Dynamic Register Allocation for Multi-Threaded
Network Processors

Ryan Collins
Georgia Institute of Technology
College of Computing
Atlanta, GA, 30332-0280
rcollins@cc.gatech.edu

Fernando Alegre
Georgia Institute of Technology
College of Computing
Atlanta, GA, 30332-0280
fernando@cc.gatech.edu

Xiaotong Zhuang
Georgia Institute of Technology
College of Computing
Atlanta, GA, 30332-0280
xt2000@cc.gatech.edu

Santosh Pande
Georgia Institute of Technology
College of Computing
Atlanta, GA, 30332-0280
santosh@cc.gatech.edu

October 12, 2005

Abstract

Modern network processors such as the Intel IXP family hide the la-
tency of slow instructions by supporting multiple threads of execution.
Context switches in the IXP architecture are designed to be very fast.
However, the low overhead is partly achieved by leaving register manage-
ment to programs, with little support from the hardware. The complexity
of the multi-engine, multi-threaded environment makes manual register
management a daunting task, which is better left to the compiler. How-
ever, a purely static analysis may not be able to achieve full utilization
of the register file due to conservative estimates of liveness. A register

that is live across a context switch point must be considered live for the
duration of all other threads, and so it must be assumed to be unavailable
to other threads. In addition, aliasing further reduces the effectiveness of
static analysis. The net effect is a large number of idle cycles that are still
present after static optimization.

We propose a dynamic solution that requires minimal software and
hardware support. On the software side, we take a pre-allocated binary file
and annotate the potential context switch instructions with information
about the dead registers. On the hardware side, we try to rename all
transfer registers and addresses to dead general purpose registers and
update the vector of used registers. We then replace the long-latency
memory instructions with fast move instructions in the architecture using
the dynamic context. The results show up to 51% reduction in idle cycles
and up to 14% increase in the throughput for hand coded applications.

1 Introduction

The current demands of Internet traffic have created a need for fast, pro-
grammable network processors. The need for flexibility arises as the complexity
and diversity of network tasks increases. Current tasks range from IP forward-
ing to computing the MD4 hash of a packet to scanning packet contents for po-
tentially malignant code. Packet processing must also keep up with increasing
network speeds. On the OC-768, the processor must complete packet processing
in only 13ns to avoid packet loss.

Typically, a network processor has multiple microengines on-chip and hard-
ware support for multiple threads on each engine to allow work to be done
in parallel. Each microengine can process a separate packet in parallel. The
threads are used to mask the latency of long memory operations, which are
frequent due to the lack of cache. Upon executing a long-latency operation,
the processor may also execute a context switch (if the programmer explicitly
encodes one in the long-latency instruction) to hide the latency of the operation.
This work is done entirely by the programmer or compiler; there is no OS to
schedule the threads and prevent starvation.

Network processors also contain a large number of registers to decrease the
number of memory accesses. Currently, programmers write the vast majority of
network application code in the processor’s native assembly language or a low-
level restricted version of C. There have been efforts to construct an optimizing
compiler with support for high level languages, but this work is still in progress
[9] [6]. There are too many registers for the programmer to effectively allocate
by hand, so a small compiler or allocator must determine how to best divide the
registers across threads. In the simplest case, the compiler evenly divides the
register set across each thread and does not perform any inter-thread analysis.
In most cases, identical programs are executing on each thread, so this method
produces acceptable results. [11] proposes an alternate static algorithm which
balances register allocation across threads according to their needs. This results
in a performance gain for both Symmetric Register Allocation (SRA) (one in

SRAM SDRAM
Controller Controller SDRAM
S o 64-bit
oM ——— | 16Mm:
4K scratchpad StrongAm [microEngine
IXP1200 Chip

IX Bus Controller || Hardware

Figure 1: The IXP Block Diagram

which all threads execute the same code) and Asymmetric Register Allocation
(ARA) (one in which each thread executes different code) schemes. However,
due to static nature of allocation, the assumptions used by this inter-thread
register allocation are conservative; dynamically, more aggressive opportunities
exist for saving memory traffic and latencies by undertaking register allocation
during execution. By effectively utilizing the information about the dynamic
context one can eliminate spills as well as aliased memory load/stores leading
to reduction in idle cycles and increase in the throughput which is the theme of
the paper.

2 The Intel IXP1200

The rest of this paper will use the Intel IXP1200 (cf. figure 1) processor as the
target for the optimizations !. This processor consists of multiple RISC cores
connected by a common bus, so that they can either work in parallel or in a
pipeline. This section discusses some of the key features that factor into this
paper and shows the format of the corresponding assembly instructions.

2.1 Arithmetic and Logic Unit
Most IXP-architecture assembly instructions have a common pattern:
unit[argl,arg2,...] options

where unit is one of the hardware units that compose the processor. In this pa-
per, we are basically concerned with alu instructions, which operate on general
purpose registers, and with memory instructions, discussed below.

The first argument indicates the destination operand, which may be either a
general-purpose register from one of the two banks available (known as A and B)
or a special transfer register from one of the two sets (known as SRAM-XFER
and SDRAM-XFER) connected to the memory. The source operands may also

IThe main reason for using TXP 1200 was the availability of the simulator; it may be noted
that for the scope of this work, IXP 2400/2800 offer the same problem

be in one of those four sets, but each source operand must be in a different set.
The ALU is used not only for arithmetic and logic operations, but also for bit
shifts and copying data between registers.

General-purpose registers can be addressed either globally or locally. The
former is denoted by using the prefix @ while the latter uses no prefix. In both
cases, the register is denoted by the bank (either A or B) followed by a number.
Relative addressing means that registers are partitioned in equal subsets, each
assigned to a thread. For example, if there are 16 A registers per thread, then
thread 0 will use registers QA0 to @A15 and thread 1 will use registers @A16 to
@A31. Thus, a reference to A1 will actually use @A1 when executed by thread 0
and @A17 when executed by thread 1. Since code is often shared by threads, this
means that each reference to a relative register uses actually as many registers
as threads.

2.2 Exposed Memory Hierarchy

Programmers are required to determine where to store a particular piece of
data, since there is nothing equivalent to the transparent cache hierarchy found
in modern general-purpose computers.

The IXP architecture provides for at least two types of memory: sram and
sdram. Data is copied between a transfer register and the corresponding memory
controller asynchronously, and the processor is signalled when the transfer is
finished. Programs typically perform a context switch so that they swap out a
thread waiting for a memory transfer and swap in a thread ready to perform
ALU operations, so that the effect of memory latency is diminished.

Transfer registers are the only way to move data between the ALU and the
memory. They are denoted by a prefix ($ for sram,$$ for sdram) followed by
a number. There are actually two registers associated to each number: a read-
only register for transfers from memory to the ALU, and a write-only register for
transfers in the other direction. Therefore, data moved to a write-only register
cannot be read back.

For example, the instruction

sram[write, $0, al, 0, 1]

stores the contents of the sram-xfer register ($0) to the SRAM memory address
stored in general-purpose register Al. This instruction typically has a latency
of 20 cycles.

On the other hand, the instruction

sdram[write, $$1, b2, 0, 1]

stores the contents of the sdram-xfer register ($$0) to the SDRAM memory
address stored in register B2. This instruction typically has a latency of 50
cycles.

It is not possible to move data directly between a general-purpose register
and memory. Thus, the instruction

sram[write, a0, al, 0, 1]
is illegal and needs to be replaced by a pair of instructions:

alul[$0, ——, b, a0l] // copy from A0 to sram-xfer 0
sram[write, $0, al, 0, 1] // copy from xfer register to memory

Similarly, instead of the following two instructions

sram[read, a0, al, 0, 1] // [illegal] read directly into GPR
alul[a0, a0, +, bO] // srcs GPR,GPR and dest GPR

we must write these:

sram[read, $0, al, 0, 1] // read into xfer register
alul[a0, $0, +, bO] // srcs GPR,xfer and dest GPR

2.3 Fast Context Switches

Context switches in the IXP architecture save only the current PC, which is
then replaced by the PC of the next thread. Since no other register is saved, a
context switch can be completed in a single cycle. Furthermore, context switches
must be explicitely requested by the programmer by using the keyword ctx_arb
either by itself or as an option to a memory transfer instruction.

Let us consider the following example:

LO: immed[@a0, 5] // global register AO is set to 5

L1: ctx_arb // switch context

L2: alulal, --, b, @0] // copy global A0 to thread-relative Al
L4: immed[@a0l, 6] // global register A0 is set to 6

L5: ctx_arb // switch context

L6: alulal, --, b, @O0] // copy global A0 to thread-relative Al
L7: ctx_arb // switch context

Suppose thread 0 is at LO and thread 1 is at L4, and thread 0 is executing.
Then global A0 will be set to 5 and execution will jump to L4, which will set A0
to 6. Then, context will switch back to thread 0 at L2, and thus, local register
A1 will be set to 6.

On the other hand, if thread 1 was initially at L6, then local register A1l
(which is global A9 when there are 8 A registers per thread) will be set to 5.

This illustrates that using global registers produces results that depend on
the current execution context, and which may not be what was expected. The
programmer can avoid this confusion by using context-sensitive register refer-
ences. Replacing @A0 with its local counterpart A0 will produce the expected
result at the expense of using a total of 4 actual registers instead of 3.

| Benchmark | # Idle Cycles | % Total Cycles |

ipfdwr (1 ME) 71 0%
ipfdwr (4 ME) 83210 0.184%
md4 (1 ME) 620388 2.58%
mdd (4 ME) 9574894 19.95%
nat (1 ME) 101284 0.422%
nat (4 ME) 106366 0.223%
wl (1 ME) 1006534 119%
url (4 ME) 7728240 16.10%

Table 1: # of Idle Cycles for each Benchmark

3 Motivation

Since network processors have real-time constraints, it is critical that they do
not waste cycles running nop instructions. However, the lack of a cache, the
high cost of memory accesses, and the symmetric programs typically executed
on the IXP create a situation where long periods of idle activity are inevitable.
In the symmetric programming style, it is likely that each thread will reach a
given memory instruction at the same time. The first thread executes memory
operation and passes control to the second thread which executes a memory
operation and passes control to the third thread and so on. Since each memory
operation requires a large number of cycles, the processor will enter a stage
where all four threads are waiting for their memory operations to complete, and
the only option is to begin issuing nop instructions. Some experiments were
performed to verify this conjecture. Table 1 shows the number of cycles that
each benchmark spends in the idle state. One can see that for multi-threaded
cases, there is a large number of idle cycles spent by a given micro-engine.

Clearly, reducing the number of memory accesses will increase efficiency.
A way to reduce memory access is by transforming some memory references
into register references. Table 2 shows that the register utilization for most
benchmark is actually quite low. The register utilization can be computed
using the following formula,

numRegs x—numCycles; - .
Zréregset i=0 lweAt(r, 2)

numRegs * numCycles

The above formula determines how long a register is occupied (in terms of
cycles) on an average during the program execution. If the hardware could
divert some memory traffic to the unused registers, the number of idle cycles
would be reduced.

[11] describes an algorithm that statically partitions the register file into
shared registers and private registers. Shared registers can be accessed by all
threads safely, while private registers can only be accessed by one particular
thread. Conservatively, shared registers must not be live across any context

| Benchmark | Register Utilization

ipfdwr (1 ME) 22.27%
ipfdwr (4 ME) 23.02%
mdd (1 ME) 17.94%
md4 (4 ME) 12.67%
nat (1 ME) 25.74%
nat (4 ME) 25.35%
url (1 ME) 12.95%
url (4 ME) 10.60%

Table 2: Register Utilization Pre-Optimization

switch point. Even though this algorithm results in a large speedup over the
traditional network processor technique of partitioning the register file into equal
sets of private registers, it cannot fully utilize the register set because of the
conservative assumption that the other threads may be executing any possible
instruction in their context. Since the technique is purely static, it has to assume
all possible orderings of thread executions and thus the technique assumes that
a given register to a thread would be busy throughout the execution duration
of another thread. In short, it can not aggressively allocate private registers.
Let us consider the following example:

// no references to @15 or bib
cee // above this point
LO: br!=ctx[0,L1] // jump to L1, unless we are thread O
alu[@b15,a16,+,b17] // b[15]=a[ctx*Anum+16]+b[ctx*Bnum+17]
e // more code, but no branching
ctx_arb // ctx=next(ctx); goto pclctx];
e // more code, but no branching
alu[b17,a16,+,@b15] // blctx*Bnum+17]=a[ctx*Anum+16]+b[15]
L1: ... // no references to @bl5 or blb
// below this point

The register @B15 is live across a context-switch point. Assume each thread
executes the code at LO once. If there were just one thread, then static analysis
would allow us to conclude that @B15 is dead at L1, and so it can be reused after
execution reaches that point. However, in the presence of several simultaneous
threads executing at different points in the code, we must use some dynamic
mechanism to check that all threads have reached L1 before we can declare @B15
dead.

Increased register use would allow for reduction of redundant memory ac-
cesses. Table 3 shows that a large portion of memory accesses are comprised
of redundant loads. The double-load column shows the number of times the
program loads a value from memory twice without storing anything to that lo-
cation in between. Common causes are register spills, infrequent uses of values

Benchmark | # ME Double Loads

Total | % Mem Accesses

ipfwdr 1 349931 64.5%
ipfwdr 4 1319746 64.1%
md4 1 115367 11.1%
md4 4 152655 6.47%
nat 1 373967 58.3%
nat 4 548310 55.0%

url 1 479226 49.5%

Table 3: Memory Access Patterns for handwritten benchmarks

001010010011000011001 ‘ ‘ ‘ ‘ 20001 1000000000001
: 7 00001 1100000000001

Binary file Context—sensitive CFG Dataflow output

Figure 2: Overview of static side

over long lifetimes and aliasing. Obviously, diverting some of these accesses to
unused registers would reduce memory latency.

In conclusion, a significant opportunity exists to reduce the load/stores to
the memory and idle cycles. Faster thread execution leads to higher through-
put, which is the main purpose of network processors. This paper presents a
combination of static and dynamic mechanisms to put dead registers to work
towards that goal. The algorithm consists of two parts. First, static analysis
finds register usage patterns, and then that information is used dynamically to
map memory addresses to dead registers.

4 Static Implementation

The algorithm takes a binary file as input and outputs an annotated version of
the file (cf. figure 2.) It is assumed that the existing register allocator uses a
simple allocation strategy that divides the register set evenly among the threads.
However, the optimization will still work in the presence of a more advanced
allocation strategy.

First, the algorithm creates a control flow graph (CFG) that divides the
blocks into non-switch regions [11]. Non-switch regions are basic blocks that
have been sub-partitioned to include at most one context-switch instruction at

a=... c=...
= b=..
load ... if (..) brL1

L

ctx_switch

Figure 3: A non-switch region CFG

its boundaries, just as normal basic blocks contain at most one branch instruc-
tion. Figure 3 shows an example of a CFG that has been divided into non-switch
regions.

Next the scheme discovers dead-until-end registers by undertaking analy-
sis. The algorithm uses the following dataflow equations to discover the dead
registers,

Dead-Out(BB) = ﬂ Dead-In(s)

s€Succ(BB)
Dead-In(BB) = Dead-Out(BB) — Use(BB) — Def(BB)
Dead-In(EXIT)=U

It is important to note that Dead-In and Dead-0Out are not the inverse of
the traditional Live-In and Live-0Out. A dead register is made live by a use or
a def. This is because it is unsafe to use a dead register across a new definition
of it, even if that definition is never used. For example,

alulal4, al5, +, bi5]
alul[alb, al4, +, bi5]

alu[al4, al5, +, bi5]
By traditional dataflow analysis, a14 is dead after its use in the second line.

However, it’s cleary unsafe to treat al4 as if it is dead for the rest of the
program.

This work only finds registers that are dead for the duration of the program.
Since aliasing allows multiple names to map to the same address, it is unsafe
to unmap an address before the end of the program. In general, we also found
that globals are the most heavily used aliased variables which are live through
the execution of the program and we benefit most for their run time allocation.

The dead registers at several program points are collected into a hash-table.
At program initialization time, this table is loaded into SRAM. The bit vector
is 128 bits long. If the program uses only thread relative register references,
then the bit-vector size can be reduced to 32 bits.

Currently, the algorithm does not handle the case where the program uses
memory operations to communicate between microengines. This case cannot be
handled efficiently on the IXP1200, which the lacks the IXP2800’s Next Neigh-
bor register communication mechanism [5]. So, first the algorithm determines
which addresses are used for inter-engine communication and which are used
for spill values. Then, it extends the option field of every memory operation to
note whether a memory operation is local or global.

5 Dynamic Implementation

The goal of dynamic part of this work is to map memory addresses to dead
registers. The hardware then replaces any instructions which use the mapped
memory address with fast register-move instructions. The registers identified
to be dead by static phase above (and loaded through the SRAM hash table)
are used for allocation. For example, if the address 128 is the target of a store
instruction and GPRs A15-17 are dead, it can rewrite the following instruction
sequence,

alu[$0, a3, +, b4l
sram[write, $0, 128, 0, 1] CTX_SWAP

sram[read, $0, 128, 0, 1], CTX_SWAP
alulal, b2, +, $0]

as

alul[al6, a3, +, b4l
alul[al5, --, b, ail6]

alul[al7, --, b, ail5]
alul[al, b2, +, al7]

Now suppose that only GPR A15 is dead. The hardware greedily allocates
the dead register to next address that requires it, the write transfer register $0.
If there are no remaining registers to allocate for the address 128. The following
instruction sequence will be generated by the hardware: 2

2We used symbolic machine-code notation with mnemonics similar to assembly instructions
instead of actual machine codes

10

Instruction Instruction Guess Branch ALU Op ‘Write Result
|
Lookup Decode

Register
Re—mapping
Mechanism

Figure 4: The modified IXP pipeline stages

Register Type Mem Address | Register Map
(4 bits) (17 bits) (7 bits)
| ad || 0 | 0x0F000 | b4 |

Table 4: Example Book-keeping Entry

alulal5,a3,+,b4]
alul[$0, --,b,al5]
sram[write,$0,128,0,1],ctx_swap

sram[read, $0,128,0,1],ctx_swap
alulal,b2,+,$0]

This transformation preserves the correctness of the original code, at the cost
of an additional move instruction.

The new hardware to perform the above dynamic allocation is inserted into
the fourth pipeline stage. (see Figure 4). At that point, the ALU output forms
the memory address for any memory operation. This allows the hardware to
use the actual value of a memory address instead of an alias for it.

Figure 5 formally illustrates the finite state machine for the allocation hard-
ware. The hardware checks if the current memory address is already stored in
the table; if so, it replaces the memory operation with a register move instruc-
tion. If the current memory address is not in the table, it allocates one of the
remaining dead registers and creates a map between the dead register and the
address. The remainder of this section explains in detail how this process is
done in hardware.

The new storage hardware consists of a CAM table and a hash table. The
8-entry CAM table is a mapping between a memory address and a register
which contains the contents of the memory address. The 64-entry hash table is
a mapping between a program point (PC) and the dead registers available at
that program point.

Each book-keeping entry contains the type of memory acccessed along with
the address. The type tag also doubles as a valid bit, with type 0 corresponding

11

return reg from
<addr,type, reg>
pair

Lookup <addr,type>
in reg—map

P\ return null-reg
out = dead—reg—th1

& dead-reg—th2
& dead-reg—th3
& dead-reg—th4

not found
b = choose a set

bit from out

insert <addr,type,b>
into reg—map
return b

Figure 5: Dynamic Allocation FSM

to the invalid state. The memory is then bypassed by accessing the register in
the Register Map entry. In the case of table 4, register @b4 contains the contents
of memory address 0x0F000.

If the current address is not in the lookup table, the hardware allocates an
unused register. It determines that a register is a candidate for allocation if it
appears in the intersection of the dead-rest bit-vectors for all four threads at
the most recent context switch. For example, if registers 0-2 are dead in threads
0-2 and registers 0,2 are dead in thread 3, the hardware computes

1110...0 & 1110...0 & 1110...0 & 1010...0 = 1010...0

so registers 0 and 2 are candidates for allocation. It arbitrarily selects the first
bit which is set, so in this case the hardware will allocate register 0 to the next
memory address.

Table 5 shows the contents of the 64-entry hash table. The 10-bit PC is the
index into the hash table, but the hardware only stores 5-bits for the PC in
the table. The software side generates a minimal perfect hash function [1] that
maps each 10-bit PC onto a 5-bit number. Since the program only uses a small
subset of the entire PC range as dead-register points, the software can generate
a fast hash function that correctly maps a 64-entry subset of program points
onto 5-bit numbers. The 32-bit dead-register bit-vector contains a listing of all
(thread-relative) dead-registers at the given program point. If the program uses
absolute register references in addition to thread-relative register references, we

12

PC Hash || Dead-Register Bit- Vector
(5 bits) (32 bits)
0 0010...0
63 0110...1

Table 5: The 64-entry hash table

must keep a 128-bit dead-register bit-vector which increases the storage space
by a large amount.

The new hardware affects the latency of all memory operations. By default,
even if the hardware cannot create a mapping between the memory operation
and a register, there is still a latency penalty of 2 cycles for the opcode match
followed by the CAM lookup. If there is a match for the memory address in
the CAM table, the operation must take an additional 5 cycle latency penalty
to restart the pipeline with the new move instruction that replaces the old
memory operation. Finally, if there is no match for the memory address, but
there exist free dead-registers, there is another 1 cycle of latency for the test-
and-set operation to allocate a dead-register. So, the latency ranges from 2
cycles (default case) to 8 cycles (unmatched memory address + free dead regs).
The hash-table lookup is performed in parallel with the CAM lookup, so it does
not add any extra cycles to the overall latency penalty.

The overall chip size increases by 323 bytes. The 8-entry CAM table requires
27 bits * 8 entries = 27 bytes. The 64-entry PC hash table requires 37 bits *
64 entries = 296 bytes.

It may be noted that the solution is off the critical path which does not affect
the clocking speed or the latency involved in the design. First, such a processing
is only done at context switch points caused by memory (SRAM or SDRAM)
accesses. Prefetching I used to get the relevant entry of the mapping table (due
to space limitations we can not get into the details of this part but in short when
a non-context switch region is entered all its exit entries are prefetched). Thirdly,
the memory access is not delayed beyond the corresponding latency since these
operations are performed in parallel. The only thing that gets delayed is the
decision to context switch. In most cases, when dead registers are found, the
context switch does not happen letting the current thread to continue, only
when dead registers are not found, one context switches the added latency here
being 8 cycles.

We now present a full example to illustrate the technique.

Example. Suppose 4 registers in the A bank and 4 registers in the B bank
are available. Given the following code sequence:

LO: alul[a3, al, +, b2]
alu[b2, a0, +, b0]
alu[$0, a3, +, b2]

13

alu[a3, al, +, b2]
alu[b2, a0, +, b0]
alu[$0, a3, +, b2]
sram[write, $0, 128, 0, 1], ctx_swap

alu[a3, a2, +, b2]
sram[read, $0, 128, 0, 1], ctx_swap

dead-regs: 1111111111111 111111111111111111

dead-regs: 11111111111111111111111111111111

alufal, b2, +, $0] dead—regs: 1111111111T11T1IT1T1111111111111

bbend dead—regs: 1111111111111 1111111111111111111

Figure 6: Example 1 - The Non-Switch Region CFG

L1: br!=ctx[0, L2]

L2: sram[write, $0, 128, 0, 1], ctx_swap

alula3, a2, +, b2]

sram[read, $0, 128, 0, 1], ctx_swap

L3: alufal, b2, +, $0]

Figure 6 shows the example as divided into non-switch regions. Then, figure
7 shows the example after dataflow analysis has been performed. Before L0, the
following registers are dead: bl,b3. Before L2, the following registers are dead:

a0,b0,b1,b3.

Now when the hardware reaches the third instruction, it must replace the
register $0 with a general purpose register. The updated 8-entry CAM table is

shown in table 6 So, the new instruction sequence is:

LO: alula3, al, +, b2]
alul[b2, a0, +, bO]
alul[bl, a3, +, b2]
L1: br!=ctx[0, L2]

L2: sram[write, $0, 128, 0, 1], ctx_swap

alula3, a2, +, b2]

sram[read, $0, 128, 0, 1], ctx_swap

L3: alulal, b2, +, $0]

The dynamic register allocator changes the fifth instruction to a new move
instruction. The new contents of the CAM table are shown in table 7.

LO: alul[a3, al, +, b2]
alul[b2, a0, +, bO]

14

alu[a3, al, +, b2]
alu[b2, a0, +, b0]
alu[$0, a3, +, b2]
sram[write, $0, 128, 0, 1], ctx_swap

alu[a3, a2, +, b2]
sram[read, $0, 128, 0, 1], ctx_swap

dead-regs: 10001111111111110101111111111111

dead—regs: 10001111111111111011111111111111

alufal, b2, +, $0] dead-regs: 101TTTTTTTITTTT1110ITIITTT111111

bbend dead—regs: 1111111111111 1111111111111111111

Figure 7: Example 1 - The Dead Registers found by DFA

Type Mem Address | Register Map
(8 bits) (17 bits) (7 bits)
sram-wr-xfer 0 bl
- - 0
- - 0
- - 0
- - 0
- - 0
- - 0
- - 0

Table 6: Example 1 - The Register Map Table pl

15

Type Mem Address | Register Map

(8 bits) (17 bits) (7 bits)
sram-wr-xfer 0 bl
sram 128 a0
- - 0
- - 0
- - 0
- - 0
- - 0
- - 0

Table 7: Example 1 - The Register Map Table p2

alu[bl, a3, +, b2]

L1: br!=ctx[0, L2]

L2: alula0, --, b, bi]

alul[a3, a2, +, b2]

sram[read, $0, 128, 0, 1], ctx_swap
L3: alulal, b2, +, $0]

The allocator changes the seventh instruction to a move instruction as
well. It must also allocate a new GPR for the read transfer register $0. The
new contents of the CAM table are shown in table 8.

LO: alula3, al, +, b2]
alul[b2, a0, +, bO]
alul[bl, a3, +, b2]
L1: br!=ctx[0, L2]
L2: alula0, -—, b, bi]
alul[a3, a2, +, b2]
alu[b3, --, b, a0l
L3: alulal, b2, +, $0]

Finally, the allocator maps the use of the read transfer register $0 in instruc-
tion 8 to its GPR located in the CAM table.

LO: alula3, al, +, b2]
alu[b2, a0, +, bO]
alu[bl, a3, +, b2]
L1: br!=ctx[0, L2]
L2: alul[a0, --, b, bi]
alula3, a2, +, b2]
alu[b3, -—, b, a0]
L3: alulal, b2, +, b3]

16

Type Mem Address | Register Map

(8 bits) (17 bits) (7 bits)
sram-wr-xfer 0 bl
sram 128 a0
sram-rd-xfer 0 b3
- - 0
- - 0
- - 0
- - 0
- - 0

Table 8: Example 1 - The Register Map Table p5

6 Other IXP Implementation Details

6.1 Transfer Registers

The processor uses transfer registers [4] when transmitting to external devices
such as SRAM. Transfer registers are not general-purpose and can only be ex-
clusively read or written. A transfer register must appear as the source of a
store operation instruction, but it can not be used as the corresponding source
register in the new move instruction. For example, if hardware needs to map
address 128 to register Al, transforming

sram_write $0, 128, ..., CTX_SWAP
into
alu_b A1, $0

the value of $0 in the resulting instruction is the value of the read transfer
register $0, not the value of write transfer register.

For the address-register mapping scheme to work, instructions that use trans-
fer registers must replace those registers with general purpose registers. This
can mean that 2 general purpose registers are required for each memory-address
transfer-register pair, but in practice one transfer register is used for a large
number of memory addresses.

Statically, this work needs to account for the case where a transfer register
is the source of a memory operation such as t_fifo_wr, a write to the transfer
FIFO, that is not rewritten by the address-register mapper. The algorithm
does this by looking for the next store instruction following a transfer register
definition and the previous load instruction following a transfer register use. If
the load or store instruction is not a possible remap target, the algorithm notes
that in the option field of the corresponding instruction that uses the transfer
register. If the transfer register is the source of both types (via a branch), then
the program splits the instruction into a mappable and non-mappable version.
For example, the following program

17

immed $0 1
sram_write $0 BO O 1
immed $1 5
t_fifo_wr $1 Bl B2 1
t_fifo_rd $2 B2 0 1

alu_add A1 A3 $2
immed $1 7
br=ctx 0 LO

t_fifowr $1 B3 0 1
LO: sram_write $1 BO 0 1

transforms into

immed $0 1
sram_write $0 BO 0 1
immed $1 5 NO_MAP

t_fifo_wr $1 Bl B2 1
t_fifo_rd $2 B2 0 1

alu_add A1l A3 $2 NO_MAP
immed $1 7

immed $1 7 NO_MAP
br=ctx 0 LO

t_fifo_wr $1 B3 O
LO: sram_write $1 BO O

This example shows all of the possible cases. The transfer register instructions
that associated with the FIFO operations are annotated with the NO_MAP option.
The transfer register instruction that is the source of both a t_fifo_wr instruc-
tion and a sram write instruction is split into two transfer register instructions,
one of which has the NO_MAP option.

6.2 Unpacking Memory Instructions

A memory instruction can load or store a range of words at once. In that case
the transfer register specified in the destination slot only represents the start
of the range of transfer registers used in the operation. The hardware needs to
unpack the memory operation, so that each transfer register is exposed in the
instruction stream.

For example,

sram_write $0 BO 0 4
transforms into

sram_write $0 BO
sram_write $1 BO
sram_write $2 BO
sram_write $3 BO

W N = O
A

18

Benchmark # SRAM Loads | # SRAM Loads | % Decrease
Pre-Opt Post-Opt
ipfdwr (1 ME) 339643 301484 11%
ipfdwr (4 ME) 1284455 1134751 12%
md4 (1 ME) 674500 571901 15%
md4 (4 ME) 1739127 1471492 15%
nat (1 ME) 491110 364786 25%
nat (4 ME) 732668 568279 23%
url (1 ME) 860114 785074 9%
url (4 ME) 2612944 2407754 8%

Table 9: Dynamic Load Count

Benchmark # SRAM Stores | # SRAM Stores | % Decrease
Pre-Opt Post-Opt
ipfdwr (1 ME) 91515 74127 19%
ipfdwr (4 ME) 351549 283618 19%
md4 (1 ME) 320169 256253 20%
md4 (4 ME) 894918 187932 21%
nat (1 ME) 207839 149644 28%
nat (4 ME) 346453 261299 25%
url (1 ME) 132049 94208 12%
url (4 ME) 420058 365450 13%
Table 10: Dynamic Store Count
7 Results

This paper uses a subset of the Netbench [2] benchmark suite for its results. We
could only use a small subset of the suite that has been ported to NePSim [10].

Each benchmark executes forever, the first 8000000 instructions run on each
benchmark before halting. The benchmarks are run on all 6 microengines (4
intermediate MEs) and on 3 microengines (1 intermediate ME).

Tables 9 and 10 show the SRAM dynamic load+store counts before and af-
ter optimization. There are two factors which limit the number of load+stores
which can be removed: 1) Most importantly, the optimization requires many
registers, while the number of available dead registers is limited. 2) Some of
the load+store activity facilitates inter-engine communication; these cannot be
removed. The store numbers are universally better than the load numbers be-
cause any store can be immediately allocated to a register, while a load requires
that a corresponding store is already allocated to a register.

Table 11 shows the reduction in idle cycles. The idle cycle reduction varies
between benchmarks. However, we observe a correlation between the dynamic

19

Benchmark Pre-Opt | Post-Opt | Decrease Post-Opt | Decrease
8-cycle lat 10-cycle lat

ipfdwr (1 ME) 61 139 | -221% 334 | -548%
ipfdwr (4 ME) || 88217 - - 49019 | 55.6%
md4 (1 ME) || 620387 469737 | 25.4% - -

md4 (4 ME) || 9574894 | 9470987 1.1% 9565548 0.1%
nat (1 ME) 101284 26676 | 73.7% 50443 | 50.2%
nat (4 ME) 106866 38325 | 64.1% 73344 | 31.4%
url (1 ME) || 1006534 860238 | 14.5% 1058777 | -5.2%
url (4 ME) || 7728240 | 7079193 8.4% 7376432 16%

Table 11: Idle Cycle Count

load+store count and the idle cycle reduction. Also, the relative number of idle
cycles removed decreases when the number of microengines increases. This is
probably due to the increase in cross-microengine communication.

We also performed experiments that change the amount of latency associated
with the new hardware. If, for instance, the hash table lookup and the CAM
table lookup can not be done in parallel, the total latency increases from 8 cycles
worst-case to 10 cycles worst-case (I assumed that the hashing and retrieval can
be completed in 2 cycles). The idle cycle reduction for 10-cycle worst-case
latency hardware is obviously worse than the idle cycle reduction for 8-cycle
worst-case latency hardware, but overall the performance gain is still good.

There is a 50% reduction in idle cycles for the nat benchmark.

Table 12 shows the increase the packet throughput for each benchmark. In-
tuitively a decrease in idle cycles should cause an increase in throughput perfor-
mance. The throughput however is a complicated function of many parameters
not just idle cycles. We examined the benchmarks and the throughput is mainly
a function of the design and inter PE communication which is not handled by
our framework. In some cases, the idle cycles form a part of the critical path
and our framework optimized it away significantly. For example, there is a 14%
increase in the speed of the nat benchmark, which is promising.

Table 13 shows the different reasons that the algorithm is unable to re-
move all spills. Cross-communication indicates a memory access that is inher-
ently unremovable with the current IXP hardware. It is a memory access the
programmer uses for communication with another microengine rather than for
storage purposes. The more important reason that the hardware cannot remove
a spill is due to size restrictions. The program only has a limited amount of
dead registers, furthermore the CAM table can only hold 8 different addresses
simultaneously.

20

Benchmark #Pkts #Pkts | % Increase
Pre-Opt | Post-Opt
ipfdwr (1 ME) 18297 18701 2.21%
ipfdwr (4 ME) 70302 75490 7.38%
md4 (1 ME) 4210 4485 6.53%
nat (1 ME) 28645 32755 14.35%
nat 44898 50101 11.59%
url 2174 2245 3.27%
url 7139 7387 3.47%

Table 12: Throughput

| Benchmark [Removed Spills | Cross-Communication | Out of Space |
ipfwdr (1 ME) 55547 22248 353363
ipfwdr (4 ME) 217635 31599 1386770
md4 (1 ME) 166515 52399 775755
mdd (4 ME) 974621 181459 1477965
nat (1 ME) 184519 33410 481020
nat (4 ME) 249543 81628 747950
wrl (1 ME) 112881 174325 831857
url (4 ME) 259798 204846 3292800

Table 13: The different types of memory accesses

21

8 Related Works

[11] is the work most related to this paper. That paper introduces the concept
of splitting the register file into shared and private registers. A shared register
must be dead across all context switch points. This paper extends [11] by the
relaxing the constraint that the shared register must always be dead across
context switch points.

[3] presents an alternative scheme for IXP register allocation. It uses Integer
Linear Programming to solve to optimally allocate the registers based on the
constraints set for each register type. This static technique performs well in
practice, but they do not address the issue of threads in their paper or inter-
thread allocation.

Register renaming is an old concept in superscalar processors [8] [7]. There
are two key differences between the renaming mechanism presented here and
the renaming unit in a superscalar processor. The hardware presented here
attempts to rename memory addresses to register, rather than renaming virtual
registers to physical registers. Also, the goal here is to reduce memory activity,
while traditionally the goal is to remove data dependencies between instructions,
increasing the amount of parallelism.

9 Conclusion

In conclusion, the dynamic register allocation approach presented here attempts
to go beyond the best statically available allocation techniques, by combining
static analysis with dynamic allocation. By dynamically mapping memory ad-
dresses onto registers, it can reduce the total number of dynamic memory op-
erations. In turn, reducing the total number of memory operation reduces the
idle cycle count, which is the goal of all optimizations for systems with real-time
constraints.

The results show that this approach is able to reduce idle cycle counts in all
benchmarks and achieve an unweighted average decrease of 51% in idle cycles
with a 8 cycle latency. These results also show that idle counts can be reduced
even further if hardware supporting Next Neighbor registers is available. The
hardware overhead introduced by our method is insignificant and is off the
critical path. This paper shows that it is viable to use smart dynamic allocation
techniques over existing static algorithms.

Our current work is focused on getting around the limitations of running out
of dead registers. In particular, we are developing dynamic deadness detection
mechanisms to assist in this regard by combining static analysis with dynamic
information.

References

[1] Qi Fan Chen Edward A. Fox, Lenwood S. Heath and Amjad M. Daoud.
Practical minimal perfect hash functions for large databases. CACM, Jan-

22

uary 1992.

[2] W. Hu. G. Memik, W.H. Mangione-Smith. Netbench: A benchmarking
suite for network processors. In Proceeding of the International Conference
on Computer Aided Degin, June 2001.

[3] Lal George and Matthias Blume. Taming the ixp network processor. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2003.

[4] Intel Corporation. Intel IXP1200 Processor Family - Reference Manual,
December 2001.

[5] Intel Corporation. Intel IXP2800 Processor Family - Reference Manual,
August 2004.

[6] Y. Park J. Kim, S. Jung. Experience with a retargetable compiler for for
a commericial network processor. In Proceeding of Internation Conference
on Compilers, Architecture and Synthesis for Embedded Systems, October
2002.

[7] Mateo Valero et. al. Teresa Monreal, Antonio Gonzélez. Delaying physical
register allocation through virtual-physical registers. In Proceedings of the
32nd Annual International Symposium on Microarchitecture, 1999.

[8] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal of Research and Development, January 1967.

[9] J. Wagner and R. Leupers. C compiler design for an industrial network
processor. In Proceedings of ACM SIGPLAN Conference on Languages,
Compilers, and Tools for Embedded Systems, June 2001.

[10] Laxmi Bhuyan Yan Luo, Jun Yang and Li Zhao. Nepsim: A network pro-
cessor simulator with power evaluation framework. IEEE Micro Special
Issue on Network Processors for Future High-End Systems and Applica-
tions, 2004.

[11] Xiaotang Zhuang and Santosh Pande. Balanced register allocation across
threads for a multi-threaded network processor. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, 2004.

23

