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SUMMARY

The physical characteristics of the human body at rest have important implications. For

example, they play a role in comfort, safety, posture, and health. Resting human poses

belong to a class of poses distinct from active poses, but by comparison have been stud-

ied little in prior research. Machine perception of this class of poses would be beneficial to

numerous applications, but it is complicated by line-of-sight occlusion from bedding. Pres-

sure sensing mats are a promising alternative, but data is challenging to collect at scale. To

overcome this, we use modern physics engines to simulate bodies resting on a soft bed with

a pressure sensing mat. This method can efficiently generate data at scale for training deep

neural networks. We present a deep model trained on this data that infers 3D human pose

and body shape from a pressure image, and show that it transfers well to real world data.

We also present a model that infers pose, shape and contact pressure from a depth image

facing the person in bed, and it does so in the presence of blankets. This model similarly

benefits from synthetic data, which is created by simulating blankets on the bodies in bed.

We evaluate this model on real world data and compare it to an existing method that re-

quires RGB, depth, thermal and pressure imagery in the input. Our model only requires an

input depth image, yet it is 12% more accurate. Our methods are relevant to applications in

healthcare, including patient acuity monitoring and pressure injury prevention. We demon-

strate this work in the context of robotic caregiving assistance, by using it to control a robot

to move to locations on a person’s body in bed.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Overview

People spend a substantial part of their lives at rest in bed. Machine perception for this

class of human activity would be beneficial to numerous applications, but the complexity

of it presents challenges. The human body at rest is characterized by a lack of physical

exertion, which leads to substantial contact with the surrounding environment, as well as

self-contact between parts of the body. Furthermore, bedding materials and self-occlusion

that are common in environments where people rest, which impedes the ability of sensors

to gather information about the body. This dissertation presents mechanical models of

humans at rest and their surroundings, and provides ways of inferring human pose and

body shape using unconventional sensing modalities.

Prior research has largely focused on active human poses. Examples of this include

datasets for markerless human pose estimation [1, 2, 3], arm dynamics in the context of

exoskeletons [4, 5], and walking stability [6, 7]. While the fundamental human structure

and body composition remains the same, the distribution of pose and contact differs. Gen-

erally, there is little motion in the pose of a person resting, so time-series sensor data is

uninformative for real-time inference. However, a dynamical model of how human bodies

move to assume a resting pose could offer insight. We map random poses to a distribution

of resting poses by dropping randomly posed articulated ragdoll bodies to rest on a soft

mattress in a dynamics simulator (Figure 1.1 (a)).
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Figure 1.1: Overview of dissertation work. (a) Modeling bodies at rest with dynamic ragdoll physics. (b) Modeling contact with a
synthetic pressure sensing mat underneath the body. (c) Modeling occlusions covering the body. (d) Using a deep network to infer body
pose, shape and contact pressure of a human at rest from sensor data. In the example shown, the network inputs a depth image of a
person underneath a blanket, and outputs human pose, body shape, and contact pressure underneath the person.
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Human pose estimation is a well-known perception problem that explores how infor-

mation from sensors can infer where the body is in space and how the limbs are configured.

While early works in this area inferred a limited set of joint angles and/or positions in

space, improved human representations allow for additional inference of the body shape,

height, and weight. This is usually formulated as a supervised machine learning problem,

where some input (e.g. an image) is fed into a model that extracts features and produces

an estimate of the pose. State-of-the-art machine learning models for such a problem use

convolutional neural networks (CNNs), which can require a substantial amount of data to

train – typically tens of thousands of samples. Collecting real data at this scale would be

challenging. Instead, our human body simulation can provide this: it can generate a large

quantity of resting poses quickly, and it can also generate synthetic sensor images necessary

for training.

This dissertation explores pressure and depth imagery for sensing a person. Pressure

mats are a promising alternative to sensing a person at rest because they are not subject

to line-of-sight occlusion. When placed under a person in bed, a pressure mat produces

pressure images with features that spatially resemble a human figure. We treat pressure

images like camera images in the context of deep learning and use them to infer a person’s

pose in bed. To generate synthetic pressure images, we introduce a method of simulating a

pressure mat with a particle simulator [8] and a method to calibrate the mat (Figure 1.1 (b)).

In comparison, simulating depth imagery is simple – a mere collection of distances between

the camera and objects of interest in a scene. However, it requires realistic models of objects

occluding the person. We accomplish this by simulating blankets covering the body at rest

(Figure 1.1 (c)).

We present a series of deep models for perceiving humans at rest. The first model has an

embedded kinematic skeleton model and infers joint angles, skeleton link lengths, and 3D

joint positions [9] from a pressure image. It also includes a simple mechanical model that

provides insight into the ambiguity associated with limbs raised off of the pressure mat. Our

3



next iteration infers a Skinned Multi-Person Linear (SMPL) 3D human parametric mesh

model [10], which provides a detailed profile of body shape [11]. The third deep model also

uses SMPL, but it inputs a depth image of a person underneath blankets and is able to infer

the pressure distribution from the underlying surface onto the body [12] (Figure 1.1 (d)).

Our deep models include a novel method of modeling pressure and depth image generation

within the network using differentiable analytic geometry, which we show to be beneficial.

We describe two potential applications for this work in healthcare: (1) in-bed monitor-

ing of patients and care receivers, and (2) robot assistance to people in bed. For example,

the pose and body shape inferred by our system could be used to discern a patient’s status

and provide information to a clinician. We also suggest applying our method of inferring

localized contact pressure from a depth camera to the problem of pressure injury preven-

tion. For robot assistance, our methods may be useful for automating in-bed tasks including

bathing assistance, itch scratching, dressing, and toileting. We provide a demonstration of

our work being used to command a mobile manipulator robot to move to specific locations

on a person’s body in bed (see Figure 1.2). In the demonstration, a person in bed moves to

different poses and a researcher commands a Hello Robot Stretch RE-1 robot [13] to move

to joint positions on the person.

4



Figure 1.2: Demonstration of application to robot assistance. A researcher commands a Hello Robot Stretch RE-1 robot to move to
locations on the person’s body based on an estimate of their pose in bed. In this demonstration, the model inputs a depth image from
an overhead camera and outputs human pose, body shape, and contact pressure. Contact pressure is shown underneath the estimate of
pose, and a reference without blankets is provided to qualitatively verify the pose estimate.

5



1.2 Contributions

This dissertation includes contributions that cross the fields of computer vision, machine

learning, optimization, haptics, robot and human mechanics, and physics simulation. An

early part of this work compares methods for inferring human pose from a pressure im-

age, and provides evidence that modern deep learning methods, specifically convolutional

neural networks (CNNs), are suitable for the problem and outperform traditional machine

learning algorithms. We introduce a differentiable articulated human skeleton model that

can be embedded into the deep network to learn a set of kinematically constrained 3D hu-

man joint positions. The skeleton is then used to create a mechanical model of pressure

image ambiguity to analyze human limbs that are out of contact with the pressure sensing

mat. We apply the method of Monte Carlo dropout to human pose estimation for measuring

uncertainty, and show that uncertainty is higher for limbs out of contact with the sensor.

This thesis makes a number of contributions in modeling the physics of humans at rest

and creating synthetic data that is suitable for training deep models. We show that these

deep models transfer well to real data for inferring body pose and shape of people resting

from diverse sensing modalities. We introduce a physics-based method to simulate human

bodies at rest on a soft mattress, which converts randomly sampled human poses to resting

poses. We also introduce a method to simulate pressure sensing arrays using a particle

simulator with position-based dynamics [8], and cover the simulated soft mattress with the

pressure sensing array to generate synthetic pressure images. This simulator is used to

create the publicly released PressurePose dataset1, which includes 206K synthetic pressure

images (184K train / 22K test) with associated 3D human poses and shapes. The dataset

also includes 1,051 real pressure images and RGB-D images from 20 human participants

that are used for testing2. We present a deep learning model, PressureNet3, that is trained

on the PressurePose synthetic data and estimates 3D human pose and body shape given a

1PressurePose synthetic data: doi.org/10.7910/DVN/IAPI0X
2PressurePose real data: doi.org/10.7910/DVN/KOA4ML
3PressurePose and PressureNet code: github.com/Healthcare-Robotics/bodies-at-rest
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pressure image and gender.

Besides inferring pose from pressure, we present BodyPressure4, a method that takes as

input depth images of a person in bed from an overhead camera and infers the body pose,

body shape, contact pressure, and localized regions of high pressure density. BodyPressure

similarly leverages synthetic data for model training and has the addition of depth imagery,

which is created by simulating blankets on the body at rest and rendering depth from a

pinhole camera. This dissertation provides evidence that BodyPressure is robust to these

occlusions, and shows that it performs best when training with a mixed bag of both real and

synthetic data. We publicly release the accompanying synthetic dataset, BodyPressureSD,

consisting of 97,495 bodies at rest with pressure images and depth images rendered with

and without simulated blankets. We also present an optimization method to fit SMPL

bodies to a real dataset, and use it to create SLP-3Dfits5, a dataset consisting of 4,545

SMPL bodies fit to the SLP dataset [14] that resolves depth perspective ambiguity by fitting

human mesh models to the point clouds from the dataset.

1.3 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 describes a method of inferring human

pose in bed from contact pressure [9]. It is our initial work modeling humans at rest, which

uses a human skeleton model of pose at rest and compares deep networks to traditional ma-

chine learning models. Chapter 3 describes our method of simulating bodies at rest, which

is used to generate data for training deep networks [11]. It presents an improved method

of pose and body shape estimation that uses only synthetic data for training. Chapter 4 de-

scribes a method of inferring human pose, body shape, and contact pressure from a depth

image of a person under blankets [12]. It uses both real and synthetic data for training a

deep network, which involves simulating blankets on bodies at rest.

4BodyPressure code and data: github.com/Healthcare-Robotics/BodyPressure
5SLP-3Dfits data: github.com/pgrady3/SLP-3Dfits
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CHAPTER 2

INFERRING HUMAN POSE IN BED FROM CONTACT PRESSURE

Various circumstances, such as illness, injury, or longterm disabilities can result in people

receiving assistance in bed. Previous work has shown how robots can provide assistance

with ADLs [15, 16, 17], but providing assistance to a person in bed can be challenging.

Estimating the pose of a person’s body could enable robots to provide better assistance.

Typical methods of body pose estimation use line-of-sight sensors, such as RGB cameras,

which can have difficulties when the body is occluded by blankets, loose clothing, medical

equipment, over-bed trays and other common items in healthcare settings, such as hospitals.

A pressure-sensing mat on the bed can allow for estimation of the body’s pose in a manner

that is less sensitive to bedding materials and surrounding objects [16, 18, 19, 20]. Prior

work with pressure images has not addressed a number of concerns key to the success of

robot assistance in bed, namely (1) pose estimation in 3D for either flat or non-flat beds and

(2) appropriately dealing with uncertainty when the pose estimate may be inaccurate.

This chapter describes two methods to infer human pose on a configurable bed from a

pressure image: The first method infers the overall body position using the center-of-mass

on a pressure mat (Figure 2.1(a), section 2.2, [21]), and the improved second method infers

a 3D human skeleton on both flat and non-flat beds using deep learning (Figure 2.1(b), sec-

tion 2.3, [9]). Both of the methods operate in real time, and we additionally propose a

method to measure confidence in each estimated joint position for the person in bed. We

provide evidence that the improved method works for some challenging scenarios, such as

when the bed and human are configured in a seated posture, and when limbs are raised off

of the pressure sensing mat. Further, we release a motion capture labeled dataset of over

28,000 pressure images across 17 human participants, in addition to our open-source code.

For the deep learning method, we propose and compare two convolutional neural net-
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Figure 2.1: Two methods to infer human pose in bed from contact pressure: (a) Human
body position measured by the center of mass on the pressure image. (b) Deep learning
model that infers a 3D human skeleton on a configurable bed.

work (CNN) architectures to learn a mapping from a pressure image and bed configuration

to 3D human joint positions: the head, neck, shoulders, elbows, wrists, chest, hips, knees,

and ankles. The first method directly regresses to the 3D ground truth labels (x, y, z). The

second method embeds a 17-joint kinematics skeleton model of the human to the last layer

of the ConvNet to enforce constraints on bone lengths and joint angles. This provides a

more complete pose representation with additional unlabeled joints and latent space joint

angle estimates. We introduce a new architecture that adjusts the skeleton model for differ-

ently sized people, while providing comparison to a constant link length skeleton model.

We train the kinematics CNNs end-to-end, backpropagating from 3D joint Euclidean er-

ror through the kinematics model. We compare our CNN methods to baseline data-driven

algorithms, including ridge regression and k-nearest neighbors.

Our configurable bed, introduced previously as Autobed [16, 22], features adjustable

height, leg rest angle, and head rest angle. Autobed can sense its own state, sense the

pressure distribution of the person on the bed, and communicate with other devices. In this

work, we estimate the human joint positions in two Autobed configurations by adjusting

the bed’s head rest: supine (0◦ flat) and seated (60◦ incline).

Lack of contact by limbs or other body parts presents a challenging issue for the pres-

sure image modality. In this work, we consider common poses where this issue arises, such
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as an arm raised in the air resembling a double inverted pendulum. Among other poses,

this case demonstrates where the pressure image can be similar for different configurations

of the arm. In such a case, the pressure data may be insufficient to confidently estimate

the pose of the arm. An estimate of confidence or model uncertainty can be valuable, for

example to allow an assistive robot to reject low-confidence estimates by removing them

from a list of potential goals in task plan execution. To estimate model uncertainty, we use

Monte Carlo dropout, a method proposed by Gal and Ghahmarani [23]. With this method,

we perform a number of stochastic forward passes through the CNN during test time and

compute the joint position and joint position confidence from the moments of the output

distribution.

2.1 Related Works

Markerless human pose estimation is a challenging problem complicated by environment

factors, the human pose configurations of interest, and data type. Relatively few researchers

have used pressure images for human pose estimation in bed [18, 19, 20], while many used

cameras in myriad environments and poses[24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36]. Researchers have increasingly explored data-driven methods such as ConvNets,

from model-free networks to inclusion of models in various architectures. Here we discuss

research with pressure images, data-driven methods, and measuring network uncertainty.

2.1.1 Pressure-Image-based Work

Prior pressure-image-based pose estimation work has fit 2D kinematic models to pressure

image features. In a series of papers including [18], Harada et al. used a kinematic model

to create a synthetic database for comparison with ground truth pressure images. Grimm

et al.[19] identified human orientation and pose using a prior skeleton model. Similar to

our motivation and findings, they used a pressure mat to compensate for bedding occlusion

and observed higher error for lighter joints (e.g. the elbow), which had a relatively low
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pressure. Liu et al. [20] generated a pictorial structures model to localize body parts on a

flat bed.

A few researchers have also looked at human posture classification from pressure im-

ages [19, 37, 38]. Posture classification is a different problem from 3D body pose estima-

tion, but it can be used in a complementary way, e.g. by providing a prior on the model

used for pose estimation.

2.1.2 Data-driven Human Pose Estimation

Like the pressure-image-based research, we use a human body model, but take a data-driven

approach more common in vision-based work. While infrared and depth images have seen

recent attention in human pose estimation [24], a large body of vision-based work uses

monocular RGB cameras [25]. Our method builds upon research with monocular RGB

image input; we note the following similarities and differences:

• Single image. Both monocular RGB-image-based work and our pressure-image-

based work has a single input array.

• Under-constrained. For 3D human pose, both monocular RGB images and single

pressure images are under-constrained.

• Data content. The data encoding is fundamentally different. For example, in the

context of pose estimation, light intensity in an RGB image is highly disconnected

from pressure intensity.

• Dimensionality. RGB images typically have more features and a higher resolution

than pressure images.

• Warped spatial representation. Calibrating RGB cameras to alleviate distortion is

straightforward. In contrast, it is challenging to determine the configuration of a

cloth pressure sensing mat from its pressure image in the case of folds or bends.
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While the differences may limit the transferability of methods across data types, we

find that some data-driven methods previously used for vision modalities are applicable to

pressure images. Researchers have performed 3D human pose estimation with monocular

RGB images using standard machine learning algorithms such as ridge regressors [26, 27,

28]. In particular, Okada and Soatto [26] use kernel ridge regression (KRR) as well as

linear ridge regression (LRR). Further, Ionescu et al. [27] compare K-Nearest Neighbors

(KNN) and ridge regression on the Human3.6M dataset. We use these classical approaches

to provide a baseline comparison for our proposed method.

Recently, with the advent of high quality, labeled synchronous datasets such as Hu-

man3.6M [27], many researchers have explored deep learning methods such as end-to-end

training of ConvNets [29, 30, 31, 32]. Two common ConvNet approaches include direct re-

gression to joint labels [29, 36] and regression to discretized confidence maps [30, 33, 31].

Within 3D human pose estimation research, confidence map approaches include Pavlakos

et al. [31], who train a ConvNet end-to-end on a 3D confidence voxel space, and Zhou,

Zhu et al. [34] and Bogo et al. [35] who fit a 3D model to 2D confidence maps. However,

the high dimensional output space of confidence maps can make real-time pose estimation

difficult. Li and Chan [36] used rapid direct regression to 3D Cartesian joint positions; we

implement a similar architecture because real-time estimation is important to our planned

application. Zhou, Sun et al. [32] take a hybrid approach, by training a ConvNet end-to-end

and enforcing anthropomorphic constraints with an embedded human skeleton kinematics

model with constant link lengths. We implement a method of this form for comparison and

introduce a new architecture with variable skeleton link lengths to allow the model to adapt

to differently sized people.

2.2 Inferring Body Position from Center-of-Mass

Here we describe how to estimate overall body position using a center-of-mass (COM)

calculation from data collected by a pressure-sensing mat. This method was developed in
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2015 and published in 2019 [21]. The COM model sums the pressure values to estimate

the total weight on the pressure-sensing mat.

2.2.1 Method

We used a center of mass estimator from Scikit-image [39] to estimate the position of the

body on the pressure-sensing mat. On average, the human pose estimation algorithm takes

< 1 millisecond to run on an external machine (Intel Core i7-3770, 3.40GHz). Figure 2.1(a)

shows the estimated head position for a person lying down. The COM model sets the Y-

coordinate (the Y-axis is along the width of bed) of the body model’s pose equal to the

Y-coordinate of the estimated center of mass estimate. It positions the head of the body

model in the X-direction to be 25 cm from the head of the bed and orients the body model

such that the midline of the body model is parallel to the centerline of the bed.

2.2.2 Evaluation and Results

For this evaluation, there were 8 able-bodied participants who took part in the study be-

tween August and December 2015. The participants gave written informed consent. Par-

ticipants’ weights ranged from 52 to 95 kg and heights from 1.60 to 1.87 m.

For the experiment, we placed the bed with the mat in a motion capture room. We asked

the participants to lie on the bed in a supine configuration comfortable to them, keeping

their faces pointed straight up from the bed, while wearing infrared reflective marker ar-

rays on their bodies and heads (see Figure 2.1(a)). The bed was in a flat configuration for

this evaluation. We designated the projection of the center of the forehead marker array

onto the plane of the bed as the ground truth head position. We selected 50 pressure dis-

tribution images from each participant while they were lying on the bed with their faces

pointed straight up from the bed to form our test dataset of 400 pressure distribution im-

ages. The images for each participant were collected over a 28 second period on average.

We compared the estimated head position with ground truth, but only considered error
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along the width of the bed (along the Y axis), which the system uses to position the model

of the person’s body. The head pose estimation error along the width of the bed (i.e., the Y

direction) was 5.00 cm ± 2.54 cm (mean ± std).

2.3 Inferring a 3D Human Skeleton with Deep Learning

In this section, we present a method for a inferring 3D human skeleton model in real time

with a measure of confidence in each estimated joint position for a person in a configurable

bed using a pressure-sensing mat. This work was previously published in IROS 2018 [9].

2.3.1 Method

Our CNNs learn a function f(P , θB) that estimates pose parameters of a person lying in

a robotic bed, given a specified bed configuration θB and a 2D pressure image P from a

pressure mat.

14



Figure 2.2: Two CNN architectures. The Direct CNN directly regresses to ten motion capture labeled global joint positions. The
Kinematic CNN embeds a kinematics skeleton model into the last fully connected network layer, parameterized in the latent space by a
root joint global position, joint angles, and skeleton link lengths. The Kinematic CNN also outputs unlabeled joint position estimates.
We explore architectures with both variable link length (shown) and constant link length (dashed arrows, defined by ∗.) [9]

Figure 2.3: Kinematics Model Parameters. The root joint schest is specified in red. Yellow boxes represent the remaining motion capture
labeled joints {ŝ2, . . . , ŝN}. Grey boxes represent unlabeled joints {ŝu1 , . . . , ŝuK}, where the kinematic model adjusts to an approximate
fit. [9]
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CNN Architecture

We explore two CNN architectures shown in Figure 2.2. Our network includes four 2D

convolutional layers with 64 output channels for the first two layers and 128 channels for

the last two layers. The layers mostly have 3 × 3 filters, with a ReLU activation and a

dropout of 10% applied after each layer. We apply max pooling, and the network ends with

a linear fully connected layer.

To estimate a person’s joint pose, we construct an input tensor for the CNN comprised

of three channels, i.e. {P , E,B} ∈ R128×54×3. Raw data from the pressure sensing mat

is recorded as a (64 × 27)-dimensional image, which we upsample by a factor of two, i.e.

P ∈ R128×54. We use first order interpolation for upsampling. In addition to a pressure

image, we also provide the CNN with an edge detection channel, E ∈ R128×54, which is

computed as a Sobel filter over both the horizontal and vertical directions of the upsampled

image. Empirically, we found this edge detection input channel improved pose estimation

performance. In order to estimate human pose at different configurations of the bed (e.g.

sitting versus lying down), we compute a third input channel, B ∈ R128×54, which depicts

the bed configuration. Specifically, each element in the matrix B depicts the vertical height

of the corresponding taxel on the pressure mat. When the bed frame is flat, i.e. θB = 0,

then B is simply the zero matrix.

Direct Joint Regression

The first proposed CNN architecture outputs an estimate of the motion capture labeled

global 3D joint positions {ŝ1, . . . , ŝN}, where each ŝj ∈ R3 represents a 3D position

estimate for joint j. This direct CNN regresses directly to 3D ground truth label positions

in the last fully connected layer of the network. We compute the loss from the absolute
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value of Euclidean error on each joint:

Lossdirect =
N∑
j=1

||sj − ŝj|| (2.1)

Deep Kinematic Embedding

We embed a human skeleton kinematics model into the last fully connected network layer

to enforce geometric and anthropomorphic constraints. This creates an extra network layer

where labeled joint estimates {ŝ1, . . . , ŝN} and unlabeled joint estimates {ŝu1 , . . . , ŝuK} are

solved through forward kinematics equations depending on root joint position ŝ1, latent

space joint angles φ̂ and an estimate of skeleton link length approximations l̂. We use

ŝ1 = ŝchest as the root joint. We incorporate skeleton link lengths l into the loss function

by pre-computing an approximation to the ground truth. While the kinematics functions

are relative to a root joint, we learn root joint global position schest to put our output in

global space. We compute a weighted loss from the absolute value of Euclidean error on

each joint and error on each link length:

Losskin. = ||s1 − ŝ1||+ α
N∑
j=2

||sj − ŝj||+ β|l− l̂| (2.2)

where α and β are weighting factors. We compare two variants of this loss function: The

variable link length CNN is as described, while for the constant link length CNN we set

β = 0 and use a constant l∗ input to the kinematics model. We compute l∗ as the average

of the approximations l.

Human kinematics model. We represent the human body with a model similar to that

used in other work [27, 32, 36, 40], with 17 joints to cover major links down to the wrists

and ankles. We ignore minor links and joints. To train the networks that have link lengths

as an output, we require ground truths for comparison. Some ground truth link lengths may

17



be calculated directly from the dataset’s labels, for example when motion capture gives

the location of both ends of the link. We approximate the link lengths for links that are

under-constrained in the dataset for the skeleton model. The link lengths are an output of

our network as a l ∈ R17 vector. We ignore unlabeled joints in the loss function.

The mid-spine is found by a vertical offset from the chest marker to compensate for the

distance between marker placement atop the chest and the modeled bending point of the

spine. We do not make offset corrections with other joints; these are more challenging than

the chest and the effects are less noticeable.

Angular latent space. We define 20 angular degrees of freedom consisting of 3-DOF

shoulders and hips, 1-DOF elbow and knee joints, a 2-DOF spine joint, and a 2-DOF

neck joint. Fig Figure 2.3 (b) shows this parameterization corresponding to labeled and

unlabeled joints. For the spine of the model to better match the spine of a person seated

in bed, we used two revolute joints about the x-axis. To account for head movement, we

placed a neck joint at the midpoint of the shoulders with pitch and yaw rotation. We use

PyTorch [41], a deep learning library with tensor algebra and automatic differentiation. We

manually encoded the forward kinematics for the skeleton kinematic model. The network

uses stochastic gradient descent during backpropagation to find inverse kinematics (IK)

solutions.

Pressure Image Ambiguity

Raising a limb off of a bed with pressure sensors can lead to a loss of information as

the sensors can only sense pressure during contact. A similar loss of information can

be seen when the limbs extend off the edge of the bed. Consider the movement shown

in Figure 2.4 (c) and an example of the pressure images associated with such a movement

in Figure 2.5 (a). Here, the pressure images appear nearly identical while the elbow and

wrist positions change substantially. To better understand what is physically causing this

phenomena, we can model the arm as a double inverted pendulum, shown in Figure 2.5
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Figure 2.4: Range of paths traversed by participants during training. Equivalent paths were
traversed by the left limbs. Count represents both left and right data across 17 participants.

Figure 2.5: (a) Crossover of the shoulder from the supine elbow 0 vertical traversal, both
joints envisioned as 2-DOF inverted pendulum. Green dots represent left elbow and wrist
ground truth markers projected in 2D, yellow dot and arrows indicate approximate shoulder
and limb positions. (b) Model of 2-DOF inverted pendulum showing static indeterminacy.
Known pressure distribution P (x) is insufficient to solve θ1, θ2.
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(b). Here, the pendulum angles θ1 and θ2 are statically indeterminate given an underlying

pressure distribution, until part of the arm touches the sensors.

Another challenge is pressure sensor resolution. Depending on the type of sensor, sat-

uration can occur. A pressure image with higher spatial resolution, accuracy, and pressure

range may result in less ambiguity. We note that a model of body shape (e.g. 3D limb

capsules) might provide information that helps to resolve the ambiguity.

Uncertainty: Monte Carlo Dropout

To estimate both joint position and model uncertainty simultaneously, we apply Monte

Carlo dropout from Gal and Ghahramani [23]. Monte Carlo dropout is the process of per-

forming V forward passes through the network with dropout enabled. This results in V

output vectors which may differ slightly due to the stochastic dropout of data during each

forward pass. We can compute an estimated output as the average of all V outputs, corre-

sponding to the first moment of the predictive distribution within the network. Similarly,

the model’s uncertainty corresponds to the second moment of the distribution, which we

can compute as the variance of all V forward passes.

2.3.2 Evaluation

We recorded a motion capture labeled dataset with over 28,000 pressure images from 17

different human participants.1 We conducted this study with approval from the Georgia

Institute of Technology Institutional Review Board (IRB), and obtained informed consent

from all participants. We recruited 11 male and 6 female participants aged 19-32, who

ranged 1.57-1.83 m in height and 45-94 kg in weight. We fitted participants with motion

capture markers at the wrists, elbows, knees, ankles, head, and chest. We asked each

participant to move their limbs in 6 patterns, 4 while supine and 2 while seated, to represent

some common poses in a configurable bed. The movement paths are shown in Figure 2.4.

1Dataset: ftp://ftp-hrl.bme.gatech.edu/pressure mat pose data
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We instructed participants to keep their torso static during limb movements.

We trained six data-driven models: three baseline supervised learning algorithms and

the three proposed CNN architectures.2 We designed the network using 7 participants

(5M, 2F); we performed leave-one-participant-out cross validation using the remaining 10

participants (6M, 4F).

Data Augmentation

At each training epoch for the CNNs, we selected images such that each participant would

be equally represented in both the training and test sets. We augmented the original dataset

in the following ways to increase training data diversity:

• Flipping. Flipped across the longitudinal axis with probability P = 0.5.

• Shifting. Shifted by an additive factor sh ∼ N (µ = 0cm, σ = 2.86cm).

• Scaling. Scaled by a multiplicative factor sc ∼ N (µ = 1, σ = 0.06).

• Noise. Added taxel-by-taxel noise to images by an additive factor N (µ = 0, σ = 1).

Clipped the noise at min pressure (0) and at the saturated pressure value (100).

We chose these to improve the network’s ability to generalize to new people and positions

of the person in bed. We did not shift the seated data longitudinally or scale it because of

the warped spatial representation.

Baseline Comparisons

We implemented three baseline methods to compare our CNNs against: K-nearest neigh-

bors (KNN), linear ridge regression (LRR), and kernel ridge regression (KRR). For all

baseline methods, we used histogram of oriented gradients (HOG) features [42] on 2× up-

sampled pressure images. We applied flipping, shifting, and noise augmentation methods.

We did not use scaling, as it worsened performance.
2Code release: https://github.com/gt-ros-pkg/hrl-assistive/tree/indigo-devel/hrl pose estimation
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K-nearest neighbors. We implemented a K-nearest neighbors (KNN) regression base-

line using Euclidean distance on the HOG features to select neighbors, as [27] did. We

selected k = 10 for improved performance.

Ridge regression. We implemented two ridge-regression-based baselines. We trained

linear ridge regression (LRR) models with a regularization factor of α = 0.7. We also

train kernel ridge regression (KRR) models with a radial basis function (RBF) kernel and

α = 0.4. We manually selected these values of α for both LRR and KRR. We also tried

linear and polynomial kernels for KRR, but found the RBF kernel produced better results

in our dataset.

Implementation Details of Proposed CNNs

During testing, we estimated the joint positions with V = 25 forward passes on the trained

network with Monte Carlo dropout for each test image. For each joint, we report the mean

of the forward passes as the estimated joint position. We use PyTorch and ADAM from

[43] for gradient descent.

Pre-trained CNN. We created a pre-trained CNN that we use to initialize both Kine-

matic CNNs, with regressed and constant link length. The pre-trained network used the

kinematically embedded CNN and the loss function in Equation 2.2, with α = 0.5 and

β = 0.5. This network was trained for 10 epochs on the 7 network-design participants with

a learning rate of 0.00002 and weight decay of 0.0005.

Direct CNN. We trained the network for 300 epochs directly on motion capture ground

truth, using the sum of Euclidean error as the loss function. We used a learning rate of

0.00002 and a weight decay of 0.0005.

Kinematic CNN, constant link length. We trained the network through the kinemat-

ically embedded CNN, used the loss function in Equation 2.2, with α = 0.5 and β = 0.

This value for β means the network would not regress to link length, leaving it constant.

We initialized the network with the pre-trained CNN, but we separately initialized each
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link length as the average across all images in the fold’s training set for each fold of cross

validation.

Kinematic CNN, regress link length. We trained the network through the kinemati-

cally embedded CNN, used the loss function in Equation 2.2, with α = 0.5 and β = 0.5.

Joint Cartesian positions and link lengths in the ground truth are represented on the same

scale. We initialized with the pre-trained CNN.

Measure of Uncertainty

Here we show an example where ambiguous pressure mat data has a high model uncer-

tainty. We compare two leg abduction movements from the supine leg motion, shown in

the bottom two columns of Figure 2.4 (d). We sample 100 images per participant: half fea-

ture leg abduction contacting the pressure mat, and half with elevated leg abduction. For

each pose, we use V = 25 stochastic forward passes and compute the standard deviation

of the Euclidean distance from the mean for abducting joints, including knees and feet. We

compare this metric between elevated and in-contact motions.
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Figure 2.6: Per-joint error mean and standard deviation for leave-one-participant-out cross validation over 10 participants for a sitting
and a supine posture in bed. Lower is better. Our methods outperformed baseline methods. [9]
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Table 2.1: Mean Per Joint Position Error.

MPJPE MPJPE MPJPE
Supine Seated Overall

Method (mm) (mm) (mm)

K-Nearest Neighbors 102.01 93.42 99.06
Linear Ridge Regression 117.01 114.76 116.24
Kernel Ridge Regression 99.25 97.10 98.51

Direct CNN 73.49 82.44 76.56
Kinematic CNN, avg. l 99.74 99.70 99.72
Kinematic CNN, regr. l 75.43 79.19 76.72

2.3.3 Results

In Table 2.1, we present the mean per joint position error (MPJPE), a metric from literature

to represent overall accuracy [36, 27]. Figure 2.6 shows the per-joint position error across

all trained models, separated into supine and seated postures. The error for the direct CNN

and the kinematic CNN with length regression is lower than the other methods. The results

of knees and legs show that more distal limbs on the kinematic chain do not necessarily

result in higher error. The wrists are both distal and light, and have higher error than

the other joints. Figure 2.7 shows the kinematics CNN with length regression adjusting

for humans of different sizes and in different poses. Furthermore, we can perform a pose

estimate with uncertainty using V = 25 stochastic forward passes in less than a half second.

Measure of Uncertainty

We performed a t-test to compare uncertainty in elevated leg abduction and in-contact leg

abduction. We compared each knee and ankle separately. We found that the standard

deviation of the Euclidean distance from the mean of V = 25 forward passes with Monte

Carlo dropout is significantly higher for joints in the elevated position. Further, we note that

variance in the latent angle parameters θ compounds through the kinematic model, causing

more distal joints in the kinematic chain to have higher uncertainty. This phenomena is
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Figure 2.7: Comparison of the heaviest and tallest participant with the lightest and shortest
participant. Our kinematics CNN with link length regression appears to adjust for both
sizes.

further described in Figure 2.8, which shows limbs removed from the mat that have a high

variance.
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Figure 2.8: Illustration of mean and standard deviation of kinematic CNN (l regression) output. V = 25 forward passes with Monte
Carlo dropout shown with thin translucent skeleton links. Spheres indicate joint position estimates. (a) Right arm thrust into the air. (b)
Right forearm extending off the side of the pressure mat. (c) Left leg extended in the air and abducted. (d) Left knee extended in the air,
left foot contacting pressure mat. Note: (c) and (d) show the same participant, others are different. [9]
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2.3.4 Discussion and Limitations

Network Architecture Considerations

While the results for the direct CNN architecture were marginally better than the kinematic

CNN with variable lengths, the latter has other advantages. First, there can be value in

getting a skeletal model from the network, providing a more complete set of parameters

including 20 angular DOFs and a total of 17 joint positions. Second, unsurprisingly, re-

quiring that outputs from the CNN satisfy kinematic constraints means that outputs will

be constrained to plausible looking body poses. Without those constraints the CNN could

produce unrealistic outputs.

While limiting our skeleton model to 20 angular DOFs promotes simplicity, it has some

hindrance to generalizability. For example, the mid-spine joint lacks rotational DOFs about

the y- and z-axes. Adding these DOFs would allow the model to account for rolling to a

different posture and laying sideways in bed.

Data Augmentation Challenges

Data augmentation cannot easily account for a person sliding up and down in a bed that

is not flat. Vertical shifting augmentation for non-flat beds would not match the physical

effects of shifting a person on the pressure mat. Augmentation by scaling also has problem-

atic implications, because a much smaller or larger person may have a weight distribution

that would not scale linearly at the bending point of the bed. Simulation might resolve these

issues by simulating placing a weighted human model of variable shape and size placed

anywhere on a simulated pressure mat, with many possibilities of bed configurations.

Dataset Considerations

The posture and range of paths traversed by participants may not be representative of other

common poses, and we expect our method to have limited success in generalizing to body
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Figure 2.9: Dual arm and dual leg traversals. While these are excluded from the training
set, our methods can provide a reasonable pose estimate.

poses not seen or rarely seen in the dataset. While a participant is moving their arm across a

specified path, other joints remain nearly static, which over-represents poses with the arms

adjacent to the chest and legs straight. We found over-represented poses to generally have

a lower uncertainty. Interestingly, with our current sampling and training strategy, over-

representation and under-representation is based on the percentage of images in the dataset

a joint or set of joints is in a particular configuration. Additional epochs of training or

directly scaling the size of the dataset does not change these effects on uncertainty of pose

representation. Our method could be improved by using weighting factors or sampling

strategies to compensate for this effect.

In our evaluation, some limb poses occur in separate training images, but do not occur in

the same training image. For example, we recorded one participant moving both arms and

both legs simultaneously. Figure 2.9 shows that our method has some ability to estimate

these poses.

The skeleton model has offset error in addition to the ground truth error reported. While

we attempted to compensate for the chest marker offset, the other markers were more chal-

lenging. This may have caused some inaccuracy in the link length approximations.

Removal of High Variance Joints

Figure 2.10 shows that joints with high uncertainty have a higher average error. Discarding

these joint estimates can decrease the average error of the model. As an example applica-
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Figure 2.10: Discarding joints with a higher uncertainty can decrease error, with a tradeoff
to the number of joints remaining.

tion, a robot using our method’s estimated poses for task and motion planning might want

to require low uncertainty before plan execution.

2.3.5 Demonstration with PR2 robot

We conducted a demonstration of how our method could inform an assistive robot trying to

reach part a person’s body. We conducted this study with approval from the Georgia Insti-

tute of Technology Institutional Review Board (IRB), and obtained informed consent from

an participant. We recruited a single able-bodied participant who used a laptop computer

running a web interface from [17] to command a PR2 robot to move its end effector to their

left knee and to their left shoulder. The robot’s goal was based on the estimated pose of the

person’s body from our ConvNet with kinematic model regressing to link lengths. For the

knee position, the participant raised her knee to the configuration shown in the 2nd image

of Figure 2.4 (f), and the participant was in the seated posture for both tasks. Using our

3D pose estimation method, the robot was able to autonomously reach near both locations.

Figure 2.11 shows the robot reaching a shoulder goal while the participant is occluded by

bedding and an over-bed table.
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Figure 2.11: Demonstration of how an assistive robot could use our 3D human pose esti-
mation method with a skeleton human representation. A PR2 robot uses our method’s body
pose estimation to reach to the person’s shoulder.

2.3.6 Conclusion

In this work, we have shown that a pressure sensing mat can be used to estimate the 3D pose

of a human in different postures of a configurable bed. We explored two CNN architec-

tures and found that both outperformed data-driven baseline algorithms. Our kinematically

embedded CNN with link length regression provided a more complete representation of a

17-joint skeleton model, adhered to anthropomorphic constraints, and was able to adjust

to participants of varying anatomy. We provided an example where joints on limbs raised

from the pressure mat had a higher uncertainty than those in contact.
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CHAPTER 3

SIMULATING BODIES AT REST TO GENERATE DATA FOR DEEP LEARNING

Humans spend a large part of their lives resting. While resting, humans select poses that

can be sustained with little physical exertion. Our primary insight is that human bodies

at rest can be modeled sufficiently well to generate synthetic data for machine learning.

The lack of physical exertion and absence of motion makes this class of human activities

amenable to relatively simple biomechanical models similar to the ragdoll models used in

video games [44].

We apply this insight to the problem of using a pressure image to estimate the 3D

human pose and shape of a person resting in bed. This capability would be useful for a

variety of healthcare applications such as bed sore management [37], tomographic patient

imaging [19], sleep studies [45], patient monitoring [46], and assistive robotics [9]. To

this end, we present the PressurePose dataset, a large-scale synthetic dataset consisting of

3D human body poses and shapes with pressure images (Figure 3.1, top). We also present

PressureNet, a deep learning model that estimates 3D human body pose and shape from a

low-resolution pressure image (Figure 3.1, bottom).

Prior work on the problem of human pose estimation from pressure images [45, 9,

19, 18, 20] has primarily used real data that is challenging to collect. Our PressurePose

dataset has an unprecedented diversity of body shapes, joint angles, and postures with

more thorough and precise annotations than previous datasets (Table 3.1). While recent

prior work has estimated 3D human pose from pressure images, [45, 9], to the best of our

knowledge PressureNet is the first system to also estimate 3D body shape.

Our synthetic data generation method first generates diverse samples from an 85 di-

mensional human pose and shape space. After rejecting samples based on self-collisions

and Cartesian constraints, our method uses each remaining sample to define the initial con-
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Figure 3.1: Top: The PressurePose dataset has 206K 3D human poses and shapes with
pressure images generated by physics simulations that drop articulated rigid body models
and soft body models on a soft body model of a bed and pressure sensing mat. Bottom:
PressureNet is a deep learning model trained on synthetic data that performs well on real
data: pressure image input with gender (in), 3D human mesh output (out), RGB image for
reference (ref).
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ditions for a series of two physics simulations. The first finds a body pose that is at rest

on a simulated bed. Given this pose, the second physics simulation generates a synthetic

pressure image.

Our method uses SMPL [10] to generate human mesh models and a capsulized approx-

imation of SMPL [35] to generate articulated rigid-body models. The first physics simula-

tion drops a capsulized articulated rigid-body model with low-stiffness, damped joints on a

soft-body model of a bed and pressure-sensing mat. Once the articulated body has settled

into a statically stable configuration, our method converts the settled capsulized model into

a particle-based soft body without articulation. This soft body model represents the shape

of the body, which is important for pressure image synthesis. The second physics simu-

lation drops this soft-body model from a small height onto the soft-body bed and sensor

model. Once settled, the simulated sensor produces a pressure image, which is stored along

with the settled body parameters.

Our deep learning model, PressureNet, uses a series of two networks modules. Each

consists of a convolutional neural network (CNN) based on [9], a kinematic embedding

model from [47] that produces a SMPL mesh [10], and a pressure map reconstruction

(PMR) network. The PMR network serves as a model of pressure image generation. It is

a novel component that encourages consistency between the mesh model and the pressure

image input. Without it, we found that our deep learning models would often make mis-

takes that neglected the role of contact between the body and the bed, such as placing the

heel of a foot at a location some distance away from an isolated high pressure region.

When given a mesh model of the human body, the PMR network outputs an approx-

imate pressure image that the network can more directly compare to the pressure image

input. These approximate pressure images are used in the loss function and as input to a

second residual network trained after the first network to correct these types of errors and

generally improve performance.

In our evaluation, we used a commercially available pressure sensing mat (BodiTrak
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BT-3510 [48]) placed under the fitted sheet of an Invacare Homecare Bed [49]. This sensing

method has potential advantages to line-of-sight sensors due to occlusion of the body from

bedding and other sources, such as medical equipment. However, the mat we used provides

low-resolution pressure images (64×27) with limited sensitivity and dynamic range that

make the estimation problem more challenging.

We only trained PressureNet using synthetic data, yet it performed well in our evalu-

ation with real data from 20 people, including successfully estimating poses that have not

previously been reported in the literature, such as supine poses with hands behind the head.

To improve the performance of the model with real data, we used custom calibration ob-

jects and an optimization procedure to match the physics simulation to the real world prior

to synthesizing the training data. We also created a noise model in order to apply noise to

the synthetic pressure images when training PressureNet.

3.1 Related Works

There is long history of human pose estimation from camera images [28, 20, 26, 25, 54]

and the more recent use of CNNs [30, 29]. The field has been moving rapidly with the esti-

mation of 3D skeleton models [31, 32], and human pose and shape estimation as a 3D mesh

[35, 47, 55] using human body models such as SCAPE [56] and SMPL [10]. These lat-

ter methods enforce physical constraints to provide kinematically feasible pose estimates,

some via optimization [35] and others using learned embedded kinematics models [9, 47,

32]. Our approach builds on these works both directly through the use of available neural

networks (e.g, SMPL embedding) and conceptually.

While pressure image formation differs from conventional cameras, the images are vi-

sually interpretable and methods developed in the vision community are well suited to

pressure imagery [57, 47, 29]. PressureNet’s model of pressure image generation relates to

recent work on physical contact between people and objects [58, 59, 60]. It also relates to

approaches that fine-tune estimates based on spatial differences between maps at distinct
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Table 3.1: Comparison of Literature: Human Pose in Bed.
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Harada, 2001 [18] R P Y M SP+ 18 1 ?
Grimm, 2012 [19] R D, P N S SP, L, P 10 16 1.1 K
J.J. Liu, 2014 [20] R P N S SP, L 8* 12 1.4 K
Ours, 2015 [21] R P N S SP 1 1 -

Achilles, 2016 [50] R D Y S I/O, SP, L 14 10 180 K
Chen, 2018 [46] R RGB N S SP, UNK 7 3 13 K
Ours, 2018 [9] R P Y S SP, ST 14 17 28 K

Casas, 2019 [45] R P Y S SP+, L+, 14 6 60
ST

S. Liu, 2019 [51] R IRS N S SP+, L+ 14 2 419
S. Liu, 2019 [52] R T N S SP+, L+ 14 109 14 K
Ours, 2020 [11] S/ P Y M SP+, L+, 24 200K/ 200K/

R P+ 20 1K
S. Liu, 2020 [14] R RGB, D, T, P N S SP+, L+ 14 109 14 K
Yin, 2020 [53] R RGB, D, T, P Y M SP+, L+ 24 109 14 K

Ours, 2021 S/ D Y M SP+, L+ 24 97K/ 97K/
R 109 14K

posture key: SP - supine. L - lateral. P - prone. I/O - getting in/out of bed. ST - sitting.
+ indicates a continuum between postures. * indicates limbs.

stages of estimation [61, 57, 62, 29].

3.1.1 Human Pose at Rest.

Human pose estimation has tended to focus on active poses. Poses in bed have attracted

special attention due to their relevance to healthcare. Table 3.1 provides an overview of

work on the estimation of human pose for people in bed. These efforts have used a variety

of sensors including RGB cameras [46], infrared lighting and cameras for darkened rooms

[51], depth cameras to estimate pose underneath a blanket profile [50], thermal cameras to

see through a blanket [52], and pressure mats underneath a person [45, 9, 63, 19, 18, 20].
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Researchers have investigated posture classification for people in bed [37, 19, 38].

There has been a lack of consensus on body poses to consider, as illustrated by Table

Table 3.1. Some works focus on task-related poses, such as eating [50], and stretching

[45]. Poses can increase ambiguity for particular modalities, such as lack of contact on a

pressure mat (e.g. knee in the air) [9, 64] or overlapping body parts facing a thermal camera

[52].

Large datasets would be valuable for deep learning and evaluation. While some bed

pose work has used thousands of images they have either had few participants [46] or

poses highly concentrated in some areas due to many frames being captured when there is

little motion [50, 45, 9]. An exception is recent work by Liu et al. [52], which has 109

participants.

3.1.2 Generating Data in Simulation.

Approaches for generating synthetic data that model humans in the context of deep learning

include physics-based simulators such as DART [65] and PyBullet [66] and position-based

dynamics simulators such as PhysX [67] and FleX [8]. Some have used these tools to

simulate deformable objects like cloth [68, 67]. For vision, creating synthetic depth images

is relatively straightforward (e.g. [50]) while RGB image synthesis relies on more complex

graphics approaches [69, 70, 71].

Some past works have simulated pressure sensors. One approach is to model the array

as a deformable volume that penetrates the sensed object, where force is a function of

distance penetrated [72]. Others model pressure sensing skin as a mass-spring-damper

array [73, 74]; the former considers separate layers for the skin and the sensor, a key

attribute of pressure arrays covering deformable objects.
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3.2 PressurePose Synthetic Dataset Generation

Our data generation process consists of three main stages, as depicted in Figure 3.2: sam-

pling of the body pose and shape; a physics simulation to find a body pose at rest; and

a physics simulation to generate a pressure image. We use two simulation tools, FleX

(subsection 3.2.1) for simulating soft body dynamics, and DART (subsection 3.2.2) for

articulated rigid body dynamics.

Sample initial pose and shape. We sample initial pose (i.e. joint angles) and body

shape parameters from the SMPL human model [10]. The pose consists of 69 joint an-

gles, Θ ∈ R69, which we sample from a uniform distribution, U , bounded by joint angle

limits defined for the hips, knees, shoulders, and elbows in [75, 76, 77]. We initialize the

human body above the bed with a uniformly sampled roll θr,1, yaw θr,3, and 2D transla-

tion {sr,1, sr,2} across the surface of the bed. The pitch θr,2 is set to 0 and the distance

normal to the bed sr,3 is based on the position of the lowest initial joint position. This

determines the global transform, {θr, sr} ∈ R6. The shape of a SMPL human is de-

termined from a set of 10 PCA parameters, β ∈ R10, which we also sample uniformly,

bounded by [−3, 3] following [78]. We use rejection sampling in three ways for generating

initial poses: to more uniformly distribute overall pose about the Cartesian space (rather

than the uniformly sampled joint space), to create a variety of data partitions representing

specific common postures (e.g. hands behind the head), and to reject pose samples when

there are self-collisions. See Appendix A.1. This step outputs pose and shape parameters

{β,ΘC ,θr, sr}, where ΘC is a set of joint angles conditioned on β that has passed these

criteria.

Physics Simulation #1: Resting Pose. We use FleX [8] to simulate a human model

resting on a soft bed, which includes a mattress and a synthetic pressure mat on the surface

of the mattress (Figure 3.2). The human is modelled as an articulated rigid body system

made with capsule primitives, which is a dynamic variant of the SMPL model. Once the
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simulation nears static equilibrium, we record the resting pose {Θ̃C , θ̃r, s̃r}.

FleX is a position-based dynamics simulator with a unified particle representation that

can efficiently simulate rigid and deformable objects. However, FleX does not currently

provide a way for particles to influence the motions of rigid capsules. To overcome this

limitation, we use DART [65] to model the rigid body dynamics of the capsulized human

model. We combine FleX and DART through the following loop: 1) DART moves the

capsulized articulated rigid body based on applied forces and moments. 2) FleX moves the

soft body particles in response to the motions of the rigid body. 3) We compute new forces

and moments to apply in DART based on the state of the FleX particles and the capsulized

articulated rigid body. 4) Repeat. We call the combination of the two simulators DartFleX

and subsection 3.2.2 provides further details.

Physics Simulation #2: Pressure Image. The settled, capsulized body is insufficient

for producing a realistic pressure image: it approximates the human shape too roughly.

Instead, we create a weighted, particlized, soft human body in FleX (Figure 3.2 and Fig-

ure 3.3) from the SMPL [10] mesh using body shape and resting pose {β, Θ̃C , θ̃r}. We ini-

tialize the particlized human with 2D translation over the surface of the mattress {s̃r,1, s̃r,2} ∈

s̃r. We set sr,3, the position normal to gravity, so the body is just above the surface of the

bed. We then start the simulation, resting the particlized body on the soft bed, and record

the pressure image P once the simulation has neared static equilibrium. We note that this

particlized representation has no kinematics and cannot be used to adjust a body to a resting

configuration; thus our use of two separate dynamic simulations.
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Figure 3.2: We generate the initial pose from scratch, using random sampling of the body shape, joint angles, and global transform on
the bed. We use rejection sampling to distribute the poses and remove self-collisions. Then, we rest a dynamic capsulized human model
onto a soft bed using DartFleX, a fusion of DART and FleX simulators, to get an updated resting pose. Because this model is a rather
rough approximation of human shape, we then use FleX to particlize a finer body representation to get the pressure image.) [11]

Figure 3.3: Physics simulation #2 output: PressurePose synthetic dataset examples. [11]
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Figure 3.4: (a) Synthetic pressure mat structure. Pressure is a function of the penetration
of the top layer array particle into the four underlying particles. (b) DartFleX collision
between a capsulized limb and the simulated bed and pressure-sensing mat. [11]

3.2.1 Softbody Simulation with FleX

We simulate the sensing array by connecting FleX particles in a way that mimics real

pressure sensing fabric, and model the mattress with a soft FleX object.

Soft Mattress and Pressure Sensing Mat. Here we describe the soft mattress and

pressure sensing array within the FleX environment, as shown in Figure 3.4 and further de-

scribed in Appendix A.3. The mattress is created in a common twin XL size with clusters

of particles defined by their spacing, DM , radius, RM , stiffness, KM , and particle mass,

mM , parameters. We then create a simulated pressure sensing mat on top of the mattress

that is used to both generate pressure images and to help the human model reach a resting

pose by computing the force vectors applied to the various segments of the human body.

The mat consists of two layers of staggered quad FleX cloth meshes in a square pyramid

structure, where each layer is defined by its stretching, Kσ, bending, KB, and shear, Kτ ,

stiffnesses, which are spring constraints on particles that hold the mat together. A com-

pression stiffness, KC , determines the bond strength between the two layers, and its mass

is defined by mL.

We model force applied to the mat as a function of the particle penetration vector xi

based on the pyramid structure in Figure 3.4 (a). Force increases as the ith particle on the
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top layer, pi, moves closer to the four particles underneath.

xi =
(
d0 − d(H,pi)

)
ni (3.1)

where d is the distance between particle pi and an approximate underlying plane H, d0 is

the initial distance at rest prior to contact, and ni is the normal vector of the approximate

underlying plane.

Sensor Model. The BodiTrak pressure-sensing mat has an array of pressure-sensing

taxels (tactile pixels). The four particles at the base of the pyramid structure in Figure 3.4

(a) model the 1” square geometry of a single pressure-sensing taxel. We model the pressure

output, ui, of a single taxel, i, using a quadratic function of the magnitude of the penetration

vector xi.

ui =
(
C2|xi|2 + C1|xi|+ C0

)
(3.2)

where C2, C1, and C0 are constants optimized to fit calibration data, as described in sub-

section 3.2.3.

3.2.2 DartFleX: Resting a Dynamic Ragdoll Body

The purpose of DartFleX is to allow rigid body kinematic chains to interact with soft objects

by coupling the rigid body dynamics solver in DART to the unified particle solver in FleX

as shown in Figure 3.4 (b).

Dynamic rigid body chain. Our rigid human body model relies on a capsulized ap-

proximation to the SMPL model, following [35]. To use this model in a dynamics context,

we calculate the per-capsule mass and mass inertia matrix for each capsule in the kinematic

chain. We weight the capsules based on volume ratios from a person with average body

shape β̄ = 0, average body mass, and mass percentage distributions between body parts as

defined by Tozeren [79]. For joint stiffnesses kθ ∈ R69, we tune parameters to achieve the
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low stiffness characteristics of a ragdoll model that can settle into a resting pose on a bed

due to gravity. We set torso and head stiffness high so that they are effectively immobile,

and joint damping bθ = 15kθ to reduce jitter.

DartFleX Physics. We initialize the same capsulized model in both DART and FleX.

We apply gravity in DART, and take a step in the DART simulator. We get a set of updated

dynamic capsule positions and orientations, and move the static geometry counterparts in

FleX accordingly. In order to transfer force data from FleX to DART, we first check if any

top layer pressure mat particles are in contact. Each particle i in contact has a penetration

vector xi(t) (see equation Equation 3.1) at time t, which we convert to normal force vector

fN,i ∈ R3 using a mass-spring-damper model [80]:

fN,i = kxi(t) + bẋi(t), (3.3)

where k is a spring constant, b is a damping constant, and fN,i ⊥ H. We then assign each

force to its nearest corresponding capsule j. Given the velocity, vj , of capsule j and a

friction coefficient, µk, we compute the frictional force fT,i for the ith particle in contact:

fT,i = −µk|fN,i|
vj − projfN,i

vj

|vj − projfN,i
vj|

(3.4)

where proj is an operator that projects vj orthogonally onto a straight line parallel to fN,i.

In our simulation, we set b = 4k and uk = 0.5, and we find k through a calibration sequence

described in subsection 3.2.3. We can then compute the total particle force, fi:

fi = fN,i + fT,i (3.5)

We then compute a resultant force Fj in FleX for the jth body capsule, based on the
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Figure 3.5: (a) Rigid calibration capsules with quarters (U.S. coins) shown for size. (b)
Simulated capsules. (right) Real and simulated pressure images prior to calibration. [11]

sum of forces from P particles in contact with the capsule plus gravity, Fg:

Fj =
P∑
i=1

fi + Fg (3.6)

Moment Mj is computed on each capsule j from P particles in contact, where ri is the

moment arm between a particle and the capsule center of mass:

Mj =
P∑
i=1

ri × fi (3.7)

The resultant forces and moments are applied in DART, a step is taken with the forces

and gravity applied to each body part, and the DartFleX cycle repeats. We continue until

the capsulized model settles and then record resting pose Θ̃C , root position s̃r, and root

orientation θ̃r.

3.2.3 Calibration

We calibrated our simulation using the rigid capsule shapes in Figure 3.6 (a). We placed

varying weights on them on the real pressure-sensing mat and recorded data, and then

created matching shapes in simulation. We first calibrated the FleX environment using

the particlized capsules shown in Figure 3.6 (b) using the covariance matrix adaptation
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Figure 3.6: (a) PressureNet: We combine two network modules (“Mod1” and “Mod2”)
in series. Mod1 learns a coarse estimate and Mod2 fine-tunes, by learning a residual that
takes as input the two maps reconstructed by Mod1 combined with the input to Mod1. (b)
Detailed description of a single PressureNet module showing the novel PMR network that
reconstructs pressure and contact maps. [11]
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evolution strategy (CMA-ES) [81] to match synthetic pressure images and real pressures

images of the calibrated objects by optimizing DM , RM , KM , mM , d0, Kσ, KB, Kτ , KC ,

mL, C2, C1, and C0.

We also measure how much the real capsules sink within the mattress. We use these

measurements to calibrate the mass-spring-damper model in equation Equation 3.3. We fit

the simulated capsule displacement to the real capsule displacement to solve for the spring

constant k and then set b = 4k and µk = 0.5. See Appendix A.4 and Appendix A.5 for

details.

3.3 PressureNet: Pose Estimation with Residual Learning

Given a pressure image of a person resting in bed and a gender, PressureNet produces

a posed 3D body model. PressureNet (Figure 3.6 (a)) consists of two network modules

trained in sequence (“Mod1” and “Mod2”). Each takes as input a tensor consisting of

three channels: pressure, edges, and contact {P , E , CI} ∈ R128×54×3, which are shown in

Figure 3.6 (b), as well as a binary flag for gender. P is the pressure image from a pressure

sensing mat, E results from an edge detection channel consisting of a sobel filter applied

to P , and CI is a binary contact map calculated from all non-zero elements of P . Given

this input, each module outputs both an SMPL mesh body and two reconstructed maps

produced by the PMR network, {Q̂, ĈO}, that estimate the pressure image that would be

generated by the mesh body. Mod2 has the same structure as Mod1, except that it takes

in two additional channels: the maps produced by PMR in Mod1 {Q̂1, ĈO,1}. We train

PressureNet by training Mod1 to produce a coarse estimate, freezing the learned model

weights, and then training Mod2 to fine-tune the estimate.

CNN. The first component of each network module is a CNN with an architecture

similar to the one proposed by Clever et al [9]. Notably, we tripled the number of chan-

nels in each convolutional layer. See Appendix B.1 for details. During training, only

the weights of the CNNs are allowed to change. All other parts of the networks are held
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constant. The convolutional model outputs the estimated body shape, pose, and global

transform, Ψ̂ = {Θ̂, β̂, ŝr, x̂r, ŷr}, with the estimated joint angles Θ̂ ∈ R69, body shape

parameters β̂ ∈ R10, global translation of the root joint with respect to the bed ŝr ∈ R3,

and parameters x̂r, ŷr which define a continuous orientation for the root joint of the body

with {xu, xv, xw} ∈ xr, {yu, yv, yw} ∈ yr for 3 DOF, i.e. θr,u = atan2(yu, xu) and

{θr,u, θr,v, θr,w} ∈ θr ∈ R3.

SMPL kinematic embedding. Ψ̂ feeds into a kinematic embedding layer (see Fig-

ure 3.6), which uses the SMPL differentiable kinematics model from [47] to learn to es-

timate the shape, pose, and global transform. This embedding outputs joint positions for

the human body, Ŝ, and a SMPL mesh consisting of vertices V̂ ; and relies on forward

kinematics to ensure body proportions and joint angles match real humans.

PMR. The final component of each module, the PMR network, reconstructs two maps

based on the relationship between the SMPL mesh V̂ and the surface of the bed. The

reconstructed pressure map (Q̂) corresponds with the input pressure image, P , and is com-

puted for each pressure image taxel based on the distance that the human mesh sinks into

the bed. The reconstructed contact map (ĈO) corresponds with the input contact map, ĈI ,

and is a binary contact map of Q̂. See Appendix B for details.

Loss function. We train Mod1 in PressureNet with the following loss function, given

N = 24 Cartesian joint positions and S = 10 body parameters:

L1 =
1

Nσs

N∑
j=1

∣∣∣∣sj − ŝj,1∣∣∣∣2 +
1

Sσβ

∣∣∣∣β − β̂1

∣∣∣∣
1

(3.8)

where sj ∈ S represents the 3D position of a single joint, and σs and σβ are standard

deviations computed over the whole dataset to normalize the terms. We have 24 Cartesian

joint positions S ∈ R24×3 because {Θ,θr} ∈ R72. We compute a loss on joint error

rather than vertex error because the vertices are highly concentrated in some areas like the

face and hands for aesthetic reasons, rather than for representing overall pose. Moreover,

training the first network module (“Mod1”) with reconstruction of 24 joint positions rather
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Figure 3.7: PressureNet deep learning in action, showing an example from our synthetic
test set. The first network module (“Mod1”) outputs an initial coarse pose estimate (right
leg shown) and a reconstructed pressure map Q̂1. The second network module (“Mod2”)
corrects the estimated black mesh by a small angle difference based on the spatial residual
between P and Q̂1. [11]

than a full set of vertices is much faster.

In our evaluations (section 3.5), sequentially training two separate network modules

improved model performance and the resulting human mesh and pose predictions. For a

pressure array of T taxels, we compute a loss for Mod2 by adding the error between the

reconstructed pressure maps and the ground truth maps from simulation.

L2 = L1 +
1

TσQ

∣∣∣∣Q− Q̂2

∣∣∣∣2
2

+
1

TσCO

∣∣∣∣CO − ĈO,2∣∣∣∣1 (3.9)

where L1 uses Mod2 estimates (i.e. Ŝ2, β̂2),Q and CO are ground truth maps precomputed

by setting Ψ̂ = Ψ, and σQ, σCO are computed over the dataset.

The purpose of the second network module (“Mod2”) is to fine-tune an initial estimate
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from Mod1 using both reconstructed pressure maps as input and a loss function with spatial

map awareness. Figure 3.7 shows a real example of how Mod2 corrects the initial mesh

estimate from Mod1 using PMR. Note the spatial difference in the input images for Mod2,

where the reconstructed map of the foot pressure in Q̂1 is shifted further right than the

information on pressure image P .

3.4 Evaluation

To evaluate our methods, we trained our CNN on synthetic data and tested it on both syn-

thetic and real data. We generated 206K synthetic bodies at rest with corresponding pres-

sure images (184K train / 22K test), which we partitioned to represent both a uniformly

sampled space and common resting postures. By posture, we mean common recognized

categories of overall body pose, such as sitting, prone, and supine. We tested 4 network

types and 2 training data sets of different size.

3.4.1 PressurePose Data Partitions

We used the rejection sampling method described in section 3.2 and Appendix A.1 to gen-

erate initial poses and create dataset partitions. Our main partition, the general partition,

consists of 116K image and label pairs. In it, we evenly distributed limb poses about the

Cartesian space and randomly sampled over body roll and yaw. This partition includes

supine, left/right lateral and prone postures, as well as postures in between, and has the

greatest diversity of poses. We also created a general supine partition (58K) featuring only

supine postures and evenly distributed limb poses. Finally, we generated smaller parti-

tions representing other common postures: hands behind the head (5K), prone with hands

up (9K), supine crossed legs (9K), and supine straight limbs (9K). See Appendix A.7 for

details.
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3.4.2 PressureNet Evaluation

We build PressureNet in PyTorch [41]. We normalized all input data by a per-image sum

of taxels. We blurred synthetic and real images with a Gaussian of σ = 0.5. We trained

for 100 epochs on Mod1 with loss function L1. Then, we pre-computed the reconstruction

maps {Q̂1, ĈO,1} from Mod1 for input to Mod2, and trained Mod2 for 100 epochs using

loss function L2. For both Mod1 and Mod2, we used a learning rate of 0.00002 and a

weight decay of 0.0005, which are the same used in [9]. We used the Adam optimizer for

gradient descent [43]. Training Mod2 for 100 epochs using 184K images took 3 days on

a Nvidia Tesla K80 GPU. Training Mod2 took 8 days due to increased computation from

PMR.

We investigated 5 variants of PressureNet, which are all trained entirely with synthetic

data in order to compare the effect of (1) ablating PMR, (2) adding noise to the synthetic

training data, (3) ablating the contact and edge input ( CI and E ), and (4) reducing the

training data size. Ablating PMR consists of removing the 2 reconstructed maps from the

input to Mod2 and using L1 for training both Mod1 and Mod2. We compared the effect of

adding noise to the training data to account for real-world variation, such as sensor noise.

Our noise model includes per-pixel white noise, additive noise, multiplicative noise, and

blur variation, all with σ = 0.2. We compared networks trained on 46K vs. 184K images.

3.4.3 Human Participant Study

We mounted a Microsoft Kinect 2 1.6m above our Invacare Homecare bed to capture RGB

images and point clouds synchronized with our pressure image data. See details in Ap-

pendix A.6. We recruited 20 (10F/10M) human participants with approval from an Insti-

tutional Review Board. We conducted the study in two parts to capture (1) participant-

selected poses and (2) prescribed poses from the synthetic test set. We began by capturing

five participant-selected poses. For the first pose, participants were instructed to get into

the bed and get comfortable. For the remaining four, participants were told to get comfort-
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Figure 3.8: 3D error analysis between a human mesh (6,980 vertices) and a point cloud
(∼8,000 downsampled points). [11]

able in supine, right lateral, left lateral, and prone postures. Next, for the prescribed poses,

we displayed a pose rendering on a monitor, and instructed the participants to get into the

pose shown. We captured 48 prescribed poses per participant, which were sampled without

replacement from the synthetic testing set: 24 general partition poses, 8 supine-only poses,

and 4 from each of the remaining partitions.

3.4.4 Data Analysis

We performed an error analysis as depicted in Figure 3.8. For this analysis, we compute

the closest point cloud point to each mesh vertex, and the closest mesh vertex to each point

cloud point. We introduce 3DVPE (3D vertex-point-error), which is the average of these

numbers. We downsample the point cloud to a resolution of 1cm so the number of points is

roughly equal to the number of mesh vertices. We clip the mesh vertices and the point cloud

at the edges of the pressure mat. The point cloud only contains information from the top

surface of the body facing the camera, so we clip the mesh vertices that do not have at least

one adjacent face facing the camera. Finally, we normalize the mesh by vertex density:

while the density of the point cloud is uniform from downsampling, the mesh vertices are

highly concentrated in some areas like the face. We normalize each per-vertex error by the

average of its adjacent face surface areas.

We evaluated PressureNet on the synthetic test set and compared the results to the real

test set. We clip the estimated and ground truth mesh vertices and normalize per-vertex
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error in the same way as the real data. Additionally, we evaluated per-joint error (24 joints)

using mean-per-joint-position error (MPJPE), and per-vertex error (6890 vertices) using

vertex-to-vertex error (v2v) for the synthetic data. We evaluated the network’s ability to

infer posture using the participant-selected pose dataset by manually labeling the inferred

posture (4 labels: supine, prone, left/right lateral). We also compared to a baseline human,

BL, where we put a body of mean shape in a supine position in the center of the bed and

compare it to all ground truth poses. We positioned the legs and arms to be straight and

aligned with the length of the body.
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Figure 3.9: PressureNet results on real data with the best performing network (trained with 184K samples). [11]
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Table 3.2: Results comparing testing data and network type.

Network Description
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Best 184K 11.18 13.50 3.94 4.99 4.76
Noise σ ablated 184K 11.18 13.52 3.97 5.05 4.79

Input E , CI ablated 184K 11.39 13.73 4.03 5.07 4.85
Best - small data 46K 12.65 15.28 4.35 5.17 4.89

PMR ablated 184K 12.28 14.65 4.38 5.33 4.94
Baseline - mean pose - 33.30 38.70 8.43 6.65 5.22

Table 3.3: Results - participant selected poses, real data. *See Figure 3.10-top left.

posture partition test ct. 3DVPE (cm) posture match

no instruction 19 3.93 100%
supine 20 4.02 100%

right lateral 20 5.45 100%
left lateral 20 5.37 100%

prone 20 4.96 95%*

3.5 Results and Discussion

Overall, we found that using more synthetic data resulted in higher performance in all tests,

as shown in Table 3.2. As expected, ablating the PMR network and ablating noise reduced

performance. Ablating contact and edge inputs also reduced performance. We expect that

comparable performance could be achieved without them, possibly by changing the details

of the CNN. Figure 3.9 shows results from the best performing network with 184K training

images, noise, and the PMR network.

We compared the error on a set of 99 participant selected poses, shown in Table 3.3,

using the best performing PressureNet. Results show a higher error for lateral postures

where the body center of mass is further from the mat and limbs are more often resting

on other limbs or the body rather than the mat. Table 3.4 shows the results of PressureNet
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Figure 3.10: Some failure cases. (a) Real data. (b) Testing on synthetic training data. [11]

evaluated between different postures of prescribed resting poses from participants in bed,

and a per-gender comparison. Figure 3.10 shows four failure cases.

3.6 Conclusion

With our physics-based simulation pipeline, we generated a dataset, PressurePose, consist-

ing of 200K synthetic pressure images with an unprecedented variety of body shapes and

poses. Then, we trained a deep learning model, PressureNet, entirely on synthetic data.

With our best performing model, we achieve an average pose estimation error of < 5 cm,

as measured by 3DVPE, resulting in accurate 3D pose and body shape estimation with real

people on a pressure sensing bed.
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Table 3.4: Partitioned results for prescribed poses with the best network for each real and
synthetic.

test ct. test ct. 3DVPE 3DVPE
pose partition real synth real (cm) synth (cm)

supine straight limbs 76 1000 3.71 2.68
supine general 159 2000 4.51 3.40

supine crossed legs 78 1000 4.49 3.41
prone hands up 80 1000 5.12 4.24

general, roll ∼ U [−π, π] 479 6000 5.39 4.30
supine hands behind head 80 1000 5.09 4.40

gender partition
F 480 6000 4.88 3.85
M 472 6000 5.10 4.04
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CHAPTER 4

INFERRING HUMAN POSE AND CONTACT PRESSURE FROM A DEPTH

IMAGE

Pressure injuries are an extremely common and longstanding ailment for bedridden indi-

viduals, yet technologies to reliably detect them, such as pressure mats, remain expensive

and rare in practice. Using a camera for this task could enable the widespread proliferation

of pressure injury detection systems, reducing the 2.5 million of such injuries which occur

in the U.S. every year [82]. However, sensing pressure from camera imagery faces sub-

stantial challenges: not only is the contact interface visually occluded by the human body

itself, but the person is frequently covered with blankets, which makes it challenging to

even sense where the person is in bed.

We propose a method, BodyPressure, that can accurately infer body pose and contact

pressure from a single image captured by a depth camera. With these constituents, Body-

Pressure can localize regions of high pressure underneath a person in bed by projecting

the pressure onto a human model. We represent body pose with the Skinned Multi-Person

Linear (SMPL) human model [10], which consists of a 3D volumetric mesh parameterized

by 72 joint angles and 10 body shape coefficients. Our approach takes as input a depth

image taken by a camera looking down at a person underneath blankets, and infers a SMPL

human model, as well as the contact pressure between the body and the mattress.
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Figure 4.1: We use fast physics simulations to generate BodyPressureSD, a large synthetic human resting pose dataset, and then train a
deep model, BodyPressureWnet, to infer pose and pressure from a depth image. (a) Our simulation method rests bodies on a soft bed
and covers them with blankets. We then render depth images from the perspective of an overhead camera, and generate pressure images
from a pressure mat underneath the person. (b) Using an augmented dataset with a mix of this synthetic data combined with real data
captured by a depth camera, we learn a mapping from depth and gender to pose and contact pressure. (c) This enables a camera to infer
the pressure distribution of the person and potentially detect pressure injuries in the real world [12].
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To address the challenge of heavy occlusion when inferring human pose at rest, prior

work has required multiple modalities as input, including RGB, depth, thermal, and pres-

sure imagery [14, 53]. Our deep network, BodyPressureWnet, outperforms this prior work

while using only depth images. This is made possible by adding a large synthetic dataset

to a smaller real dataset. The depth modality has a number of benefits: it can be gener-

ated easily in simulation by rendering object geometry; deep learning models trained with

synthetic depth images transfer well to the real world [83]; and depth imagery preserves

patient privacy better than RGB imagery [84].

To create such a large collection of training samples, we employ fast physics simula-

tions to generate BodyPressureSD, a synthetic dataset consisting of depth images, body

poses, and pressure sensing mat data. We extend our previous work from chapter 3 [11],

which simulates human bodies resting on a soft mattress with a pressure-sensing mat. We

extend this method by generating blankets to cover the resting bodies, producing a set of

meshes representing the bed, the person in bed, and the blanket covering the person (Fig-

ure 4.1(a)). We then render these meshes to generate images similar to those captured by

a real depth camera. This process can quickly generate data for training data-hungry deep

models. We find that the synthetic depth images body poses, and pressure images resemble

their real counterparts with enough fidelity to greatly boost performance of the deep model.

We combine the synthetic data with real data from the Simultaneously-collected Lying

Pose (SLP) dataset [14] to achieve a 9:1 mixed training data ratio. SLP offers well matched

attributes for training and testing our methods. It includes co-registered depth and pressure

images capturing diverse human resting poses in bed with varying scenarios of blanket

occlusion, as well as 2D human pose annotations. To improve the ground truth pose labels,

we present an optimization method to fit 3D SMPL bodies to the SLP dataset and publicly

release the fits. We use these to supervise deep model learning, to test the model, and also

to initialize the aforementioned synthetic data generator. Initializing the simulator with the

appropriate pose distribution is important for generating realistic resting poses.
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Inferring the pressure distribution underneath a person from a depth image involves

three main steps: (1) inferring human pose as a mesh model, (2) inferring the contact pres-

sure on the top surface of the bed, and (3) projecting the pressure from the bed surface onto

the body mesh. We introduce a network architecture to address this challenge, which uses a

convolutional neural network (CNN) encoder to estimate parameters for the SMPL model.

Our network uses depth and pressure map reconstruction components to improve accuracy.

However, in contrast to other works which use black-box (learned neural network) recon-

struction models [85, 61, 86, 87], we use a white-box (analytic) reconstruction technique.

This reconstruction is computationally efficient, differentiable, and has no learned param-

eters. We refer to the reconstructions as maps instead of images to distinguish them from

sensor data.

Section 4.1 covers related literature. Section 4.2 presents a method for annotating real

data to create SLP-3Dfits. These annotations are used for initializing the synthetic data

generator, for training the deep model, and for testing it. Section 4.3 presents our physics

simulation pipeline for generating the synthetic training data. Section 4.4 presents our deep

network architectures, which are trained using real and synthetic data. Section 4.5 explains

how we evaluate our method, followed by the results and discussion in section 4.6.

4.1 Related Work

Sensor-based pressure injury monitoring. Commercial pressure mapping systems are

among the most common methods of monitoring pressure injury risk, and have been used

to more effectively reposition patients and reduce high pressure areas [88]. Researchers

have made progress to improve monitoring through automatic bodypart localization [37,

20, 89] and posture detection [90]. An alternative to this is wearable pressure sensors that

can adhere to at-risk areas [91]. The cost of these devices can deter widespread use, so

others have studied how inertial measurement units (IMUs) can be used [92], among other

methods [88]. Yet, peak pressure localization remains a challenge. The sacrum and heels
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have been noted as the most common areas, but also occur on the hips, elbows, ischium,

shoulders, spinous process, ankles, toes, and head [93, 94].

Humans at rest. While many works in computer vision model humans in active poses

such as pedestrians crossing the street [95], resting belongs to a different class of human

activity. Resting is characterized by a low degree of physical exertion, substantial con-

tact with surrounding surfaces such as a bed or chair, and the fact that people spend an

overwhelming portion of life resting. With the ability to learn complex mappings between

images and labels using CNNs, researchers have inferred human resting pose from diverse

human configurations, postures, and sensing modalities [50, 45, 9, 46, 51, 52, 14].

Maintaining awareness of scene constraints and dynamics can enable more physically

plausible models of humans at rest. Chao et al. [96] used reinforcement learning to teach

dynamic agents how to sit on a chair in a virtual environment. Hassan et al. [59] used

optimization to infer pose in a way that the human model is consistent with its surroundings,

i.e. not floating above a chair or sunk into it unrealistically. Our previous work modeled

humans in bed using ragdoll physics [11], and another work synthesized human poses in

arbitrary environments with objects that could be contacted or rested upon [97].

Simulating human environments. Approaches for generating synthetic data that model

humans in the context of deep learning use physics simulators such as DART [65] and Py-

Bullet [98, 66] and position-based dynamics simulators such as PhysX [67] and FleX [8].

In a recent work, we combined DART and FleX to rest kinematic human bodies on a soft

mattress [11], and randomized the human pose and body shape to increase variability. Oth-

ers have explored cloth with physics simulations [68, 99, 67, 100], which could be used to

create a diverse set of blanket configurations and profiles on a person resting in bed. Human

environment models can also benefit from understanding object motion landscapes [101]

to synthesize better interactions [102].

Simulating pressure and depth images. We refer the reader to our previous work

on simulating pressure imagery [11], which includes a pressure image generation method
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that we use. For vision, RGB image synthesis relies on relatively complex graphics ap-

proaches [69, 70, 71] while creating synthetic depth images is more straightforward [54,

103]. Achilles et al. [50] generated depth data for a bed environment by simulating a blan-

ket covering the person, and trained a deep network using this data. While this work is close

in concept to ours, the human is represented with a skeleton, which has limitations, and the

code and dataset are unavailable. To improve generalization performance, researchers have

used noise models with pixel dropout, spot noise, and synthetic occlusion [14, 54, 104,

105]. Others have denoised real data during test time [106], at the cost of real-time infer-

ence speed.

Annotating datasets with 3D human mesh models. Standard human pose datasets

contain 2D keypoint annotations, which are pixel-wise joint position coordinate labels on

images. Researchers have fit 3D human mesh models to these 2D keypoints by projecting

a 3D body into image coordinates and optimizing over the human model parameters (e.g.

kinematic joint angles) [35, 107]. Yin et al. [53] use the SPIN method [107] for fitting

SMPL bodies to the SLP resting pose dataset. However, these methods suffer from depth

perspective ambiguity. When additional information is present, such as 3D point clouds or

scene geometry, it is possible to resolve these ambiguities, which Hassan et al. [59] showed.

This can provide highly accurate annotations, but such optimizations require careful data

preprocessing and are too slow to use during inference time.

Deep learning for 3D human pose estimation. Inferring 3D human pose is a signif-

icant branch of research in computer vision [53, 11, 86, 59, 69, 70, 35, 47, 107, 31]. In

recent years, deep learning has seen widespread use for inferring human pose, by using

convolutional neural networks (CNNs) to encode features in an image and output some

representation of human pose. We refer the reader to literature surveys for more compre-

hensive coverage [25, 108]. Here we discuss approaches that are relevant to the particular

black-box and white-box architectures we use. Differentiable kinematic models embedded

into image encoders have gained traction in research due to their ability to produce phys-
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ically plausible human models [32, 9, 47, 60, 109]. In contrast to differentiable skeleton

models, parametric human mesh models such as SMPL [10] offer a better representation

of body shape and size. Both of our architectures use this.

Many pose estimation methods incorporate black-box image reconstruction for pur-

poses including heatmap regression [110], geometry awareness [86], and spatial residual

error correction [87]. One such architecture that may be used for this is U-Net [85], which

learns an image-to-image mapping with a latent space in the middle that can encode image

classes [111] or physically meaningful features [112]. Fewer deep learning works have

used white-box methods for image reconstruction, i.e. differentiable image generation

methods with no learnable parameters. However, our previous work introduced a model

of pressure map reconstruction [11] and was trained only with synthetic data, which we

build on.

4.2 Annotating Real Data with SMPL Bodies

Here we describe an optimization method for annotating an existing human pose dataset

with 3D SMPL bodies, as shown in Figure 4.2. This method finds body shape and pose

parameters to fit the SMPL bodies to depth images and existing 2D keypoint annotations.

The optimization includes terms for scene constraints, body mass, and height, if they are

available in the dataset. By leveraging depth information, the method can resolve the am-

biguities in pose which are inherent with 2D keypoint annotations alone. We annotate the

SLP dataset [14] to create SLP-3Dfits, a dataset consisting of 3D fits to 4, 545 unique poses

as described in subsection 4.2.2. SLP-3Dfits is used for initializing the synthetic data gener-

ation method described in section 4.3, and evaluating the deep learning methods described

in section 4.4.

Our optimization requires a depth image,D, capturing a real person who is not occluded

by objects in the environment (e.g. blankets). A reprojection loss is computed between K

2D keypoints S ∈ RK×2 and 3D SMPL joint positions. Scene constraints, C, are used to re-
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Figure 4.2: We fit 3D SMPL bodies to the SLP dataset [14], which we use for initializing
the physics simulator and for training and testing our deep models. Our method resolves
depth ambiguity using a loss between the SMPL mesh and 3D points from the depth im-
age. Examples are shown without the depth loss term, resulting in poses with depth error.
Examples are also shown without BetaNet, resulting in bodies with unreasonable shapes.
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duce interpenetration between the body and the bed. Height and body mass measurements,

h,m, are used to enforce physical consistency in the SMPL body shape, by modeling height

and body mass as a function of SMPL body shape parameters. This is described in subsec-

tion 4.2.1. We define the SMPL body parameters with ΨR =
[
βR ΘR sR φR

]>, which

contains the body shape parameters βR, the joint angles ΘR, and the global translation

and rotation sR, φR. Subscript R distinguishes the real data annotations from parameters

in later sections. The optimization seeks ΨR that minimizes the objective function E as

follows:

E(ΨR,D,S,C, h,m) = EJ + λDED + λPEP + λMEM + λβEβ (4.1)

The error function contains the following terms:

• EJ(ΨR,S) penalizes the distance between 2D keypoint annotations and SMPL joints

projected into camera space.

• ED(ΨR,D) encourages a match between depth points and SMPL vertices visible

from the camera’s perspective. This is implemented using a robust version [59] of

the Chamfer Distance [113].

• EM(ΨR,C) enforces scene constraints by penalizing interpenetration between the

body and the scene (bed, mattress).

• EP (ΨR) penalizes body self-penetration, e.g., a hand interpenetrating through the

chest. Collisions are detected using Bounding Volume Hierarchies [114].

• Eβ(ΨR, h,m) encourages the SMPL shape parameters βR to express a body with

a height and mass that match the participant’s measurements h,m. This requires a

mapping from body shape to body height and mass, which is described in subsec-

tion 4.2.1.
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During optimization, the joint angles ΘR are constrained to values based on textbook

joint angle limits [75, 76, 77]. The exact joint limits are provided in the code repository.

Many datasets such as the SLP dataset [14] contain a variety of different poses for a partic-

ular person. Accordingly, all such posed bodies should have the same shape. To ensure that

the SMPL shape parameters for each participant are identical across all data samples, the

optimization was implemented as a batched optimization, allowing the joint optimization

of body pose and shape across multiple samples.

As the optimization of SMPL parameters ΨR provides a non-convex objective, the

optimization may fall into local minima. To avoid this, each sample is initialized and

optimized multiple times with different starting poses and orientations. The result with the

lowest loss is selected. The optimization problem is solved using the ADAM differentiable

optimizer. The method is similar to the approach used by Hassan et al. [59]; however,

notable additions include our method of enforcing physical consistency on body height

and mass, and our batched optimization that fits the same body shape across multiple pose

samples.

4.2.1 BetaNet

To calculate Eβ , we model body height and mass as a function of SMPL body shape pa-

rameters and gender, i.e. {h,m} = fβ(β, g), where h and m are values in units of meters

and kilograms, respectively. Unlike β, height and weight are directly measurable physical

values that can better constrain the network. Gender is modeled with two flags, i.e. g ∈ R2,

which may account for female ([0, 1]), male ([1, 0]), or gender-neutral ([1, 1]) body models.

In this work however, only female and male models are used. We represent the function fβ

with a 2-layer fully connected network, where the input consists of body shape parameters

and gender, and the output is height and body mass. We train BetaNet on a large synthetic

dataset consisting of randomly shaped SMPL bodies with known height and mass, and
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mass is modeled as a function of SMPL body mesh volume:

m = m̄g
Vmesh,g
V̄mesh,g

(4.2)

where m̄g is a gender-specific average body mass value we take from Tozeren [79],

Vmesh,g is the volume of a gendered body model of interest, and V̄mesh,g is the volume of a

gendered body model with average shape β = 0. We train BetaNet with the following loss

function:

LBetaNet :=
1

σh
||h− ĥ||1 +

1

σm
||m− m̂||1 (4.3)

where ĥ and m̂ are the height and weight estimated by the network. Each term is

normalized by standard deviations σh and σm, which are computed from the entire synthetic

training dataset. The trained BetaNet is also used for the separate problem of learning a

mapping from depth to pose and pressure, described in section 4.4.

4.2.2 SLP-3Dfits: SMPL fitting to the SLP dataset

Here we describe how our method of fitting parametric SMPL bodies to depth images

and keypoints is applied to the SLP [14] dataset, which contains 4, 590 poses across 102

participants. We use these fits for initializing the physics simulator to generate synthetic

data, for training our deep network, and for testing it.

We annotate 4, 545 poses across 101 participants (one subject is excluded due to a

calibration issue). The SLP dataset contains calibrated, occlusion-free depth images (the

‘uncovered’ case) for every pose. ‘Calibrated’ in this context means that the depth images

are spatially co-registered to other modalities and annotations using the calibration method

in Liu et al. [14]. After converting these to point clouds, points from the bed surface are

filtered out with a height threshold, so that all points used in the objective function are from

the surface of the human body. The SLP dataset also contains 2D keypoint annotations,
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Figure 4.3: Per-joint error of SLP-3Dfits. The joint location of the SMPL model is com-
pared to the 2D SLP annotation projected into 3D space.

body height, and body mass for all captured poses, which are factored into the objective

function. A plane representing the height of the bed surface is used as a scene constraint to

limit penetration into the mattress.

Generally the fits from the automatic optimization are of high quality. However, in some

cases the result converges to an incorrect local minimum, usually when the participant is

lying on their side and the hands are posed on the wrong side of the head. Thus, each

result of the fitting process is manually checked by a human annotator for agreement with

the original pose in the image data. For failure cases, the optimization is restarted with a

different initialization and then re-checked. Roughly 9% of the fits required these restarts.

The fits are of sufficient accuracy to use as ”ground-truth” for evaluation of neural network

predictions, and we have made them available publicly. The mean error between the SMPL

joint locations and the 2D skeleton annotations is 41.6 mm; per-joint error is provided in

Figure 4.3. Note that the SLP dataset joint annotations have some offset when compared to

the SMPL model joints, inflating this error metric. The average distance from the non-bed
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point cloud to the surface of the human model is 12.0 mm.

4.3 Synthetic Data Generation

We present a synthetic data generation pipeline using physics simulations that is capable of

creating a large dataset of humans resting. It can generate bodies at rest on a soft mattress

with depth and pressure images. In practice, this approach is much more efficient than

collecting comparable real-world data. The sole purpose of this pipeline is to create a large

dataset, BodyPressureSD, for training the deep model described in section 4.4. BodyPres-

sureSD contains 97, 495 unique body shapes, poses, and image samples; data partitions are

described in the evaluation (subsection 4.5.1).

The data generation pipeline consists of two processes, as depicted in Figure 4.4. The

first process (I. - VI.) is similar to that of our previous work [11]; it generates bodies resting

on a soft bed with synthetic pressure images. The second process (V. - IX.) generates

blanket occlusions on top of the bodies in bed with synthetic depth images. It uses three

simulation tools: DART [65] for simulating articulated human dynamics; FleX [8] for

simulating soft materials that include the human body, bed mattress, pressure sensing mat,

and blanket dynamics; and PyRender [115] for depth image rendering. Some synthetic data

examples are shown in Figure 4.5.
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Figure 4.4: Our synthetic data generation method involves two processes: The first process is similar to our previous work [11]; it
involves (I.) sampling random human poses, (II.) resting dynamic capsulized bodies on a soft bed to find a resting pose, (III.) resting a
finer body representation on the bed to improve human body shape detail, and (IV.) using a simulated pressure sensing mat underneath
the person to compute a pressure image. The second process involves (V.) covering the body with a blanket, (VI.) pulling the top of
the blanket down to uncover the person’s head, (VII.) extracting deformed meshes, (VIII.) creating a solid mesh, and (IX.) simulating a
depth image from a pinhole camera positioned above the bed.
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Figure 4.5: BodyPressureSD synthetic data samples created by resting bodies on a mattress and covering them with a blanket.
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4.3.1 Simulating Bodies at Rest

The process begins by sampling a large set of initial synthetic body poses, where each pose

sample contains joint angles {Θ′I ,φ′I}, that are close to the real poses {ΘR,φR} fit in

section 4.2. This is depicted in Figure 4.4-I. Normally distributed noise is added to the hip,

knee, inner shoulder, outer shoulder, and elbow joints. Each angle j in these joints receives

noise with the following equation:

θ′I,j = θR,j +N (0, π/12) (4.4)

where {θ′I,1, θ′I,2, ...} = Θ′I and {θR,1, θR,2, ...} = ΘR. Other joints are set equal to

the real fit angles. The same amount of noise is added to two of the root angle joints

representing the rotation of the body along its longitudinal axis (φR,2) and the rotation of the

body normal to gravity (φR,3). No noise is added to φR,1, which represents rotation around

the sagittal axis. For each pose, the body shape is sampled from a uniform distribution,

following [116]: β ∼ U [−3, 3]. The 2D translation of the human body over the surface of

the bed is also sampled from a uniform distribution: s′1, s
′
2 ∼ U [−0.2, 0.2]. The height of

the body normal to gravity, s′3, is set according to the lowest initial point on the body so that

every part of the body is initially above the bed. Accordingly, {s′1, s′2, s′3} = s′. With the

fully parameterized body of initial shape and pose {β,Θ′I ,φ′I , s′}, body self-collisions are

checked using the capsulized body from SMLPify [35]. If there is a collision, the sample

is rejected, otherwise, the set of parameters becomes {β,Θ′,φ′, s′}.

Two physics simulations. The first process uses physics simulations to convert a body

with the initial collision-free pose {β,Θ′,φ′, s′} to a resting pose {β,Θ,φ, s}with human

body meshMH and pressure image P . It is the same process as our previous work [11],

with the exception of the weighting method for the simulated body, which we updated. See

details in Appendix C.1. Figure 4.6 shows examples of resting poses and body shapes that
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Figure 4.6: Example of resting pose diversity. Left blue pose shows a SLP-3Dfits example.
Right black examples shows BodyPressureSD resting poses and body shapes that were ini-
tialized in the simulator by adding noise to the left blue pose (Equation 4.3.1) and dropped
on the mattress.

are generated from a single SLP-3Dfits pose. The remainder of subsection 4.3.1 provides a

high-level summary of the methods from [11].

In Physics Simulation #1 (Figure 4.4-II.), the human is modeled as an articulated rigid

body made with capsule primitives. DART [65] is used to model this capsular human and

simulate its dynamics. The articulated body uses the same joint angles and body shape

parameters as the SMPL mesh, but unlike the mesh, the joint angles can change due to

applied torques and forces (e.g. due to gravity and contact with the bed). At the same

time, a different simulator, FleX [8], is used to model a mattress and a pressure-sensing

mat underneath the body. FleX uses a unified particle representation to efficiently model

deformable objects. These are combined in a loop to allow a dynamic articulated system

(i.e., the body) to interact with soft materials (i.e., the pressure sensing mat).

While the capsulized articulated rigid body from Physics Simulation #1 is well suited

for modeling ragdoll physics and finding a resting pose, it does not represent the surface

geometry of the human body with sufficient fidelity for pressure image generation. The pro-

cess assigns the resting pose and body shape to a SMPL mesh and fills it with deformable

FleX particles, which creates a non-articulated body with a finer profile of human features.

This is depicted as Physics Simulation #2 in Figure 4.4-III. This ‘particlized’ body is po-

sitioned above the bed with parameters {β,Θ,φ, s + ξ}, where the term ξ represents a

vertical adjustment in the root joint translation so the body can be allowed to fall a short

distance to settle on the bed a second time.

The process uses polygon meshes to record the simulation state in Physics Simula-
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tion #2. Initially, the meshes include the undeformed human body, mattress, and pressure

sensing mat meshes. The human body mesh is a function of the resting pose: M′
H =

f
(
β,Θ,φ, s + ξ

)
. The mattress underneath the person is set to a twin size, consisting of

a rectangular prism of particles in an undeformed meshM′
M . The mattress is constructed

using the same particlizing method as the human body [11]. The padded mat on the bed

surface represents a layer of bedding underneath the person, and is constructed from a two-

layer lattice of particles laced together by a grid of springs constraints, represented by mesh

M′
P . Physics Simulation #2 is run until the particlized human body reaches static equilib-

rium, and then outputs mesh data for the resting human bodyMH , the deformed mattress

MM , and the deformed pressure sensing matMP .

Synthesizing Pressure Imagery

Besides interacting physically with the capsulized body in Physics Simulation #1, the pres-

sure sensing mat on the surface of the bed is also used to generate pressure images, based

on particle penetration between the top (orange) and bottom (blue) layers of particles on

the surface of the bed, shown in Figure 4.4-IV. The simulated sensor measures pressure as

a function of how far a top layer particle penetrates the underlying particles. Each penetra-

tion distance across the mat is converted into a value on pressure image P , which is also

shown in Figure 4.4-IV. We refer the reader to a prior work for further details about this

process [11].

4.3.2 Simulating Blanket Occlusions

Before simulating the cloth blanket, the process freezes the ending equilibrium state of

Physics Simulation #2, which involves freezing particles representing the resting human,

deformed mattress, and deformed pressure sensing mat. A blanket is created in FleX with

a grid of particles shown in Figure 4.4-V. The blanket is parameterized by two sets of

terms: the blanket geometry terms, which determine blanket size, particle location, particle
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connection points and initial world transform; and the dynamic simulation terms, which

determine the stiffness holding particles together.

The blanket has an undeformed height and width hB and wB, which are chosen to rep-

resent a twin size of 1.68 × 2.29 meters, and are created with a 102 × 102 particle grid.

The global translation is parameterized by {sB,1, sB,2, sB,3} = sB ∈ R3 and rotation by

{φB,1, φB,2, φB,3} = φB ∈ R3. These can be used to incorporate domain randomization

(e.g. by sampling random initial blanket translations) or to better match blanket configura-

tions in a particular dataset. The blanket is initially set to a height sB,3 above the body so

that the blanket does not initially collide with the body. The initial blanket configuration

may be described by meshM′
B = f(hB, wB, sB,φB). The blanket is weighted with the

same density as the mattress in the previous simulation. The blanket dynamics are also

influenced by the blanket stiffness KB.

The process then runs the simulation, dropping the soft blanket on the body in bed.

Depending on the initial position over the surface of the body, the blanket may cover the

human’s head, which is undesirable because it would likely not be a common occurrence

in the real world. Thus, the blanket is adjusted by pulling on a set of particles on the top

edge of the blanket - see Figure 4.4-VI. To determine if the blanket should be pulled to

uncover the person’s head, the process checks if the blanket is above the person’s neckline.

In other cases, the top edge of the blanket may be initialized at a location very far from the

person’s head, which could lead to the person being only partially covered. In this case,

the algorithm checks if the blanket is below the person’s neckline, and if it is, the same

set of particles is pulled upward to better cover the person. Once the blanket reaches static

equilibrium, the simulator halts and outputs the deformed blanket as meshMB.

Rendering Synthetic Depth Imagery

The process extracts the deformed meshes {MH ,MM ,MP ,MB} as depicted in Fig-

ure 4.4-VII., and records them as part of the dataset. Then, they are assembled using Pyren-
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der [115], an open source python library for rendering and visualization (Figure 4.4-VIII).

Finally, the process renders D, a depth image from a camera facing the bed. Figure 4.4-IX

depicts two viewing angle perspectives, which include an observation from the side of the

bed and an observation from mounting the camera directly above the bed facing downward.

4.4 Learning Pose and Pressure from Depth

We train an algorithm that learns a mapping f from a depth imageD captured over a person

at rest with gender g, to a human meshMH that models pose and body shape, and a 2D

array P that encodes the contact pressure on the surface of the mattress underneath the

person:

{MH ,P} = f(D, g) (4.5)

We represent f in the form of a deep network. The body meshMH and the pressure

array P can be used to calculate the pressure distribution on the surface of the body, Pb

(recall Figure 4.1 (c)), which contains localized pressure on specific body parts. We define

Pb as a collection of human body mesh vertices that are each assigned a pressure value due

to contact from the underlying surface. Because the mesh MH is learned with a 6-DOF

pose in the world reference frame and the contact pressure array P is collected by a sensor

mounted at a known position in the world, they are implicitly co-registered. Assuming

that the pressure mat exists within a flat plane normal to gravity on the top surface of the

bed, each contact pressure element pxy may be projected normal to gravity onto the human

mesh, where pxy is assigned to mesh vertex vj if its taxel area contains the x, y position

of vj . A taxel is defined as a tactile pixel on a force-sensing array [11]. This mapping

approximates the complex phenomena that occur when the mat is deformed due to contact
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by neglecting stretching and folding. As such,

Pb : P 7→MH (4.6)

This projection is sufficient to localize pressure on specific body parts, because vertex

indices on the SMPL model are independent of body pose and shape, i.e. a heel vertex

is always on the heel. Vertices above the undeformed bed height are set to zero because

they are not in contact, and vertices with non-zero pressure are required to be unoccluded

from the pressure mat by other body parts or surfaces of the body. The latter is ensured by

casting a ray downwards from each vertex toward the mat and checking if it passes through

any triangular faces. If it passes through a face, the pressure is set to zero. This will ignore

pressure due to self contact between parts of the body.

4.4.1 BodyPressureWnet

Here we describe BodyPressureWnet (BPWnet), a deep network with a white-box model

of depth and pressure image generation, shown in Figure 4.7. BPWnet uses a traditional

CNN for encoding depth images, but uses a white-box model for reconstructing depth

and pressure images from an embedded SMPL human model. These white-box models

are analytic and fully observable with no learned parameters, and are also differentiable.

BPWnet contains two modules: ‘Mod1’, which produces an initial estimate, and ‘Mod2’,

which refines the estimate through residual error in a similar way to previous works [87,

57, 11].
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Figure 4.7: BodyPressureWnet (BPWnet), a deep network that learns a mapping from depth and gender to pose and contact pressure.
Depth, D is encoded with a black-box CNN and outputs SMPL [10] human model parameters Ψ̂, which is used to reconstruct a SMPL
human mesh M̂H . Using white-box image reconstruction components DMR and PMR, it refines the pose estimate and outputs a
pressure map. The pressure map features are calibrated with CAL to produce a contact pressure estimate P̂ . The two module design
refine estimates with initial and residual stages; subscripts 1 and 2 indicate estimates from each module, respectively.
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First, BPWnet maps a depth imageD to SMPL parameters Ψ̂ using a CNN. From there,

it uses the differentiable SMPL embedding from Kanazawa et al. [47] to produce a SMPL

mesh estimate, M̂H . A loss is applied using height and weight estimates from BetaNet.

The first module, Mod1, contains a white-box model of depth image generation, which

reconstructs depth maps D̂+ from a SMPL mesh. The spatial residual between these maps

and the input depth images are used to learn a correction and refine initial human pose

estimates in the second module, Mod2. In contrast to Mod1, Mod2 contains a white-box

model of pressure image generation, which differentiably reconstructs pressure maps P̂+

from an improved SMPL mesh estimate. Finally, the CAL component in Figure 4.7 adjusts

pressure maps to achieve a similar calibration to real pressure images.

Depth image encoding. Both modules of BPWnet encode depth imagery with ResNet34

convolutional neural networks (CNNs). Each CNN outputs estimated SMPL parameters

Ψ̂ =
[
β̂ Θ̂ ŝ x̂ ŷ b̂

]> ∈ R89, which contains body shape, joint angles, and root

translation and rotation. It also contains an estimated distance between the camera and the

bed, b̂, which is described later in this section. The SMPL parameters are used to compute a

SMPL human mesh model with no learnable weights. The SMPL block takes as additional

input a set of gender flags g ∈ R2 (recall subsection 4.2.1) and outputs a human mesh

M̂H . We define a loss on the SMPL model, LSMPL, which minimizes error from the SMPL

parameters and 3D SMPL joint positions. We also define a loss on the SMPL vertex posi-

tions, Lv2v, which can be used in conjunction with LSMPL to provide more supervision at a

marginally higher computational cost. Appendix D.1 contains details on LSMPL and Lv2v.

BPWnet also provides supervision on human mass and height using the BetaNet described

in subsection 4.2.1.

White-box decoding. In Mod1, the depth map reconstruction (DMR) module com-

putes a depth map D̂+ ∈ R64×27 from the body mesh M̂H,1. This is computed by calcu-

lating the distance between the camera plane and the inferred human mesh (Figure 4.8 -

left). The reconstructed depth map is used for residual error refinement in Mod2: The dif-
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Figure 4.8: Differentiable white-box depth and pressure map reconstruction. DMR com-
putes a linear depth map D+ between the height of the camera and the top surface of the
human mesh (left). PMR computes a linear pressure map P+ between the undeformed
height of the surface of the bed and the human mesh (right). Variable b is the distance
between the camera and the bed.

ference between the real pose in the input depth image D and the pose in the reconstructed

depth map D̂+ contains information that can be used to improve the initial pose and body

shape estimate. This white-box model of depth image generation is similar to the pressure

image generation introduced in our previous work [11]. Unlike the input depth image D,

the DMR reconstruction D̂+ only contains human mesh information and is occlusion-free;

specifically, it does not contain blanket or mattress information because its sole purpose is

to improve the initial pose estimate.

Mod2 uses pressure map reconstruction (PMR) from [11] to compute a pressure map

P̂+ ∈ R64×27 from the refined pose estimate M̂H,2. This is the distance the body mesh

sinks into the underlying mattress (Figure 4.8 - right). In contrast to the previous work

that reconstructs a pressure map from a pressure image, in BPWnet, PMR reconstructs a

pressure map from a depth image. The position of the mattress must be known with high

accuracy relative to the depth camera, because the pressure is sensitive to small changes

in the vertical distance between the camera and bed. Small camera movements or the

weight of a large person on the bed can change the perceived distance enough to alter the
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reconstructed pressure map. Thus, it requires an additional variable to represent changes

in the vertical distance between the camera and the surface of the bed, which can correct

for changes in the camera’s position. We define this parameter as b, and learn it from depth

images at varying distance from the bed. We also define a loss on the PMR component,

LP+ , which can be used to train the depth image encoder. See details in Appendix D.1.

Calibrating the inferred pressure map. While P̂+ is spatially similar to a pressure

image, it has some qualitative differences: it contains more dilated features (i.e. the spread

of a given pressure point is wider), it has less noise, and the magnitude of each pixel

is a distance rather than a pressure. Thus, our approach uses a small convolutional net-

work, CAL, to calibrate P̂+, converting it to P̂ ∈ R64×27. CAL takes as input a stack of

3 images including P̂+ and constant CoordConv maps R ∈ R2×64×27, which allow the

network to model non-translation invariant aspects and can improve trainability and gener-

alization [117]. CAL contains 4 layers of convolution, with < 0.4% as many parameters as

the encoder. We define a loss based on the output pressure image, LP , which can be used

to train CAL. See Appendix D.1.

Training Strategy

We train the encoders for Mod1 and Mod2 separately. The loss for Mod1 is computed as:

LBPW1 = LBetaNet1 + LSMPL1 (4.7)

where BetaNet is separately pretrained (subsection 4.2.1) and contains frozen network

weights. Then, the entire dataset is passed forward through the network to compute a set

of Mod1 estimates with each sample containing {Ψ̂1, D̂+, Ĉd+}, where Ĉd+ are the binary

maps of D̂+, created by setting background depth values on the bed surface to zero and all

higher values corresponding to the human surface to one. The purpose of binary maps is

to help the network learn from small values on the human surface that are important, yet

distinct from the zero values on the bed surface. In this forward pass, noise is added to the
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SMPL parameters to increase the variation in the types of error that Mod2 corrects. With

a dataset consisting of inputs {D, D̂
+
, Ĉd+}, we train Mod2 to learn a residual correction

(Ψ̂2 − Ψ̂1) with the following loss:

LBPW2 = LBetaNet2 + LSMPL2 + Lv2v2 + LP+
2

(4.8)

After training the depth image encoders, we train the CAL network. CAL learns to

refine the features of P̂+ and calibrate pressure values at individual taxels rather than to

spatially adjust pressure for a change in limb or body movement. Ground truth human

meshes from the dataset are used to compute ground truth reconstructed pressure maps P+,

which are fed into CAL during training. CAL outputs the estimate P̂ , which is compared

to ground truth P during training, using loss LP .

4.5 Evaluation

We evaluate our method using the SLP multimodal dataset [14], which is a human pose

dataset consisting of 4, 590 unique resting poses in bed across 102 human participants.

Each pose is captured with three different situations of varying visual occlusion: (1) thin

sheet covering the person, (2) thicker blanket covering, and (3) no covering. The dataset

contains RGB, depth, point cloud, thermal, and pressure imagery, as well as 2D human pose

keypoints; the bottom row of Figure 4.1 (b) and Figure 4.2 provide a couple examples. In

subsection 4.5.1, we describe the data partitions generated using the method in section 4.3.

Finally, in subsection 4.5.2, we describe the evaluation of the deep network from section 4.4

on the SLP dataset.

4.5.1 BodyPressureSD Synthetic Dataset Partitions

The synthetic data generation method from section 4.3 is used to generate BodyPres-

sureSD: a large collection of samples, each of which includes a resting pose, a unique
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Table 4.1: Human Pose and Body Shape Dataset Partitions

synthetic real real
Description train ct. train ct. test ct.

Supine - Unique Images w Blankets 34619 2370 660
L. Lateral - Unique Images w Blankets 32050 2370 660
R. Lateral - Unique Images w Blankets 30826 2370 660
Supine - Unique Images w/o Blankets 34619 1185 330

L. Lateral - Unique Images w/o Blankets 32050 1185 330
R. Lateral - Unique Images w/o Blankets 30826 1185 330

Total Unique Images 194990 10665 2970

Supine - Unique Poses 34619 1185 330
Right Lateral - Unique Poses 32050 1185 330
Left Lateral - Unique Poses 30826 1185 330

Total Unique Poses 97495 3555 990

Total Unique Body Shapes 97495 79 22

Num Samples for Training and Testing 97495 10665 2970

body shape, a gender, a depth image, a pressure image, and four meshes from the scene for

the person, mattress, pressure sensing mat, and blanket. The pressure images for both this

data and the real SLP data are normalized by body mass. The depth and pressure images

are spatially co-registered with the calibrated images in the real SLP dataset. Details on

these procedures are provided in Appendix C.2 and Appendix C.3.

Human body pose partitions. To create the synthetic training dataset, our process

samples initial poses and body shapes close to the real poses as depicted in Figure 4.4-I.

For each unique real pose among the 80 training subjects in the SLP dataset, it attempts

to generate 30 initial synthetic poses split evenly between female and male SMPL bodies.

Each of these poses have a unique body shape. Given 80 participants in the training dataset

with 45 unique poses per participant, this would ideally generate 30× 80× 45 = 108, 000

initial poses and body shapes. However, in some cases it is challenging to find a collision-

free pose for a particular body shape that is close to a particular real pose, so some samples

are aborted when a limit is reached. This reduces the initial pose/body shape count to

103, 966.

Next, the process runs this set of bodies with initial poses through Physics Simulations

#1 and #2, of which some more are rejected due to the simulation becoming unstable.
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The process is designed to automatically detect when simulation instability is imminent, in

which case it aborts the simulation and rejects the pose. This can happen due to situations

such as a limb poking a hole in the pressure mat, which are described in our previous

work [11]. None of the blanket covering simulations resulted in instability. This resulted

in a total of 97, 495 unique data samples, which are used to train the network. The data

partitions are broken down in Table 4.1.

Blanket configuration partitions. The SLP dataset contains both thick and thin covers,

which are placed to cover most of the body. The simulator is only equipped to generate

blankets with a single fixed thickness, which we assume is close enough to represent both

real coverings. The real blankets often contain many wrinkle features that may be caused

by pulling or adjusting the blanket so that it covers the body appropriately. We attempt to

mimic these situations. The process incorporates randomization in the initial position of

the blanket over the surface of the bed sB (recall the top half of Figure 4.4-V). Each resting

body is associated with a single initial blanket position and the covering variation that

results from it. The initial blanket configurations are split into two partitions. In the first,

the blanket is centered over the person with the upper edge coinciding with the person’s

neckline, such that no pulling is required to uncover the head or cover the body (recall

Figure 4.4-VI.). In the second partition, the initial blanket position is randomly sampled

across the person in bed. These two blanket configuration scenarios are split 50/50 among

the synthetic data pose partitions described in Table 4.1. In all cases, the initial blanket

rotation, φB, is set to a constant value of 0. Appendix C.4 provides details on the specific

sampling bounds.

4.5.2 Network Evaluation

For human pose inference, we compare our method to the Pyramid fusion scheme by Yin et

al. [53], which uses 4 modalities (RGB, depth, thermal, and pressure imagery) to infer a

SMPL mesh. Our method uses only depth imagery, which would have significant advan-
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tages for real-world deployment. Pose accuracy is evaluated with 3D mean-per-joint posi-

tion error (MPJPE), using the same 22-subject test set proposed in Yin et al. For each pose

sample, the inferred positions of 24 joints on the SMPL model are compared to ground

truth using 3D Euclidean error.

For both contact pressure inference and the inferrence of pressure on the human body,

we did not find any existing work for comparison. We designed a second deep architecture

to compare BPWnet with, which uses a more traditional black-box method of image recon-

struction. We refer to this alternative as BodyPressureBnet (BPBnet). BPBnet replaces the

white-box DMR and PMR components in BPWnet with black-box decoders. These learned

image decoders are designed symmetrically to the encoders, expanding the SMPL parame-

ters back into images. Appendix D.2 contains details about BPBnet. We train both network

architectures with the same hyperparameters, and compare the inferred pressure image to

ground truth using mean-squared error (MSE), which is computed on a per-taxel basis. We

compare the ability to localize regions of high pressure density using vertex-to-vertex pres-

sure (v2vP) mapped to the SMPL model, where MSE is computed on a per-vertex basis.

Because vertices are not evenly distributed over the surface of the body and pressure is in

units of force/area, the pressure on each vertex is normalized by the average area of the

adjacent triangles. We also compare human pose estimation error between BPWnet and

BPBnet.

Dataset splits. We trained on datasets consisting of real, synthetic, and combined syn-

thetic and real data. For the synthetic training data, we selected depth images with blanket

occlusions on 2/3 of the poses, and depth images without blankets for 1/3 of the poses.

This matches the real data, of which 2/3 of images are occluded by blankets 1/3 are not.

We performed validation and testing on real data. We created both training/validation and

training/testing splits based on the 102 subjects in the SLP dataset. For training/validation,

we trained on data from the first 70 subjects (i.e. subjects 1 - 70, with 9, 315 real and 85, 114

synthetic samples), and validated on the next 10 subjects (i.e. subjects 71 - 80, with 1, 350
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real samples). We used this split for tuning network hyper parameters. For training/testing,

we used the same split as Yin et al. [53], and trained on data from the first 80 subjects (i.e.

subjects 1 - 80, with 10, 665 real and 97, 495 synthetic samples), and tested on the last 22

subjects (i.e. subjects 81 - 102, with 2, 970 real samples). We did not use subject 7 data

due to errors in calibration.

Depth image noise model. Our camera noise model includes white noise, dropout, and

synthetic occlusion on sections of the input image using the code provided by Liu et al. [14].

Because the inferred contact pressure is highly sensitive to the distance between the camera

and the bed, a single distance is uniformly sampled between -5 and 5 cm for each image,

which is added to all depth pixels to make the inference robust to vertical movements of

the camera or bed. No rotational noise or translational noise in the plane normal to gravity

are added, since they appeared to be unnecessary for the SLP dataset. Noise is also added

to account for the physics of the bed springs underneath the soft mattress. The simulated

mattress is set on a rigid plane, which differs from the flexible springs in Invacare Homecare

bed used to collected real data in [11] as well the bed used to collect the SLP dataset [14].

In practice, we observe a substantial drop in the middle of the bed when a person rests on

it. This is modeled with a 2D parabolic map added to depth images during training, which

is equal to zero at the edges of the bed and increases to a max in the center. A parameter

that alters this max value is uniformly sampled between 0 and 10 cm.

Network hyper-parameters. For all networks, we shuffled the training data, used

a batch size of 128, used the ADAM optimizer [43] for gradient computation, and used

a learning rate of 0.0001 and weight decay of 0.0005. For BetaNet, we trained for 500

epochs on real and synthetic data. The BetaNet used in the optimization of section 4.2

was only trained with synthetic data because the body shape parameters were not available

prior to annotation. For the CAL network in BPWnet, we trained for 500 epochs on real

and synthetic data. For both BPBnet and BPWnet, we trained on 100 epochs on the first

module. Then, we pre-computed their estimates and used it for training the second module,
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which we trained for 40 epochs. We trained for 40 epochs because the network began to

overfit the training data at this point regardless of the training dataset used. Our machine

has a AMD Ryzen Threadripper 1950X 16-Core processor with 64 GB of CPU RAM and

a NVIDIA RTX-3090 GPU. Training CNN1 and CNN2 network modules each took ∼ 12

hrs, while BetaNet and CAL took < 3 hrs.

Network computation performance. Overall, BPWnet had better computational per-

formance than BPBnet. First, it is a more parsimonious model. Using white-box image

reconstruction with DMR and PMR in Figure D.1 instead of the learned ResNet decoder

BPBnet reduces the learnable network parameters by 12%. Second, it is more memory

efficient. Our BPBnet implementation uses almost 23 GB of GPU RAM, which will not

fit on many consumer grade GPUs. The white-box model can be tuned to sacrifice speed

for improved memory while keeping an encoder training batch size of 128 – at a cost of

doubling the training time, the memory footprint reduces from 17 GB to 11.5 GB.

4.6 Results and Discussion

In this section, we present and discuss the results.

Our method for estimating pose outperforms the state-of-the-art. Using only a

depth image in the input, BPWnet is able to infer pose with 12% lower error than the

state-of-the-art method from [53], which uses a combination of RGB, depth, thermal, and

pressure imagery to infer pose. We note that Yin et al. [53] use a different ground truth

fitting method from [107], but their fits and code are not released so we compare to their

reported error. BPWnet also outperformed the alternative BPBnet. Table 4.2 presents these

results, with comparisons between the type of covering on the person. Figure 4.9 presents

a visual overview of BPWnet performance.
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Table 4.2: Human pose estimation (Pose), contact pressure (P. Img.), and pressure distribution (v2vP) error results when evaluating on
the 22 subject test set.
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BPWnet 97K × D 95.79 112.08 109.83 105.90 1.665 1.764 1.738 1.772 3.403 3.378 3.349 3.376
BPWnet 11K × D 103.22 104.56 104.83 104.20 1.470 1.455 1.444 1.456 2.764 2.723 2.685 2.724

Pyramid Fusion [53] 11K × RGB-D-T-P 78.80 79.92 80.21 79.64 - - - - - - - -
BPBnet, No SMPL 108K × × D - - - - 0.825 0.959 0.932 0.905 - - - -

BPBnet 108K × × D 70.16 76.99 76.49 74.54 0.772 0.884 0.858 0.838 2.497 2.491 2.486 2.492
BPWnet 108K† × × D 63.64 72.40 72.04 69.36 1.155 1.209 1.190 1.184 2.449 2.448 2.420 2.439

† indicates the encoder was trained with 108K mixed, while the CAL component was trained using only 11K real.
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Figure 4.9: Results: Inferring pose, contact pressure, and localized pressure distribution from depth using BPWnet. Showing real data
with people occluded by blankets in the depth images. All cases are from the last 22 test subjects in the SLP dataset; white coverings
indicate ‘cover 1’ and black indicate ‘cover 2.’ The far right renderings in each group are a mirror flip because they show the pressure
distribution underneath the body; the top shows an inferred pose while the bottom shows a pose from the SLP-3Dfits annotations.
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Figure 4.10: Results - continued.
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Figure 4.11: Results - continued.
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Table 4.3: Pressure distribution - v2vP, MSE (kPa2) error comparison across common pressure injury risk regions [93, 94].

Network Head L. heel R. heel R. hip L. hip L. shoulder Sacrum R. shoulder L. elbow L. toes R. toes R. elbow Ischium Spine

BPWnet, 108K† 3.609 3.217 2.946 2.524 2.371 1.774 1.704 1.624 1.196 1.188 1.180 1.105 0.650 0.441

Figure 4.12: SMPL segmentation into pressure injury risk areas.
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Mixing synthetic and real data boosts performance. When training the network

only on real depth images from the SLP dataset or only on synthetic depth images from

BodyPressureSD, performance lags. However, when the real and synthetic datasets are

naively mixed into a single bag of training data, pose error drops by more than 30%.

Our method can infer contact pressure from depth. Our method can infer a pressure

image (P) from overhead depth imagery, which is also depicted visually in Figure 4.9.

Like pose inference, using a mixed bag of synthetic and real data boosts performance, as

shown in Table 4.2. The error for BPBnet is lower than BPWnet. When the SMPL model is

ablated from BPBnet, it is still able to infer pressure but performs worse. This indicates that

joint learning of the SMPL parameters helps BPBnet learn contact pressure from depth. We

did not ablate the SMPL model from BPWnet because it requires SMPL to infer a pressure

image.

BPWnet can infer pressure on the body. While black-box image reconstruction is far

more common in computer vision and our black-box model (BPBnet) has a lower pressure

image inference error, our white-box model (BPWnet) has a lower pressure distribution

(Pb) error as measured by vertex-to-vertex pressure (v2vP) in Table 4.2. We provide ad-

ditional v2vP results on common pressure injury risk regions in Table 4.3 and depict the

segmentation of the risk regions on the SMPL mesh in Figure 4.12.

Generally, BPWnet can more reliably localize pressure than BPBnet. This is because

the inferred pressure image in BPWnet can be reduced to a function of only the SMPL

parameters (i.e. P̂ = f(Ψ̂) ) where the spatial mapping between the human mesh M̂H

and the pressure map P̂+ is a known geometric function with no learnable parameters, so

the reconstructed pressure image reliably projects onto the surface of the inferred human

mesh. In contrast, there is little in the black-box model to ensure the inferred pressure

map spatially co-registers with the inferred mesh. We present a visual example of this

phenomena in Figure 4.13. In it, the person lays supine on the bed with the left foot tucked

under the right upper leg. This produces a peak pressure on the left foot, which carries
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Figure 4.13: Behavior comparison of BPBnet and BPWnet. BPBnet has lower contact
pressure error, but its projection onto the inferred mesh contains an artefact. BPWnet plau-
sibly infers a high pressure on the foot, while BPBnet incorrectly assigns a high pressure
to the underside of the upper leg.

extra weight from the right leg. BPWnet appropriately projects the peak pressure onto the

left foot, while the BPBnet projection contains a discrepancy in the peak pressure location.

Pose vs. contact pressure accuracy tradeoff. A number of factors may account for

the tradeoff in pose vs. contact pressure accuracy between BPWnet and BPBnet. For

pose estimation, the reconstructed depth map estimate D̂+ in BPWnet is a constrained

function of SMPL parameters and thus provides more consistent spatial residual feedback

to learn the pose correction in Mod2. If the input depth image is highly occluded or contains

noise, BPWnet may produce a poor initial pose estimate but D̂+ will contain no less pose

information. In contrast, the black-box reconstructed depth map in BPBnet has no lower

bound on the amount of information it contains, so in some cases it may not contain any

useful information for the correction.

For the pressure image inference, Table 4.2 indicates that the SMPL model is not nec-
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Table 4.4: Ablation study - evaluated on the 22 subject test set. Pose and pressure error
shown with same metrics as previous tables. Body mass and height are evaluated with
mean absolute error.
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BPWnet, 108K† × × 72.84 1.215 2.470 7.42 44.35
BPWnet, 108K† × × 68.62 1.296 2.494 7.62 65.97
BPWnet, 108K† × × 69.36 16.326 31.806 5.64 39.45
BPWnet, 108K† × × × 69.36 1.184 2.439 5.64 39.45

essary for inferring the pressure image with BPBnet. Thus, a pixel-to-pixel black-box net-

work is sufficient for inferring a pressure image from an occluded depth image. BPWnet

likely decreases the performance of this inference because it has fewer free parameters and

a tighter grasp on the pressure image formation process: if the pose changes, the pressure

necessarily changes. Some poses may be more challenging to learn than some instances of

contact pressure, so an inaccurate pose would adversely affect the pressure image inference.

Ablating BPWnet components reduces the performance of body pressure infer-

ence. We conducted an ablation study to test the importance of components in BPWnet,

shown in Table 4.4. We ablated BetaNet, which improved pose accuracy, marginally re-

duced pressure accuracy, and substantially reduced accuracy of body height and weight.

Coincidentally, the BetaNet model of height and mass also seems to cause a tradeoff in

pose vs. pressure accuracy. However, the reduction in overall body shape accuracy as mea-

sured by height and weight casts some doubt on the merit of omitting BetaNet. We ablated

the CAL feature calibration component, which affects only the contact pressure inference.

Without CAL, the pressure inference performs poorly because the overall scale of the PMR

output, P+ is different than P . This indicates that CAL is able to scale the pressure from an

arbitrary range to an appropriate range. We also ablated the residual learning by removing

the DMR component in Mod1 and used PMR instead to compute pressure maps. For this,
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Table 4.5: CAL feature calibration test - evaluated on the 22 subject test set. Pressure error
shown with same metrics as previous tables.
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BPWnet, 108K† 16.326 31.806
BPWnet, 108K† × 1.393 2.713
BPWnet, 108K† × × 1.195 2.485
BPWnet, 108K† × 1.184 2.439

we trained only the initial CNN for 100 epochs but used the LBPW2 loss. This marginally

changed pose, pressure, and body height error but substantially reduced the accuracy of

body weight.

CAL succeeds at both scaling and locally calibrating pressure map features. Re-

call that the purpose of CAL is to calibrate P+ both by scaling it and by adjusting local

features to better resemble features in the real pressure image P . We tested the ability to

achieve each of these purposes by adding a body mass normalization component to the out-

put, which scales P+ to the correct pressure range. The estimated body mass from BetaNet

was used for this and the results are shown in Table 4.5. Without CAL, mass normaliza-

tion greatly improves the pressure inference, but not to the extent that CAL does. This

indicates that CAL does more to improve the features in P+ than only scaling it. We also

compared a network that both uses CAL and normalizes by mass, and observed a slight dip

in performance.

Improvements to blanket simulation may improve performance. When training

using only synthetic data (with and without blanket occlusions), pose estimation is sub-

stantially better when testing on real depth images that do not have blanket occlusions than

testing on those that do. See Table 4.2 for reference. The same holds true when training on

mixed synthetic and real data. On the other hand, when training using only real data (with

and without blanket occlusions), pose estimation accuracy is comparable when testing on
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real depth images with and without blanket occlusions. This seems to indicate that the

quality of synthetic blanket occlusions could be improved.

We manually adjusted simulation parameters to achieve realistic blanket folding char-

acteristics. Besides blanket stiffness, we found that other FleX parameters such as the

number of simulation substeps had an impact on the cloth behavior. Optimizing the syn-

thetic blanket parameters to make them behave more like real coverings may improve the

quality of synthetic data and boost performance when testing on real depth images with

blanket occlusions; for example, the methods from Runia et al. [118] might merit future

exploration.

Body pressure loss may improve performance. The loss functions in BPWnet and

BPBnet include terms computed at many different locations to provide better supervision.

A loss directly computed based on the error in the inferred body pressure Pb merits future

investigation. Recent differentiable geometry tools may enable such a loss computation

and improve performance.

Released materials can support future work. In addition to the SLP-3Dfits human

body annotations and the BodyPressureSD synthetic dataset used to train our model, we

publicly release 3D synthetic mesh data for the resting human, mattress, pressure mat, and

blanket. This may be useful for future work in the area of geometric learning.

4.7 Opportunities for Future Work

While BPWnet exhibits promising performance and demonstrates the feasibility of using a

depth sensor to infer body pressure, further research will be required to establish its clinical

effectiveness. For example, the occurrence of false positives or false negatives may limit

the system’s ability to detect when a pressure injury is imminent. One example of a false

negative is in the top left of case Figure 4.14 (a), where there is a peak pressure region on the

person’s right shoulder, but the system indicates there is no pressure on the right shoulder.

The ability of the current network to generalize to clinical settings is also unclear. For
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example, pillows, nearby furniture, different types of bedding, medical instrumentation,

and objects in bed, such as a mobile phone and other devices, would likely result in errors.

Some types of errors might be difficult or impossible to overcome with a single frame

from a depth camera. For example, in the top left error example in Figure 4.14 (a), the per-

son’s elbow and knee are elevated such that they push the blanket up into a tent like shape

that reduces contact between the blanket and the person’s body. This reduces depth infor-

mation about the body surface and the system makes errors, including neglecting pressure

on the hidden leg and one side of the body.

For other types of errors, future work might achieve better performance. Figure 4.14

(a) shows examples of errors. On the top right, the sheet covering the bed folds upwards

and the system mistakes it for the person’s right leg. On the bottom left, the person crosses

their right foot on top of their left knee and the system incorrectly estimates that the knee

is on top of the foot. This leads the system to infer a peak pressure on the heel, rather

than the calf. On the bottom right, the person assumes a pose that would be unusual when

sleeping. The person rests their head on their left hand. The system misestimates the arm

poses. Additionally, the annotation method incorrectly labels the left hand as being behind

the head rather than supporting it.

Other errors relate to the body contacting itself. The network can output unnatural body

part interpenetration. Figure 4.14 (b) shows an example of this, where the left hand pen-

etrates the head and the lower legs penetrate one another. Our network uses a fixed open

hand pose, which may contribute to unnatural hand penetration errors. Self penetration of

the 3D mesh body models does not occur frequently in the data because a mesh interpen-

etration term was used to create SLP-3Dfits, nor in the synthetic data because the physics

simulations prevent it. Real human bodies have soft tissues that deform when in contact,

which can be approximated as 3D model interpenetration, but the network outputs inter-

penetration that poorly matches soft tissue deformation. The problem is worsened by the

frequent self-contact of limbs and body parts when a person rests. Our system also neglects
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Figure 4.14: (a) Examples of errors when testing with BPWnet. (b) Limb interpenetration
scenarios, also with BPWnet.
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pressure due to self contact and pressure differences due to the mass of one limb resting

on another limb. Better accounting for the mechanics of self-contact might improve per-

formance [59, 119, 120, 121], and reported height and weight data from Müller et al. [121]

may also be used to improve BetaNet.

The GPU memory footprint of BPWnet is substantial. Reducing it may allow both

Mod1 and Mod2 to be trained end-to-end, simplifying learning. Recent works in hu-

man body reconstruction provide other insights for boosting performance, including body-

driven attention [122], structured prediction to explicitly model joint dependencies [123],

joint occupancy estimation [124], and a method to combine keypoint- and parametric

model- based human pose estimation methods [125].

4.8 Conclusion

In summary, we presented a method to infer body pose and contact pressure from a depth

image, which has the potential to automatically localize pressure injury risk areas using a

consumer-grade depth camera. We described a method for annotating an existing human

resting pose dataset with 3D body models, which we use for initializing a fast physics

simulator and training and testing deep models. We generated a large synthetic resting

pose dataset using physics simulations, which substantially boosts performance of our deep

models. We introduced two deep learning models and compared their performance. The

models were able to to accurately infer pose and contact pressure and outperform state-of-

the-art methods for pose inference, even in the presence of visual occlusion from blankets.
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CHAPTER 5

CONCLUSION

5.1 Key Takeaways

The previous sections discuss some important findings (subsection 2.3.4, section 3.5, and

section 4.6). Here, we state the most important takeaways from the dissertation as a whole.

Pressure mats are robust to visual occlusion and can be used to infer 3D human

pose and body shape, despite their relatively low spatial resolution. Pressure mats are

robust to visual occlusion because they sense haptic information instead of visual infor-

mation. The threshold for measuring pressure on the mat is above the amount that stan-

dard bedding materials exert when placed on the bed, so complex blanket geometries and

lightweight objects placed on the bed would not affect inference. Pressure mats are also

unaffected by overbed tables such as the one in Figure 2.11, which are common in a health-

care setting. We presented a series of two methods to infer 3D human pose from a pressure

image. Although the input image has a relatively low spatial resolution of 64 × 27, it can

be used to infer detailed human representations in 3D. The first of these pose estimation

methods, presented in chapter 2, represents human pose using a kinematic skeleton with

variable link lengths that adjust for people of different sizes. The second of these meth-

ods, presented in chapter 3, infers pose and body shape represented with a SMPL human

body model. We provided compelling qualitative evidence of our method’s accuracy in

Figure 2.7, Figure 2.9, Figure 3.1, and Figure 3.9. We further support these claims through

quantitative analyses of data in Table 2.1, Table 3.2, and Table 3.3.

Body parts that are not in contact reduce performance, and this is supported by

our double inverted pendulum model. Inference suffers on parts of the body that are

not in contact with the mat. Specifically, the overall accuracy decreases as the threshold
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for discarding higher variance joints increases (Figure 2.10), and high variance measured

by Monte Carlo Dropout is indicative of body parts being out of contact. We identified

a scenario where substantial movement of a limb out of contact had little effect on the

pressure measured by the mat. A change in pressure would be necessary to infer a change

in body pose. This type of ambiguity can be explained by the double inverted pendulum

model in Figure 2.5, where distinct configurations of the pendulum arm exert a moment

and a pressure distribution that are not unique.

Random sampling with ragdoll physics generates bodies at rest with enough fi-

delity to train deep models that perform well with real data. Resting poses are charac-

terized by a lack of physical exertion and an absence of motion, which we modeled with

a ragdoll human body model dropped onto a soft bed in simulation (section 3.2 and sec-

tion 4.3). Because the ragdoll model is articulated, the joint angles adjust as the body

moves into a statically stable resting pose. We used this to collect large synthetic human

resting pose datasets, and then trained deep models to infer human pose at rest. These

deep models infer human resting pose using pressure imagery (section 3.3) and depth im-

agery (section 4.4), and are evaluated on the PressurePose real dataset [11] and on the SLP

real dataset [14], respectively. In both cases, models trained using synthetic ragdoll poses

generalized well to data capturing poses with real people resting.

Computationally efficient physics engines can model pressure sensing arrays on a

soft bed that resemble their real counterparts closely enough to train models entirely

with synthetic data. We used FleX [8], a computationally efficient particle-based simu-

lator, to model a soft mattress and a pressure sensing mat on the surface of the mattress.

We modeled the mattress as an rectangular prism filled with soft particle clusters, and the

pressure sensing mat as an organized array of two stacked meshes of cloth connected by

spring constraints (subsection 3.2.1). The mattress has parameters to control softness and

the pressure mat has parameters to both control softness and adjust our model of pressure

as a function of particle configuration. We introduced an optimization method to calibrate
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these parameters so that the simulated mattress and pressure mat behave as closely as pos-

sible to the real mattress and pressure mat (subsection 3.2.3). Then, we generated a set of

synthetic pressure images complementing the synthetic ragdoll poses, forming a collection

of over 200,000 input-output pairs. We trained PressureNet (section 3.3) entirely with this

synthetic data, and showed that it generalized well to real pressure image data.

Depth imagery can be used to infer human pose, body shape, and contact pressure

underneath the person – even when the person is occluded by a blanket. An overhead

depth camera can provide detailed information about the person resting in bed, even when

the person is occluded by a blanket. The profile of features across the blanket surface

is a good indicator of where limbs are in many cases, so the key challenge is to extract

the features and convert them into a useful representation of the body. Our networks are

able to do this, and they are also able to infer the contact pressure underneath the person

on the surface of the bed mattress (chapter 4). The contact pressure may be projected on

the body to determine its magnitude at specific locations on the body. We compare our

pose inference accuracy to a state-of-the-art method that uses four modalities (RGB, depth,

thermal and pressure imagery) to infer pose in the presence of blankets. Ours only requires

a depth image, yet it is 12% more accurate.

Embedded geometric models of pressure and depth map reconstruction improve

performance of our deep models. Our work introduces methods to reconstruct pressure

and depth maps through differentiable geometry, using no learned parameters. These are

more parsimonious and interpretable than learned reconstructions, and they are also mod-

ular. The modularity allows them to be interchanged within neural network architectures

or other systems that would benefit from gradient computation. In our method of infer-

ring pose and body shape from pressure (chapter 3), we introduced PMR, a method to

differentiably reconstruct pressure maps from the inferred SMPL mesh. PMR measures

the distance that the SMPL mesh sinks into the underlying bed and is used to promote con-

sistency between the input and the output. When we ablated PMR, performance degraded
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(Table 3.2). In our method of inferring pose, body shape, and contact pressure from depth

(chapter 4), we introduced DMR, which differentiably reconstructs depth maps. DMR

computes depth maps based on the distance between the overhead camera and the top sur-

face of the SMPL mesh, and is similarly used to promote consistency on the inference. Our

network that uses DMR also uses PMR so it can learn contact pressure from depth imagery.

We compared this to a variant with learned depth and pressure map reconstruction mod-

ules (i.e. no DMR or PMR) and found that performance degraded overall (Table 4.2 and

Figure 4.13).

Computationally efficient physics engines can model blankets and depth imagery

with enough fidelity to generate data that greatly boosts performance of deep models.

In chapter 4, we added a feature to simulate cloth blankets covering the body at rest. We

covered the simulated bodies with many randomized blanket configurations in effort to

mimic real world variety. Then we simulated an overhead pinhole depth camera facing the

bed from the same perspective as a camera mounted on a real bed, and generated a large

synthetic dataset. When inferring pose and body shape from depth imagery, models trained

only on the large synthetic dataset (97K samples) perform comparably to models trained

only on a smaller real dataset (11K samples). However, when the real data is mixed in

randomly with the synthetic data, performance improves by more than 30% (chapter 4).

This implies there is some reality gap in our synthetic data, but it still has great benefit.

5.2 Demographic Limitations

Body shape is influenced by a wide variety of factors, including gender, age, ethnicity,

and medical conditions. For example, body fat distribution changes with age [126], bone

geometry differs based on ethnicity [127], and an amputee could be missing a limb. The

generalization of our methods to diverse body shapes is limited by the human represen-

tations we used and the demographics represented in the real datasets we evaluated our

methods with. In this section we present demographic information that could lead to bias
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in our methods.

SMPL. Most of this dissertation represents the body using SMPL [10], a skinned

vertex-based model that represents a variety of body shapes in natural human poses. The

SMPL body shape was learned from the CAESAR dataset [128], which consists of 3D

scans covering 2000 unique body shapes for each male and female gender. Besides the

CAESAR scans, the SMPL mesh is also a function of pose-dependent deformations, which

were captured by scanning an additional set of 40 people (20F / 20M).

The CAESAR scans reflect the body shape of people aged 18-65 in the United States,

the Netherlands, and Italy. The mean weight for females was 68.9± 17.6 kg, and for males

was 86.2± 17.9 kg. The mean height for females was 1.640± 0.073 m, and for males was

1.778 ± 0.079 m. For the United States, 1824 people identified as white, 263 as black, and

288 as other. For the Netherlands, 1024 people identified as Dutch and 231 as other. For

Italy, 764 people identified as Italian and 32 as other. Further information can be found in

the CAESAR technical report. The SMPL model approximates these differences in shape

using 10 shape component parameters, which do not represent the full population in CAE-

SAR. This work in this thesis used this 10 component model, but a more comprehensive set

of 300 SMPL shape components are available that better represent the CAESAR dataset.

Finally, the CAESAR dataset and SMPL model are normative. They do not capture chil-

dren, people who are very old, or people who are pregnant. They also do not capture people

with medical conditions, such as dwarfism, Down’s, cerebral palsy, amputations, etc [129].

IROS 2018 data. We collected motion capture marker and pressure image data to

evaluate our methods in chapter 2. This data includes poses with 17 able-bodied people

(6F / 11M) in a lab setting, aged 19-32, who ranged 1.57-1.83 m in height and 45-94 kg in

weight. The subjects were recruited from a pool of undergraduate and graduate students at

Georgia Institute of Technology. We validated the network using 7 subjects (2F / 5M) and

tested the network with leave-one-subject-out cross validation on the remaining 10 subjects

(4F / 6M).
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Figure 5.1: Paintings depicting people in resting poses that are not represented in our syn-
thetic datasets. (a) Resting poses where the head is supported by the arm. (b) Examples of
sitting in bed.

PressurePose data. We collected and used the real PressurePose dataset to evaluate

our methods in chapter 3, which consists of RGB images, depth images, point clouds, and

pressure images. This data includes poses with 20 able-bodied people (10F/ 10M) in a lab

setting, aged 18+, who ranged 1.52-1.98 m in height and 42-102 kg in weight. The subjects

were recruited from a pool of undergraduate and graduate students at Georgia Institute of

Technology. 11 participants self-identified as white, 8 as Asian, and 2 as mixed ethnicity.

We used all 20 subjects for testing.

SLP data. We used the SLP dataset to evaluate our methods in chapter 4. The SLP

dataset includes poses with 102 people (28F / 74F) in a home setting. The subjects were

recruited from a pool of undergraduate and graduate students at Northeastern University.

Following Yin et al. [53], we split the data into 80 training (25F / 55M) and 22 testing (3F

/ 19M) subjects. The training subjects range 1.48-1.84 m in height and 44.6-105.1 kg in

weight and the testing subjects range 1.51-1.81 m in height and 45.2-81.5 kg in weight.

5.3 Guide to Future Work

The previous sections discuss failure cases to show shortcomings of our existing work and

provide some guidance to future work. We refer the reader to Appendix A.8, Appendix B.2

and section 4.7, and provide additional suggestions here.

Sampling resting poses. Generalization of a trained network to unseen data depends

on how well the training data distribution represents the unseen data. While our ragdoll

model is good for sampling many resting poses, there are some that it misses. For example,
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people commonly rest their head on their hand to support the head (Figure 5.1(a)). Our

synthetic data generation method did not produce such ‘supporting’ poses, either from

random uniform initial pose sampling (section 3.2) or by initial pose sampling from the

SLP dataset (section 4.3). This phenomena is also largely absent from our testing data, so

an evaluation of it would require a new testing dataset. Future work may explore how to

tune the existing model or use a different kind of model to produce these poses.

We only considered laying poses in bed, and it is unclear how well the ragdoll body

model could be used for seated postures in bed (Figure 5.1 (b)), or sitting in general. Fur-

ther, the simulation environment is only constructed to model poses on a flat bed. Many

beds in healthcare such as Autobed [22] from chapter 2 are configurable, so developing the

simulator to account for this would allow the methods to generalize better. We encourage

work in these directions.

Demographic representation. Our models contain bias that is influenced by the de-

mographics of people in the data used for this work. When deploying methods like ours

in a real world setting, it will be important to evaluate whether they generalize to the de-

mographics of the specific population of interest. We encourage future researchers to de-

velop human models like SMPL that represent a wider range of ages, ethnicities, and body

geometries. Similarly, we encourage researchers to evaluate related methods on larger

datasets where the sample size is sufficient to test for bias between demographic groups

represented in the data.

Disability-specific human model. Adapting the human body representation to include

people with non-normative body shapes is a promising area of future work. It may be

possible to build a statistical human model like SMPL that generalizes within specific con-

ditions. Other body anatomies may be too specific for this (e.g. a limb amputated at a

precise location), and would instead benefit from rapid 3D scanning of the individual and

shape fitting prior to body pose estimation.

Modeling deformable human tissue. Humans at rest have substantial human-environment
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contact, and also often have self-contact between body parts. Our simulation of bodies at

rest captures this contact, but only to the extent that the capsulized body and meshed SMPL

body are capable of modeling. The capsulized body has a relatively coarse profile of fea-

tures that model resting pose with rigid collisions, and the meshed SMPL body in the FleX

simulation has a homogeneous composition of soft particles. A model such that captures

the heterogeneous properties of both deformable human tissues could enable more accu-

rate and/or more expressive machine perception methods. A number of relevant works

have published in this area, such as SoftSMPL [130] and others that model human tissue

deformation across the surface of the body [131, 132].

Complex bedding materials. In the real world, people receiving care in bed are often

surrounded with more materials than just a mattress, blanket, and thin sheets that our work

models. For example, thicker blankets and cushions may be placed under the person to im-

prove comfort. These can distort the pressure measured by a pressure mat. They also may

be placed on top of the person or extend from underneath the person and be visible from

a depth camera. A standard pillow is perhaps the most common example of this. Mod-

eling these objects would be important for transferring models to complex real healthcare

settings.

Multimodal sensing and inference. We encourage continued work on fusing multiple

modalities in a deep network [53]. Some applications may require highly accurate estimates

of the body pose that approach the limit of what is possible using an overhead camera or

pressure mat. In the context of robotic assistance in bed, an eye-in-hand camera on the

robot end effector could enable a final stage of body pose refinement. In contrast to the

overhead view (∼ 5 feet away), it would capture a substantially higher resolution on a local

area of interest on the body.

We suggest combining a camera-based (e.g. RGB) estimate of the person’s head pose

using existing methods [133, 134, 135] with depth or pressure based inference for the

remainder of the body. In bed, the head is usually visible with an overhead camera and its
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pose could be estimated with high accuracy to boost overall performance. We also suggest

exploring synthetic data generation of other modalities. This is an active research area,

with many recent works focused on generating synthetic RGB imagery [69, 70, 136, 137,

138, 139, 140] and one work on thermal imagery, which introduces a heat transfer model

for human limbs under blankets in bed [52].

Robot assistance. Our demonstration in section 1.1 showed the robot moving to diverse

locations on the human body, but the methods in this dissertation may be useful for more

complex interactions around the person in bed. For example, commanding the robot to

move between two coordinates on the surface of the body may be used for wiping motions

to give a person a bed bath or apply lotion on the skin.

Projecting the pressure from a real pressure mat (chapter 2 and chapter 3) or from the

inferred pressure (chapter 4) onto the body may provide information to the robot about the

feasibility of reaching to specific locations. If the pressure is high at a location on the skin,

the robot would not be able to reach it successfully unless it physically moved the person’s

body or limb.

5.4 Final Remarks

Overall, this dissertation explored models of humans at rest and how the body shape and

pose of people resting could be inferred from sensor data. We found that modeling people

at rest with an articulated ragdoll body could map randomized human poses into a smaller

space of resting poses. This model, when combined with soft body simulations of sur-

rounding materials such as a mattress with blankets, was useful for generating synthetic

data that resembled real data. We used this data to train deep networks to infer human

attributes such as body pose, and found that they transferred well to real world data. We

suggested applications for our methods in healthcare and provided a demonstration with

a robot that reached to diverse positions on a person in bed. Finally, we hope that this

work will encourage future research to understand the physical characteristics of people
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in a healthcare setting and to enable robots to provide meaningful assistance to caregivers,

people with motor impairments, and older adults.
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APPENDIX A

PRESSUREPOSE DATA GENERATION

A.1 Initial Pose Sampling

We use rejection sampling to generate initial pose dataset partitions. Our criteria are as

follows.

Uniform Cartesian space distribution - Figure A.1 (a). We use rejection sampling

to uniformly sample poses with respect to the Cartesian space, by discretizing the space

and ensuring that a given limb is equally represented in each unit. We define a Cartesian

space Y as a cuboid for checking for presence of the most distal limb. First, we constrain

Y in the (x, y) directions to how far the distal joint (e.g. right foot, sr.foot) can extend

from the promixal joint (e.g. right hip, sr.hip) in a limb. For the legs, we assume that the

foot cannot move above the hip. For the right leg, these constraints can be summarized

as: sr.foot,x ∈ [sr.hip,x − lleg, sr.hip,x + lleg] and sr.foot,y ∈ [sr.hip,y, sr.hip,y + lleg]. We also

constrain the z direction to ensure that the distal joint is initially positioned at a height

close to where the proximal joint is: For laying poses, the distal joints (feet and hands)

are more likely to end up close to the surface of the bed than very high in the air, for

example. This constraint promotes simulation stability and decreases the time it takes for

physics simulation #1 (Figure 3.2) to reach an equilibrium state. We constrain sr.foot,z ∈

[sr.hip,z − 10cm, sr.hip,z + 10cm].

Next, we break up Y into a set of smaller cuboids as shown in Figure A.1-top middle.

For each limb we uniformly sample a cuboid from {Y1, ...} and then use rejection sampling

on the limb joint angles — in the case of Figure A.1 (a), the right leg — until sr.foot ∈ Y4.

Generate common posture partitions - Figure A.1 (b). Some common postures, such

as resting with the hands behind the head, are unlikely to be generated when the joint
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Figure A.1: Rejection sampling criteria. (a) Evenly distributing right leg poses
across Cartesian space by sampling from four non-overlapping Cartesian cuboids,
{Y1,Y2,Y3,Y4, } ∈ Y . Reject pose angles if sr.ankle 6∈ Y4 (b) For sampling right arm
in the hands-behind-head partition, we reject the right arm pose angles if sr.hand 6∈ YRH .
(c) Pose feasibility checking via collision detection. [11]
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angles are sampled from a uniform distribution. For example, there is a < 1% probability

of generating a pose with the hands-behind-the-head when sampling joint angles uniformly,

so a network trained with such little hands-behind-the-head data has difficulty learning such

a pose. We mitigate this issue by checking for presence of the most distal joint in a cuboid

representing where it would be located in such as pose. If the joint is within the cuboid, e.g.

sr.hand ∈ YRH , the joint passes the criteria and we add the limb pose to the set of checked

initial poses.

Prevent self-collision - Figure A.1 (c). We reject poses that result in self collision

by capsulizing the mesh and using the DART collision detector. We check the hands,

forearms, feet, and lower leg capsules for collision with any other capsules except their

adjacent capsules (e.g. forearm and upper arm should overlap).

A.2 Dynamic Simulation Details

Weighting particles in FleX. We directly calculate particle mass for the particlized hu-

man in physics simulation #2, as well as for the particlized calibration objects depicted in

Figure 3.6 (b). Since FleX is a position-based dynamics simulator and the mass is defined

by units of inverse mass 1/m on an arbitrary scale, we begin by defining the inverse mass

scale for particles in the particlized human.

For this, we assume that the volume each particle in the human takes up, as well as the

density of particles, is the same for that of water. Because volume and density are equal,

we also can set inverse mass equal, so 1/mH = 1, thus 1/mH2O = 1.

We calculate the inverse mass for particles in calibration objects by a density ratio to

that of water, given a known weight of the object wk and the object volume Vo:

1

mo,k

=
1

mH2O

ρH2O

ρo
=

ρH2O

mH2O

Vo
wk/g

(A.1)

where ρH2O is the density of water and g is gravity. In contrast to the humans and objects
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rested on the bed, the the soft mattress and synthetic pressure mat particle inverse mass are

determined from an optimization described in Appendix A.4.

Weighting the capsulized human chain. We compute a per-capsule weight for the

articulated capsulized chain in DartFleX based on the weight distribution for an average

person and capsule volume ratios. First, we describe how we assign capsule mass for the

average person. We use average body mass and mass distribution values from Tozeren

[79], and calculate capsule volumes from body shape. We assume the average human of

gender g ∈ {M,F} has a mass of m̄g, mass percentage distribution for body part R of

X̄R,g ∈ X̄g, and SMPL body shape parameters β̄g = 0. We define the mass of each

capsule c in an average person to be:

m̄c = m̄gX̄R,g
V̄c,g
V̄R,g

(A.2)

where V̄c,g is the volume of capsule c for a mean body shape β̄g, and V̄R,g is the sum of

volumes for all capsules in body part R. Now, we describe how this capsule mass can be

converted into masses for people of other shapes. To find the mass of some capsule c for

a body of particular shape β, we use a capsule volume ratio between the particular person

and an average person:

mc = m̄c
Vc
V̄c,g

(A.3)

where Vc is the volume of some arbitrary capsule. Computing capsule volume analytically

is simple given radius and length, but this is complicated by capsule overlap, which is often

substantial in the SMPLIFY capsulized model [35] we use. Instead, we use discretization

to compute capsule volume and correct for overlap. First, we use the SMPLIFY regres-

sor to calculate capsule radius and length from body shape β. Besides shape, overlap is

dependent on the particular pose of the capsulized model. We assume that pose depen-

dent differences in overlap are very small, and set the pose constant at Θ = 0. We then
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compute the global transform for each capsule using this shape and pose. From capsule

radii, lengths, and global transforms, we place all capsules in 3D space and voxelize them

with a resolution of 2mm. This produces a set of 3D masks, which are tagged to their

corresponding capsules. Voxels belonging to a unique capsule are allocated directly, while

voxels belonging to multiple capsules are allocated fractionally based on the number of

capsules sharing the voxel. We compute capsule mass inertia matrices analytically from

capsule radius and length.

Capsulized body joint stiffness. For an average person, we set the following joint

stiffnesses for the shoulders, elbows, hands, hips, knees and feet to low stiffness: k̄θ,shd = 4

Nm, k̄θ,elb = 2 Nm, k̄θ,hnd = 4 Nm, k̄θ,hip = 6 Nm, k̄θ,knee = 3 Nm and k̄θ,feet = 6 Nm.

We set torso and head stiffness very stiff k̄θ,trs, k̄θ,hd = 200 Nm. For a person of particular

body shape, we weight joint stiffnesses kθ by the body mass ratio, where kθ = (m/m̄)k̄θ.

We set joint damping bθ = 15kθ. The direction and magnitude of stiffness force on each

joint is dependent on joint equilibrium position, i.e. the joint angle where force is 0. We

set the equilibrium position of the joints to be the home pose, where the arms are at the

sides and the legs are straight. In the SMPLIFY model, home pose consists of equilibrium

joint positions Θeq set to 0, except the shoulders, which are bent downward at 90 degrees.

Rather than set Θeq to initial joint angles ΘC , we do this to guide the pose away from

extreme angles at a modest force.

Because we set the joint stiffness low, our dataset does not capture non-resting postures,

such when a person is getting in/out of bed (recall Table 3.1). However, we have been able

to generate resting sitting poses by bending the mattress and pressure mat into a sitting

configuration and then resting a person on it, like the sitting postures in [9].

Settling criteria - Physics simulation #1. For physics simulation #1, the goal is to

slowly allow the body to fall on the bed and settle into a resting pose. We start the cap-

sulized body at a height based on the lowest point on the body. For many randomly sampled

poses, the lowest joint is initially much lower than the center of mass, which causes the cen-
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ter of mass to build significant momentum by the time it reaches the bed. We found that

this caused bouncing and instability, and was qualitatively different from the motion one

might take to assume a resting pose in bed. We alleviate this issue by zeroing the velocity

of the capsulized model every 4 iterations in the simulation (∼ 0.04s) until a capsule that

better represents the center of mass contacts the surface of the bed. For this, we use the

capsule approximating the buttocks.

Finding a resting pose in static equilibrium is hampered by the stability of DartFleX:

DART uses a more traditional physics solver and FleX uses position-based dynamics,

which are challenging to connect in a stable loop. Rather than run the simulation until static

equilibrium, we use a cutoff threshold that takes velocity and acceleration of all capsules

into account. We define a resting body as that when the maximum velocity of all capsules

has reached vmax < 0.05m/s and maximum acceleration has reached amax < 0.5m/s2.

In the event the model does not settle within 2000 iterations or the pressure array becomes

unstable (defined by separation of particles in the pressure mat, e.g. limb poking into mat),

the simulation is terminated and the particular ΘC is rejected. Across the whole dataset,

we found roughly a 10% rejection rate for both of these criteria.

Settling criteria - Physics simulation #2. We use the same approach as simulation #1

to determine the height to drop particlized humans. We found it to always be stable for our

purpose, and it took roughly 150 iterations to reach the same resting velocity and accelera-

tion previously stated. Because it only uses FleX and the limbs do not move kinematically,

it is an order of magnitude faster to run and provides greater flexibility to determine set-

tling criteria. We ran simulation #2 for a minimum of 200 iterations and terminated it once

the velocity and acceleration thresholds of the particlized human, vptcl < 0.05m/s and

aptcl < 0.5m/s2, were reached. In almost all cases, 200 iterations was sufficient.

Computation time. For both physics simulations, we ran 10 parallel simulation envi-

ronments on a computer with 32 cores and a NVIDIA 1070-Ti GPU. This allowed us to

generate roughly 35,000 labeled synthetic pressure images per day.
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Figure A.2: Size of synthetic pressure mat. Physics simulation #1 uses forces from particles
on the entire covered bed. The pressure mat calculated in physics simulation #2 uses a
smaller subset representing the size of the real pressure mat. [11]

Figure A.3: Pressure mat pyramidal structure showing FleX parameters that we optimized
using CMA-ES. [11]
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A.3 Pressure Mat Structure Details

Limited pressure sensing area. The sensing portion of the real pressure mat does not

cover the entire mattress. We measured a non-sensing border of 6 cm on the sides of the

bed and 9 cm at the top and bottom. We built the simulator in the same way: the synthetic

pressure mat covers the entire bed (68 x 33), but only an inner subset (64 x 27) representing

the sensing area of the pressure image array is recorded, as depicted in Figure A.2.

FleX spring constraints. FleX particles in the synthetic pressure mat are bound to-

gether by stiffnesses shown in Figure A.3.

Pressure mat adhesion. For the real pressure mat, velcro and tape are used to prevent

sliding across the bed. For the synthetic pressure mat, particles are fixed in horizontal

directions across the bed.

A.4 FleX Calibration

Although FleX is able to simulate soft bodies, FleX is not optimized to model real-world

physics or to calculate realistic pressures. To optimize our FleX simulation to match the

real-world mattress and pressure mat, we place a set of static objects on the real mattress,

and record the resulting pressure images from the pressure mat. We then build a similar

environment in FleX, and we optimize FleX parameters such that the simulated and real-

world measurements closely align.

We jointly optimize 16 deformable bed and pressure sensing array parameters S using

CMA-ES [141]. These include the 13 FleX parameters in Figure A.3, including 4 soft

mattress parameters, 7 pressure array stiffnesses, spacing between the pressure mat layers

and particle inverse mass, as well as quadratic taxel force constants C1, C2, and C3. To op-

timize, we first place a set of real rigid objects {o1, . . .oJ} each with weights {w1, . . . wM}

on the real bed. Figure 3.6 (a) depicts {o1, . . .oJ}, where J = 4 and we use capsular ob-

jects with 5 weights for each: 1.3, 2.3, 4.5, 9.1 and 14 kg on the shorter capsules (L=20
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cm), and 1.3, 4.5, 9.1, 14 and 18 kg on the longer capsules (L=40 cm). We then collect real

pressure mat images {P1,1, . . .PJ,M} and measure the distance that the mattress compresses

normal to the bed surface in centimeters, {q1,1, . . .qJ,M}.

Next, we build a matching set of simulated capsules {o1, . . . oJ} in FleX with the same

weights, where one of these objects is shown in Figure 3.6 (b). At each iteration of the

optimization, we drop J simulated capsules of each M weights onto the FleX mattress,

re-compute the synthetic pressure images, and compare them to the real ones. The loss

function for our optimization takes as input simulated and real pressure images and is

computed as:

arg min
S

J∑
o=1

M∑
k=1

(
LFk,o + LCk,o + LQk,o

)
(A.4)

with terms for force error in the pressure mat, LFk,o, contact locations on the pressure mat,

LCk,o, and amount of mattress compression by the object, LQk,o. For some real object o

with weight k resting on a soft bed at depth q from the unweighted height of the soft

bed, a pressure image P measures forces on individual taxels {u1 . . .uT}, where contact

is a binary vector {c1 . . . cT} indicating which taxels are measuring non-zero forces. The

upper limit T is a spatial index indicating the number of taxels on the pressure image. We

note that the value of T for these calibration images is roughly equal to a fraction of the

pressure mat size, (64× 27)/5, because we drop multiple objects simultaneously to speed

up the optimization. Similar to the real mat, the values for the simulated environment are

computed as ui, ci, and q. The loss terms are computed as:

LFk,o =
1

2

∑T
i=1 |ui − ui|∑T
i=1 (ui + ui)

+
1

2

|
∑T

i=1 (ui − ui)|∑T
i=1 (ui + ui)

(A.5)

LCk,o =
1

2

∑T
i=1 |ci − ci|∑T
i=1 (ci + ci)

+
1

2

|
∑T

i=1 (ci − ci)|∑T
i=1 (ci + ci)

(A.6)
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LQk,o =
|q − q|
|q|+ |q|

(A.7)

The first term for both LFk,o and LCk,o account for errors in pressure measurements between

individual taxels between the real and simulated pressure mats. The second term accounts

for errors in the total measured pressure under an object. All terms are normalized. Since

the distances q and q are signed, we take the absolute value in the denominator of LQk,o for

normalization.

CMA-ES implementation. To optimize the FleX environment with CMA-ES [141],

we used a population size of 50, max iterations of 3000, max function evaluations of 1e+8,

mean learning rate of 0.25, function tolerance of 1e−3, function history tolerance of 1e−12,

x-change tolerance of 5e − 4, max standard deviation of 4.0, and stagnation tolerance of

100. We used a machine with 8 cores and a Nvidia 1070-Ti GPU, and the optimization

took 6 days.

Various combinations of parameters result in simulation instability. We perform a con-

strained optimization by placing a high cost on the evaluation function, f eval, when a

parameter is suspected of causing instability.

• Negative FleX parameters can cause instability. If any negative FleX parameter is

proposed, a high f eval is assigned.

• Large differences between Kσ, KB, Kτ (see Figure A.3) causes knotting in the sim-

ulated array. If any stretch, bending, or shear stiffness value is outside of the range

0.5 < K < 2.5, we add 10x the deviation from this range to the f eval.

• An unusually long simulation time step indicates instability in the parameters. In this

event, the particular rollout is terminated and a high f eval is assigned.

• If an object takes too long to settle, the rollout is terminated and a high f eval is

assigned.
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A.5 DartFleX Calibration

The purpose of this calibration is to calibrate the force that should be applied to a DART

capsule from particle penetration on the FleX pressure mat. This enables the two simula-

tors to be connected through a mass-spring-damper model, which we described in subsec-

tion 3.2.2 in the main paper.

We begin with an optimized FleX environment (Appendix A.4) and calibrate the spring

coefficient k, from the mass-spring-damper model. We calibrate k so that the dynamic col-

lision geometries displace the FleX mattress in the same way that real objects would. We

take the same set of real objects from the FleX calibration of various shapes {o1, . . .oD}

and weights {w1, . . . wD}, where D = 20, place them on the real mattress, and measure

the mattress displacement {q1, . . .qD}. Then, we recreate the objects as collision geome-

tries {õ1, . . . õD} in FleX, displace the FleX mattress by {q̃1, . . . q̃D, } = {q1, . . .qD}, and

record the sum of particle penetration distances of underlying taxels
{∑P

i=1 xi,1, . . .
∑P

i=1 xi,D
}

.

We compute k as the average k across D objects:

k =

(
w1∑P
i=1 xi,1

∣∣∣∣∣
q̃1

+ . . .+
wD∑P
i=1 xi,D

∣∣∣∣∣
q̃D

)
/D (A.8)

where the vertical bar indicates the amount that object õ of weight w is displaced by dis-

tance q̃, which results in particle penetration distances
∑P

i=1 xi. The length of a timestep

is uncontrollable in FleX. Thus, the timestep in DART is calculated by dropping objects

in both environments from a matching height and equating the time to contact the ground,

where both simulators have g = 9.81m/s2. This resulted in a DART timestep of 0.0103s.

A.6 Real Dataset Collection Details

Participants donned an Optitrak motion capture suit with high contrast to the bed sheets

to facilitate analysis of the pose and body shape. We provided S, M, L and XL sizes, and

instructed participants to use a form fitting size.
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We used the IAI Kinect2 package to calibrate the Kinect [142]. Our released dataset

consists of RGB images and depth/point cloud data from the Kinect that are synchronized

and spatially co-registered to the pressure images. We manually synchronized the modal-

ities; only static poses are captured so the time discrepancy is insignificant. We spatially

co-registered the Kinect to the pressure mat by putting 1” tungsten cubes on the corners of

the pressure mat, which could be seen with all modalities. We captured a co-registration

snapshot for each participant, which was taken after they were finished. We created an

interface to click on the tungsten block locations on the images and used CMA-ES to find

the 6DOF camera pose and co-register it with the mat.

A.7 Dataset Partitions

Table A.1 presents a detailed description of the data partitions. We split the data for gender.

We also split for requiring initial limb positions to be over the surface of the bed, meaning

that the Cartesian cuboids used for initial pose sampling (recall Figure A.1) are clipped in

the x and y directions at the edge of the mattress.

A.8 Dataset Limitations

Domain gap. The real pressure mat has a larger force range. Additionally, as a result

of putting a blanket on the bed during the real study, the overall pressure magnitude was

reduced∼ 3×, which was not reflected in synthetic data calibration. To correct for this, we

normalize as described in Appendix B.1.

Synthetic body joint limits. We observed that roughly 2% of the synthetic poses ap-

pear uncomfortable or infeasible for a real person (Figure A.4). This work could be im-

proved by using pose-conditioned joint angle limits such as [143] instead of constant limits.

Figure A.4-right shows an impossible pose where the thighs are in collision. We were not

able to check collisions between the thighs using the capsulized model because the thigh

capsules are often in collision for valid poses.
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Table A.1: Partitions for synthetic data and prescribed poses. For evening the leg space,
see Figure A.1(a). For evening the arm space, an additional four subspaces {Y5, . . .Y8}
are chosen because the most distal joint (hand) is allowed to extend all the way below and
above the limb root joint (shoulder), measured in the y direction.

pose partition, limb distribution

ge
nd

er

lim
bs

on
be

d

tr
ai

n
ct

.
sy

nt
h

te
st

ct
.

sy
nt

h

te
st

ct
.

re
al

general* F N 26000 3000 120
even leg space: {Y1, ...Y4} ∈ YL M N 26000 3000 119
even arm space: {Y1, ...Y8} ∈ YA F Y 26000 3000 120

M Y 26000 3000 120
supine general** F N 13000 1500 40

even leg space: {Y1, ...Y4} ∈ YL M N 13000 1500 39
even arm space: {Y1, ...Y8} ∈ YA F Y 13000 1500 40

M Y 13000 1500 40
supine hands behind head** F Y 2000 500 40

even leg space, arms Figure A.1(b) M Y 2000 500 40
prone hands up† F Y 4000 500 40

even leg space, hnds above shldrs M Y 4000 500 40
supine crossed legs** F N 2000 - -

even leg space, even arm space, M N 2000 - -
feet must cross according to F Y 2000 500 40
x direction in Figure A.1(a) M Y 2000 500 38

supine straight limbs** F N 2000 - -
even leg space, even arm space, M N 2000 - -

elbows and knees straight F Y 2000 500 40
M Y 2000 500 36

TOTAL - - 184000 22000 952

* θr,3 ∼ U [−π
3
, π

3
], θr,1 ∼ U [−π, π]

** θr,3 ∼ U [−π
3
, π

3
], θr,1 = 0

† θr,3 ∼ U [−π
3
, π

3
], θr,1 = π
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Figure A.4: Uncomfortable or infeasible poses outside of typical human movement range
(left, middle). Impossible pose where the thighs are in collision (right). [11]
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APPENDIX B

PRESSURENET DETAILS

B.1 PressureNet Architecture Details

CNN - Convolutional Neural Network. Our CNN architecture, depicted in Figure B.1, is

similar to that of section 2.3, and uses the same kernel sizes, layers, and dropout. The first

layer is a convolutional layer with a 7x7 kernel, and uses a stride of 2 and zero padding of

size 3 on the sides of input images. The max pooling layer has a stride of 2 and padding

of 0. All other convolutional layers are 3x3 with a stride of 1 and padding of 0. We use

192 channels in the first two convolutional layers and in the max pooling layer, and 384

channels in the last two convolutional layers. This CNN also differs from [9] in that we use

tanh activation functions instead of ReLU. Through informal testing on smaller data sizes

(e.g. 46K images), we observed that networks with tanh activations had less overfitting.

We normalize the input and output of the network. To normalize the input channels, divide

by the sum of taxels for each input image, ΣI . To normalize the output, we multiply it by

the range of shape, pose, and posture parameters from the synthetic training dataset. We

compute the range from the lower and upper limits,ΨL and ΨU , of all parameters in the

training dataset. For joint angle limits (i.e. pose), we use values from [77, 75, 76]. For

body shape, we use sampling bounds [−3, 3] from [78]. For global rotation, we use our

sampling bounds for roll and yaw of [−π, π] and [−π
6
, π

6
], and for global translation, we use

the size of the bed.
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Figure B.1: PressureNet: Convolutional Neural Network (CNN) with five convolutional layers, one max pooling layer, and one fully
connected layer. Input images are normalized by per-image division by the sum of taxels. * indicates that the number of channels shown
(3) represents Mod1 in Figure 3.6 (a), whereas Mod2 in Figure 3.6 (a) uses 5 input channels. [11]
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Figure B.2: PressureNet: Differentiable SMPL human mesh reconstruction from Kanazawa et al. [47]. Our additions to [47] include
input constraints (shown in the light grey box) and the root joint rotation and translation. [11]
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Figure B.3: PressureNet: Pressure Map Reconstruction (PMR). PMR is fully differentiable, and performs sorting, filtering and patching
to reconstruct spatial maps from the human mesh. [11]
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SMPL - Human Mesh Reconstruction. Following the CNN, we use the human model

generative part of the HMR network [47], which inputs estimated shape, pose, and posture

Ψ̂, and outputs a differentiable human mesh reconstruction V̂ , as well as a set of N = 24

Cartesian joint positions Ŝ. This generative SMPL model, implemented in PyTorch [144],

along with our modifications, is presented in Figure B.2.

In addition to using the generative kinematic SMPL embedding part of the full HMR

network, our implementation constrains the input parameters to keep angles within human

limits and body shape parameters inside our initial sampling range. To constrain the input

parameters, we normalize the parameters to a range [−1, 1] based on the limits ΨL, ΨU ,

and use a tanh function for a soft limit that is more amenable to gradient descent. Then, we

perform a reverse normalization to scale back up. To prevent the tanh from clipping feasible

values at the angle limits, for example a straight knee that is at 0 degrees, we inflate the

angle range by a factor α = 1.2 as shown in the figure.

PMR - Pressure Map Reconstruction. PMR, a novel component of PressureNet, takes

as input a human mesh in global space V̂ , and outputs a set of reconstructed spatial maps

{Q̂, ĈO}, which resemble a real pressure image and indicate where contact occurs between

the estimated mesh and the bed. We reconstruct these maps differentiably as depicted in

Figure B.3, meaning that we can backpropagate gradients through PMR to train the CNN.

The PMR loss is based on the error between estimated spatial maps {Q̂, ĈO} and ground

truth spatial maps {Q, CO}. PMR works by projecting the mesh onto the surface of the

bed and computing the distance that it sinks into the bed over each taxel. This amounts to

finding the distance between the lowest vertex within the 2.9 × 2.9 cm area of each taxel

and the undeformed height of the bed.

The PMR input V̂ is in units of meters, which we convert to units of taxels (1 m ∼

35 taxels), so it can be indexed on the scale of the pressure image. We then use a process

involving sorting, filtering, and patching to recreate the spatial maps, which is detailed in

Figure B.3.
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Figure B.4: (a) Real data failure cases. Self penetration of inferred left hand into chest
(top), lack of information on mat leading to inaccurate pose (bottom). (b) Synthetic data
failure cases: testing on training data, various inaccuracies.

B.2 Additional Failure Cases

We present additional failure cases in Figure B.4. One limitation is that our network does

not have an interpenetration error, so the limbs sometimes intersect, e.g. the left hand in

Figure B.4(a)-top left. Our network also failed for some limbs when there was little or

no contact information, and for non-resting poses. This issue is related to the limitations

of the sensor, which were explored in [9]. Our network failed for non-resting poses, such

those in [9]; however these are not part of the training or testing PressurePose dataset. We

observed some inaccuracies when testing on training data (Figure 3.10 and Figure B.4),

which suggests that there is a performance limitation on the network’s ability to extract

pressure image features in some scenarios.
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APPENDIX C

BODYPRESSURESD DATA GENERATION

C.1 Updated Synthetic Body Weighting

We develop an updated method for assigning body part weights, based on Clever et al. [11],

for the physics simulation and synthetic dataset generation.

A per-capsule weight for the articulated capsulized chain in DartFleX is computed

based on the weight distribution for an average person and capsule volume ratios. First,

we describe how capsule mass for the average person is assigned. We use average body

mass and mass distribution values from Tozeren [79], and calculate capsule volumes from

body shape. We assume the average human of gender g ∈ {M,F} has a mass of m̄g, mass

percentage distribution for body part R of X̄R,g ∈ X̄g, and SMPL body shape parameters

β̄g = 0. We define the mass of each capsule c in an average person to be:

m̄c = m̄gX̄R,g
V̄c,g
V̄R,g

(C.1)

where V̄c,g is the volume of capsule c for a mean body shape β̄g, and V̄R,g is the sum of

volumes for all capsules in body part R. Now, we describe how this capsule mass can be

converted into masses for people of other shapes. To find the mass of some capsule c for

a body of particular shape β, a capsule volume ratio between the particular person and an

average person is used:

mc = m̄c
Vc
V̄c,g

(C.2)

where Vc is the volume of some arbitrary capsule. Note that when summing these cap-

sules for the person, it substantially over-estimates the body density for heavy bodies and
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under-estimates for light bodies. Capsule mass is corrected by dividing by the total capsule

volume ratio and multiplying by the SMPL mesh volume ratio. This latter provides a better

mass-density ratio model.

m̃c = mc

∑N
j=1 V̄j,g∑N
j=1 Vj

· Vmesh,g
V̄mesh,g

(C.3)

where N = 20 capsules, Vmesh,g is the SMPL mesh volume of a person with arbitrary

shape in the home pose (Θ = 0), and V̄mesh,g is the SMPL mesh volume of a person with

average shape (β̄g = 0) in the home pose.

C.2 Normalizing Pressure by Body Mass

In theory, the sum of pressure image values times the area should equal the weight of

a person. However, in practice, seemingly innocuous changes such as placing an extra

blanket between an object and the pressure mat can alter recorded data on some mats [11].

We normalize all ground truth pressure images in the SLP dataset and in the synthetic

dataset by the body mass of each person, using the following equation:

P = P ′ mg∑
p′xyAt

(C.4)

where m is the body mass, g is gravitational acceleration, p′xy is the pressure measured

by a single taxel (tactile pixel) in P ′, and At is the surface area of a single taxel on the

pressure mat. We assume the blanket has negligible mass. As such, normalized ground

truth pressure P projects onto the human meshMH following Eq. 6.

C.3 Co-registering Real and Synthetic Images

We position the simulated pinhole depth camera to match the camera in the SLP dataset

using the given camera intrinsics. In the SLP dataset, the various visual modalities (depth,

RGB, IR) are aligned to the pressure mat via a calibration process, such that the 3D world
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origin in point cloud space is located at the top left corner of the pressure mat. However, the

twin bed mattress and pressure mat used in the SLP dataset are of a different resolution and

size than those in the simulation. Using manufacturer specifications and real measurements,

the real SLP pressure images are converted to a lower resolution and slightly smaller size

so they match the synthetic images. We perform similar conversions of depth imagery. It

is ambiguous how far the corner of the pressure mat is from the corner of the bed. Our

simulated bed and pressure mat are based on precise measurements from a real bed and

mat in our previous work [11]. While both environments are square and the rotational

discrepancy is negligible, we precisely align the reference frame origin translation between

the real SLP dataset and our synthetic dataset. We use a grid search to do this.

C.4 Blanket Configuration Partition Details

The two blanket partitions are represented by translations s∗B and s∗∗B . In the first, we set

the initial blanket position to:

s∗B =

{
1
2
sM,1, sneck,2 − 1

2
sM,2, ξB

}
(C.5)

where sM contains the mattress dimensions, sneck,2 is the distance to the person’s neck-

line from the origin, and the translation of the blanket is measured from its center and the

world reference frame is located at the bottom left corner of the mattress. The constant

ξB is a distance above the resting human body, where ξB is always above the highest joint

position. In the second partition, we randomly sample across the person in bed, using:

s∗∗B =


U(−sj,1,min, sj,1,max)

sα+U
(
− sneck,2−sj,2,min

2
,
sneck,2−sj,2,min

2

)
ξB



>

(C.6)

where sα = sneck,2 − 1
2
sM,2 − 0.4, so the distribution of the longitudinal distance s∗∗B,2
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is centered around a location 0.4 meters below the neckline. We shift down by 0.4 so that

the bottom edge of the blanket does not leave the legs too uncovered, which is uncommon

in the SLP dataset. The range of the distribution is set to be equal to the longitudinal

distance between the neck, sneck,2, and the joint furthest toward the bottom of the bed,

sj,2,min (typically a foot). The uniform distribution of the lateral shift s∗∗B,1 across the surface

of the bed is set to a range between the furthest extend of a human joint in either direction

(i.e. −sj,1,min, sj,1,max).
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APPENDIX D

BODYPRESSURE NETWORK DETAILS

D.1 BPWnet Loss Computation Details

This section provides explicit definitions for the loss function components introduced in

section 4.4. Figure D.1(a) shows BPWnet in more detail for reference to the loss variables.

Human pose loss computation. Recall that the encoder outputs estimated SMPL pa-

rameters Ψ̂ =
[
β̂ Θ̂ ŝ x̂ ŷ b̂

]> ∈ R89. The first two terms, β̂ ∈ R10 and Θ̂ ∈ R69,

contain the body shape and and joint angles, respectively, for the SMPL human model [10].

The terms ŝ ∈ R3, x̂ ∈ R3, and ŷ ∈ R3 define the global transform of the SMPL model,

with translation ŝ and continuous rotation parameters {xu, xv, xw} = x̂, {yu, yv, yw} = ŷ

for 3 DOF, i.e. φu = atan2(yu, xu) and {φu, φv, φw} = φ ∈ R3. The term b̂ ∈ R1 defines

the distance between the camera and the bed. The encoder output Ψ̂ is used to differen-

tiably reconstruct a SMPL mesh with an embedded human kinematics model. As such, it

also outputs 3D Cartesian joint positions Ŝ ∈ R24×3. The SMPL block outputs a set of

vertices for the human, V̂H ∈ R6890×3. The estimated human mesh M̂H can be assembled

from V̂H , as well as the faces FH , which are constant.
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Figure D.1: A comparison between BPWnet and its black-box variant, BPBnet. The BPWnet shown above is the same as Fig. 5 but
contains more detail. BPBnet replaces the white-box DMR and PMR components with a learned ResNet34 decoder that shares weights
with the encoder.

137



Supervision is provided at multiple locations throughout the network to better utilize

the fully observable nature of the synthetic data. Previous work has provided supervision

on body shape [11] and on 3D Cartesian joint positions [47]. We observed that adding

global body rotation, SMPL joint angles, and camera-to-bed distance enables quicker and

better learning at little computational cost, and define the following loss function:

LSMPL :=
1

Nβσβ

∣∣∣∣β − β̂∣∣∣∣
1

+
1

NΘσΘ

∣∣∣∣Θ− Θ̂
∣∣∣∣

1

+
1

6σyx

(∣∣∣∣x− x̂∣∣∣∣
1

+
∣∣∣∣y − ŷ∣∣∣∣

1

)
+

1

Nsσs

Ns∑
j=1

∣∣∣∣sj − ŝj∣∣∣∣2 +
1

σb

∣∣∣∣b− b̂∣∣∣∣
1

(D.1)

where Nβ = 10 body shape parameters, NΘ = 69 joint angles, there are 6 parameters

of continuous global rotation, Ns = 24 Cartesian joint positions, and sj ⊂ S represents

the Cartesian position of a single joint. Each term is normalized by standard deviations σβ ,

σΘ, σyx, σs, and σb, which are computed from the entire synthetic training dataset. Note

that LSMPL is sufficient to reconstruct the entire SMPL mesh, but does not require it during

differentiation, so it can be computed efficiently. If the mesh is differentiably reconstructed,

we may also define a loss on the SMPL mesh vertices:

Lv2v :=
1

NVHσVH

NVH∑
j=1

∣∣∣∣vj − v̂j∣∣∣∣2 (D.2)

where vj ⊂ VH represents the Cartesian position of a single human mesh vertex,

NVH = 6890 vertices, and the loss term is normalized by σVH .

Image reconstruction loss computation. Because the initial module is only necessary

for producing a rough estimate and there are no learned parameters in DMR, no loss is

computed on the depth maps D̂+. However, we do train the residual module with a loss

on the reconstructed pressure maps P̂+. This minimizes the difference between the recon-

structed pressure map for the estimated pose P̂+ and the ground truth pose P+. A binary

contact map Ĉp+ is computed directly from P̂+, and we define the following loss function
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for PMR:

LP+ :=
1

TσP+

∣∣∣∣P+ − P̂+
∣∣∣∣2

2
+

1

TσCp+

∣∣∣∣Cp+ − Ĉp+

∣∣∣∣
1

(D.3)

where T = 1728 pressure map taxels and standard deviations σQ− and σCq− are sim-

ilarly computed over the entire training dataset. Similarly, to train the feature calibration

network CAL, we define a loss between the estimated and ground truth reconstructed pres-

sure images P and their contact maps Cp:

LP :=
1

TσP

∣∣∣∣P − P̂∣∣∣∣
1

+
1

TσCp

∣∣∣∣Cp − Ĉp

∣∣∣∣
1

(D.4)

with standard deviations σP and σCp .

D.2 Black-box Reconstruction Net (BPBnet)

Here we describe BPBnet, a deep network with a black-box model of image reconstruction,

shown in Figure D.1 (b). BPBnet uses a traditional black-box CNN for encoding depth

images, as well as a black-box CNN for reconstructing depth and pressure images. Like

BPWnet, it also produces an initial estimate with the first module, and uses the second

module, to refine it through residual error [87, 57, 11].

Each module has an encoder and decoder which extract features into a latent space and

upsamples them back into images in a reverse fashion. While the middle latent space in

such a network is often left unconstrained, it may encode specific targets, such as class

labels [111]. Here it is used to encode the SMPL model parameters Ψ̂, which are a suffi-

cient representation to decode a fixed-frame depth image of the human body. For BPBnet,

Ψ̂ ∈ R88, since it drops the camera to bed distance term present in BPWnet. LSMPL for

BPBnet similarly drops the last term on Equation D.1. The black-box ResNet decoder

outputs occlusion-free depth images, pressure images, and their associated binary contact

maps.
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Black-box decoding. Vector Ψ̂ is additionally fed into a decoder, which uses learn-

able weights to reconstruct an occlusion-free depth image of the human body, D̂+, and a

pressure image P̂ . BPBnet employs a U-Net [85] style architecture, where the encoder and

decoder share feature maps at each stage of convolution. We define a loss between the es-

timated and ground truth reconstructed depth images D+, as well as the contact maps Cd+ ,

which are a binary function of D+:

LD+ :=
1

TσD+

∣∣∣∣D+ − D̂+
∣∣∣∣2

2
+

1

TσCd+

∣∣∣∣Cd+ − Ĉd+

∣∣∣∣
1

(D.5)

BPBnet training strategy. We train Mod1 and Mod2 separately, and use the same

pre-trained BetaNet from subsection 4.2.1 with locked weights for both modules. We first

train Mod1, with the following loss function:

LBPB1 = LBetaNet1 + LSMPL1 + LD+
1

+ LP1 (D.6)

where subscripts 1 on the terms indicate a loss computed from Mod1 estimates. This

differs from the loss in Equation 4.7 in that it contains image reconstruction terms for

training the decoder. Next, we precompute a set of reconstructed depth and contact maps

{D̂
+
, Ĉd+} by pushing the entire depth image dataset D through Mod1. We train Mod2

with a dataset consisting of inputs {D, D̂
+
, Ĉd+}. Mod2 learns a spatial residual correction

to improve estimates Ψ̂1 and P̂1, which are shown on the bottom of Figure D.1 (a). As such,

the Mod2 encoder outputs a correction (Ψ̂2− Ψ̂1) and the decoder outputs (P̂2−P̂1). The

following loss is computed to train Mod2 in BPBnet:

LBPB2 = LBetaNet2 + LSMPL2 + Lv2v2 + LP2 (D.7)

In contrast to Mod1 in BPWnet, the depth reconstruction term is omitted and a term

is added for the SMPL mesh vertices, which slows training but refines estimation quality.

The Mod2 encoder in BPBnet outputs M̂H,2 and the decoder outputs P̂2.
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