
ON-CHIP PHENOTYPIC SCREENING AND 

CHARACTERIZATION OF C. ELEGANS ENABLED BY 

MICROFLUIDICS AND IMAGE ANALYSIS METHODS 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

by 

 

 

Ivan de Carlos Cáceres Mendieta 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Bioengineering 

 

 

Georgia Institute of Technology 

December 2013 

 

COPYRIGHT 2013 BY IVAN DE CARLOS CÁCERES MENDIETA 



 



ON-CHIP PHENOTYPIC SCREENING AND 

CHARACTERIZATION OF C. ELEGANS ENABLED BY 

MICROFLUIDICS AND IMAGE ANALYSIS METHODS 

 

 

 

 

 

 

Approved by:   

   

Dr. Hang Lu, Advisor 

School of Chemical & Biomolecular 

Engineering 

Georgia Institute of Technology 

 Dr. Xiaoping Hu 

School of Biomedical Engineering 

Georgia Institute of Technology 

   

Dr. Oliver Brand 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 Dr. Todd Streelman 

School of Biology 

Georgia Institute of Technology 

   

Dr. Robert Butera 

School of Electrical and Computer 

Engineering 

Georgia Institute of Technology 

 Date Approved:  August 20, 2013 



   

   

  



 

 

 

 

 

 

 

 

 

To my family. Sin ustedes, no soy nada. 

  

 

 

 

 

 



 

iv 

ACKNOWLEDGEMENTS 

 

 I’d like to acknowledge my Principal Investigator, Dr. Hang Lu for molding me 

into a better scientist. The road wasn’t an easy one, but I couldn’t have made it to this 

point without her guidance. I know I haven’t always been the best graduate student, but 

despite everything, she stuck by my side and gave me the opportunity to succeed within 

her lab. I would also like to acknowledgement my committee members for their insightful 

comments and feedback throughout my many years at Georgia Tech, and maybe most of 

all, for having patience with me.  

 I have had too much help than I can give credit for while a graduate student. 

Without my family and friends (both in ATL and TX), I wouldn’t have survived the 

madness that is known as pursuing my PhD. I thank you all immensely. It has been a long 

journey these past seven years, but with you all by my side I finally have reached the end 

of what seemed not too long ago, like a never ending tunnel. I love you all more than I 

can describe in words and share my accomplishment with you. I could not have done this 

on my own, thank you.  

 



 v 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ......................................................................... IV 

LIST OF TABLES ........................................................................................ IX 

LIST OF FIGURES ........................................................................................ X 

LIST OF SYMBOLS AND ABBREVIATIONS ........................................ XII 

SUMMARY ................................................................................................ XIII 

CHAPTER 1 INTRODUCTION .............................................................................. 1 

1.1 Thesis objectives ................................................................................................. 1 

CHAPTER 2 LITERATURE REVIEW ................................................................... 3 

2.1 The model organism C. elegans.......................................................................... 3 

2.1.1 Standard genetics screening methods of C. elegans ....................................... 4 

2.1.2 C. elegans as a model for neurodegeneration ................................................. 5 

2.2 Microfluidics ....................................................................................................... 5 

2.2.1 Soft lithography as a tool for biomedical research ......................................... 6 

2.2.2 Microfluidics and C. elegans .......................................................................... 7 

2.3 Image analysis for biomedical applications ........................................................ 8 

2.3.1 Segmentation methods .................................................................................... 9 

2.3.2 Morphological processing ............................................................................. 10 

2.3.3 Image analysis and C. elegans ...................................................................... 11 

CHAPTER 3 LATERALLY ORIENTING C. ELEGANS USING GEOMETRY AT 

MICROSCALE FOR HIGH-THROUGHPUT VISUAL SCREENS IN 

NEURODEGENERATION AND NEURONAL DEVELOPMENT STUDIES ......... 13 

3.1 Introduction ....................................................................................................... 13 

3.2 Materials and Methods ...................................................................................... 14 

3.2.1 Microfluidic device fabrication and operation .............................................. 14 

3.2.2 Orientation Analysis ..................................................................................... 16 

3.2.3 C. elegans culture, mutagenesis, and phenotype scoring .............................. 17 

3.2.4 C. elegans mock screen and egg-laying assay .............................................. 18 

3.3 Results ............................................................................................................... 19 

3.3.1 Sample loading orientation and device characterization .............................. 19 



 vi 

3.3.2 Identification of neurodegenerative and neurodevelopmental mutants using 

curved channel microfluidic devices......................................................................... 22 

3.3.3 Phenotype characterization of mutant animals ............................................. 25 

3.4 Discussion ......................................................................................................... 29 

CHAPTER 4 AUTOMATED SCREENING OF C. ELEGANS 

NEURODEGENERATION MUTANTS ENABLED BY MICROFLUIDICS AND 

IMAGE ANALYSIS ALGORITHMS ......................................................................... 34 

4.1 Introduction ....................................................................................................... 34 

4.2 Materials and methods ...................................................................................... 36 

4.2.1 Microfluidic device fabrication and operation .............................................. 36 

4.2.2 C. elegans culture, mutagenesis, and phenotype scoring .............................. 36 

4.2.3 Automated system operation......................................................................... 37 

4.3 Results and discussion ...................................................................................... 39 

4.3.1 Microfluidic device performance .................................................................. 39 

4.3.2 Manual screen for suppressor mutants .......................................................... 41 

4.3.3 Software design and validation ..................................................................... 43 

4.3.4 Automated screen for suppressors of smn-1 mutation .................................. 48 

4.4 Conclusions ....................................................................................................... 52 

CHAPTER 5 HIGH THROUGHPUT CHARACTERIZATION OF SPHERICAL 

OBJECTS USING MODIFIED GRANULOMETRY ALGORITHM FOR RAPID 

CHARACTERIZATION OF C. ELEGANS LIPIDS .................................................... 53 

5.1 Introduction ....................................................................................................... 53 

5.2 Materials and Methods ...................................................................................... 55 

5.2.1 C. elegans culture, mutagenesis, imaging, and manual lipid characterization

 55 

5.2.2 Synthetic image creation and software validation ........................................ 56 

5.2.3 Analysis of nematode lipid distribution ........................................................ 57 

5.3 Results and Discussion ..................................................................................... 61 

5.3.1 Software Estimation of Object Population Percentage and Size Validated 

Using Synthetic and Bead Images ............................................................................ 61 

5.3.2 Software Characterization of Wild-Type and Lipid Metabolism Mutant 

Populations Mimics Known Distributions ................................................................ 66 

5.3.3 Software Method Capable of Characterizing Low Resolution Images for 

Characterization of Wilde-Type and Lipid Mutant Populations ............................... 71 



 vii 

5.4 Conclusions ....................................................................................................... 75 

CHAPTER 6 AUTOMATED CHARACTERIZATION OF 

NEURODEGENATIVE AND NEURODEVELOPMENT DEFECT MUTATIONS IN 

C. ELEGANS 76 

6.1 Introduction ....................................................................................................... 76 

6.2 Materials and Methods ...................................................................................... 78 

6.2.1 Microfluidic device fabrication, design, and operation ................................ 78 

6.2.2 C. elegans strains, culture, mutagenesis, and imaging ................................. 79 

6.2.3 Probability model used for PQR characterization and analysis .................... 79 

6.2.4 Intensity profile peak detection for classification of neurodegenerative 

phenotypes ................................................................................................................ 82 

6.3 Results and Discussion ..................................................................................... 82 

6.3.1 Microfludic devices used for manual genetic screening ............................... 82 

6.3.2 Manual screen to find mutants expressing neurodegeneration and neural 

developmental defects ............................................................................................... 85 

6.3.3 Algorithm to detect and characterize neurodegenerative and neural 

development mutants ................................................................................................ 88 

6.3.4 Software validation using known phenotypes of isolated alleles ................. 93 

6.4 Conclusions ....................................................................................................... 96 

CHAPTER 7 CONCLUSIONS AND FUTURE DIRECTIONS............................ 98 

7.1 Research significance........................................................................................ 98 

7.2 Future directions ............................................................................................. 101 

APPENDIX.................................................................................................. 105 

A.1. Laterally Orienting C. Elegans Using Geometry At Microscale For High-

Throughput Visual Screens In Neurodegeneration And Neuronal Development Studies

 105 

A.2. Automated Screening Of C. Elegans Neurodegeneration Mutants Enabled By 

Microfluidics And Image Analysis Algorithms .......................................................... 106 

A.2.1. Motor neuron segmentation ........................................................................ 106 

A.2.2. Automated system operation....................................................................... 107 

A.2.3. Neuron distribution for alleles isolated from same F1 population ............. 110 

A.3. High throughput characterization of spherical objects using modified 

granulometry algorithm for rapid characterization of C. elegans lipids ..................... 114 



 viii 

A.3.1. Specialized software method for epi-flourescent data ................................ 114 

A.4. Automated characterization of neurodegenative and neurodevelopment defect 

mutations in C. elegans ............................................................................................... 115 

A.4.1. Image preprocessing, worm body detection, neuron segmentation, and cell 

body isolation .............................................................................................................. 115 

A.4.2. Connectivity model used for joining PQR segments .................................. 117 

A.4.3. Deleting invalid objects .............................................................................. 117 

A.4.4. Reassigning current evaluation points and dendrite process selection ....... 118 

A.4.5. Estimating probability of connection .......................................................... 118 

A.4.6. Calculating angle probability of connection ............................................... 119 

REFERENCES ............................................................................................ 120 

 

 

 

 



 ix 

LIST OF TABLES 

Table 1. Summary of software analysis  of single-size population bead experiments. .... 66 

Table 2. Number of D-type motor neurons detected for all alleles. ............................... 113 

 

 

 



 x 

LIST OF FIGURES 

Figure 1. Microfluidic device to passively orient C. elegans for visual screening. .......... 16 

Figure 2. Effect of curved channel on animal orientation. ............................................... 20 

Figure 3. Morphology of wild-type and defective D-type motor neuron commissures. .. 25 

Figure 4. Adult phenotype characterization. ..................................................................... 26 

Figure 5. L1 phenotype characterization. ......................................................................... 27 

Figure 6. Cell specific characterization for L1 animals. ................................................... 28 

Figure 7. Single layer microfluidic device. ....................................................................... 40 

Figure 8. Suppressor of smn-1 phenotype from manual pilot screen. .............................. 42 

Figure 9. On-chip image analysis for system automation................................................. 44 

Figure 10. Application of mean-filter to remove false positives. ..................................... 47 

Figure 11. Average number of D-type motor neurons per allele. ..................................... 49 

Figure 12. Characterization of isolated alleles. ................................................................. 51 

Figure 13. Granulometry process on example image. ...................................................... 59 

Figure 14. Size analysis of synthetic images. ................................................................... 62 

Figure 15. Effect of object proximity and intensity variation on software results. .......... 63 

Figure 16. Size analysis of fluorescent beads. .................................................................. 64 

Figure 17. Software analysis of single-size population bead experiments. Sum of all 

image results instead of mean shown for this figure................................................. 65 

Figure 18. Lipid analysis of C. elegans images. ............................................................... 68 

Figure 19. Intenisity analysis of single lipids for wild-type and atln-1 mutant populations.

................................................................................................................................... 70 

Figure 20. Software analysis of lipid size for epi-flourescent data................................... 73 

Figure 21. Devices used for manual genetic screening and nematode age compatibility. 83 

Figure 22. Movement of animals in curved and straight channel devices. ....................... 85 

Figure 23. Example phenotypes of mutants isolated from pilot screen. ........................... 86 



 xi 

Figure 24. Penetrance of specific defects for isolated alleles. .......................................... 87 

Figure 25. Software characterization of PQR neuron. ...................................................... 92 

Figure 26. Qualitative accuracy examples. ....................................................................... 94 

Figure 27. Proportion of adult animals in a population with at least one incidence of each 

independent defect (%). .......................................................................................... 105 

Figure 28. Proportion of L1 animals in a population with at least one incidence of each 

independent defect (%). .......................................................................................... 106 

Figure 29. Penetrance of defects per cell in L1 populations with at least one incidence of 

each independent defect (%). .................................................................................. 106 

Figure 30. System level diagram of operation. ............................................................... 109 

Figure 31. Histogram for alleles a183, a184, and a185.................................................. 110 

Figure 32. Histogram for alleles a186, a187, and a188.................................................. 111 

Figure 33. Histogram for alleles a190 and a192............................................................. 112 

Figure 34. Histogram for alleles a199, a200, and a201.................................................. 113 

  

 

 



 xii 

LIST OF SYMBOLS AND ABBREVIATIONS 

C. elegans Caenorhabditis elegans 

 

GFP Green fluorescent protein 

 

ND Neurodegeneration 

 

PDMS Polydimethylsiloxane 

  

  

  

  

 



 xiii 

SUMMARY 

Since its introduction in 1960’s, the model organism Caenorhabditis elegans has played a 

crucial role towards scientific discoveries because of its relatively simple anatomy, 

conserved biological mechanisms, and mapped genome. The organism also has a rapid 

generation time and produces a large number of isogenic progeny, making C. elegans an 

excellent system for conducting forward genetic screens. Conventional screening 

methods, however, are labor intensive and introduce potential experimental bias; 

typically, large-scale screens can take months to years. Thus, automated screening and 

characterization platforms can provide an opportunity to overcome this bottleneck. 

 The objective of this thesis is to develop tools to perform rapid phenotypical 

characterization of C. elegans to enable automated genetic screening systems. To achieve 

this goal, I developed methods to increase throughput of worm handling using 

microfluidic devices and demonstrate software modules to phenotype unknown mutants 

using quantitative and morphological image analysis methods. This thesis work is divided 

into four major projects, each of which is summarized below.  

 First, I design a simple and robust method for passively orienting worms into 

lateral body positions in microfluidic devices. Recently, microfluidic devices have been 

used for high-throughput genetic screens, replacing traditional methods of manually 

handling C. elegans. However, the orientation of nematodes within microfluidic devices 

is random and often not conducive to inspection, hindering visual analysis and overall 

throughput. I developed this design in order to facilitate inspection of morphological 

features with specific dorso-ventral alignments. Using this technique, I demonstrate the 

ability to position animals into lateral orientations with up to 84% efficiency, compared 

to 21% using existing methods. Additionally, I show the isolation of six mutants with 

neuronal development or neurodegenerative defects, validating that the technology can be 

used for on-chip analysis and high-throughput visual screens. 
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 Second, I engineer an automated system capable of performing genetic suppressor 

screens on C. elegans using the microfluidic design from the previous project in 

combination with custom image analysis software. I use this system to search for genes 

involved with spinal muscular atrophy (SMA), a degenerative disorder that selectively 

deteriorates motor neurons due to a deficiency of survival motor neuron protein (SMN). 

SMA is the leading genetic cause of death in infants and is difficult to study in complex 

biological systems such as humans; however, C. elegans can be used to study the specific 

mechanisms underlying this disease through the smn-1 gene, a homologue of SMN. In 

this project, I demonstrate the utility of the designed system by isolating 21 alleles that 

significantly suppress motor neuron degeneration at a screening rate of approximately 

300 worms per hour. Furthermore, the system is modular and easily adaptable, providing 

a means to saturate screens not only implicated in the smn-1 pathway, but also for genes 

involved in neurodegeneration in general. 

 Third, I expand on previous computational methods of analyzing circular cell 

bodies in low densities by using a modified granulometry algorithm to rapidly 

characterize large quantities of lipid droplets. A common problem in medical imaging is 

characterizing dense quantities of biological structures using standard segmentation 

techniques due to variations in object size, large amounts of occlusion, and non-uniform 

image intensity. The granulometry algorithm, introduced in the 1960’s, can be used to 

characterize dense images without the need to segment the image. This is performed by 

using a series of morphological processing operations to filter objects of various sizes. To 

validate the technique, we study C. elegans lipid distributions under various conditions. 

Lipid storage is widely studied in C. elegans since many genes and proteins involved in 

fat storage, transport, and metabolisis are highly conserved in vertebrate systems. Using 

this method, I demonstrate the ability to recreate lipid distribution trends seen in 

published studies, showcasing the ability of our algorithm to produce results comparable 

to manual analysis. Our method improves upon throughput of manual characterization of 
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lipid droplets, decreasing time requirements by 1000 fold, and eliminates the need to 

create 3D reconstructions from multi-focal plane image acquisition. Additionally, we 

demonstrate the ability to perform rapid computational analysis on low fidelity images 

acquired from epi-fluorescent microscopy systems, enabling real-time on-chip screening 

of for lipid mutations on comparatively inexpensive imaging systems.    

 Lastly, I present a method to correct for poor binarization of intensity-based 

segmentation techniques applied to neuronal processes using a probabilistic connectivity 

model. Using this model, I simultaneously enable a peak intensity method for the 

classification of neurodegenerative phenotypes. C. elegans is commonly studied in 

neurodegeneration and neural developmental research due to the number of available 

neuropathology mutants and highly conserved neural developmental cues and 

neurotransmitter systems.  Using the connectivity model to facilitate analysis of the tail 

sensory neuron PQR, I demonstrate an accuracy up to 80% for correctly identifying the 

neuron, joining incorrectly segmented and fragmented process segments when necessary. 

Additionally, I show a classification accuracy of 75% for neurodegenerative phenotypes 

when connectivity model returns faultless results. Run time for model and classification 

methods combined average approximately 10 seconds, and like our previous work, 

enables the potential to perform automated screens when combined microfluidic 

technology.  

 In this thesis, I integrate microfluidic chip and computer vision technologies to 

rapidly characterize both small and large quantities of spherical objects in addition to 

curved structures, enabling the rapid analysis of a multitude of phenotypes commonly 

seen in biology. This work is significant because it increases current capabilities of 

screening small animals with morphological phenotypes by enhancing throughput and 

reducing human bias. Genes or gene functions that can be discovered using these 

methods can further elucidate mechanisms relevant to neural development, degeneration, 
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maintenance, and function; these discoveries in turn can facilitate discoveries of potential 

therapeutic strategies for human diseases. 
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CHAPTER 1  INTRODUCTION  

The work presented in this dissertation aims to provide tools, analysis methods, and an 

automated system to aid scientists performs genetic screens by removing bottlenecks in 

current practices and technologies. To accomplish this goal, techniques from various 

fields such as biology, neuroscience, genetics, image processing, and system integration 

are applied in concert to create novel solutions to long-standing and existing problems 

with low throughput studies requiring manual operations and analysis. The focus of this 

work involves designing technology for, but not limited to, the comparatively simple 

organism Caenorhabditis elegans, widely used as a model to study various biological 

processes and diseases.  I present four methods to characterize and investigate C. elegans, 

increasing throughput and improving inspection by using microfluidic chips in 

combination with image analysis methods. Using these methods, I demonstrate the ability 

to perform high throughput quantitative screening and classification of mutant 

phenotypes, enabling the construction of a system for performing automated genetic 

screens. This technology facilitates the study of the genetic and molecular causes related 

to pathologies such as neurodegeneration and obesity. 

1.1 Thesis objectives 

Aim 1. Design microfluidic device to simplify genetic screens performed on C. 

elegans: Recently, scientists and engineers have demonstrated microfluidic systems 

capable of automated sorting and performing computer assisted genetic screens of C. 

elegans. However, animal loading within such devices is random, inhibiting inspection of 

biological features of interest along the ventral and dorsal body length, a body surface 

normally seen during animal locomotion and standard inspection methods. Additionally, 

current devices used for automated sorting are often highly complex, requiring separate 

cooling systems or complex device structures for animal immobilization. To alleviate 

these issues, I designed a microfluidic device for performing automated phenotypic 
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screens that passively orients animals within microfluidic channels; furthermore, the 

design uses a comparatively simple partial immobilization method to facilitate phenotype 

inspection and analysis. The microfluidic chip is constructed from polydimethylsiloxane 

(PDMS) using the well-established soft lithography process and positions animals into 

lateral orientations by using a curved channel that promotes nematode self-positioning. 

The device simultaneously partially immobilizes nematodes by constricting their 

movement within an imaging chamber without the use of anesthetics. 

Aim 2. Develop software modules to phenotype unknown mutants using quantitative 

and morphological image analysis methods: Animals inspected in this work were 

examined by custom image-analysis software created in MATLAB®. Software utilizes 

basic feature-detection methods and tunable parameters, making methods flexible to not 

only investigate mutants specific to this project, but other strains of the nematode for 

future studies as well. Worm phenotype is determined by quantitatively analyzing 

expression patterns of fluorescent neurons or lipid droplets and increases the throughput 

of manual screening methods by a minimum of 100 fold. 

Aim 3. Perform automated screens to validate developed technology: An automated 

screen was conducted by chemically mutagenizing a population of animals and then 

introducing them into the microsystem. The system successfully identified mutants by 

investigating neurons expressing green fluorescence protein (GFP). Semi-automated pilot 

screens were also performed to validate the proposed technology and pave the way for 

future applications of automated genetic screens of fluorescent markers in C. elegans.   
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CHAPTER 2  LITERATURE REVIEW 

This chapter introduces the model organism C. elegans and familiarizes the reader with 

the standard methods used in C. elegans research and why the organism is significantly 

studied in the field of neuroscience. The chapter also discusses the research area of 

microfluidics and how the technology has impacted biomedical and C. elegans research. 

Lastly, an overview of image processing as it relates to biomedical research is presented 

before discussing common segmentation and morphological image processing 

techniques. The chapter ends with a review of image processing methods that have 

facilitated C. elegans research. Information provided in this chapter is meant to 

familiarize the reader with the current methods and their limitations.  

2.1 The model organism C. elegans 

The soil nematode C. elegans is well-suited model organism for biological research 

because of its transparent nature (allowing in-vivo study of fluorescent markers), short 

generation time (three days), and ease of culture
1
. The animal is commonly used in a 

wide range of studies including geonomics, neuroscience, cell biology, aging, and 

development. While only comprised of 302 neurons, the nematode’s simple and well 

characterized nervous system is surprisingly capable of a wide range of behavior 

including chemotaxis, thermotaxis, and learning
2-4

. The animal is also ideally suited for 

genetic studies because: (1) over 99 percent of organisms in wild-type populations are 

self-fertilizing hermaphrodites, (2) C. elegans was the first multicellular organism to have 

its complete genome sequenced, (3) RNA interference (RNAi) can be used to knockdown 

specific genes in the animal, and (4) many mechanisms between the nematode and 

humans are highly conserved with homologues available for approximately 60 to 80 

percent of human genes
1,5-7

.  

 Since its introduction by Sydney Brenner, C. elegans has been involved in many 

key discoveries in the field of biomedical research. The Nobel Prize in physiology and 
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medicine was awarded both in 2002 and 2006 to scientists who used C. elegans for 

discoveries concerning organ development and programmed cell death and for gene 

silencing using RNAi respectively. The Nobel Prize in chemistry was also awarded in 

2008 to scientists who developed GFP in the nematode. The animal has even been used to 

elucidate several genes involved in diseases such as Alzheimer’s, type II diabetes, 

obesity, and depression, providing novel targets or methods to study therapeutic 

treatment for such ailments
1
. With applications in cell biology, drug discovery, 

neuroscience, and genetics, there is no doubt that many key findings using C. elegans as a 

tool for discovery remain to be seen. 

2.1.1 Standard genetics screening methods of C. elegans 

C. elegans is ideally suited for genetic studies because of its mapped genome and large 

number of human disease gene homologues. In addition, the animal’s ability to produce 

approximately 200 progeny provides the opportunity to perform large scale screening on 

a multicellular organism (as opposed to yeast) and within a short period of time (three 

days versus weeks and months for flies and mouse models respectively)
8
. With RNAi 

libraries containing targets for over 16 thousand of the 19 thousand genes in the worm, 

the potential impact of large scale screening of the nematode is clear
8
. 

 Despite the potential, standard practices for screening C. elegans are time-

consuming and low-throughput
9,10

. First, individual animals are picked from an agar plate 

and placed onto a microscope slide. The slide is usually prepared with an anesthetic such 

as sodium azide to immobilize the animal. When slide preparation is complete, worms 

are analyzed, identified, and then rescued and isolated onto a new plate. This entire 

process is then repeated for hours on end, for several days. Performing this manual 

process in a normal clonal screen provides a throughput of approximately ten haploid 

genomes per hour for an experienced scientist. At this rate of examination, saturating a 
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genetic screen, requiring the inspection of thousands of haploid genomes, would involve 

months, if not years, of labor intensive inspection.  

2.1.2 C. elegans as a model for neurodegeneration  

 Knowledge of the molecular mechanisms underlying neurodegeneration and 

neuronal development are critical for advancing the treatment of neurological 

pathologies; however, these processes in general are not fully understood. C. elegans 

presents an exquisite opportunity to elucidate some of these pathways despite its low 

level of evolutionary complexity. This is because of the high level of conserved 

mechanisms between the nematode and vertebrates. For example, similar to that of 

mammals, the development of the C. elegans nervous system is regulated by common 

guidance and polarity cues such as Netrin, Slt, Wnt, and Par protein complexes
11-15

. 

Adding to the considerable number of conserved molecular pathways between worms 

and mammals are major neurotransmitter systems as well
1,16

. Previous research has used 

C. elegans to study molecular mechanisms behind devastating neurodegenerative 

disorders such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis, and 

Huntington’s disease
1,16-19

. Furthermore, C. elegans have a mapped and comparatively 

simple nervous system of 302 neurons, unlike other model organisms that contain 

thousands to millions of neurons, greatly simplifying analysis of neuronal circuits
20

. The 

nematode is also uniquely fit for neurodegeneration research because it is transparent, 

allowing for the inspection of fluorescently labeled neurons within a living multicellular 

organism at all stages of development
1,16,21

. 

2.2 Microfluidics  

Microfluidics, the science and technology of manipulating fluids using channels and 

actuated components on the micrometer scale, is governed by changes to the fundamental 

physics of fluid mechanics as scale decreases from the macro to the micro scale. 

Generally for macroscopic fluids, convective mixing occurs when two fluids meet due to 
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dominant inertial forces; however, viscous forces are normally dominant for flow at 

micro scales. Therefore, microfluidic flows are laminar (never turbulent), and generally 

only mix through diffusion
22,23

. This property can be exploited to route fluids and fluid 

contents in desired manners allowing for fluid and particle separation, manipulation, 

filtration, and controlled mixing using chaotic mixing methods
24

. Flow can also be 

exploited for very well controlled mass and energy transfer to create distinct and 

separately controlled temperature regions and gradients within devices
25,26

.  

 Another advantage of microfluidic technologies is the ability to integrate with 

electrical components and systems to provide automated platforms to perform 

experiments. For example, electronics are commonly used in combination with 

microfluidic devices to perform on-chip electrophoresis, temperature control of 

microenvironments, manipulation of droplets, and for flexible sensors
27-31

. Additionally, 

integrating microfluidic platforms with camera and pneumatic valve systems enables 

automation of experiments
32-34

. 

2.2.1 Soft lithography as a tool for biomedical research 

The advent of soft lithography using polydimethylsiloxane (PDMS) was undoubtedly one 

of the major contributors responsible for the surge in development in the field of 

microfluidics. Coupled with techniques for creating pneumatically activated valves and 

on-chip mixers, complex microfluidic designs have been constructed allowing for the 

creation of complete microanalysis systems on a single chip, often referred to as lab-on-a-

chip devices
22,35

. One of the main reasons for this increase in microfluidic technology is 

attributed to the low-cost and rapid prototyping capabilities of PDMS, allowing for 

fabrication within days instead of weeks when compared to traditional microfabrication 

techniques
36

. Fabrication using PDMS involves a micromolding processes where PDMS 

is cast over a silicon wafer patterned with photoresists (referred to as a master wafer) 

using standard photolithography. The master wafer is then allowed to cure and the 
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resulting PDMS mold is peeled off. At this point, the mold is then usually bonded to glass 

creating the base for the microfluidic device and completing the fabrication process
35-37

. 

 PDMS microfluidic devices are naturally suited for biomedical applications 

because of their small reagent volume, capability for parallelization, short reaction times, 

low cost, transparency, and adjustable surface biochemistry
23,38

. While many of these 

advantages are inherent because of the small scale of these devices, it is the application of 

this technology to the life sciences discipline which makes it novel. For the reasons 

mentioned above, it is no surprise that soft lithography has been utilized in many 

different areas of biomedical research such as cell biology, proteomics, DNA 

manipulation, drug screening, bioanalysis, and multicellular organism manipulation
22-

24,38,39
. However, while microfluidics holds great promise for the fields of chemistry, 

biology, and medical research, it is still an emerging technology and mainly limited for 

use by experts in the field because associated equipment is complicated, requiring 

external pressure sources to control hardware or pumps for fluid injection
22

. 

2.2.2 Microfluidics and C. elegans 

In recent years, researchers have begun to use microfluidics for handling C. elegans, in 

order to facilitate animal manipulation and increase overall throughput of genetic and 

pharmacological screens
32,40-43

. In addition to screening applications, microfluidic 

methods have significantly reduced the amount of time-consuming manual operations 

normally required for different C. elegans experimentations, such as imaging, laser-

axotomy, synapse and cell-ablation, and long-term culture
29,33,34,40,43-49

. Researchers have 

also designed and utilized microfluidic chips to investigate neuronal activity and behavior 

ranging from locomotion, to chemosensation, and even learning
49-54

.  

 One frequent challenge when examining C. elegans in microfluidic devices is 

immobilizing the animal during image capture or during laser operations. This is of 

particular importance when examining cellular or subcellular sized objects (organelles, 
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proteins, etc.) on multiple focal planes or performing laser surgeries, each of which 

requires seconds to perform. Currently, existing techniques used to immobilize animals 

involve using temperature to rapidly cool animals, compressive force or restrictive 

channels to prevent movement, carbon dioxide microenvironments to replace and reduce 

oxygen available, and biocompatible Pluronic polymers with  reversible thermo-

sensitive sol–gel transitions, capable of  surrounding nematodes and preventing animal 

movement
39,41,45,46,55-58

. 

2.3 Image analysis for biomedical applications 

Image analysis is a subfield of computer science concerned with extracting data from 

digital images using various processing algorithms. Used traditionally for applications in 

machine and computer vision such as facial, text, and object recognition, image analysis 

has begun to emerge in the past decade as a major player in complex processes in 

bioinformatics such as disease classification
59,60

. 

 The main reason for this surge in applying image analysis methods to biomedical 

problems has been technological advances which have enabled acquisition of large 

datasets through techniques such as high-throughput screening, large scale assays, 

improved microscopy techniques, and the ability to fluorescently label various biological 

tissues or proteins
60-64

. Datasets are often too complex or too large in volume to study 

manually, requiring multimodal analysis or data reduction. As such, scientists are quickly 

becoming overwhelmed with data and image analysis can provide techniques to aid with 

many common problems. One of the major interests in image analysis is the possibility of 

using its methods to improve disease detection, allowing for early treatment while 

providing more objectivity to diagnosis. For example, image processing combined with 

machine learning algorithms have been used in mammographic screening, stroke 

diagnosis, and automatic classification of Alzheimer’s disease
65-67

.  
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 In addition to disease classification, image analysis techniques have also been 

used to create software packages specific for analyzing anatomical features for various 

model organisms in automated fashions. ZFIQ is software platform for cell quantification 

and neuron detection of zebrafish while StarryNite provides a method for automated cell 

lineage tracing during C. elegans embryogenesis
68-70

. CellProfiler is another software 

package available which was similarly created to identify and analyze cells, however, is 

not specific to any organism
71

. 

2.3.1 Segmentation methods 

One of the most basic of image processing techniques is the separation of objects of 

interest (foreground) from the background, or segmenting an image. This process can 

also be considered as establishing a threshold for the image, and assigning all pixels 

values at or above the threshold to be foreground, while the remaining pixels are 

converted to background. This process is used on a multitude of processing techniques 

from extracting text from documents, map processing, cell identification, medical 

imaging analysis, and almost any form of targeted object detection
72-78

.  The result of this 

process is the binarization of an image, leaving background pixels with a uniform value 

(typically logical date type 0), and foreground pixels or objects of interest with a different 

uniform value (typically logical date type 1). While many segmenting techniques exist 

based on different image and object characteristics such as histogram shape, entropy, 

object attributes, and spatial based methods, the scope of this background will take into 

consideration only two subclasses of segmentation methods: Otsu and Niblack 

thresholding algorithms.  

 Otsu thresholding is a cluster-based method that automatically chooses a global 

threshold that minimizes the intraclass variance between background (black) and 

foreground (white) pixels
79

. Since its introduction in 1979, the algorithm has been widely 

used and remains one of the most referenced thresholding methods
77

. The Niblack 
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algorithm, on the contrary, uses an adaptive method which changes the threshold based 

on the mean and standard deviation of a local neighborhood of the image
77,80,81

. This 

method is particularly adept to compensating for changes in illumination in the image and 

has spawned several variations of the algorithm which seek to improve segmentation by 

adapting the contribution of the standard deviation for especially noisy images
77,80,82

. 

2.3.2 Morphological processing 

Morphological image processing refers to the practice of using structuring elements of 

different shapes and sizes to perform mathematical and relational operations on an image. 

The subfield has wide applications in the field of image processing and can be used for 

inspection, biomedical imaging, document processing, pattern recognition, metallurgy, 

microscopy, and robot vision
83,84

. For the scope of this work, only a cursory overview of 

the basic operations of erosion, dilation, opening, closing, top-hat, and bottom-hat will be 

explained for grayscale images. 

 Grayscale erosion and dilation operations are equivalent to a moving minimum 

and maximum filter respectively, where the window is defined by the structuring element 

used for the operation
83,84

. The resulting image is calculated by aligning the midpoint of 

the structuring element with the pixel of the original image being evaluated, and is 

repeated for each pixel in the image. The morphological opening operation is the dilation 

of the result of an erosion using the same structuring element, i.e. 

    (   )   (1) 

where  ,  , and  are the morphological opening, erosion, and dilation operators, and   

and   represent the original image and the structuring element used respectively. 

Conversely, the morphological closing operation is the erosion of the result of a dilation 

using the same structuring element, or 

      (   )   (2) 
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where   is the morphological closing operator. Similar in this relationship, are the top-hat 

and bottom-hat operations. The top-hat operation is the result of subtracting the 

morphological opening from the original image and is normally used as a preprocessing 

method to correct for uneven illumination or to estimate and remove background noise
84

. 

Conversely, the bottom-hat operation is the result of subtracting the morphological 

closing from the original image and is often used as a means to enhance image contrast. 

2.3.3 Image analysis and C. elegans 

Image processing techniques have been utilized in C. elegans research for performing 

analysis of complex behaviors, neuron detection, characterization of expressed 

biomarkers, optogenetic stimulation, and cell lineage tracking
32-34,40,46,70,85-90

. To study 

locomotion behavior, various laboratories have created and released software capable of 

tracking anywhere from a single animal to over 100 nematodes simultaneously
89

. These 

methods use basic thresholding techniques to segment animals from background pixels to 

extract worm body shape and create a skeleton to quantify various attributes
89

. Similarly, 

optogenetic stimulation combines real-time tracking of animals using similar 

thresholding and skeletonization methods, using results of the process to pinpoint specific 

stimulation areas using a micromirrors or modified projector systems
85,90

. Other behavior 

analysis methods combine thresholding methods with the Hough transform to detect body 

circularity to perform behavior-based chemical screens
86

. Principal component analysis 

and conversion of movie frames to covariance matrices has also been utilized to analyze 

worm thrashing behavior, circumventing the need for body segmentation, to correlate 

animal thrashing to motor neuron degeneration
87,88

. 

 Previous work from the Lu laboratory has demonstrated the ability to perform 

automated phenotyping and laser ablation by using thresholding methods to detect 

fluorescently labeled neurons
32,46

. More complex algorithms utilizing machine learning 

methods such as support vector machines have also been used to detect synapses and 
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perform an automated screen searching for mutants by comparing over 100 different 

image metrics
34

. Other laboratories have also used comparatively simple thresholding 

methods to aid manual axotomies during drug screening to identify compounds that effect 

neuronal regeneration
91

. 

 Lastly, Bao et al. developed software methods to perform cell lineage tracking 

resulting in the software package StarryNite
70

. StarryNite uses a combination of local 

maxima analysis to detect GFP-histone-labeled nuclei with a nearest neighbor and 

minimal movement algorithm to keep track of cells in 4D
70

. In summary, many 

algorithms and methods for performing image analysis to characterize and quantify C. 

elegans research exist, yet no one specific method is capable of solving all research 

interests. While all algorithms are unique, current C. elegans image analysis techniques 

rely heavy on thresholding methods to segment objects and biological tissues of interest. 
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CHAPTER 3  LATERALLY ORIENTING C. ELEGANS USING 

GEOMETRY AT MICROSCALE FOR HIGH-THROUGHPUT 

VISUAL SCREENS IN NEURODEGENERATION AND 

NEURONAL DEVELOPMENT STUDIES 

The following work in this chapter was performed in conjuction with Dr. Nicholas 

Valmas, in collaboration with Dr. Massimo Hilliard’s laboratory at the University of 

Queensland, Australia. 

3.1 Introduction 

  For many applications utilizing microfluidic chips, a specific nematode 

body orientation is required. For example, visual inspection of neurons and their 

processes requires animals to be oriented with these structures as close as possible to an 

imaging objective without visual obstruction by other tissues. Similarly, a specific body 

orientation facilitates inspections of neuronal features, such as neurite trajectories
92,93

. 

The C. elegans D-type motor neurons perfectly exemplify this situation. This class of 19 

GABAergic neurons is crucial to the normal coordinated locomotion of C. elegans, and 

can be highlighted in animals carrying the juIs76 transgene, which expresses green 

fluorescent protein (GFP) under the control of the unc-25 (a gene encoding glutamic acid 

decarboxylase) promoter
10

. When visualized with juIs76, the D-type motor neurons show 

discrete single process commissures that run between the ventral and dorsal nerve cords 

(VNC and DNC, respectively) for the entire animals' body
1
. These commissures provide 

multiple opportunities to visualize phenotypic defects, when the animal is oriented in a 

precisely lateral position, and are ideal for studying neurodevelopmental and 

neurodegeneration abnormalities. While techniques to influence anterior versus posterior 

entry into microfluidic channels exist
94

, no methods have yet been reported to bias lateral 

orientation. 
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 Here we present a simple microfluidic device designed to passively orient C. 

elegans by exploiting a curved channel geometry. We conducted a pilot forward genetic 

screen for neurodevelopmental and neurodegeneration phenotypes and isolated six 

independent mutants, demonstrating that on-chip analysis and high-throughput visual 

examination can be performed using our design. We also show that our device can be 

used on animals without altering viability or reproductive capabilities. The advantages of 

using this system are threefold. First, our curved channel geometry orients animals 

passively, which makes the operation simple and robust, and facilitates high-throughput 

analysis of C. elegans strains requiring lateral orientation. Second, the curved design 

increases nematode body area within the microscope field of view, reducing the need to 

move the sample in order to inspect the entire worm body. Finally, the system is 

comparatively simple, potentially allowing non-experts to operate the device. 

3.2 Materials and Methods 

3.2.1 Microfluidic device fabrication and operation 

 We designed and fabricated a two-layer microfluidic device using 

polydimethylsiloxane (PDMS, Dow-Corning) and standard multi-layer soft lithography 

techniques
35

. A loading chamber was designed to store nematodes in the device until they 

are sent to the imaging area (red dashed box in Figure 1A) to be analyzed and 

subsequently sorted through one of two exits. Nematode loading and sorting within the 

device was controlled through the actuation and use of partially-closed valves in 

conjunction with pressure-driven flow (Figure 1B, Figure 1C, and Figure 1D). To reduce 

imaging chamber distortion during analysis, control channels were filled with a 58% 

glycerol solution
33

. 

 Device geometry was designed by selecting values similar to worm body 

dimensions. Channels within the imaging area are about the size of a gravid adult, 70 µm 

in width, while the standard arc length (L) between loading and imaging valves is 700 
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µm to help restrict animal movement. The arc length between the loading and imaging 

valves was modified to approximately 500 µm or 900 µm to accommodate for dpy-4 and 

lon-3 mutants whenever necessary. Standard radius of curvature (RoC) for the curve in 

the imaging area is 125 µm from the arc center to the outer edge of the channel to allow 

for a 20 µm increase or decrease, while still meeting mask printing space requirements. 

Lastly, flow channel height is approximately 75 µm, which is also slightly larger than the 

diameter of an adult nematode. 
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Figure 1. Microfluidic device to passively orient C. elegans for visual screening. (A) 

Device used for orienting, imaging, and sorting animals. Flow layer is shown in 

green with black text, valve control layer in red with white text. LD is loading valve, 

MT is channel for mutant output, and WT is channel (black) and valve (white) for 

wild-type output. IMG is imaging valve. Not labeled are the mutant valve (right of 

mutant channel) and flush channel (green area above red box). Input and flush 

channel fluid flow are controlled off-chip. Imaging area is indicated by red dashed 

box. Scale bar is 800 µm. (B) Device schematic of valve state during worm loading. 

Worm is driven into imaging area using positive input pressure to induce fluid flow. 

Loading valve is not actuated, allowing fluid flow. Imaging valve is actuated to 

prevent worm from exiting imaging area. Wild-type valve is not actuated to assist in 

worm loading and to provide an exit should an animal slip past the imaging valve. 

Mutant valve is actuated to prevent animals from entering mutant output. (C) 

Device schematic of valve state during analysis. All valves are actuated and input 

pressure is cut off halting fluid flow. (D) Device schematic of valve state during 

worm sorting. Example for wild-type sorting is shown. Worm is driven out of the 

imaging area by positive pressure from the flush channel. Loading valve is actuated 

to prevent any other animals from entering the imaging area. Imaging valve is not 

actuated to allow worm exit. Wild-type valve is not actuated to allow worm exit into 

wild-type output. Mutant valve is actuated to prevent animals from entering mutant 

output. Mutant and wild-type valve state is reversed when mutant sorting is 

performed. Fluid flow direction indicated by white arrows and is not proportional 

to size of arrow. Non-filled and filled red boxes indicate non-actuated and actuated 

valves respectively. 

3.2.2 Orientation Analysis 

 C. elegans were analyzed in various microfluidic designs to test locomotory 

defects, body type differences, and the effect of the imaging area's RoC on lateral 

orientation. Animals were grown until gravid adults and then evaluated. Five-second 

videos were captured per animal and were visually analyzed to determine animal 

orientation. 

 For wild-type animals, videos were acquired at 32 frames per second using a CCD 

camera (Hamamatsu C9100-13), and were recorded using a 20×/0.5NA magnification 
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objective in fluorescence mode on a wide field upright compound microscope (Leica 

DM4500). Videos for dpy-4 juIs76 and lon-3 zdIs5 mutants were acquired at 26.1 frames 

per second using a CCD camera (Lumenera INFINITY3 1M) and were recorded using a 

20×/0.4NA, and a 10×/0.25NA magnification objective respectively. Videos for these 

mutants were also recorded in fluorescence mode on a wide field inverted compound 

microscope (Leica DMI6000 B). 

 Animals carrying the juIs76 transgene were scored as laterally oriented if GFP-

labeled dorsal and ventral nerve cords could be clearly seen throughout the duration of 

the video. Conversely, animals were scored as not lateral if either nerve cord was 

obstructed at any point along the worm body due to a rotated body position within the 

microchannel. In animals carrying zdIs5 transgene, since both ALM and PLM are 

bilaterally symmetric neurons, animals were scored as laterally oriented if only one 

neuronal process (either left or right) could be clearly seen throughout the duration of the 

video for the anterior and posterior body (ALM and PLM respectively). Conversely, if 

both the left and right processes for either ALM or PLM were seen in the same focal 

plane at any time during the video, animals were scored as not lateral. Expression of GFP 

in first and last quarters of the animal's body (head and tail) was ignored since the tapered 

nature of the worm makes both ALML/ALMR and PLML/PLMR processes visible in the 

same focal plane. 

3.2.3 C. elegans culture, mutagenesis, and phenotype scoring 

 C. elegans strains used in these studies were juIs76(Punc-25::GFP), zdIs5(Pmec-

4::GFP), CZ1931 unc-71(ju156) juIs76(Punc-25::GFP), QH3736 lon-3(e2175) 

zdIs5(Pmec-4::GFP), QH3833 dpy-4(e1166) juIs76(Punc-25::GFP), and CX8600 

kyIs417(Podr-1::dsRed, Pgcy-36::GFP). All animals were grown between 20°C and 25°C 

using established culturing protocols
95,96

. Mutagenesis was performed using standard 
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techniques and concentrations of the chemical mutagen ethyl methanesulfonate (Sigma 

Aldrich) to perform a pooled F2 screen on wild-type juIs76 animals
10

. 

 F2 progeny were cultured for 2.5 to 3.5 days (dependent on cultivation 

temperature) and visually examined on-chip. Animals were isolated if they presented, any 

breaks or gaps in neuronal processes, misguided commissures, or any gross difference in 

neural morphology when compared to wild-type. Animals isolated for exhibiting 

phenotypic abnormalities were further examined on agarose pads using 5 mM sodium 

azide (Sigma Aldrich) or 0.01% tetramisole (Sigma Aldrich) as an anesthetic
97

. 

 Adult animals three to four days old were analyzed for morphological defects in 

each commissure of 16 of the 19 D-type motor neurons. The VD1 neuron was omitted as 

its morphology is confounded by the RME neurons; in addition, the DD1 and VD2 

commissures could not be accurately scored as they travel on the opposite side of the 

body (this was not the case in the vd029 mutant, so all these cells were also scored). 

Larvae were analyzed early in the L1 stage, within six hours of hatching and prior to the 

development of the VD neurons, so that all six DD neurons could be individually scored. 

 Animals were visualized with 20×/0.5NA, and 40×/0.75NA magnification 

objectives on a wide field upright compound microscope (Zeiss Axio Imager Z1). Images 

were captured using a CCD camera (Photometrics CoolSNAP HQ2), and Z-stacks were 

manually flattened to a single plane in Adobe® Photoshop® CS3. 

3.2.4 C. elegans mock screen and egg-laying assay 

 For the mock screen, M9 solution containing approximately 1,000 wild-type 

(juIs76) adult animals was prepared. Ten adult lon-3 (zdIs5) mutants were then 

individually picked and placed into the solution. This population of animals was then 

sorted through our microfluidic device and then inspected under a dissecting microscope 

using high magnification to verify the phenotype of recovered animals. All animals were 

grown at 20°C. 
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 To compare egg laying rates, animals were grown at 20°C until young adults and 

then separated into two populations. One population was then sorted through our 

microfluidic device. After 48 hours, progeny of the two populations were manually 

counted under a dissecting microscope at low magnification. 

3.3 Results 

3.3.1 Sample loading orientation and device characterization 

 The ability to consistently load animals into a specific orientation is often 

necessary for the visual detection of defects in genetic screens. The lateral body 

orientation of C. elegans is commonly seen in freely moving animals on an agar plate. 

This orientation is also the most useful for analyzing neuronal processes that travel along 

the antero-posterior axis, as well as processes that travel laterally across the worm body. 

In this work, we show that C. elegans preferentially adjust themselves into this lateral 

orientation as a result of the curved geometry of our device. We designed a microfluidic 

chip containing a novel curved microchannel, with a radius of curvature (RoC) of 125 

µm, which laterally oriented animals with an efficiency of 84±4% (mean ± standard 

error, n = 76) (Figure 1, Figure 2A–D). Comparatively, animals within straight channel 

devices, of similar channel width, orient laterally only 21±3% of instances (n = 145) and 

were otherwise rotated along the antero-posterior axis (Figure 2E and Figure 2F). 

Decreasing or increasing the RoC of the curved microchannel by 20 µm did not have a 

statistically significant effect on orientation efficiency (p>0.4, chi-squared test), resulting 

in laterally oriented animals with frequencies of 74±5% (n = 84) and 82±5% (n = 71), 

respectively. Locomotory impaired animals (unc-71) similarly displayed a high efficiency 

of lateral orientation (68±5%, n = 75) within the device; in addition, animals with gross 

morphological defects, such as long (lon-3) or dumpy (dpy-4) mutants, also oriented 

laterally at a higher efficiency (72±5%, n = 75 for lon-3 and 57±6%, n = 76 for dpy-4). 

Therefore, we conclude that the gross morphology of animals will not considerably 
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impact the orientation efficiency of our device, making it suitable for operation with 

mutagenized populations.  

 

Figure 2. Effect of curved channel on animal orientation. (A) Zoomed in view of 

imaging area shown by dashed red box from Figure 1A. White arrow indicates 

device radius of curvature (RoC) from arc center to outer edge. Dashed line 

indicates length (L) between loading and imaging valves. Scale bar is 200 µm. (B) 

Frequency of lateral nematode orientation for various channel geometries with 

standard error of proportion. Triple asterisk indicates statistical significance 

compared to straight channel designs (p<0.001 determined using chi-squared test). S 

represents straight channel, while remaining labels indicate the 105 µm, 125 µm, 

and 145 µm RoC devices respectively. L for all devices is 700 µm. (C) Nematode 

oriented laterally in curved channel device (both nerve cords visible). Commissures 

present on different focal plane are obscured. (D) 3-D model of animal body section 

and microscope objective (viewpoint reference) showing nerve cord placement for a 

laterally oriented animal. (E) Nematode in a non-lateral body orientation as 

observed when loading animals into straight channel devices; DNC not visible due 

to animal orientation. Animal is within the same field of view as seen in panel C. 
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Arrowheads for images (C) and (E) indicate ventral nerve cord (VNC) determined 

by placement of VD and DD motor neuron cell bodies. Arrow indicates dorsal nerve 

cord (DNC). Scale bars are 100 µm. Transgene marker for all fluorescent images is 

juIs76(Punc-25::GFP). (F) 3-D model of animal body section and microscope 

objective for non-lateral oriented animal. Model diagrams (D) and (F) not drawn to 

scale. Red lines illustrate dorso-ventral axis. Green spheres represent DD and VD 

neuron cell bodies. 

 

 To further characterize loading orientation bias in our curved channel device, we 

measured whether the worm's ventral or dorsal side faced the inside curve of the imaging 

area, along with whether the worm entered the imaging area head or tail first. We found 

that our curved device favors head entry of animals into the imaging area in 70±6% of 

instances compared to 30±6% for tail entry, (mean ± standard error, n = 69, p<0.01, chi-

squared test). Additionally, the device also had a ventral bias of 59±6% versus a dorsal 

bias of 41±6% (n = 69, p>0.1). When combined with our lateral orientation method, 

head-to-tail entry bias provides an opportunity to preferentially load animals into the 

device in known orientations, facilitating image acquisition and analysis of specific 

locations of the animal's body. 

 Our experiments suggest that curved channel geometries passively orient C. 

elegans with greater than 80% efficiency, while orientation within straight channel 

devices is random. Curved channels are therefore the best geometry to employ for 

examining C. elegans features aligned in the dorso-ventral plane, or along the lateral 

positions of the animals' body. 

 To verify compatibility of using our novel device for high-throughput animal 

handling and to estimate sorting efficiency, we performed a mock screen including 

animals expressing GFP in different neurons (mechanosensory neurons, zdIs5 transgene) 

and with an elongated phenotype (lon-3). We successfully recovered 100% of lon-3 

(zdIs5) mutants (n = 10) from a population of ~1,000 wild-type (juIs76) animals with no 

false positives (i.e. no juIs76 animals were sorted as lon-3; zdIs5 animals). In addition, 

we also assessed whether on-chip manipulation altered animal viability or egg-laying in 



 22 

wild-type worms 48 hours after chip operations. All animals survived after being sorted 

through the microfluidic device, and the total number of eggs laid per animal in the 

manipulated population, 195±6 (mean ± standard error, n = 15), had no statistical 

difference when compared to a control population, 188±8 (n = 14, p>0.5, Student's t-test). 

Thus, results of the device characterization experiments validate our method to orient 

animals within a microfluidic chip, and confirm its efficacy for high-throughput 

applications while having no adverse effects on animal viability or reproduction. 

3.3.2 Identification of neurodegenerative and neurodevelopmental mutants using 

curved channel microfluidic devices 

 To demonstrate the utility of this simple and easy-to-use methodology, we 

performed a pilot screen to isolate novel mutants with neurodegenerative and 

neurodevelopment phenotypes in the D-type motor neurons. We analyzed approximately 

10,000 F2 progeny on-chip (~1000 haploid genomes), at a consistent rate of 600±45 

animals per hour (mean ± standard error). Throughput was calculated from two separate 

but identical devices over the course of four days of screening. In wild-type animals, 17 

out of 19 of the D-type neurons, which belong to either the DD class (six cells) or the VD 

class (13 cells), send commissures along the right side of the animal's body (Figure 3A–

C)
95

. Therefore, strains expressing the juIs76 transgene are best inspected when the right 

sides of animals are closest to the objective, with their dorso-ventral plane parallel to the 

cover-glass. Examining DD or VD commissures located on the opposite (left) side of the 

animal body is confounded due to optical artifacts (e.g. scattering by the animal's body 

tissue). Therefore, commissures were only evaluated for animals loaded into the device 

with the correct body orientation (right side of body closest to microscope objective). The 

DNC and VNC were evaluated in all animals positioned laterally, since both nerve cords 

are visible in this orientation. From this screen, we successfully isolated six independent 
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mutant alleles (a070, a071, a073, a074, a077, and vd029), which present abnormalities in 

their GFP-labeled neuronal processes and commissures. 
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Figure 3. Morphology of wild-type and defective D-type motor neuron commissures. 

(A) Full body image of adult worm. Scale bar is 25 µm. (B) Expanded view of area 

within dashed box in panel A. Ventral nerve cord (VNC) is distinguished by 

presence of neuronal cell bodies. Dorsal nerve cord labeled DNC. Scale bar is 25 µm. 

(C) Representative image of panel B. Black arrows label neuronal commissures 

while black arrowheads identify neuronal cell bodies. Respective phenotypes 

characterized by: (D) commissure never reaching dorsal nerve cord; (E) 

commissure running along the opposite side of the animal's body (left, colored 

yellow); (F) absent commissure; (G) additional commissure present; (H) two 

commissures crossing over each other; (I) two commissures entering the dorsal 

nerve cord or leaving the ventral nerve cord together, they may also partially 

fasciculate; (J) bifurcating commissure; (K) neighboring commissures joined by a 

process; (L) neurite with length less than half nematode width; (M) an absence of 

GFP expression along either dorsal or ventral nerve cords; (N) break in GFP 

expression in a commissure. Scale bar is 25 µm. Representative image of phenotype 

shown beneath each photo accompanied with illustrative phenotype symbol. (O) 

Proportion of animals in a population with at least one incidence of each 

independent defect. Error bars represent standard error of proportion. 

 

3.3.3 Phenotype characterization of mutant animals 

 Following isolation, we further characterized the phenotypic defects of the mutant 

animals in relation to the commissures of the DD and VD motor neurons. Inspections of 

these neurons lead to the classification of defects into eleven categories (shown and 

described in Figure 3D–N), of which the main ones included misguided commissures 

(guidance), commissures travelling on the wrong side of the body (handedness), lack of 

commissure (missing), and visible interruptions in the nerve cords (gaps). The frequency 

of these phenotypes in animals of the wild-type juIs76 strain is shown in Figure 3O, and 

data for our isolated mutants is shown in Figure 4 and Figure 27 in appendix A.1. 

Phenotypes were scored independently of each other, as most mutant animals presented 

more than one type of defect. 
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Figure 4. Adult phenotype characterization. (A–G) Proportion of animals in a 

population with at least one incidence of each of the independent defects: guidance, 

handedness, missing, and gap for wild-type (juIs76) and newly isolated mutants. 

Asterisks indicate statistical significance of phenotype compared to wild-type. 

Single, double, and triple asterisks indicate p<0.05, p<0.01, and p<0.001, 

respectively. Pound signs indicate statistical significance of phenotype compared 

between a073 and a074. Double and triple pound signs indicate p<0.01 and p<0.001, 

respectively. Statistical significance determined using chi-squared test. Number of 

animals examined for each allele labeled in graph. Error bars represent standard 

error of proportion. 

 

 To further characterize the mutants isolated during our visual screen, we 

investigated the developmental onset and cell-specificity of the observed morphology 

defects. At the L1 juvenile stage, only the six neurons of the DD class are present, as the 

remaining 13 VD neurons have not yet developed. This allows the precise identity of 

each defective DD neuron to be determined, and presents an opportunity to inspect 

whether the embryonically and post-embryonically developing cells are differently 

affected. The frequency with which defects occurred in populations of young L1 stage 

animals is shown in Figures 5 and Figure 28 in appendix A.1, and is assembled by 

individual cell identity in Figures 6 and Figure 29 in appendix A.1. 
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Figure 5. L1 phenotype characterization. (A–G) Proportion of animals in a 

population with at least one incidence of each of the independent defects: guidance, 

handedness, and missing defects seen for wild-type (juIs76) and newly isolated 

mutants. Asterisks indicate statistical significance of phenotype compared to wild-

type. Single, double, and triple asterisks indicate p<0.05, p<0.01, and p<0.001 

respectively. Statistical significance determined using chi-squared test. Number of 

animals examined for each allele labeled in graph. Error bars represent standard 

error of proportion. 
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Figure 6. Cell specific characterization for L1 animals. (A–G) Penetrance of defects 

in each DD neuron for wild-type (juIs76) and isolated alleles. Asterisks indicate 

statistical significance of combined phenotypes per cell compared to wild-type. 

Single, double, and triple asterisks indicate p<0.05, p<0.01, and p<0.001, 

respectively. Statistical significance determined using chi-squared test. Number of 

animals examined for each allele labeled in graph. Error bars represent standard 

error of proportion for sum of phenotypes per cell.  

 

 a070 and vd029 are the most defective mutants, with a high occurrence of most of 

the phenotype scored (Figure 4B, Figure 4G, and Figure 27 in appendix A.1). Analysis of 

the six DD neurons at the L1 stage (Figure 5B, Figure 5G, and Figure 28 in appendix 

A.1) showed that in a070 the left-right asymmetry (handedness) defect was strongly 

reduced (about 20%), indicating that the mutation mostly affected the VD neurons. On 

the contrary, the missing commissure defect for a070 was already fully penetrant at this 

stage (90%), indicating that it affected all the D-type neurons, with the DD3 and DD4 

neurons being particularly susceptible (Figure 6B and Figure 29 in appendix A.1). 

In vd029, there was a strong effect on the DD class, with these animals lacking the DD3–

DD6 neurons (Figure 5G and Figure 6G), and DD1 and DD2 displaying both handedness 

and guidance defects. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035037#pone-0035037-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035037#pone-0035037-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035037#pone-0035037-g004
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 In a071 and a074, over 80% of the animals presented gaps in GFP expression on 

either the ventral or dorsal nerve cords (Figure 4C and Figure 4E). While this phenotype 

correlated with a strong guidance defect (80%) in a071, in a074 the guidance defect was 

less penetrant. Interestingly, the guidance defect of a071 was also highly penetrant in the 

L1 stage with the DD3–DD6 cells presenting this defect (Figure 5C and Figure 6C). On 

the contrary, L1 animals of the a074 strain had very minor defects (Figure 5E and Figure 

6E), indicating a much later onset and/or selective involvement of the VD neurons. 

 a077 and a071 were isolated from the same pooled population of F2s; however, 

complementation analysis indicated they are not alleles of the same gene (Figure 27 in 

appendix A.1). Characterization of these two mutants indicated that while guidance and 

gap defects were both highly penetrant in a071, they were only minor in a077, which 

presented a high penetrance of missing commissures instead (Figure 4C and Figure 4F). 

Even more strikingly, at the L1 stage, the guidance defects in a071 were at around 85% 

while only 10% in a077 (Figure 5C, Figure 5F, Figure 6C, and Figure 6F). 

 Lastly, a073 presented handedness and missing commissures phenotypes (Figure 

4D), mostly caused by defects in the VD neurons as both these phenotypes were highly 

reduced in the L1 stage (Figure 5D, Figure 6D). 

 To confirm that our isolated mutants bred true, we outcrossed each of them with 

wild-type male animals carrying the zdIs5(Pmec-4::GFP) transgene as a marker for 

crossed progeny. We were able to recover the original phenotypes in the F2 generation 

for all of our strains (Figure 27 in appendix A.1). Additionally, by examining the 

heterozygous F1 generation we determined that all of our mutations are recessive, with 

the exception of a077, which has a semi dominant effect (Figure 27 in appendix A.1). 

3.4 Discussion 

 We present a microfluidic design capable of orienting C. elegans on-chip by using 

device geometry to position the nematode body into lateral orientations. This alignment 
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mimics the lateral orientations normally seen during standard analysis of C. elegans on 

agarose pads. The design is comparatively simple to fabricate, requires no extra systems 

other than pressure sources to operate valves, and can be easily altered to compensate for 

different body sizes and morphologies if the starting population requires so. We 

demonstrated the utility and advantages of our technology compared to standard straight 

channel designs with a high-throughput pilot screen by successfully isolating mutants 

involved in neuronal development and degeneration. This technology is beneficial to 

visual inspections of features along the antero-posterior or dorso-ventral body axes. This 

includes processes and commissures similar to those of the VD and DD neurons, such as 

in the DA, DB, and AS motor neurons, neuromuscular synapses along both the ventral 

and dorsal nerve cord, mechanosensory neurons, and other dorso-ventrally aligned body 

tissues
92

. Our device will thus extend the tools available in C. elegans to perform screens 

to identify genes involved in numerous phenotypes of interest. 

 The DD and VD motor neurons are ideal cells with which to measure the efficacy 

of orientation techniques, as their morphology is optimally displayed in laterally oriented 

worms (Figure 2C), which have commissures curving toward the imaging objective 

(Figure 2D and Figure 2F). In our curved channel design, GFP expressed in both the 

ventral and dorsal nerve cords can be seen along the curvature of the microchannel, 

indicating that the animal is in a lateral orientation, with the dorso-ventral plane parallel 

to the cover glass. The advantage of this orientation is that it allows for inspection of both 

the VNC and DNC, in addition to the DD and VD commissures, along the entire length 

of the animal, presenting multiple opportunities to observe defects in neuronal 

morphology. In contrast, GFP expression of morphological features of animals viewed in 

a straight channel device can be out of focus and obscured (Figure 2E and Figure 2F), 

resulting in concealed portions of connecting commissures, which ultimately makes 

phenotypic analysis time-consuming and difficult. Another advantage of the curved 

channel is that the design allows an animal's entire body to be inspected within a single 
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field of view, while a straight channel design would require multiple fields of view for 

proper inspection (Figure 2C and Figure 2E). 

 Analysis of animals during our pilot screen was performed by visually inspecting 

them on-chip for defects in neuronal morphology. During our screens, we estimate that 

device operation cycles at about seven seconds, taking into account the entire process of 

loading, inspecting, and sorting each individual animal. Typically, about two seconds are 

spent loading each animal into the imaging area, followed by a visual inspection period 

of up to five seconds. Once the phenotype is determined, the animal is sorted to its 

appropriate output in less than one second. Taken together, our estimated rate of 

operation of seven seconds per animal corresponds to a repeatable and measured 

throughput of over 500 animals per hour. 

 We isolated over 50 mutants in our pilot screen; however, strains that were sterile 

or less than 30% penetrant for defects when re-examined were discarded. Conversely, 

some mutants of interest may have been missed during our screen because they were not 

fully penetrant. Additionally, we may have discriminated against slow-growing mutants 

because the growth rate of mutagenized animals varies and we did not include all 

mutagenized worms in this screen. These artifacts, however, are also present in 

traditional screens and can be avoided by isolating the F1's and expanding the screened 

pool of animals
98

. 

 Characterization of our newly isolated mutant strains revealed correlations 

between individual phenotypes, which may be indicative of specific biological 

significance. For example, the low penetrance of GFP interruptions in the dorsal or 

ventral cords (gap defects) in both a073 and a077 (Figure 4D and Figure 4F) suggests 

that these gaps are not strongly associated with either handedness or missing commissural 

defects. Furthermore, a comparison of strains a073 and a074 (Figure 4D and Figure 4E) 

show that while similar levels of both handedness and missing commissures defects are 

seen (p>0.7 and p>0.2 for each defect, respectively), the penetrance of gaps in GFP 
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expression along the nerve cords between the two alleles are significantly different 

(p<0.001). Interestingly, the difference in penetrance of commissural guidance defects 

between these strains is also significant (p<0.01), suggesting a possible association 

between highly penetrant commissural guidance defects and the gap phenotype seen in 

the nerve cords. Alleles a070, a071, a074, and vd029 similarly display high penetrance of 

both commissural guidance defects and nerve cord gaps, reinforcing this association. 

 The phenotypic analysis of L1s allows differentiation between developmental and 

degeneration phenotypes. For example, alleles a073, a074, and a077 demonstrate much 

lower penetrance of defects when analyzed as L1s than they do as adults. This suggests 

that while these mutations affect embryonic development, they have an enhanced 

phenotype at later stages, either due to additional defects that develop post-embryonically 

or because of aging effects. Secondly, cell specific data reveals the susceptibility of 

specific body sections to both guidance and missing commissure defects. The majority of 

highly penetrant defects present for our isolated alleles are concentrated in the animal 

mid-body or posterior (neurons DD3–DD6), as observed in strains a070, a071, and 

vd029. This may be indicative of a higher susceptibility to developmental or maintenance 

defects of these cells or of this entire region of the body. 

 Like all microfluidic techniques, certain considerations must be taken into 

account when using this device for specific applications. For example, while our design 

passively orients animals into lateral positions, our system cannot bias the position of the 

ventral or dorsal side. Another key point is recognizing that device throughput is 

ultimately dependent on the user's familiarity with, and the overall complexity of, the 

phenotype analysis, and to a certain extent user's familiarity with microfluidic devices. 

Additionally, while we tested animals with body morphology defects using slightly 

modified designs, extreme body shapes may present complications in device operation 

(i.e. problems in loading, orientating, and sorting). The advantage of our microfluidic 

device, however, is in streamlining screening preparation, and worm-handling as it does 
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not involve mounting animals on slides, waiting for anesthetics to take effect, 

transporting animals to a microscope for imaging, and careful rescue of the animals from 

slides, as conventional methods require. Comparatively, our device allows for a single 

manipulation to load, image, and sort the relevant mutants, requiring only an initial setup 

time of 20 to 30 minutes before screening. 

 Results presented here suggest that our microfluidic screening method allows 

discovery of mutants of interest by exploiting high-throughput techniques to examine 

large numbers of nematodes in pooled populations. We expect this type of design to be 

useful in other developmental and functional screens where animals are to be routed and 

imaged in particular orientations. 
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CHAPTER 4  AUTOMATED SCREENING OF C. ELEGANS 

NEURODEGENERATION MUTANTS ENABLED BY 

MICROFLUIDICS AND IMAGE ANALYSIS ALGORITHMS 

The following work in this chapter was performed in collaboration with Daniel Porto and 

Josue Rodríguez-Cordero from the Lu Lab, and Ivan Gallotta, from Dr. Elia Di Schiavi’s 

laboratory at the Consiglio Nazionale delle Ricerche, Italy. 

4.1 Introduction 

Neuronal degeneration is a fundamental biological phenomena and a characteristic 

attribute of neuromuscular diseases, which affect as many as 1 in every 3,000 people
99

. 

One such disease is spinal muscular atrophy (SMA), an autosomal recessive 

neurodegenerative disorder that is one of the leading genetic causes of infant 

mortality
16,100

. SMA results from a loss of function of survival motor neuron protein 

(SMN) due to mutations in the SMN1 gene
101,102

. The decreased SMN function causes 

specific motor neuron degeneration leading to muscular wasting, paralysis, and even 

death
99,100,102

. Although the genetic bases of SMA have been shown to reside in the Smn1 

gene, the molecular mechanisms and pathogenesis leading to SMA remain poorly 

understood, and currently no effective treatments exist
88,102

.  

 Caenorhabditis elegans is a soil dwelling nematode and is an important model 

used to elucidate the intricacies of complex cellular processes that underlie 

neurodegeneration. Previous research has used C. elegans to study molecular 

mechanisms behind devastating neuromuscular disorders such as amyotrophic lateral 

sclerosis, Huntington’s, and Parkinson’s disease
16-19

. The nematode, despite its low level 

of evolutionary complexity, is particularly well suited for neurobiology research because 

of the considerable number of conserved molecular pathways between worms and 

mammals, including major neurotransmitter systems
1,16

. Furthermore, C. elegans have a 

mapped and comparatively simple nervous system of 302 neurons, unlike other model 
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organisms that contain thousands to millions of neurons, greatly simplifying analysis of 

neuronal circuits
20

. The nematode is also uniquely fit for neurodegeneration research 

because it is transparent, allowing for the inspection of fluorescently labeled neurons 

within a living multicellular organism at all stages of development
1,16,21

. C. elegans are 

also appealing for genetics research due to their ease of genetic manipulation, mapped 

genome, and large number of genetic homologs to vertebrates
1,96,103

. For instance, the C. 

elegans genome is 60-80% homologous to human genetic disease genes, such as smn-1, a 

homolog of the human SMN protein
1,104

. Additionally, the 19 D-type motor neurons 

along the nematode’s ventral nerve cord provide multiple opportunities to study 

degenerative mutations in a localized area of the animal body. 

 Currently there are only two well characterized genetic modulators of human 

SMN, SMN2 and PLS3
105-108

. Studies using C. elegans to discover additional modulators 

of SMN have utilized visual inspection to measure pharyngeal pumping rates, custom 

image analysis methods to measure motility, or the COPAS Biosorter to measure animal 

body length
87,88,106,109,110

. These methods, however, either require manual analysis, are 

comparatively low-throughput, or provide indirect correlations of motor neuron 

degeneration. The limitations in these systems, therefore, bottleneck the discovery of 

SMN modulators and ultimately potential therapies for SMA.  

 Microfluidics can be used to overcome these limitations. By manipulating C. 

elegans in liquid environments in microfluidic chips, throughput gains up to two orders 

of maginitude are achieved when compared to manual methods of handling
32

. 

Additionally, screening of nematodes on-chip can be performed to take advantage of C. 

elegans low cost, rapid life cycle, and large number of progeny
1,32,40-42,96,111

. 

 Here, for the first time, we present a fully automated system to identify 

modulators of neurodegenerative phenotypes using genetic screening techniques. The 

advantages of our system are threefold. First, our system is fully automated, reducing 

human bias and subjective analysis from visual screening practices. Second, phenotype 
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analysis is rapid, performed within 12 seconds per animal on average. Third, we directly 

inspect the animal nervous system, removing the need for behavioral analysis or indirect 

correlations to motor neuron degeneration. We demonstrate the utility of our system by 

performing an automated screen and isolating 21 mutants that rescue the 

neurodegenerative phenotype seen in C. elegans D-type motor neurons due to the 

absence of smn-1.  

4.2 Materials and methods 

4.2.1 Microfluidic device fabrication and operation 

Microfluidic devices were fabricated using standard soft lithography methods to create 

single-layer chips made from the elastomer polydimethylsiloxane (PDMS, Dow Corning 

Sylgard 184)
112

. Master molds were fabricated as in previously work using silicon wafers, 

SU-8 photoresist (Microchem), and treated with tridecafluoro-1,1,2,2-tetrahydrooctyl-1-

trichlorosilane vapor (United Chemical Technologies) to reduce elastomer adhesion to 

the substrate
32,40,111

. Likewise, thermal bonding between a thin (~0.5mm) 20:1 and a 

thicker (~3mm) 10:1 layer of PDMS was used during chip fabrication to facilitate valve 

flexibility, while maintaining overall rigidity
40

. After cutting and preparing PDMS 

devices to interface with tubing and pins, chips were bonded to cover-glass using oxygen 

plasma. 

 Similar to our previous work, we used partially closed valves and pressure driven 

flow to route, image, and sort animals within the device
42,111

. Channel and chip feature 

height for our presented design is approximately 60µm for all areas excluding the curved 

portion of the flow channel in the imaging area, which is approximately 40µm. 

4.2.2 C. elegans culture, mutagenesis, and phenotype scoring 

The C. elegans strains used in this study were juIs76(Punc-25::GFP) and gbIs4[Punc-

25::smn-1 RNAi sas; Pchs-2::GFP]; 
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oxIs12[Punc-47::GFP; lin-15(+)]. Constructs for smn-1 RNAi and chs-2 were injected at 

concentration of 200 ng/µL and 10 ng/µL respectively for gbIs4. These strains were 

cultured between 15°C and 25°C using established protocols
96

. A standard concentration 

of the chemical mutagen ethyl methanesulfonate (Sigma Aldrich) was used to mutagenize 

animals in order to perform a pooled F2 suppressor screen of gbIs4, the smn-1 mutant
10

. 

Animals were screened when most animals reached gravid adulthood in terms of age. 

 Phenotype scoring of alleles isolated from the automated screen was performed 

on animals cultured at 20°C anesthetized with 5mM concentrations of sodium azide 

(Sigma Aldrich) on prepared agar slides
97

. All animals were manually inspected under 

fluorescence for the presence of D-type motor neurons using 20x/0.4NA and 20x/0.5NA 

objectives on wide field inverted compound microscopes (Leica DM IRB/E and Leica 

DMI 6000B); fluorescently labeled DVB, RIS, AVL, and RME neurons were not counted 

in this analysis. Automated experiments and visual analysis of C. elegans were both 

performed when animals became gravid adults using the same objectives and microscope 

equipment as mentioned above.  

 Unless mentioned otherwise, all images are of gbIs4, the smn-1 partial 

knockdown mutant strain. 

4.2.3 Automated system operation 

System automation describes the process of autonomously controlling all system 

components to execute animal loading, imaging, phenotype analysis, and sorting. System 

setup is similar to our previous work utilizing off-chip components such as pneumatic 

solenoids, a compound microscope, and a digital CCD camera to control on-chip valves; 

however, no cooling system was used for immobilization in this study
32,34,40,42

. A diagram 

and detailed description of the system operation is shown in Supplementary Figure 1. 

 Animals were recorded using a 20×/0.5NA magnification objective in 

fluorescence mode on a wide field inverted compound microscope (Leica DM IRB/E). 
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Images were captured and analyzed using a using a digital CCD camera (Hamamatsu 

ORCA C4742-95-12). All image analysis in this work was programmed using 

MATLAB®. 

 The presence of animals within the microfluidic device was detected by 

computing the average pixel intensity of various regions. These regions were user-

defined during each experiment and represented background (β), worm (ω), and correct 

position (ρ) areas within the camera field of view. These regions were selected after 

loading a worm into the device imaging area by manually operating the microfluidic chip. 

An animal was considered to have been successfully detected if the average intensity of 

the worm region satisfied equation 1 below, where    represents an arbitrary weight 

based on empirical results. 

 ̅      ̅ (3) 

 Similarly, after being detected, an animal was considered to be successfully 

loaded and ready for imaging if the average intensity of the correct position region 

satisfied equation 2 below, where    represents an arbitrary weight based on empirical 

results, and  ̅worm represents the average intensity of the correct position when a worm 

was correctly loaded. Animals detected in the correct position region have either their 

head or tail in close proximity to the end of the imaging area, indicating that the 

nematode is fully loaded into the curved area of the device.   

 ̅       ̅worm (4) 

 Loading an animal was performed by sending a command to off-chip solenoids to 

actuate the on-chip valve configuration and input flow required for positioning. Once an 

animal was detected in the imaging area of the device by software, it was given a period 

of four seconds to reach the correct region for image capture and analysis. The system 

began image acquisition if the nematode was detected in the correct position or if the 

allotted time had expired.   
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 After image capture, animal phenotype was analyzed to determine the number of 

D-type motor neurons present using a four step process: (1) images were smoothed using 

an anisotropic diffusion filter; (2) the smoothed image was segmented for features of 

interest using global thresholds; (3) potential neurons were filtered by shape and size; and 

(4) a mean and size filter was utilized to remove objects falsely detected as neurons.  

 For this study, an animal was considered to be a suppressor of the smn-1 

neurodegenerative phenotype if 10 or more D-type motor neurons were detected within a 

specified analysis area.  

 Once image analysis and phenotype classification was complete, the nematode 

was sorted to the appropriate mutant or wild-type output using off-chip solenoids to 

actuate the appropriate on-chip valve configuration and activate fluid flow in both the 

input and flush channel. Once an animal was no longer detected, the entire process of 

loading, phenotype analysis, and sorting was repeated.  

 All time limits for system processes were set to values based off of empirical data. 

All animal detection and phenotype analysis was performed with the microscope in 

fluorescence mode. System operation and software decisions were executed by polling 

the status of worm detection software modules at a rate of 30Hz. All system automation 

software was programmed in MATLAB® in conjunction with Micro-Manager
113

. 

 

4.3 Results and discussion 

4.3.1 Microfluidic device performance 

All genetic screening experiments were performed on-chip using the single-layer 

microfluidic device shown in Figure 7A. Previous work has shown the potential of 

microfluidics for vastly improving the throughput of imaging, sorting, and genetic 

screening studies involving C. elegans
32,40,42,111

. The presented design was adapted from 

previous work using curved geometries to passively position animals into lateral 
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orientations for improved inspection and imaging
111

. This orientation method is 

particularly advantageous when inspecting objects along the ventral nerve cord, such as 

the D-type motor neurons.  

 Our current design has two improvements from our previous work. First is the 

introduction of a partial immobilization method using compressive force from actuated 

valves (IMM in Figure 7A-B) to limit animal movement during image acquisition. This 

method allows for improved image quality while maintaining overall ease of device 

fabrication. Second is the use of a single-layer design which as shown in previous work, 

maintains compatibility with on-chip valves while greatly simplifying standard multi-

layer fabrication techniques
35,40

.  

 To ensure that animals were not obstructed by the use of partial immobilization 

valves (Figure 7C-F), we introduced a height decrease in the flow channel of the imaging 

area (Figure 7E-G). With this height difference, valve obstruction of animal body regions 

dropped significantly in frequency as animals were more likely to stay close to the cover 

glass (Figure 7D). 

 

Figure 7. Single layer microfluidic device. (A) Device used for on-chip 

characterization and automated sorting of C. elegans. Flow layer is shown in green 

with black text, valve control layer shown in red with white text. Fluid flows from 

left to right, top to bottom, and is marked by white arrows. Flush channel, wild-type 

(WT), and mutant (MT) channels are all labelled. STP is the stop valve, IMM are 
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the immobilization valves, IMG is the imaging valve, and WT and MT are the wild-

type and mutant valves. Imaging area shown with dashed black box. White and 

black dashed lines show locations of device cross sections shown in panels E-G. 

Scale bar is 200µm. (B) Imaging area shown in panel A demonstrating valve 

expansion into flow layer.  Actuating the valve control layer simultaneously routes 

fluid flow and obstructs animal passage during device operations such as loading 

(shown) and imaging. Scale bar is 70µm. (C) Example image of an animal body 

obstructed by immobilization valves. Device used for this image does not have a 

height difference in the imaging area. White arrow indicates area obscured from 

camera. (D) Example image of an animal body not obstructed by immobilization 

valves. Device used for this image does include a height difference in the imaging 

area. Animals shown in panels B-D are juIs76. Scale bar for panels B-D is 70µm. (E) 

Diagram illustrating the height decrease along the cross section of the black dashed 

line shown in panel A.  (F-G) Illustrations of device cross sections along white 

dashed line in panel A without a height decrease in the fluid layer (F), and with a 

height decrease (G). Panel F demonstrates the case that without a height decrease, 

immobilization valves have a greater chance of obstructing the animal body during 

imaging. Panel G demonstrates that with a height difference, however, animals are 

more likely to stay closest to the cover glass, resulting in better image quality. 

Images (E-G) are not drawn to scale. 

4.3.2  Manual screen for suppressor mutants 

To verify our ability to find suppressors of the smn-1 mutation, we performed a manual 

pilot screen of ~1,000 animals using our microfluidic system. To this end we used a 

strain in which the function of smn-1 is selectively reduced in D-type GABA motor 

neurons (referred to as neurons henceforth) using a neuron-specific RNAi method (Figure 

8A). The silencing of smn-1 in these neurons induces their degeneration, detectable as the 

disappearance of GFP expression (Figure 8B). A mutated population of smn-1 (Figure 

8B-C) were loaded and visually inspected on-chip to search for animals with a high 

number of neurons. From this screen, we isolated allele a205 (Figure 8D-E), which 

displayed a statistically significant difference in neuron number when compared to our 

smn-1 partial knockdown mutant, 13.8±2.7 versus 9.3±2.8 for a205 (n=54) and gbIs4 

(n=60) respectively (Figure 8F, population average ± standard deviation, p<0.0001, t-

test). All animals were inspected as gravid adults as age-associated neurogenerative 

diseases in humans demonstrate similar age dependence in many C. elegans transgenic 

models
114

. 
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 While the average number of neurons provides some information about the 

differences between these populations, further insight can be obtained from analyzing the 

numerical distribution of neurons present for each allele. For example, inspecting the 

histogram data for gbIs4 and a205 (Figure 8G) reveals the amount of phenotypic overlap 

between alleles, which can be masked when only considering mean and standard 

deviation values between populations. Thus, while it doesn’t occur with high frequency, 

there are instances where gbIs4 expresses an a205 phenotype, or vice versa, due to 

natural variations within the population. 

 

Figure 8. Suppressor of smn-1 phenotype from manual pilot screen. (A) 

Representative image of adult worm and neurons labeled by oxIs12 transgene. D-

type motor neurons shown in blue. Image not to scale. (B) Image of smn-1 mutant, 

gbIs4, with 2 of 19 visible D-type motor neurons. (C) Diagram of image shown in 

panel B. (D) Image of allele a205 with 16 of 19 visible D-type motor neurons. Scale 

bar for panels B and D is 70µm. Images B and D captured using microfluidic device 
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shown in Fig. 1A. (E) Diagram of animal shown in panel D. D-type motor neurons 

shown in blue for C and E, RME & DVB neurons not shown. (F) Average number 

of D-type motor neurons present in alleles gbIs4 (n=60) and a205 (n=54). Error bars 

represent standard error of mean. Asterisks indicate significance (p<0.0001, t-test). 

(G) Histogram demonstrating differences between motor neuron distributions 

within the two allele populations. 

 

4.3.3 Software design and validation 

Upon the discovery of a suppressor mutant, allele a205 was used for the creation of 

custom neuron detection software. Figure 9A demonstrates the background (β), worm 

(ω), and correct position (ρ) areas used for detecting an animal within the imaging area of 

the device. This method utilizes average intensity thresholds of each region to scan for 

the presence of nematodes and is described in further detail in the methods’ system 

operation section. Figure 9B-3F displays the step by step process of discovering neurons 

while minimizing the detection of false positives such as miscellaneous image artifacts or 

fluorescent co-injection markers, present in both the head and tail of the animal. We 

verified the effectiveness of this method by hand-selecting neurons from a set of high 

quality images and compared them with our software results. Allele a205 was used in 

place of gbIs4 because we are interested in isolating similar phenotypes with a 

comparatively high number of neurons from suppressor screens (14 neurons on average 

for a205 versus 9 for gbIs4).  
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Figure 9. On-chip image analysis for system automation. (A) Image of animal taken 

on-chip with example background (β), worm imaging (ω), and correct position (ρ) 

regions marked. Solid line borders ω, while dashed boxes show β and ρ. The mean 

intensity for all pixel values within each region are calculated and used to determine 

status of system through equations (1-2). Scale bar is 70µm. (B) Representative 

zoomed in image of ω in panel A. Different animal shown. (C) Results of image 

analysis. Detected D-type motor neurons circled in green. Red box in B-C marks 

analysis area. Only the analysis area is processed during system operation in order 

to reduce the number of false positive D-type motor neurons detected due to head 

and tail co-injection markers. Scale bar for B-C is 70µm. (D) Segmentation of key 

features using empirically determined global thresholds. Worm body outline is 

shown in green while detected objects are shown in white. Objects detected outside 

of worm body are discarded. (E) Size and morphology filtering to isolate detected 

neurons. Segmentation results from D shown in white. Results from size and 

morphological filtering circled in red. (F) Mean filtering used to remove false 

positive detection of D-type neurons. Remaining objects after all image analysis 

processes shown circled in green. Scale bar for figures D-F is 70µm. 

 



 45 

 Using these images, we found that our software algorithm was capable of 

correctly identifying 87% of fluorescently labelled motor neurons in our image library 

(448 correctly identified out of 513 determined visually, 56 total images). The amount of 

false positives, or objects detected by our program that were not actually neurons was 8% 

(39 of all 487 objects detected); while the amount of false negatives, or actual neurons 

that were not detected by our software, was 13% (65 of 513 visually determined 

neurons). The average number of false positives and false negatives per image were 

0.7±0.8 and 1.2±1.3 respectively (mean ± standard deviation, n=56).  

 Reviewing segmented neurons from our image library reveals that most false 

positives are due to mistaking puncta, RME or DVB neurons, or RNAi co-injection 

markers for D-type motor neurons. Size filters in our custom software reduce the number 

of puncta and RME neurons detected by removing objects too small or too large to be 

considered D-type neurons. However, a careful balance must be maintained when setting 

size thresholds as altering ranges to decrease false positives can simultaneously increase 

the number of false negatives, resulting in actual neurons not meeting requirements for 

detection. In this work, size thresholds were determined from empirical results and set to 

values to minimize the amount of both false positives and negatives. 

  To further decrease the number of false positives, we limited image analysis to 

the area labelled in red in Figure 9B in combination with a mean filter. Image analysis 

was reduced to the mentioned area due to the observation that curved device geometry 

places head and tail regions in the same image section. Therefore, removing these areas 

from analysis decreases the risk of detecting false positives in head and tail regions which 

contain RME and DVB neurons, as well as RNAi co-injection markers. To compensate 

for occurrences when the head area of the animal is within our analysis region, we use a 

mean filter to combine and remove any objects within close proximity of each other that 

are falsely detected as neurons. While the head region of animals are the most prone to 

detection of a high number of false positives (Figure 10A-B), this can also occur due to 
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animals with egg laying deficiencies (Figure 10C-D), or due to multiple animals within 

the analysis region (Figure 10E-F). 

 False negatives detected in our sample image library can be attributed to neurons 

not meeting minimum or maximum size threshold requirements. These instances occur 

when neurons are too small due to natural variation between animal expression and size, 

or too large due to diffused light from out of focus neurons. Images captured for analysis 

within our device are captured at a single focal plane in order to expedite analysis and 

keep device operation simple by not requiring an immobilization scheme. 
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Figure 10. Application of mean-filter to remove false positives. (A) Image of 

randomly mutated smn-1 animal loaded on-chip with the head region present in the 

analysis area. RNAi co-injection markers not removed by previous analysis steps 

are falsely detected as neurons, labelled in red. (B) Results of mean and size filter to 

remove false-positives from panel A. Objects that were previously detected in the 

head region have been removed. Remaining neurons shown in green. (C) Image of 

randomly mutated smn-1 animal loaded on-chip demonstrating egg laying 

deficiency. Fluorescent markers of progeny within parent falsely detected as 

neurons and labeled in red. (D) Results of mean and size filter, objects previously 

detected within the animal body removed. Remaining neurons shown in green. (E) 

Exampe of multiple animals within the imaging area. Falsely detected neurons from 

the head one one animal are detected along with neurons from the other animal’s 

body. All objects detected showin red. (F) Results after applying mean and size filter 
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to remove RNAi co-injection markers seen in head of worm. Remaining neurons 

shown in green. Scale bar in panel A is 70µm. 

 

4.3.4 Automated screen for suppressors of smn-1 mutation 

To test the ability of our system to successfully identify and sort suppressors of the smn-1 

phenotype (referred to as double mutants from this point forward), we performed an 

automated pilot screen of over 7,500 animals investigating a minimum of (~750 haploid 

genomes), , isolating approximately 66 potential double mutants. Our average screening 

rate was approximately 300 animals per hour, calculated over 8 trials on different days, 

and utilizing multiple microfluidic devices of identical design. All animals were imaged 

and analyzed using a single focal plane on-chip, determined manually at the beginning of 

each screen. Similarly, analysis regions for automated worm detection were manually 

selected at the beginning of each automated screening experiment.  

 A threshold limit of 10 neurons was used during neuron detection to classify 

potential suppressors of smn-1 phenotype. This threshold was determined in order to 

compensate for the removal of six neurons from the image when limiting detection to the 

analysis area (performed to decrease the number of false positives).  

 Of the double mutants detected and sorted by our automated system, 65% were 

visually verified as double mutants, containing 10 or more neurons within the analysis 

area (n=26 of 40 total). This analysis, however, takes into account animals sorted before 

the implementation of a mean filter to reduce the number of false positives in neuron 

detection. Analyzing all sorted animals with implementation of the mean filter increases 

the sorting accuracy of our system to approximately 85% (n=56 classified correctly of 66 

total, including previous 40).  

 Many factors can lead to classification errors during automated phenotype 

analysis due to the random nature of forward genetic screens. Differences in body size 

(affecting head position), loading of multiple worms into the imaging area, or animals 
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with progeny that have hatched inside of them compound analysis, normally requiring 

individual software solutions specific for each circumstance. However, using a mean 

filter as the final step in neuron detection provided a single solution for these issues while 

increasing the sorting accuracy of our system 20%. 

 
Figure 11. Average number of D-type motor neurons per allele. Error bars 

represent standard error of mean. smn-1 single mutant shown in black, isolated 

alleles shown in grey. Lighter grey designates alleles considered to be strong 

suppressors of the smn-1 corresponding to 95% confidence interval of allele gbIs4. 

Only data from manual scoring, not image analysis, used for this figure. Error bars 

represent standard deviation. 

 

4.3.5 Characterizing isolated alleles 

From our potential pool of 66 double mutants, we visually inspected and scored each 

population lowering our final result to 21 suppressors of the smn-1 phenotype (Figure 

11), isolated from eight different pooled populations. A table of the number of neurons 

for each isolated allele is listed in Supplemental Table S1. All double mutants were found 

to be statistically different when compared to the smn-1 single mutant gbIs4 (p<0.0001 

for all alleles except a185, which is p<0.001, one-way ANOVA Dunnett’s post-test). 

 For the purpose of this study, we considered strong suppressors of the smn-1 

phenotype to have an average of approximately 15 neurons for their respective 
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population. This number was chosen because it corresponds with the 95% confidence 

interval of allele gbIs4 (mean       standard deviation). Using this measure, we find 

that 11 of the 21 isolated alleles are strong suppressors of the smn-1 phenotype (a187-

a190, a192, a193, a195, a196, a199, a201, a203). Allele a195 is the strongest suppressor 

demonstrating a near perfect rescue of the neurodegenerative phenotype with 17.5±1.2 

neurons on average of the possible 19 (mean ± standard deviation).  

 Figure 12A demonstrates the cumulative distribution functions (CDF) for all 

isolated double mutants which can be used to visualize the differences in numerical 

distributions between alleles. Analyzing the CDF can provide a measure of how effective 

the allele is at suppressing the neurodegenerative phenotype of gbIs4 in a whole 

population. The farther right shifted the distribution function is, the more effective the 

suppression. Visualizing data in this manner similarly provides further insight about 

alleles isolated from the same pooled population, revealing similarities and differences in 

phenotype between potential siblings. 

 The CDF for alleles a194-a198 and a202-a203 are shown in Figure 12B and 

display varying levels of smn-1 rescue for strains isolated from the same pooled 

population. A histogram of three representative alleles from this group is shown in Figure 

12C and reveals a comparatively small amount of overlap between each double mutant, 

demonstrating unique phenotypes among potential siblings. We present these 

comparisons to illustrate that our system is capable of capturing animals with varying 

levels of smn-1 rescue, and not limited to only strong suppressors of the 

neurodegenerative mutation. Histograms for alleles isolated from the same pooled 

population that are not shown can be seen in Supplemental Figure 31-Figure 34. 
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Figure 12. Characterization of isolated alleles. (A) Cumulative distribution functions 

(CDF) for isolated alleles from automated suppressor screen. smn-1 mutant (gbIs4) 

shown in dashed black line, double mutant alleles in grey. Lighter grey designates 

alleles considered to be strong suppressors of the smn-1 phenotype. (B) CDFs for 

seven alleles isolated from same F1 parent population (possible siblings). (C) 

Histogram for alleles a195, a196, and a197 shown in panel B. Only data from 

manual scoring, not image analysis, was used for this figure. 
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4.4 Conclusions 

We present an automated system to perform suppressor screens aimed to identify novel 

modulators of smn-1 neuronal degeneration. Using comparatively simple microfluidic 

designs and image analysis methods, we are capable of performing these screens at a 

consistent rate of 300 worms per hour, approximately 100 times faster than standard 

methods. Additionally, we provide a system capable of directly examining motor neurons 

within C. elegans to characterize degeneration. We demonstrate that our software 

analysis is selective by sorting approximately one percent of the 7,500 animals screened, 

and validate our classification algorithm accuracy of 85% through visual analysis of 

sorted double mutants.  

 Using our microfluidic system and software in concert, we successfully isolated 

21 alleles suppressing the smn-1 neurodegenerative phenotype. To our knowledge, this is 

the first implementation of an automated genetic screen for neurodegenerative mutants. 

Our system is versatile, using simple and widely available image analysis techniques, and 

can easily be adapted to search for neurodegenerative mutants instead of suppressors with 

minimal changes.  

 We therefore provide a method to saturate screens searching for genes that 

modulate neurodegeneration. By elucidating the molecular mechanisms and pathways 

that cause neurodegenerative diseases, we can potentially discover new treatments for 

various neurological and neuromuscular pathologies, not limited to genes that only 

influence smn-1 or SMA. 
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CHAPTER 5  HIGH THROUGHPUT CHARACTERIZATION OF 

SPHERICAL OBJECTS USING MODIFIED GRANULOMETRY 

ALGORITHM FOR RAPID CHARACTERIZATION OF C. 

ELEGANS LIPIDS 

The following work in this chapter was performed in collaboration with Maria Elena 

Casas and Daniel Porto from the Lu lab and Dr. Ho Yi Mak’s laboratory at Stower’s 

Institute for Medical Research and the Hong Kong University of Science and 

Technology, China. 

5.1 Introduction 

While performed instantaneously and effortlessly by people and animals alike, object 

recognition remains a highly complex computational problem. Variations in object shape 

and size, non-uniform intensity, low signal-to-noise ratio, and occlusion are all 

contributing factors to the complexity of the process
60

. Images and instances requiring 

detection and analysis of a large number of objects compound these issues even further. 

In the field of biological image analysis, these circumstances are a frequent and common 

occurrence and are pivotal issues limiting large-scale screening, rapid analysis, and rapid 

characterization technologies.  

 Segmentation algorithms have been widely used in biological image analysis 

problems for applications in, but not limited to large-scale screening of cellular 

phenotypes, nuclei characterization, neuron detection and process tracing, real-time 

genetic screening, laser surgery, behavior analysis, disease detection, lineage tracking, 

and MRI analysis 
32,34,40,46,60,70,71,89,115-120

. Common methods include global and local 

thresholding, edge detection, watershed implementations, machine learning, template 

matching, active contour and snake algorithms, image transforms, and Gaussian mixture 

model techniques 
60,71,115,119,120

. Measurements of objects segmented using these methods, 
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however, are only as good as the precision of the segmentation method itself., 

Segmentation algorithms are becoming less relevant as the field of biological image 

processing moves toward high content applications as binarization of many objects is 

difficult due to size variation and high degrees of object occlusion.  

 Granulometry, a morphological processing algorithm, provides an opportunity to 

analyze and characterize images that are difficult for segmentation methods to process
121

. 

Morphological image processing uses structuring elements to filter or quantify images 

based on how structuring elements fit (or do not fit) with objects in the image
84

. 

Granulometry algorithm is analogous to the repeated sieving of grains or particulate, 

where mesh shape and size corresponds to the structuring element used for the operation.  

As the mesh size is repeatedly increased, larger particles are removed until eventually 

nothing is left. Similarly, granulometry uses a series of morphological opening operations 

with structuring elements of increasing size to filter objects from an image. As objects are 

removed, the resulting loss in pixel intensity from the image is computed, allowing the 

algorithm to quantify information about various sized objects without the need to 

segment foreground from background pixels, and simultaneously mitigating the effect of 

occluded objects.  

 As explained throughout this thesis, the model organism Caenorhabditis elegans 

can be used to study complex biological problems. One of these problems is lipid 

metabolism and storage. Lipids that accumulate fat are stored in the intestinal and 

hypodermal cells of C. elegans and are commonly studied as they are essential 

components to fat storage with highly conserved genes and proteins that help make, 

metabolize, and transport fat 
122,123

.  The lipid droplets take the shape of spheres and they 

are distributed in 3D, which makes the image processing, particularly the segmentation 

process, extremely difficult and inefficient. Current imaging and analysis methods for 

studying lipids requires many manual operations to annotate hundreds to over a thousand 

individual lipid droplets, making the current analysis standard low throughput, very labor 
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intensive, and prone to human error
124-127

. These issues stunt the potential for growth, 

exploration, and attainable knowledge in the research area.  

 In this work, we demonstrate a modified granulometry algorithm to estimate the 

size distribution of lipid droplets in C. elegans.  The algorithm can be applied to various 

applications by adjusting the size and shape of structuring elements used during the 

process. Using this approach, we demonstrate computational accuracy by replicating 

literature results for known lipid size distributions and show that our method can be 

applied to low resolution images acquired from epi-fluorescent microscopes. 

5.2 Materials and Methods 

5.2.1 C. elegans culture, mutagenesis, imaging, and manual lipid characterization 

The strains utilized in this study were: hjSi56[vha-6p::3xFLAG-TEV-GFP::dgat-2::let-

858 3’UTR] IV; 

hjSi224[vha-6p::dhs-3a cDNA::GFP-TEV-3xFLAG::let-858 3' UTR]; and dhs-

28;hjSi3(R01B10.6::GFP). Strains were cultured and maintained on agar plates grown at 

a temperature of 20°C using established protocols 
96

. A standard concentration of ethyl 

methanesulfonate (Sigma Aldrich) was used to chemically mutate hjsi224 animals to 

perform a F2 suppressor screen of the atlastin lipid mutant, a015 
10

.  

 Manual characterization of C. elegans lipids utilized the software program Imaris 

6.2.1 for 3D reconstruction, lipid diameter measurements, and lipid intensity analysis. 

Lipid characterization was performed for Klemm et al. and was used in this work for 

comparison to results from custom software analysis. Imaging for manual lipid analysis 

was performed using a spinning disk confocal microscope (Ultraview, Perkin Elmer) and 

digital CCD camera Orca-R2, Hamamatsu) controlled through the Volocity software 

(PerkinElmer) as described in Klemm, et al.. Images of multiple focal planes were 

acquired during imaging using a step distance of 0.25µm for a total distance of 8µm.  
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On-chip imaging of animals for genetic screening was performed using a custom built 

epi-fluorescent compound microscope with a digital CCD camera (Luminera Xfinity-3) 

and a 100x/1.25NA Plan Achromatic objective (PA100X). Animals were anesthetized 

using a 35mM concentration of tetramisole which was also used as the buffer solution 

during device operation. Images were acquired on-chip using a step distance of 1µm for a 

total distance of 40µm. 

 All animals whether screened in device or imaged manually were inspected 

during their L4 stage of development. 

5.2.2 Synthetic image creation and software validation 

Synthetic images were created in MATLAB® using disk shaped structuring elements of 

two, five, and ten pixels. The number of objects for each size was determined so that the 

total area between all three object sizes was kept equal. Additionally, object location and 

intensity (where specified) was randomized in order to create a set of 100 unique images 

for our testing library. While random, location was constrained to prevent object overlap 

with one another. Similarly, intensity values for lipids were constrained between one and 

255 and were kept uniform throughout each individual object. Object area was calculated 

using the total number of pixels contained in the respective structuring element used to 

create it. 

 Bead images were created by preparing standard microscope slides using varying 

concentrations of 1.019±0.032, 2.063±0.067, 4.358±0.113µm sized beads (Fluoresbrite® 

Fluorescent Microscpheres, Polysciences, Inc.). Beads were fluorescently labeled with 

GFP. Bead sizes were measured by hand during software validation to determine true 

values for the quantity of lipids and lipid distribution profile respectively. Only sizes 

corresponding to relevant biological ranges were used for synthetic images or bead 

analysis. 
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5.2.3 Analysis of nematode lipid distribution 

Lipid droplet analysis was performed off-chip and on-chip for confocal and epi-

fluorescent microcscope images respectively. Size distribution for images was 

determined using a four step process involving image stack conversion and 

preprocessing, granulometry, size analysis, and normalization. All structuring elements 

used for morphological operations in this study were flat and disk shaped; all image 

analysis software was programmed in MATLAB®.  

 Confocal nematode images analyzed in this study were identical to manually 

evaluated images used in Klemm, et al.. 

5.2.3.1 Image stack conversion and preprocessing 

Before preprocessing, acquired images stacks were converted to a single 2D image using 

the maximum intensity projection of captured focal planes. The converted image was 

then doubled in size using 2x2 bilinear interpolation and smoothed using an anisotropic 

diffusion filter (released in the public domain by David Lopes and available for download 

on MATLAB® Central File Exchange: 

https://www.mathworks.com/matlabcentral/fileexchange/14995). Following smoothing, 

the image was processed using both top-hat and bottom-hat morphological operations; 

the bottom-hat transformation was subtracted from the sum of the top-hat transformation 

and the smoothed image. Both operations were performed using a structuring element 

size of 30 pixels, determined from empirical results. Next, image intensity of the 

processed image was adjusted using contrast-limited adaptive histogram equalization. 

This result was contrast adjusted once again to saturate one percent of both low and high 

intensity values before filling in holes in the image. Holes in this instance refer to dark 

pixel regions surrounded by lighter pixels. 
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5.2.3.2 Granulometry algorithm 

Granulometry is performed on preprocessed images using standard methods 
83,121,128

. The 

normalized size distrubition,  ( ), follows equation (5) below  

 

 ( )  
 [ ]   [    ]

 [ ]
 

(5) 

where   represents the preprocessed image,   denotes the area or volume computed by 

taking the sum of all  pixel intensities,   is the morphological opening operation,   is the 

disk structuring element used for morphological processing, and   is the radius size of the 

structuring element (  [        ]). The normalized size density or pattern spectrum, 

  ( ), is approximated from the difference of  ( ) for each   , and is seen in equation 

(6) and. 

 

  ( )   (   )   ( ) (6) 

 

An example image of the granulometry process is shown in Figure 13 below. 



 59 

 

Figure 13. Granulometry process on example image. (A) Example of increasing 

structuring element shape and size for morphological opening operations. (B) 

Example image with objects of various sizes. Principal components of size 5 and 15. 

(C-G)  Resulting image after performing morphological opening of size 3, 7, 9, 13, 

and 16 pixels respectively. (H) Normalized size density results series of 

morphological openings. Threshold to remove objects overlaid in red. (I) Resulting 

filtered size density. (J) Resulting object distribution proile. 
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5.2.3.3 Size analysis  

Filtering and estimation of isolated lipids was performed in order to limit analysis to 

principle sizes. To isolate lipids of a specific size, morphological operations of the 

preprocessed image were subtracted from each other as in equation (7. Once isolated, a 

binary mask,  ( ), was created from the resulting image to remove noise remaining 

after subtracting images processed by morphological operations of different sizes (Eq. 

(8). This mask was then applied to isolated lipids to preserve pixel intensity information 

while removing imaging artifacts, denoted as the filtered lipid image  ( ) (Eq. (9). 

 ( )  (    )  (      ) (7) 

 

 ( )   OOL { ( )}     (8) 

 

 ( )   ( )   ( ) (9) 

 Using the processed lipid images, a filtered size density,  ( ) (Eq. (10), was 

created by setting an empirical threshold ( ) to one standard deviation over the mean of 

  ( ) (Eq. (11 and Figure 13H). Values for   ( ) and   ( ) were ignored during 

threshold calculation and for  ( ) as lipids in this range are non-existent according to 

smallest values observed in Klemm et al. (Figure 13I)
125

. 
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5.2.3.4 Data normalization 

The last steps of lipid analysis normalize the filtered size density by structuring element 

area to estimate the quantity of lipids present,  ( ), and by the sum of lipids detected 

during analysis to approximate the lipid distribution profile,  ( ) (Eq. (13 and Figure 
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13J). In equation (12 below,  ( ) represents the number of pixels present or area for each 

structuring element. 

 ( )  
 ( )

 ( )
 

(12) 

 

 ( )  
 ( )

∑ ( )
 

(13) 

5.3 Results and Discussion 

5.3.1 Software Estimation of Object Population Percentage and Size Validated 

Using Synthetic and Bead Images 

To establish the capability of our method, we created a synthetic image library populated 

with images densely packed with objects of various sizes and random intensity values. 

Using this library, we show that our modified granulometry process is capable of 

estimating object size and population percentage in synthetic images, created to be 

comparable to C. elegans lipid distributions in both spatial layout and pixel intensity. 

Figure 14A-F displays the granulometry process on an example image containing three 

populations of objects with equal total area for each assorted size (33.3% for all objects). 

Results of analysis show the similarity between algorithm results and known values 

demonstrating the ability of our algorithm to accurately estimate population percentage.  

Software results for objects of radius size two, five and ten pixels were 33.0±0.1%, 

32.8±0.1% and 33.2±0.2 % respectively compared to the true value of 33.3% (mean ± 

standard deviation, Figure 14G). Summing the percent errors for each of the population 

results in a total cumulative error of less than 13%.  
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Figure 14. Size analysis of synthetic images.  (A) Example image used for object size 

and quantity analysis. (B-F) Morphological opening of image in panel A using a disk 

shaped structuring element of radius 1, 2, 5, 9, and 10 pixels respectively. (G-H) 

True values and software results for filtered size density and object distribution 

profile, respectively, for a test library of synthetic images (n=30). Program results 

shown in gray. Known values shown in black. Total number and area for objects of 

a specific size was kept constant between each created image. 

 

 Discrepancies between results can be attributed to the close proximity and 

intensity mismatch between objects in synthetic images. While not overlapping, objects 

within close proximity of each other are sometimes considered a single object during 

analysis. To test this relationship, we created a set of synthetic images varying the 

distance between objects. As the distance between objects increased, the accuracy of our 

method also improved with the lowest cumulative error of 8.7% (for all three objects) 

occurring at a separation distance of 5 pixels (Figure 15). To test the effect of intensity 

variation on our method, we created a separate synthetic image library with all objects at 

equal pixel intensity, and with a separation distance of 5 pixels. By keeping pixel 

intensity uniform between objects, cumulative error for all three objects was reduced to 

2.7%. Combined with our previous results, these findings suggest that pixel intensity and 

inter-object distance are two main sources of error for our proposed analysis method.  

Therefore, for the method to be useful, one needs assessment of the intensity distribution 

as well as ensuring a reasonable density of the objects to be analyzed. 
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Figure 15. Effect of object proximity and intensity variation on software results. (A-

D) Example images for overlapping objects and objects limited to a minimum 

distance apart of 0, 5, and 10 pixels respectively. Objects created with random 

intensities. (E) Average cumulative error for image library for proximity and 

intensity analysis. n=30 for each test. Error bars represent standard deviation. 

 

 Next, we used fluorescent beads of to test the ability of our method to characterize 

objects of known sizes using non-synthetic images. Figure 16A-F demonstrates the 

granulometry process on an example image of fluorescent beads of 1µm, 2µm, and 

4.5µm diameters. Figure 16G displays the computed average object quantity for 

fluorescent bead images using our method next to hand measured values. Results from 

analysis show that our algorithm is capable of characterizing fluorescent objects of 

different sizes within a mixed population.  Population percentage values returned for 

1µm, 2µm, and 4.5µm diameter beads were 63%, 34%, and 3% respectively.  
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Figure 16. Size analysis of fluorescent beads. (A) Preprocessed image of fluorescent 

beads of various sizes. (B-F) Morphological opening operation on image shown in 

panel A using a disk shaped structuring element of radius, 2µm, 4µm, 5µm, and 

8µm respectively. Scale bar is 5µm. (G-H) Respective filtered size density and lipid 

distribution profile for shown image. Software results shown in gray. Hand 

measured values shown in black. 

 

 As in synthetic image experiments, errors between computational analysis and 

manually measured values are attributed to the density and close proximity of objects 

(fluorescent beads). To characterize this effect, we created image libraries of specific 

diameters and assessed the accuracy of our analysis method.  Figure 17 demonstrates the 

distributions returned for fluorescent beads of various diameters and is summarized in 

Table 1. Experimental results returned a disparity range from 0.1µm to 1.6µm for isolated 

bead experiments. Thus, even when analyzing images with objects limited to a specific 

size, results of granulometry based methods are still prone to report a false size 

distribution. Figure 16G displays this affect, with sizes reported for 1µm, 2µm, and 

4.5µm.  
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Figure 17. Software analysis of single-size population bead experiments. Sum of all 

image results instead of mean shown for this figure. 
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Table 1. Summary of software analysis  of single-size population bead experiments. 

Specified Bead Size (µm) Mean (µm) STD (µm) 
N 

(# of images) 
Range (µm) 

0.5 0.71 0.1 31 0.6 –  0.8 

1.0 1.1 0.4 46 0.6 – 3.6 

2.0 1.9 0.3 25 1.2 – 3.2 

3.0 2.7 0.5 43 1.6 – 3.8 

5.2 5.3 0.4 19 4.6 – 6.8 

 

5.3.2 Software Characterization of Wild-Type and Lipid Metabolism Mutant 

Populations Mimics Known Distributions 

After validating our proposed method using objects of known sizes, we tested the ability 

of our algorithm to distinguish between C. elegans wild-type and atln-1 mutant (allele 

a015) populations (Figure 18A-B). Alleles used in this study were previously described 

in Klemm, et al. and are known to exhibit different distributions of lipids ranging from 

0.2µm to 4µm
129

.  

 Figure 18 displays the results of applying our method to characterize and discern 

differences between lipid distributions for both wild-type and atlastin mutant populations. 

Inspecting morphological operations between the two populations demonstrates the 

ability of granulometry to selectively remove objects of specific sizes from biologically 

relevant data (Figure 18C-F).  Figure 18C-F demonstrate morphological openings of 

preprocessed images derived from panels A and B. Examination of the atlastin mutant 

image reveals that by approximately 0.5µm, most lipids have been removed (Figure 
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18D), while lipids in the wild-type image are still present at 1µm (Figure 18E). These 

observations are reflected in the average filtered size density (Figure 18G) computed for 

both populations (n=14), demonstrating different lipid distributions for atlastin and wild-

type populations. As seen in the morphological opening examples, most lipids are 

removed from the atlastin population images by 0.75µm, while wild-type examples 

demonstrate characteristic lipids up until double that size at 1.5µm.  

 Comparing computational results to manually measured data demonstrates the 

utility of our process to discern differences in lipid size between nematode populations. 

Our analysis method estimates a clear distinction in lipid size for atlastin and wild-type 

animals as seen in Klemm, et al.; however, size range returned from computational 

analysis is reduced when compared to manual measurements. This reduction is a 

consequence of filtering the returned size density of each animal to reduce noise while 

limiting results to principal lipid sizes. As such, the size range for the atlastin mutant 

population is reduced from 0.2um-1um (manual) to 0.25µm-0.7µm (computational), 

while the wild-type population shows a decrease from 0.4um-2um (manual) to 0.77µm-

1.4µm (computational) 
129

.  

 Another difference between our analysis and manual measurements is the 

concentration of lipid sizes observed per population. Klemm, et al. show through their 

analysis that lipids 0.4µm in diameter comprise approximately 30% of total lipids 

measured for atlastin mutant populations; our results indicate that the largest lipid 

concentration is at 0.25µm and 35% of total measured objects. Similarly Klemm et al. 

report that 1µm lipids comprise 25% of all measured lipid droplets for wild-type 

populations while our results estimate that the most frequent size is 0.77µm which makes 

up 13% of lipids.  

 Differences between lipid distribution profiles between computed and manually 

measured results are attributed to computational bias of our method for smaller diameter 

objects, non-uniform lipid intensity, and optical limitations due to imaging resolution. 
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During analysis, returned filtered size density is normalized by dividing results by the 

size of the structuring element used for its corresponding morphological opening. This is 

performed to compensate for larger opening operations whose results consist of more 

pixels. Reviewing the filtered size density results in Figure 18G demonstrates better 

adherence to previously reported results seen in Klemm, et al. than our estimated lipid 

distribution profile in Figure 18H. Results show peaks of normalized intensity at 0.38µm 

compared to 0.4µm (manual) for atlastin mutants, and 0.96µm compared to 1µm for 

wild-type. However, these results only report the normalized intensity of objects of 

specific sizes and do not include any information pertaining to quantity. 

 

 

Figure 18. Lipid analysis of C. elegans images. (A-B) Maximum projection of 

example wild-type (WT) and atlastin  mutant (a015) animals respectively. Body 

outline shown in white. Scale bar is 6µm. Images brightness and contrast manually 

adjusted for better viewing of lipids. (C-D) Morphological opening corresponding to 

0.5µm for respective preprocessed WT and a015 images. (E-F) Morphological 

opening corresponding to 1µm for respective preprocessed WT and a015 images. 

(G) Filtered size density results for WT and a015 populations. (H) Lipid distribution 

profile for WT and a015 populations. n=14 for both populations. 

 

 As seen during our previous experiments using synthetic images, non-uniformity 

of objects can lead to discrepancies between measured and computed quantities. To 

measure the extent of non-uniformity between images as well as nematode populations, 
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we measured the average intensity per lipid for four different wild-type and atlastin 

mutant images (Figure 19). Analysis demonstrates that intensity of lipid droplets does not 

vary according to size within each population (Figure 19B-D); however, comparison of 

the wild type and atln-1 population reveals a much broader lipid intensity range for atln-1 

(Figure 19). While there is an intensity mismatch between both populations, every 

independent image for each population is normalized during analysis to mitigate the 

effect of intensity on granulometry results. While the mismatch does not appear to 

significantly bias results distinguishing the two populations, it may help to explain 

discrepancies between calculated and measured values.  
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Figure 19. Intenisity analysis of single lipids for wild-type and atln-1 mutant 

populations.  

Lipid droplet intensity distribution and cumulative distribution function for atln-1 

(A-B) and wild-type (C-D) example images. (E) Scatterplot of lipid droplet size for 

wild-type and atln-1 population (n=4 for both populations). (F) Histogram 

comparison of images from panel E plotting intensity versus the fraction of lipid 

droplets. 

 

 Another potential source of error in analysis is limited by the resolution of the 

microscopy system for measuring alleles such as a015 with lipids in the submicron range. 
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The resolving power of the confocal microscope utilized for imaging is approximately 

0.2µm, placing the smallest determined lipid droplets from the atln-1 population under 

the optical resolution of the system (0.1µm in diameter). Consequently, any objects 

smaller than this resolution captured in images using this system cannot be verified as 

true lipids. Therefore, while the size distribution of lipid droplets for the atln-1 

population is known to be smaller than that of the wild-type population, the exact 

distribution is unknown.   

 Results from our computational method illustrate the ability to discern between 

populations of C. elegans with different lipid distributions. Manual methods of analysis 

involve constructing 3D volumes of acquired images from various focal planes and 

require skilled users to manually measure and annotate often over a thousand individual 

lipids. As such, standard methods for lipid analysis are tedious and labor intensive, 

requiring many hours per animal to characterize lipid distribution. Here, for the first time 

to our knowledge, we present a method capable of performing similar analysis of lipid 

distribution in approximately 25 seconds on average per animal (n=14, computer 

specifications listed in methods). We provide a method that estimates lipid size through 

analysis of a complicated phenotype with overlapping objects. Using our modified 

granulometry approach, we perform this analysis without the use of image segmentation 

methods, and with the ability to determine a difference between populations of C. elegans 

whose lipids vary on the order of 0.5µm on average. 

5.3.3 Software Method Capable of Characterizing Low Resolution Images for 

Characterization of Wilde-Type and Lipid Mutant Populations 

The current standard for manually measuring the size of lipids involves annotating 3D 

reconstructions of acquired images, requiring high fidelity imaging, such as confocal 

microscopy, in order to accurately recreate a 3D image from various focal planes. Our 

proposed method, however, analyzes the maximum projection of an image stack, 
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eliminating the need for 3D reconstructions and high fidelity imaging along with it. To 

test the characterization ability of our granulometry approach using lower fidelity 

techniques, we analyzed the effect of diet on lipid size and evaluated images captured 

using an epi-fluorescent microscope. Images in this section were captured on a 

microfluidic device fabricated in the Lu laboratory, with a design out of the scope of this 

dissertation, and will not be discussed. Ultimately, the design of the device has little 

bearing on the presented work; however, it is worth noting for future applications that the 

images of animals obtained were captured on-chip, in a device capable of sorting animals 

into wild-type and mutant output channels as previous designs. 

 Zhang et al. have shown in previous work that feeding C. elegans different strains 

of bacteria ultimately affects lipid size of dhs-28 animals
124

. Animals deficient for dhs-

28, a gene involved in peroxisomal β-oxidation used to break down fatty acids, show 

selective expansion of lipid droplets
124

. We similarly tested this affect using the 

transgenic dhs-28;hjSi3(R01B10.6::GFP) strain fluorescently labeling seipen, a protein 

commonly found in the endoplasmic reticulum and associated with lipid droplets
48,130

.  

 Using an altered version of our software method (specific to epi-fluorescent 

images and described in appendix section A.3.1), we were able to recreate trends seen in 

published data for dhs-28 animals
124

. Figure 20 displays results of our software analysis 

demonstrating the ability of our method to discern differences between populations that 

are quantitatively unique despite being similar in phenotypic appearance, and to analyze 

low resolution images and produce results similar to manual analysis on higher quality 

imaging systems. Comparing the fluorescent expression of hjSi3 for HB101 and OP50 

fed animals (Figure 20A-B respectively) demonstrates subtle differences in lipid size, 

with OP50 fed animals exhibiting larger size lipids on average; however, this phenotype 

is not strikingly apparent when performing visual analysis, and serves to demonstrate the 

difficulty in characterizing phenotypes involving the characterization of a multitude of 

objects. This can be also be seen when comparing morphological opening operations at 
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1.52µm and 5µm for example images of both HB101 and OP50 fed animals as they do 

not display any obvious differences at either point of analysis (Figure 20C-F).  

 

Figure 20. Software analysis of lipid size for epi-flourescent data. (A-B) Example 

maximum projection of dhs-28;hjIs3 animals fed HB101 and OP50 bacteria 

respectively. Body outline shown in white. Morphological openings corresponding to 

1.5µm (C-D) and 5µm (E-F) for respective HB101 and OP50 fed images. (G) 

Filtered size density and lipid distribution results for respective HB101 and OP50 

fed populations. Scale bar in panel A is 50µm. Brightness and contrast manually 

adjusted for better viewing of lipids for all images. 

 

 Estimating the average lipid distribution for both populations, however, reveals 

different patterns between HB101 and OP50 fed populations (Figure 20G). Filtered size 

density results for both populations shows an increased average intensity (correlated to 

object number) for HB101 between 1.25µm and 2.5µm while OP50 displays the opposite 
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trend for increased intensity between 3.75µm and 6.25µm (Figure 20G). These results 

compare well to manual analysis seen in Zhang et al. which reflect a higher volume of 

lipids between 3µm to 8µm for OP50 populations
124

. Increased levels of lipids in the 

lower range for HB101 are unique to our method and are not mirrored in manual analysis 

results
124

. We attribute discrepancies between software and manual methods to low 

signal-to-noise ratios for epi-fluorescent images, due to diffuse light from various focal 

planes and low imaging resolution when compared to high quality systems. Figure 20H 

displays the lipid distribution profile for both populations. While overall phenotypic 

separation between HB101 and OP50 appears reduced, this analysis method produces 

results more similar to results seen in manual analysis. Evaluating the two populations by 

size-specific lipid percentage removes the large difference between the HB101 and OP50 

populations in the 1.25µm to 2.5µm range while maintaining a small but discernible 

difference favoring OP50 in the 3.75µm to 6.25µm range (Figure 20H). 

 While software results may not exactly mirror manual analysis, we present a 

method for rapidly characterizing lipid distributions in low fidelity imaging systems. This 

characterization is rapid, performed in 5.4±.03 seconds on average for all images 

evaluated (n=292, mean ± standard deviation), and enables the characterization and 

classification of phenotypes on-chip, at a rate over 1000 times faster than manual 

methods. This technology therefore enables the ability to perform on-chip genetic 

screening of C. elegans lipid mutations, and using microscopy systems that are readily 

available in most laboratories, eliminating the need for costly confocal or advanced 

imaging systems. This work can be easily expanded to characterize other problems 

requiring the need for high-speed analysis of large quantities of objects of any shape or 

size.  
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5.4 Conclusions 

Results of using our computational method reveal the ability to quickly characterize 

mixed populations of objects and accurately estimate the population percentage for each 

object group by size. We validated this technology characterizing C. elegans lipids and 

demonstrate results comparable to hand measured values. Here, for the first time to our 

knowledge, we present a method capable of performing lipid characterization in as fast as 

5 seconds on average per animal. Using this approach, we increase throughput over 

standard methods by a factor over three orders of magnitude, enabling real-time and 

automated genetic screens of C. elegans in search of lipid mutations. Additionally, we 

demonstrate the capability to perform genetic screens on low fidelity images, 

circumventing the need for expensive confocal microscopy systems which are 

unavailable in every laboratory.  

 We provide a software method capable of estimating object size and proportional 

quantity on the order of seconds. Using this technology, we demonstrate the capability to 

saturate genetic screens in search of lipid mutations in C. elegans. Our software is 

flexible and easily modified to characterize objects of various sizes and shapes, making 

our algorithm applicable to other biological systems or processes. Using this method, we 

deliver a technological means to quickly characterize images densely packed with objects 

for real-time analysis. 
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CHAPTER 6  AUTOMATED CHARACTERIZATION OF 

NEURODEGENATIVE AND NEURODEVELOPMENT DEFECT 

MUTATIONS IN C. ELEGANS 

The following work in this chapter was performed in collaboration with Dr. Massimo 

Hilliard’s laboratory at the University of Queensland, Australia. 

6.1 Introduction 

Neurodegeneration is a naturally occurring process during neurodevelopment (pruning), 

but is more widely known for its role with various neural pathologies such as 

Alzheimer’s, Parkinson’s, and Huntington’s disease. With the advancement of medical 

technologies and increased life spans, neurodegeneration has become a forefront of 

concern as it is closely related to many age-dependent diseases; however, elucidating the 

mechanisms of neurodegeneration is a difficult and a fundamental question in 

neuroscience. While many genes and proteins have been discovered that affect 

neurodegeneration (SOD, huntingtin, presenilin,   β-amyloid,   tau,   α-synuclein,   and   

LRRK2), the complex interactions between these networks are still not fully 

understood
16,18,114,131,132

. Unraveling these mechanisms is paramount to identifying new 

genes and pathways that are critical for understanding neuronal repair, regeneration, and 

necessary to develop therapeutic techniques. 

  The nematode C. elegans, is an excellent model for studying the complex genetic 

mechanisms of neurodegeneration and neural development because of its sequenced 

genome and well-documented nervous system
20,96,103

. The organism lends itself well to 

neuroscience studies because of its transparency and stereotypical neuronal connectivity; 

additionally, many biomolecular mechanisms are well conserved between the nematode 

and vertebrates, ranging from common guidance and polarity cues to major 

neurotransmitter systems
11-15,114,133

. Previous research studying neurodegeneration has 

also been performed using C. elegans, with pathology models and studies performed to 
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elucidate the mechanisms behind disorders such as Alzheimer’s, Parkinson’s, 

amyotrophic lateral sclerosis, and Huntington’s disease
1,16-19

. 

 In C. elegans, the tail sensory neuron PQR provides an ideal opportunity to study 

neural development and degeneration because of its relatively long axon and bipolar 

structure. PQR along with the neurons AQR and URX, fluorescently labeled using 

transgene kyIs417[Pgcy-36::GFP, Podr-1::dsRed], are known to be involved in aerotaxis, 

social feeding, and bordering behavior
50,133,134

.  PQR can be used to study 

neurodegeneration on a comparatively long axon, providing multiple areas for 

degeneration to occur over a quarter length of the animal body, facilitating detection by 

software. The axonal process extends anterior and projects into the preanal ganglion, 

joins the ventral nerve cord, and terminates normally just posterior to the vulva
6
. 

Neuronal polarity is also easily distinguishable because of PQR’s bipolar form. Opposite 

of its axon, PQR extends a dendritic process posterior into the tail where its ciliated 

sensory endings are exposed to the coelomic body fluid of the animal
134

. Additionally, 

the PQR neuron can be used as a behavioral readout for neurodegenerative phenotypes 

due to its association with aggregation and bordering behaviors
50

. 

 Currently, standard manual methods of investigating C. elegans are low-

throughput and are bottlenecks to the discovery of new genes involved with 

neurodegeneration and neural development. Recently, systems have emerged that are 

capable of performing automated and high-throughput screens of adult 

nematodes
34,39,91,135

; however, most of these technologies have not been applied to or 

optimized for quantitative screening of detailed neuronal characteristics. Instead, most of 

these methods search for the lack or presence of fluorescent expression in neurons or 

specific body locations. These methods are therefore impractical for studying neuronal 

morphology which requires complex analysis of neuronal structure. Typically, before any 

metric can be calculated for an object in an image, the pixels defining its structure and 

location have to be isolated from background. Image segmentation methods, widely used 
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in the field of computer vision, are normally employed for problems dealing with object 

identification and can be used to detect neurons and neuronal processes
39,46,60,100

. 

However, even adaptive segmentation methods alone are ill equipped and poorly suited 

for morphology analysis due to highly variable pixel intensities for features of interest 

and low signal-to-noise ratio commonly seen during genetic screens.  

 To overcome these issues, we present a method combining adaptive segmentation 

algorithms with a mathematical connectivity model to accurately segment, join isolated 

neuronal fragments, and characterize neuronal processes for detection of 

neurodegenerative and developmental mutations. The premise of this work is similar to 

previous studies using tracing algorithms for neural process or curved structure 

detection
136-141

.  General advantages of using our system are threefold: First, phenotype 

analysis uses standard and comparatively simple algorithms that are widely available in 

image processing libraries and implementable in multiple programming languages; 

Second, our software analyzes multiple phenotypes, comparing various metrics of neuron 

morphology; Lastly, screening of neuron morphological phenotypes can be performed 

on-chip, requiring only seconds per animal, providing a high-throughput alternative to 

standard and laborious manual screening methods.  

6.2 Materials and Methods 

6.2.1 Microfluidic device fabrication, design, and operation 

Microfluidic devices used in this study were fabricated using standard techniques 

discussed in chapters 3 and 4. Feature height for microfluidic chips inj this work was 

50µm while channel widths were 70µm (except for sorting outputs), designed to be 

slightly smaller than an adult worm to reduce movement during image. Devices were 

fabricated using a 10:1 ratio of elastomer to cross-linker with an overall device height of 

approximately 3mm. Serpentine channel within the device imaging area utilized a radius 

of curvature of 125µm, measured from arc center to outer edge of channel. 
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 Device operation utilized similar principles to previous genetic screening devices 

designed in the Lu laboratory, pressure driven flow and partially closed valves to control 

worm loading, imaging, and sorting
32,34,40,42,111

. Partially closed valves were similarly 

loaded with a 58% glycerol solution to improve imaging of C. elegans within 

microfluidic chips by approximating and matching the refractive index of PDMS
33,111

. 

6.2.2 C. elegans strains, culture, mutagenesis, and imaging 

C. elegans strain kyIs417[Pgcy-36::GFP, Podr-1::dsRed] was used in this study and was 

cultured between at 15°C, 20°C, or 25°C using established protocols
96

. Animal 

phenotype scoring was performed off-chip on agar pads prepared using conventional 

methods using 5 mM sodium azide (Sigma Aldrich) as an anesthetic
9
.  

 Chemical mutagenesis of nematodes was performed using standard concentrations 

of the mutagen ethyl methanesulfonate (Sigma Aldrich) to perform pooled F2 screens of 

gravid adults
10

. Animals were visually inspected on-chip during genetic screening and 

were isolated if they expressed defects in dendrite or axon length, signs of 

neurodegeneration (beading or breaks in GFP expression), or gross morphological 

differences when compared to normal wild-type expression. Images captured on-chip for 

phenotype analysis recorded from multiple focal planes, 5µm apart for a total distance of 

35µm, using 15 mM tetramisole (Sigma Aldrich) as an anesthetic. 

 C. elegans imaging performed in this study, whether off-chip or on-chip, utilized 

20x/0.5NA or 40x/0.75NA objectives on either an upright (Leica DM4500) or inverted 

(Leica DMI6000 B) compound epi-flourescent microscope. 

6.2.3 Probability model used for PQR characterization and analysis 

PQR images were analyzed by custom software and were imaged using a 20x/0.5NA 

objective on either of the previously mentioned microscopes. All software written for 

analysis was programmed in MATLAB®. 
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 Equations (14-(17 below display the probability model used to join fragmented 

process segments: 

 (   ̂  )     ( )      ( ̂)     ( ) (14) 
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where   is the euclidian distance between endpoints of fragments being considered for 

connection,  ̂ is the absolute difference for the angle of connection between the current 

points being evaluated for connection ( ) and the mean of all other angles of connection 

within the preferred direction bin (  
̅̅ ̅), and   is the combined length of the fragments 

(   and   ) being considered for connection. The variables  ,  , and   are used to weight 

the importance of each of the individual probability functions for distance, angle, and 

length respectively with each function having a probability range of -1 to +1 (Eq. (18-

(20). Points being connected together were limited to endpoints between the two objects 

that were within the closest proximity to each other. 

 To summarize, the probability of  ( ) will increase the closer that two fragments 

are to each other as long as the distance between fragments is below a maximum value 

set by  Threshold. If the distance between fragments is above  Threshold, than  ( ) will 

decrease as the distance between fragments approaches its maximum value. The 

maximum value for   will correspond to the distance between fragment endpoints in the 

image which are the furthest apart.  
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 For  ( ̂), probability of connection will increase as the value of  ̂ decreases, 

suggesting that the current angle of connection is in the same direction as many other 

process fragments. This probability is also regulated by an angle difference threshold,  . 

When  ̂ is less than the threshold, then the resulting probability value is positive. If  ̂ is 

greater than  , then probability will decrease as  ̂ approaches its maximum value of 180 

degrees.  
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 Lastly, the probability of  ( ) will increase as   approaches its maximum value, 

the combination of the two longest segments in the image. This can only occur when   is 

greater than the square of  Threshold, a value used to differentiate between actual process 

fragments and noise. If   is less than the square of  Threshold, then  ( ) will 

correspondingly decrease the smaller that   is when compared to its maximum value. 

 Further software details about the probability model function and its equations 

can be found in the appendix A.4.2. 
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6.2.4 Intensity profile peak detection for classification of neurodegenerative 

phenotypes 

Classification of neurodegenerative phenotypes was performed by estimating 

characteristic peak profiles from pixels surrounding returned neuronal process trajectories 

from our probability model. To search for intensity peaks, a sample of 25 pixels using a 

line perpendicular to the image major axis was gathered. Coordinates of the returned 

neuronal process was used as a midpoint for each sample. Returned pixels values were 

then smoothed and an adaptive threshold was set to half of a standard deviation above the 

mean for the sampled intensity values. A local maximum function provided by 

MATLAB® was then used to search for intensity peaks for the pixels surrounding each 

coordinate of the returned neuronal process. If no peak was detected, the corresponding 

coordinate was considered to have a break in GFP expression. An animal was considered 

to exhibit a neurodegenerative phenotype if three or more coordinates returned no peaks 

for the mentioned intensity analysis method. 

6.3 Results and Discussion 

6.3.1 Microfludic devices used for manual genetic screening 

Genetic screening was performed on-chip using the devices shown in Figure 21. The 

“serpentine design” shown in Figure 21A-  was a precursor to the final “curved design” 

shown in Figure 1, used in previous work
111

. Limiting animal movement is especially 

important in this work because PQR neuronal processes often span several focal planes, 

requiring manual adjustment of focus to properly analyze animal phenotype.  
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Figure 21. Devices used for manual genetic screening and nematode age 

compatibility. (A) Serpentine device design schematic. (B) Device image of dashed 

box shown in panel A. (C) Curved channel device design schematic. Black text in 

panels A and C represent fluid channels while gray text represents control layer 

valves. LD is loading valve; IMG is imaging valve; MT is mutant channel / valve; 

WT is wild-type channel / valve; Flush designates flush channel (Panel C only). (D) 

Device image of dashed box shown in panel C. Black text and arrows in panels B 

and D represent control layer valves while white text and arrows designate fluid 

channels. Radius of curvature (RoC) and length between valves (L) shown by yellow 

arrow and dashed arc respectively. (E) L3 to L4 animal loaded in device shown in 

panel C. Loading and imaging valve outlined in yellow dashed box. (F) Gravid adult 

loaded in device shown in panel C. Same animal shown as in panel D. White arrow 

designates eggs in animal. 

 

 While early device designs utilized a serpentine channel to restrict animal 

movement, curved areas impeded animal loading and exit from the imaging area. By 

reducing the number of curved sections, animal throughput increased from a previous 

maximum rate of 400 animals per hour to an average rate of 600 animals per hour (Figure 

21A-D). In addition, a flush channel incorporated into the curved design improved 

overall device robustness, providing an additional pressure source to aid in animal exit 

without promoting additional loading of animals Figure 21C-D. This is accomplished by 

pressuring the loading valve of the device (labeled “LD” in Figure 21A), effectively 

cutting off flow into the imaging area, while leaving the imaging valve (labeled “IMG”) 
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and the desired sorting valve (labeled “MT” or “WT”) unpressurized to allow fluid flow 

from the flush channel input to a device exit. 

 These designs were utilized for this study because their ability to aid in animal 

immobilization and compatibility with animals of various sizes (Figure 21E-F). 

Preliminary experiments to characterize immobilization demonstrated the ability to 

acquire z-stacks of animals with little to no motion artifacts, maintaining partial 

immobilization for up to 10 seconds (Figure 22). Qualitative results suggest that devices 

with smaller RoC are able to maintain partial immobilization for longer durations and 

with more consistency between natural variations in animal size. Figure 22A 

demonstrates an animal within a device with the largest RoC exhibiting movement in the 

head and tail region over the course of 10 seconds. Animals within smaller RoC devices 

generally do not demonstrate as much head and tail movement. When compared to 

straight channel devices (Figure 22D), curved channel designs appear to limit sinusoidal 

body wave propagation while maintaining similar spacing between valves (L). We 

hypothesize that this locomotive impairment is due to a lack of adequate force to 

overcome channel geometry by animal body muscles. 

 By altering arc length (L) of the new design, we were also capable of examining 

animals at different stages of development while maintaining similar immobilization 

characteristics (Figure 21E-Figure 21F).   Figure 21E depicts an animal in its 3
rd

 or 4
th

 

stage of larval development (L3 or L4 respectively) within the device while Figure 21F 

depicts a gravid adult animal, easily identified because of the eggs present in the worms 

body. Screening animals at different stages of development allows animals to be 

examined for stage specific changes in phenotype in addition to searching for the early or 

late onset of neurodegenerative phenotypes. 
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Figure 22. Movement of animals in curved and straight channel devices. 

(A)-(C) Animals loaded into curved channel devices with radius of curvature equal 

to 145µm, 125µm, and 105µm for panels A, B, and C respectively. (D) Animal 

loaded into straight channel design. Animal body midline estimated and overlaid for 

six different time points displayed in each image.  

 

6.3.2 Manual screen to find mutants expressing neurodegeneration and neural 

developmental defects 

A manual screen of over 20,000 animals was performed on-chip to discover 

neurodegeneration and neural development mutants; this serves also to use for software 

testing and validation. Using our microfluidic system, we successfully isolated 8 mutants 

(Figure 23) at a throughput of 400 and 600 worms per hour for serpentine and curved 

geometry designs respectively. Device throughput was measured over multiple 

experiments and devices.   

B 

 

C 
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Figure 23. Example phenotypes of mutants isolated from pilot screen. All animals 

mutagenized from kyIs417 shown in panel A. (A) Wild-type kyIs417 phenotype. 

Arrows indicate PQR morphological segments and their relation to animal vulva. 

(B) Neurodegenerative phenotype of allele a022. Arrows indicate repeated breaks in 

GFP expression in axon. (C) Short axon phenotype of allele a062. (D) Long axon 

phenotype for allele a052. Approximate axon length for wild-type marked by arrow 

in diagram for panels C and D. (E) Lineage defect phenotype for allele a053. Arrow 

indicates presence of extra cell body. (F) Polarity in combination with extra cell 

body phenotype for allele a060. Anterior guided process and extra cell body marked 
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in diagram. (G) Short dendrite phenotype of allele a061. Arrow indicates lack of 

dendritic process. (H) Migration and lineage phenotype of allele a051. Arrows 

indicate extra cell body and a misguided process. Neurodegenerative phenotype 

allele a173 not shown. 

 

 While various neurodegenerative and neural development mutants were 

discovered, only alleles a173, a062, and a061 were utilized for software testing as they 

were the highest penetrant for neurodegenerative (24%, n=145), short axon (24%, 

n=152), and short dendrite (27%, n=140) phenotypes respectively. Figure 24 displays the 

penetrance of each allele compared to wild-type for their corresponding mutation. 

Penetrance for all mutants shown corresponds to the allele’s dominant phenotype.  

 Alleles a173, a062, and a061 were chosen as primary focuses for software 

development and characterization due to their relatively more robust phenotypes and 

potential role in degeneration. For example, while short axon phenotypes are often 

thought of as developmental defects, there is also the possibility that the neuronal process 

could be a remnant of an axon that has degenerated from its distal end, leaving behind 

what appears to be a shortened axon but is a neurodegenerative defect in actuality
142

. 

Similarly, short dendrite phenotypes may be indicative of degeneration occurring on the 

sensory rather than communicatory end of the neuron and also be of special interest
104

.  

 

 

Figure 24. Penetrance of specific defects for isolated alleles. 

Neurodegenerative phenotype allele a173 not shown. 
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6.3.3 Algorithm to detect and characterize neurodegenerative and neural 

development mutants 

The software algorithm designed to characterize PQR neuron morphology utilizes a 

seven-step process involving image preprocessing, worm body detection, neuron 

segmentation, soma isolation, fragmented process joining, metric quantification, and 

phenotype classification. This computational method can be executed in real-time after a 

worm is loaded into the microfluidic device for imaging or off-chip at any time. Images 

are always acquired on-chip by capturing images from different focal planes (or acquiring 

a z-stack) in order to record all of the PQR neuron which typically spans multiple focal 

planes (as seen at magnifications of 20x or higher). After image acquisition, software 

characterization of the neuron is performed. 

6.3.3.1 Image preprocessing, worm body detection, neuron segmentation, and soma 

isolation 

To facilitate algorithm processing time, captured images are consolidated by taking the 

maximum projection along the z-axis, flattening 3D data into a 2D image
39

. After image 

flattening, images are smoothed to help remove noise and facilitate binary segmentation. 

This is performed using an anisotropic diffusion filter to smooth image features while 

maintaining high contrast borders between foreground and background pixels (Figure 

25A)
143

.  

 Next, the worm body is estimated using a scaled Otsu’s global threshold
144

. 

Results from body segmentation are used for worm tail region separation and to limit 

results returned from future neuron segmentation methods to objects detected within the 

worm body. To detect which section of the returned worm body belongs to the tail, URX 

and AQR head neurons are located using Otsu’s global threshold (Figure 25B). The 
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worm tail region is then assumed to be in opposite half of image from head neurons 

locations (Figure 25C).  

 Segmentation of the PQR neuron from background data is then performed by 

using the Sauvola adaptive thresholding algorithm to adjust for uneven expression of 

GFP and uneven illumination in images (Figure 25D)
80

. The algorithm is similar to the 

popular Niblack segmentation algorithm, taking into account local mean and standard 

deviation of a region, but improves segmentation results by utilizing a hybrid global and 

local method to account for region class properties
80,81

. While originally designed for text 

recognition and letter segmentation for documents, empirical results using the Sauvola 

algorithm on fluorescent images of PQR return more accurate results than global 

thresholding methods such as Otsu’s algorithm or other local methods using adaptive 

algorithms
80,144

. 

 Custom software using a combination of morphological openings and filters for 

intensity, area, and circularity are used in series to detect the PQR cell body, or soma.  By 

altering the size and shape of structural elements passed to the function and tuning filter 

parameters, selective filtering of neural processes can be executed leaving only the cell 

body behind (Figure 25C). Animal examinations resulting in no soma detection are 

treated as exhibiting a wild-type phenotype, essentially discarding analysis. This is 

performed since dendrite and axon processes are determined by software utilizing the 

soma as a marker for the bipolar nature of the neuron, used to computationally separate 

dendritic and axonal processes. Additionally, animals with no PQR neuron, whether due 

to migration, lineage, or some other defect, do not fit the profile of the three degenerative 

and developmental phenotypes of interest. 

6.3.3.2 Joining fragmented process segments 

Segmentation of PQR neurons from fluorescent images is not perfect and often fails at 

detecting small sections of the neuron due to comparatively low signal-to-noise ratio. 
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Results therefore often return a fragmented process with expression mimicking a 

neurodegenerative phenotype (normal areas of PQR axon shown in Figure 25C-D). To 

correct for this issue, we implemented a probability model to estimate the connection 

strength between objects returned from neuron segmentation. The probability of 

connection between points is based on their distance to other detected objects, their angle 

of connection to other fragments, and their approximate length. Generally, objects which 

are closer together, following a direct path, and are long enough to not be considered 

noise (or fluorescent background structures) have the highest probability of connection 

(Figure 25D). A detailed explanation of the probability model can be found in subsection 

6.2.3 of the materials and methods section. 

6.3.3.3 Analysis of neuron morphology 

After PQR has been joined together using our custom probability model, detected 

neuronal features are partitioned into different anatomical divisions for dendrite, soma, 

and axon (Figure 25E). Separating the detected process in this manner allows for each 

segment to contain its own distinct properties. Consequently, analysis of phenotypes can 

be accomplished with a greater resolution than existing systems.  

6.3.3.3.1 Quantifying neuronal process length 

Process length for PQR axon and dendrite are computed via a two-step procedure of 

creating an approximate spine for the process and then using this spine to calculate 

length. Lengths of neural processes are estimated by summing the number of pixels 

present in the object spine. This method is computationally faster but less precise than 

computing pixel distance, a method that is more accurate at estimating diagonal and 

curved paths; however, empirical results demonstrate similar results for both methods. 

6.3.3.3.2 Analyzing PQR fluorescent intensity to detect neurodegenerative phenotypes 
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The probability model can be used to simultaneously correct for errors in segmentation, 

and also to analyze intensity along the PQR neuron. Once all process fragments have 

been analyzed and joined, neuron midlines from length measurements can be used to 

evaluate GFP expression by using regions of interest along each pixel of the process. 

While any region of interest can be used for this operation, our current method analyzes 

the intensity of a line aligned perpendicular to the major axis of the neuron skeleton for 

each pixel (Figure 25F). 

6.3.3.4 Phenotype classification 

 Neurodegenerative phenotype classification is determined by comparing the 

intensity profile for the region of interest along the process. Intensity profiles for regions 

with normal GFP expression exhibit a characteristic peak intensity profile (Figure 25F). 

For regions where there is a gap, however, intensity profiles lack the typical peak shape 

and are prominently different (Figure 25F). For this work, an animal is considered to 

possess a neurodegenerative phenotype if no local maximum is detected in the intensity 

profile for three or more instances along the neuronal process. Details of this method are 

described in subsection 6.2.4 in the materials and methods section. 
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Figure 25. Software characterization of PQR neuron. (A) Smoothed maximum 

projection image of allele a173 captured on-chip. Scale bar is 100µm. Marker 

designates directions for dorsal (D), ventral (V), anterior (A), and posterior (P). (B) 

Detected worm body by software. Head neurons (URX’s) shown in blue. Body 

outline for determined tail region outlined in green. (C) Determined tail region of 

image from panel A. (D) Segmentation results of neuronal features and returned 

neuronal process from probability model evaluation. Segmentation results shown in 

white and limited to objects returned within the tail region of the animal (outlined in 

green in panel B). Red line shows returned connectivity between detected process 

fragments. (E) Results of anatomical division of PQR into axon and dendrite 

segments overlaid on image shown in panel C. Axon shown in red, detected breaks 

in GFP expression shown in green, and dendrite shown in blue. (F) Straigthened 

neuronal process using probability model connection trajectory as process midpoint. 

Red lines indicate pixel measurement samples for smoothed intensity profiles shown 

below straightened image. Red line on intensity profile marks minimum threshold 

for peak detection and neurodegenative phenotype characterization. Red dot marks 

peaks detected for three of five samples. All images contrast adjusted for easier 

viewing of neuron morphology. 
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6.3.4 Software validation using known phenotypes of isolated alleles 

To validate the ability of our software to classify neurodegenerative phenotypes, we 

characterized a library of 84 images of allele a173 captured using our microfluidic 

device. Every image within this library contained a neural process visually examined and 

confirmed to demonstrate at least one break in the PQR axonal process characterized by a 

gap in GFP expression, a characteristic attribute of a neurodegenerative phenotype. We 

qualitatively scored results of analysis based upon the performance of the probability 

model to correctly join segmented PQR process fragments. The three major categories 

were: perfect match – software results mirrored visual analysis; minor errors – software 

results captured most of the neuronal process, erring by detecting either too much or too 

little of the entire process; major errors – software results were significantly different 

than visual analysis. Examples of these three categories can be seen in Figure 26. Images 

of the allele were captured on-chip while analysis of phenotype was performed off-chip.   
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Figure 26. Qualitative accuracy examples. Representative examples for accuracy 

scoring: perfect match (A-D), minor error: detected too much (E-H), minor error: 

detected too little (I-L), or  major error (M-P). First row shows the maximum 

projection result for each example. Second row displays binary segmentation results 

of respective images shown from first row. The third row shows results of using our 
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probability model method to join neuronal process fragments overlaid on the 

maximum projection image. Estimated axon and dendrite are shown in red and blue 

respectively. White arrow designates where neuronal process should have ended 

according to visual inspection. The final rows demonstrates regions along the 

estimated process detected to have breaks in GFP expression, overlaid on maximum 

projection image in green, using our intensity peak detection method. Scale bar in 

panel A is 100µm. Marker in panel A designates directions for dorsal (D), ventral 

(V), anterior (A), and posterior (P). All images contrast adjusted for easier viewing 

of neuron morphology.  

 

 While 84 images were in our library, 10 of these were examples of PQR neural 

processes that did not contain a cell body or soma in the image. These images served as 

negative control tests to make sure that our program did not analyze any images or detect 

any false positive cell bodies when no soma was present. All 10 of these images were 

correctly identified. Of the 74 images visually confirmed to contain a cell body, 70% of 

images returned results that were either a perfect match (27% or n=20) or with minor 

errors (43% or n=32) for PQR process detection. Low accuracy can be attributed to poor 

performance of software to detect PQR cell bodies. Software returned results for no soma 

detected for 10 images visually confirmed to contain a cell body (14% of n=74).  Thus, 

joining of PQR process segments was not executed for these instances. Neglecting these 

10 images and calculating accuracy for results where PQR soma was detected reveals an 

accuracy of 81% (n=52 of 64), demonstrating the utility of our method to correct for poor 

segmentation results using standard computer vision algorithms. 

 Next, accuracy of detecting neurodegenerative phenotypes was analyzed using 

our peak detection method for neural process intensity. Results from our image library 

show that our method is 75% accurate for images returned with perfect matches between 

PQR visual analyses and software joining of process segments (n=15 of 20). Results for 

neurodegenerative phenotype detection when taking into account perfect matches and 

images with minor connectivity errors drops accuracy down to 62% (n=32 of 52). 

However, this drop in accuracy can easily be explained when taking into account that 

scoring for minor errors includes images where not all of the neuronal process was 
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detected; in other words, areas with axonal breaks (characterized by a gap in GFP 

expression) may not have been analyzed for those images. Taking this factor into account 

and excluding minor errors in neuronal process connectivity where a less than the full 

neuronal process was detected increases accuracy back up to 75% (n=27 of 36). If 

calculating classifier performance including images where neural connectivity results 

returned major errors, accuracy decreases once again to 61% (n=39 of 64) and even down 

to 53% (n=39 of 74) if including images where no soma was detected but present; 

however, these results do not reflect the actual performance of the neurodegenerative 

classifier, as it relies heavily on the ability of the probability model to correctly join 

neural process segments together in order to function properly 

 Run times for probability model and neurodegenerative classifier execution are 

directly related to the complexity of analysis of fragmented process segments. The 

average execution time per image for PQR characterization was 9 ± 3.7 seconds (mean ± 

standard deviation, n=84) with a maximum of 20.6 seconds required for one image within 

our library. Average run time for images where no soma was detected was 4.5 ± 0.5 

seconds (mean ± standard deviation, n=20). The average execution time for only 

instances where the probability model and neurodegenerative phenotype classifier were 

implemented did not significantly change when compared to results from all images, 10.4 

± 3.1 seconds (n=64). 

6.4 Conclusions 

As with any system, our microfluidic platform for rapid characterization and analysis of 

C. elegans neurodegenerative and neural developmental phenotypes is limited by several 

factors. First, overall classification accuracy of neurodegeneration is directly related to 

the performance of our probability model to correctly join neural processes together. 

Additionally, software ability to detect the PQR cell body is required for analysis of 

animal phenotype. These factors combined can have a great impact on overall 



 97 

classification accuracy of our system, but can be compensated for by examining large 

numbers of animals to mitigate the effect of classification errors. 

 We provide a system capable of performing rapid neuron morphology analysis 

and classification of neurodegenerative phenotypes. With the ability to perform 

characterization of neuronal morphology in approximately 10 seconds, we can potentially 

use our method to perform automated screens for neurodegenerative and neural 

developmental phenotypes in real-time. This algorithm is highly parameterized and can 

easily be used to analyze other neurons with similar bipolar morphology and expanded 

for other model organisms or neuronal images with simple changes.  
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CHAPTER 7  CONCLUSIONS AND FUTURE DIRECTIONS  

7.1 Research significance 

The primary objective of this thesis was to create tools and methods to enable high-

throughput screening and characterization of multiple C. elegans phenotypes in order to: 

(1) advance the state of art for automated screening technologies; and (2) use these 

methods to discover novel genes or cellular mechanisms responsible for various 

pathologies to develop potential new therapies. To accomplish these goals, I developed 

four approaches in microfabrication, system integration, and computer vision to solve 

current problems limiting small animal screening. First, I developed a passive method for 

animal positioning into lateral orientations within microfluidic devices by using curved 

geometries. Second, I used the device design coupled with computer vision algorithms to 

detect motor neurons and perform the first automated real-time screen for 

neurodegenerative C. elegans mutants. Third, I engineered a method to rapidly 

characterize animal phenotypes requiring inspection of large numbers of fluorescently 

labeled objects, on the order of seconds versus hours. Lastly, I devised a method to 

correct for segmentation defects in noisy, low-resolution environments and use this 

technique to classify neurodegenerative defects in neuronal processes. Specific 

contributions for each project are discussed further below. 

 The overall goal of my first project (chapter 3) was to enable rapid screening of C. 

elegans for phenotypes that required dorso-ventral orientations for inspection of 

fluorescently labeled phenotypes. In accomplishing this task, I designed and provided the 

first method for orienting C. elegans within microfluidic channels into specific dorso-

ventral alignments. The ability to easily control worm orientation is significant because it 

enables high-throughput screening by providing a simple and robust method to facilitate 

inspection of lateral morphological features. This method provides a passive means to 

performing this task and can position animals into lateral orientations with up to 84% 
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efficiency, compared to 21% using existing methods. Using this method, we performed a 

pilot screen of approximately 10,000 animals and isolated six mutants with neuronal 

development or neurodegenerative defects, showing that our technology can be used for 

on-chip analysis and high-throughput visual screens. Our system accomplished this task 

using no anesthetics or true immobilization method, eliminating the need for additional 

systems, and utilized curved geometry to restrict animal movement. Even with no 

immobilization scheme, our system allowed visual analysis of complex neuronal 

morphology and complete inspection of the C. elegans motor nervous system consisting 

of 19 neurons, two nerve cords, and their interconnecting commissures between them. 

Additionally, this system was simple to use and was tested in the hands of biologists from 

Dr. Massimo Hilliard’s laboratory at the University of Queensland. In the Hilliard lab, the 

device was further used to isolate a mutant allele independently, demonstrating the 

general utility of this tool to facilitate scientific discovery.  

  In the second project (chapter 4), I performed the first real-time screen for 

neurodegenerative mutants. The automated screen was performed at a rate of 300 worms 

per hour and resulted in the isolation of 21 alleles that suppressed a mutation in smn-1, a 

C. elegans homologue to the gene responsible for spinal muscular atrophy in humans. I 

performed this screen by combining computer vision techniques to detect neuronal cell 

bodies with an improved device design based on the last project. The new design 

simplified the fabrication process allowing for production of our devices by non-experts 

while maintaining passive orientation. The main intellectual contribution in this work, in 

contrast, was providing an automated screening platform to directly read out neural 

anatomy using a process over 100 times faster than existing neurodegenerative phenotype 

detection methods, to our knowledge, for C. elegans
87,88

. While the pilot screen for this 

project inspected over 7,500 animals for suppression of the smn-1 phenotype, our system 

provides an approach to saturate forward genetic screens that can be easily expanded to 

examine a multitude of phenotypes requiring fluorescent cell body detection. Thus, we 
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provide a widely applicable technique compatible with biological mechanisms that can be 

morphologically examined in C. elegans. Additionally, minor changes in software 

parameters allow for the inspection of circular objects in other applications in other 

model systems, i.e. not limited to C. elegans neurons. 

 For the third project (chapter 5), I modified a previous method (granulometry) to 

rapidly characterize large numbers of objects; this computational technique is analogous 

to the sieving of digital images for particles of various sizes. In this work, a 

morphological processing algorithm was used to rapidly characterize C. elegans lipid 

droplet distributions, an improvement in throughput of over three orders of magnitude 

when compared to standard manual methods of analysis. We validated this technique by 

recreating similar distributions to results measured by manual methods in published work 

between mutant and wild-type populations and for animals fed different diets
124,125

. 

Additionally, we show that our method can be applied to low quality images captured 

using epiflourescent microscopes, mimicking published data captured from higher 

fidelity systems. Our presented method can analyze hundreds of objects on the order of 

seconds, enabling the use of this technology to perform automated screens for mutations 

that affect lipid storage. This process is extremely difficult to perform by standard 

methods, which is both time consuming and inaccurate. The scientific contribution here 

could potentially facilitate the discovery of genetic and molecular mechanisms for 

obesity and its relation to other diseases such as diabetes, coronary heart disease, and 

reduced life expectancy
145-147

. 

 The final contributions of the thesis were the implementation of a probabilistic 

model to correct for errors in computer vision segmentation techniques, and the 

accompanying method to classify neurodegenerative phentoypes (chapter 6). Using these 

techniques, I was able to correctly identify neuronal processes with up to an 80% 

accuracy for images where segmentation results returned incomplete and fragmented 

objects. Additionally, accuracy of neurodegenerative phenotype classification after 
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probability model implementation was 75% for correctly processed images. Like our 

previous technologies, run time for our software methods was rapid, averaging less than 

10 seconds for model execution and phenotype classification combined. This would 

enable real-time decision-making for performing genetic screens.  Our method is highly 

parameterized and can be adapted to other neurons with similar bipolar morphology, 

permitting the use of our software method for various applications. 

 In conclusion, the presented work in this dissertation provides methods to analyze 

various biological phenotypes generalized into three categories: detection of circular cell 

bodies in low numbers; characterization of circular objects in dense volumes with large 

amounts of occlusion; and segmentation of curved tubular structures. These shapes and 

conditions can be widely utilized in various fields of biomedical science and are not 

limited to C. elegans research. By combining computer vision analysis methods with 

microfluidic technology, we demonstrate the capability to characterize the 

aforementioned phenotypes, enabling automated screens requiring minimal human 

intervention, and the possibility to reach screen saturation in months versus years. 

Mapping these genetic mutations may one day help to elucidate the detailed mechanisms 

of how complex processes function in humans. 

7.2 Future directions 

The work presented in this dissertation presents technologies in their infancy in terms of 

impact and exposure. This thesis is a proof of concept demonstrating the potential of our 

hardware and software methods for specific applications. A discussion of future 

improvements follows below. 

 While the first project (chapter 3) provides a method for orienting C. elegans 

within microfluidic devices, positioning of nematodes is limited to a single orientation. 

This dorso-ventral orientation places animals on their side and is commonly seen during 

locomotion and when nematodes are examined on agar pads. While we provide a means 
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for consistent orientation, future work should focus on providing an orientation method 

for body positions not commonly seen, facilitating inspection of hard to examine 

phenotypes. Additionally, by placing animals on their ventral or dorsal body with their 

lateral sides against channel walls, symmetric body structures (most neurons are 

bilaterally symmetric) can be easily examined. Preliminary work in our lab has shown 

promising results of using channels with different steps in channel height to promote 

passive positioning of nematodes into this orientation, similar to using curved structures 

to encourage body bending. The long-term goal would be to create a device design that 

would passively orient C. elegans into both dorso-ventral and lateral orientations, 

allowing for inspection of the full animal body. 

 Future work for our second project (chapter 4) could focus on continuing with 

automated screens until saturation. To accomplish this goal, software should be revisited 

and optimized to lower false positive rates for both detection of motor neurons and 

suppressor mutant classification. Another method to lower these rates is to use a smn-1 

RNAi strain with a different transgenic marker. This has the potential to significantly 

improve software results as a large percentage of neuron detection and mutant 

classification error can be attributed to detection of fluorescent RNAi co-injection 

markers present in the head and tail of the animal. Furthermore, to expand upon potential 

discoveries for genes and pathways involved with smn-1, forward genetic screens for 

enhancer mutants along with mutants from screening mutagenized wild-type populations 

should be performed.  The long-term goal of this project is to saturate multiple screens 

involved with smn-1, but can be expanded to other phenotypes requiring analysis of 

fluorescent cell bodies. 

 To utilize the full capability of our presented method, future work concerning the 

third project (chapter 5) should focus on performing on automated screen using an 

epiflourescent microscopy system. Performing this screen and isolating various alleles 

will validate our proposed technology and provide a means to continue forward with 
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automated experiments. Future work using this system and computational method should 

include further characterization of computational limitations of the modified 

granulometry algorithm to discover differences in lipid distributions from known mutants 

with subtle differences in size. Similar to the proposed work for the previous project, 

automated genetic screens should be performed for enhancers and suppressors of known 

mutations after saturating screens for mutants isolated from mutagenized wild-type 

populations. Should software fail to distinguish between subtle phenotypes using 

epiflourescent systems, genetic screening can be attempted using rapid, high-quality 

imaging systems such as spinning disk confocal setups. 

 Future work for the fourth project (chapter 6) should focus on optimizing software 

methods in multiple areas including neuronal cell body detection, joining of neuronal 

process fragments, and neurodegenerative phenotype classification. Ideal accuracy values 

to be obtained from each of these processes is approximately 95%, as neurodegenerative 

phenotype classification depends on both cell body detection and correct probability 

model execution for perfect analysis. Given a 95% accuracy for each process, final 

accuracy for detecting a neurodegenerative phenotype when present would be 

approximately 86%. Once optimized, an automated screen searching for 

neurodegenerative animals should be performed to validate the software process and 

presented methods. Like our previous work, the goal of this technology is to saturate 

screens to search for genes involved neurodegenerative processes, and accompanying 

suppressors and enhancer screens should be performed. 

 Ultimately, the presented research and methods are only as effective as the 

amount of use they receive. We strive to provide tools for research scientists to enable 

efficient and high throughput experimentation. Just like any other product, our equipment 

and methods should be tailored for our end users, with simplicity and ease of use at the 

forefront of concerns. With this end goal in mind, future work can attempt to further 

simplify microfluidic devices, both in setup and operation, and the integration of software 
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components into selectable modules of an analysis pipeline (as in software packages like 

CellProfiler). Device simplification should focus on reducing the amount of active 

components (pneumatic valves for fluid control) to decrease the number of potential 

failure points and external equipment required for operation. Additionally, optimizing 

graphical user interfaces to the levels of widely available and popular software packages 

by enabling drag and drop capabilities to provide methods for users to create a specific 

analysis pipelines, mobile operation and alerts, and standardized interfaces would 

significantly decrease software operation difficulty.  

 Lastly, the packaging and repeatability of device performance should be 

optimized for commercial use in order to provide deliverable products to end users. This 

can be accomplished by providing standard form factors for pin-to-device interfaces 

while using products that promote ease of connection between tubing and fluid inputs / 

outputs. Additionally, device stiffness can be measured to ascertain fluctuations in 

rigidity due to different PDMS manufacturing batches or device age to reduce the 

variability in device valve operation.  
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APPENDIX 

A.1. Laterally Orienting C. Elegans Using Geometry At Microscale For High-

Throughput Visual Screens In Neurodegeneration And Neuronal Development 

Studies 

 
Figure 27. Proportion of adult animals in a population with at least one incidence of 

each independent defect (%). 
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Figure 28. Proportion of L1 animals in a population with at least one incidence of 

each independent defect (%). 

 

 

Figure 29. Penetrance of defects per cell in L1 populations with at least one 

incidence of each independent defect (%). 

 

A.2. Automated Screening Of C. Elegans Neurodegeneration Mutants Enabled By 

Microfluidics And Image Analysis Algorithms 

A.2.1. Motor neuron segmentation 

Cell bodies of motor neurons were segmented from live images using a four step process. 

First, images were smoothed using an anisotropic diffusion filter to facilitate neuron 
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segmentation by reducing noise while preserving edges
143

. This filter was modified and 

released in the public domain by David Lopes and is available for download on 

MATLAB© Central File Exchange 

(https://www.mathworks.com/matlabcentral/fileexchange/14995). Second, the smoothed 

image was segmented for features of interest by applying two global image thresholds: 

the first threshold is used to segment the worm body, while the second is used to segment 

potential neuronal cell bodies. Potential neurons not within the segmented worm body 

area were discarded.  

 The third step of our process filtered out results thus far by shape and size. To 

filter by shape, a morphological filtering operation (using a disk shaped structuring 

element) was used to remove non-circular objects from the segmented image. 

Afterwards, all potential cell bodies were compared to minimum and maximum size 

thresholds. All objects comprised of too few or too many pixels were removed, leaving 

only potential cell bodies valid for our specified size range. The final step in our process 

was to use a mean filter to remove any RNAi co-injection markers or other objects falsely 

identified as motor neurons. The mean filter, which is typically used for smoothing 

images, was applied to the binary image of detected objects, combining objects within 

close proximity of each other, as is normally the case for RNAi co-injection markers in 

the head region. An additional size filter was then used to remove combined objects from 

the final output. 

A.2.2. Automated system operation 

To load an animal when none is detected, a command is sent to our off-chip valve control 

board to actuate the solenoid valve configuration and input flow required for worm 

loading. Once an animal is detected, it is given a period of two seconds (referred to as the 

loading time) to reach the correct position region. If the animal fails to reach this region 

within the allotted loading time, the flush and input flows are toggled on and off 
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respectively for a period of one second to reset flow within the device and aid the animal 

into the correct position for imaging. The system will begin image acquisition regardless 

of the animal’s placement within the device if the animal has failed to reach the correct 

position region after a total of four seconds since detection (referred to as the moving 

time).   

 Once in the correct position or if the moving time for the animal has expired, a 

command is sent to the valve control board to actuate all valves and to stop all flow 

within the device. Briefly, the loading valve and flush channel flow are toggled off and 

on respectively to reverse fluid flow within the device towards the input to remove any 

extra animals present in the imaging region. Next, valves at the entrance and exit to the 

curved channel are toggled off and on for 50msec to reposition any part of the worm 

body that might be obstructed. Lastly, the system is given one second to provide time for 

all fluid flow to stop before an image of the animal is acquired. 

 After image capture, animal phenotype is analyzed using the previously described 

methods to determine the number of D-type motor neurons present. After classification, 

the animal is sorted to the mutant channel or wild-type channel output by sending the 

appropriate valve configuration to the valve control board and activating input and flush 

channel flow. Animals are given two seconds to exit the imaging area (referred to as the 

exit time) of the device during system sorting before the flush flow is toggled off and on 

to facilitate worm sorting. Once an animal is no longer detected, the entire process of 

loading, phenotype analysis, and sorting is repeated.  

 All time limits for system processes were set to values based off of empirical data. 

Our valve control board (Ultimarc PPACDSP+LU04) communicated with solenoid 

actuators (Asco Scientific 18800056) and pinch valves (Cole Parmer EW-98302-10) 

tuned for use with varying pressures controlled by four separate regulators (McMaster 

43275K14). 
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Figure 30. System level diagram of operation.System operation can be separated 

into three areas involving image analysis, system action, or software decisions based 

on timing. Each column represents a different state of system operation involving 

animal loading, positioning, and sorting. Troubleshooting column is specific only to 

toggling of the flush valve to aid with fluid handling and worm placement. 
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A.2.3. Neuron distribution for alleles isolated from same F1 population 

 

Figure 31. Histogram for alleles a183, a184, and a185. Only data from manual 

scoring, not image analysis, was used for this figure. 
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Figure 32. Histogram for alleles a186, a187, and a188.Only data from manual 

scoring, not image analysis, was used for this figure. 
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Figure 33. Histogram for alleles a190 and a192. Only data from manual scoring, not 

image analysis, was used for this figure. 
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Figure 34. Histogram for alleles a199, a200, and a201.Only data from manual 

scoring, not image analysis, was used for this figure. 

  

Table 2. Number of D-type motor neurons detected for all alleles.All animals 

cultured at 20°C until gravid adults. 
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A.3. High throughput characterization of spherical objects using modified 

granulometry algorithm for rapid characterization of C. elegans lipids 

A.3.1. Specialized software method for epi-flourescent data 

To compensate for images with high amounts of background and low signal-to-noise 

ratios (as seen in epiflourcent data), we implemented a specialized version of our 

algorithm to mitigate the effects of poor image quality. The first several deviations from 

our normal method occur during preprocessing. First, images are not doubled in size 

during epi-fluorescent analysis as resolution of the imaging system is too low to detect 

small objects accurately; therefore, this step is avoided all together in order to increase 

the computational run time of our process. Second, morphological processing to remove 
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noise and enhance image contrast is performed using three different size structuring 

elements (SE, disk shaped of radius 10, 20, and 30 pixels) instead of using a single SE of 

size 30. This is performed as empirical results show that removing objects larger than 

what granulometry is processing during morphological opening operations improves 

results (i.e. openings for SE sizes one through nine return better results on a preprocessed 

image of radius size 10 than 20 or 30; openings for SE sizes 10 through 19 return better 

results for a preprocessed image of radius size 20 than 30, and so on).  

 The next difference is that granulometry is performed on each preprocessed image 

(three total, one of radius size 10, 20, and 30). SE’s during morphological openings 

cannot exceed the size of SE used during preprocessing or all objects from the image will 

be removed (i.e. morphological opening of radius size 15 cannot be performed on a 

preprocessed image that used a radius size of 10). Thus, for the image preprocessed with 

a SE of size 10, granulometry is performed using SE’s of size one through nine; for the 

image preprocessed with a SE of size 20, granulometry is performed using SE’s of size 

10 through 19, and so on.  

 Lastly, granulometry results for all three preprocessed images are compared, and 

the result with the largest normalized size distribution (Equation (5) is used along with its 

corresponding preprocessed image for the remainder of analysis. In this manner, 

granulometry is optimized for the preprocessed image that returns the largest removal of 

objects when performing granulometry. 

A.4. Automated characterization of neurodegenative and neurodevelopment 

defect mutations in C. elegans 

A.4.1. Image preprocessing, worm body detection, neuron segmentation, and cell 

body isolation 

Acquired z-stacks were consolidated into 2D images using the maximum intensity 

projection of every pixel along the z-axis. After image flattening, an anisotropic filter was 
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used to smooth the flattened image. This filter was released in the public domain by 

David Lopes and is available for download on MATLAB® Central File Exchange 

(https://www.mathworks.com/matlabcentral/fileexchange/14995). Segmentation of the 

smoothed of image was then performed using the Otsu algorithm in order to detect the 

worm body, estimate URX and AQR head neuron locations, and determine the worm tail 

region
144

. Different scales were used on the returned Otsu threshold for worm body and 

neuron detection. Additionally, a circular averaging filter was also used in order to 

smooth the returned animal body.  

When segmenting neuronal features, the Sauvola algorithm was used in place of Otsu. 

The Sauvola algorithm uses an adaptive threshold ( ) to determine a binary image ( ) 

from the image   using the following equations 
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where  (   ) and  (   ) are the mean and standard deviation respectively for the 

windowed region centered around pixel (   ),   is a positive scaling value, and   is the 

dynamic range of the standard deviation (set to the maximum value of  (   ) for all 

(   ))80
. Window used for segmentation was disk shaped and set to a size determined by 

empirical results.  

Following segmentation, PQR soma detection was accomplished by performing a 

morphological opening on the binary image  (   ) using a disk shaped structuring 

element approximately equal in size to PQR cell bodies. Results from the opening 

operation were then filtered by area to meet minimum and maximum thresholds. Lastly, 

https://www.mathworks.com/matlabcentral/fileexchange/14995
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remaining objects were filtered by eccentricity, stated by MATLAB® as the ratio of the 

distance between the foci of an object and its major axis length. All thresholds for shape 

and size filters, including scaling variables, were determined from empirical data. 

A.4.2. Connectivity model used for joining PQR segments 

Once called upon, software for connecting PQR segments was repeated until either of the 

following conditions occurred: 

1. the probability of connection for current points fell below a connection 

threshold  

2. only one object remained in the image 

While in this loop, software repeated a process involving: 

 deleting “invalid” objects 

 reassigning current evaluation points after object deletion 

 estimating the probability of connection between the current evaluation point and 

all other points in the image 

  connecting points together on the condition that the connection threshold is met 

If either condition for loop termination was met, loop execution was terminated and 

software would return the largest object (determined by number of pixels), assumed to be 

the PQR neuron. All thresholds and weights for probability functions were set based on 

empirical data. Points with probabilities of connection greater than threshold values were 

connected using the integer-coordinate line drawing algorithm provided by MATLAB®. 

A.4.3. Deleting invalid objects 

An object was considered to be invalid primarily based upon the number of endpoints 

detected for the object. We expect the PQR neuron to be a single process extending from 

the sensory tip of its dendrite to the end of its axon, an ideal that possesses only two 

endpoints.  
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 To correct for objects with many branched structures, we detected and deleted all 

branch points by removing a centered 3x3 neighborhood around each branch point 

location. Next, all objects below a minimum length threshold were removed and deemed 

to be unimportant. Then, the number of endpoints per each object was calculated, and any 

objects with more than a set threshold of endpoints were removed (performed as an 

assurance in the case branch points were missed during the previous step). Lastly, the 

current evaluation point being considered for connection was reassigned to a different 

pixel location if the object that it was a part of was removed by previous filtering 

operations. Points requiring adjustment were assigned to the closest valid endpoint of the 

current image.  

A.4.4. Reassigning current evaluation points and dendrite process selection 

After removing invalid objects, the location of the current evaluation point was relocated 

to the most anterior endpoint of the current object along the major axis. This was 

performed in order to keep connection of objects to proceed in an posterior to anterior 

direction.  

 A special case for point relocation is the first time the main probability function 

was executed. This is performed in order to best determine what object to use and 

consider as the PQR dendrite process. For this case, a circular area around the soma 

centroid was set and used as a search area, with all objects within this area considered as 

a possible dendrite process. To determine which object to use, the main probability loop 

was recursively executed for each potential dendrite option, temporarily storing each 

result. After all options had been evaluated, the returned result with the longest connected 

process (measured by the total number of pixels) was used as the dendrite object.  

A.4.5. Estimating probability of connection 

The probability of connection was calculated after computing the distance and angle of 

connection between the current point and all other end points in the image. The length of 
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each object in the image was also approximated prior to probability calculations. 

Probability equations for different metrics were arbitrarily decided upon using empirical 

data and based off of equations used for studying neuroanatomy
148

.  

 Probabilities of connection for all points connecting to endpoints from the same 

object as well as themselves were set to -1. Distance and length probability functions are 

described in text and do not require further detailed explanation. Details about angle 

probability calculation can be found below. 

A.4.6. Calculating angle probability of connection 

Angle probability was determined by grouping end points into bins determined by the 

angle threshold. Preferred bin direction was decided upon by using the grouping of 

endpoints with the highest quantity of points within the threshold angle grouping range. 

All endpoints of an object were required to be within the specified angle range in order to 

be considered a valid object for evaluation within the bin. Average angle differences for 

all endpoints within the preferred bin direction were then used as   
̅̅ ̅ in equation 16. As 

all angles were grouped into bins with differences limited by the angle threshold, all 

probabilities calculated from equation 19 were positive.  
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