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Celik, Ricardo Restrepo, Stas Minsker, Mari Carmen Reguera, Amey Kaloti, Alan

Diaz for so many Atlanta adventures we had. To Emanuel Indrei and Brian Benson,

for being excellent friends during my first years in the US. To all people I encounter

in this 5 five years, during so many conferences. Thanks, for all the lessons each one

of them left me.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Escape from a Saddle . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 A 2-dimensional linear example. . . . . . . . . . . . . . . . . 11

1.2.2 Analysis and generalization . . . . . . . . . . . . . . . . . . . 14

1.3 Levinson Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Conditioned diffusions in 1 dimension . . . . . . . . . . . . . 24

1.4.2 Planar Heteroclinic Networks . . . . . . . . . . . . . . . . . . 25

1.5 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.1 Organization of the Text . . . . . . . . . . . . . . . . . . . . 38

II SADDLE POINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Main Result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Simplifying change of coordinates . . . . . . . . . . . . . . . . . . . 45

2.3.1 Smooth Transformation and Normal Forms . . . . . . . . . . 45

2.3.2 Change of Variables in the Stochastic Case . . . . . . . . . . 48

2.4 Proof of Theorem 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Proof of Lemma 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6 Proof of Lemma 2.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



III LEVINSON CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 A finite time approximation result . . . . . . . . . . . . . . . . . . . 74

3.4 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Conditioned diffusions in 1 dimension . . . . . . . . . . . . . . . . . 83

3.5.1 Proof of Lemmas 3.5.2 and 3.5.3 . . . . . . . . . . . . . . . . 85

IV CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Escape from a Saddle: further generalizations. . . . . . . . . . . . . 91

4.2.1 A non-smooth transformation alternative . . . . . . . . . . . 93

4.3 Scaling limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

APPENDIX A — LARGE DEVIATIONS . . . . . . . . . . . . . . . 97

APPENDIX B — APPENDIX TO SECTION 1.2.1 . . . . . . . . 102

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



LIST OF TABLES

1 Classification of cases according to the relationship between eigenvalues 14

2 Classification of normal forms (of order R−1) according to the relations
in λ = (λ1, ..., λ2). Here P is a finite sum of resonant monomials. . . . 18

viii



LIST OF FIGURES

1 Example with several minimizers . . . . . . . . . . . . . . . . . . . . 7

2 Symmetric Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Strongly Asymmetric Case. . . . . . . . . . . . . . . . . . . . . . . . 16

4 Heteroclinic network example . . . . . . . . . . . . . . . . . . . . . . 28

5 Illustration of the domains D1, D2, and D3 used to compute the
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SUMMARY

A stochastic differential equation with vanishing martingale term is studied.

Specifically, given a domain D, the asymptotic scaling properties of both the exit

time from the domain and the exit distribution are considered under the additional

(non-standard) hypothesis that the initial condition also has a scaling limit. Methods

from dynamical systems are applied to get more complete estimates than the ones

obtained by the probabilistic large deviation theory.

Two situations are completely analyzed. When there is a unique critical saddle

point of the deterministic system (the system without random effects), and when

the unperturbed system escapes the domain D in finite time. Applications to these

results are in order. In particular, the study of 2−dimensional heteroclinic networks

is closed with these results and shows the existence of possible asymmetries. Also,

1−dimensional diffusions conditioned to rare events are further studied using these

results as building blocks.

The approach tries to mimic the well known linear situation. The original equa-

tion is smoothly transformed into a very specific non-linear equation that is treated

as a singular perturbation of the original equation. The transformation provides a

classification to all 2−dimensional systems with initial conditions close to a saddle

point of the flow generated by the drift vector field. The proof then proceeds by esti-

mates that propagate the small noise nature of the system through the non-linearity.

Some proofs are based on geometrical arguments and stochastic pathwise expansions

in noise intensity series.

x



CHAPTER I

INTRODUCTION

In this thesis we study the so called exit problem [34, Section 4.3] for small noise

diffusion. This model belongs to the more general area of random perturbations of

dynamical systems, which has been a very active area of research over the last 30

years [13], [34], [52]. The small noise diffusion framework has attracted the interest of

both the pure and applied mathematics communities. From the mathematical stand-

point it is interesting because this area has strong interactions with other important

branches of mathematics such as probability theory, dynamical systems, or PDE. As

regards applied mathematics, the set of problems relating to small noise diffusion has

found applications in climate modeling [10], [11], electrical engineering [16], [65], [66],

finance [27], [31], neural dynamics [55], [56] among others [23]. The main focus of

the thesis, the exit problem, was originally motivated by applications on the reaction

rate theory of chemical physics [36]. Moreover, the work presented here, although

purely theoretical, was motivated by neural dynamics [55]. We proceed to describe

the setting, in order to provide a more extensive background.

The setting of this problem is as follows. Given a smooth vector field b : Rd → Rd

consider the Itô equation driven by the d-dimensional standard Wiener process W :

dXε(t) = b(Xε(t))dt+ εσ(Xε(t))dW (t), (1)

Xε(0) = x0.

Here σ : Rd → Rd×d is a smooth uniformly non-degenerate matrix valued function.

That is, the matrix a = σTσ is uniformly positive definite. Under these assumptions

we can ensure that equation (1) has a unique strong solution (see [41] or [54] for all

stochastic analysis references).
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Given an initial condition x0 ∈ Rd (or a set of initial conditions), the goal is to

characterize some asymptotic properties of Xε as ε → 0. In particular we focus on

the exit from a domain problem or exit problem for short. Consider a domain (open,

bounded and connected) D ⊂ Rd with piecewise smooth boundary (at least C2). The

exit problem is the study of the time

τDε (x) = inf{t > 0 : Xε(t) ∈ ∂D},

at which Xε exits, and the exit distribution Px0{Xε(τ
D
ε ) ∈ ·}. In this work we

aim for a joint asymptotic result on the distribution of (τDε , Xε(τ
D
ε )) under certain

assumptions on b.

As we said before, this problem had its origin in chemical physics: it is a glorified

model for the speed at which chemical reactions take place. The first model of this

kind was proposed by Kramers [45], we refer to [14] for a modern treatment.

From a pure mathematics perspective, the problem became of interest because it

provides a framework to compute asymptotic (as ε → 0) properties for solutions of

the Dirichlet problem

∇uε(x) · b(x) +
ε2

2
∆uε(x) = 0, x ∈ D, (2)

uε(x) = g(x), x ∈ ∂D. (3)

Indeed, using a relaxed version of the Feynman-Kac theorem [41, Theorem 4.4.2],

the solution to this PDE can be written as the average uε(x) = Exg(Xε(τ
D
ε )), where

Xε is the solution of (1) with σ = Id. Solutions to other PDE’s can be written as

similar averages, but for this discussion we choose (2) since it is representative of the

area. Although the asymptotic study of the function uε is now known to be strongly

related to the solution to the exit problem, the first studies relied only on analytic

non-probabilistic arguments. For example, in [25], [39], [40] under some assumptions

on the drift b, they were able to rigorously write the solution as a formal series in ε.
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In [60] it is proved, under the assumption that b(0) = 0 and that D is contained in

the basin of attraction of 0, that as ε → 0, uε converges to a constant. This result

is of great importance since it means that the system forgets its initial condition.

However, this is not always true. For instance in [2] using functional analysis and

dynamical systems for the Levinson case (see section 1.1) it is proved that the limiting

function at x depends on the orbit of x under the action of the flow generated by

b. In [43] and [44] a combined approach involving probabilistic and purely analytic

arguments was put into practice. Very general limit theorems were obtained, but

strong restrictions on the non-linearity of the drift b were imposed.

The standard mindset in tackling this problem from the probabilistic point of

view is to think of the SDE that defines Xε as a (random) singular perturbation

of the system ẋ = b(x). In this context it is natural to expect that the methods

used to study the exit problem lie in the intersection between probability theory and

dynamical systems. Freidlin and Wentzell [34], [52] were the ones who put together

a general theory in this direction. They based their theory on the Large Deviation

principle for Xε. This result was then used as the building block in constructing

what today is known as the Freidlin-Wentzell theory. The core of this theory strongly

relates the exit behavior of Xε to the properties of the vector field b by providing two

elements:

1. It defines a function V : D × ∂D → [0,∞], known as quasi-potential, that

characterizes the exit distribution. Indeed, the exit distribution of Xε is asymp-

totically concentrated on the set V ∗
Xε(0)

of minimizers of V (Xε(0), ·). Moreover,

under the assumption that σ is uniformly non-degenerate, V , and hence V ∗
Xε(0)

,

depends mostly on b. For example it can be shown that in the case of b = ∇φ,

V is proportional to φ. This is the reason why the V function is called quasi-

potential.

2. It shows that in the case in which the domain is contained in the basin of
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attraction of an equilibrium , ε−2 log τDε converges in probability to the minimum

of V (Xε(0), ·). This result is of vital importance since it gives a hierarchy of

transitions for the case in which there are several equilibria. See [34, Section

6.5] for more background on this particular direction.

The theory came to light with a series of papers beginning with [62] and [63] until

the Russian edition of the book [34] appeared. See [32] and [33] for a modern version

of the theory, and [17], [19] and references therein for a stochastic partial differential

equations version of the theory. In Section 1.1 we give a brief review of the Freidlin-

Wentzell theory necessary to understand the motivation of this work.

In contrast with the Freidlin-Wentzell theory, that mostly relies on the large devi-

ation principle, a modern trend relying on a path-wise approach has emerged in the

last years. As a consequence, more detailed phenomena can be captured. That is the

case, for example, in [4] in which a heteroclinic network is considered or in [12] in

which a bifurcation problem is studied. The monograph [13] contains several examples

in this direction together with applications.

In this thesis, a modern and more complete treatment of two cases is developed:

the saddle case in which the vector field has a unique saddle point and the Levinson

case in which the deterministic dynamics escape from the domain in a finite time.

The two results when combined complete the treatment of the case in which the

underlying dynamics admit a heteroclinic network as studied in [4]. We also provide

a 1-dimensional example that explains how to obtain a correction to the exit time for

a diffusion conditioned to exit through an unlikely exit point. The approach presented

here relies heavily on the underlying dynamical structure, and combines techniques

from differential equations, and martingale theory.

The rest of this chapter is organized as follows. In Section 1.1 we give a brief

introduction to Freidlin-Wentzell theory. In Section 1.2 we study the exit problem in

the case the system ẋ = b(x) has a saddle point. In Section 1.3 we study the escape
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when it takes a finite time in the so called Levinson setting. Applications of these

two cases are presented in Sections 1.4.1 and 1.4.2. The general setting and a brief

description of the chapters is given in Section 1.5.

1.1 Background and Motivation

In this section we gather the background tools that will allow us to explain where our

results stand with respect to the classical Freidlin-Wentzell theory.

Consider Xε, the strong solution to the SDE (1). If seen as a random perturbation,

the equation for Xε suggests that the process should behave like the flow generated

by b:

d

dt
Stx = b(Stx), Stx = x. (4)

Indeed, through a standard martingale argument, it is easy to see that for any δ > 0

there are constants C
(1)
T,δ and C

(2)
T,δ such that

sup
x∈Rd

Px

{
sup
t≤T

|Xε(t)− Stx| > δ

}
≤ C

(1)
T,δe

−C(2)
T,δε

−2

. (5)

This inequality can be used to show that Pε
x, the law of Xε on C([0, T ]; Rd) condi-

tioned to Xε(0) = x, converges weakly (on the space C([0, T ]; Rd)) to the measure

concentrated on the orbit of x. See [15] for a series expansion in ε and [18] for a series

expansion of more general stochastic flows.

The question now is to find the optimal constant C
(2)
T,δ in (5), or more generally to

find a large deviation principle, see [23], [24] or Appendix A:

Theorem 1.1.1 (Freidlin-Wentzell [34] ) Let H1
0,T be the space of all absolutely

continuous functions from [0, T ] to Rd with square integrable derivatives. Define the

functional IxT by

IxT (ϕ) =
1

2

∫ T

0

〈
·
ϕ (s)− b(ϕ(s)), a−1(ϕ(s))(

·
ϕ (s)− b(ϕ(s)))〉ds, (6)
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if ϕ ∈ H1
0,T and ϕ(0) = x, and ∞ otherwise. Here b is the drift in (1) and a = σTσ,

with σ the diffusion matrix in (1).

Then for each x ∈ Rd and T > 0 the family (Pε
x)ε>0 satisfies a Large Devia-

tion Principle on C([0, T ]; Rd) equipped with uniform norm at rate ε2 with good rate

function IxT .

See [9] and [51] for more large deviations results. In order to have this thesis as self

contained as possible, we give a large deviation overview on Appendix A .

Informally, Theorem 1.1.1 says that if A ⊂ C([0, T ]; Rd) then

Px {Xε ∈ A} � e−ε
−2 infϕ∈A Ix

T (ϕ).

Intuitively, due to (6), this result suggest that IxT serves as a measure on how costly (in

terms of probability) is for the system Xε not to follow the deterministic trajectory.

This interpretation is essential when solving problems that require non-compact time

frames, in particular, when studying the exit problem described above.

Regarding IxT as a cost function, it makes sense to introduce

V (x, y) = inf
T>0

{IxT (ϕ) : ϕ(T ) = y, ϕ([0, T ]) ⊂ D ∪ ∂D} (7)

as the cost to go from x to y inside D. The function V : D× ∂D → [0,∞], known as

the quasipotential, plays an important role on the exit problem we described:

Theorem 1.1.2 (Freidlin-Wentzell [34]) Suppose Xε(0) = x0 and let

z = inf
y∈∂D

V (x0, y).

Then for every closed set N ⊂ ∂D such that infy∈N V (x0, y) > z,

lim
ε→0

Px0{Xε(τε) ∈ N} = 0.

The necessary observation derived from this theorem is that, in the limit, the exit

occurs in a neighborhood of the set of minimizers of the quasipotential. The limitation

6



Figure 1: Example with several minimizers

is that when there are several minimizers, the result doesn’t provide any distinction

between them. For example, suppose the phase portrait of S is as in Figure 1 and

D is a rectangular region as in Figure 1. Then the set of minimizers consists of 3

points: q1, q2 and q3. Freidlin-Wentzell theory ensures that, asymptotically, the exit

occurs outside this set with exponentially small probability, but doesn’t distinguish

between the minimizers. For example, the theory is not able to establish if it is more

likely to exit in a neighborhood of q1 or in a neighborhood of q2. Bakhtin [4] started

a theory that will allow us to compute the probability of exiting close to each of the

minimizers. To complete this theory is part of the motivation for this work.

This work (see also [1]) drops some technical assumptions needed in [4] in the

planar case. The program makes intensive use of normal form theory and provides

small noise estimates for non-linear diffusion. With this work, the asymmetric behav-

ior found in [4] is extended to arbitrary Hamiltonian systems on the plane. Moreover,

the present text also (see [2]) provides exact scaling corrections when the flow S exits

the domain in a finite time. This is a step towards both Freidlin-Wentzell theory and

Bakhtin’s heteroclinic result, since extension to the case in which S is asymptotically

stable can be carried out by time reversing. In this direction, a 1 dimensional example

is presented in Chapter 3. This is an open and promising future research area, since

7



it may provide scaling limits for exit points under very general assumptions on b.

1.2 Escape from a Saddle

In this section, we assume that the system has a unique critical point and that point

is a saddle. Without loss of generality, suppose that the critical point is the origin;

that is, we are assuming that 0 ∈ Rd is the only point x ∈ D∪∂D such that b(x) = 0,

and the matrix A = ∇b(0) has spectrum bounded away from zero with at least one

eigenvalue with positive real part and one eigenvalue with negative real part. In other

words, there is a pair of integers ν, µ ≥ 1 such that the eigenvalues λ1, ..., λd of A

satisfy

Reλ1 = ... = Reλν > Reλν+1 ≥ ... ≥ Reλµ > 0 > Reλµ+1 ≥ ... ≥ Reλd.

Under this assumptions, it is well known (see [64, Theorem 3.2.1]) that, for D̄ =

D ∪ ∂D,

Wu = {x ∈ D̄ : lim
t→−∞

Stx = 0, and for some s ≥ 0, S(−∞,s)x ⊂ D},

Ws = {x ∈ D̄ : lim
t→∞

Stx = 0, and for some s ≤ 0, S(s,∞)x ⊂ D},

and,

Wc = D̄\(Wu ∪Ws),

are smooth invariants of the flow S. Here, for a set A ⊂ R, SAx denotes the set

SAx = {Stx : t ∈ A}.

We are ready to state the theorem in [44] concerning the exit time τε:

Theorem 1.2.1 (Kifer [44]) If x ∈ D ∩Ws, then

− τε
log ε

P−→ 1

Reλ1

, ε→ 0.

Consider the (deterministic) time

T (x) = inf{t > 0 : Stx ∈ ∂D},

8



then, if x ∈ (Wc ∪Wu) ∩D,

τε
P−→ T (x), ε→ 0.

In order to state the corresponding theorem for the exit distribution, denote Γmax

the generalized eigenspace of A which corresponds to λ1, ..., λν . The Hadamard–

Perron theorem [53, Section 2.7], [64, Theorem 3.2.1] states that there is a ν-dimensional

St-invariant submanifold Wmax tangent to Γmax at the origin. Note that the inter-

section Qmax = Wmax ∩ ∂D is not empty. Moreover, in the case of ν > 1, Qmax is a

ν − 1-dimensional manifold, while for ν = 1 consists of two points: Qmax = {q−, q+}.

The result in [44] reads:

Theorem 1.2.2 (Kifer [44]) If x ∈ D∩Ws and ν > 1, then for any relatively open

subset G ⊂ ∂D such that Qmax ⊂ G, it holds that

lim
ε→0

Px{Xε(τε) ∈ G} = 1.

If ν = 1 then the measure Px
ε (·) = P{Xε(τε) ∈ ·|Xε(0) = x} converges weakly to

the measure 1
2
δq− + 1

2
δq+, where δz is the probability measure concentrated at z.

If x ∈ (Wc ∪Wu) ∩D, Px
ε (·) converges weakly to the measure δST (x)x.

In the work by Day [22] a refinement to the theorem about the exit time is given

in the 2−dimensional situation. He proved that λ1τε can be written as a sum be-

tween − log ε and a tight correction. He gave a precise asymptotic description for the

distribution of the correction:

Theorem 1.2.3 (Day [22]) If d = 2 and Xε(0) ∈ Ws ∩D, then

λ1τ
D
ε + log ε→ K + Cν

in distribution. Here K and Cν are independent random variables. Moreover, K has

a density with respect to Lebesgue measure given by

dK =
2√
π
e−(x+e−2x)dx,

9



and Cν is a Bernoulli random variable with P{Cν = C±} = 1/2, where C± are a

constants depending only on b and σ.

This theorem complements previous work by Mikami [49] which established the

decay in the distribution of − λ1

log ε
τDε :

Theorem 1.2.4 ( Mikami [49]) For an arbitrary d ≥ 1 and Xε(0) ∈ Ws ∩ D for

T ∈ (0, 1) it holds that

lim
ε→0

1

log ε
log

(
− log P

{
− λ1

log ε
τDε < T

})
= T − 1,

while for T > 1,

lim
ε→0

1

log ε
P

{
− λ1

log ε
τDε > T

}
= (T − 1)/2.

Theorem 1.2.4 is a good refinement of Theorem 1.2.1, but it doesn’t prove that

the distribution of the difference λ1τ
D
ε + log ε is tight as in Theorem 1.2.3. The tails

established in Theorem 1.2.4 are consistent with the tails of Theorem 1.2.3.

Bakhtin [5] gave a refinement of the last theorems. He proved that in any dimen-

sion the family of random variables τε + λ−1
1 log ε converges in distribution and he

identified the limit. He also improved the result about the convergence on the exit

distribution in Theorem 1.2.2. In the case ν = 1, he showed that the factor 1/2 in

the limiting distribution 1
2
δq+ + 1

2
δq− comes from the symmetry of a certain Gaussian

random variable.

Theorem 1.2.5 (Bakhtin [5]) In the case ν = 1, parametrize the manifold Wmax

as a C1-curve γ that can be locally represented as a graph over the (one dimensional)

space Γmax. Let the times t(±δ, q±) be the time it takes to the deterministic flow to

go from γ(±δ) to q±:

t(±δ, q±) = T (γ(±δ)),

with T (x) defined as in Theorem 1.2.1.
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Then, the numbers

h± = lim
δ→0

(
log δ

λ1

+ t(±δ, q±)

)
are well defined and, in the case where σ = I, and x ∈ D ∩Ws, there is a Gaussian

random variable N and a number κ = κ(x) > 0 such that :

1. As ε→ 0 the convergence

Xε(τε)
P−→ q+1{N>0} + q−1{N<0},

and

τε +
1

λ1

log ε
P−→ h+1{N>0} + h−1{N<0} −

1

λ1

log(κN )

hold in probability.

2. As ε → 0 the distribution of the random vector (Xε(τε), τε + 1
λ1

log ε) converges

weakly to the measure

1

2
δq+ × µh+,ω +

1

2
δq− × µh−,ω,

where µh±,ω is the distribution of

h± −
1

λ1

log(κN ).

The proof of Theorems 1.2.3 and 1.2.5 is based on the study of the linear system

and then an approximation to the non-linear one. The steps followed for a prototypical

2−dimensional system are presented in the next section. Part of the focus of this

thesis is on adapting this methodology to the non-linear case.

1.2.1 A 2-dimensional linear example.

For a fixed δ > 0, consider the domain D = (−δ, δ)×(−δ, δ) ⊂ R2. Given two positive

numbers λ± > 0, we sketch the solution to the exit problem from D for the diffusion

11



Xε = (x1
ε , x

2
ε) given by

dXε(t) = diag(λ+,−λ−)Xε(t)dt+ εdW (t),

Xε(0) = (0, x0) ∈ D.

Here, for a column vector v = (v1, v2), v1 is the first coordinate and v2 is the second

one.

Using Itô’s formula [41, Theorem 3.3.3] in each coordinate we write the Duhamel

principle for x1
ε and x2

ε as

x1
ε(t) = εeλ+t

∫ t

0

e−λ+sdW1(s), (8)

x2
ε(t) = e−λ−tx0 + ε

∫ t

0

e−λ−(t−s)dW2(s). (9)

These two identities are the main ingredient in this development.

We will show that Xε exits D along (δ, 0) or (−δ, 0). Consider the time at which

x1
ε exits the interval (−δ, δ):

τ δε = inf{t > 0 : |x1
ε(t)| = δ}.

The program is to compute τ δε based on the path-wise properties of Xε. Use the

identity obtained for τ δε to characterize Xε(τ
δ
ε ) from which we will deduce that P{τ δε =

τDε } → 1 as ε → 0. Hence, we can obtain the limiting behavior of (τDε , Xε) based

on the identities we have obtained for (τ δε , Xε(τ
δ
ε )). This will establish a result in the

spirit of Theorem 1.2.5.

First, note that τε < ∞ with probability 1. This is a fact that we prove in

Appendix B for completeness. On the set {τ δε < ∞}, define the random variable Nε

by

Nε =

∫ τδ
ε

0

e−λ+sdW1(s).

An application of Duhamel’s principle (8) for x1
ε and the definition of τ δε establishes

the equality δ = εeλ+τδ
ε |Nε| with probability 1. This identity implies that, with
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probability 1,

τ δε = − 1

λ+

log ε+
1

λ+

log

(
δ

Nε

)
. (10)

Using equality (10) together with (8) and (9) it holds that

x1
ε(τ

δ
ε ) = δ sgn (Nε) , (11)

and

x2
ε(τ

δ
ε ) = ελ−/λ+x0

(
|Nε|
δ

)λ−/λ+

+ ε

∫ τδ
ε

0

e−λ−(t−s)dW2(s), (12)

both with probability 1. Hence, if we can establish tightness for the distribution of the

family of random variables (Nε)ε>0, the fact that P{τ δε = τDε } converges to 1 would

be a consequence of (11), (12) and the tightness of the distribution of the stochastic

integral in (12).

In order to get the tightness result, we need to analyze the time τ δε without any

reference to (10). We can show two properties (see Appendix B for their proofs):

1. For every δ > 0, τ δε →∞ in probability as ε→ 0.

2. As a consequence to the last point, as ε→ 0,

Nε
P−→
∫ ∞

0

e−λ+sdW1(s).

Let N be the limit Gaussian random variable of (Nε)ε>0 in the second observation

above. Then, we have proved the following lemma:

Lemma 1.2.6

τ δε +
1

λ+

log ε
P−→ 1

λ+

log

(
δ

|N |

)
, ε→ 0.

We apply this lemma to the exit distribution of Xε. Before that, let us denote N− a

zero mean Gaussian random variable with variance (2λ−)−1 independent of N . It is

possible to prove that ∫ τD
ε

0

e−λ−(t−s)dW (s) → N−, ε→ 0,

13



Table 1: Classification of cases according to the relationship between eigenvalues

Case Bias in the stable direction
λ− > λ+ Symmetric
λ− = λ+ Asymmetric
λ− < λ+ Strongly Asymmetric

in distribution. This convergence combined with the convergence of τ δε and Nε used

in (11) and (12) implies that on the set {τDε = τ δε },

Xε(τ
D
ε ) = δ(sgnNε, 0) + ε(λ−/λ+)∧1(0, ξε). (13)

Here (ξε)ε>0 is a family of random variables that satisfies

ξε →
(
|N |
δ

)λ−/λ+

x01{λ−≤λ+} +N−1{λ−≥λ+}, ε→ 0, (14)

in distribution. Moreover, it can be shown that when λ− < λ+ this convergence holds

in probability.

Hence Theorem 1.2.5 holds with γ(t) = (t, 0) up to time re-parametrization.

1.2.2 Analysis and generalization

The simplified argument of last section not only recovers, for this simple linear case,

Theorem 1.2.5 but also provides more information. From (12) we can see that when

λ− ≤ λ+ the exit distribution has a bias in the stable direction. In this case, the

second coordinate of the exit distribution is not centered. Indeed, from (13) and (14)

we can identify 3 cases (see Table 1):

1. When λ− > λ+, the second coordinate of Xε converges to N−. Hence, the exit

has a centered distribution in the stable direction. We refer to this case as the

symmetric case and is illustrated in Figure 2.

2. When λ− = λ+, the second coordinate of Xε converges to
(
|N |
δ

)λ−/λ+

x0 +N−.

Hence, the exit has a bias in the stable direction due to the initial condition x0.

We refer to this case as the asymmetric case.
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Figure 2: Symmetric Case.

3. When λ− < λ+, the second coordinate of Xε converges to
(
|N |
δ

)λ−/λ+

x0. Hence,

the exit has a very strong bias in the stable direction due to the initial condition

x0. We refer to this case as the strongly asymmetric case and is illustrated in

Figure 3

The consequences of such an asymmetry, when there is one, have been explored

in [4], and it turned out to be an important improvement to Freidlin-Wentzell theory

for a particular situation. We will summarize this improvement in Section 1.4.2. For

now let us comment about how general the argument of last Section 1.2.1 really is.

The immediate limitation of the argument presented in Section 1.2.1 is that it is

mostly based on explicit representations for the solution of Xε. In [5], [4] and [22]

a linear approximation to the original process Xε is made. The non-optimal feature

of this procedure is that we lose all the identities, and we have just approximations.
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Figure 3: Strongly Asymmetric Case.

This is not acceptable if we are interested on computing the properties of the afore-

mentioned asymmetry.

A similar but structurally different argument is presented here in Chapter 2 (

see [4] also) in which a change of variable is introduced to linearize the system locally.

Consider the process Yε(t) = f(Xε(t)) and for the moment assume f to be smooth.

Then, the new process Yε solves the SDE:

dYε =
(
∇f−1(Yε)

)−1
b(f−1(Yε))dt+ εσ̃(Yε)dW + ε2Ψ(Yε)dt,

for some smooth (depending on the function σ) functions Ψ : Rd → Rd and σ̃ : Rd →

Rd × Rd. If we can choose the function f to be such that

(
∇f−1(y)

)−1
b(f−1(y)) = Ay, (15)

then the proof of the theorem will follow almost identically as the case in Section 1.2.1

(only with multiplicative noise instead of additive one) giving the asymmetry for the
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general case. The existence of such a transformation belongs to the study of conjuga-

tion in Ordinary Differential Equations. The main result of the latter theory (the so

called Hartman-Grobman Theorem [37, Theorem IX.7.1], [53, Section 2.8]) guaran-

tees the existence of a homomorphism f that solves (15). This is not enough for our

purposes since we need f to be C2 in order to use Itô’s formula. In [4] it is assumed

that the transformation f exists and is C2. In order to become aware on how restric-

tive (if restrictive at all) is this hypothesis, we need to study transformations f that

satisfy a relaxed (in a sense explained below) version of (15). Such transformations

are the main subject of study in normal form Theory [20], [42], [53], [64].

We will summarize the main ideas in normal form theory. Following [38], we call

a set of complex numbers λ = (λ1, λ2, ..., λd) non-resonant if there are no integral

relations between them of the form λj = α · λ, where α = (α1, ..., αd) ∈ Zd
+ is a

multi-index with |α| = α1 + ... + αd ≥ 2. Otherwise, we say that it is resonant.

Moreover, a resonant λ is said to be one-resonant if all the resonance relations for

λ follow from a single resonance relation. A monomial xαej = xα1
1 ...x

αd
d ej is called

a resonant monomial of order R if α · λ = λj and |α| = R. Normal form theory

asserts (see [20], [38]) that for any pair of integers R ≥ 1 and k ≥ 1, there are two

neighborhoods of the origin Ωf and Ωg and a Ck-diffeomorphism f : Ωf → Ωg with

inverse g : Ωg → Ωf such that

(
∇f−1(y)

)−1
b(f−1(y)) = Ay + P (y) +R(y), y ∈ Ωg (16)

where P is a polynomial containing only resonant monomials of order at most R and

R(ζ) = O(|ζ|R+1) (see Table 2). If λ is non-resonant, then f can be chosen so that

both P andR in (16) are identically zero. Moreover, due to [38, Theorem 3,Section 2],

if λ is one-resonant then f can be chosen so that R in (16) is identically zero.

The result in [4] only includes the non-resonant case. When applied to heteroclinic

networks (network of saddles interconnected to each others) this assumption impose
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Table 2: Classification of normal forms (of order R− 1) according to the relations in
λ = (λ1, ..., λ2). Here P is a finite sum of resonant monomials.

Hypothesis on λ Normal Form
non-resonant Ay
one-resonant Ay + P (y)

resonant Ay + P (y) +O(|x|R)

a restriction by requiring each critical point to be non-resonant. In particular, typi-

cal Hamiltonian systems (that usually present heteroclinic structures) have resonant

relations due to the symplectic structure [20].

In this work, we give a complete solution to the 2−dimensional case with no as-

sumptions about resonance, and with random initial conditions. One of the theorems

presented in this theses (see [1] also) informally reads as

Theorem 1.2.7 Let Xε be the solution of equation (1) with initial condition given

by

Xε(0) = x0 + εαξε,

where α ∈ (0, 1) and (ξε)ε>0 is a family of random vectors that converges weakly to

the random vector ξ0. We assume that x0 ∈ Ws and ξ0 is such that

P{b(x0)||ξ0} = 0,

where || means collinearity of vectors.

Then, there is a family of random vectors (φε)ε>0, a family of random variables

(ψε)ε>0, and the number

β =

 1, αλ− ≥ λ+

αλ−
λ+
, αλ− < λ+

(17)

such that

Xε(τ
D
ε ) = qsgn(ψε) + εβφε.

The random vector

Θε =

(
ψε, φε, τ

D
ε +

α

λ+

ln ε

)
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converges in distribution as ε → 0 to the limit Θ0 that can be identified. The exit

distribution exhibits the behavior presented at the beginning of Section 1.2.2.

The hypothesis on collinearity can be removed (and the case in which distributions

have atoms has to be considered), but it is decided not to, to keep the exposition

fluent.

The proof of this theorem is divided in two steps. One, is the study of the diffusion

Xε when is close to the origin. The second, is the study of the diffusion Xε far from

the origin. Here, the meaning of close and far relies on whether or not the system

can be conjugated to its Normal Form.

By the study of Xε close to the critical point, we mean Xε ∈ B, where B is a

neighborhood of the origin in which normal form conjugation is valid. In this case,

the analysis has two parts. The first part is when the diffusion starts along the stable

direction. To study this part, we study the diffusion until the the projection of Xε

along the stable direction dominates over the noise level. We achieve this by posing

the problem as an exit problem from the strip [−εᾱ, εᾱ] × B, for some ᾱ ∈ (0, α).

For the second part we study the exit problem from B with the initial condition

being the exit distribution obtained in the first part. In order for this program to be

successful, we require very precise path-wise expressions for the diffusion. By using

the general form of the resonances we are able to preserve the essence of the argument

in Section 1.2.1.

The analysis of the system far from the origin is used twice. The first time is

when the system starts along the stable manifold Ws. The second time is when Xε

is about to exit the domain and it probably has some bias. Our study is based on a

series expansion in powers of ε > 0. This expansion is inspired by [15], but it requires

additional geometric arguments. These results are of independent interest, so we start

a new section to describe them.
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1.3 Levinson Case.

This section is devoted to the Levinson case. We will first review the history of the

problem and then outline our contribution.

Given an initial condition x0 ∈ D, Levinson condition is a hypothesis associated

to the flow S and the domain D. This case was originally formulated in [46] with a

PDE flavor, we state the condition as presented by Freidlin [35, Chapter 2].

Condition 1.3.1 (Levinsion) The flow S satisfies the Levinson condition at x0 ∈ D

with respect to D if the following holds:

1. The exit time

T (x0) = inf{t > 0 : Stx0 ∈ ∂D},

is finite.

2. The flow Stx0 leaves the domain immediately after T (x). That is, there is a

δ > 0 such that ST (x0)+s 6∈ D ∪ ∂D for all s ∈ (0, δ).

We say that the domain D ⊂ Rd satisfies Levinson condition if properties 1 and 2 are

satisfied at each x ∈ D.

As mentioned in the introduction, Levinson [46], [47] was originally interested in

studying the behavior of the solution of the PDE:

∇uε(x) · b(x) +
ε2

2
∆uε(x) = 0, x ∈ D,

uε(x) = g(x), x ∈ ∂D. (18)

The claim is that the solution to this PDE has to converge to the solution of the

unperturbed PDE:
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Theorem 1.3.2 (Levinson [46]) Under the Levinson condition 1.3.1, there is a

unique (maybe generalized) solution to both, the perturbed problem (18) and the un-

perturbed problem

∇u0(x) · b(x) = 0, x ∈ D,

u0(x) = g(x), x ∈ ∂D.

Let u0 : Rd → Rd be a solution to the unperturbed problem. Then, if g : ∂D → Rd is

smooth,

uε(x) = u0(x) + εvε(x),

where vε(x) is a locally bounded function for each ε > 0.

The proof of this theorem is based on a series expansion of uε along the characteristics

of (18). In order to prove the result with this idea, several technical challenges had to

be overcome in [46]. Contrastingly, as pointed out in [35], the probabilistic approach

here is simpler and cleaner. Indeed, once we know inequality (5), the convergence in

Theorem 1.3.2 is an immediate consequence of the stochastic representation uε(x) =

Exg(Xε(τ
D
ε )), where Xε solves (1) with σ = Id. To get the exact behavior a series

expansion of the processes Xε has to be made as in [15] and [34, Chapter 2].

In this thesis we develop a path-wise approach to this problem. We give a geo-

metrical characterization of the exit point Xε(τε), and joint properties of (Xε(τε), τε)

are obtained. We start by obtaining a generalization of the series expansion given

in [15]. This result serves as backbone of our proof and has independent interest on

itself.

In order to present our result, we need further notation. Write b as

b(x) = b(y) +∇b(y)(x− y) +Q1(y, x− y), x, y ∈ Rd,

where

|Q1(u, v)| ≤ K|v|2
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for some constant K > 0 and any u, v ∈ Rd.

Denote by Φx(t) the linearization of S along the orbit of x:

d

dt
Φx(t) = A(t)Φx(t), Φx(0) = I, (19)

where A(t) = ∇b(Stx) and I is the identity matrix. We can state our first lemma:

Lemma 1.3.3 Consider the initial value problem

dXε(t) = (b(Xε(t)) + εα1Ψε(Xε(t))) dt+ εσ(Xε(t))dW (20)

Xε(0) = x0 + εα2ξε, ε > 0. (21)

where, for each ε, Ψε is a deterministic Lipschitz vector field on Rd converging uni-

formly to a limiting Lipschitz vector field Ψ0. Both α1 and α2 are positive scaling

exponents. The family of random variables (ξε)ε>0 converges, as before, to ξ0 in dis-

tribution as ε→ 0.

Let

φε(t) = εα2−αΦx0(t)ξε + εα1−αΦx0(t)

∫ t

0

Φx0(s)
−1Ψ0(S

sx0)ds

+ ε1−αΦx0(t)

∫ t

0

Φx0(s)
−1σ(Ssx0)dW (s),

and

φ0(t) = 1{α2=α}Φx0(t)ξ0 + 1{α1=α}Φx0(t)

∫ t

0

Φx0(s)
−1Ψ0(S

sx)ds

+ 1{1=α}Φx0(t)

∫ t

0

Φ−1
x0

(s)σ(Ssx0)dW (s), t > 0.

Then,

Xε(t) = Stx0 + εαϕε(t)

holds almost surely for every t > 0, where ϕε(t) = φε(t) + rε(t), and rε converges to

0 uniformly over compact time intervals in probability. Moreover, for any T > 0,

φε → φ0, in distribution in C[0, T ] equipped with uniform norm.
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The reason to consider (20) instead of the more standard (1) will become evident

in Section 1.4.1. For now, let us observe that, although inequality 5 may not hold, it

is still true that

sup
t≤T

|Xε(t)− Stx0|
P−→ 0, ε→ 0.

Hence, under the Levinson Condition 1.3.1 the exit of Xε from D will occur on a

finite (still random) time and very close to the deterministic exit z = ST (x0)x0. A

better understanding of this convergence is the main result in this section.

The main theorem provides a scaling limit to the distribution of (τε, Xε(τε)). In

order to understand the theorem, we regard the boundary of D as an hypersurface

M in Rd. In general, for an hypersurface M in Rd, denote the tangent space of

M at the point z ∈ M as TzM . Further, we denote the (algebraic) projection onto

span(b(z)) as πb : Rd → R , and the (geometric) projection onto TzM along span(b(z))

as πM : Rd → TzM . In other words, for any vector v ∈ Rd, πbv ∈ R and πMv ∈ TzM

are the unique number and vector such that

v = πbv · b(z) + πMv. (22)

With this notation in mind, we are ready to state the main theorem proved in this

thesis:

Theorem 1.3.4 Let M be an hypersurface in Rd. Let Xε be the solution of (20)

with initial condition (21). Consider τε and T (x0) the exit time from M of Xε and S

respectively. If α = α1 ∧ α2 ∧ 1 and z = ST (x0)x0, then

ε−α(τε − T,Xε(τε)− z) → (−πbφ0(T ), πMφ0(T )), (23)

in distribution. Here πb and πM are as in (22).
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1.4 Applications

1.4.1 Conditioned diffusions in 1 dimension

Throughout this section, we restrict ourselves to the 1-dimensional situation. In

particular, let, for each ε > 0, Xε be a weak solution of the following (1 dimensional)

SDE:

dXε(t) = b(Xε(t))dt+ εσ(Xε(t))dW (t),

Xε(0) = x0,

where b and σ are C1 functions on R, such that b(x) < 0 and σ(x) 6= 0 for all x

in an interval [a1, a2] containing x0. We want to study the exit of such an interval

D = [a1, a2], that is

τε = inf{t ≥ 0 : Xε(t) = a1 or a2}.

Let Bε = {Xε(τε) = a2}, and note that, since b < 0, limε→0 P(Bε) = 0. More precise

estimates on the asymptotic behavior of P(Bε) can be obtained in terms of large

deviations. However, our interest is to study the process Xε conditioned on the rare

event Bε.

In this case T (x0), the time it takes for the flow S generated by −b starting at x0

to reach a2, is given by

T (x0) = −
∫ a2

x0

1

b(x)
dx.

It is known from our basic Lemma 1.3.3 that τε → T (x0) as ε→ 0 in probability. But

the correction was not known so far.

The idea is to condition the diffusion to the event Bε and note that this condi-

tioned process solves a martingale problem (hence is a diffusion) and the result from

Section 1.3 are applicable. Hence, we have the lemma:

Lemma 1.4.1 Conditioned on Bε, the process Xε is a diffusion with the same dif-

fusion coefficient as the unconditioned process, and with the drift coefficient given
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by

bε(x) = b(x) + ε2σ2(x)
hε(x)∫ x

a1
hε(y)dy

,

where

hε(x) = exp

{
− 2

ε2

∫ x

a1

b(y)

σ2(y)
dy

}
.

With this lemma and the help of an analogy of Laplace’s method the main theorem

in this direction is:

Theorem 1.4.2 Conditioned on Bε, the distribution of ε−1(τε − T (x0)) converges

weakly to a centered Gaussian distribution with variance

−
∫ a2

x0

σ2(y)

b3(y)
dy.

The result is of relevance not only because of the correction itself, but also, because

is the first step of analysis for diffusions conditioned on rare events. Such a tool may

lead to a general theory of correction in small noise systems.

1.4.2 Planar Heteroclinic Networks

A further application of our results is to the theory of Noisy Heteroclinic Networks

first proposed in [4]. Our presentation applies only to the 2-dimensional situation.

See [6] for a survey in this direction.

In Section 1.4.2.1 we give an intuitive presentation of the argument in [4]. The

general theory developed in [4] is presented in Section 1.4.2.3. In subsection 1.4.2.4

relations of this result to the current text are highlighted. In this section, we also

introduce the idea of a random Poincaré map.

1.4.2.1 Intuitive argument

We study the exit problem of the diffusion (1) from a domain D. Consider the vector

field b : R2 → R2 which has finite set of critical points Z = (ζk)
N
k=1 inside D̄. We

assume that S admits a heteroclinic network.
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A heteroclinic network for the flow S is an invariant that contains at most count-

able number of saddles connected with each other. For simplicity, in this section

we suppose that S admits a heteroclinic network with a finite set of critical points

Z = (ζk)
N
k=1 inside D̄. Precisely, we assume the following:

1. Each critical point ζk is a saddle point of the flow S. That is, b(ζk) = 0 and the

matrix Ak = ∇b(ζk) has two eigenvalues: λ+
k > 0 and −λ−k < 0.

2. The flow S generated by b admits a heteroclinic structure in D̄. We give the

technical description of this assumption. For each critical point zk ∈ Z, let Ws
k

be the 1-dimensional locally stable manifold and Wu
k the 1-dimensional locally

unstable manifold. Take a δ > 0 small enough so that normal form conjugation

and Hadamard–Perron invariant manifold theorem holds for a ball Bk = Bδ(ζk)

of radius δ > 0 centered at each critical point . Denote {q+
k , q

−
k } = Wu

k∩∂Bδ(ζk).

The hypothesis that b admits a heteroclinic structure means that for each integer

1 ≤ k ≤ N , there is an integer n±k ∈ {1, ..., N} such that

lim
t→∞

Stq±k = ζn±k
.

3. All nondegeneracy assumptions made in Section 1.2 hold for each critical point.

Suppose the starting point for the diffusion Xε(0) is a deterministic point in Ws
1 .

Theorem 1.2.7 implies that with high probability the diffusion will exit B1 approxi-

mately along q+
1 or q−1 with equal probability. Moreover, Theorem 1.2.7 tells us how to

compute the scaling exponent of the additive exit correction term and the asymptotic

distribution of this correction term.

For this discussion, we suppose that the diffusion exits B1 asymptotically close to

q+
1 . The exit from B1 will now be the initial condition in Lemma 1.3.3. Applying this

lemma (with Ψε ≡ 0) for sufficiently large T , we can derive the asymptotic represen-

tation of the entrance distribution for Bn+
1
, which satisfies the properties imposed to
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the initial condition in Theorem 1.2.7. Observe that Lemma 1.3.3 also implies that

the scaling exponent of the additive correction in the entrance distribution for Bn+
1

is the same as in the exit distribution for B1. Moreover, this lemma implies that the

asymptotic distribution of the additive correction term has in the entrance to Bn+
1

is

the evolved (under the linearization of S) version of the asymptotic distribution of

the correction term at the exit from B1. In particular, any bias on the exit of B1 gets

translated, by the linearization of the flow, to the entrance of Bn+
1
. Let i1 = n+

1 . Then

Theorem 1.2.7 applies again to derive that asymptotically the exit distribution from

Bn+
1

is concentrated mostly along qi+1 or qi−1 , but with possible unequal probability.

We can proceed like this iteratively along any sequence of saddle points z1, zi1 , ..., zir

such that for any j, ij+1 = n+(ij) or ij+1 = n−(ij).

The result of this procedure allows us to conclude that the system evolves in a

Markov fashion (choosing the next saddle with probability 1/2 independently of the

history of the process) until it meets a saddle point at which the exit distribution

becomes asymmetric. After that the choice of the two heteroclinic connections is not

Markov anymore. The choice of the two heteroclinic connections may become Markov

again if the system meets a saddle in which the symmetry is reestablished. We will

illustrate how this phenomenon affects the exit distribution.

1.4.2.2 Planar heteroclinic network with two nodes

Let us give a concrete example. Consider the system in which b has two critical

points {ζ1, ζ2} and phase space of the flow S is as depicted in Figure 4, with D being

a rectangle around the two critical points. Let Xε(0) = x0 be on the locally stable

manifold Ws
1 of ζ1. Consider {q+

k , q
−
k } = Wu

k ∩ ∂Bδ(ζk), where Bδ(ζk) is a ball of

sufficiently small radius around ζk and Wu
k the locally unstable manifold of ζk. There

is an orbit connecting ζ1 with ζ2:

lim
t →∞

Stq−1 = ζ2.
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Figure 4: Heteroclinic network example

Recall from Section 1.1 that as ε → 0 the exit distribution concentrates near the

minimizers of V (x, ·) over the boundary of ∂D. For a heteroclinic network this means

that the exit concentrates at all points in the boundary that can be reached from x

along a sequence of heteroclinic connections. In this case, these points are

y1 = lim
t →∞

Stq+
1 , y2 = lim

t →∞
Stq+

2 ,

and y3 = limt→∞ Stq−2 . Then, the exit measure will weakly converge, as ε→ 0, to

p1δy1 + p2δy2 + p3δy3 , (24)

where p1, p2 and p3 are positive numbers that sum up to 1. In the spirit of Theo-

rem 1.2.7 a direct application of our results imply a scaling limit to this convergence.
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Lemma 1.4.3 Consider the system just described. There is a family of random vari-

ables (θε)ε>0, a family of random vectors (φε)ε>0 and the random variable α0 such that

P{θε ∈ {1, 2, 3}} = P{α0 ∈ (0, 1]} = 1, and

Xε(τ
D
ε ) = yθε + εα0φε,

for every ε > 0. The random vector (θε, φε) converges in distribution to (θ0, φ0).

The random vector (θ0, φ0) in principle can be obtained explicitly. It is clear from (24)

that pi = P{θ0 = i}, i = 1, 2, 3.

Let {λ+,−λ−} be the set of eigenvalues of ∇b(ζ1) and {µ+,−µ−} the set of eigen-

values of ∇b(ζ2) (see Figure 4). Using the three observations made at the beginning

of Section 1.2.2 several cases can be considered (see [6] for further explanation):

• If µ+ < µ− , and λ+ < λ− then the system is symmetric with p1 = 1/2,

p2 = p3 = 1/4, and α0 = 1. Here symmetric means that the random vector φ0

has no bias along the direction of Ws
1 if θ0 = 1 or along the direction Wu

1 if

θ0 ∈ {2, 3}. Asymmetric means that there is a bias in any of the aforementioned

cases.

• If µ+λ+ < µ−λ−, and λ+ ≥ λ−, the system is symmetric if θ0 ∈ {2, 3}, strongly

asymmetric if λ+ < λ− and θ0 = 1, and asymmetric if λ+ = λ− and θ0 = 1.

Moreover, p1 = 1/2, p2 = 0, p3 = 1/2, when λ− < λ+, and p1 = 1/2, p2 =

0, p3 = 1/2, when λ− = λ+. The random variable α0 is given by

α0 =
λ−
λ+

δ{1}(θ0) + δ{2,3}(θ0).

• If µ+λ+ > µ−λ−, and λ+ > λ−, the system is strongly asymmetric and p1 = 1/2,

p2 = 0, p3 = 1/2, and

α0 =
λ−
λ+

δ{1}(θ0) + µ−λ−/(µ+λ+)δ{2,3}(θ0).
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• If µ+ = µ− and λ+ = λ−, the system is asymmetric and p1 = 1/2, p2 ∈

(0, p3), p3 < 1/2, and α0 = 1.

• If µ+ > µ−, and λ+ = λ−, the system is asymmetric if θ0 = 1 and strongly

asymmetric otherwise. Moreover, p1 = 1/2, p2 ∈ (0, p3), p3 < 1/2, and

α0 = δ{1}(θ0) + (µ−/µ+)δ{2,3}(θ0).

• If µ+ = µ−, and λ+ > λ−, the system is strongly asymmetric if θ0 = 1, and

asymmetric otherwise. Moreover, p1 = 1/2, p2 = 0, p3 = 1/2, and α0 = λ−/λ+.

A formalization of this argument based on a weak convergence result is done in [4].

In such, the limiting behavior of the rescaled process

Zε(t) = Xε(t log(ε−1))

is obtained. Notice how this rescaled process instantaneously jumps along saddles.

Hence if a weak convergence result has to be established, we need to introduce a new

topology. Indeed, the standard Skorokhod topology does not allow to capture the

curves along which the jumps are made. We state the weak convergence result in the

next section.

1.4.2.3 Weak convergence result

In order to present the weak convergence result for the rescaled version of Xε, we

need to introduce a new topology.

Consider all paths γ : [0, 1] → [0,∞) × R2 such that the first coordinate γ0 is

nondecreasing. Equip the space of paths with the equivalence relation ∼, where

γ1 ∼ γ2 if and only if there is a path γ∗ and non-decreasing surjective functions

λ1, λ2 : [0, 1] → [0, 1] such that γi = γ∗ ◦λi. The set of curves X is the quotient of the

space of paths with the equivalence relation ∼. Actually the set X can be regarded

as a Polish space:
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Lemma 1.4.4 ( [4]) X can be made into a metric Polish space with distance func-

tion

ρ(Γ1,Γ2) = inf
γ1∈Γ1,γ2∈Γ2

sup
s∈[0,1]

|γ1(s)− γ2(s)|.

Refer to [4] for more information about this space.

In order to state the result, we give a non-technical introduction to the notion of

entrance-exit maps introduced in [4]. Let P be the set of probability measures in R2,

define out = (0,∞)× [0, 1]× R2 × (0, 1]× P and

Outk = {((t−, p−, x−, β−,F−), (t+, p+, x+, β+,F+)) ∈ out2 :

t− = t+, x± = q±k , p− + p+ = 1, β− = β+}.

Then we have the following definitions.

Definition 1.4.5 For each k, an entrance-exit map is a map

Ψk : {q+
k , q

−
k } × (0, 1]× P → Outk,

where the domain of Ψk satisfies some regularity assumptions(see [4, page 10] ) . We

denote Ψk = (Ψ+
k ,Ψ

−
k ).

Definition 1.4.6 Suppose x0 ∈ Ws
k, for some 1 ≤ k ≤ N . The sequence z =

(θ0, zi1 , ..., θr−1, zir , θr) is admissible for x0 (refered as x0-admissible) if

1. θ0 is the orbit of x0 with Stx0 → zi1, as t→∞;

2. for each j ∈ {1, .., r}, θj is either the orbit of q+
ij

or the orbit of q−ij ;

3. for each j ∈ {1, .., r}, ij+1 is either n+
ij

or n−ij according to whether thetaj is the

orbit of q+
ij

or q−ij .

With each admissible sequence z we associate the sequence

η(z) = ((x′0, α0, µ0), (t1, p1, x1, α1, µ1), ..., (tr, pr, xr, αr, µr)),
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where x′0 = St
′(x0)x0, α0 = 1,

t′(x0) = inf{t > 0 : Stx0 ∈ Bδ(ζi1)},

and the rest of the entries are given by

(tj, pj, xj, αj, µj) =

 Ψ+
ij
(xj−1, αj−1, µj−1), ij = n+

ij

Ψ−
ij
(xj−1, αj−1, µj−1), ij = n−ij

.

To each admissible sequence z we can associate a piecewise constant curve Γ(z)

by identifying it with the path of curves such that spend time tj at the point xj and

jump to the next point along the path θj. Also we can associate probabilities through

the relationship

π(z) = p1...pr.

Note how the set of all admissible sequences for x0 has the structure of a binary

tree partially ordered by inclusion. We say that a set of admissible sequences L of

x0 is free if no two sequences of L are comparable with respect to this partial order.

Additionally, if any sequence not in L is comparable to one sequence from L then L

is called complete. It is clear that for any free set π(L) :=
∑

z∈L π(z) ≤ 1, while for

a complete set π(L) = 1.

The main theorem is:

Theorem 1.4.7 (Bakhtin [4]) Suppose that Xε(0) = x0 is in the heteroclinic in-

variant. For each ε > 0, define the process Zε(t) = Xε(t| log(ε)|). Then, for any

conservative set L of x0-admissible sequences, there is a family of stopping times

(Tε)ε>0 such that the distribution of the graph ΓZε(t),t<Tε converges weakly in (X, ρ) to

the measure Mx0,L concentrated on the set

{Γ(z) : z ∈ L}

and satisfying MXε(0),L{Γ(z)} = π(z).
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1.4.2.4 Contributions made in the case S admits a heteroclinic network

In this section we outline our contribution for the case in which S admits a heteroclinic

network.

The iteration procedure described in Section 1.4.2.1 was first proposed in [4]. It is

the central idea in proving the main results in [4]. This iteration is carried out in [4]

by using an equivalent version of Theorem 1.2.7. This version was proved under the

hypothesis that the non-linear system can be locally conjugated to a linear system

by a C2 transformation. That is, in [4] Theorem 1.4.7 is proved under the following

hypothesis:

Condition 1.4.8 At each critical point ζ ∈ Z there are non-resonant conditions.

As discussed in Section 1.2 this is in general not the case, and examples of saddle

point that do not satisfy this condition are known [48]. In this work, we completely

remove condition 1.4.8 in the 2-dimensional situation.

On the other hand, observe that the iteration procedure is Section 1.4.2.1 is based

on the computation of a random map. This map is such that, for a domain V , to any

given initial distribution of the diffusionXε, it gives the exit distribution ofXε from V .

We call this map a random, or distributional, Poincaré map. For V ⊂ R2, let ΠV be

the set of probability measures with support on V . Then, the random Poincaré map

for D, ΥD : ΠD → Π∂D is the (deterministic) map such that ΥDQ = PQ{Xε(τ
D
ε },

where PQ is the original probability measure conditioned on Xε(0) being distributed

as Q. The iteration in Section 1.4.2.1 illustrates the use of this map. Notice that this

methodology applies regardless the type of equilibria that the system exhibits. We

base our proof of Theorems 1.2.7 and 1.3.4 on a similar idea. Hence, it is worth to

study small noise perturbations with this direction in mind.

As an example of a Poincaré map, consider our example in Section 1.4.2.2. The

exit distribution is the composition of the Poincaré maps ΥD5 ◦ ... ◦ΥD1δx0 , where Di

33



are illustrated in Figures 5 and 6, and we are conditioning on exit along y3.

1.5 General Setting

The objective of this section is to establish the general setting and notation, although

each chapter has the necessary modifications and additions to the following.

Let (Ω,F ,P) be a complete probability space (every subset of every measurable

null set is measurable) and W be a d-dimensional standard Brownian Motion on

it. Let (FW
t )t>0 be the filtration generated by W which satisfies the usual hypoth-

esis [54, Section I.5] . We assume that (Ω,F ,P) is rich enough to accommodate a

family of random vectors (ξε)ε≥0 in Rd such that the sigma algebra generated by ξε

is independent of FW
∞ for each ε > 0. For each ε > 0, we consider the left continuous

filtration

Gεt = σ(ξε) ∨ FW
t ,

as well as the collection of null sets

N0 = {Z ⊂ Ω : ∃G ∈ Gε∞ with Z ⊂ G and P{G} = 0}.

Let us create the augmented filtration F ε
t = σ(Gεt ∪ N0) for t ∈ [0,∞), and F ε

∞ =

σ(∪t≥0F ε
t ). It can be shown that W is a Brownian motion with respect to (F ε

t )t≥0,

the path of W is independent of ξε and (F ε
t )t≥0 satisfies the usual hypothesis, for

every ε > 0.

Throughout the text, we suppose that the family of random variables (ξε)ε≥0

satisfies ξε → ξ0 in distribution, and that ξε has a finite second moment for each

ε > 0.

Consider a C∞-smooth vector field b on Rd and a C2-smooth matrix valued func-

tion σ : Rd → Rd×d. Consider the Itô stochastic differential equation

dXε = b(Xε)dt+ εσ(Xε)dW (25)
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Figure 5: Illustration of the domains D1, D2, and D3 used to compute the Poincaré
maps in the case of a heteroclinic network with 2 nodes conditioned on exit along y3:
escape from the first saddle.
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Figure 6: Illustration of the domains D3 and D4 used to compute the Poincaré maps
in the case of a heteroclinic network with 2 nodes condition on exit along y3: escape
from the second saddle.
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equipped with initial condition

Xε(0) = x0 + εαξε, (26)

where α ∈ (0, 1]. Hypothesis regarding the point x0 ∈ Rd will be given in each

chapter. We assume that both b and σ are uniformly Lipschitz and bounded, i.e.,

there is a constant L > 0 such that

|σ(x)− σ(y)| ∨ |b(x)− b(y)| ≤ L|x− y|, x, y ∈ R2,

|σ(x)| ∨ |b(x)| ≤ L, x ∈ R2,

where | · | denotes the Euclidean norm for vectors and Hilbert–Schmidt norm for

matrices. Further assume that the matrix function a = σσ∗ is uniformly positive def-

inite. These conditions can be weakened, but we prefer this setting to avoid multiple

localization procedures throughout the text. These assumptions imply [41, Theorems

5.2.5 and 5.2.9] that equation (25) has a strong solution with strong uniqueness on the

filtered probability space (Ω,F ,P, (F ε
t )t≥0) with initial condition (26) for each ε > 0.

Let us recall the definition of strong uniqueness and strong solution for completeness.

Definition 1.5.1 A strong solution of the stochastic differential equation (25) with

initial condition (26) on the filtered probability space (Ω,F ,P, (F ε
t )t≥0) is a process

Xε = {Xε(t); 0 ≤ t < ∞} with continuous sample paths and with the following

properties:

1. Xε is adapted to the filtration (F ε
t )t≥0,

2. P{Xε(0) = x0 + εαξε} = 1,

3. P{
∫ t

0
(|bi(Xε(s))|+ σi,j(Xε(s))

2)ds <∞} = 1 for every 1 ≤ i, j ≤ d and t ≥ 0,

4. the integral version of (25)

Xε(t) = Xε(0) +

∫ t

0

b(Xε(s))ds+ ε

∫ t

0

σ(Xε(s))dW (s); 0 ≤ t <∞,

holds with probability 1.
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Given two strong solutions Xε and X̃ε of (25) with initial condition (26) relative to

the same Brownian motion W . Then, we say that strong uniqueness holds whenever

P{Xε(t) = X̃ε(t); 0 ≤ t <∞} = 1.

For a general background on stochastic differential equations see, for example, [41,

Chapter 5].

The flow generated by b is denoted by S = (Stx)(t,x)∈R×Rd . That is, Stx satisfies

d

dt
Stx = b(Stx), S0x = x.

The linearization of S along the orbit of x is denoted by Φx(t):

d

dt
Φx(t) = A(t)Φx(t), Φx(0) = I, (27)

where A(t) = ∇b(Stx) and I is the identity matrix. Here ∇ is the derivative operator,

that is, for a differentiable vector field h : Rd → Rd, ∇h is the Rd×d matrix derivative

of h.

Throughout the text D is a domain (open, connected and bounded) in Rd with

piecewise C2 boundary.

The exit problem for the diffusion process Xε in D is studied. We are interested in

the joint asymptotic properties (as ε→ 0) of (Xε(τ
D
ε ), τDε ), where τDε is the stopping

time defined by

τDε = τDε (x0) = inf{t > 0 : Xε(t) ∈ ∂D}.

.

Specific hypotheses on the vector field will be given in each chapter. On the other

hand, the abstract formulation will not be given in each chapter, instead we assume

this technical formulation to hold throughout the text.

1.5.1 Organization of the Text

The organization of the rest of the text closely mimics the presentation given in this

chapter.
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In Chapter 2 the planar (i.e. d = 2) exit problem is studied under the assumption

that S has a unique saddle at the origin. That is, 0 ∈ R2 is the only critical point

b(0) = 0 and the eigenvalues λ+, −λ− of the of the matrix ∇b(0) are such that

λ± > 0. The exit problem is studied conditioned that the process Xε starts on the

stable manifold Ws of 0.

In Chapter 3 the Levinson case in arbitrary dimensions is considered. We also

proved Lemma 1.3.3 stated in this chapter, and use it intensively in the proof of the

Levinson case. In this section, we also study the 1-dimensional example discussed in

Section 1.4.1 of this chapter.

In Chapter 4 we present a short survey on how the techniques in this text can be

extended. Several open problems are also discussed.

In Appendix A we give a review of Large Deviation theory. The technicalities left

out in the sketch of Section 1.2.1 are included in Appendix B.
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CHAPTER II

SADDLE POINT

In this chapter we study the stochastic process Xε when the underlying deterministic

system S has a unique saddle point.

In Section 2.1 we introduce the setting, which relies on the setting presented in

Section 1.5 of Chapter 1. In Section 2.2 we state the main theorem and split the proof

into several parts. In Section 2.3 we introduce a simplifying change of coordinates in

a small neighborhood of the saddle point. The analysis of the transformed process in

Section 2.4 is based upon two results. Their proofs are given in Sections 2.5 and 2.6.

2.1 Setting

For this chapter we consider the general formulation made in Section 1.5 of Chapter 1,

except that we restrict ourselves to the 2−dimensional situation. The process Xε is

the strong solution of (25), under the assumptions made on the C∞-smooth vector

field b, the C2-smooth matrix valued function σ : R2 → R2×2 and the standard

2-dimensional Wiener process W in Section 1.5 of Chapter 1.

We will study the exit problem from the domain D ⊂ R2 with piecewise C2

boundary. Assume that the origin 0 belongs to D and it is a unique fixed point for S

in D̄, or, equivalently, a unique critical point for b in D̄. Therefore,

b(x) = Ax+Q(x),

where A = ∇b(0) and Q is the non-linear part of the vector field satisfying |Q(x)| =

O(|x|2), x→ 0.

Suppose that 0 is a hyperbolic critical point, i.e. the matrix A has two eigenvalues

λ+ and −λ− satisfying −λ− < 0 < λ+. Without loss of generality, we suppose that
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the canonical vectors are the eigenvectors for the matrix, so that A = diag(λ+,−λ−).

For an interval J ⊂ R, let SJx denote the set

SJx = {Stx : t ∈ J}.

According to the Hadamard–Perron Theorem (see e.g. [53, Section 2.7]), the curves

Ws and Wu defined via

Wu = {x ∈ D̄ : lim
t→−∞

Stx = 0},

and,

Ws = {x ∈ D̄ : lim
t→∞

Stx = 0}.

are smooth, invariant under S and tangent to e2 and, respectively, to e1 at 0. The

curve Ws is called the stable manifold of 0, and Wu is called the unstable manifold

of 0.

We assume that Wu intersects ∂D transversally at points q+ and q− such that the

segment of Wu connecting q− and q+ lies entirely inside D and contains 0.

We fix a point x0 ∈ Ws ∩D and equip (25) with the initial condition

Xε(0) = x0 + εαξε, ε > 0, (28)

where α ∈ (0, 1] is fixed, and (ξε)ε>0 is a family of random vectors independent of W ,

such that for some random vector ξ0, ξε → ξ0 as ε→ 0 in distribution.

If α 6= 1, then we impose a further technical condition

P{ξ0 ‖ b(x0)} = 0, (29)

where ‖ denotes collinearity of two vectors.

2.2 Main Result.

The main result of the present chapter is the following:
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Theorem 2.2.1 In the setting described above, there is a family of random vectors

(φε)ε>0, a family of random variables (ψε)ε>0, and a number

β =

 1, αλ− ≥ λ+

αλ−
λ+
, αλ− < λ+

(30)

such that

Xε(τ
D
ε ) = qsgn(ψε) + εβφε.

The random vector

Θε =

(
ψε, φε, τ

D
ε +

α

λ+

ln ε

)
converges in distribution as ε→ 0.

The distribution of ψε,φε, and the distributional limit of Θε will be described

precisely.

The proof of Theorem 2.2.1 has essentially three parts involving the analysis of

diffusion (i) along Ws; (ii) in a small neighborhood of the origin; (iii) along Wu.

In order to study the first part, we need to introduce Φx(t) as the linearization of

S along the orbit of x ∈ R2, i.e. we define Φx(t) to be the solution to the matrix ODE

d

dt
Φx(t) = A(t)Φx(t), Φx(0) = I,

where A(t) = ∇b(Stx). We have the following theorem:

Theorem 2.2.2 Let x ∈ R2 and (ξε)ε>0 be a family of random vectors independent

of W and convergent in distribution, as ε → 0, to ξ0. Suppose α ∈ (0, 1] and let Xε

be the solution of the SDE (25) with initial condition Xε(0) = x + εαξε. Then, for

every T > 0, the following representation holds true:

Xε(T ) = STx+ εαξ̄ε, ε > 0,

where

ξ̄ε
Law−→ ξ̄0, ε→ 0,
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with

ξ̄0 = Φx(T )ξ0 + 1{α=1}N,

N being a Gaussian vector:

N = Φx(T )

∫ T

0

Φx(s)
−1σ(Ssx)dW (s).

If α = 1 or assumption (29) holds, then P{ξ̄0 ‖ b(STx)} = 0.

The second part of the analysis is the core of the chapter. Theorem 2.2.3 below

describes the behavior of the process in a small neighborhood U of the origin. Notice

that since x0 ∈ Ws, one can choose T large enough to ensure that that STx0 ∈

Ws ∩ U . Therefore, the conditions of the following result are met if we use the

terminal distribution of Theorem 2.2.2 (applied to the initial data given by (28)) as

the initial distribution.

Theorem 2.2.3 There are two neighborhoods of the origin U ⊂ U ′ ⊂ D, two positive

numbers δ < δ′, and C2 diffeomorphism f : U ′ → (−δ′, δ′)2, such that f(U) =

(−δ, δ)2 and the following property holds:

Suppose x ∈ Ws ∩ U , and (ξε)ε>0 is a family of random variables independent of

W and convergent in distribution, as ε→ 0, to ξ0, where ξ0 satisfies (29) with respect

to x. Assume that α ∈ (0, 1] and that Xε solves (25) with initial condition

Xε(0) = x+ εαξε, (31)

where ξε satisfies condition (29) with respect to x.

There is also a family of random vectors (φ′ε)ε>0, and a family of random variables

(ψ′ε)ε>0, such that

Xε(τ
U
ε ) = g(sgn(ψ′ε)δe1) + εβφ′ε,

where g = f−1, β is defined in (30), and the random vector

Θ′
ε =

(
ψ′ε, φ

′
ε, τ

U
ε +

α

λ+

ln ε

)
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converges in distribution as ε→ 0.

The notation for Θ′
ε and its components is chosen to match the notation involved in

the statement of Theorem 2.2.1. Random elements ψ′ε,φ
′
ε and the distributional limit

of Θ′
ε will be described precisely, see (57). Obviously, the symmetry or asymmetry in

the limiting distribution of ψ′ε results in the symmetric or asymmetric choice of exit

direction so that the exits in the positive and negative directions are equiprobable or

not. On the other hand, the limiting distribution of φ′ε determining the asymptotics of

the exit point can also be symmetric or asymmetric which results in the corresponding

features of the random choice of the exit direction at the next saddle point visited by

the diffusion.

In Section 2.4 we prove Theorem 2.2.3 using the approach based on normal forms.

The last part of the analysis is devoted to the exit from D along Wu. We need

the following statement which is a specific case of the main result of Chapter 3.

Theorem 2.2.4 In the setting of Theorem 2.2.2, assume additionally that (i) q =

STx ∈ ∂D; (ii) there is no t ∈ [0, T ) with Stx ∈ ∂D; (iii) b(q) is tranversal (i.e. not

tangent) to ∂D at q. Then

τDε
P→ T, ε→ 0, (32)

and

ε−α(Xε(τ
D
ε )− q)

Law→ πξ̄0, ε→ 0, (33)

where π denotes the projection along b(q) onto the tangent line to ∂D at q.

Now Theorem 2.2.1 follows from the consecutive application of Theorems 2.2.2

through 2.2.4 and with the help of the strong Markov property. In fact, in this

chain of theorems, the conclusion of Theorem 2.2.2 ensures that the conditions of

Theorem 2.2.3 hold, and the conclusion of the latter ensures that the conditions of

Theorem 2.2.4 hold. Notice that the total time needed to exit D equals the sum of
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times described in the three theorems. Notice also that at each step we can compute

the limiting initial and terminal distributions explicitly. Theorems 2.2.2 and 2.2.4

contain the respective formulas in their formulations, and the explicit limiting distri-

bution for Θ′
ε of Theorem 2.2.3 is computed in (57).

2.3 Simplifying change of coordinates

2.3.1 Smooth Transformation and Normal Forms

In this section we give a brief review of the theory of Normal Forms. In particular,

we focus on the neighborhood of a saddle point for the deterministic flow S.

The idea is to find a local change of variables θ : R2 → R2 such that z(t) = θ(Stx)

satisfies ż = Az with the appropriate initial condition. First, note that z satisfies the

equation

d

dt
z(t) = ∇θ(Stx)b(Stx)

= ∇θ(z(t))−1b(θ−1(z(t))), z(0) = θ(x).

Hence, the goal is to find a transformation θ : R2 → R2 that leaves ∇θ(z)−1b(θ−1(z))

as simple as possible (ideally equal to Az).

We start with some notions. For a multi-index α = (α1, α2) ∈ Z2
+ and a base

{e1, e2} of R2(as a vector space over R) we denote the monomial xαei = xα1
1 x

α2
2 ei.

Definition 2.3.1 For a non-negative integer r, the space of linear combinations (over

R) of monomials xαei with |α| = α1 + α2 = r, is called the space of Homogeneous

Polynomials in 2 variables of degree r. This space is denoted as Hr. In other words,

Hr is,

Hr = spanR
{
xαej : α ∈ Z2

+, |α| = r and 1 ≤ j ≤ 2
}
.

It is easy to see that Hr is isomorphic (as a vector space over the real numbers) to

R2(r+1).

45



Using this notation, use Taylor’s classical theorem to decompose the function

b : R2 → R2 as

b(z) = Az + b2(z) + ...+ bR(z), (34)

with bi ∈ Hi for 1 ≤ i ≤ R, and bR(x) = O(|x|R) as |x| → 0.

Suppose that z = θk(ζ), where θk is the near identity transformation

θk(ζ) = ζ + hk(ζ), hk ∈ Hk, k ≥ 2. (35)

Note that θk is a topological diffeomorphism in a small open neighborhood of the

origin Ωk. Throughout we restrict the analysis inside Ωk. A Taylor approximation

shows that the inverse of θk satisfies

θ−1
k (ζ) = ζ − hk(ζ) +O(|ζ|2k−1)

= ζ − hk(ζ) +O(|ζ|k+1). (36)

Further application of Taylor’s approximation together with the condition that k ≥ 2,

imply that for any ζ ∈ Ωk,

∇θk(ζ)−1 = I −∇hk(ζ) +O(|ζ|2(k−1))

= I −∇hk(ζ) +O(|ζ|k).

Also, from (36), we obtain that for any i = 1, ..., R− 1,

bi(θ
−1
k (ζ)) = bi(ζ) +O(|ζ|k+1).

Using (34) and this bounds, we get that

(∇θk(ζ))−1b(θ−1
k (ζ)) = Aζ + b2(ζ) + ...+ bk−1(ζ)

+(bk(ζ)− LkAhk(ζ)) +O(|ζ|k+1),

where we defined the operator LkA : Hk → Hk by

LkAh(ζ) = h(ζ)Aζ − A∇h(ζ). (37)

It is clear that the following theorem holds:
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Theorem 2.3.2 Let R(LkA) ⊂ Hk be the range of the operator LkA : Hk → Hk. Take

Ik ⊂ R2 be any subspace such that Hk = R(LkA) ⊕ Ik. Then, there is a sequence of

near identity transformations of the form (35) and nested neighborhoods of the origin

Ωk+1 ⊂ Ωk, such that z(t) = θr ◦ · · · ◦ θ2(S
tx) satisfies

d

dt
z(t) = Az(t) + b2(z(t)) + · · ·+ br(z(t)) +O(|z|r+1),

inside Ωr, and bk ∈ Ik, k = 1, ..., r.

An equation written in this form is said to be in Normal Form up to order r.

The idea is to characterize the image of the operator LkA and simplify each non-

linear part of b, starting from b2 and all the way up to bR. In order to achieve this,

we remark that, xαej is an eigenvector of LkA for any α ∈ Z2
+:

LkAxαej = (λTα− λj)x
αej,

for λ = (λ+, λ−). This motivates the following definition:

Definition 2.3.3 A pair of complex numbers λ = (λ1, λ2) is said to be non-resonant

if there are no integral relations between them of the form λj = α · λ, where α =

(α1, α2) ∈ Z2
+ is a multi-index with |α| = α1 + α2 ≥ 2. Otherwise, we say that

λ = (λ1, λ2) is resonant.

A resonant λ is said to be one-resonant if all the resonance relations for λ follow

from a single resonance relation.

A monomial xαej = xα1
1 x

α2
2 ej is called a resonant monomial of order R if α·λ = λj

and |α| = R.

In the spirit of Theorem 2.3.2 it is clear (see [38],[20]) that for any pair of integers

R ≥ 1 and k ≥ 1, there are two neighborhoods of the origin Ωf and Ωg and a

Ck-diffeomorphism f : Ωf → Ωg with inverse g : Ωg → Ωf such that

(∇g(y))−1 b(g(y)) = Ay + P (y) +R(y), y ∈ Ωg (38)

47



where P is a polynomial containing only resonant monomials of order at most R and

R(ζ) = O(|ζ|R+1). Moreover, the so called Poincaré theorem [20, Theorem 2.2.4]

asserts that if λ is non-resonant, then f can be chosen so that both P and R in (38)

are identically zero. If λ is one-resonant then [38, Theorem 3,Section 2] says that f

can be chosen so that R in (38) is identically zero. More precisely:

Lemma 2.3.4 For any k ≥ 1, there are two neighborhoods of the origin Ωf and Ωg

and a Ck-diffeomorphism f : Ωf → Ωg with inverse g : Ωg → Ωf such that

(∇g(y))−1 b(g(y)) = Ay + P (y), y ∈ Ωg, (39)

where P is a polynomial that contains only resonant monomials.

This is the core result we use to study the stochastic case in the next section.

2.3.2 Change of Variables in the Stochastic Case

In this section we start analyzing the diffusion in the neighborhood of the saddle

point. The first step is to find a smooth coordinate change that would simplify the

system. This can be done with the help of the theory of normal forms presented on

the last section.

Let g be a C∞−diffeomorphism of a neighborhood of the origin with inverse f .

When Xε is close to the origin and belongs to the image of that neighborhood under

g, we can use Itô’s formula to see that Yε = f(Xε) satisfies

dYε = ∇f(Xε)dXε +
1

2
[∇f(Xε), Xε]

= ∇f(g(Yε))b(g(Yε))dt+ εσ̃(Yε)dW + ε2Ψ(Yε)dt,

for some smooth function Ψ : R2 → R2 and σ̃ = ((∇f) ◦ g)σ. Here the square

brackets mean quadratic covariation. Since ∇f ◦ g = (∇g)−1, we can rewrite the

above SDE as in the deterministic case as

dYε =
(
(∇g(Yε))−1 b(g(Yε)) + ε2Ψ(Yε)

)
dt+ εσ̃(Yε)dW. (40)
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In order to simplify the drift term in this equation, we rely on Lemma 2.3.4.

First, note that (λ+,−λ−) is either non-resonant or one-resonant (resonant cases that

are not one-resonant are possible in higher dimensions where pairs of eigenvalues get

replaced by vectors of eigenvalues). The non-resonant case (in any dimension) was

studied in [4]. In this paper, we extend the analysis of [4] to the non-resonant case,

i.e. the one-resonant case, given that we are working in 2 dimensions.

To find all resonant monomials of a given order r ≥ 2, we have to find all the

integer solutions to the two 2× 2 systems of equations:

α1λ+ − α2λ− = ±λ±,

α1 + α2 = r.

Therefore, the power multi-indices of a resonant monomial of order r has to coincide

with one of the following:

(α+
1 (r), α+

2 (r)) =
1

λ+ + λ−
(λ+ + rλ−, (r − 1)λ+), (41)

(α−1 (r), α−2 (r)) =
1

λ+ + λ−
((r − 1)λ−, rλ+ + λ−), (42)

Let us make some elementary observations on integer solutions of these equations for

r ≥ 2.

1. None of the solution indices can be 0. Moreover, neither α+
1 (r) nor α−2 (r) can

be equal to 1.

2. As functions of r, α±i (r) are increasing.

3. Expressions (41) and (42) cannot be an integer for r = 2.

4. The term P = (P1, P2) in (39) satisfies P1(y) = O(y2
1|y2|) and P2(y) = O(|y1|y2

2).

This observation is a consequence of observations 1 and 3 since they imply

that resonant multi-indices have to satisfy α+(r) ≥ (2, 1) and α−(r) ≥ (1, 2)

coordinatewise.
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5. If at least one of the coordinates y1 and y2 is zero, then P (y1, y2) = 0. This is

a direct consequence of the previous observation.

Given all these considerations, the main theorem of this section is a simple conse-

quence of Lemma 2.3.4.

Theorem 2.3.5 In the setting described in Section 3.1, there is a number δ′ > 0,

a neighborhood of the origin U ′, and a C2-diffeomorphism f : U ′ → (−δ′, δ′) with

inverse g : (−δ′, δ′)2 → U ′ such that the following property holds.

If Xε(0) ∈ U , then the stochastic process Yε = (Yε,1, Yε,2) given by

Yε(t) = f(Xε(t ∧ τUε ))

satisfies the following system of SDEs up to τUε :

dYε,1 = (λ+Yε,1 +H1(Yε, ε)) dt+ εσ̃1(Yε)dW (43)

dYε,2 = (−λ−Yε,2 +H2(Yε, ε)) dt+ εσ̃2(Yε)dW, (44)

where σ̃i : (−δ′, δ′)2 → R are C1 functions for i = 1, 2. The functions Hi are given

by Hi = Ĥi + ε2Ψi, where Ψi : (−δ′, δ′)2 → R2 are continuous bounded functions, and

Ĥi : (−δ′, δ′)2× [0,∞) are polynomials, so that for some constant K1 > 0 and for any

y ∈ (−δ′, δ′)2,

|Ĥ1(y)| ≤ K1|y1|α
+
1 |y2|α

+
2 ,

|Ĥ2(y)| ≤ K1|y1|α
−
1 |y2|α

−
2 .

Here, the integer numbers α±i , i = 1, 2, are such that (α+
1 , α

+
2 ) is of the form (41)

for some choice of r = r1 ≥ 3, and and (α−1 , α
−
2 ) is of the form (42) for some choice

r = r2 ≥ 3. In particular,

|H1(y, ε)| ≤ K1y
2
1|y2|+K2ε

2,

|H2(y, ε)| ≤ K1|y1|y2
2 +K2ε

2,

for some constants K1 > 0 and K2 > 0.
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2.4 Proof of Theorem 2.2.3

In this section we derive Theorem 2.2.3 from several auxiliary statements. Their

proofs are postponed to later sections.

Theorem 2.3.5 allows to work with process Yε = f(Xε) instead of Xε while Yε stays

in (−δ′, δ′)2

If we take δ ∈ (0, δ′), then for the initial conditions considered in Theorem 2.2.3

and given in (31),

P{Xε(0) ∈ U ′} → 1, ε→ 0,

i.e.,

P{Yε(0) ∈ (−δ′, δ′)2} → 1, ε→ 0.

Moreover, denoting f(x) by y = (0, y2) we can write

Yε(0) = y + εαχε = (εαχε,1, y2 + εαχε,2), ε > 0,

where χε = (χε,1, χε,2) is a random vector convergent in distribution to χ0 = (χ0,1, χ0,2) =

∇f(x)ξ0. Due to the hypothesis in Theorem 2.2.3, we notice that the distribution of

χ0,1 has no atom at 0.

Let us take any p ∈ (0, 1) such that

1− λ+

λ−
< p <

λ−
λ+ + λ−

, (45)

and define the following stopping time:

τ̂ε = inf{t : |Yε,1(t)| = εαp}.

Up to time τ̂ε, the process Xε mostly evolves along the stable manifold Ws. After

τ̂ε, it evolves mostly along the unstable manifold Wu. Process Yε evolves accordingly,

along the images of Ws and Wu coinciding with the coordinate axes.

Let us introduce random variables η±ε via

η+
ε = ε−αe−λ+τ̂εYε,1(τ̂ε),

η−ε = ε−α(1−p)λ−/λ+Yε,2(τ̂ε).
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Also we define the distribution of random vector (η+
0 , η

−
0 ) via

η+
0 = χ0,1 + 1{α=1}N

+, (46)

η−0 = |η+
0 |λ−/λ+y2,

where

N+ =

∫ ∞

0

e−λ−sσ̃1(0, e
−λ−sy2)dW (47)

is independent of χ0,1.

Lemma 2.4.1 If the first inequality in (45) holds, then

P{Yε,1(τ̂ε) = εαp sgn η+
ε } → 1, ε→ 0. (48)

and (
η+
ε , η

−
ε , τ̂ε +

α

λ+

(1− p) log ε

)
Law−→

(
η+

0 , η
−
0 ,−

1

λ+

log |η+
0 |
)
, ε→ 0. (49)

We prove this lemma in Section 2.5. Along with the strong Markov property, it

allows to reduce the study of the evolution of Yε after τ̂ε to studying the solution of

system (43)–(44) with initial condition

Yε(0) = (εαp sgn η+
ε , ε

α(1−p)λ−/λ+η−ε ), (50)

where

(η+
ε , η

−
ε )

Law−→ (η+
0 , η

−
0 ), ε→ 0. (51)

We denote

τε = τε(δ) = inf{t ≥ 0 : |Yε,1(t)| = δ}. (52)

Our next goal is to describe the behavior of Y (τε). To that end, we introduce a

random variable θ via

θ
Law
=


N, αλ− > λ+,(
|η+

0 |
δ

)λ−/λ+

y2 +N, αλ− = λ+,(
|η+

0 |
δ

)λ−/λ+

y2, αλ− < λ+.

(53)
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where the distribution ofN conditioned on η+
0 , on {sgn η+

0 = ±1} is centered Gaussian

with variance

σ± =

∫ 0

−∞
e2λ−s

∣∣σ̃2(±δeλ+s, 0)
∣∣2 ds.

Let us also recall that β is defined in (30).

Lemma 2.4.2 Consider the solution to system (43)–(44) equipped with initial con-

ditions (50) satisfying (51). If the second inequality in (45) holds, then

P{|Yε,1(τε)| = δ} → 1, ε→ 0, (54)

τε +
αp

λ+

log ε
P−→ 1

λ+

log δ, (55)

ε−βYε,2(τε)
Law−→ θ. (56)

Moreover, if β < 1, then the convergence in probability also holds.

A proof of this lemma is given in Section 2.6.

Now Theorem 2.2.3 follows from Lemmas 2.4.1 and 2.4.2. In fact, the strong

Markov property and (48) imply

P{τUε = τ̂ε + τε(δ)} → 1, ε→ 0,

so that the asymptotics for τUε is defined by that of τ̂ε and τε(δ). It is also clear that

one can set ψ′ε = η+
ε , and φ′ε = ∇g(sgn(η+

ε )δe1)Yε(τε), so that the limiting distribution

of Θ′
ε is given by (

η+
0 , ∇g(sgn(η+

0 )δe1)(θe2),
1

λ+

log
δ

|η+
0 |

)
, (57)

where random variables η+
0 and θ are defined in (46) and (53)

2.5 Proof of Lemma 2.4.1

In this section we shall prove Lemma 2.4.1 using several auxiliary lemmas. We start

with some terminology.
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Definition 2.5.1 Given a family (ξε)ε>0 of random variables or random vectors and a

function h : (0,∞) → (0,∞) we say that ξε = Op(h(ε)) if for some ε0 > 0 distributions

of (ξε/h(ε))0<ε<ε0
, form a tight family, i.e., for any δ > 0 there is a constant Kδ > 0

such that

P {|ξε| > Kδh(ε)} < δ, 0 < ε < ε0.

Definition 2.5.2 A family of random variables or random vectors (ξε)ε>0 is called

slowly growing as ε→ 0 (or just slowly growing) if ξε = OP(ε−r) for all r > 0.

Our first lemma estimates the martingale component of the solution of SDEs (43)

and (44). Let us define

S+
ε (T ) = sup

t≤T

∣∣∣∣∫ t

0

e−λ+sσ̃1(Yε(s))dW (s)

∣∣∣∣ , T > 0,

S−ε (T ) = sup
t≤T

∣∣∣∣∫ t

0

e−λ−(t−s)σ̃2(Yε(s))dW (s)

∣∣∣∣ , T > 0.

Lemma 2.5.3 Suppose (τε)ε>0 is a family of stopping times (w.r.t. the natural filtra-

tion of W ). Then

S+
ε (τε) = OP(1).

If additionally (τε)ε>0 is slowly growing, then S−ε (τε) is also slowly growing.

Proof. Let us start with the proof for S+
ε . Use BDG inequality (see [41, Theorem

3.3.28]) and Itô’s isometry to see that for every constant K > 0,

P
{
S+
ε (τε) > K

}
≤ 1

K2
ES+

ε (τε)

≤ C1

K2
E

∫ τε

0

e−2λ+sσ̃1(Yε(s))ds.

Since Yε(t) = f(Xε(t ∧ τUε )), the process t 7→ σ̃1(Yε(t)) is almost surely bounded.

Hence, integrability of the exponential t 7→ e−2λ+t implies that for any δ > 0, there is

a Kδ > 0 such that

sup
ε>0

P
{
S+
ε (τε) > Kδ

}
≤ δ,
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proving the first part of the lemma.

For the second part, fix δ > 0 and r > 0. For every 0 < ρ < 2r, there is Kρ > 0

and ε0 > 0 such that

sup
0<ε<ε0

P {ερτε > Kρ} < δ/2.

Then, for an arbitrary K > 0, 0 < ε < ε0 and 0 < ρ < 2r, it holds that

P
{
εrS−ε (τε) > K

}
≤ P

{
τε > ε−ρKρ

}
+ P

{
εrS−ε (τε) > K, τε ≤ ε−ρKρ

}
≤ δ/2 +

dKρε−ρe∑
k=1

P

{
εr sup

(k−1)≤t<k

∣∣∣∣∫ t

0

e−λ−(t−s)σ̃2(Yε(s))dW (s)

∣∣∣∣ > K

}
.

In order to bound each probability in the last sum, proceed as for the other case:

P

{
εr sup

(k−1)≤t<k

∣∣∣∣∫ t

0

e−λ−(t−s)σ̃2(Yε(s))dW (s)

∣∣∣∣ > K

}

≤ P

{
εre−(k−1)λ− sup

0≤t<k

∣∣∣∣∫ t

0

eλ−sσ̃2(Yε(s))dW (s)

∣∣∣∣ > K

}
≤ ε2re−2(k−1)λ−

K2
E

∫ k

0

e2λ−s|σ̃2(Yε(s))|2ds

≤ ε2rC2

K2
,

for some constant C2 > 0. Hence, there is a constant C3 > 0 such that

P
{
εrS−ε (τε) > K

}
≤ δ/2 +

C3

K2
ε2r−ρ,

which implies the result and finishes the proof.

Lemma 2.5.4 Suppose Yε is the solution of equations (43)–(44) with initial condi-

tions given by

Yε,1(0) = εαχε,1 and Yε,2(0) = y2 + εαχε,2, (58)

where distributions of random variables (χε,1)ε>0 and (χε,2)ε>0 form tight families. Let

us fix any R > 0 and denote lε = τUε ∧ (− α
λ+

log ε+R) for ε > 0. Then

sup
t≤lε

e−λt|Yε,1(t)| = OP(εα),
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and the family (
ε−α sup

t≤lε
|Yε,2(t)− e−λt(y2 + εαχε,2)|

)
ε>0

is slowly growing.

Proof. The tightness property implies that without loss of generality we can assume

that |χε,1|, |χε,2| < C for some constant C > 0 and every ε > 0.

Let us fix γ > 0. We can use Lemma 2.5.3 to take c = c(γ/3) > 0 such that

P{S+
ε (lε) > c} < γ/2,

and

P{S−ε (lε) > cε−q} < γ/2,

where q is an arbitrary number satisfying 0 < q < α. Let us introduce a constant

K = (3c) ∨ C and stopping times

β+ = inf
{
t ≥ 0 : e−λ+t|Yε,1(t)| ≥ 2Kεα

}
,

β− = inf
{
t ≥ 0 : |Yε,2(t)− e−λ−t(y2 + εαχε,2)| ≥ 2Kεα−q

}
,

β = β+ ∧ β− ∧ lε.

We start with an estimate for Yε,1. Duhamel’s principle for (43), Theorem 2.3.5 and

Lemma 2.5.3 imply that the estimate

sup
t≤β

e−λ+t|Yε,1(t)| ≤ εαK +K1

∫ β

0

e−λ+sYε,1(s)
2|Yε,2(s)|ds+K2

ε2

λ+

+ εS+
ε (β)

≤ εαK +K1

∫ β

0

e−λ+sYε,1(s)
2|Yε,2(s)|ds+K2

ε2

λ+

+ ε
K

3
(59)

holds with probability at least 1−γ/2. We analyze each term in the RHS of equation

(59).

Let us start with the integral in (59). For s ≤ β, we see that

Yε,1(s)
2|Yε,2(s)| ≤ 4K2ε2αe2λ+s

(
|Yε,2(s)− e−λ−s(y2 + εαχε,2)|+ e−λ−s|y2 + εαχε,2|

)
≤ 8K3ε3α−qe2λ+s + 4K2ε2αe(2λ+−λ−)s(|y2|+ εαC).
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Therefore,

K1

∫ β

0

e−λ+sYε,1(s)
2|Yε,1(s)|ds ≤

8K3K1e
λ+R

λ+

ε2α−q

+ 4K1K
2ε2α(|y2|+ εαC)

∫ β

0

e(λ+−λ−)sds

≤ Kεα/12 + 5K1K
2ε2α|y2|

∫ β

0

e(λ+−λ−)sds (60)

for all ε > 0 small enough. Notice that this is a rough estimate, the constants on the

r.h.s. are not optimal but sufficient for our purposes. This also applies to some other

estimates in this proof.

Let us estimate the integral on the r.h.s. of (60). When λ+ > λ−, the integral is

bounded by

1

λ+ − λ−
e(λ+−λ−)β ≤ e(λ+−λ−)R

λ+ − λ−
ε−α+αλ−/λ+ ;

if λ+ < λ−, then the integral on the r.h.s of (60) is bounded by (λ− − λ+)−1; if

λ+ = λ−, then the integral is bounded by 2αλ−1
+ | log ε|. Hence, for some constant

Kλ+,λ− > 0 and ε > 0 small enough,

K1

∫ β

0

e−λ+sYε,1(s)
2|Yε,2(s)|ds ≤ Kεα/12 +Kλ+,λ−ε

2α−α(1−λ−/λ+)+ | log ε|

≤ Kεα/6. (61)

Also, for ε > 0 small enough,

K2ε
2/λ+ + εK/3 < Kεα/2. (62)

From (59), (61) and (62) we get that for all ε > 0 small enough, the event

A =

{
sup
t≤β

e−λ+t|Yε,1(t)| ≤ 5Kεα/3

}
is such that P(A) > 1− γ/2.

Let us now consider Yε,2(t) and denote

Zε(t) = Yε,2(t)− e−λ−t(y2 + εαχε,2).
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Duhamel’s principle for Yε,2, the definition of β, Theorem 2.3.5 and Lemma 2.5.3

imply that the inequalities

sup
t≤β

|Zε(t)| ≤ K1 sup
t≤β

∫ t

0

e−λ−(t−s)|Yε,1(s)|α
−
1 |Yε,2(s)|α

−
2 ds+K2ε

2/λ− + εS−ε (β)

≤ K1 sup
t≤β

∫ t

0

e−λ−(t−s)|Yε,1(s)|α
−
1 |Yε,2(s)|α

−
2 ds

+ εα−q
(
K2ε

2−α+q/λ− + ε1−α+qS−ε (β)
)

≤ 2α
−
1 εαα

−
1 Kα−1 K1 sup

t≤β
e−λ−t

∫ t

0

e(λ−+α−1 λ+)s|Yε,2(s)|α
−
2 ds+ εα−qK/2 (63)

hold with probability at least 1 − γ/2 and for all ε > 0 small enough. We analyze

the integral term in (63). Note that, from the definition of β, and the inequality

(a+ b)r ≤ 2r−1(ar + br) we have that for any t ≤ β and any ε > 0 small enough,

|Yε,2(t)|α
−
2 ≤ 2α

−
2 −1Zε(t)

α−2 + 2α
−
2 −1e−α

−
2 λ−t|y2 + εαχε,2|α

−
2

≤ 22α−2 −1Kα−2 ε(α−q)α
−
2 + 22(α−2 −1)e−α

−
2 λ−t|y2|α

−
2

+ 22(α−2 −1)εαα
−
2 e−α

−
2 λ−t|χε,2|α

−
2

≤ εα
−
2 (α−q)22(α−2 −1)

(
2Kα−2 + εqα

−
2 |χε,2|α

−
2

)
+ 22(α−2 −1)e−α

−
2 λ−t|y2|α

−
2 .

Hence there is a constant Kα > 0 such that

|Yε,2(t)|α
−
2 ≤ εα

−
2 (α−q)Kα +Kαe

−α−2 λ−t, t ≤ β.

Using the last inequality, the definition of β, and the fact α−1 λ+ − (α−2 − 1)λ− = 0

from Theorem 2.3.5, we get

εαα
−
1 e−λ−t

∫ t

0

e(λ−+α−1 λ+)s|Yε,2(s)|α
−
1 ds

≤ εα(α−1 +α−2 )eλ+α
−
1 β

Kαε
−qα−2

λ− + α−1 λ+

+Kαε
αα−1

∫ t

0

e(α
−
1 λ+−(α−2 −1)λ−)sds

≤ ε(α−q)α
−
2
Kαe

λ+α
−
1 R

λ− + α−1 λ+

+Kαε
αα−1 β. (64)

Again, from Theorem 2.3.5 we know that α−1 ≥ 1 and α−2 ≥ 2 which together with (64)

imply that for all ε > 0 small enough

2α
−
1 εαα

−
1 Kα−1 K1 sup

t≤β
e−λ−t

∫ t

0

e(λ−+α−1 λ+)s|Yε,2(s)|α
−
2 ds ≤ Kεα−q/6. (65)
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Using (65) and (63) we conclude that the event

B =

{
sup
t≤β

|Yε,2(t)− e−λ−t(y2 + εαχε,2)| ≤ 2Kεα−q/3

}
is such that P(B) ≥ 1− γ/2, for all ε > 0 small enough.

The proof will be complete once we show that β = lε with probability at least

1− γ. The latter is a consequence of the following chain of inequalities that hold for

all ε > 0 small enough:

P{β+ ∧ β− ≤ lε} ≤ P ({β+ ∧ β− ≤ lε} ∩ A ∩B) + P(Ac) + P(Bc)

≤ P ({β+ ∧ β− ≤ lε} ∩ A ∩B) + γ

≤ P ({β+ ≤ β− ∧ lε} ∩ A) + P ({β− ≤ β+ ∧ lε} ∩B) + γ

= P{2 ≤ 5/3}+ P{2 ≤ 2/3}+ γ = γ.

Let us now analyze the evolution of the process Yε up to time τ̂ε ∧ τUε . We start

with an application of Duhamel’s principle:

Yε,1(t) = eλ+tYε,1(0) +

∫ t

0

eλ+(t−s)H1(Yε(s), ε)ds+ εeλ+tN+
ε (t), (66)

Yε,2(t) = e−λ−tYε,2(0) +

∫ t

0

e−λ−(t−s)H2(Yε(s), ε)ds+ εN−
ε (t), (67)

where N±
ε (t) are defined by

N+
ε (t) =

∫ t

0

e−λ+sσ̃1(Yε(s))dW (s),

N−
ε (t) =

∫ t

0

e−λ−(t−s)σ̃2(Yε(s))dW (s). (68)

Lemma 2.5.5

sup
t≤τ̂ε

|Yε,2(t)− e−λ−ty2| = OP(εαp).

59



Proof. Duhamel’s principle, Theorem 2.3.5, and the definition of τ̂ε imply that for

some K > 0,

|Yε,2(t)− e−λ−ty2| ≤ εα|χε,2|+
∫ t

0

e−λ−(t−s) (K1|Yε,1(s)|Y 2
ε,2(s) +K2ε

2
)
ds+ εS−ε (t)

≤ εα|χε,2|+Kεαp + εαp
(
ε1−αpS−ε (τ̂ε)

)
for any t ∈ (0, τ̂ε). The result follows since by Lemma 2.5.3 the r.h.s. is OP(εαp)

As a simple corollary of this lemma, the first statement in Theorem 2.4.1 follows:

Corollary 2.5.6 As ε→ 0,

P{τUε < τ̂ε} → 0.

In particular, (48) holds true.

Lemma 2.5.7 Let

N+
0 (t) =

∫ t

0

e−λ−sσ̃1(0, e
−λ−sy2)dW.

Then

sup
t≤τ̂ε

|N+
ε (t)−N+

0 (t)| L2

−→ 0, ε→ 0.

Proof. BDG inequality implies that for some constants C1, C2 > 0,

E sup
t≤τ̂ε

|N+
ε (t)−N+

0 (t)|2 ≤ C1E

∫ τ̂ε

0

e−2λ+s|σ̃1(Yε,1(s), Yε,2(s))− (0, e−λ−sy2)|2ds

≤ C2E sup
t≤τ̂ε

|σ̃1(Yε,1(s), Yε,2(s))− σ̃1(0, e
−λ−sy2)|2. (69)

From Lemma 2.5.5 and the definition of τ̂ε, it follows that

sup
t≤τ̂ε

∣∣(Yε,1(t), Yε,2(t))− (0, e−λ−ty2)
∣∣ = OP(εαp). (70)

The desired convergence follows now from (69), (70), and the boundedness and Lip-

schitzness of σ̃1.

We are now in position to give the first rough asymptotics for the time τ̂ε. From

now on we restrict ourselves to the event {τUε > τ̂ε} since due to Corollary 2.5.6 its

probability is arbitrarily high.
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Lemma 2.5.8 As ε→ 0,

P

{
τ̂ε > − α

λ+

log ε

}
→ 0.

Proof. Let uε be the solution to the following SDE:

duε(t) = λ+uε(t)dt+ εσ̃1(Yε(t))dW (t),

uε(0) = εαχε,1.

Let us take δ0 ∈ (0, 1) to be specified later and consider the following stopping time

τ̃ε = inf
{
t : |uε(t)| = εαδ0

}
.

Duhamel’s principle for uε writes as

uε(t) = εαeλ+tχε,1 + εeλ+tN+
ε (t)

= εαeλ+tη̃ε(t),

with

η̃ε(t) = χε,1 + ε1−αN+
ε (t). (71)

Hence, the definition of τ̃ε implies εαδ0 = εαeλ+eτε |η̃ε(τ̃ε)|, so that

τ̃ε = − α

λ+

(1− δ0) log ε− 1

λ+

log |η̃ε(τ̃ε)|.

Due to (71) and Lemma 2.5.7, the distributions of 1
λ+

log |η̃ε(τ̃ε)| form a tight family.

Therefore,

lim
ε→0

P

{
τ̃ε > −(1− δ2

0)
α

λ+

log ε

}
= 0. (72)

This fact allows us to use Lemma 2.5.4 to estimate Yε up to τ̂ε ∧ τ̃ε. From (66), the

difference ∆ε = Yε,1 − uε is given by

∆ε(t) = eλ+t

∫ t

0

e−λ+sH1(Yε(s), ε)ds.
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We can use (72) to justify the application of Lemma 2.5.4 up to time τ̂ε ∧ τ̃ε. Then,

we combine Theorem 2.3.5, Lemma 2.5.4, and the definition of τ̂ε to see that

sup
t≤τ̂ε∧eτε e

−λ+t|H1(Yε(t), ε)| ≤ K1 sup
t≤τ̂ε∧eτε

((
e−λ+t|Yε,1(t)|

)
|Yε,1(t)| · |Yε,2(t)|

)
+K2ε

2

= OP

(
εα+αp

)

and

eλ+τ̂ε∧eτε = OP

(
ε−α(1−δ20)

)
.

These two estimates together with (72) imply

sup
t≤τ̂ε∧eτε |∆ε(t)| = OP

(
εα(p+δ20)| log ε|

)
.

On one hand, (72) implies

P

({
τ̂ε > − α

λ+

log ε

}
∩ {τ̂ε ≤ τ̃ε}

)
→ 0.

On the other hand, if τ̂ε > τ̃ε then

|Yε,1(τ̃ε)| =
∣∣∣εαδ0 +OP(εα(p+δ20)| log ε|)

∣∣∣ ,
and

|Yε,1(τ̃ε)| < εαp.

These relations contradict each other for sufficiently small ε if we choose δ0 < p. So,

this choice of δ0 guarantees that P {τ̂ε > τ̃ε} → 0 implying the result.

Proof of Lemma 2.4.1. Recall that we work on the high probability event {τ̂ε <

τUε }. Hence, for each ε > 0, we have the identity

εαp = εαeλ+τ̂ε |η+
ε |.
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Solving for τ̂ε and then plugging it back into Yε,1, we get

τ̂ε = − α

λ+

(1− p) log ε− 1

λ+

log |η+
ε |, (73)

Yε,1(τ̂ε) = εαp sgn(η+
ε ).

Using this information we are in position to get the asymptotic behavior of the random

variables η±ε . First, from relation (66) we get

η+
ε = χε,1 + ε−α

∫ τ̂ε

0

e−λ+sH1(Yε(s), ε)ds+ ε1−αN+
ε (τ̂ε). (74)

Using (73) in (67) we get

η−ε = |η+
ε |λ−/λ+(y2 + εαχε,2) + |η+

ε |λ−/λ+

∫ τ̂ε

0

eλ−sH2(Yε(s), ε)ds

+ ε1−α(1−p)λ−/λ+N−
ε (τ̂ε). (75)

The main part of the proof is based on representations (73)–(75).

Lemma 2.5.8 allows us to use the estimates established in Lemma 2.5.4 up to

time τ̂ε. In particular, now we can conclude that the family(
ε−α sup

t≤τ̂ε
|Yε,2(t)− e−λ−ty2|

)
ε>0

(76)

is slowly growing thus improving Lemma 2.5.5.

To obtain the desired convergence for η+
ε , we analyze the r.h.s. of (74) term by

term. The convergence of the first term was one of our assumptions. For the second

one, we need to estimate H1(Yε, ε). Using Lemma 2.5.4, the boundness of Yε,2 and

the definition of τ̂ε, we see that

sup
t≤τ̂ε

e−λ+tY 2
ε,1(t)|Yε,2(t)| = OP(εα+αp). (77)

This estimate and Theorem 2.3.5 imply that

ε−α
∫ τ̂ε

0

e−λ+sH1(Yε(s), ε)ds ≤ K1ε
−α
∫ τ̂ε

0

e−λ+sY 2
ε,1(s)|Yε,2(s)|ds+

K2

λ+

ε2−α

= OP(εαp| log ε|).
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Let us estimate the third term in (74). We can use the last estimate along with (74)

and Lemma 2.5.7 to conclude that the distributions of positive part of λ−1
+ log |η+

ε |

form a tight family. Therefore, (73) implies that

τ̂ε
P→∞, ε→ 0.

Combined with Itô isometry and Lemma 2.5.7, this implies

N+
ε (τ̂ε)

L2

−→ N+, ε→ 0,

which completes the analysis of η+
ε and, due to (73), of τ̂ε.

To obtain the convergence of η−ε , we study (75). Combining (76), the inequality

|Yε,1(t)|Y 2
ε,2(t) ≤ 2|Yε,1(t)|

(
|Yε,2(t)− e−λ−ty2|2 + e−2λ−ty2

2

)
,

and the definition of τ̂ε we see that for any q ∈ (0, αp),

sup
t≤τ̂ε

eλ−t|Yε,1(t)|Y 2
ε,2(t) = OP

(
εαp+α−qeλ−τ̂ε + εαp

)
.

Hence, as a consequence of Theorem 2.3.5 and (73) we have∫ τ̂ε

0

eλ−sH2(Yε(s), ε)ds = OP

((
εαp−q+αeλ−τ̂ε + εαp

)
| log ε|

)
= OP

((
εα(1−(1−p)λ−/λ+)+(αp−q) + εαp

)
| log ε|

)
.

Combining this and Lemma 2.5.3 in (75) we obtain

η−ε = |η+
ε |λ−/λ+y2 +OP(εα) +OP

((
εα(1−(1−p)λ−/λ+)+(αp−q) + εαp

)
| log ε|

)
+OP

(
ε1−α(1−p)λ−/λ+−q

)
which finishes the proof of Lemma 2.4.1 by choosing q small enough.

2.6 Proof of Lemma 2.4.2

Consider the solution to system (43)–(44) equipped with initial conditions (50) sat-

isfying (51). Let us restrict the analysis to the arbitrary high probability event

{|η±ε | ≤ K±},
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for some constants K± > 0.

Lemma 2.6.1 Let p ∈ (0, 1) satisfy (45), and let (tε)ε>0 be a slowly growing family

of stopping times. Consider t′ε = tε ∧ τUε , then for any γ > 0,

lim
ε→0

P

{
sup
t≤t′ε

|Yε,2(t)| ≤ (K− + γ)εα(1−p)λ−/λ+

}
= 1.

Proof. Let γ > 0. We recall that N−
ε is defined in (68) and introduce the process

Mε(t) = N−
ε (t) + ε

∫ t

0

e−λ−(t−s)Ψ2(Yε(s))ds, (78)

where Ψ2 was introduced in Theorem 2.3.5, and the stopping time

βε = inf
{
t : |Yε,2(t)| > (K− + γ)εα(1−p)λ−/λ+

}
.

Using the fact that Yε,1 is bounded, it is easy to see that there is a constant Kλ−

independent of t, so that for any t ≤ βε ∧ t′ε, we have∫ t

0

e−λ−(t−s)|Yε,1(s)|Y 2
ε,2(s)ds ≤ Kλ−ε

2α(1−p)λ−/λ+ .

This estimate, along with Duhamel’s principle and Theorem 2.3.5 implies that for

some constant C > 0 and any t ≤ βε ∧ t′ε,

|Yε,2(t)| ≤ εα(1−p)λ−/λ+ |η−ε |+K1

∫ t

0

e−λ−(t−s)|Yε,1(s)|Y 2
ε,2(s)ds+ ε sup

t≤βε

|Mε(t)|

≤ εα(1−p)λ−/λ+K− + Cε2α(1−p)λ−/λ+ + ε sup
t≤βε

|Mε(t)|.

Hence, using Lemma 2.5.3 to estimate Mε, we obtain that

P{βε < t′ε} = P

{
sup

t≤βε∧t′ε
|Yε,2(t)| ≥ (K− + γ)εα(1−p)λ−/λ+

}

≤ P

{
Cεα(1−p)λ−/λ+ + ε1−α(1−p)λ−/λ+ sup

t≤βε

|Mε(t)| ≥ γ

}
converges to 0 as ε→ 0 proving the lemma.
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Lemma 2.6.2 Under the assumptions of lemma 2.6.1, for any ρ ∈ (0, αp
λ+

], γ > 0,

and C > 0, define ρε = (−ρ log ε+ C) ∧ τUε . Then, we have

lim
ε→0

P

{
sup
t≤ρε

|Yε,1(t)|e−λ+t ≤ (1 + γ)εαp
}

= 1.

Proof. Define the stopping time

βε = inf
{
t : |Yε,1(t)|e−λ+t ≥ (1 + γ)εαp

}
.

As a consequence of Duhamel’s principle and Theorem 2.3.5 we get the bound

sup
t≤βε∧ρε

|Yε,1(t)|e−λ+t ≤εαp +K1

∫ βε∧ρε

0

e−λ+sY 2
ε,1(s)|Yε,2(s)|ds

+ ε2K2λ
−1
+ + εS+

ε (βε).

This estimate together with Lemma 2.6.1, Lemma 2.5.3 and the definition of ρε

implies that for any small δ > 0 we can find a constantK > 0, so that with probability

bigger than 1− δ, the inequalities

sup
t≤βε∧ρε

|Yε,1(t)|e−λ+t ≤ εαp +Kεαp+α(1−p)λ−/λ+(βε ∧ ρε) +Kε

≤ εαp(1 + 2Kρεα(1−p)λ−/λ+ | log ε|+Kε1−αp),

hold for all ε > 0 small enough. Hence, for any small enough ε > 0,

P {βε < ρε} = P

{
sup

t≤βε∧ρε

|Yε,1(t)|e−λ+t ≥ (1 + γ)εαp
}

≤ P
{
Kρεα(1−p)λ−/λ+ | log ε|+Kε1−αp ≥ γ

}
+ δ,

which implies the result.

The following is an important consequence of Lemma 2.6.1:

Corollary 2.6.3 With τε as in (52) it holds that

lim
ε→0

P{τUε < τε} = 0.

In particular, (54) holds.
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From now on, we restrict our analysis to the high probability event {τUε ≥ τε}.

Let θ+
ε = ε−αpe−λ+τεYε,1(τε). Then, (52) implies

τε = −αp
λ+

log ε+
1

λ+

log
δ

|θ+
ε |
, (79)

and

Yε,1(τε) = δ sgn θ+
ε .

Our analysis of these expressions will be based on the next formula which directly

follows from Duhamel’s principle:

θ+
ε = sgn η+

ε + ε−αp
∫ τε

0

e−λ+sH1(Yε(s), ε)ds+ ε1−αpN+
ε (τε). (80)

The main term in the r.h.s. of (80) is sgn η+
ε . We need to estimate the other two

terms. Lemma 2.5.3 implies that ε1−αpN+
ε (τε) converges to 0 in probability as ε→ 0.

Let us now estimate the integral term. Relations (79) and (80) imply that (τε)ε>0 is

slowly growing, and we can use Lemma 2.6.1 to derive

sup
t≤τε

|Yε,2(t)| = OP(εα(1−p)λ−/λ+). (81)

We can now use Theorem 2.3.5 to conclude that

ε−αp sup
t≤τε

|H1(Yε(t), ε)| = OP(εα(1−p)λ−/λ+−αp + ε2−αp),

and (45) implies that the r.h.s. converges to 0. Therefore,

ε−αp
∫ τε

0

e−λ+sH1(Yε(s), ε)ds
P−→ 0.

The above analysis of equation (80) implies that if we define θ+
0 = sgn η+

0 , then

θ+
ε

Law−→ θ+
0 , (82)

which implies (55) due to (79). It remains to prove (56).

Duhamel’s principle along with (79) yields

Yε,2(τε) =

(
|θ+
ε |
δ

)λ−/λ+

εαλ−/λ+η−ε +

∫ τε

0

e−λ−(τε−s)H2(Yε(s), ε)ds+ εN−
ε (τε). (83)

In order to study the convergence of N−
ε (τε) we first give a preliminary result.
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Lemma 2.6.4

sup
t≤τε

|Yε,1(t)− εαpeλ+t sgn η+
ε |

P−→ 0, ε→ 0.

Proof. The lemma follows from Duhamel’s principle and Lemma 2.6.2.

The following result is essentially Lemma 8.9 from [4]. It holds true in our setting

since its proof is based only on the conclusion of Lemma 2.6.4.

Lemma 2.6.5 As ε→ 0,

N−
ε (τε)

Law−→ N,

where N is the Gaussian random variable in (53).

We finish the proof of Lemma 2.4.2. Recall that the process Mε was defined in (78)

and introduce the stochastic processes

Rε(t) =

∫ t

0

e−λ−(t−s)Ĥ2(Yε(s))ds. (84)

Note that (83) and (79) imply

Yε,2(τε) = e−λ−τεYε,2(0) +

∫ τε

0

e−λ−(τε−s)H2(Yε(s), ε)ds+ εN−
ε (τε)

= e−λ−τεεα(1−p)λ−/λ+η−ε + εMε(τε) +Rε(τε)

= η−ε

(
|θ+
ε |
δ

)λ−/λ+

εαλ−/λ+ + εMε(τε) +Rε(τε). (85)

Relations (51) and (82) imply

η−ε

(
|θ+
ε |
δ

)λ−/λ+
Law−→

(
|η+

0 |
δ

)λ−/λ+

y2. (86)

Lemma 2.6.5 and estimate (81) imply

Mε(τε)
Law−→ N, ε→ 0. (87)

Equations (86) and (87) describe the behavior of first two terms in (85) and the proof

of the lemma will be complete as soon as we show that

ε−βRε(τε)
P−→ 0, ε→ 0. (88)
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We can write the following rough estimate based on (81) and Theorem 2.3.5:

sup
t≤τε

|Rε(t)| = OP(ε2α(1−p)λ−/λ+). (89)

This is not sufficient for our purposes. We shall need a more detailed analysis instead.

First, note that

sup
t≤τε

|Yε,2(t)− εMε(t)−Rε(t)|eλ−t = εα(1−p)λ−/λ+ |η−ε | = OP(εα(1−p)λ−/λ+).

Hence, for any γ > 0 there is a Kγ > 0 such that the event

Dε =

{
sup
t≤τε

|Yε,2(t)− εMε(t)−Rε(t)|eλ−t < Kγε
α(1−p)λ−/λ+

}
has probability P(Dε) > 1−γ for ε > 0 small enough. Moreover, using Theorem 2.3.5

we see that for some constant Kβ > 0,

|Rε(t)| ≤ Kβ

∫ t

0

e−λ−(t−s)Y 2
ε,2(s)ds.

Then, using the inequality (a − b)2 ≤ 2a2 + 2b2 and defining Kβ,γ = KβKγ, we see

that on Dε for each t ≤ τε,

|Rε(t)| ≤ Kβe
−λ−t

∫ t

0

(eλ−sYε,2(s))
2e−λ−sds

≤ 2Kβ,γe
−λ−t

∫ t

0

e−λ−sε2α(1−p)λ−/λ+ds+ 2Kβ

∫ t

0

e−λ−(t−s)|εMε(s) +Rε(s)|2ds

≤ 2
Kβ,γ

λ−
ε2α(1−p)λ−/λ+e−λ−t + 4

Kβ

λ−
ε2M2

ε,∞ + 4Kβe
−λ−t

∫ t

0

eλ−sRε(s)
2ds, (90)

where Mε,∞ = supt≤τε |Mε(t)|, so that (according to Lemma 2.5.3) Mε,∞ is slowly

growing. Due to (89) we can find a constant K ′
γ > 0 (independent of ε > 0 and t > 0)

so that the event

D′
ε = Dε ∩

{
sup
t≤τε

|Rε(t)| ≤ K ′
γε
α(1−p)λ−/λ+

}
has probability P(D′

ε) > 1 − γ for all ε > 0 small enough. Hence, multiplying both

sides of (90) by eλ−t, we see that for some constant Cγ > 0 and all t ≤ τε,

eλ−t|Rε(t)|1D′ε ≤ α(t) + Cγε
α(1−p)λ−/λ+

∫ t

0

eλ−s|Rε(s)|1D′εds,
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where

α(t) = Cγε
2α(1−p)λ−/λ+ + Cγε

2M2
ε,∞e

λ−t. (91)

Using Gronwall’s lemma and (91) we get

1D′εe
λ−t|Rε(t)| ≤ α(t) + Cγε

α(1−p)λ−/λ+

∫ t

0

α(s)eCγε
α(1−p)λ−/λ+ (t−s)ds

≤ α(t) + C2
γε

3α(1−p)λ−/λ+teCγε
α(1−p)λ−/λ+ t

+
C2
γ

λ−
ε2+α(1−p)λ−/λ+M2

ε,∞te
λ−t+Cγε

α(1−p)λ−/λ+
.

Hence,

1D′ε |Rε(t)| ≤ Cγε
2α(1−p)λ−/λ+e−λ−t(1 + Cγε

α(1−p)λ−/λ+teCγε
2α(1−p)λ−/λ+ t)

+Cγε
2M2

ε,∞(1 +
Cγ
λ−
εα(1−p)λ−/λ+teCγε

α(1−p)λ−/λ+
).

Using (79), we get that for any q > 0,

1D′ε |Rε(τε)| = OP

(
ε2α(1−p)λ−/λ+e−λ−τε + ε2M2

ε,∞
)

= OP

(
εαλ−/λ++α(1−p)λ−/λ+ + ε2−q

)
,

so that (88) follows, and the proof is complete by choosing q small enough.
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CHAPTER III

LEVINSON CASE

In this chapter we study Levinson case as presented in Section 1.3 of Chapter 1. We

then apply the results obtained for this case to the 1-dimensional diffusion conditioned

on rare events as explained in Section 1.4.1 of Chapter 1.

The chapter is organized as follows. In Section 3.2 we state the main theorem

for the Levinson case, postponing its proof to Section 3.4. A approximation to the

diffusion by the deterministic flow in finite time is presented in Section 3.3. This

approximation is a key ingredient in all the arguments of Section 3.4. In Section 3.5

we state the result on the diffusion conditioned on a rare event and derive it from the

main theorem and some auxiliary statements proven in Section 3.5.1.

3.1 Introduction

In this section we consider the dynamics in d dimensions. That is, we consider a

C2-smooth bounded vector field b in Rd. The unperturbed dynamics is given by the

deterministic flow S = (St)t∈R generated by b.

The model has slight modifications from the classical exit problem. For this

chapter, we introduce three components of perturbations of this deterministic flow.

They all depend on a small parameter ε > 0.

The first component is white noise perturbation generated by the matrix εσ, where

σ : Rd → Rd×d is a C2-smooth bounded matrix valued function.

The second one is εα1Ψε, where Ψε is a deterministic Lipschitz vector field on Rd

for each ε, converging uniformly to a limiting Lipschitz vector field Ψ0, and α1 is a
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positive scaling exponent. These conditions ensure that the stochastic Itô equation

dXε(t) = (b(Xε(t)) + εα1Ψε(Xε(t))) dt+ εσ(Xε(t))dW (92)

w.r.t. a standard d-dimensional Wiener process W has a unique strong solution for

any ε > 0 and all initial conditions.

The last component of the perturbation is the initial condition satisfying

Xε(0) = x0 + εα2ξε, ε > 0. (93)

Here α2 > 0, and (ξε)ε>0 is a family of random variables independent of W , such that

for some random variable ξ0, ξε → ξ0 as ε→ 0 in distribution.

Let M be a C2-smooth hypersurface in Rd. If

τε = inf {t ≥ 0 : Xε(t) ∈M} ,

then on {τε <∞} we have Xε(τε) ∈M . We are going to study the exit problem from

M under the assumptions above. We use M instead of D, since M is assumed to be

an hypersurface and we want to stick to the standard notation. In this setting, we

state the main theorem in the next section.

3.2 Main result

In this section we state the main theorem and its hypothesis. Let us start with the

assumptions on the joint geometry of the vector field b and the surface M . First we

define

T = inf
{
t > 0 : Stx0 ∈M

}
,

and assume that 0 < T < ∞. Secondly, we denote z = STx0 ∈ M and assume that

b(z) does not belong to the tangent hyperplane TzM . In other words, we assume that

the positive orbit of x0 intersects M and the crossing is transversal. The reader can

check that this is equivalent to Condition 1.3.1 in Section 1.3 of Chapter 1.
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In the case of ξε ≡ 0 and Ψ ≡ 0, Levinson’s theorem states (see [46], [34, Chapter

2], and [35, Chapter 2]) that Xε(τε) → z in probability as ε → 0. Levinson worked

in the PDE context and showed how to obtain an expansion for the solution of the

corresponding elliptic PDE depending on the small parameter ε. The main result

of this note describes the limiting behavior of the correction (τε − T,Xε(τε) − z)

and extends [34, Theorem 2.3] to the situation with generic perturbation parameters

ξ0,Ψ, α1, and α2. This extension is essential since, as the analysis in [4] shows, in

the sequential study of entrance-exit distributions for multiple domains one has to

consider nontrivial scaling laws for the initial conditions; also, considering nontrivial

deterministic perturbations will allow us to study rare events, see Section 3.5.

We need more notation. Due to the smoothness of b,

b(x) = b(y) +Db(y)(x− y) +Q1(y, x− y), x, y ∈ Rd, (94)

where

|Q1(u, v)| ≤ K|v|2, (95)

for some constant K > 0 and any u, v ∈ Rd. We denote by Φx(t) the linearization of

S along the orbit of x:

d

dt
Φx(t) = A(t)Φx(t), Φx(0) = I, (96)

where A(t) = Db(Stx) and I is the identity matrix.

Finally, for any vector v ∈ Rd, we define πbv ∈ R and πMv ∈ TzM by

v = πbv · b(z) + πMv,

i.e., πb is the (algebraic) projection onto span(b(z)) along TzM and πM is the (geo-

metric) projection onto TzM along span(b(z)).
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Theorem 3.2.1 Let α = α1 ∧ α2 ∧ 1, and

φ0(t) = 1{α2=α}Φx0(t)ξ0 + 1{α1=α}Φx0(t)

∫ t

0

Φx0(s)
−1Ψ0(S

sx)ds

+ 1{1=α}Φx0(t)

∫ t

0

Φ−1
x0

(s)σ(Ssx0)dW (s), t > 0. (97)

Then, in the setting introduced above,

ε−α(τε − T,Xε(τε)− z)→(−πbφ0(T ), πMφ0(T )). (98)

in distribution. If additionally we require that ξε → ξ0 in probability or that α2 > α,

then the convergence in (98) is also in probability.

Remark 1 The conditions of Theorem 3.2.1 can be relaxed using the standard lo-

calization procedure. In fact, one needs to require uniform convergence of Ψε → Ψ0

and regularity properties of b and σ only in some neighborhood of the set {Stx0 :

0 ≤ t ≤ T (x0)}.

Remark 2 In applications (see [4],[7]), the parameters α1 and α2 can be chosen so

that the r.h.s. of (98) is nondegenerate.

Remark 3 In the case where d = 1, the hypersurface M is just a point. Therefore,

πM is identical zero and the only contentful information Theorem 3.2.1 provides is

the asymptotics of the exit time.

3.3 A finite time approximation result

With high probability, at time T the process Xε is close to z and the hitting time τε

is close to T . The idea behind the proof of Theorem 3.2.1 is that while the diffusion

is close to z, the process may be approximated very well by motion with constant

velocity b(z).

In this section we prove the main ingredient to ensure this approximation.
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Lemma 3.3.1 Let Xε be the solution of the SDE (92) with initial condition (93).

Let

Θε(t) = εα2−αΦx0(t)ξε + εα1−αΦx0(t)

∫ t

0

Φx0(s)
−1Ψ0(S

sx0)ds

+ ε1−αΦx0(t)

∫ t

0

Φx0(s)
−1σ(Ssx0)dW (s). (99)

Then,

Xε(t) = Stx0 + εαφε(t)

holds almost surely for every t > 0, where φε(t) = Θε(t) + rε(t), and rε converges to

0 uniformly over compact time intervals in probability.

If ξε → ξ0 in distribution, then for any T > 0, φε → φ0 in distribution in C[0, T ]

equipped with uniform norm, where φ0 is the stochastic process defined in (97).

If ξε → ξ0 in probability or α2 > α, then the uniform convergence for φε also holds

in probability.

Remark 4 This lemma gives the first-order approximation for Xε(t). Higher-order

approximations in the spirit of [15] are also possible. They can be used to refine

Theorem 3.2.1.

Proof. Let ∆t
ε = Xε(t)− Stx0 and note that it satisfies the equation

d∆t
ε =

((
b(Xε(t))− b(Stx0)

)
+ εα1Ψε(Xε(t))

)
dt+ εσ(Xε(t))dW (t),

with initial condition ∆0
ε = εα2ξε. We want to study the properties of this equation.

We start with the difference in b. Since b is a C2 vector field, we may write

b(Xε(t))− b(Stx0) = Db(Stx0)∆
t
ε +Q1(S

tx0,∆
t
ε). (100)

Also, we can write

Ψε(Xε(t)) = Ψ0(S
tx0) +Q2(S

tx0,∆
t
ε) +Rε(S

tx0), (101)
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and

σ(Xε(t)) = σ(Stx0) +Q3(S
tx0,∆

t
ε), (102)

where

Rε(x) = Ψε(x)−Ψ0(x) = o(1), ε→ 0,

uniformly in x; Qi : Rd × Rd → Rd, i = 2, 3 satisfies

|Qi(u, v)| ≤ K|v|, u, v ∈ Rd. (103)

We can assume that the constant K > 0 in (95) and (103) is the same for simplicity

of notation.

Let Q = Q1 + εα1Q2 + εα1Rε. Combine (100), (101), and (102) to get

d∆t
ε =
(
A(t)∆t

ε + εα1Ψ0(S
tx0) +Q(Stx0,∆

t
ε)
)
dt

+ ε
(
σ(Stx0) +Q3(S

tx0,∆
t
ε)
)
dW (t), (104)

∆0
ε =εα2ξε. (105)

Hence, applying Duhamel’s principle to (104) and using (99), we get

∆t
ε = εαΘε(t) + Φx0(t)

∫ t

0

Φx0(s)
−1Q(Ssx0,∆

s
ε)ds

+ εΦx0(t)

∫ t

0

Φx0(s)
−1Q3(S

sx0,∆
s
ε)dW (s)

= εαΘε(t) + Θ′
ε(t), (106)

where Θ′
ε is defined by (106). A simple inspection of (99) shows that (Θε)ε>0 converges

in distribution in C(0, T ) to the process φ0(t). This convergence is in probability if

α2 > α or ξε → ξ0 in probability. Therefore, the lemma will follow with φε =

Θε + ε−αΘ′
ε if we show that

ε−α sup
t≤T

|Θ′
ε(t)|

P−→ 0, ε→ 0. (107)

For any δ ∈ (1/2, 1), we introduce the stopping time

lε(δ) = inf
{
t > 0 : |∆t

ε| ≥ εαδ
}
.
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Now, Θ′
ε = Θ′

ε,1 + εΘ′
ε,2, where

Θ′
ε,1(t) = Φx0(t)

∫ t

0

Φx0(s)
−1Q(Ssx0,∆

s
ε)ds,

and

Θ′
ε,2(t) = εΦx0(t)

∫ t

0

Φx0(s)
−1Q3(S

sx0,∆
s
ε)dW (s).

Bounds (95), and (103) imply

sup
t≤T∧lε(δ)

|Θ′
ε,1(t)| = O(ε2αδ + εα1+αδ) + o(εα1) = o(εα). (108)

Likewise, (103) forQ3 and BDG inequality imply that for any κ > 0 there is a constant

Kκ such that

P

{
sup

t≤T∧lε(δ)
|Θ′

ε,2(t)| > Kκε
1+αδ

}
< κ (109)

for all ε > 0 small enough. Then, this together with (108) imply that

ε−αδ sup
t≤T∧lε(δ)

|Θ′
ε(t)|

P−→ 0, ε→ 0. (110)

Then, if lε(δ) < T we use (106) to get

1 = ε−αδ sup
t≤T∧lε(δ)

|∆t
ε|

≤ εα(1−δ) sup
t≤T∧lε(δ)

|Θε(t)|+ ε−αδ sup
t≤T∧lε(δ)

|Θ′
ε(t)|.

The r.h.s. converges to 0 in probability due to (110) and the tightness of distributions

of Θε. Hence, P{lε(δ) < T} → 0 as ε → 0. Using T instead of T ∧ lε(δ) in (108)

and (109), we see that with the choice of δ > 1/2, (107) follows and the proof is

finished.

3.4 Proof of Theorem 3.2.1

As we said before, the core idea of the proof is to approximate the behavior of the

process Xε with that of the deterministic flow in a small neighborhood of z. Let
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us start analyzing the process Xε(t) − z for t close to T . Let us first estimate the

deviation of the flow S from the motion with costant velocity b(z). Let

r±(t, x) = S±tx− (x± tb(z)) , t > 0, x ∈ Rd. (111)

Lemma 3.4.1 There are constants C1 and C2 so that for any t > 0 and x ∈ Rd

sup
s≤t

|r±(s, x)| ≤ C1e
C2t(t|x− z|+ t2).

Proof. We prove the result for r+. The analysis of r− is similar since S−tx is the

solution to the ODE

d

dt
S−tx = −b(S−tx).

Let L > 0 be the Lipschitz constant of b. The proof follows from the inequalities:

|r+(t, x)| ≤
∫ t

0

|b(Ssx)− b(z)| ds

≤ L

∫ t

0

|Ssx− z| ds

≤ L

∫ t

0

|r+(s, x)| ds+ L

∫ t

0

|x+ sb(z)− z| ds

≤ L

∫ t

0

|r+(s, x)| ds+ L

∫ t

0

|x− z|ds+ L

∫ t

0

s|b(z)|ds

≤ L

∫ t

0

|r+(s, x)| ds+ Lt|x− z|+ t2L|b(z)|/2.

The result follows as an application of Gronwall’s lemma.

Lemma 3.4.2 Let γ ∈ (α/2, α). Then, there are two a.s.-continuous stochastic pro-

cesses Γε,± such that

sup
t∈[0,εγ ]

|Γε,±(t)| P−→ 0, ε→ 0,

and almost surely for any t ∈ [0, εγ]

Xε(T − t) = z − tb(z) + εα (φε(T − t) + Γε,−(t)) (112)

and

Xε(T + t) = z + tb(z) + εα (Φz(t)φε(T ) + Γε,+(t)) . (113)
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Proof. Due to Lemma 3.3.1, the flow property, and (111) we have

Xε(T − t) = ST−tx0 + εαφε(T − t)

= S−tz + εαφε(T − t)

= z − tb(z) + r−(t, z) + εαφε(T − t).

The first estimate with Γε,−(t) = ε−αr−(t, z) follows from Lemma 3.4.1 for x = z.

Due to Strong Markov property and Lemma 3.2.1 the process X̃ε(t) = Xε(t+ T )

is a solution of the initial value problem

dX̃ε(t) = (b(X̃ε(t)) + εα1Ψε(X̃ε(t)))dt+ εσ(X̃ε(t))dW̃ ,

X̃ε(0) = Xε(T ) = z + εαφε(T ),

with respect to the Brownian Motion W̃ (t) = W (t+ T )−W (T ). So, again, applying

Lemma 3.2.1 to this shifted equation, we obtain X̃ε(t) = Stz + εαφ̂ε(t), where, for

t > 0

φ̂ε(t) = Φz(t)φε(T ) + θε(t),

and

θε(t) = ε1−αΦz(t)

∫ t

0

Φz(s)
−1σ(Ssz)dW̃ (s) + εα1−αΦz(t)

∫ t

0

Φz(s)
−1Ψ0(S

sz)ds+ r̃ε(t),

where r̃ε converges to 0 uniformly over compact time intervals in probability. Then

due to (111),

X̃ε(t) = Stz + εα(Φz(t)φε(t) + θε(t))

= z + tb(z) + r+(t, z) + εα(Φz(t)φε(t) + θε(t)).

Hence, with Γε,+(t) = θε(t) + ε−αr+(t, z) the result is a consequence of Lemma 3.4.1.

Let us now parametrize, locally around z, the hypersurface M as a graph of a

C2-function F over TzM , i.e., y 7→ z + y + F (y) · b(z) gives a C2-parametrization of
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a neighborhood of z in M by a neighborhood of 0 in TzM . Moreover, DF (0) = 0 so

that |F (y)| = O(|y|2), y → 0. With this definition, it is clear that, for w ∈ Rd with

w − z small enough, w ∈M if and only if πb(w − z) = F (πM(w − z)).

Let us define

Ω1,ε =
{
τε = inf{t ≥ 0 : πb (Xε(t)− z) = F (πM (Xε(t)− z))}

}
,

Ω2,ε = {|τε − T | ≤ εγ} ,

Ωε = Ω1,ε ∩ Ω2,ε.

Lemma 3.4.3 P(Ωε) → 1 as ε→ 0.

Proof. The definition of F and Lemma 3.2.1 imply that as ε→ 0, P(Ω1,ε) → 1.

We use (113) to conclude that

πb (Xε(T + εγ)− z) = εγ
(
1 + εα−γπb (Φz(ε

γ)φε(T ) + Γε,+(εγ))
)
,

and

F (πM (Xε(T + εγ)− z)) = F (εαπM (Φz(ε
γ)φε(T ) + Γε,+(εγ))) .

Since |F (x)| = O(|x|2), these estimates imply that

lim sup
ε→0

P ({τε > T + εγ} ∩ Ω1,ε)

≤ lim sup
ε→0

P {πb (Xε(T + εγ)− z) ≤ F (πM (Xε(T + εγ)− z))} = 0.

It remains to prove

lim
ε→0

P {τε < T − εγ} = 0. (114)

Let us denote the Hausdorff distance between sets by d(·, ·). Then an obvious estimate

d({Stx0 : 0 ≤ t ≤ T − δ},M) ≥ cδ

holds true for some c > 0 and all sufficiently small δ > 0. Now (114) follows from

Lemma 3.2.1, and the proof is complete
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Lemma 3.4.4 Define τ ′ε = τε − T . Then,

ε−ατ ′ε + πbφε(T )
P−→ 0, ε→ 0.

Proof. Let us define Aε = {0 ≤ τ ′ε ≤ εγ} ∩ Ω1,ε and Bε = {−εγ ≤ τ ′ε < 0} ∩ Ω1,ε, so

that Ωε = Aε ∪Bε. We can use (113) and the definition of Ω1,ε to get

1Aετ
′
ε + 1Aεε

απb (Φz(τ
′
ε)φε(T ) + Γε,+(τ ′ε)) = 1AεF (εαπM (Φz(τ

′
ε)φε(T ) + Γε,+(τ ′ε))) .

This implies

1Aεε
−ατ ′ε = ε−α1AεF (εαπM (Φz(τ

′
ε)φε(T ) + Γε,+(τ ′ε)))

− 1Aεπb (Φz(τ
′
ε)φε(T ) + Γε,+(τ ′ε))

= −1Aεπb (Φz(τ
′
ε)φε(T )) + rε,1

= −1Aεπbφε(T ) + 1Aεπb ((I − Φz(τ
′
ε))φε(T )) + rε,1, (115)

where rε,1 is a random variable that converges to 0 in probability as ε→ 0.

Likewise, since τε = T − (−τ ′ε) and 1Bετ
′
ε ≤ 0, we can use (112) and the definition

of Ω1,ε to see that

1Bετ
′
ε + 1Bεε

απb (φε(T + τ ′ε) + Γε,−(−τ ′ε)) = 1BεF (εα (φε(T + τ ′ε) + Γε,−(−τ ′ε))) .

Hence, proceeding as before, we see that

1Bεε
−ατ ′ε = −1Bεπbφε(T + τ ′ε) + rε,2

= −1Bεπbφε(T ) + 1Bεπb (φε(T )− φε(T + τ ′ε)) + rε,2

for some random variable rε,2 such that rε,2 → 0 in probability as ε→ 0. Adding this

identity and (115), we see that on Ωε

ε−ατ ′ε = −πbφε(T )+1Aεπb ((I − Φz(τ
′
ε))φε(T ))+1Bεπb (φε(T )− φε(T + τ ′ε))+rε,1+rε,2.

Due to Lemma 3.4.3, to finish the proof it is sufficient to notice that as ε→ 0

sup
0≤t≤εγ

|(I − Φz(t))φε(T )| P−→ 0, (116)
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and

sup
0≤t≤εγ

|φε(T )− φε(T + t)| P−→ 0. (117)

Lemma 3.4.4 takes care of the time component in Theorem 3.2.1. We shall consider

the spatial component now.

Let Aε and Bε be as in the proof of Lemma 3.4.4. Then, (113) implies

1Aε (Xε(τε)− z) ε−α = 1Aεε
−ατ ′εb(z) + 1Aε (Φz(τ

′
ε)φε(T ) + Γε,+(τ ′ε))

= 1Aε

(
ε−ατ ′εb(z) + φε(T )

)
+ 1Aε [(Φz(τ

′
ε)− I)φε(T ) + Γε,+(τ ′ε)] (118)

Likewise, from (112) we get that

1Bε (Xε(τε)− z) ε−α = 1Bεε
−ατ ′εb(z) + 1Bε (φε(T + τ ′ε) + Γε,−(−τ ′ε))

= 1Bε

(
ε−ατ ′εb(z) + φε(T )

)
+ 1Bε [(φε(T + τ ′ε)− φε(T )) + Γε,−(−τ ′ε)] . (119)

Adding (118) and (119) and proceding as in the proof of Lemma 3.4.4 we see that

(Xε(τε)− z) ε−α − πMφε(T ) =
(
ε−ατ ′ε + πbφε(T )

)
b(z) + ρε,

where, due to (116), (117) and Lemma 3.4.2, ρε → 0 in probability as ε → 0. From

this expression and Lemma 3.4.4 we get that

(Xε(τε)− z) ε−α − πMφε(T )
P−→ 0, ε→ 0.

Then, using this and the convergence in Lemma 3.4.4

ε−α(τε − T,Xε(τε)− z) = Rε +G(φε(T )),

where Rε is a random variable such that Rε → 0 in probability as ε → 0. G is

the continuous function x 7→ (−πbx, πMx). Hence, Theorem 3.2.1 follows from the

convergence in Lemma 3.2.1.
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3.5 Conditioned diffusions in 1 dimension

In this section we apply Theorem 3.2.1 to the analysis of the exit time of conditioned

diffusions in 1-dimensional situation for the large deviation case.

Suppose, for each ε > 0, Xε is a weak solution of the following SDE:

dXε(t) = b(Xε(t))dt+ εσ(Xε(t))dW (t),

Xε(0) = x0,

where b and σ are C1 functions on R, such that b(x) < 0 and σ(x) 6= 0 for all x in an

interval [a1, a2] containing x0. We introduce

τε = inf{t ≥ 0 : Xε(t) = a1 or a2}

and Bε = {Xε(τε) = a2}. Since b < 0, Bε is a rare event since limε→0 P(Bε) = 0.

More precise estimates on the asymptotic behavior of P(Bε) can be obtained in terms

of large deviations. However, here we study the diffusion Xε conditioned on the rare

event Bε.

Let T (x0) denote the time it takes for the solution of ẋ = −b(x) starting at x0 to

reach a2. Given that b < 0 on the hole interval [a1, a2], a simple calculation shows

that

T (x0) = −
∫ a2

x0

1

b(x)
dx.

Theorem 3.5.1 Conditioned on Bε, the distribution of ε−1(τε − T (x0)) converges

weakly to a centered Gaussian distribution with variance

−
∫ a2

x0

σ2(y)

b3(y)
dy.

To prove this theorem, we will need two auxiliary statements. Their proofs are

given in Section 3.5.1.
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Lemma 3.5.2 Conditioned on Bε, the process Xε is a diffusion with the same dif-

fusion coefficient as the unconditioned process, and with the drift coefficient given

by

bε(x) = b(x) + ε2σ2(x)
hε(x)∫ x

a1
hε(y)dy

,

where

hε(x) = exp

{
− 2

ε2

∫ x

a1

b(y)

σ2(y)
dy

}
. (120)

Further analysis requires understanding the limiting behavior of bε. This is the

purpose of the next lemma:

Lemma 3.5.3 There is δ > 0 such that

lim sup
ε→0

ε−2

(
sup

x∈[x0−δ,a2+δ]

|bε(x) + b(x)|

)
<∞.

Remark 5 Although we need the condition that b(x) < 0 for all x ∈ [a1, a2] for The-

orem 3.5.1 to hold, Lemmas 3.5.2 and 3.5.3 hold independently of the sign properties

of b.

Proof of Theorem 3.5.1. Let us fix β ∈ (1, 2). Lemmas 3.5.2 and 3.5.3 imply

that Xε conditioned on Bε, up to τε satisfies an SDE of the form

dXε(t) =
(
−b(Xε(t)) + εβΨε,β(Xε(t))

)
dt+ εσ(Xε(t))dW̃ (t),

for some Brownian Motion W̃ and with Ψε,β → 0 uniformly as ε→ 0. We can assume

that after time τε, this process still follows the same equation at least up to the time

it hits x0 − δ or a1 + δ.

So, having the dynamics from ẋ = −b(x) as the underperturbed dynamics, we can

apply Theorem 3.2.1 (taking into account Remark 1) to see that

ε−1(τε − T (x0))
P−→ − 1

b(a2)
Φx0(T (x0))

∫ T (x0)

0

Φ−1
x0

(s)σ(Ssx0)dW̃ (s), ε→ 0, (121)

where Stx0 is the flow generated by the vector field −b, the time T (x0) solves

ST (x0)x0 = a2, and Φx0 is the linearization of S near the orbit of x0. The limit is

84



clearly a centered Gaussian random variable. To compute its variance we must first

solve

d

dt
Φx0(t) = −b′(Stx0)Φx0(t), Φx0(0) = 1.

The solution to this linear ODE is

Φx0(t) = exp

{
−
∫ t

0

b′(Ssx0)ds

}
,

so that after the change of variables u = Ssx0 in the integral, we get

Φx0(t) =
b(Stx0)

b(x0)
.

Using this expression and Itô isometry for the limiting random variable in (121), we

get that the variance of such random variable is∫ T (x0)

0

σ2(Stx0)

b2(Stx0)
dt.

We can now use the change of variable u = Ssx0 to get the expression in Theo-

rem 3.5.1.

3.5.1 Proof of Lemmas 3.5.2 and 3.5.3

Proof of Lemma 3.5.2. Let us find the generator of the conditioned diffusion. To

that end we denote the generator of the original diffusion by Lε:

Lεf(x) = b(x)f ′(x) +
ε2

2
σ2(x)f ′′(x) = lim

t→0

Exf(Xε)− f(x)

t
, (122)

where f is any bounded C2-function with bounded first two derivatives and Ex de-

notes expectation with respect to the measure Px, the element of the Markov family

describing the Markov process emitted from point x.

Let us denote uε(x) = Px(Bε). This function solves the following boundary-value

problem for the backward Kolmogorov equation:

Lεuε(x) = 0, uε(a1) = 0, uε(a2) = 1.
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Using (122), it is easy to check that a unique solution is given by

uε(x) =

∫ x
a1
hε(y)dy∫ a2

a1
hε(y)dy

,

where hε is defined in (120).

Now we can compute the generator L̄ε of the conditioned flow. For any smooth

and bounded function f ∈ C2 with bounded first two derivatives, we can write

Ex[f(Xε)|Bε] = u−1
ε (x)Exf(Xε(t))1Bε

= u−1
ε (x)Exf(Xε(t))1Bε1{τε≥t} +Rε

= u−1
ε (x)ExEx[f(Xε(t))1Bε1{τε≥t}|Ft] +Rε

= u−1
ε (x)Exf(Xε(t))PXε(t)(Bε) +Rε

= u−1
ε (x)Exf(Xε(t))uε(Xε(t)) +Rε,

where

|Rε| = u−1
ε (x)|Exf(Xε)1Bε1{τε<t}| ≤ C(x)P{τε < t} = o(t)

for some C(x) > 0. Therefore, we obtain

L̄εf(x) = lim
t→0

Ex[f(Xε(t))|Bε]− f(x)

t

= lim
t→0

u−1
ε (x)Exf(Xε(t))uε(Xε(t))− f(x)

t

=
1

uε(x)
lim
t→0

Exf(Xε(t))uε(Xε(t))− f(x)uε(x)

t

=
1

uε(x)
Lε(fuε)(x)

=

(
b(x) + ε2σ2(x)

u′ε(x)

uε(x)

)
f ′(x) + ε2

σ2(x)

2
f ′′(x).

=

(
b(x) + ε2σ2(x)

hε(x)∫ x
a1
hε(y)dy

)
f ′(x) + ε2

σ2(x)

2
f ′′(x),

completing the proof.

Proof of Lemma 3.5.3. The proof is a variation of Laplace’s method. Let

Φ(x) = 2

∫ x

a1

b(y)

σ2(y)
dy, x ≥ a1, (123)
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so that hε(x) = e−Φ(x)/ε2 . We take any β ∈ (1, 2) and break the integral of hε in two

parts: ∫ x

a1

e−Φ(y)/ε2dy = Iε,1(x) + Iε,2(x),

where

Iε,1(x) =

∫ x−εβ

a1

e−Φ(y)/ε2dy, (124)

and

Iε,2(x) =

∫ x

x−εβ
e−Φ(y)/ε2dy. (125)

The idea is to prove that Iε,1 is exponentially smaller than Iε,2 and then estimate Iε,2.

We start with some preliminaries for the function Φ. Since both b and σ are C1

and σ 6= 0 in [a1, a2] we conclude that Φ is a C2 function so that we can find a function

R : R× R → R and a number δ0 > 0 such that for every x, y ∈ [a1, a2 + δ0], we have

the expansion

Φ(y) = Φ(x) + Φ′(x)(y − x) +R(x, y − x), (126)

and

|R(x, v)| ≤ K1|v|2, x ∈ [a1, a2 + δ0], v ∈ R, (127)

for some K1 > 0.

To estimate Iε,1, we introduce

Jε,1(x) =
eΦ(x)/ε2

ε2σ2(x)
Iε,1(x), x ∈ [a1, a2 + δ0].

Since Φ is decreasing, we have that for some constant K2 > 0 independent of x ∈

[a1, a2 + δ0],

Jε,1(x) ≤
K2

ε2
e(Φ(x)−Φ(x−εβ))/ε2 . (128)

Since β < 2 and Φ′ is negative and bounded away from zero, we conclude that there

is α(ε) such that α(ε) = o(ε2) as ε→ 0 and

sup
x∈[a1,a2+δ0]

Jε,1(x) ≤ α(ε). (129)
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We now estimate Iε,2. Using expansion (126) and the change of variables u =

−Φ(x)(y − x)/ε2, we get

Iε,2(x) = e−Φ(x)/ε2
∫ x

x−εβ
e−Φ′(x)(y−x)/ε2−R(x,y−x)/ε2dy

= − ε2

Φ′(x)
e−Φ(x)/ε2

∫ 0

Φ′(x)/ε2−β

eu−R(x,−ε2u/Φ′(x))/ε2du

= −ε
2σ2(x)

2b(x)
e−Φ(x)/ε2Jε,2(x), (130)

where we use (123) to compute the derivative of Φ, and we define Jε,2 by (130). Hence,

combining (128) with the definition of bε and (130), we get

bε(x) = b(x) +
1

Jε,1(x)− 1
2b(x)

Jε,2(x)
.

Due to (129), the proof will be complete once we prove that for sufficiently small

δ > 0,

lim sup
ε→0

ε−2

(
sup

x∈[x0−δ,a2+δ]

|Jε,2(x)− 1|

)
<∞.

Note that for any δ ∈ (0, x0 − a1), some constant K3 = K3(δ) > 0 and all

x ∈ [x0 − δ, a2 + δ],

|Jε,2(x)− 1| =
∣∣∣∫ 0

Φ′(x)/ε2−β

eu(1− e−R(x,−ε2u/Φ′(x))/ε2)du

+

∫ Φ′(x)/ε2−β

−∞
eudu

∣∣∣
≤
∫ 0

Φ′(x)/ε2−β

eu|1− e−R(x,−ε2u/Φ′(x))/ε2|du+ e−K3/ε2−β

. (131)

Using (127) we see that for some constant K4 > 0 independent of x ∈ [x0 − δ, a2 + δ]

and u ∈ R,

|R(x,−ε2u/Φ′(x))|/ε2 ≤ K4ε
2u2.

In particular,

sup
x∈[x0−δ,a2+δ]

sup
u∈[Φ′(x)/ε2−β ,0]

|R(x,−ε2u/Φ′(x))|/ε2 ≤ K4ε
2(β−1).
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Since β > 1, the r.h.s. converges to 0 and we can apply a basic Taylor estimate which

implies that for all ε > 0 small enough,

sup
x∈[x0−δ,a2+δ]

sup
u∈[Φ′(x)/ε2−β ,0]

|1− e−R(x,−ε2u/Φ′(x))/ε2| ≤ K5ε
2u2,

for some K5 > 0. Using this fact in the integral of (131), we can find a constant

K6 = K6(δ) > 0 such that

sup
x∈[x0−δ,a2+δ]

|Jε,2(x)− 1| ≤ K6ε
2 + e−K3/ε2−β

,

which finishes the proof.
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CHAPTER IV

CONCLUSION

This chapter is devoted to give further discussion of the topics covered in this text. In

Section 4.1 we made some comments related to the application of normal forms. In

Section 4.2 we comment about the exit problem in the case where the deterministic

flow has a unique saddle point. In Section 4.3 we present an open problem related to

scaling limit and show a possible relation with Chapter 3.

4.1 Normal Forms

In this thesis, a transformation (normal form transformation) is used to conjugate

the original equation for Xε into a non-linear perturbation of the linearized equation.

This is done so we can avoid an approximation step between our original equation

and its linearization. There is evidence that a similar methodology has been in the

mind of the researchers since the publication of [22]. A concrete conjugation of the

original equation into the linearized system was used in [4]. Although this result

was successful, it required certain assumptions that are removed in this work (in the

2-dimensional setting) by conjugating to a non-linear system instead. As far as the

author knows, it is the first time a program of this nature has been successful.

Inspired by [13], in [30] a normal form transformation was applied to an epidemi-

ological model. Contrastingly to our case, this is a specific equation and not an

abstract setting. In [3] the normal form theory is presented for stochastic differential

equations in the abstract setting. Although the transformation is presented, no esti-

mates are computed as in this work. Further the development of normal form theory

in [3] is not complete. For example, it excludes the one-resonant case.
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Although normal form theory has proved to be a powerful tool in dynamical

systems, in probability is still not clear how powerful the theory really is. In this

text we use the very explicit shape of the nonlinearity in the normal form to obtain

specific estimates that successfully lead to a complete solution of the problem in

Chapter 2. As far as the author knows, this work is the first time in which normal

form theory is applied in an abstract setting and is used to obtain tight estimates

that lead to a solution of a probabilistic problem. The approach presented has some

further generalizations in which the application of normal forms may be useful. We

give a brief presentation about the possible complications that may be found.

4.2 Escape from a Saddle: further generalizations.

In this work we have studied the exit problem for small noise diffusions. In partic-

ular, we have shown the existence of possible asymmetries in the case in which the

flow generated by the drift admits a saddle point. The proof is restricted to the

2-dimensional setting. Let us discuss about this particular restriction.

Our method of proof was to transform the original equation into a very specific

non-linear equation known as normal form. Then, we obtained several estimates that

intensively uses the smallness of the noise and the specific form of the nonlinearity in

the normal form. Let us recall the form of the nonlinearity.

In our case, the nonlinearity in the normal form is given by a finite sum of resonant

monomials (see Section 2.3 ) of the form (x
α+

1
1 x

α+
2

2 , x
α−1
1 x

α−2
2 ), where (α±1 , α

±
2 ) ∈ Z2

satisfy the resonance relations

α±1 λ+ − α±2 λ− = ±λ±,

of some order r = α±1 + α±2 ≥ 2. If we were to generalize the argument in Chapter 2

to the d-dimensional case, we would need to take into account the particular form

that the nonlinearity would have in the normal form. Indeed, there are two points to

consider:
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1. The resonant monomials of order r ≥ 2 are of the form

(x
α1,1

1 · · ·xα1,d

d , ..., x
αd,1

1 · · ·xαd,d

d ),

where the vector αi = (αi,1, ..., αi,d) ∈ Zd satisfies

αi,1λ1 + ...+ αi,dλd = λi

αi,1 + ...+ αi,d = r,

for each i = 1, ..., d. Here λ1, ..., λd are the eigenvalues of the matrix ∇b(0).

2. According to [38, Theorem 3,Section 2], the nonlinearity N , after being trans-

formed by a normal form transformation of degree R > 1, will be of the form

N(x) = P (x) +Q(x),

where P is a finite sum of resonant monomials, and Q is a correction of order

|x|R+1 (as |x| → 0) when the vector of eigenvalues λ = (λ1, ..., λd) is not one-

resonant and identically 0 when λ is one-resonant.

The first point implies that to obtain the exponents αi,j more combinatorial work

than the one put in Section 2.3.2 is needed. Still this is not the biggest difficulty. The

biggest difficulty relies on the lack of structure of the correction Q in the case λ is

not one-resonant. Indeed, to have any hope that our techniques in Chapter 2 work,

we require at least that whenever αi,k 6= 0 for some k < i, then αi,j 6= 0 for some

k < j ≤ d (this is in the case we order the eigenvalues as usual: Reλ1 ≥ ... ≥ Reλd).

There is no guarantee that a condition of this form holds in the not one-resonant case.

In conclusion, a higher dimensional analogue for the saddle case can be obtained using

the techniques presented in this theses only in the one-resonant case. This is so, unless

the particular structure that the eigenvalues λ1, ..., λd have in this case implies that a

normal form transformation can be chosen so that the non-linearity of the transformed

92



drift is a finite sum of resonant monomials with no correction. As far as the author

knows, this is an unsolved issue in normal form theory.

There are still some results to be filled in order to complete the case in which the

deterministic flow has a saddle, and hence the case in which it admits a heteroclinic

network. This result is worthwhile pursuing since the implications of the asymmetry

found in Chapter 2 has very interesting analogues in higher dimensions as famous

chaotic systems (such as the Lorentz system) in higher dimensions exhibit homoclinic

behavior (see [64, Chapters 27,30 and 31] for further examples).

4.2.1 A non-smooth transformation alternative

As discussed in Section 2.3.2, it is possible to conjugate a nonlinear equation to a linear

one. The restriction for Itô equations is that this transformation has to be at least C2.

Recent results have extended Itô’s formula for functions with less smoothness. The

first result of this nature is the well known Tanaka’s formula [54, Chapter IV], which

relies on the existence of local time for one dimensional semimartingales to extend

the range of applicability of Itô’s formula to convex functions. For higher dimensional

semimartingales there is no local time, so there was no immediate high dimensional

analogue for Tanaka’s formula. For a long time Tanaka’s formula remain the more

general change of variables (in terms of smoothness requirements) known. Recent

studies have established change of variables for higher dimensional semimartingales

with less smoothness [57], [58], [29], [26]. Let us give a brief (and informal) comment

about this setting.

Consider f : Rd → R to be a continuously differentiable function. Let Z be

a semimartingale in Rd with Z(t) = V (t) + M(t), M being a martingale and V a

stochastic process with bounded variation paths. Then [57], [58], [29], [26] agree

that if the quadratic covariation [f(Z), Zj] is well defined for every 1 ≤ j ≤ d, then
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Itô’s formula holds:

f(Z(t)) = f(Z(0)) +

∫ t

0

∇f(Z(s))dZ(s) +
1

2

d∑
i,j=1

[∂xj
f(Z), Zj](t).

We recall the definition of quadratic covariation (see [54, Section V.5]):

Definition 4.2.1 Let H and J be two continuous stochastic processes in R. The

quadratic covariation of H and J , denoted as [H, J ], is, when it exist, the continuous

process of finite variation over compacts, such that for any sequence σn of random

partitions tending to the identity,

[H, J ] = H(0)J(0) + lim
n→∞

∑
i

(HTn
i+1 −HTn

i )(HTn
i+1 −HTn

i ), (132)

uniformly over compacts in probability. Here, for any random S > 0, the process

HS is short for t 7→ H(t ∧ S), and σn is the sequence 0 = T n0 ≤ ... ≤ T nkn
, where

supi(T
n
i+1 − T ni ) → 0, kn →∞, and, T nkn

→∞ as n→∞.

For our diffusion process Xε, there are several problems to consider. One is to

show that [∂xj
f(Xε), X

i
ε] is well defined. The other, is to prove that

ε−1[∂xj
f(Xε), X

i
ε]

P−→ 0, ε→ 0. (133)

Once this is established, the result in Chapter 2 follows immediately.

In order to show that [∂xj
f(Xε), X

i
ε] is well defined, the proposal in [57], [58], [29]

is to use the theory of reversible diffusions proposed in [50]. Indeed, assume for a

moment that we know that, for a fixed T > 0, X̂ε(t) = Xε(T − t) is a diffusion. Then,

observe that (132) for H = ∂xj
f(Xε) and J = X i

ε can be written as

[∂xj
f(Xε), X

i
ε](t) = −

∫ t

0

∂xj
f(Xε(s))dX

i
ε(s)−

∫ T

T−t
∂xj

f(X̂(s))dX̂ i
ε(s), (134)

where both integrals are Itô integrals with respect to different filtrations. In order to

use this formula to prove (133) the first attempt may be to get the generator of X̂ε.

Under several assumptions (the most important one being the ellipticity of the noise)
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in [50] it is proved that, for a fixed time T > 0, X(T − ·) is also a diffusion with

the same diffusion matrix and with drift b̂ = −b(x) + ∇ log pT−t,T (x,Xε(T )), where

pT−t,T is the transition density of the Markov process Xε (which existence is proved

in [50]). Hence in order to establish (133) we first would need to have a bound in ε

of ∇ log pT−t,T . This quantity is of interest in control theory [28], but there is, as far

as the author knows,no reference to an estimate in ε > 0. Another option that avoids

this estimate is to extend the filtration FW to the minimum complete filtration that

includes FW such that Xε(T ) is measurable and write Doob-Meyer decomposition for

the process Xε with respect to this filtration.

This is still undergoing work, that is promising not only because it allows to prove

the results included in this thesis, but also because it uses several tools of modern

stochastic analysis.

4.3 Scaling limits

In this thesis we proved a scaling limit for the exit problem for two cases, the case in

which the flow S has a unique saddle and the Levinson case. The idea will be to prove

scaling limits for more general systems. In particular, recall that if the quasipotential

has a unique minimizer z, then the exit point Xε(τε) converges to it in probability

as ε → 0. By a scaling limit, we mean find an α > 0 such that the distribution of

ε−α(z −Xε(τ
D
ε )) is tight.

Let V : D × ∂D → [0,∞) be the quasipotential given by (7):

V (x, y) = inf
T>0

{IxT (ϕ) : ϕ(T ) = y, ϕ([0, T ]) ⊂ D ∪ ∂D}

In order to state the claim, given x0 ∈ D, let Mx0 ⊂ ∂D be the set of minimizers of

y 7→ V (x0, y). The claim is the following:

Claim 4.3.1 Suppose Mx0 is finite Mx0 = {e1, ..., eq}. There is a probability dis-

tribution ν over M, a random number α ∈ (0, 1] and a family of random variables
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(ξε)ε>0 such that the exit can be written as

Xε(τε) = ν1e1 + ...+ νqeq + εαξε.

Further, there is a random variable ξ0 so that ξε → ξ0 in distribution as ε→ 0.

The results of this thesis imply this claim in the case the flow S admits a het-

eroclinic network (see Section 1.4.2). The proof was done by solving two simple

cases (saddle point and Levinson case) and then using a Poincaré distributional map

argument for each critical point in the network.

Here we shall proceed similarly: start from simple cases with random initial con-

ditions so that a Poincaré argument can be applied. The proposal is to choose as the

base case the well developed stable case [34]: 0 ∈ D and D is contained in the basin

of attraction of 0. It is known that if the domain D is attracted to the origin and

Mx0 = {e} then Xε(τε) → e in probability. Moreover, if there is a unique extreme

trajectory ϕ0 (the one that realizes the minimum in V ) then for every δ > 0,

lim
ε→0

Px0

{
sup

θε≤t≤τε
|Xε(t)− ϕ0(t− θε + θ0)| < δ

}
= 0,

where θε (θ0) is the last time Xε (ϕ0) hits a ball of arbitrary small (but fixed) radius

around the origin. From the perspective introduced in Chapter 3, consider the process

conditioned on exit close to e. This process is a semimartingale with the same diffusion

matrix as the original process, but with a drift of the form bε = −b(x) + ε2ϕε(t, x),

where ϕε is uniformly bounded. Hence, our results in the Levinson case of Chapter 3

apply.

Once this result is established, we can follow the same pattern as in [34] to study

possible asymmetric behavior in metastable process. With this development we can

show that the idea of random Poincaré maps apply to a general dynamical system.
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APPENDIX A

LARGE DEVIATIONS

Large deviation theory is a mixture of probability theory, analysis, variational cal-

culus, point set topology among others. This theory has been used for different

purposes. In Section 1.1 we discussed the role played by large deviation theory in the

development of Freidlin-Wentzell theory. The purpose of this chapter is to provide a

quick reference to large deviation theory as needed to understand Section 1.1.

We present the general theory of large deviations. The theory was first formulated

in the right degree of abstraction by Varadhan [61], we follow [52] in this exposition.

In Section A.1 we begin with the basic definitions. In Section A.2 we present the

large deviation results related to diffusion processes.

A.1 Large Deviations Principle (LDP)

Let X be a Polish metric space with metric function d : X × X → [0,∞). By a

probability measure on X , we mean a probability measure on the Borel sigma algebra

on X . We will give the general definition of large deviation principle for a family of

probability measures on X . First, recall the following definition.

Definition A.1.1 The function f : X → [−∞,∞] is lower semi-continuous if it

satisfies any of the following equivalent properties:

1. lim infn→∞ f(xn) ≥ f(x) for all sequences (xn)n∈N ⊂ X and all points x ∈ X

such that xn → x in X .

2. For all x ∈ X , limδ→0 infy∈Bδ(x) f(y) = f(x), where Bδ(x) = {y ∈ X : d(x, y) <

δ}.
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3. f has closed level sets, that is, f−1([−∞, c]) = {x ∈ X : f(x) ≤ c} is closed for

all c ∈ R.

Here are the key definitions of large deviation theory:

Definition A.1.2 The function I : X → [0,∞] is called a rate function if

1. I 6≡ ∞,

2. I is lower semi-continuous,

3. I has compact level sets.

Definition A.1.3 A family of probability measures (P)ε>0 on X is said to satisfy ,

as ε→ 0,the large deviation principle (LDP) with rate αε → 0 and rate function I if

1. I is a rate function,

2. lim supε→0 αε log Pε(C) ≤ −I(C), for every C ⊂ X closed,

3. lim infε→0 αε log Pε(O) ≥ −I(O), for every O ⊂ X open.

Here the bounds are in terms of the set function defined by

I(S) = inf
s∈S

I(x), S ⊂ X .

The goal of large deviation theory is to build up an arsenal of theorems based

on these two definitions. We will not describe most of this theorems, since they are

out of the scope for the present text. The interested reader is invited to consult the

standard monographs on the subject [23, Chapter 4], [24, Chapter III], [52, Chapter

2]. The only theorem that we cite is the so called contraction principle. First, we

give some remarks

Remark 6 1. It is a standard exercise to show that once the large deviation prin-

ciple is satisfied, the rate function I is unique.
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2. In Definition A.1.3 it is crucial to make a difference between open and closed

sets. Naively, one might try to replace the second and third conditions with the

stronger requirement that

lim
ε→0

αεPε(S) = −I(S), S ⊂ X .

However, there are examples that show that this would be far too restrictive.

We now present the contraction principle:

Theorem A.1.4 Let (P)ε>0 be a family of probability measures on X that satisfies

the LDP, as ε→ 0, with rate function αε and with rate function I. Let Y be a Polish

space, T : X → Y a continuous map, and Qε = Pε◦T−1 an image probability measure.

Then, the family (Qε)ε>0 satisfies the LDP on Y with rate αε and with rate function

J given by

J(y) = inf
x∈X :T (x)=y

I(x),

with the convention inf∅ I = ∞.

A.2 Freidlin-Wentzell LDP

In this section we present the large deviation results that Freidlin-Wentzell theory is

based on.

Given T > 0, let W (t), t ∈ [0, T ], be a standard Brownian motion in Rd. Consider

the process Wε(t) = εW (t), and let PW
ε be the probability measure induced by Wε on

C([0, T ]; Rd), the space of all continuous functions ϕ : [0, T ] → Rd equipped with the

supremum norm topology. We first state the LDP for Wε derived by Schilder [59]:

Theorem A.2.1 The family of probability measures (PW
ε )ε>0 on C([0, T ]; Rd) satisfy

a LDP with rate ε2 and with rate function

JT (φ) =


1
2

∫ T
0
|φ̇(s)|2ds , φ ∈ H1

∞ , otherwise
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Here H1 is the space of absolutely continuous functions with square integrable deriva-

tive.

The simple case in which the process Xε is the strong solution of

dXε(t) = b(Xε(t))dt+ εdW (t)

is a consequence of Theorem A.2.1 and the Contraction Principle A.1.4. Indeed, let

F : C([0, T ]; Rd) → C([0, T ]; Rd) be the map defined by f = F (g), where f is the

unique solution of

f(t) =

∫ T

0

b(f(s))ds+ g(t).

Then, after noticing that F is continuous and some calculation, Theorem A.2.1 implies

the following result:

Corollary A.2.2 The law of Xε on C([0, T ]; Rd) satisfies a LDP with rate ε2 and

with rate function

J ′T =


1
2

∫ T
0
|φ̇(s)− b(s)|2ds , φ ∈ H1

∞ , otherwise
.

Now, consider Xε to be the solution of our typical SDE

dXε(t) = b(Xε(t))dt+ εσ(Xε(t))dW (t).

As said on Section 1.1 a LDP for this process is the base of Freidlin-Wentzell theory.

It turns out that to obtain a LDP for the law of Xε the contraction principle does not

apply. Instead, raw approximations have to be made. We state the theorem without

a proof (see [23, Section 4.2] or [34, chapter 3] for a proof).

Theorem A.2.3 (Freidlin-Wentzell [34] ) Let H1
0,T be the space of all absolutely

continuous functions from [0, T ] to Rd with square integrable derivatives. Define the

functional IxT by

IxT (ϕ) =
1

2

∫ T

0

〈
·
ϕ (s)− b(ϕ(s)), a−1(ϕ(s))(

·
ϕ (s)− b(ϕ(s)))〉ds, (135)
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if ϕ ∈ H1
0,T and ϕ(0) = x, and ∞ otherwise. Here b is the drift in (1) and a = σTσ,

with σ the diffusion matrix in (1).

Then for each x ∈ Rd and T > 0 the family (Pε
x)ε>0 satisfies a Large Devia-

tion Principle on C([0, T ]; Rd) equipped with uniform norm at rate ε2 with good rate

function IxT .
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APPENDIX B

APPENDIX TO SECTION 1.2.1

The purpose of this appendix is to present any technical material left out in Chap-

ter 1 Section 1.2.1. This appendix (in contrast with Appendix A) contains original

material in the simple case discussed on Section 1.2.1. Let us recall the setting from

Section 1.2.1.

Given two positive numbers λ± > 0, consider the diffusion Xε = (x1
ε , x

2
ε)

dXε(t) = diag(λ+,−λ−)Xε(t)dt+ εdW (t).

Let δ > 0 and D = (−δ, δ)× (−δ, δ) ⊂ R2. We study the exit problem of Xε from D.

We start the diffusion Xε inside D: Xε(0) = (0, x0) ∈ D.

Recall that in Section 1.2.1, we used Itô’s formula in each coordinate to write

Duhamel principle for x1
ε and x2

ε . Here we rewrite identities (8) and (9) for easier

reference:

x1
ε(t) = εeλ+t

∫ t

0

e−λ+sdW1(s), (136)

x2
ε(t) = e−λ−tx0 + ε

∫ t

0

e−λ−(t−s)dW2(s). (137)

Let N (t) denote the stochastic integral in (136).

Recall that τ δε is defined as

τ δε = inf
{
t > 0 : |x1

ε(t)| ≥ δ
}
.

First we prove that τ δε is finite with probability 1. This is a general fact that can be

found in the literature, for example in [8, Proposition 1.8.2], but we chose to prove

it directly from Duhamel principle. We do this in order to stress the importance of
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such a representation in our setting. Without any further discussion, we go into the

results.

Lemma B.0.4 For every δ > 0 and ε > 0, τ δε <∞ P−a.s.

Proof. Let n ∈ N, it is enough to show that P{τ δε > n} → 0 as n → ∞. Observe

that (136) implies that

P{τ δε > n} = P

{
sup
t∈[0,n]

εeλ+t|N (t)| < δ

}

≤ P

{
sup

t∈[n/2,n]

εeλ+t|N (t)| < δ

}

≤ P

{
εeλ+n/2 sup

t∈[n/2,n]

|N (t)| < δ

}
.

Here the last two inequalities follow from the properties of the supremum and the

exponential function respectively. Take n0 ∈ N such that ε−1δ < eλ+n/4, for every

n ≥ n0. Then, for every n ≥ n0,

P

{
εeλ+n/2 sup

t∈[n/2,n]

|N (t)| < δ

}
≤ P

{
εeλ+n/2 sup

t∈[n/2,n]

|N (t)| < δ, eλ+n/4 sup
t∈[n/2,n]

|N (t)| ≥ 1

}

+ P

{
eλ+n/4 sup

t∈[n/2,n]

|N (t)| < 1

}

≤ P

{
eλ+n/4 sup

t∈[n/2,n]

|N (t)| < 1

}
.

The proof will be finished as soon as we can show that the last probability converges

to 0. To see this, note that, for every t > 0, the random variable N (t) is a zero mean

gaussian random variable with variance
∫ t

0
e−2λ+tds = 1−e−2λ+t

2λ+
. Denote

αn = e−λ+n/4

√
2λ+

1− e−2λ+n
.

The result follows since, αn → 0, as n→∞, and

P

{
eλ+n/4 sup

t∈[n/2,n]

|N (t)| < 1

}
≤ P

{
eλ+n/4|N (n)| < 1

}
=

1√
2π

∫ αn

−αn

e−r
2/2dr.
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Lemma B.0.5 For any δ > 0,

τ δε
P−→∞,

as ε→ 0.

Proof. Let δ > 0. It is enough to prove that P{τ δε > T} → 0, ε→ 0, for any T > 0.

Use Duhamel principle (136) to get

P{τ δε > T} = P

{
sup

t≤T∧τδ
ε

|x1
ε(t)| > δ

}

≤ P

{
εeλ+T sup

t≤T∧τδ
ε

∣∣∣∣∫ t

0

e−λ+sds

∣∣∣∣ > δ

}
.

The last inequality, Chebyshev inequality [21, Section 3.2], BDG inequality [41,

Proposition 3.3.28] and Itô isometry [41, Proposition 2.10] imply that for some con-

stant C1,

P{τ δε > T} ≤ C1e
2λ+T ε2E

∫ T∧τδ
ε

0

e−2λ+sdW (s)

≤ C1

λ+

e2λ+T ε2.

This proves our result.

The last technical step in this appendix is about the convergence of the random

variable Nε. Recall that Nε = N (τ δε ) and

N =

∫ ∞

0

e−λ+sdW (s).

Lemma B.0.6 As ε→ 0, Nε → N in probability.

Proof. The lemma is a consequence of Itô isometry and Lemma B.0.5. Let γ > 0

and Tγ = −(2λ+)−1 log(γλ+) > 0. Due to Lemma B.0.5 we can find ε0 > 0 such that

P{τ δε > Tγ} ≤ γλ+, (138)
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for every ε ∈ (0, ε0). Use Itô isometry and (138) to obtain

E|Nε −N|2 = E

∫ ∞

τδ
ε

e−2λ+sds

≤ e−2λ+Tγ

2λ+

+
1

2λ+

P{τ δε < Tγ}

≤ γ,

for every ε ∈ (0, ε0). The result follows since γ > 0 is arbitrary and L2 convergence

implies convergence in probability.

105



REFERENCES

[1] Almada Monter, S. A. and Bakhtin, Y., “Normal forms approach to dif-
fusion near hyperbolic equilibria,” Submitted to Nonlinearity; also available at
http://arxiv.org/abs/1006.3000.

[2] Almada Monter, S. A. and Bakhtin, Y., “Scaling limit for the diffusion exit
problem in the Levinson case,” Submitted to Stoch. Process. Appl.; also available
at http://arxiv.org/abs/1006.2766.

[3] Arnold, L. and Imkeller, P., “Normal forms for stochastic differential
equations,” Probability Theory and Related Fields, vol. 110, pp. 559–588, 1998.
10.1007/s004400050159.

[4] Bakhtin, Y., “Noisy heteroclinic networks,” Probability Theory and Related
Fields, in print; also available at http://arxiv.org/abs/0712.3952.

[5] Bakhtin, Y., “Exit asymptotics for small diffusion about an unstable equilib-
rium,” Stochastic Process. Appl., vol. 118, no. 5, pp. 839–851, 2008.

[6] Bakhtin, Y., “Small noise limit for diffusions near heteroclinic networks,” Dy-
namical Systems: An International Journal, vol. 25, pp. 413–431, 2010.

[7] Bakhtin, Y., “Small noise limit for diffusions near heteroclinic networks,” Dy-
namical Systems, in print, 2010.

[8] Bass, R. F., Diffusions and elliptic operators. Probability and its Applications
(New York), New York: Springer-Verlag, 1998.

[9] Ben Arous, G. and Castell, F., “Flow decomposition and large deviations,”
J. Funct. Anal., vol. 140, no. 1, pp. 23–67, 1996.

[10] Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A., “A theory of stochastic
resonance in climatic change,” SIAM J. Appl. Math., vol. 43, no. 3, pp. 565–478,
1983.

[11] Berglund, N. and Gentz, B., “Metastability in simple climate models: path-
wise analysis of slowly driven Langevin equations,” Stoch. Dyn., vol. 2, no. 3,
pp. 327–356, 2002. Special issue on stochastic climate models.

[12] Berglund, N. and Gentz, B., “Pathwise description of dynamic pitchfork
bifurcations with additive noise,” Probab. Theory Related Fields, vol. 122, no. 3,
pp. 341–388, 2002.

106



[13] Berglund, N. and Gentz, B., Noise-induced phenomena in slow-fast dynam-
ical systems. Probability and its Applications (New York), London: Springer-
Verlag London Ltd., 2006. A sample-paths approach.

[14] Berglund, N. and Gentz, B., “Anomalous behavior of the Kramers rate at
bifurcations in classical field theories,” J. Phys. A, vol. 42, no. 5, pp. 052001, 9,
2009.
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