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Abstract

This paper presents the application of a Case-Based Reasoning
approach to the sdection and modification of behavioral
assemblage parameters. The goal of thisresearch isto achieve an
optimal parameterization of robotic behaviors in run-time. This
increases robot performance and makes a manual configuration
of parameters unnecessary. The case-based reasoning module
sdlects a set of parameters for an active behavioral assemblage in
real-time. This set of parameters fits the environment better than
hand-coded ones, and its performance is monitored providing
feedback for a possible reselection of the parameters. This paper
places a significant emphasis on the technical details of the case-
based reasoning module and how it is integrated within a schema-
based reactive navigation system. The paper also presents the
results and evaluation of the system in both in simulation and real
world robotic experiments.

Index terms. Case-Based Reasoning, Behavior-Based Robotics,
Reactive Robatics.

I. INTRODUCTION

Reactive ontrol for robdics is known to provide
goad performance in unknown or dynamic environments.
Such environments provide very little a priori knowledge
and often no time for ddiberation. A reactive system
provides a tight coupling of perceptua data to an action,
and a response to a airrent stimulus is produced without
any ddliberation. At any point of time, based on incoming
sensory data, a robd seleds a subset of behaviors
(behavioral assmblage) from the set of predefined
behaviors and then exeaites them. One of the probems,
however, of this approach is that as an environment
gradually changes, the sdeded behaviors should also be
adjusted correspondingly or re-sdleded to represent a
behavioral asemblage that better fits a new situation.
However, increasing the parameter space of the predefined
behaviors to cover all the posshle types of environments in
the world would be impracticdl as the types of
environments represent a ntinuous Pace ad would
require an extremely large set to produce a good
approximation to the optimal behavior space buil ding each
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optimal set of parameters to fit a particular type of
environment is very tedious work requiring a significant
number of simulations and red roba experiments. Seoond,
it cannot be expeded to know in advance when and which
types of environments a roba will encounter during its
misgon. Finaly, it is desirable to make the process of
misgon spedfication as user-friendly and quick as possble
by not requiring a user to adjust the parameters of
behaviors. This paper presents a solution to this probem
based on the incorporation of case-based reasoning into the
behavior sdedion process. This permits an automatic
seledion of optimal parameters in run-time while the
misgon spedfication process no longer requires manua
configuration of behavioral parameters.

Asroba exeautesits misgon a case-based reasoning
(CBR) unit controls switching between different sets of
parametersin response to a change in the environment type.
Each such set of parameters congtitutes a ase in the CBR
system. The alaptation step in the @se-based reasoning
procedure fine-tunes the parameters to a spedfic type of
environment all owing the library of casesto be small. The
overall hierarchy isshown in Figure 1 below.
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Figure 1. Behavioral Selection Process with case-based reasoning
unit incorporated.

A case-based reasoning methodology is not new to
the field of robotics. It was successfully used to help in
solving such problems as path planning based on past
routes, high-level action-seledion based on environment
similarities, place leaning, and accderation of complex
problem solving based on past problem solutions [3, 4, 5, 6,
7, 8]. Previous work has also been performed on the
incorporation of case-based reasoning in the sdledion of
behavior parameters by our group [1, 2] on which this



present reseach is partially based and a few others [e.g.,
13]. The approach described in this paper, however, differs
significantly from the previous algorithms by introducing: a
novel feature identification mecanism that produces spatial
and temporal vedors describing the airrent environment; a
notion of traversability vectors that measure the degree of
traversability around a robot in configurable number of
diredions; arandomization in the case sdledion processto
allow for the exploration of cases; and a case switching
dedsion treeto adaptively control case switching based on
a case peformance This novel methodology results in
very robust performance of the robot while alowing for
easy input and oautput vedor space representation,
straightforward extensions and modifications, and smple
control of computational complexity depending on the
available omputationa resources and predsion of sensor
data. The work presented in this paper also extends the
previous work [1, 2] by incorporating the @se-based
reasoning within a hybrid robot architedure axd evaluating
the performance on bath red and simulated robds.

Il. METHODOLOGY

A. Framework

The framework chosen for the integration of the
case-based reasoning for behavioral sdedion is the
MissionLab system [9], which is a verson of AuRA
(Autonomous Robot Architedure) [10]. The overall hybrid
architedure @nsists of a schema-based reactive system
coupled with a high-level ddliberative planning system.
The reactive wmponent consists of primitive behaviors
caled motor schemas [11] grouped into sets called
behavioral assmblages. Each individua primitive
behavior is driven by its perceptua inpu (perceptud
schema) producing its own motor response. The vedorid
responses from each of the active schemas are added
together resulting in an overall behavior output. The
weighted sum of the vedors, after normalization, defines
the final vedor that is snt to the motor actuators. Hence
each motor schema affeds the overall behavior of the robot.

Within MissionLab, a finite state automaton defines
the high-level plan of aroba’s misdon. Each state in the
plan is one of the predefined behavioral asemblages
chosen to achieve the goal of a robd at this state. The
transitions between states are triggered by perceptual inpus
called triggers.

B. Integration of CBR within MissionLab

Every behavioral asemblage (a state in a high-level
plan) is controlled by a set of parameters. Normally, these
parameters would be carefully chosen by a user to
correspond to the task-environment the roba is expeded to
inhabit. If optimal behavior for the robot is desired, states
could be split into multiple states with the same behaviora
assmblage but with different sets of parameters where each
is adjusted to particular environmental characterigics. This
method would also require designing speda perceptual
triggers to deted the changes in environment type. This
complexity is avoided by employing the case-based

reasoning wit that, for a currently chosen behaviora
assmblage, saleds in real-time the set of parametersthat is
best suited to the arrent environment. As the type of
environment might change unexpededly, the CBR unit
continually monitors and re-sdeds and re-adapts the
assemblage parameters as necessary.

The diagram of how the CBR unit is integrated
within MissionLab appeasin figure 2. The sensor readings
enter into bah the high-level FSA-based planner and the
CBR unit. Based on the perceptual input, the same or a
new state is sleded. The chosen state defines a behavioral
asemblage that is then passed into the behavioral control
unit. The chosen state identifier isaso passed into the CBR
unit along with relevant information about the airrent
robd’s goal (e.g., goa position). If the CBR unit supports
the arrent state, then based on the perceptua input, goal
information and the state, a set of parameters for the
behavioral assemblage is &leded from the @se library and
adapted to better fit the environment. These parameters are
passed into the behavioral control unit, which applies them
to the aurrent behavioral assamblage. After evaluating this
asemblage, the motor vedor is produced and supplied to
the actuators for exeaution. If the chosen state, however, is
not supported by the CBR unit, then the CBR unit passs a
spedal flag to the behavioral control unit, and the
behavioral assmblage is used with its default parameter
values as defined in the finite state machine.
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Figure 2. Integration of the @se-base reasoning unit within the
AURA architecture.

Currently, the CBR unit supports navigational states
of type GOTO. The behavioral asemblage that
corresponds to such a state includes the following motor
schemas. The MoveToGoal schema produces a vedor
direded toward a goal location from the airrent robot’s
position. The magnitude of this vedor caled
MoveToGoal_Gain is an adjustable parameter for this
schema. The Wander schema generates a random
diredion vedor, adding an exploration component to the
robd’s behavior. This schema has two parameters: random
vector magnitude cdled Noise Gain; and
Noise Persigence, which control the rate of diredional
switching o the vedor. The AvoidObstacles schema
produces a vedor that results from repdling forces from
each of the obstacles within some distance from the robd.
Each repulsive force is a vedor with a diredion from the
deteded dbstacle toward the roba and the magnitude given
in formula (1).
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where d is the distance at which the obstacle is deteded by
sensors, M is the safety margin, and S is the sphere of
influencethat controls the distance beyond which obstacles
do not affect the robot behavior. The magnitude varies
linealy from 0 to 1, when a robot is within the sphere of
influence from an obstacle. As the robot comes inside the
safety margin of the obstacle, the magnitude becmes very
large. All the vedors are summed to produce one fina
vector as an output from the AvoidObstacles shema. The
vector is not normdized in order to preserve the dfed of
infinite repulsion when the robot is too close to any
obstacle. The parameters controlling the schema ae the
sphere of influence @lled Obstacle Sohere and the gain
called Obstacle Gain that is applied via multiplication to
the output vedor. The final schema in the GOTO
behavioral assmblage is the BiasMove schema, which
produces a vedor in a cetan diredion in order to hias the
motion behavior of the roba. The diredion of the vedor,
Bias Vector_X and Bias Vector_Y, and its magnitude,
Bias Vector_Gain, are the parameters that control this
schema.

Thus, the output space of the CBR unit for the
GOTO stateis defined by the foll owing vedor:
<Noise_Gain, Noise_Persistence,
Obstacle Sphere, Obstacle Gain,
MoveToGoal _Gain, Bias Vector_Gain,

Bias Vector_X, Bias Vector_Y>
A casein alibrary isa set of valuesfor these parameters.

C. Case-Based Reasoning Unit Overview

The overall structure of the CBR unit is smilar to a
traditional non-leaning case-based reasoning system [12]
(figure 3). The sensor data and goal information is supplied
to the Feature Identification sub-module of the CBR unit.
This sub-module @mputes a spatiad features vedor
representing the relevant spatial characteristics of the
environment and a temporal features vedor representing
relevant temporal characteristics. Both vedors are passed
forward for abest matching case ledion.

During the first stage of case selection, all the @ases
from the library are searched, and the distances between
their spatial feature vedors and the environmental spatia
feature vedor are cmputed. These digances define spatial
similarities of cases with the environment. The @se with
the highest spatial similarity is the best spatially matching
case. However, all the ases with a spatial similarity within
some delta from the similarity of the best spatially matching
case ae sedleded for the next stage seledion process These
cases are cdled spatially matching cases. At the second
stage of sdedion all the spatially matching cases are
searched, and the distances between their temporal feature
vectors and the environmental temporal feature vedor are
computed. These distances define tempora similarities of
cases with the environment. The @se with the highest
temporal similarity is the best temporally matching case.

And again, al the @ses with a temporal similarity within
some ddta from the similarity of the best temporally
matching case ae sdleded for the next stage sdledion
process These @ases are spatially and temporally matching
cases and are dl the cases with close spatial and tempora
smilarity to the arrent environment. This st usually
consists of only afew cases and is often just one @se. The
set, however, can never be empty as the most similar to the
environment case is dways slected into it, independently
of how disdmilar the case might be.

The last sdedion stage is a uniformly random
seledion from the set of spatially and temporally matching
cases. Theideais that these ases are all close enough to
the arrent environment. Their output parameter vedors,
however, might be very different. A spedfic pair of
temporal and spatial feature vedors does not necessarily
map anto an optimal solution due to posshle aliasing. Asa
result, all the ases afficiently similar to the current
environment deserve a chanceto betried.
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Figure 3. High-leve structure of the CBR Module.

The @se switching dedsion treeis then used to
dedde whether the arrently applied case should still be
applied or should be switched to the case seleded as the
best matching one. This proteds againg thrashing and
overuse of cases. If anew caseisto be applied, then it goes
through the case adaptation and application steps. At the
adaptation step, a caseis fine-tuned by dlightly readjusting
the behavioral assemblage parameters that the case mntains
to better fit the aurrent environment. At the appli caion step
these parameters are pased on to the behavioral control
module outside of the CBR unit.

D. Case-Based Reasoning Unit: Technical Details

1) Feature Identification Step

In this dep spatial and temporal feature vedors are
produced based on current environment data.  This data
includes sensor readings and goal position. The snsor data
are distances to olstacles along rays ot from each of the
sensors on the robot (e.g., as produced by sonar or laser
SENsors).

The spatial feature vedor has two elements in it: a
distancefrom theroba to the goal, D, which isa scalar and
a sub-vedor which represents an approximation of obstacle
density function around the robot and is computed as
follows (Fig. 4). The space aound the roba is divided into
K angular regions. The regions are dways taken in such a



way that the bisedor of the 0" region is directed toward the
goal of the roba. Within each region the duser of
obstacles that obstructs the region most of all is found. An
obstacle density function approximation vedor is then
represented by K pairs, <o, r>, where o is the degree of
obstruction of a region by the most obstructing cluster in
thisregion, andr isthedistanceto this cluster.

Figure 4 demonstrates an example computation of
the obstacle density. There ae 12 sensors in this example.
They are evenly spaced around the roba, which is located
in the center of the large drcle. The large drcle is a
clipping circle where all the obstacles deteded beyond that
circle ae ignored in the mputation of the density
function. The circled obstacles within each region define
the most obstructing clugters within each region. Ther
corresponding degreeof obstruction, g, isthen computed as
the ratio o the angle that they obstruct within the region
over the angle of the wholeregion. Thus, gisequal to 1.0
for region 1 indicating that the obstacles obstruct the region
completely, whereas o is equal to 23 for the 0" and 3¢
regions, as the obstacles leave 1/3 of the agle in the
regions free for traversing. Region 2 has o equal to 0.0
since there ae no obstacles deteded within the region's
clipping circle. Thus, the whole region is available for
traversing.

<o,=
Region1

<o=2/3; r5>

Clipping Circle

Figure 4. Computation of the spatid feature vector for K=4 (4
regions). Therobot isin the enter of the drcle. Thick lines are
obstacles as detected from 12 sensors evenly placed around the
robot. The drcled clusters of obstacles within each region are the
most obstructing clugters.

Figure 4 also shows the distance of the robot to the
goal, D, which is the firs element of the spatia feature
vector. Note that the number of regions, K, is determined
based on the desired computational complexity and also the
resolution of sensor data. If K is equal to the number of
sensors on the robot, then the obstacle density function is
the actual raw sensor data clipped by the dipping region.
Thus, in the above example setting K to more than 4 might
not bring any benefit as there are only 3 sensors per region
anyway.

The temporal feature vedor contains two scalar
elements. short-term relative motion, R, and long-term
relative motion, R. The short- and long-term relative
motion measures represent short- and long-term velociti es

of therobot, respedively, relative to the maximum possble
vel ocity of theroba and are ammputed as shown in formula
(2). The same formulais used for the cmputation of both
relative motion measures. However, the time window
lengths used to compute average robd positions differ
between long- and short-term relative motion computations
as shown in theformula (3).
Ri _ "POSi,Iongterm - Posi,shortterm" Cfori=s| (2)

N * MaxVel
where N is the normalization constant, MaxVel is the
maximum robot velocity, and POS jongterm aNd POS sortierm are
average positions of the robot over long- and short-term
time windows, respedively, and are updated according to
formula (3) every timethe CBR moduleiscalled.

POSi’j = a1,j * POSiC?|jd +(l_ ai,j )* NEWPOS (3)

fori =s,| andj = shortterm,longterm
where NewPos is a new current position of the roba, and
the filter coefficient, a, is dependent on whether
POSS,ShOT[lefm! Poss,longterma Pos,shortterm or POS,Iongterm is
computed. Thus for example, asshortem IS ¥t t0 a
coefficient with decay time of 5 time ocles, whereas
a jongtem 1S €t to @ efficient with decay time of 600 time
cycles.

Formula (4) summarizes the form of the spatial
and temporal vedors.
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These two vectors define input features (indices) for cases
and are pas=d in this form into the best matching case
seledion described next

2) Case Slection Process

The best maching case ®ledionis broken into three
steps. At the first step, a set of spatially matching cases is
found. All the casesin the library contain their own spatial
and temporal feature vedors. The similarity between
spatial feature vedors for a case and environment isused to
asess the degree to which the case matches the
environment spatially. In order for spatial feature vedors to
be comparable, however, they are first transformed into
traversability vectors. A traversability vector, F, eiminates
actual distances and just represents the degree to which
each region can be traversed. Formula (5) presents the
transformation from a spatial vedor into a traversability
vector.

Ofy O
F=2 5 f =min@1-0,* 5.
H1B

Df :maX(Dmin’ min(Dmax’ D))
where D is the digance to the goal (see uation (4)), Dyin
and Dy  ae the minimum and maximum thresholds,
respedively, for considering traversability in a region, and
<g, 1> are dements of Vgaia 8s defined in equation (4)

Df —I’i

)



The idea is that D; represents the drcle of interest for
traversability computation. The goal distance D, limits it
on one hand, while Dy aso limits it if the goal is too far
away. Dpip is just a minimum threshold to prevent zero
radius circles. The traversability measure, f;, ranges from 0
to 1. It is proportional to the degree of obstruction, g;, of
the most obstructing cluster in the region and the distance
ri, at which this cluster is present in the region. Thus, if a
cluster of obstacles is extremely close to the roba and it
obstructs the whale region, then the region’s traversability
measure, f, becomes 0. If, however, obstacles obstruct the
region minimally, or they are al beyond the drcle of
interest with radius of Dy, then the traversability measure, f,
approaches 1.

To avoid large changes in the traversability vedor
for environment, F*", due to noise in sensor data, the
vector is passd through the smoahing filter given in
formula (6). The coefficient b is chosen such as to have a
decay time on the order of 5 to 10 sensor readings.

£, =b* f; +(1-b)* ;0! (6)
where f; is computed according to formula (5) based on the
spatial vedor for current environment and f,™%¢ js fV
from the previous exeaution of CBR module.

Now that every case in the library is represented
by a traversability vedor, F, and the current environment is
represented by a traversability vedor F*V, these vedors can
be used to asessthe spatial similarities between the ases
and environment. The spatial similarity is computed as the
weighted sum of sguared erors between a case and
environment traversability vedors. There is significantly
more weight given to the regions direded more towards the
goal. This asares that, for example, if a @se ad
environment have dear-to-goal situations in the 0" region
then the environment is more smilar to this case than to
any other case that might have other very similar regions
but does not have the clea-to-goal stuation in the O"
region. Formula (7) shows the @mputation of spatial

similarity S.
K-1
zWi *(f - f)?
S=1-=0 (7

K-1
2
i=0

where W is the vedor of weights for each region, F is the
traversability vedor of a case, and F*" is the traversahility
vector of the arrent environment. Thus, the perfed match
isrepresented by Sequal to 1, and the maximum difference
by Sequal to 0.

After the spatiall y based case selection, the set of
spatially matched cases contains all the ases with spatial
similarity Swithin some delta from the spatial similarity of
the best spatially matching case. The best spatial matching
case is defined as the @se with the highest spatially
matching similarity with the current environment.

Similarly, at the secnd seledion step the tempora
similarity with the airrent environment is computed for all
the @ses in the set of spatialy matched cases according to
formula (8).

Jg-WRR™MT Wt (R R g
W +Ws

where W and wg are long- and short-term relative motion
measure weights, < R, R, >isatempora vedor for a @ase,
and < R, R®™ > is a temporal vedor for the arrent
environment. The long-term relative motion measure is
given more weight indicating its greater importance in the
asesgnent of temporal similarities.

The best temporally matching case is the @ase that
has the highest temporal similarity with the environment.
All cases with atempora similarity within some delta from
the tempord similarity of the best temporal matching case
are sdleded from the set of spatially matched cases for the
next sdedion sage. Thus after the temporal-based
seledion process the set of matched cases contains the
cases that are bath spatially and temporally similar to the
environment.

Finally, at the third and the lag step o the @se
seledion process randomness is added to the seledion
process Namdy, one ase from the set of matiched cases is
sedleded randomly. This sdeded case is dedared
arbitrarily to be the best matching case with the arrent
environment.

S

3) Case Snitching Decision Tree
At this gep the dedsion is made as to whether the
best matching case or the currently applied case should be
used until the next call to the CBR module. This dedsion is
based upon a number of characteristics describing the
potential capabilities of the best matching case axd the
current case. Thededsion treeisshown in figure 5.

At the roa of the tree the time the aurrent case
was applied is chedked againg some threshold CaseTime
that is gedfic to each casein the library. If the @ase was
applied for less time than the threshold, then the spatia
similarity of the arrent case is cheded against threshold
Sow, @nd the difference between the new case's 9atia
smilarity and the current case's gatia similarity is
chedked againgt some threshold S If the two conditions
are satisfied, then the current case is continued to be used.
The intent is that the airrent case should not be thrown
away too soon unlessthe environment became significantly
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different from what it was when the current case was
initialy sdeded. If one or bah of the nditions are
unsatisfied or if the ase was applied for longer than the
sugoested threshold, the dedsion-making proceals to
cheding the long-term relative motion measure, R. If it is
larger than some threshold, then the case is more likely to
be performing well and the short-term relative motion
measure, Rs, should be compared againg a low threshold —
Rsow- If the short-term relative measure is also higher than
the low threshald, it suggests that the current case performs
wel and it is exchanged for the new one only if its gatia
similarity is very different from the environment or a much
more similar case is found. Otherwise, the arrent case is
left unchanged. If, on the other hand, the short-term
relative motion measure is lessthan the low threshold, then
the @seis switched to the new one. Going back to the long-
term relative measure dhed, if it is snaler than the R
threshold, then the case might not be performing that well
and, therefore, the short-term relative measure is compared
against a more dtrict threshold — Rs threshold. If it falls
below the threshold, then the new case is seded.
Otherwise, the case spatial smilarity is compared against a
strict threshold — S;g, threshold.  If the similarity is less
then the new case is sleded, otherwise the arrent case is
given more timeto exert itself.

4) Case Adaptation
If it isdedded at the previous gep to keep the current case,
then this gep is not exeauted. If it is dedded, however, to
apply a new case, then the new case neals to be fine-tuned
to the aurrent environment.
The adaptation agorithm isvery simple:

X = (R adapithreshold + Rygapthreshold) / (R + Ry);
Y =R agapthreshold/ R ;
Z = Ry agapthreshold) / R,
If (R <R agapthreshold and Rs < Rs xapthreshol d)
Increase Noise_Gain proportionaly to X;
Increase CaseTime proportionaly to X;
Limit Noise_Gain and CaseTime from above;
Elseif (R <R agapthreshold)
Increase Noise_Gain proportionaly to Y;
Increase CaseTime proportionally to X;
Limit Noise_Gain and CaseTime from above;
Elseif (Rs< Rsagapithreshold)
Increase Noise_Gain proportionaly to Z;
Limit Noise_Gain from above;
End,

The adaptation algorithm looks at bath the long-term
and short-term motion measures of the roba and increases
the level of noise in the robot’s behavior if any of the
measures fall below the rresponding thresholds.  The
amouwnt to which the noise is increased is proportiona to
how long the roba's progress was impeded as determined
by the long- and short-term motion measures. If a roba
was lacking progress for long enough, then the long-term
motion measure R falls below its threshold and the
CaseTime threshold is also increased to asaure that the new
case is applied long enough for the arrent environment.

After the @se is adapted it is applied. The
application is dmply the etraction of the behaviord
asemblage parameters from the case and passng them to
the behavioral control unit within the MissionLab system.

I1l. SMULATION RESULTS

The system was first tested in a simulated
environment. MissionLab provides a simulator as well as
logging capabilities allowing the colledion of the required
dtatisticd data easly.

Figure 6 shows the runs of a simulated roba with
and without a CBR unit.
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Figure 6. Robot runsin smulated environment. a) without CBR
module; b) with CBR module;

During the entire run the same behaviora assmblage is
used. However, as the environment changes from one type
to another, the CBR module re-seleds the set of parameters
that control the behavioral assemblage. Asaresult, if CBR
is disabled a robot requires a higher level of noise in its
behavior in order to complete the misgon (figure 6a). If,
however, the CBR module is enabled, then Wander
behavior is rarely used, and the distance traveled by the
roba in Figure 6b is 23.7% shorter, whereas misson
completion time is 234% less than in Figure 6a.  For
example, during the part of the run before the local
minimum produced by two dbstacles is encountered (point
B in figure 6b) the robot uses a case 1 cdled CLEARGOAL
case (figure 7b left). In this case no noise is present in the
robd behavior making the trajedory a straight line When
the robot approaches the two obstacles, it switches to the
case 2 called FRONTOBSTRUCTED_SHORTTERM



a)

Environment characterigticsat A:

Spatial Vector:
D (goal distance) = 300
tensity  distance
Region0: ¢,=0.31r,=513
Regionl: ¢, =0.71r,=2.83
Region2: ¢,=0.36,r,=7.03
Region3: g;=0.54,r;=2.80
Temporal Vector:
(0- min, 1- max)
ShatTerm_MotionR; = 1.000
LongTerm MotionR =0.931
Traversability Vector:
(O-urtraversable, 1- excdl ent)
f,=0.92 f, =0.58 f, :.1.00 ,=0.68

Spatial Vector:
D (goal distance) =275
tensity  distance
Region0: ¢,=1.00,r,=0.11
Regionl: ¢, =0.79,r,=0.11
Region2: ¢,=0.38 r,=012
Region3: ¢;=1.00,r,=0.11
Temporal Vector:
(0- min, 1- max)
ShatTerm_MotionR;=0.010
LongTerm MotionR, = 1.000
Traversability Vector:
(O-urtraversable, 1- excdl ent)

Environment characterigtics at B:

f,=0.02 f, =0.22 f, =0.63 f;=0.02
'l

w*

CLEARGOAL
Spatial Vector:
D (goal distance) =5

tensity  distance
Region0: ¢, =0.00, r,=0.00
Region1: ¢, =0.00, r, =0.00
Region2: ¢, =0.00, r,=0.00
Region3: ¢;=0.00, r;=0.00
Temporal Vector:
(0- min, 1- max)
ShatTerm_MotionR; = 1.000
Longrerm MotionR =0.700
Traversability Vector:
(O-untraversable, 1- excdl ent)
f,=1.00 f, =1.00 f,=1.00 f,=1.00

w*

FRONTOBSTRUCTED_SHORTTERM

Spatial Vector:
D (goel distance) =5

tensity  distance
Region0: o,=1.00;r,=1.00
Regionl: ¢, =0.80 r, =1.00
Region2: o,=0.00r,=1.00
Region3: o;=0.80r;=1.00
Temporal Vector:
(0- min, 1- max)
ShatTerm_MotionR, = 0.000
Longrerm MotionR = 0.600
Traversability Vector:
(O-urtraversable, 1- excdl ent)
f,=0.14 f,=0.32 f, =1.00 f,=0.32

CaseOutput Parameters:
MoveToGoal_Gain =0.10
Noise Gain =0.02
Noise Persistence =10

Obstadle Gain =0.80
Obstade Shere  =1.50

CaseOutput Parameters:
MoveToGoal_Gain = 2.00
Noise Gain =0.00
Noise Persistence =10

Obstade Gain =2.00
Obstacle Sohere  =0.50

Bias Vector_X =0.00 Bias Vector_X =-1.00
Bias Vector_Y =0.00 Bias Vector Y  =0.70

Bias Vector_Gain =0.00 Bias Vector_Gain =0.70
CaseTime= 3.0 CaseTime=2.0

Figure 7. @ Environment features at points A (left) and B (right);
b) Casesused at point A (left) and point B (right).

(figure 7b right). In this case, the gains of the Wander and
BiasMove schemas and Obstacle Sphere are increased.
This ensures that the roba quickly gets out of the local
minima and proceeds toward the goal switching back to the
CLEARGOAL case.

Figure 8 gaphs the statistical data gathered in the
smulations. The performance represented by traveled
distance ad time steps was measured as a function of
obstacle density. Just as in the figure 6, the roba had to
travel through dfferent types of environments, but the
average density varied acrosstrials. Note that for the runs
without the CBR module, the optimal set of parameters
was chosen for a given average obstacle density. This was
equivalent to a user spedfying the optimal parameters for a
given misgon. Even larger improvement could be expeded
if the parameters were dosen constant throughout al the
trials. Asseen in figure 8, if the average obstacle density is
very small (below 12%), then the improvement is
insignificant. This is due to the fact that in an environment
that is aimost obstacle-free there really is only one @se
applied dl the time. The same set of parameters can be
chosen manually for the roba without the CBR module.
As the obstacle density increases, however, the @ases are

switched more axd more often leading to a significant
improvement in performarce.

Performance Improvement Using CBR
25.00

20.00 —

— — Traveled
Distance
. Improvement
15.00
/\/\‘ — Time Steps

10.00
/ Improvement
5.00

0.00 »’/J

0.00 0.05 0.10 0.‘15 0.‘20 0.‘25 0.‘30 0.‘35 0.40
Obstacle Density
Figure 8. Statigticd evaluation of the performance improvement
of the system with CBR over the system without CBR (in
simulétions).

Percent Improvemen!

1V. ROBOT EXPERIMENTS

The system was also tested on areal robot, a Nomad
150 series robot. It had 12 sonar sensors evenly placed
around it. Theinformation from these sensors was the only
perceptua input driving the behavior of the roba. The
MissionLab system described ealier provides support for
red robaic systems including the Nomad 150 robds.
Thus, for the real robot experiments the exact same
framework asfor the smulations was used.

The environment for the real robot experiments is
shown in Figure 10. The chairs were used to introduce
additional obstacles in the environment. The treein the
white vase by the wuch shown in the back of the picture
representsthe goal for the roba.

Figure 10a shows the gtart of the robot run. The
path is clea and a traversability veaor would indicate that
the 0" region dreded toward the goa has full
traversability. This corresponds to the CLEARGOAL case
(figure 7b left) with zero Wander schema gain, and the
roba moves graight toward the goal. As it reaches the
small box canyon constructed by the three chairs (figure
10b), atraversability vedor indicaes little traversability of
the 0" region and high traversahility for other regions. The
new case - FRONTOBSTRUCTED_SHORTTERM (figure
7b right) - is applied with greder gain for the Wander
schema, larger sphere of influence for obstacles and some
gain for the BiasMove schema direding the roba back
from the chairs. Asaresult, the roba comes quickly out of
the canyon. In figure 10c therobot is again clea to the god,
and a @se with no Wander behavior is sleded that makes
the robot go straight to the goal .

Ten runs were mnducted with the CBR module and
ten without. Each pair of runs was done on exactly the
same environment. Just asin smulations, thetrials ranged

Improve ment{%)
Obstacle | Traveled Time
Density | Distance Steps
L o B.2 3.3
Medium 17.8 176
High 264 286

Figure 9. Improvement in robot performance with CBR module
versus without the CBR module (in real robot experiments)



Figure 10. Real robot run. Chairs are used as obstacles; thetreein
the back by the cuch isthe goal of the robot.

from very low obstacle density environment to a quite large
obstacle density. The mlleded data is shown in the figure
9. The numbers correlate well with the simulation-based
data dso showing that as the average obstacle density
increases, the benefits from the CBR module also increase.

V. SUMMARY

This paper presented a robotic system that
incorporated case-based reasoning into the process of
seledion and modification of parameters that control the
behavioral asemblage in a schema-based navigationa
system. The CBR module dlows for an easier design of
behavioral asemblages. First, the behavioral parameters
do not neal to be chosen caefully any longer since the
CBR module sets them up automaticdly in red-time based

on the current robd’s environment. Seoondly, fewer
behavioral assemblages neal to be designed by virtue of the
fact that by adjusting the parameters the CBR module in
effed seleds different behavioral assemblages that have the
same set of active schemas The CBR module was
designed in such a way as to provide very robust
performance in case sdedion and adjustment processes.
The simulation and red roba experiments clealy showed
significant improvement in the roba navigational tasks.

Future work includes the addition of automatic
leaning of new cases through experience and the extension
of the CBR module applicaion beyond the navigational
tasks. Also, the integration work of the CBR module within
a larger framework of leaning agorithms within
MissionLab is planned for the future.
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