Fabrication of Superhydrophobic Cellulose Surfaces via Plasma Processing

Balamurali Balu, Victor Breedveld and Dennis W. Hess

School of Chemical & Biomolecular Engineering Georgia Institute of Technology, Atlanta GA

Outline

- Background
- Experimental
- Results
- Conclusions
- Acknowledgements

Definitions

- Dr. Thomas Young (1805)¹
 - "...for each combination of a solid and a fluid, there is an <u>appropriate angle</u> of contact between the surfaces of the fluid, exposed to the air, and to the solid..."

$$\gamma_{\rm SL} + \gamma_{\rm LV} \cos \theta = \gamma_{\rm SV}$$

Source: Rame hart Instrument Co.

- Water Contact Angle (CA), θ < 90 → Hydrophilic</p>
- Water Contact Angle (CA), θ > 90 → Hydrophobic
- Water Contact Angle (CA), θ > 150 → Superhydrophobic

1. T. Young, Philosophical Trans. Royal Soc. London 95, 65-87 (1805)

Superhydrophobic surfaces

- Natural superhydrophobic surfaces
 - Lotus leaves, cabbage, Indian cress
 - Butterflies, cicada wings
- Mimicking the "lotus effect"
 - Extremely water repellent surfaces (condensate water removals, transformers)
 - Self-cleaning surfaces
 - Water proof garments
 - Membranes

Source: Wilhelm Barthlott

How to engineer Superhydrophobicity?

- Need CA > 150
 - On smooth solid, limit is ~120
 (CA for CF₃ groups)
 - ➤ Towards air, limit is ~180

$$\cos \theta' = f \cos \theta_y + (1 - f) \cos 180^0$$
(Cassie equation)

- Rules of thumb
 - Low surface energy
 - Micron and submicron scale roughness
- Artificial superhydrophobic surfaces
 - Inorganic substrates: Si wafers, glass slides, metal sheets
 - Inflexible and not biodegradable
 - Organic: Polymers
 - Often expensive
- Search for a biodegradable, renewable, inexpensive, biopolymer...

Source: http://www.voyle.net/

Choice of Substrate

- Cellulose Biodegradable, renewable, inexpensive, biopolymer!!
- Cellulose Paper

- $\cos \theta' = f \cos \left(\theta_y\right) + \left(1 f\right) \cos 180^{0}$
- ≥ 200 B.C to early 1800s → Hydrophilic
- ➤ After 1800s → Hydrophobic
- > 2000s → Superhydrophobic paper ^{1,2}
- How to obtain "superhydrophobic paper"?
 - Roughness
 - Selective etching -Amorphous domains and crystalline domains (nanometer length scale)
 - Low surface energy thin film of Pentafluoroethane (PFE)
 - > ~ 100 nm film covalently bonded to the top layer of fibers

- 1. B. Balu, V. Breedveld and D. W. Hess, US patent (Pending) (2007)
- 2. B. Balu, V. Breedveld and D. W. Hess, *Langmuir*, 24, 4785 (2008)

Experimental

Plasma Reactor

(I use This!)

Fluorescent Lamp (We all use This!)

- Plasma (a partially ionized gas)
 - Electric current through a gas
 - Ionization, radical formation and excitation
 - Key is the type of gas used
 - Oxygen etching
 - Pentafluoroethane polymerization

Source: www.howstuffworks.com

Superhydrophobic Paper

Contact angle hysteresis

- Plasma processing
 - ➤ Etching time → 30 min
 - ➤ Deposition time → 2 min

CA advancing	161.9 0.1
CA receding	158.3 1.1
CA hysteresis	3.5 1.1

Superhydrophobic Paper

- Plasma processing
 - Etching time → 0 min
 - ➤ Deposition time → 2 min

Hydrophilic!

- No apparent decrease in the solid-liquid contact area
- High hysteresis for a superhydrophobic surface not reported so far!

B. Balu, J. S. Kim, V. Breedveld and D. W. Hess, J. Adhes. Sci. Technol., in press

Water repellency and superhydrophobicity

- Young's equation single contact angle
- Hysteresis and adhesion force
 - ➤ Furmidge equation^{1,2}
 - \rightarrow mg sin α = w $\gamma_{LV}(\cos \theta_r \cos \theta_a)$

VAPOR

LIQUID

Contact angle	Roll-off	Sticky
$CA_{advancing}, \theta_a$	161.9 0.1	155.6 4.0
$CA_{receding}, \theta_{r}$	158.3 1.1	8.4 6.8
CA hysteresis, $\theta_a - \theta_r$	3.5 1.1	147.2 6.8

- 1. Furmidge, C. G., *J. Colloid Sci.*, 17, 309 (1962)
- 2. Kawasaki, K., J. Colloid Sci., 15, 402 (1960)

Confusing nomenclature

CA advancing	CA hysteresis	Terms used in the literature	
>150	<10	"Absolutely hydrophobic", "Water-repellant", "Ultrahydrophobic" and "Superhydrophobic"	
>150	>10	"Ultra water-repellant", "Super water-repellent" and "Superhydrophobic"	
>150	Not reported	"Ultrahydrophobic", "Water repulsive" and "Superhydrophobic"	

Two simple terms to categorize droplet behavior¹

Terminology	$CA_{advancing}, \theta_{a}$	CA hysteresis, θ_a - θ_r
"Roll-off" superhydrophobic	>150	<10
"Sticky" superhydrophobic	>150	>10

1. B. Balu, V. Breedveld and D. W. Hess, *Langmuir*, 24, 4785 (2008)

Mechanism

Ideal Wenzel state

(liquid penetrate roughness)

Ideal Cassie state

(liquid does not penetrate roughness)

Nano-scale → Wenzel state Micro-scale → Cassie state

Nano-scale → Cassie state Micro-scale → Cassie state

"Sticky" 900 nm

Tunability of adhesion

- Plasma processing
 - ➤ Etching time → variable
 - ➤ Deposition time → 2 min
- All are superhydrophobic
- Tunability of adhesion
 - Sticky to roll-off
 - CA hysteresis
 - \rightarrow 147 to 3

Can Independently vary CA and adhesion force!

Conclusions

Conclusions (Contd...)

- Tunability of adhesion
 - "Roll-off" and "Sticky"
 - Controlled transition from "Roll-off" to "Sticky"
- Potential Applications
 - Static transfer of fluids ("tweezer" for water drops) and microfluidic devices
 - Inexpensive substrate

Acknowledgements

- IPST Fellowship
- Jong Suk Kim
- Dr. Ashwini Sinha (Praxair)
- Yonghao Xiu (Hess Research Group)
- Hess and Breedveld Research Group Members

Questions?

Hydrophilic

"roll-off" SH

"sticky" SH

Squeezing a drop between two SH surfaces

Moving a magnetic water drop on a SH surface

Effects of nano-scale roughness

- Significant impact on the receding CA
- Enhancement of the roughness
 - Unique feature of plasma deposition
- Hysteresis
 - sensitive to nano-scale roughness
 - Not sensitive to micro-scale roughness

Effects of Fiber types

Non-conformal deposition

Non-conformal deposition

