
Abstract
This paper presents the application of a Case-Based Reasoning
approach to the selection and modification of behavioral
assemblage parameters.  The goal of this research is to achieve an
optimal parameterization of robotic behaviors in run-time. This
increases robot performance and  makes a manual configuration
of parameters unnecessary. The case-based reasoning module
selects a set of parameters for an active behavioral assemblage in
real-time.  This set of parameters fits the environment better than
hand-coded ones, and its performance is monitored providing
feedback for a possible reselection of the parameters.  This paper
places a significant emphasis on the technical details of the case-
based reasoning module and how it is integrated within a schema-
based reactive navigation system. The paper also presents the
results and evaluation of the system in both in simulation and real
world robotic experiments.

Index terms: Case-Based Reasoning, Behavior-Based Robotics,
Reactive Robotics.

I. INTRODUCTION

Reactive control for robotics is known to provide
good performance in unknown or dynamic environments.
Such environments provide very li ttle a priori knowledge
and often no time for deliberation.  A reactive system
provides a tight coupling of perceptual data to an action,
and a response to a current stimulus is produced without
any deliberation. At any point of time, based on incoming
sensory data, a robot selects a subset of behaviors
(behavioral assemblage) from the set of predefined
behaviors and then executes them.  One of the problems,
however, of this approach is that as an environment
gradually changes, the selected behaviors should also be
adjusted correspondingly or re-selected to represent a
behavioral assemblage that better fits a new situation.
However, increasing the parameter space of the predefined
behaviors to cover all the possible types of environments in
the world would be impractical as the types of
environments represent a continuous space and would
require an extremely large set to produce a good
approximation to the optimal behavior space; building each
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optimal set of parameters to fit a particular type of
environment is very tedious work requiring a significant
number of simulations and real robot experiments.  Second,
it cannot be expected to know in advance when and which
types of environments a robot will encounter during its
mission.  Finally, it is desirable to make the process of
mission specification as user-friendly and quick as possible
by not requiring a user to adjust the parameters of
behaviors. This paper presents a solution to this problem
based on the incorporation of case-based reasoning into the
behavior selection process.  This permits  an automatic
selection of optimal parameters in run-time  while the
mission specification process no longer requires manual
configuration of behavioral parameters.

As robot executes its mission a case-based reasoning
(CBR) unit controls switching between different sets of
parameters in response to a change in the environment type.
Each such set of parameters constitutes a case in the CBR
system.  The adaptation step in the case-based reasoning
procedure fine-tunes the parameters to a specific type of
environment allowing the library of cases to be small.  The
overall hierarchy is shown in Figure 1 below.

Figure 1.  Behavioral Selection Process with case-based reasoning
unit incorporated.

A case-based reasoning methodology is not new to
the field of robotics.  It was successfull y used to help in
solving such problems as path planning based on past
routes, high-level action-selection based on environment
similarities, place learning, and acceleration of complex
problem solving based on past problem solutions [3, 4, 5, 6,
7, 8].  Previous work has also been performed on the
incorporation of case-based reasoning in the selection of
behavior parameters by our group [1, 2] on which this
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present research is partiall y based and a few others [e.g.,
13]. The approach described in this paper, however, differs
significantly from the previous algorithms by introducing: a
novel feature identification mechanism that produces spatial
and temporal vectors describing the current environment; a
notion of traversability vectors that measure the degree of
traversability around a robot in configurable number of
directions; a randomization in the case selection process to
allow for the exploration of cases; and a case switching
decision tree to adaptively control case switching based on
a case performance.  This novel methodology results in
very robust performance of the robot while allowing for
easy input and output vector space representation,
straightforward extensions and modifications, and simple
control of computational complexity depending on the
available computational resources and precision of sensor
data. The work presented in this paper also extends the
previous work [1, 2] by incorporating the case-based
reasoning within a hybrid robot architecture and evaluating
the performance on both real and simulated robots.

II. METHODOLOGY

A. Framework

The framework chosen for the integration of the
case-based reasoning for behavioral selection is the
MissionLab system [9], which is a version of AuRA
(Autonomous Robot Architecture) [10].  The overall hybrid
architecture consists of a schema-based reactive system
coupled with a high-level deliberative planning system.
The reactive component consists of primitive behaviors
called motor schemas [11] grouped into sets called
behavioral assemblages.  Each individual primitive
behavior is driven by its perceptual input (perceptual
schema) producing its own motor response.  The vectorial
responses from each of the active schemas are added
together resulting in an overall behavior output. The
weighted sum of the vectors, after normalization, defines
the final vector that is sent to the motor actuators.  Hence,
each motor schema affects the overall behavior of the robot.

Within MissionLab, a finite state automaton defines
the high-level plan of a robot’s mission.  Each state in the
plan is one of the predefined behavioral assemblages
chosen to achieve the goal of a robot at this state.  The
transitions between states are triggered by perceptual inputs
called triggers.

B. Integration of CBR within MissionLab

Every behavioral assemblage (a state in a high-level
plan) is controlled by a set of parameters.  Normally, these
parameters would be carefull y chosen by a user to
correspond to the task-environment the robot is expected to
inhabit.  If optimal behavior for the robot is desired, states
could be split into multiple states with the same behavioral
assemblage but with different sets of parameters where each
is adjusted to particular environmental characteristics.  This
method would also require designing special perceptual
triggers to detect the changes in environment type.  This
complexity is avoided by employing the case-based

reasoning unit that, for a currently chosen behavioral
assemblage, selects in real-time the set of parameters that is
best suited to the current environment.  As the type of
environment might change unexpectedly, the CBR unit
continually monitors and re-selects and re-adapts the
assemblage parameters as necessary.

The diagram of how the CBR unit is integrated
within MissionLab appears in figure 2.  The sensor readings
enter into both the high-level FSA-based planner and the
CBR unit.  Based on the perceptual input, the same or a
new state is selected.  The chosen state defines a behavioral
assemblage that is then passed into the behavioral control
unit.  The chosen state identifier is also passed into the CBR
unit along with relevant information about the current
robot’s goal (e.g., goal position).  If the CBR unit supports
the current state, then based on the perceptual input, goal
information and the state, a set of parameters for the
behavioral assemblage is selected from the case library and
adapted to better fit the environment.  These parameters are
passed into the behavioral control unit, which applies them
to the current behavioral assemblage.  After evaluating this
assemblage, the motor vector is produced and supplied to
the actuators for execution.  If the chosen state, however, is
not supported by the CBR unit, then the CBR unit passes a
special flag to the behavioral control unit, and the
behavioral assemblage is used with its default parameter
values as defined in the finite state machine.

Figure 2.  Integration of the case-base reasoning unit within the
AuRA architecture.

Currently, the CBR unit supports navigational states
of type GOTO.  The behavioral assemblage that
corresponds to such a state includes the following motor
schemas: The MoveToGoal schema produces a vector
directed toward a goal location from the current robot’s
position. The magnitude of this vector called
MoveToGoal_Gain is an adjustable parameter for this
schema.  The Wander schema generates a random
direction vector, adding an exploration component to the
robot’s behavior. This schema has two parameters: random
vector magnitude called Noise_Gain; and
Noise_Persistence, which control the rate of directional
switching of the vector.  The AvoidObstacles schema
produces a vector that results from repelling forces from
each of the obstacles within some distance from the robot.
Each repulsive force is a vector with a direction from the
detected obstacle toward the robot and the magnitude given
in formula (1).
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where d is the distance at which the obstacle is detected by
sensors, M is the safety margin, and S is the sphere of
influence that  controls the distance beyond which obstacles
do not affect the robot behavior.  The magnitude varies
linearly from 0 to 1, when a robot is within the sphere of
influence from an obstacle.  As the robot comes inside the
safety margin of the obstacle, the magnitude becomes very
large.  All the vectors are summed to produce one final
vector as an output from the AvoidObstacles schema.  The
vector is not normalized in order to preserve the effect of
infinite repulsion when the robot is too close to any
obstacle.  The parameters controlling the schema are the
sphere of influence called Obstacle_Sphere and the gain
called Obstacle_Gain that is applied via multipli cation to
the output vector.  The final schema in the GOTO
behavioral assemblage is the BiasMove schema, which
produces a vector in a certain direction in order to bias the
motion behavior of the robot.  The direction of the vector,
Bias_Vector_X and Bias_Vector_Y, and its magnitude,
Bias_Vector_Gain, are the parameters that control this
schema.

Thus, the output space of the CBR unit for the
GOTO state is defined by the following vector:
<Noise_Gain,      Noise_Persistence,
Obstacle_Sphere,         Obstacle_Gain,
MoveToGoal_Gain, Bias_Vector_Gain,
Bias_Vector_X, Bias_Vector_Y >
A case in a library is a set of values for these parameters.

C. Case-Based Reasoning Unit Overview

The overall structure of the CBR unit is similar to a
traditional non-learning case-based reasoning system [12]
(figure 3).  The sensor data and goal information is supplied
to the Feature Identification sub-module of the CBR unit.
This sub-module computes a spatial features vector
representing the relevant spatial characteristics of the
environment and a temporal features vector representing
relevant temporal characteristics.  Both vectors are passed
forward for a best matching case selection.

During the first stage of case selection, all the cases
from the library are searched, and the distances between
their spatial feature vectors and the environmental spatial
feature vector are computed.  These distances define spatial
similarities of cases with the environment.  The case with
the highest spatial similarity is the best spatially matching
case.  However, all the cases with a spatial similarity within
some delta from the similarity of the best spatiall y matching
case are selected for the next stage selection process.  These
cases are called spatially matching cases.  At the second
stage of selection all the spatially matching cases are
searched, and the distances between their temporal feature
vectors and the environmental temporal feature vector are
computed.  These distances define temporal similarities of
cases with the environment.  The case with the highest
temporal similarity is the best temporally matching case.

And again, all the cases with a temporal similarity within
some delta from the similarity of the best temporally
matching case are selected for the next stage selection
process.  These cases are spatially and temporally matching
cases and are all the cases with close spatial and temporal
similarity to the current environment.  This set usually
consists of only a few cases and is often just one case.  The
set, however, can never be empty as the most similar to the
environment case is always selected into it, independently
of how dissimilar the case might be.

The last selection stage is a uniformly random
selection from the set of spatially and  temporally matching
cases.  The idea is that these cases are all close enough to
the current environment.  Their output parameter vectors,
however, might be very different.  A specific pair of
temporal and spatial feature vectors does not necessaril y
map onto an optimal solution due to possible aliasing.  As a
result, all the cases suff iciently similar to the current
environment deserve a chance to be tried.

Figure 3. High-level structure of the CBR  Module.

The case switching decision tree is then used to
decide whether the currently applied case should still be
applied  or should be switched to the case selected as the
best matching one.  This protects against thrashing and
overuse of cases.  If a new case is to be applied, then it goes
through the case adaptation and application steps.  At the
adaptation step, a case is fine-tuned  by slightly readjusting
the behavioral assemblage parameters that the case contains
to better fit the current environment.  At the application step
these parameters are passed on to the behavioral control
module outside of the CBR unit.

D. Case-Based Reasoning Unit: Technical Details

1) Feature Identification Step
In this step  spatial and temporal feature vectors are

produced based on current environment data.  This data
includes sensor readings and goal position.  The sensor data
are distances to obstacles along rays shot from each of the
sensors on the robot (e.g., as produced by   sonar or laser
sensors).

The spatial feature vector has two elements in it: a
distance from the robot to the goal, D, which is a scalar and
a sub-vector which represents an approximation of obstacle
density function around the robot and is computed as
follows (Fig. 4). The space around the robot is divided into
K angular regions.  The regions are always taken in such a
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way that the bisector of the 0th region is directed toward the
goal of the robot.  Within each region the cluster of
obstacles that obstructs the region most of all i s found.  An
obstacle density function approximation vector is then
represented by K pairs, <σ, r>, where σ is the degree of
obstruction of a region by the most obstructing cluster in
this region, and r is the distance to this cluster.

Figure 4 demonstrates an example computation of
the obstacle density.  There are 12 sensors in this example.
They are evenly spaced around the robot, which is located
in the center of the large circle.  The large circle is a
clipping circle where  all the obstacles detected beyond that
circle are ignored in the computation of the density
function.  The circled obstacles within each region define
the most obstructing clusters within each region. Their
corresponding degree of obstruction, σ, is then computed as
the ratio of the angle that they obstruct within the region
over the angle of the whole region.  Thus, σ is equal to 1.0
for region 1 indicating that the obstacles obstruct the region
completely, whereas σ is equal to 2/3 for the 0th and 3rd

regions, as the obstacles leave 1/3 of the angle in the
regions free for traversing.  Region 2 has σ equal to 0.0
since there are no obstacles detected within the region's
clipping circle. Thus, the whole region is available for
traversing.

Figure 4.  Computation of the spatial feature vector for K=4 (4
regions).  The robot is in the center of the circle. Thick lines are
obstacles as detected from 12 sensors evenly placed around the
robot.  The circled clusters of obstacles within each region are the
most obstructing clusters.

Figure 4 also shows the distance of the robot to the
goal, D, which is the first element of the spatial feature
vector.  Note that the number of regions, K, is determined
based on the desired computational complexity and also the
resolution of sensor data.  If K is equal to the number of
sensors on the robot, then the obstacle density function is
the actual raw sensor data clipped by the clipping region.
Thus, in the above example setting K to more than 4 might
not bring any benefit as there are only 3 sensors per region
anyway.

The temporal feature vector contains two scalar
elements: short-term relative motion, Rs, and long-term
relative motion, Rl.  The short- and long-term relative
motion measures represent short- and long-term velocities

of the robot, respectively, relative to the maximum possible
velocity of the robot and are computed as shown in formula
(2).  The same formula is used for the computation of both
relative motion measures.  However, the time window
lengths used to compute average robot positions differ
between long- and short-term relative motion computations
as shown in the formula (3).
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where N is the normalization constant, MaxVel is the
maximum robot velocity, and Posi,longterm and Posi,shortterm are
average positions of the robot over long- and short-term
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formula (3) every time the CBR module is called.
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where NewPos is a new current position of the robot, and
the filter coefficient, a, is dependent on whether
Poss,shortterm, Poss,longterm, Posl,shortterm or  Posl,longterm is
computed.  Thus, for example, as,shortterm is set to a
coefficient with decay time of 5 time cycles, whereas
al,longterm is set to a coeff icient with decay time of 600 time
cycles.

 Formula (4) summarizes the form of the spatial
and temporal vectors.
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These two vectors define input features (indices) for cases
and are passed in this form into the best matching case
selection described  next.

2) Case Selection Process
The best matching case selection is broken into three

steps.  At the first step,  a set of spatiall y matching cases is
found.  All the cases in the library contain their own spatial
and temporal feature vectors.  The similarity between
spatial feature vectors for a case and environment is used to
assess the degree to which the case matches the
environment spatially.  In order for spatial feature vectors to
be comparable, however,  they are first transformed into
traversability vectors.  A traversability vector, F, eliminates
actual distances and just represents the degree to which
each region can be traversed.  Formula (5) presents the
transformation from a spatial vector into a traversability
vector.
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where D is the distance to the goal (see equation (4)), Dmin

and Dmax  are the minimum and maximum thresholds,
respectively, for considering traversability in a region, and
<σi, ri> are elements of Vspatial as defined in equation (4)
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The idea is that Df represents the circle of interest for
traversability computation.  The goal distance, D, limits it
on one hand, while Dmax also limits it if the goal is too far
away. Dmin is just a minimum threshold to prevent zero
radius circles. The traversability measure, fi, ranges from 0
to 1.  It is proportional to the degree of obstruction, σi, of
the most obstructing cluster in the region and the distance,
ri, at which this cluster is present in the region.  Thus, if a
cluster of obstacles is extremely close to the robot and it
obstructs the whole region, then the region’s traversability
measure, f, becomes 0. If, however, obstacles obstruct the
region minimally, or they are all beyond the circle of
interest with radius of Df, then the traversability measure, f,
approaches 1.

To avoid large changes in the traversability vector
for environment, Fenv,  due to noise in sensor data, the
vector is passed through the smoothing filter given in
formula (6).  The coefficient b is chosen such as to have a
decay time on the order of 5 to 10 sensor readings.
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where fi is computed according to formula (5) based on the
spatial vector for current environment and fi

env,old is fi
env

from the previous execution of CBR module.
Now that every case in the library is represented

by a traversability vector, F, and the current environment is
represented by a traversabil ity vector Fenv, these vectors can
be used to assess the spatial similarities between the cases
and environment. The spatial similarity is computed as the
weighted sum of squared errors between a case and
environment traversability vectors.  There is significantly
more weight given to the regions directed more towards the
goal.  This assures that, for example, if a case and
environment have clear-to-goal situations in the 0th region
then the environment is more similar to this case than to
any other case that might have other very similar regions
but does not have the clear-to-goal situation in the 0th

region. Formula (7) shows the computation of spatial
similarity S.
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where W is the vector of weights for each region, F is the
traversability vector of a case, and Fenv is the traversabil ity
vector of the current environment.  Thus, the perfect match
is represented by S equal to 1, and the maximum difference
by S equal to 0.

After the spatiall y based case selection, the set of
spatially matched cases contains all the cases with spatial
similarity S within some delta from the spatial similarity of
the best spatially matching case.  The best spatial matching
case is defined as the case with the highest spatiall y
matching similarity with the current environment.

Similarly, at the second selection step the temporal
similarity with the current environment is computed for all
the cases in the set of spatiall y matched cases according to
formula (8).
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where wl and ws are long- and short-term relative motion
measure weights, < Rs,  Rl > is a temporal vector for a case,
and < Rs

env, Rl
env > is a temporal vector for the current

environment.  The long-term relative motion measure is
given more weight indicating its greater importance in the
assessment of temporal similarities.

The best temporally matching case is the case that
has the highest temporal similarity with the environment.
All cases with a temporal similarity within some delta from
the temporal similarity of the best temporal matching case
are selected from the set of spatiall y matched cases for the
next selection stage.  Thus, after the temporal-based
selection process, the set of matched cases contains the
cases that are both spatially and temporall y similar to the
environment.

Finally, at the third and the last step of the case
selection process, randomness is added to the selection
process.  Namely, one case from the set of matched cases is
selected  randomly.  This selected case is declared
arbitraril y to be the best matching case with the current
environment.

3) Case Switching Decision Tree
At this step the decision is made as to whether the

best matching case or the currently applied case should be
used until the next call to the CBR module. This decision is
based upon a number of characteristics describing the
potential capabili ties of the best matching case and the
current case.  The decision tree is shown in figure 5.

At the root of the tree, the time the current case
was applied is checked against some threshold CaseTime
that is specific to each case in the library.  If the case was
applied for less time than the threshold, then the spatial
similarity of the current case is checked against threshold
Slow, and the difference between the new case's spatial
similarity  and the current case's spatial similarity is
checked against some threshold Sdiff.  If the two conditions
are satisfied, then the current case is continued to be used.
The intent is that the current case should not be thrown
away too soon unless the environment became significantly

Figure 5.  Case Switching Decision tree
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different from what it was when the current case was
initiall y selected. If one or both of the conditions are
unsatisfied or if the case was applied for longer than the
suggested threshold, the decision-making proceeds to
checking the long-term relative motion measure, Rl. If it is
larger than some threshold, then the case is more li kely to
be performing well and the short-term relative motion
measure, Rs, should be compared against a low threshold –
Rs low. If the short-term relative measure is also higher than
the low threshold, it suggests that the current case performs
well and it is exchanged for the new one only if its spatial
similarity is very different from the environment or a much
more similar case is found.  Otherwise, the current case is
left unchanged.  If, on the other hand, the short-term
relative motion measure is less than the low threshold, then
the case is switched to the new one. Going back to the long-
term relative measure check, if it is smaller than the Rl

threshold, then the case might not be performing that well
and, therefore, the short-term relative measure is compared
against a more strict threshold – Rs threshold.  If it fall s
below the threshold, then the new case is selected.
Otherwise, the case spatial similarity is compared against a
strict threshold – Shigh threshold.   If the similarity is less,
then the new case is selected, otherwise the current case is
given more time to exert itself.

4) Case Adaptation
If it is decided at the previous step to keep the current case,
then this step is not executed.  If it is decided, however, to
apply a new case, then the new case needs to be fine-tuned
to the current environment.

The adaptation algorithm is very simple:

X = (Rl adaptthreshold + Rs adaptthreshold) / (Rl + Rs);
Y = Rl adaptthreshold / Rl ;
Z = Rs adaptthreshold) / Rs;
If (Rl < Rl adaptthreshold and Rs < Rs adaptthreshold)

Increase Noise_Gain proportionall y to X;
Increase CaseTime proportionally to X;
Limit Noise_Gain and CaseTime from above;

Else if (Rl < Rl adaptthreshold)
Increase Noise_Gain proportionall y to Y;
Increase CaseTime proportionally to X;
Limit Noise_Gain and CaseTime from above;

Else if (Rs < Rs adaptthreshold)
Increase Noise_Gain proportionall y to Z;
Limit Noise_Gain from above;

End;

The adaptation algorithm looks at both the long-term
and short-term motion measures of the robot and increases
the level of noise in the robot’s behavior if any of the
measures fall below the corresponding thresholds.   The
amount to which the noise is increased is proportional to
how long the robot's progress was impeded as determined
by the long- and short-term motion measures.  If a robot
was lacking progress for long enough, then the long-term
motion measure Rl fall s below its threshold and the
CaseTime threshold is also increased to assure that the new
case is applied long enough for the current environment.

After the case is adapted it is applied.  The
application is simply the extraction of the behavioral
assemblage parameters from the case and passing them to
the behavioral control unit within the MissionLab system.

III. SIMULATION RESULTS

The system was first tested in a simulated
environment.  MissionLab provides a simulator as well as
logging capabil ities allowing the collection of the required
statistical data easil y.

Figure 6 shows the runs of a simulated robot with
and without a CBR unit.
a)

b)

Figure 6.  Robot runs in simulated environment. a) without CBR
module; b) with CBR module;

During the entire run the same behavioral assemblage is
used.  However, as the environment changes from one type
to another, the CBR module re-selects the set of parameters
that control the behavioral assemblage.  As a result, if CBR
is disabled a robot requires a higher level of  noise in its
behavior in order to complete the mission (figure 6a). If,
however, the CBR module is enabled, then Wander
behavior is rarely used, and the distance traveled by the
robot in Figure 6b is 23.7% shorter, whereas mission
completion time is 23.4% less than in Figure 6a.  For
example, during the part of the run before the local
minimum produced by two obstacles is encountered (point
B in figure 6b) the robot uses a case 1 called CLEARGOAL
case (figure 7b left). In this case no noise is present in the
robot behavior making the trajectory a straight line. When
the robot approaches the two obstacles, it switches to the
case 2 called FRONTOBSTRUCTED_SHORTTERM

Point A
Case 1

Point B
Case 2



a)

b)

Figure 7. a) Environment features at points A (left) and B (right);
b) Cases used at point A (left) and point B (right).

(figure 7b right). In this case, the gains of the Wander and
BiasMove schemas and Obstacle_Sphere are increased.
This ensures that the robot quickly gets out of the local
minima and proceeds toward the goal switching back to the
CLEARGOAL case.

Figure 8 graphs the statistical data gathered in the
simulations.  The performance represented by traveled
distance and time steps was measured as a function of
obstacle density.  Just as in the figure 6, the robot had to
travel through different types of environments, but the
average density varied across trials.  Note that for the runs
without the CBR module, the optimal set of parameters
was chosen for a given average obstacle density.  This was
equivalent to a user specifying the optimal parameters for a
given mission.  Even larger improvement could be expected
if the parameters were chosen constant throughout all the
trials.  As seen in figure 8, if the average obstacle density is
very small (below 12%), then the improvement is
insignificant. This is due to the fact that in an environment
that is almost obstacle-free, there really is only one case
applied all the time.  The same set of parameters can be
chosen manually for the robot without the CBR module.
As the obstacle density increases, however, the cases are

switched more and more often leading to a significant
improvement in performance.

Figure 8.  Statistical evaluation of the performance improvement
of the system with CBR over the system without CBR (in
simulations).

IV. ROBOT EXPERIMENTS

The system was also tested on a real robot, a Nomad
150 series robot. It had 12 sonar sensors evenly placed
around it.  The information from these sensors was the only
perceptual input driving the behavior of the robot.  The
MissionLab system described earlier provides support for
real robotic systems including the Nomad 150 robots.
Thus, for the real robot experiments the exact same
framework as for the simulations was used.

The environment for the real robot experiments is
shown in Figure 10.  The chairs were used to introduce
additional obstacles in the environment.  The  tree in the
white vase by the couch shown in the back of the picture
represents the goal for the robot.

Figure 10a shows the start of the robot run.  The
path is clear and a traversabil ity vector would indicate that
the 0th region directed toward the goal has full
traversability.  This corresponds to the CLEARGOAL case
(figure 7b left) with zero Wander schema gain, and the
robot moves straight toward the goal. As it reaches the
small box canyon constructed by the three chairs (figure
10b), a traversability vector indicates little traversability of
the 0th region and high traversabil ity for other regions.  The
new case - FRONTOBSTRUCTED_SHORTTERM (figure
7b right) - is applied with greater gain for the Wander
schema, larger sphere of influence for obstacles and some
gain for the BiasMove schema directing the robot back
from the chairs.  As a result, the robot comes quickly out of
the canyon. In figure 10c the robot is again clear to the goal,
and a case with no Wander behavior is selected that makes
the robot go straight to the goal.

Ten runs were conducted with the CBR module and
ten without.  Each pair of runs was done on exactly the
same environment. Just as in simulations, the trials ranged

Figure 9.  Improvement in robot performance with CBR module
versus without the CBR module (in  real robot experiments)
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Environment characteristics at A:
Spatial Vector:
D (goal distance) = 300
                   density    distance
Region 0:  � 0 = 0.31; r0 = 5.13
Region 1:  � 1 = 0.71; r1 = 2.83
Region 2:  � 2 = 0.36; r2 = 7.03
Region 3:  � 3 = 0.54; r3 = 2.80
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 1.000
LongTerm_Motion Rl = 0.931
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.92  f1 =0.58  f2 =1.00  f3=0.68

Environment characteristics at B:
Spatial Vector:
D (goal distance) = 275
                   density    distance
Region 0:  � 0 = 1.00; r0 = 0.11
Region 1:  � 1 = 0.79; r1 = 0.11
Region 2:  � 2 = 0.38; r2 = 0.12
Region 3:  � 3 = 1.00; r3 = 0.11
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 0.010
LongTerm_Motion Rl =  1.000
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.02  f1 =0.22  f2 =0.63  f3=0.02

Case 1 used at A:
CLEARGOAL
Spatial Vector:
D (goal distance) = 5
                   density    distance
Region 0:  � 0 = 0.00; r0 = 0.00
Region 1:  � 1 = 0.00; r1 = 0.00
Region 2:  � 2 = 0.00; r2 = 0.00
Region 3:  � 3 = 0.00; r3 = 0.00
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 1.000
LongTerm_Motion Rl = 0.700
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =1.00  f1 =1.00  f2 =1.00  f3=1.00
Case Output Parameters:
MoveToGoal_Gain = 2.00
Noise_Gain             = 0.00
Noise_Persistence   = 10
Obstacle_Gain        = 2.00
Obstacle_Sphere     = 0.50
Bias_Vector_X        = 0.00
Bias_Vector_Y         = 0.00
Bias_Vector_Gain   = 0.00
CaseTime = 3.0

Case 2 used at B:
FRONTOBSTRUCTED_SHORTTERM
Spatial Vector:
D (goal distance) = 5
                   density    distance
Region 0:  � 0 = 1.00; r0 = 1.00
Region 1:  � 1 = 0.80; r1 = 1.00
Region 2:  � 2 = 0.00; r2 = 1.00
Region 3:  � 3 = 0.80; r3 = 1.00
Temporal Vector:
(0 - min, 1 - max)
ShortTerm_Motion Rs = 0.000
LongTerm_Motion Rl = 0.600
Traversability Vector:
(0-untraversable, 1- excellent)
f0 =0.14  f1 =0.32  f2 =1.00  f3=0.32
Case Output Parameters:
MoveToGoal_Gain = 0.10
Noise_Gain             = 0.02
Noise_Persistence   = 10
Obstacle_Gain        = 0.80
Obstacle_Sphere     = 1.50
Bias_Vector_X        = -1.00
Bias_Vector_Y        = 0.70
Bias_Vector_Gain   = 0.70
CaseTime = 2.0
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Figure 10.  Real robot run. Chairs are used as obstacles; the tree in
the back by the couch is the goal of the robot.

from very low obstacle density environment to a quite large
obstacle density. The collected data is shown in the figure
9. The numbers correlate well with the simulation-based
data also showing that as the average obstacle density
increases, the benefits from the CBR module also increase.

V. SUMMARY

This paper presented a robotic system that
incorporated case-based reasoning into the process of
selection and modification of parameters that control the
behavioral assemblage in a schema-based navigational
system.  The CBR module allows for an easier design of
behavioral assemblages.  First, the behavioral parameters
do not need to be chosen  carefull y any longer since the
CBR module sets them up automaticall y in real-time based

on the current robot’s environment. Secondly, fewer
behavioral assemblages need to be designed by virtue of the
fact that by adjusting the parameters the CBR module in
effect selects different behavioral assemblages that have the
same set of active schemas.   The CBR module was
designed in such a way as to provide very robust
performance in case selection and adjustment processes.
The simulation and real robot experiments clearly showed
significant improvement in the robot navigational tasks.

Future work includes the addition of automatic
learning of new cases through experience and the extension
of the CBR module application beyond the navigational
tasks.  Also, the integration work of the CBR module within
a larger framework of learning algorithms within
MissionLab is planned for the future.
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