on
Theory of Compuling, pages 91-100. ACM Press, May 1993.

Elizabeth Borowsky and Eli Gafni. Immediate atomic snapshots and fast renaming. In
Proceedings of the Twelfth ACM Symposium on Principles of Distributed Computing,
pages 41-52. ACM Press, August 1993.

James E. Burns and Gary L. Peterson. Constructing multi-reader atomic values from non-
atomic values. In Proceedings of the Sixth ACM Symposium on Principles of Distributed
Compuling, pages 222-231. ACM Press, August 1987.

Soma Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally
asynchronous systems. Information and Computation, 103(1):132-158, July 1993.

Soma Chaudhuri, Maurice Herlihy, Nancy Lynch, and Mark R. Tuttle. A tight lower
bound for k-set agreement. In Proceedings of the Thirty-Fourth Symposium on Foun-
dations of Compuler Science, pages 206-215. IEEE Computer Society Press, November
1993.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, January 1991.

Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for {-resilient
tasks. In Proceedings of the Twenly-Fifth ACM Symposium on Theory of Compulting,
pages 111-120. ACM Press, May 1993.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transaclions on Programming Languages and Systems,

12(3):463-492, July 1990.

Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings of the Twelfth
ACM Symposium on Principles of Distributed Compuling, pages 145-158. ACM Press,
August 1993.

Prasad Jayanti and Sam Toueg. Some results on the impossibility, universality, and
decidability of consensus. In A. Segall and S. Zaks, editors, Proceedings of the Sizlh
International Workshop on Distributed Algorithms, number 647 in Lecture Notes on
Computer Science, pages 69-84. Springer-Verlag, November 1992.

A Study of Wait-Free Hierarchies in Concurrent Systems 13

[17]

[18]

[19]

[20]

[21]

Richard Newman-Wolfe. A protocol for wait-free, atomic, multi-reader shared variables.
In Proceedings of the Sizth ACM Symposium on Principles of Distributed Compuling,
pages 232-248. ACM Press, August 1987.

Gary L. Peterson. Concurrent reading while writing. ACM Transactions on Programming
Languages and Systems, 5(1):46-55, January 1983.

Gary L. Peterson and James E. Burns. Concurrent reading while writing II: The multi-
writer case. In Proceedings of the Twenty-Fighth Symposium on Foundations of Computer
Science, pages 383-392. IEEE Computer Society Press, October 1987.

Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topol-
ogy of public knowledge. In Proceedings of the Twenty-Fifth ACM Symposium on Theory
of Computing, pages 101-110. ACM Press, May 1993.

Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The elusive atomic reg-
ister revisited. In Proceedings of the Sizth ACM Symposium on Principles of Distributed
Computing, pages 206-221. ACM Press, August 1987.

