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SUMMARY

The development of more wear-resistant tool materials such as Polycrystalline Cubic

Boron Nitride (PCBN) and ceramics have made hard turning a potential alternative to

grinding operations in the finishing of hard materials. However, hard turning is more

sensitive to chatter than conventional mild turning. The reasons include both a high

precision requirement in finishing and the relatively brittle property of PCBN cutting

inserts. Therefore, the ability to predict chatter-free cutting conditions is very important

for hard turning in order to be an economically viable manufacturing process. Despite a

large demand from industry, a realistic chatter modeling for hard turning has not been

available due to the complexity of the problem, which is mainly caused by flank wear and

nonlinearity in hard turning.

This thesis attempts to develop a chatter model for predicting chatter stability

conditions in hard turning. First, a linear model is developed by introducing non-uniform

load distribution on a tool tip to account for the flank wear effect. Then a nonlinear model

is developed by further incorporating nonlinearity in the structure and cutting force.

Stability analysis based on the root locus method and the harmonic balance method is

conducted to determine a critical stability parameter. To validate the models, a series of

experiment is carried out to determine the stability limits as well as certain characteristic

parameters for facing and straight turning. Chatter in hard turning has the feature that the

critical stability limits increase very rapidly when the cutting speed is higher than 13

rev/sec for all feed directions. From these, it is shown that the nonlinear model provides

more accurate predictions than the linear model, especially in the high-speed range.
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Furthermore, the stabilizing effect due to flank wear is confirmed through a series of

experiments. To fully account for the validity of linear and nonlinear models, finally, an

empirical model is proposed to fit in with the experimental stability limits in the full

range of cutting speed. 

The main contributions of the thesis are threefold. First, chatter-free cutting

conditions are predicted and can be used as a guideline for designing tools and machines.

Second, the characteristics of chatter in hard turning, which is observed for the first time,

helps to broaden our physical understanding of the interactions between the tool and the

workpiece in hard turning. Third, experimental stability limits for different flank wear

can contribute to lead more reasonable ways to consider the flank wear effect in chatter

models of hard turning. Based on these contributions, the proposed linear and nonlinear

chatter models will support to improve the productivity in many manufacturing

processes. In addition, the chatter experimental data will be useful to develop other

chatter models in hard turning. 
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CHAPTER 1

INTRODUCTION

1.1. Background

Turning is one of the most commonly used cutting processes in industry. In the

turning operation, a workpiece rotates with a certain value of cutting speed and a tool

which is set at a certain value of the depth of cut or the width of cut removes a layer of

material. The feed rate is the distance that a tool travels per unit revolution of a

workpiece. As shown in Figure 1-1, the tool moves along the axial or the radial direction

of the workpiece in turning operations. Turning with the axial feed direction is called

“straight turning” and turning with the radial direction is called “facing”. Cutting

parameters such as cutting speed, the feed rate and the depth of cut determine the material

removal rate of turning. However, there is a certain limit of the material removal rate and

chatter is one of factors causes such a restriction.

Chatter is a self-excited mechanical vibration during machining processes. The self-

excited vibration is caused by the interaction of the material removal process and the

structure of the machine tool. If there is energy, which is not dissipated by either the

damping of the structure or the friction of the cutting process, the relative motion

between the tool and the workpiece grows beyond the acceptable range at one of system’s

natural frequencies. In contrast to forced vibration, which is caused by periodic applied

force from motors and pumps, chatter typically begins with a disturbance in the cutting
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Figure 1-1. Schematic diagrams of straight turning and facing

area such as an inhomogeneous surface condition of the workpiece material. 

When chatter occurs, the amplitude of cutting force increases abruptly and the chatter

frequency is observed from the Fast Fourier Transform of force data. In addition to the

surface damage on the workpiece due to chatter marks, the occurrence of severe chatter

results in many adverse effects, which include a poor dimensional accuracy of the

workpiece, a reduction of tool life, and a damage to the machine. Certain conservative

cutting parameters, which were proposed in other research intended to avoid chatter at the

expense of the loss of productivity. As high productivity has become important in many

applications, the industry has started seeking less conservative chatter-free cutting

parameters without compromising the material removal rate. Although chatter stability

Tool holder

Depth of cut (mm)

Feed (mm/rev)

Tool

Workpiece

Cutting speed
(rev/sec)

Width of cut(mm)

Feed direction
Feed direction
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limits for certain cutting conditions can be found through cutting experiments, they are,

however, time-consuming and expensive. As an alternative, a theoretical model

considering the dynamics in machining processes can be more cost-effective and efficient

than the experimental approach. Hence the development of a reliable chatter stability

model can significantly contribute to achieving high productivity in machining

operations. 

Any irregular motion of a tool or a workpiece makes an undulated surface during the

machining process. In turning, the waved surface at the previous revolution leads to the

deviation in uncut chip thickness from a nominal value at the current revolution. This in

turn results in unstable vibration since cutting force is closely coupled with uncut chip

thickness. The variation of cutting force due to the variation of uncut chip thickness

during consecutive turns in the machining process is called the regenerative effect. It has

been considered as a main cause of chatter phenomenon since Tlusty and Polacek (1963)

and Tobias (1965) proposed their fundamental chatter theories. Following the pioneering

works in the 60’s, many studies have achieved some success in predicting stability limits

by adding more realistic dynamic aspects of machining operations such as the flank wear

effect (Chiou and Liang, 1996) and tool geometry effect (Clancy and Shin, 2002).

However, it must be noticed that all research has focused on chatter in mild turning rather

than hard turning.

Hard turning is defined as the turning of hardened ferrous metals with Rockwell-C

hardness ratings ranging from 45 to 70. The development of more wear-resistant tool

materials such as Polycrystalline Cubic Boron Nitride (PCBN) and ceramics have made

hard turning more commonly used. Hard turning has the potential to substantially reduce



4

production costs by replacing more costly and less agile grinding operations on hard

materials especially in finishing processes (Konig et al., 1990). However, PCBN tools

tend to be damaged more severely than conventional cutting tools of mild turning under

violent vibrations because of their relatively brittle property. In addition, the finishing

process, which are often involved with hard turning, has a much smaller tolerance of

surface precision than other machining processes. Thus, hard turning is affected by the

occurrence of chatter more seriously compared with conventional mild turning. As a

result, the prevention of chatter has been a very essential element in improving

productivity in hard turning. However, due to various technical difficulties at both

theoretical and experimental levels, there have been no attempts to develop theoretical

models or perform experimental investigations on chatter stability in hard turning.

In comparison with mild turning, hard turning has several unique features. First, the

depth of cut is required to be limited since the specific cutting force in hard turning is

greater than mild turning due to the high value of hardness. Second, cutting inserts in

hard turning have a larger nose radius in order to increase the strength of tools. As a

result of the shallow cut and large tool nose, the cutting takes place on the nose of tools.

Third, the cutting force decreases more prominently as the cutting speed increases, which

generates high temperatures (Dawson, 2002). Therefore, cutting speeds and tool

geometry are important elements to be considered in a chatter model for hard turning.

The relative sliding between the tool and the machined surface of the workpiece

causes flank wear just behind the cutting zone. As flank wear develops, it tends to

increase the friction between the tool and workpiece, which in turn leads to increased

cutting forces and temperature. Flank wear has been considered as a significant factor
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Figure 1-2. Example of the hard turning operation

involved in chatter stability in mild turning since Tlusty (1978) showed the strong

connection between tool wear and chatter stability. However, only a limited number of

published works have endeavored to consider tool wear in modeling chatter stability for

mild turning. Because the relation between flank wear and cutting force in hard turning

shows the same tendency observed in mild turning, it is expected that tool wear is also an

important factor in the modeling of chatter stability in hard turning. Therefore, a

systematic approach to consider flank wear effect on chatter stability is required when

developing a chatter model in hard turning.

Nonlinearity is another challenging factor in developing a chatter model in hard

turning. Although all physical phenomena are nonlinear in nature, often certain simplified

linear models have been used instead of nonlinear models since not only they are easy to
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solve but also they provide reasonable results consistent with experiments. However, in

the analysis of chattering, the applicability of linear models, which are derived by

ignoring nonlinear characteristics of phenomena, is sometimes restricted. According to

linear models, the amplitude of chatter should be increased indefinitely if a stability

parameter is larger than a critical value. In practice, however, the amplitude of vibration

remains at a finite level after a rapid initial increase. In order to explain the finite

amplitude phenomenon in chatter, several studies (Hanna and Tobias, 1974, Wu and Liu,

1985, Nayfeh et al., 1998) have attempted to include nonlinearity in various sources such

as nonlinear cutting force, the nonlinear stiffness of tools and machines, and the friction

at the interface between the tool and the workpiece. It is expected that hard turning also

has these nonlinearities in the machining process since it involves high specific force,

hard materials and rapid tool wear. However, no study on chatter stability considering

nonlinearity in hard turning has been reported. The reason includes the difficulty in the

modeling of nonlinear phenomenon as well as the deficiency of available experimental

data of nonlinearity in hard turning. Therefore, it is important to have reliable

measurements of nonlinearity involved in hard turning as well as an appropriate method

to deal with nonlinear elements in order to carry out the modeling of nonlinear chatter.

In addition to this, experimental data of chatter stability limits are needed not only for

model validation but also for a better understanding of chatter phenomenon. The unique

characteristics of chatter in hard turning can be used as a guideline for developing chatter

predicting models in the future. Despite its importance, there has been no significant

effort devoted to measure critical stability limits in hard turning. Generic research in this

area, as documented in this thesis, is believed to be both timely and important.
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1.2. Research Objective

The objective of this research is to predict chatter stability limits in hard turning,

especially emphasizing the effects of flank wear and nonlinearity. The objective is to be

achieved through the steps as follows: (1) Development of a nonlinear chatter models

with non-uniform load distribution. (2) Stability analysis for worn tool cases. (3)

Theoretical chatter stability predictions based on characteristic parameters, which

measured in experiments. (4) Model validation with experimental chatter stability limits

for different feed directions and tool wear conditions.

In this study, the effect of material property on chatter stability is considered by

measuring the stiffness in the structure and cutting force, which is closely related with the

hardness of materials. As a result, the proposed nonlinear chatter model for a worn tool

has a capability to predict stability limits for mild turning as well as hard turning.

However, the present study focuses on the application to hard turning since it is mainly

motivated by the demand for the prediction of chatter-free conditions in hard turning.

Less conservative chatter-free cutting conditions from this research can be used to

improve productivity in hard turning as a guideline for designing tools and machines as

well as a factor in optimizing cutting parameters. Moreover, newly found characteristics

of chatter in hard turning can contribute to the broadening of physical understanding of

interactions between the tool and the workpiece in hard turning.
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1.3. Literature Review

1.3.1. Stability Analysis in Linear Models

Fundamental works in the 60’s led a lot of research of chatter modeling for next

several decades. Tlusty and Polacek (1963) and Tobias (1965) developed fundamental

chatter theories that the regenerative phenomenon and the mode coupling effect caused

principal chatter mechanisms. The regenerative phenomenon occurs when the tool is

passing a modulated surface caused by the previous revolution. At a critical range of

phase values, net energy is provided to the structure by the cutting force. If response is

sustained at one of the system’s natural frequencies, then chatter incurs. 

There have been many attempts to obtain the critical chatter stability limit resolving

the complexity caused by the transcendental characteristic of chatter problems. In order

to obtain the stability limit, Merritt (1965) simultaneously solved two equations derived

from the characteristic equation at s = jω to obtain values of the critical stiffness ratio and

the chatter frequency, and then determined multiple numbers of spindle speed for each

stiffness ratio. Minis et al. (1990) used the Nyquist stability criterion as an alternative

approach to derive the critical stability parameter by finding the left-most intersection of

the Nyquist plot with the negative real axis. Olgac and Hosek (1998) determined the

critical parameter from the first pair of roots on the imaginary axis while the others

remained in the stable left hand side of the complex plane. The Routh-Hurwitz stability

criterion also can be used for time-delayed systems after transforming a transcendental

equation to a polynomial equation (Rekasius, 1980). 
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Stability analyses for chatter models have been extensively studied and some of them

have included the flank wear effect on chatter stability. 

1.3.2. Flank Wear Effects on Chatter Stability

Tool wear has been considered as a significant factor involving in chatter stability

since Tlusty (1978) indicated the strong relation between tool wear and chatter by

showing that the contact between the tool and the workpiece caused a positive damping

effect. With the presence of flank wear, dynamic cutting force is affected by the physical

contact between the workpiece and the tool nose region (Smithey et al., 2001). Two

different approaches have been used mainly to consider the flank wear effect on cutting

processes (Waldorf et al., 1997). Wu (1988) suggested a contact force model, which is

proportional to the displaced volume of a workpiece beneath a tool. Based on the contact

force model, Elbestawi et al. (1991) showed larger tool flank wear resulted in the

increased chatter-free region in numerical simulations. Chiou and Liang (1998) and

Clancy and Shin (2002) experimentally verified the same tendency that tool flank wear

stabilized chatter vibration in mild turning. But it is hard to extend the contact force

model to hard materials because of increased uncertainty in estimating displaced volume.

The other approach to explain the flank wear effect is based on a slip-line model, which

was originally proposed by Challen and Oxley (1979). This approach has shown good

predictions on cutting force including the ploughing force due to the tool nose radius not

being zero (Black et al., 1993). Based on the slip-line field and the presence of plastic

flow of the workpiece under the flank wear of the tool (Thomsen et al., 1962, Kobayashi

and Thomsen, 1960), Waldorf (1996) suggested a method to estimate force on the worn
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area introducing non-uniform stress distribution along the flank wear area. He suggested

non-uniform stress distribution with a quadratic form on flank wear, which decreases

from a nominal value at the front of the cutting edge to 0 at the end of the flank wear area

if the length of flank wear is shorter than the critical value. Once the length of flank wear

is longer than the critical value, the stress distribution has a constant value in the front

part for the exceed of the critical length and then quadratically decreases to zero in the

last part of the flank wear area. Furthermore, Stepan (1998) developed a chatter model

with non-uniform load distribution on the active face between the workpiece and the tool.

However, a chatter model with non-uniform load distribution on the flank wear area has

not been developed. Additionally, it should be noticed that all experimental investigations

on chatter have been restricted so far to mild turning cases.

1.3.3. Flank Wear in Hard Turning

Because of possible benefits of hard turning as an alternative machining process over

grinding (Konig et al. 1990), much research related to cutting force and tool wear in hard

turning have been actively carried out. The strong relation between the flank wear of

tools and cutting processes in hard turning has been reported by Nakayama et al. (1988),

Wang and Liu (1999) and Chou and Evans (1999). They suggested cutting force increase

for larger flank wear in machining hard materials. Kishawy and Elbestawi (1999) showed

tool wear also affected on machined surface quality during hard turning. Davies (1998)

suggested that the primary sources of vibrational instabilities in hard turning should be

the regenerative effect and stick-slip oscillations excited by the rubbing of the tool on the

surface of the workpiece as it wears. Dawson (2002) suggested PCBN tools have a rapid
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flank wear development at the early stage of hard turning process, which caused the

increase of cutting forces. The relation between flank wear and cutting force as well as

rapid tool progress in hard turning suggest that tool wear should be an important element

to consider in modeling of chatter stability in hard turning.

1.3.4. Nonlinearity in Chatter Stability

Nonlinearity exists in the structure and cutting force of turning processes and it is

closely related with chatter stability. Hanna and Tobias (1969) found the dynamic

response of the machine structure became nonlinear with increasing force amplitude and

proposed a nonlinear structural stiffness in a form of polynomial. In addition, Hanna and

Tobias (1974) developed a nonlinear chatter model introducing third-order polynomials

for the nonlinear stiffness and cutting force in order to explain a nonlinear phenomenon

such as the finite amplitude of chatter, which can not be explained by linear models. As a

result of the inclusion of nonlinear terms, three-dimensional stability charts were

represented in chatter amplitude, the stiffness ratio and cutting speed instead of typical

two-dimensional stability charts in the stiffness ratio and cutting speed from linear

models. Furthermore, they attempted to explain the nonlinear behavior of chatter in the

stability chart on the plane of chatter amplitude and the stiffness ratio. Saravanja-Fabris

and D’Souza (1974) employed the describing function method to predict the stability of

nonlinear systems. A stability chart for a fixed value of chatter amplitude was obtained

considering the nonlinear relationship between cutting force and uncut chip thickness.

Besides, Shi and Tobias (1984) experimentally showed the finite amplitude phenomenon
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in chatter and suggested that the temporary absence of the tool contact on the workpiece

and the nonlinear cutting stiffness cause this nonlinear behavior. 

After these pioneering works, several research have attempted to consider

nonlinearity in chatter phenomena by either analytically approximating nonlinear

elements (Nayfeh et al., 1998, Pratt et al., 1999) or solving them numerically (Lin and

Weng, 1991, Gradisek et al., 2001, Deshpande and Fofana, 2001, Kalmar-Nagy et al.,

2001, Litak, 2002). 

Most nonlinear chatter models consider either nonlinearity in the structure and cutting

force (Hanna and Tobias, 1974, Nayfeh et al., 1998, Kalmar-Nagy et al., 2001) or

nonlinearity due to friction depending on cutting speed (Wu and Liu, 1985, Nosyreva and

Molinari, 1997). Berger et al. (1992) and Nayfeh et al. (1998) showed that nonlinear

terms led to qualitatively different stability evolution. In addition, Deshpande and Fofana

(2001) showed the effect of the third-order term in the nonlinear cutting stiffness through

the difference in resultant phase portraits obtained by a numerical method. These

approaches have achieved some success in explaining the nonlinear behavior of chatter.

However, it should be noticed that all of them have been based on nonlinearity measured

in conventional mild turning. 

1.3.5. Nonlinearity in Hard Turning

It is suggested that nonlinearities from various sources clearly exist in hard turning

(Davies, 1998). Nonlinearities in hard turning can arise from the geometry of the cutting

tool, friction, the cutting mechanics and the mechanical behavior of the machine tool.

However, there have been no attempts to measure the nonlinearity in cutting force in hard
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turning although it is vital for modeling of nonlinear chatter. If the nonlinearity of cutting

force is measured, the effects of tool wear and cutting speed should be considered since

there is a strong relation among these factors and cutting force, as pointed out by Dawson

(2002).

1.3.6. Chatter Detection

Various methods have been used for detecting the chatter phenomena in cutting tests

as follows: First of all, chatter is identified from the time trace and the power spectrum of

cutting force, tool acceleration (Chiou and Liang, 1998, Clancy and Shin, 2002) or sound

emitted (Chiou and Liang, 1998). Chatter also can be identified from the measurement of

surface roughness (Clancy and Shin, 2002) or the visual inspection of chatter marks on

the machined surface (Elbestawi et al., 1991). In addition, chatter is identified when the

ratio of the amplitude of the first revolution to that of the second is greater than one

(Kondo et al., 1997). Most of experimental investigations on chatter stability have

employed multiple methods of chatter detection. 

1.4. Approach in This Dissertation

This dissertation presents a chatter model for the purpose of predicting stability limits

in hard turning. In order to address completed research, this dissertation is organized

based on theoretical predictions from proposed models and model validation through

experimental investigations for facing and straight turning, respectively, as shown in

Figure 1-3. Chapter 1 is the introduction and background review. Chapter 2–4 are

devoted to linear modeling with non-uniform load distribution and stability limit
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measurements for chatter in facing. Chapter 5-7 belong to nonlinear chatter modeling

considering tool wear and its validation for chatter in straight turning. Finally, Chapter 8

is the closure of this dissertation. Detailed descriptions for each succeeding chapter are

given as follows:

In Chapter 2, linear modeling considering flank wear for chatter stability in facing is

presented. A non-uniform load distribution is introduced to consider the flank wear effect

on stability. The stability analysis for worn tools is described in detail including the effect

of a time delay on stability. In order to determine the critical stability parameter for a

given time delay, the root locus method is employed.

Chapter 3 provides theoretical predictions of chatter stability in facing. In order to

calculate stability limits in the proposed chatter model, characteristic parameters such as

the natural frequency, the damping ratio, the structural stiffness and the cutting stiffness

are measured. In addition, a converting relation between the stiffness ratio and the width

of cut is derived for more practical use of stability charts. Stability charts are obtained for

different values of flank wear and the effects of flank wear on stability are discussed.  

Chapter 4 investigates chatter stability limits experimentally in order to verify the

proposed model. A series of experiments determines the values of the critical width of cut

in facing of hardened 52100 steel bars for the first time. The characteristic features of

chatter limits in hard turning are discussed. Next, the predicted stability charts are

overlapped to experimental stability limits and the validity of the proposed model is

discussed. Finally, an empirical model for chatter stability is proposed.

In Chapter 5, a nonlinear chatter model including the flank wear effect is developed.

Nonlinearity in cutting force and the structure is considered in modeling combined with
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non-uniform load distribution. In order to approximate nonlinear elements, the describing

function method is employed. Harmonic balance equations for different nonlinearity and

tool wear conditions are derived from describing functions. 

In Chapter 6, theoretical stability predictions are carried out based on characteristic

parameters of a cutting setup in straight turning. In order to consider the effects of flank

wear and cutting speed, multiple sets of experiments are performed to measure cutting

force under various cutting conditions. Then, converting relations from the stiffness ratio

to the depth of cut or the chatter location are derived for each cutting condition. After

that, two different approaches to derive stability charts for opposite feed directions are

described. Three-dimensional stability charts are derived as a result of the consideration

of nonlinearity. Finally, nonlinear effects and tool wear effects on chatter stability charts

are discussed and an explanation of the nonlinear phenomena of chatter is attempted with

resultant stability charts.

In Chapter 7, stability predictions from the proposed nonlinear model are verified

with experimental stability limits. First, five sets of chatter measurement experiments are

performed to obtain experimental chatter limits in straight turning of 52100 bars for the

first time. Next, the characteristics of chatter limits in straight turning of 52100 bars are

described and discussed. After that, the effects of flank wear on chatter stability are

examined by analyzing experimental data. Finally, experimental stability limits are used

to verify predictions from the proposed models. 

In closing, Chapter 8 reviews the contribution of this dissertation along with

recommendations for improvement and concluding marks.
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CHAPTER 2 

LINEAR MODELING FOR CHATTER IN FACING

2.1. Introduction

Chatter is a self-excited mechanical vibration during machining processes. It causes

adverse effects such as the poor surface finish of the workpiece, reduced tool life and

eventually the loss of productivity (Tewani et al., 1993). The limit of cutting parameters

to avoid chatter can be less conservative if chatter stability is predicted in terms of cutting

conditions. Therefore the prediction of chatter is one of crucial factors for achieving high

productivity in machining operations.

The prevention of chatter is even more important in hard turning than conventional

mild turning. Recently hard turning has been actively investigated since it has the

potential to replace more costly and less agile grinding processes in finishing hardened

materials of HRC 45-70. Considering the surface quality demand in finishing and the

relatively brittle property of PCBN inserts, hard turning is more sensitive to the

occurrence of chatter. Unfortunately, there have been few theoretical and experimental

investigations on chatter associated with hard turning.

Flank wear is an important factor to consider in the modeling of chatter for hard

turning. The strong relation between flank wear and cutting force has been reported for

hard turning (Wang and Liu, 1999, Chou and Evans, 1999). It was suggested that cutting

force increases for larger flank wear in machining hardened steels. As chatter stability is

clearly affected by flank wear in mild turning (Tlusty, 1978, Elbestawi et al. 1991, Chiou

and Liang, 1998), flank tool wear is also suggested as one of primary sources of chatter in
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hard turning (Davies, 1998). In addition, Kishawy and Elbestawi (1999) showed tool

wear also affected machined surface quality during hard turning. Therefore, it is

necessary to introduce an appropriate method to consider the flank wear effect in the

modeling of chatter for hard turning. 

One of challenging aspects in the modeling of chatter is that there are infinitely many

roots of the characteristic equation on the imaginary axis, which correspond to the critical

stability parameter. When the regenerative effect is considered as a main mechanism of

chatter, a closed loop characteristic equation has a time delay term, which is a period of

one revolution in the machining process. Since the time delay results in infinitely many

roots on the imaginary axis, it has been a key issue to determine critical values of the

stability parameter among infinitely many roots in stability analysis involving chatter

problems. In this study, critical stability parameters have been determined explicitly by

drawing root loci in terms of the stiffness ratio with the presence of flank wear.

Furthermore, the effect of a time delay on chatter stability is also discussed. 

In this chapter, linear chatter modeling procedures for facing operations are

described. The characteristic equation with non-uniform load distribution is derived to

consider the flank wear effect. Then the root locus method for general worn tools, which

explicitly decides the critical stability parameter in stability analysis is described.

2.2. Linear Modeling for Chatter in Facing

In this study, a 1-DOF linear chatter model considering the flank wear effect is

developed. It is assumed that the workpiece is rigid and the flexible tool is able to vibrate

only in the x direction as shown in Figure 2-1. The feed direction in facing operations is
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the radial direction of the workpiece, which is parallel to the x-direction and the cutting

edge of the tool proceeds normal to the surface of the workpiece. Even though the tool

can be deflected to the tangential or axial direction of the workpiece, the machining

performance is only sensitive to the radial vibration of the tool. Therefore, it is valid to

assume a 1-DOF chatter model instead of a 3-DOF model. Since grooving inserts used in

facing operations have a very small tool nose radius compared with the value of uncut

chip thickness, the tool geometry effect in hard turning is assumed to be negligible. The

zero value of the coordinate x of the tool edge position is set in a way that the x-

component Fx of cutting force F is in balance with spring’s force while chip thickness is

just the prescribed value, which corresponds to the nominal value of feed. The equation

of motion in the feed direction x is

)()()()( tFtxktxctxm xm ∆=++ &&&                                                                             (2-1)

where m is the mass of the tool, c is the damping coefficient, km is the structural stiffness,

and ∆Fx(t) is the amount of variation in the x-component of cutting force. 

Figure 2-1. Schematic diagram of the tool-wor
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The variation of cutting force ∆Fx in equation (2-1) is caused by the variation of uncut

chip thickness during consecutive turns in the machining process, as shown in Figure 2-2.

Any irregular motion of a tool makes an undulated surface during machining process and

it leads the deviation in uncut chip thickness from a nominal value at the next revolution,

which results in the variation of cutting force. This phenomenon is called the regenerative

effect, which induces ∆Fx for a sharp tool as the following:

)]()([)( pcx TtxtxktF −−=∆                                                                              (2-2)

where kc is cutting stiffness, x(t) and x(t-Tp) are deviations from the equilibrium position

of the tool edge at the current turn and the previous turn, respectively, and Tp is the period

of a turn.

Figure 2-2. Schematic diagram of the regenerative effect in facing
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In the present study, non-uniform load distribution on the flank wear area is

introduced to consider the flank wear effect in the chatter model. Two different

approaches have been used mainly to include the effect of flank wear (Waldorf et al.,

1997). Wu (1988) suggested a method to represent the flank wear effect by employing

contact force, which is proportional to the displaced volume of the workpiece beneath the

tool. Based on the contact force model, Elbestawi et al. (1991) predicted an increased

chatter-free region in numerical simulations for larger tool flank wear. The same

tendency that tool flank wear stabilized chatter vibration was experimentally verified in

mild turning by Chiou and Liang (1998) and Clancy and Shin (2002). However, it is

difficult to extend the contact force model to hard materials since the uncertainty in

estimating displaced volume increases. Another way to consider the flank wear effect is

based on the slip-line model, which was originally proposed by Challen and Oxley

(1979). Cutting force including ploughing force due to the existence of flank was

predicted by this method (Black et al., 1993). Considering the slip-line field and the

presence of plastic flow of the workpiece under the tool flank (Kobayashi and Thomsen,

1960, Thomsen et al., 1962, Smithey et al., 2001), Waldorf (1996) introduced non-

uniform stress distribution along the flank wear area to estimate force on the worn area.

Furthermore, Stepan (1998) suggested a chatter model with non-uniform load distribution

on the active face between the workpiece and the tool. However, a chatter model with

non-uniform load distribution on the flank wear area has not been attempted. In this

study, the method to integrate non-uniform load distribution on flank wear has been

employed for considering the flank wear effect to avoid the uncertainty in estimating the

displaced volume of hard materials.
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In the present study, non-uniform load distribution σ(zl) is assumed in the local

coordinate zl along flank wear as the following (see Figure 2-3): 
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where l is the length of flank wear. The exponent ns is to determine how much plastic

deformation occurs and is assumed to be inversely proportional to the flank wear length l

as the following :

l
ns

α
=                                                                                                                    (2-4)

where α is a positive constant. As shown in Figure 2-4, this load distribution has the

maximum value at the beginning of flank wear and becomes zero at the end of flank

wear. This form of load distribution has ability to reflect the effects of the flank wear

length as well as the degree of plastic deformation of the workpiece under flank wear. As

a result, the effect of plastic deformation and flank wear on chatter stability can be

examined through this load distribution.

Let us introduce h which is the duration to pass the interface of length l between the

tool and the workpiece at the speed of υ :

υ
lh =                                                                                                                  (2-5)

Converting non-uniform load distribution of equation (2-5) into the form in local time θ

yields
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Figure 2-3. Schematic diagram of the tool tip with the flank wear length of l
and local coordinate zl along flank wear

Figure 2-4. Non-uniform load distribution along flank wear
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When load distribution on a finite length of the tool as well as the regenerative effect

are considered, ∆Fx(t) in equation (2-2) becomes as the following:
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where kc is the cutting stiffness, and Tp is the period of the workpiece. Substituting the

cutting force variation in equation (2-7) into the differential equation (2-1) and dividing

the both sides by m yields 
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where ωn = (km/m)1/2 is the natural frequency of the system and ζ = c/(2mωn) is the

damping ratio of the system. The regenerative effect which reflects the position

difference between the previous turn and the present turn yields two terms on the right

side of equation (2-8) and the flank wear effect is considered by integrating load

distribution σ(θ) for each term. Performing the Laplace transform of equation (2-8) with

zero initial conditions and rearranging resulting terms yield the characteristic equation for

a worn tool with non-uniform load distribution:
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When the value of ns is 1 and l is negligibly small, load distribution σ(θ) becomes the

Dirac delta function corresponding to the load distribution of an ideal sharp tool. The

Dirac delta function δ(θ) has the following filtering property. Suppose γ > 0 and let f be

integrable on [0, ∞) and continuous at γ. Then

∫
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Therefore, the value of integral in equation (2-9) becomes unity so that
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The characteristic equation for a sharp tool is derived from equation (2-9) and (2-11) and

is shown as 
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2.3. Stability Analysis for Worn Tools

2.3.1. Determination of the Critical Stability Parameter

The system is stable if all of roots of the closed loop characteristic equation have

negative real values. If any of roots have zero real values, the rest having negative real

values, then this represents the critical condition of stability. Because the closed loop

characteristic equation with a time delay has infinitely many roots on the imaginary axis,

it has been a crucial issue in stability analysis to derive the critical parameter among

infinitely many roots which determines the stability of the system. In chatter stability

problems that also include a time delay, the stiffness ratio, kc/km is a commonly used

parameter when stability is decided for a given time delay. 

There have been many attempts to obtain the critical kc/km resolving the complexity in

stability analyses caused by the transcendental nature of the characteristic equation for

chatter problems. For example, Tlusty and Polacek (1963) and Merritt (1965) developed

fundamental chatter theories that determined the chatter frequency and the stiffness ratio

for a time delay by simultaneously solving two equations at s = jω, which were derived
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from the characteristic equation. Nyquist stability criterion was employed by Minis et al.

(1990) as an alternative approach to derive the critical stability parameter. In addition, the

root locus method determined the critical stiffness by finding the first pair of roots on the

imaginary axis while the others remained in the stable left hand side of the complex plane

(Olgac and Hosek, 1998). The Routh-Hurwitz stability criterion also can be used for

time-delayed systems after transforming a transcendental equation to a polynomial

equation (Rekasius, 1980).

In the present study, critical parameters for chatter stability are explicitly determined

by drawing root loci in terms of the stiffness ratio. Even though the methodology is not

new, this is the first attempt to expand the root locus method in stability analyses to more

general worn tool cases. The condition of root loci to have the minimum stiffness ratio as

the critical parameter is derived after finding poles and zeros and categorizing branches

in the root locus plot.

First of all, locations of roots with zero and infinite values of the stiffness ratio, which

correspond to poles and zeros of the open loop system, are found analytically (see

Appendix A.1). There are an infinite number of poles at s = -∞ ± j 2nπ /Tp (n = 0, 1, 2,…

) as well as two finite poles at 222
nnns ωωζζω −±−= . The closed loop system also has an

infinite number of zeros on the imaginary axis at s = ±j2nπ /Tp (n = 0, 1, 2,…). Therefore,

the gap between branches decreases as the amount of time delay increases.

In addition to locations of poles and zeros of the open loop system, it is necessary to

know if any root of the closed loop characteristic equation has a positive real part, which

induces chatter for given cutting conditions. In this study, whether roots of the closed

loop characteristic equation have a positive sign is determined analytically (see Appendix
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A.2). According to the results, there are two kinds of branches in the root locus diagram

following these criteria:

1) One always remains in the left-hand side of the s-plane and ends at one of zeros

on the imaginary axis,

if 0)/2cos()(
0

>∫−
θπθθσ dTn ph

 for pn Tn /2 πω > ,                                     (2-13a)

if 0)/2cos()(
0

<∫−
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 for pn Tn /2 πω <                                      (2-13b)

2) The other crosses the imaginary axis only once from the left-hand side to the right-

hand side of the s-plane and ends at one of zeros on the imaginary axis, 

if 0)/2cos()(
0

<∫−
θπθθσ dTn ph

 for pn Tn /2 πω >                                        (2-14a)

if 0)/2cos()(
0

>∫−
θπθθσ dTn ph

 for pn Tn /2 πω < .                                     (2-14b)

Because roots have positive real parts, the second type of branches is related to the

instability of the closed loop system. Whether a branch has an unstable root or not

depends on the value of the zero of the branch as well as the amount of a time delay and

load distribution. Since in this study values of θπθθσ dTn ph
)/2cos()(

0

∫−
 are always

positive for a given load distribution, the natural frequency, the amount of a time delay

and the order of a branch determine if it has unstable roots. If ωn > 2nπ/Tp, n = 0, 1, 2,...,

then branches remain in the stable left hand side of the s-plane. On the contrary, if ωn <

2nπ/Tp , n = 0, 1, 2,..., then branches approach to zeros on the imaginary axis with

positive real parts. 

For instance, the root loci of the closed loop system are found for different values of n

when Tp = 0.1 sec, ωn = 111 Hz and ς = 0.054 as shown in Figure 2-5. Branches are 
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Figure 2-5. Root locus plot for the system with non-uniform load distribution when Tp =
0.1 sec, ωn = 111 Hz and ς = 0.054

apart from each other by 2π/Tp as expected. When the branch identifier n is larger or

equal to 12, branches cross the imaginary axis. The results agree with the condition of ωn

< 2nπ/Tp. 

When a fair of branch reach the imaginary axis in the root locus plot, the other

branches being in the left hand side of the s-plane, the value of the stiffness ratio at the

imaginary axis corresponds to the instability of the system. If branches crossing the

imaginary axis never return to the left-hand side of the s-plane and it is possible to find

the minimum value of the stiffness ratio on the imaginary axis, then the minimum stiffness

ratio is the critical parameter to determine the stability of the closed loop system. In the

present study, branches remain in the right hand side of the s-plane as the stiffness ratio is

increased to infinite once crossing the imaginary axis. Therefore, the critical stiffness

ratio is the minimum value of the stiffness ratio among infinitely many branch crossings
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on the imaginary axis. Procedures to obtain the minimum kc/km in the root locus of the

closed loop system are summarized as follows:

1) For a given value of a time delay, determine the value of branch identifier n,

which satisfies pn Tn /2 πω < .

2) The nth branch of the root locus plot is drawn as the gain kc/km changes from zero

to infinity. Detail numerical procedures to find the root in the complex plane for a

value of kc/km are described in Appendix A.3.

3) The value of kc/km on the imaginary axis is calculated by an interpolation method.

4) The above procedures are repeated for increasing n until the minimum value of

kc/km on the imaginary axis is found.

For instance, the minimum kc/km is found in the root locus of the closed loop system

when Tp = 0.1 sec, ωn = 111 Hz and ς = 0.054 as shown in Figure 2-6. The condition of

ωn < 2nπ/Tp is satisfied when n is larger or equal to 12. The value of the stiffness ratio on

the imaginary axis is calculated for an increased value of n starting from 12. In this case,

the branch of n =12 has the minimum value of the stiffness ratio on the imaginary axis

according to numerical calculations. The frequency corresponding to the minimum

stiffness ratio is the chatter frequency and it is larger than the natural frequency of the

system.

2.3.2. Time Delay Effect on Chatter Stability

The effect of a time delay Tp on the stability has been found for a worn tool. If the

real part of (ds/dTp) at s = jω is positive, then it means the root crosses the imaginary axis 
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Figure 2-6. Determination of the minimum stiffness ratio in the root locus plot when Tp =
0.1 sec, ωn = 111 Hz and ς = 0.054

from the left side to the right side parallel to the real axis. Therefore, an increase in the

time delay makes the system unstable with the positive real part of (ds/dTp) at s = jω. For

a worn tool with the flank wear length of l and load distribution σ(θ), the real part of

(ds/dTp) at s = jω has the sign in accordance with (see Appendix A.4.):
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where
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∫−
=

0
cos)(

hc dI θθθσ ,                     ∫−
=

0
cos)(

htc dI θθθθσ                            (2-16a- b) 

∫−
=

0
sin)(

hs dI θθθσ ,                      ∫−
=

0
sin)(

hts dI θθθθσ                             (2-16c-d)

Therefore, if the sign of equation (2-15) is positive, the high cutting speed region has

more aggressive cutting conditions remaining chatter-free environment than the low

cutting speed region since the time delay is the inverse of cutting speed.

2.3.3. Stability Analysis for Sharp Tools

A stability analysis for a sharp tool can be derived as a special case of a stability

analysis for a worn tool. When ns is equal to 1 and flank wear length l is negligibly small

in non-uniform load distribution σ(θ), load distribution becomes the Dirac delta function

δ(θ). This is the load distribution corresponding to chatter stability models for a sharp

tool, which have been studied for several decades (Merritt, 1965, Minis et al., 1990,

Olgac and Hosek, 1996). Characteristics of the root locus and the time delay effect on

stability for a sharp tool can be obtained by substituting δ(θ) into σ(θ) of above results. It

turned out that the locations of poles and zeros for a sharp tool case are the same as those

for a worn tool. In addition, branches in the root locus plot of a sharp tool have positive

real parts for pn Tn /2 πω <  since the integrals in equation (2-13) have the unity value.

Furthermore, if 02)/1( 222 >++− nmcn kk ωζωω , the system becomes unstable as the

time delay T is increased (see Appendix A.5).
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2.4. Conclusion

A new modeling of chatter for facing has been developed considering the flank wear

effect through non-uniform load distribution on flank wear. Having a more realistic load

distribution reflecting the change of the flank wear length as well as the degree of the

plastic deformation, a stability analysis has been carried out to determine the critical

stability parameter for worn tools. The minimum stiffness ratio is the critical stability

parameter based on characteristics of branches in the root locus found in stability

analysis. It is shown that stability is affected by a time delay, characteristic parameters

and the load distribution. Stability charts for sharp tools are obtained as a special case of

the present chatter model.
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CHAPTER 3

PREDICTIONS OF CHATTER STABILITY IN FACING

3.1. Introduction

Theoretical predictions of chatter stability are attempted with the linear modeling of

chatter in facing of hardened materials, which considers the flank wear effect through

non-uniform load distribution on a worn area of tools. In order to achieve more realistic

predictions, the unique features of hard turning such as the cutting speed effect involved

with high temperature should be considered in the predicting processes. In the present

study, the effect of the cutting speed is considered through measuring the cutting stiffness

at different cutting speed values. 

After conducting a series of experiments to measure characteristic parameters

required in the proposed modeling of chatter, critical stiffness ratios are predicted for a

given range of cutting speed. In addition, a converting relation between the stiffness ratio

and the width of cut is obtained reflecting the effect of cutting speed. The flank wear

effect is examined and discussed based on resultant stability charts for different flank

wear values. A tangential stability line is proposed for more practical use of stability

charts especially in the low cutting speed range.
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3.2. Measurements of Characteristic Parameters

Characteristic parameters of the tool system are determined by a series of

experimental measurements. Since it is assumed that the tool system is the only flexible

component in the model, the natural frequency, the damping ratio, the structural stiffness

and the cutting stiffness of the tool system should be measured for the theoretical

prediction of chatter stability in machining processes. The tool system in experiments

consists of a top-notch type PCBN grooving insert (Kennametal NG3125R) and a tool

holder (Kennametal MSR-123B) installed on a very rigid lathe (Hardinge Conquest

T42SP). Furthermore, the relation between the stiffness ratio and the width of cut is

obtained to plot the stability chart in terms of the width of cut instead of the stiffness

ratio. Results of characteristic parameter measurements are summarized in Table 3-1.

Table 3-1. Characteristic parameters of the tool system

Workpiece 52100 hollow bar (HRC 62±1)

Length = 76.2 mm

Outer diameter = 41.2 mm, 

Inner diameter = 26.9 mm

Tool system Kennametal PCBN grooving insert (NG3125R)

Kennametal tool holder (MSR-123B)

Machine Hardinge CNC lathe

Natural frequency 111 Hz

Damping ratio 0.054

Structural stiffness 5600 N/mm

Cutting stiffness 985 N/mm (at the width of cut = 0.508 mm and the cutting speed

= 14 rps)
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Figure. 3-1. Schematic diagram of impact testing for measuring the natural frequency ωn

and the damping ratio ζ

The natural frequency and the damping ratio of the tool system are determined by

impact testing. Attaching an accelerometer on a side of the tool, frequency responses are

obtained by applying an impact with a hammer at the opposite side of the tool system as

shown in Figure 3-1. The peak at the lowest frequency is chosen as the natural frequency

of the tool system in the averaged frequency response. The damping ratio is decided by

observing how fast the magnitude of the peak of the natural frequency diminished along

with frequency variation. The main processes to obtain the damping ratio of the tool

system are finding two points corresponding to 0.707 times the maximum magnitude of

the peak and then calculating frequency difference between these two points. As a result

of impact testing, it turned out that the natural frequency of the tool system is 111 Hz and

the damping ratio is 0.054.

The structural stiffness is obtained by simultaneous measurements of displacement

and static force applied at the end of the workpiece through the tool. The workpiece is
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H am m er
Signal analyzer
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76.2 mm long and assumed as a rigid body. The displacement of the tool system relative

to the 52100 hollow bar is measured by a dial gage and static force exerted on the tool tip

is measured by a dynamometer as shown in Figure 3-2. A carbide insert is used instead of

the PCBN insert for experiments of measuring the structural stiffness because the PCBN

tool tip is too brittle to endure applied static force. The structural stiffness of the tool

system is determined as 5320 N/mm. 

Figure 3-2. Schematic diagram of the experimental setup for measuring the structural
stiffness km

The cutting stiffness is found by measuring thrust force for given cutting conditions

in the cutting operation. As seen in Figure 3-3, the dynamometer connected to the tool

system of the machine measured thrust force as the cutting process is performed at the

end of the 76.2mm long work piece. In the present study, thrust force is assumed to be

linearly proportional to uncut chip thickness or the feed rate and the proportionality

Dynamometer

Tool

Dial gauge

Workpiece

Static force

Chuck

  PC
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constant is the cutting stiffness. Thrust force is measured for three different values of the

width of cut in the range of the feed rate from 0.0127 to 0.0508 mm/rev and results are

shown in Figure 3-4. All facing operations are operated with “slightly worn” tools, which

have flank wear in the range from 40 to 60 µm. The slope of the curves corresponding to

the cutting stiffness is increased slightly along with an increase of the width of cut. Thrust

force measurements as a function of the feed rate for two different values of cutting speed

are represented in Figure 3-5. Thrust force and the cutting stiffness decrease for higher

cutting speed. These tendencies in force measurements are well matched with existing

experimental investigations on hard turning (Chou and Evans, 1999). The cutting

stiffness is determined as 985 N/mm from those cutting force data when the width of cut

is 0.508 mm and the cutting speed is 14 rps.

Figure 3-3. Schematic diagram of the experimental setup for measuring the cutting
stiffness kc in facing

Cutting tool

Workpiece

Chuck
Feed direction

Width of cut

76.2mm

PC

D ynamometer
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Figure 3-4. Thrust force versus the feed rate at the cutting speed of 14 rev/sec

The relation between the stiffness ratio and the width of cut is obtained from cutting

force data of machining of hardened 52100 steels. In this study, the stability chart is

plotted in terms of the width of cut instead of the stiffness ratio since the width of cut is a

more practical parameter in machining operations. Chiou and Liang (1998) converted the

stiffness ratio to the width of cut by multiplying a constant, which is derived from force

measurements. Here, the converting relation is obtained as a function of cutting speed to

reflect the dependence of the cutting stiffness on cutting speed, which is clearly shown in

Figure 3-5. The converting relation is derived as:

)3.002.0()6.2031.0( −Ω+

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
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woc                                                            (3-1)

where woc is the width of cut.
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Figure 3-5. Thrust force versus the feed rate at the width of cut of 0.254 mm

3.3. Predictions of Stability Limit in Facing 

Based on the stability analysis and parameter measurements in previous sections, the

stability chart is obtained to predict chatter-free cutting conditions. The minimum

stiffness ratio kc/km is obtained in the root locus for a given time delay and the same

procedures are repeated for the range of cutting speed. Since the minimum kc/km is the

critical stability parameter as shown in the stability analysis, the region above the

minimum stiffness ratio is called the unstable region. The region below the minimum

stiffness ratio is called the stable region where there is no chatter for a given cutting

speed. Values of the width of cut corresponding to minimum stiffness ratios are obtained

by means of the converting relation derived from force measurement data. For example,
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stability lines for worn tools with different flank wear length are shown in Figure 3-6,

when characteristic parameters in Table 3-1 are used. For non-uniform load distribution,

the values of flank wear length l are 0.0254, 0.0762 and 0.127 mm and the value of ns are

assumed as 0.5. As shown in Figure 3-6, flank wear causes the increased stable region

under the stability line. Moreover, the flank wear effect on stability predictions is

examined by comparing the overall size of the stable region under the stability line for

0.0254, 0.0762 and 0.127 mm of flank wear. In order to show the dependency of the

flank wear effect on cutting speed, the area of the stable region is calculated for 4

different speed divisions, respectively. As shown in Figure. 3-7, the total area under the

stability line is increased as the length of flank wear is increased and the stabilizing effect

is most dominantly appeared in the high-speed range (12< Ω <15 rps).

Figure 3-6. Stability chart for worn tools with different values of flank wear
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Figure 3-7. Area under the stability line for different values of flank wear.

The question of whether a stability line with more conservatism can be used as an

alternative to the original stability line for more practical use of the stability chart is now

examined. Because a small change in cutting speed causes a large variation in the

predicted stability line in the low cutting speed range and the length of flank wear can

change during machining processes, it is necessary to apply a conservative prediction for

proper machining operations. In order to introduce a new stability line, the lowest points

of the original stability line are connected as shown in Figure 3-8. This stability line is

called a tangential stability line and it provides more conservative chatter prediction in

the stability chart. As seen in Figure 3-9, the tangential stability line shows the same

tendency as is shown by the original stability line for different values of flank wear.

Therefore, the tangential stability line can be used as an alternative stability line,
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reflecting the stabilizing effect due to flank wear. Another conservative stability line can

be derived from stability charts for sharp tools. Having the same parameters, except with

a load distribution of δ(θ), the stability chart for a sharp tool is obtained as shown in

Figure 3-10. In stability charts for sharp tools, the closed loop system is always stable

regardless of the amount of time delay when kc/km is less than 2ζ(ζ+1). This stability line

is called an absolute stability line. Since a worn tool has larger stable region than a sharp

tool in the stability chart as shown in Figure 3-10, the absolute stability line can be used

for a worn tool as the most conservative stability guideline. In addition, the prediction for

a sharp tool provides very similar stability limits compared with the stability line for the

worn tool with flank wear of 0.0254 mm. Therefore, the flank wear effect can be

negligible when the length of flank wear is less than 0.0254 mm.

Figure 3-8. Tangential stability line in the stability chart for a worn tool with the flank
wear of 0.0762 mm
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Figure 3-9. Area under the tangential stability lines for different values of flank wear

Figure 3-10. Comparison of stability lines for a sharp tool and a worn tool  
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3.4. Conclusion

Characteristic parameters of a tool system have been measured for predicting stability

limits in facing from the proposed model. In order to consider the cutting speed effect,

the values of the cutting stiffness are measured at two cutting speeds while the range of

flank wear is between 40 and 60 µm. Theoretical predictions of stability have been

obtained from measured characteristic parameters. The minimum stiffness ratios are

obtained for a range of speed with the root locus method and then stability charts in the

width of cut are plotted employing the converting relation. The stabilizing effect of flank

wear is clearly shown in tangential stability lines as well original stability lines from

theoretical predictions. The absolute stability line is derived as the most conservative

stability guideline.
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CHAPTER 4

EXPERIMENTAL RESULTS AND MODEL VALIDATION FOR FACING

4.1. Introduction

Even though there have been numerous experimental studies on chatter in mild

turning, no experimental investigations regarding chatter stability in hardened steels has

been attempted so far. Empirical chatter stability limits can be used not only for model

validation but also for evaluating effects of various cutting parameters on stability, which

allows a more reasonable consideration of physical factors in the modeling of chatter

stability. Therefore, it is very important to measure chatter stability limits in order to

provide reliable predictions of chatter stability for various cutting conditions. In the

present study, an attempt is made to measure chatter stability limits in hard turning for the

first time by conducting a series of facing operations of 52100 hollow bars. The

experimental results are overlapped to predicted stability lines to validate the proposed

modeling of chatter.

4.2. Chatter Stability in Facing

Experimental procedures to determine stability limits are described in detail as

follows. 52100 hollow bars with the overall length of 304.8mm, which are also used in

characteristic parameter measurements, are used as the workpiece in the present

experiments. A top-notch type PCBN grooving insert is applied at the end of the
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workpiece whose overhang length from the collar is 76.2 mm long. The width of cut is

increased by 0.254 mm from the initial value of 0.508 mm under a given cutting speed

over the range from 4 to 14 rev/sec until chatter is observed. The feed rate of 0.0508

mm/rev is fixed for all experiments and the feed direction is radial. In order to see the

effect of flank wear, sets of tools with known flank wear length between 40 and 60 µm

are prepared. The onset of chatter is identified by detecting more than 40% of the abrupt

force amplitude increase in the force trace, which is collected by the dynamometer during

cutting operations. Because of the radial feed direction in experiments, the structural

stiffness continued to decrease as the tool advanced to the center of the workpiece. As a

result, the use of a constant structural stiffness is limited to only the very early stage of

the cutting process. Therefore, any detection of chatter is ignored in experiments unless it

started from the early stage of the cutting process, which is limited to the first 25% of

overall machining time.

The feature of chatter in hard turning has been found from experimental results.

Results of the chatter stability experiments are summarized in Figure 4-1. The cross and

the circle symbols correspond to no chatter and the existence of chatter, respectively. In

experiments, chatter occurred as the width of cut is increased over a certain critical value

under given cutting conditions. It is consistent with the result of the stability analysis that

instability is induced as the stiffness ratio is larger than a critical value. The width of cut

where chatter is induced is called the critical width of cut. As shown in Figure 4-1,

chatter stability in machining 52100 steels has the tendency that the critical width of cut

is decreased along with an increase of the cutting speed when the speed is less than 6

rev/sec (rps). After reaching the minimum value of the critical width of cut 
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Figure 4-1. Chatter stability limits in facing

(0.762 mm) in the range of the cutting speed between 6 and 8.5 rps, the critical width

of cut increases as the cutting speed increases. The critical width of cut is observed as

1.016 mm at cutting speeds between 10 and 11.5 rps. At the speed of 12.5 rps, there is no

chatter observation even when the width of cut is 1.524 mm. At speeds higher than 12.5

rps, no chatter is found in experiments until the width of cut is 1.016 mm. Since instant

tool failures occurred for the width of cut larger than 1.016 mm at cutting speeds higher

than 12.5 rps, no data are collected for the width of cut larger than 1.016 mm. However, it

is clearly seen that the critical width of cut increases rapidly in the high-speed region.

This characteristic of chatter found in machining 52100 steels contrasts with that of

chatter in mild turning. Chiou and Liang (1998) and Clancy and Shin (2002) performed

chatter experiments with worn tools in mild turning and commonly found that the critical

width of cut decreased in the high cutting speed range as the cutting speed increased.
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Therefore, the abrupt increase of the stable region at a high cutting speed (> 12.5 rps) is a

characteristic of hard turning chatter in contrast to that of mild turning. In addition, the

standard deviation of the critical width of cut is 0.15 mm at the speed of 6 rps, which

ensures the repeatibility of experiments.

4.3. Predictions versus Experimental Results

The validity of the proposed chatter model is examined by comparing experimental

data with theoretical stability predictions as shown in Figure 4-2. The solid line

corresponds to the predicted stability line and the region above the solid line is the

unstable region. The region under the solid line is the stable region, where no chatter is

predicted. Crosses represent experimental data having no chatter and circles represent

chatter detection. There is good agreement between the prediction and experimental

results especially in the cutting speed range between 6 and 10 rps. However, the proposed

model expects a little smaller stable region in both the low (< 6 rps) and the high (>10

rps) cutting speed range. As an alternative way, an empirical model is proposed to match

experimental data points for the full range of the cutting speed. The new stability line can

be obtained by means of the following relation:

[ ]wocwocnew 3.2)/0.10sin(5.1 +Ω−=                                                                    (4-1)

The new stability line of the empirical model is compared with experimental data in

Figure. 4-3. Since the empirical model provides a larger stable region in the low and the

high-speed range, predictions of the critical width of cut are in very good agreement for

the full range of the speed. Even though there is a slight deviation from experimental 
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Figure 4-2. Verification of the proposed model by experimental data in facing

Figure 4-3. Verification of the empirical model by experimental data in facing
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results at the cutting speed of 12.5 rps, the accuracy of the prediction is certainly

improved. 

4.4. Conclusion

The characteristics of chatter in facing operations of 52100 steels are found through a

series of cutting tests. An abrupt increase of the stable region at high speed (>12.5 rps)

and a large stable region at very low speed (< 6rps) are discovered. The proposed model

is validated by experimental data and very good agreement is confirmed especially in the

middle range of cutting speed (6-10 rps). Furthermore, an empirical stability model is

proposed as an alternative way to predict chatter stability.
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CHAPTER 5

NONLINEAR CHATTER MODELING WITH FLANK WEAR EFFECT IN

STRAIGHT TURNING

5.1. Introduction

Linear chatter models have a fundamental limit in describing nonlinear chatter

behaviors observed in practice. In addition, the amplitude of chatter is indeterminate in

the stability predictions of linear models. Furthermore, it is expected hard turning is

involved with strong nonlinearity caused by the high hardness of the workpiece and

severe wear of the tool, there is a limitation of the linear approximation of the cutting

process. Therefore, it is necessary to develop nonlinear chatter model to predict more

reliable stability limits in hard turning.

Several researchers have attempted to investigate nonlinear chatter in order to explain

nonlinear phenomena of chatter. Most of them have considered either the nonlinearity in

the structure and cutting force (Hanna and Tobias, 1974, Nayfeh et al.,1998) or

nonlinearity caused by friction (Wu and Liu, 1985, Nosyreva and Molinari, 1997) of

conventional mild turning. Analytical methods approximating nonlinear elements

(Nayfeh et al.,1998, Pratt et al.,1999) or direct numerical methods (Lin and Weng, 1991,

Gradisek et al.,2001, Deshpande and Fofana, 2001, Litak, 2002) have been employed for

nonlinear models. Both approaches have achieved some success in accounting for

nonlinear chatter behaviors. Nevertheless, all of theoretical or experimental investigations
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for nonlinear chatter have been limited to conventional mild turning. In the present study,

an attempt is made to develop a nonlinear chatter model for hard turning.

According to Davies (1998), nonlinearity in hard turning can arise from the geometry

of the cutting tool, friction, the cutting mechanics and the mechanical behavior of the

machine tool. In the present study, the structure and cutting force are considered as

primary sources of nonlinearity in hard turning. Each nonlinearity is assumed to be of the

form of a third-order polynomial, similar to what Hanna and Tobias (1974) suggested. In

addition, since cutting force depends on cutting speed and flank wear in hard turning, the

nonlinearity of cutting force is measured for different cutting speed and tool wear

conditions. As friction depends on speed and tool wear, the effect of friction is taken into

account implicitly in the model by measuring cutting force as a function of speed and

flank wear. 

Flank wear has been considered as a significant factor affecting chatter stability limits

in conventional turning operations. Recently the strong relation between flank wear and

cutting force in hard turning has been reported by Nakayama et al. (1988), Wang and Liu

(1999) and Chou and Evans (1999). They suggested an increase in cutting force for larger

flank wear in machining hard materials. Kishawy and Elbestawi (1999) showed tool wear

also affected machined surface quality during hard turning. Davies (1998) suggested that

tool wear be related with the occurrence of unstable vibration in hard turning. Therefore,

it is necessary to consider the flank wear effect in the modeling of chatter to obtain more

reasonable stability predictions in hard turning. In the present study, the flank wear effect

on chatter stability is considered by introducing non-uniform load distribution on the

flank wear area. 
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Traditional analytical tools for dealing with the stability analysis of nonlinear systems

include describing function, phase plane, and Lyapunov stability. These simplifications

may be satisfactory so long as the resulting solutions agree with experimental results. In

the present study, the describing function method is used to simplify nonlinearity for

stability analysis.

5.2. Modeling for Nonlinear Chatter in Straight Turning

There have been successful applications of 1-DOF chatter models, which agreed well

with experimental results and are mathematically simple (Chiou and Liang, 1998).

Considering mathematical complexity due to a time delay and nonlinearity in the present

study, a 1-DOF model is selected for the modeling of nonlinear chatter for a worn tool.

Furthermore, since the performance of machining process is most sensitive to the radial

vibration, chatter is assumed to move only in the radial direction.

The cutting edge of an insert does not move normal to the surface of the workpiece in

straight turning. As a result, the orthogonal cutting condition where tangential and radial

direction forces are dominant is no longer valid. Thus, oblique cutting conditions should

be considered in the modeling process for straight turning. In addition, the direction of

cutting force is affected by the tool geometry such as the side cutting edge angle since the

radius of tool nose is larger than the depth of cut. For cutting tools with substantial tool

nose radius, the side cutting edge angle Cs of the tool is calculated as the angle between

the centerline and the tool nose tangential line, which is tangential to the intersection

point between the half depth of cut and the tool. Figure 5-1 is drawn based on the
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proportion between the tool nose radius and the depth of cut, which are used in the

present study. The tool nose radius of the insert (Kennametal CNGA 432T) is about 6

times larger than the most frequently used depth of cut, 0.127 mm. It is turned out that the

value of Cs is larger than 45° due to the large nose radius and the small depth of cut.

Hence, radial chatter is still valid in straight turning cases.

In the present study, the workpiece is assumed to be a mass-spring-damper system,

which is able to move only in the radial direction x as shown in Figure 5-2. The cutting

tool with a certain Cs is moving along the axial direction of the workpiece, which is

defined as the z coordinate in Figure 5-2. In order to consider the regenerative effect for

radial chatter in oblique cutting, the relationship between Cs and the radial displacement

of the bar is taken into account. If there is a displacement variation ∆δ for two

consecutive revolutions of the workpiece in the radial direction, then the displacement

variation along the direction normal to the side cutting edge is ∆δ sin(Cs) as shown in

Figure 5-2. Because the feed direction in straight turning is axial, the radial cutting

stiffness kc corresponds to the variation of radial force divided by the displacement in the

feed direction. Consequently, the radial force due to the variation ∆δ in the radial

direction is kc∆δ sinCs cosCs.

Considering the nonlinearity in structure as a third-order polynomial, the equation of

motion in the x  direction is given as the following:

)()]()()([)()( 3
2

2
1 tFtxtxtxktxctxm xm ∆=++++ ββ&&&                                             (5-1)

where m is the mass of the workpiece, c is the damping coefficient, km is the structural

stiffness, and  ∆Fx(t) is the amount of variation in the x-component of cutting force. In

addition β1 and β2 are the coefficients for the quadratic and the cubic terms, respectively,
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Figure 5-2. Schematic diagram of the tool-workpiece system in straight turning
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in the nonlinear structural stiffness. In the present study, it is assumed that each

coefficient linearly depends on the stiffness ratio kc/km so that

111 ηλβ +=
m

c

k
k                                                                                                        (5-2a)

222 ηλβ +=
m

c

k
k                                                                                                      (5-2b)

where λ1, λ2, η1,and η2 are constants.

Combining the regenerative effect and the nonlinear cutting stiffness, nonlinear

cutting force ∆Fx(t) is given as

{ } ssTTTcx CCxtxcxtxcxtxktF cossin])([])([)()( 3
2

2
1 −+−+−=∆                       (5-3)

where xT is x(t-Tp), which is the displacement from the equilibrium position at the

previous rotation, Tp is the period, kc is the cutting stiffness in the radial direction, c1 and

c2 are the coefficients for the quadratic and the cubic terms, respectively, in the nonlinear

cutting stiffness term. Each coefficient is assumed to be linearly proportional to the

stiffness ratio kc/km as

331 ηλ +=
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k
kc                                                                                                        (5-4a)

442 ηλ +=
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c

k
kc                                                                                                       (5-4b)

where λ3, λ4, η3,and η4 are constant coefficients.

Furthermore, the non-uniform load distribution on flank wear in equation (2-6) is

introduced to add the flank wear effect in the chatter model. As a result, ∆Fx(t) in

equation (5-3) is expressed as the following: 
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The cutting system can be represented as a closed loop including a nonlinear element

as shown in Figure 5-3. In the present study, the nonlinear element of the system is

approximately represented by the describing function. It is assumed that higher-frequency

harmonics can be neglected, compared with the fundamental component. If even

nonlinearity is considered, it is necessary to introduce a bias term in the input signal to

the nonlinear element in order to keep the harmonic balance through the closed loop.

Consequently, the input x(t) consists of bias u0 and a sinusoidal signal u1 such that

)sin()( 1010 tAAuutx ω+=+=                                                                               (5-6)

In the present study, it is assumed that the nonlinear output W(t) from the nonlinear

element can be approximated by the first three terms in a Fourier series, viz.,
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Describing functions for the signal consisting of the bias and the pure sinusoidal are
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W = f(x) G(jω)
y(t)

r(t) = 0
W(t)x(t)

Nonlinear
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Figure 5-3. Closed loop system with a nonlinear element 

When the time delay Tp exists, the delayed input xT(t) is given as the following:

TppT uuTtAATtxtx 1010 )(sin)()( +=−+=−= ω                                                     (5-11)

Substituting equation (5-5) for the right hand side of equation (5-1), the equation of

motion, including the non-uniform load distribution and nonlinearity, is given as
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After moving the nonlinear terms into the right hand side of the above equation, the

nonlinear output W(t) is found to be

3
2

2
1

0

3
2

2
1 cossin)(

)]()([

)]()([

)()(

)( xkxkCCd

Ttxtxc

Ttxtxc

Ttxtx

ktW mmssh

p

p

p

c ββθθσ

θθ

θθ

θθ

++



















+−−++

+−−++

+−−+

= ∫−
 

                                                                                                                               (5-13)



59

After approximating the nonlinear output W(t) as in equation (5-7), the describing

function for the bias term in equation (5-9) is derived as
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The real part of the describing function N1 in equation (5-10), which corresponds to the

first harmonics of W(t) is given as
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The imaginary part of the describing function N1 is found as
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With these describing functions in the equations (5-14), (5-15) and (5-16), the two

harmonic balance equations are 
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where the linear element G(jω) shown in Figure 5-3 is
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Substituting equations (5-14) and (5-19) into equation (5-17), one obtains the first

harmonic balance equation as
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Substituting equations (5-15) and (5-19) into equation (5-18), the second harmonic

balance equation is found to be
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Substituting equations (5-16) and (5-19) into equation (5-18), the third harmonic balance

equation can be found as
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The nonlinear chatter model for sharp tools is derived from that of worn tools for the

purpose of examining the flank wear effect on predictions. When tools are ideally sharp,

the non-uniform load distribution corresponds to the Dirac delta function as shown in

equation (2-11). In that case, the equation of motion in the x direction is  
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After rearranging equation (5-23), the nonlinear output W(t) becomes
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After approximating W(t) in equation (5-24) by the describing functions method, the

three harmonic balance equations are 
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Furthermore, a nonlinear chatter model without even nonlinearity is developed as a

special case of the model for sharp tools. Without the bias term coming from even

nonlinearity, much simpler harmonic balance equations are derived. If only odd

nonlinearity exists in the structure and cutting force, the equation of motion is simply
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The harmonic balance equations corresponding to equation (5-28) can be found by

substituting the zero value for β1 and c1 into equations (5-26) and (5-27), yielding
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5.3. Stability Analysis

There are four nonlinear coefficients β1, β2, c1, and c2 in the harmonic balance

equations (5-20), (5-21) and (5-22). In the present study, either the nonlinear structural

stiffness or the nonlinear cutting stiffness is assumed to be constant depending on the

feed direction of the turning operation. As a result, two nonlinear coefficients remain as

unknowns, which depend on the stiffness ratio as shown in equations (5-2a), (5-2b), (5-

4a) and (5-4b). Therefore, the harmonic balance equations as well as two equations for

nonlinear coefficients are required to be solved simultaneously. As a result, the values of

the stiffness ratio kc/km, the chatter frequency ω, offset amplitude A0 and two nonlinear

coefficients are determined as a solution of the equations for given values of cutting

speed Ω and sinusoidal input amplitude A1. However, the presence of the time delay

results in infinitely many solutions of the equations. Hence, it is necessary to determine

the critical stability parameter among infinitely many solutions. In the present study, the

minimum stiffness ratio is found as the critical stability parameter. Newton’s method is

employed in order to find solutions satisfying the five equations simultaneously. The

procedures to determine the stability limits are represented as a flow chart in Figure 5-4.
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Figure 5-4. Flow chart of the procedures to determine critical stability limits
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After deciding critical stability parameters, stability charts are plotted in the axes of

A1, kc/km, and Ω. The stability chart on the plane of kc/km and Ω corresponds to the

conventional stability chart from linear models except the finite value of A1 is designated.

Furthermore, the stability chart on the plane of A1 and kc/km is convenient to predict the

evolution of a limit cycle. Each solution obtained from harmonic balance equation is a

limit cycle, which has the amplitude of A1 and the frequency of ω.

When the even terms of nonlinearity are ignored, equation (5-20) is vanished. As a

result, the minimum kc/km for given values of A1 and Ω is obtained from equations (5-21),

(5-22) and the equation for one of odd nonlinear coefficients.

5.4. Conclusion

The modeling of chatter has been carried out considering nonlinearity and flank wear

in hard turning. Three harmonic balance equations are derived as a result of

approximating nonlinear elements with describing functions. Adding two equations for

nonlinear coefficients, critical cutting parameters are determined by solving five

equations simultaneously for given cutting conditions. The values of of kc/km, ω, A0 and

two nonlinear coefficients are determined as a solution for given values of A1 and Ω. As a

special case, the nonlinear model without even nonlinearity is developed for sharp tools.
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CHAPTER 6

MEASUREMENTS OF CHARACTERISTIC PAREMETERS AND REDICTIONS OF

CHATTER STABILITY IN STRAIGHT TURNING

6.1. Introduction

There are two available feed directions in straight turning. One is called “outward

turning” (feeding toward the end of the workpiece); the other is called “inward turning”

(feeding toward the collar). Each feed direction has characteristics to take into account.

Since the critical stability limit can be found for a fixed depth of cut for outward turning,

the nonlinearity in cutting force is required to measure only for the corresponding depth

of cut. However, it should be noticed that the feed direction of outward turning is rarely

used in practice. In contrast, inward turning has the conventional feed direction.

However, laborious works are required to measure the nonlinearity of cutting force for

various values of the depth of cut. In the present study, both feed directions of straight

turning are considered in chatter predictions compromising these features. Outward

turning is carried out to predict stability limits based on completely measured

nonlinearity. Inward turning is performed for the practical use of the chatter model

although the variation of nonlinearity with the depth of cut is assumed to be negligible.

Nonlinearity in the chatter model is considered through the structural stiffness and the

cutting stiffness. Thus, accurate measurements of the nonlinear stiffness are crucial for

reliable theoretical stability predictions. Even though there have been some published
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theoretical attempts (Nayfeh et al., 1998, Kalmar-Nagy et al., 2001) to consider the

nonlinear stiffness in chatter stability problems, most research has relied on a limited

number of existing experimental data of nonlinearity in mild turning. Unfortunately, there

have been no experimental results of the nonlinear cutting and structural stiffness in hard

turning. Hence, it is very significant to conduct reliable measurements of the nonlinear

stiffness not only for the accurate predictions of the current study, but also for possible

applications in other nonlinear models in the future.

Based on characteristic parameters, three-dimensional stability charts are obtained for

various tool conditions and nonlinearities The effects of each nonlinearity and flank wear

on stability limits are discussed.

6.2. Measurements of Characteristic Parameters

6.2.1. Natural Frequency and Damping Ratio

The natural frequency and the damping ratio of the flexible workpiece are derived

through impact testing. The same experimental setup shown in Figure 3-1 is used for the

test. A hardened 52100 steel bar 203.2 mm in length, which is used in experiments for

chatter stability limits, is also examined in impact testing. It is assumed that the

workpiece is flexible in the radial direction. The hammer generated an impact on the bar

in the radial direction and the output signal is collected through an accelerometer attached

on the opposite side of the bar. As a result, a frequency response is obtained from a signal

analyzer after averaging ten repeated hammer tests as shown in Figure 6-1. The natural

frequency corresponds to the highest peak of the frequency response, and the damping 
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Figure 6-1. Averaged frequency response from impact testing.

ratio is obtained by measuring the variation of frequency for a nominal amplitude change

of the peak. The natural frequency and the damping ratio of the workpiece are determined

from the frequency response as 540 Hz and 0.013, respectively.

6.2.2. Cutting Stiffness 

The cutting stiffness is determined by measuring the variation of cutting force with the

feed rate. The proposed models implicitly consider the hardness of material through the

cutting stiffness, since hardness is strongly related with cutting force. In the present

study, the cutting stiffness is measured through a series of experiments for both feed

directions of straight turning. Furthermore, since cutting force in hard turning is

influenced by flank wear and cutting speed (Dawson, 2002), the variation of cutting force

is measured for the separate ranges of flank wear and cutting speed. 
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The cutting stiffness for outward turning is measured by conducting cutting

operations for a given range of the feed rate with a fixed value of the depth of cut, which

correspond to condition index 1 – 4 in Table 6-1. On the other hand, the cutting stiffness

for inward turning is measured for various values of the depth of cut by performing

cutting tests corresponding to condition indices between 5 and 12.

Table 6-1. Conditions of cutting experiments for the cutting stiffness.

Condition
index

The depth
of cut
(mm)

The range of
flank wear (µm)

Cutting speed
(rev/min)

The range of feed
(mm/rev)

1 0.1270 40 – 60 450 0.0254 – 0.102 

2 0.1270 40 – 60 800 0.0254 – 0.102
3 0.1270 140 – 160 450 0.0254 – 0.102
4 0.1270 140 – 160 800 0.0254 – 0.102
5 0.0635 40 – 60 450 0.0254 – 0.102
6 0.0635 40 – 60 700 0.0254 – 0.102
7 0.1270 40 – 60 450 0.0254 – 0.102
8 0.1270 40 – 60 700 0.0254 – 0.102
9 0.1905 40 – 60 450 0.0254 – 0.102
10 0.1905 40 – 60 700 0.0254 – 0.102
11 0.2540 40 – 60 450 0.0254 – 0.102
12 0.2540 40 – 60 700 0.0254 – 0.102

6.2.2.1. Nonlinear Cutting Stiffness for Outward Turning

The proposed models reflect the effects of nonlinearity as well as material hardness

on chatter stability by the nonlinear cutting stiffness. Furthermore, nonlinearity caused by

friction, which is a function of cutting speed and tool wear is implicitly considered in the

model by measuring the cutting stiffness for the separate range of cutting speed and flank

wear. In this study, cutting tests are performed at 450 rpm and 800 rpm with two groups
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of tools. The first group is called “slightly worn tools” with the flank wear range between

40 and 60 µm. The second “very worn tools” group has the flank wear range between 140

and 160 µm.

The schematic experimental set up to determine the value of the cutting stiffness is

shown in Figure 6-2. The specifications of the workpiece and the tool are summarized in

Table 6-2. Cutting operations are conducted at the end of a workpiece for the cutting

range of 7.62 mm. The depth of cut is fixed to 0.127 mm. The overhang length of the

workpiece is fixed to 101.6 mm. Each set of experiments determined the value of the

cutting stiffness measuring the variation of radial force over the feed rate in the range of

[0.0254 0.102] mm/rev. Cutting tests are repeated for the same cutting condition to

improve the precision of cutting force measurements. The results of measured cutting

forces are summarized in Table 6-3. 

The 95% confidence interval means the average value is found within the interval for

a 95% chance. The confidence interval is then

Confidence interval = 







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where M is the mean, np is the sample size, σp is the standard deviation, and αt  is a

constant corresponding to the sample size and the expected confidence level. The 95%

confidence interval of cutting force is calculated for each cutting test to examine the

precision of experiments. The results are also summarized in Table 6-3, which are in the

reasonable range considering that both rapid tool wear and high temperature occurred in

hard turning.
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Cutting tool

Tool bracket

Feed direction

Figure 6-2. Schematic diagram of the experimental setup for the cutting stiffness
measurement

Table 6-2. Specifications of the cutting system for experiments

Workpiece 52100 hollow bar (HRC 59±1)

Outer diameter: 41mm

Inner diameter: 30.5mm

Overall length: 304.8mm

Insert Kennametal PCBN insert CNGA432T (KB5635)

Tool holder Kennametal DCLNR-124B

Machine Hardinge Conquest T42

Dynamometer Kistler 9257B
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Table 6-3. Summary of radial cutting force data for condition index 1 – 4

Condition
index

Feed
(mm/rev)

Average
radial force

(N)

95% confidence
interval (N)

Number of
cutting

operations
0.0254 64.9 61.1 – 68.8 5
0.0508 75.9 75.0 – 76.7 6
0.0762 96.5 91.5 – 101.0 4

1

0.1016 109.3 105.0 –113.7 5
0.0254 64.1 55.8 – 72.5 3
0.0508 75.1 72.3 – 77.8 6
0.0762 89.4 87.8 – 90.9 6

2

0.1016 101.7 96.7 – 106.8 5
0.0254 67.0 58.9 – 75.0 4
0.0508 87.7 86.8 – 88.9 4
0.0762 104.5 101.1 – 107.9 5

3

0.1016 124.3 121.9 – 126.6 4
0.0254 66.9 60.2 – 73.6 4
0.0508 86.6 78.1 – 95.1 4
0.0762 102.9 100.9 – 104.8 4

4

0.1016 112.7 111.9 – 113.6 4

As shown in Figure 6-3 and Figure 6-4, the radial cutting force is proportional to the

feed rate and inversely proportional to cutting speed for both tool wear conditions. The

decreased amount of radial force with the cutting speed increase is proportional to the

feed rate. Therefore, the cutting speed effect caused by high temperature is proportional

to the material removal rate. Moreover, it is found that radial cutting force increases as

flank wear increases regardless of cutting speed, comparing Figure 6-3 with Figure 6-4.

These tendencies in force measurements are in good agreement with existing

experimental investigations on hard turning (Chou and Evans, 1999, Dawson, 2002).

The nonlinear cutting stiffness in turning is derived from curve fitting the radial force

data, which are measured over the range of the feed rate. Experimental data are fitted in

with a cubic curve, whose origin coincides with a nominal feed rate and the

corresponding radial force. The feed rate is 0.0762 mm/rev, which is used in subsequent
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Figure 6-3. Radial cutting force of slightly worn tools versus the feed rate for different
cutting speeds

Figure 6-4. Radial cutting force of very worn tools versus the feed rate for different
cutting speeds
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chatter experiments. In that case, the variation of radial force due to the variation of the

uncut chip thickness, i.e. the feed rate is given as 

])()()[()( 3
2

2
1 scscsksF cx ∆+∆+∆=∆∆                                                                 (6-2)

where ∆s is the variation of the feed rate with respect to the nominal feed. The values of

each term in equation (6-2) obtained through curve fittings as shown in Figure 6-5. The

results are summarized in Table 6-4. The value of the cutting stiffness kc is determined as

772 N/mm for slight worn tools and a cutting speed of 450 rpm. The value of kc of

slightly worn tools decreases to 558 N/mm for a cutting speed of 800 rpm. The same

tendency is observed in very worn tools as the value of kc decreases from 833 N/mm to

534 N/mm. While the cutting stiffness increases as tool wear develops at the low cutting

speed range, this tendency does not remain at the high cutting speed range since the

softening effect due to high temperature is possibly counterbalancing the flank wear

effect. 

The variations of the nonlinear cutting stiffness kc, c1, and c2 along the axial direction

of the bar are assumed to be negligible. As shown in Table 6-4, the average ratio of the

square coefficient c1 to the cubic coefficient c2 is 0.02 and 0.23 at 450 rpm and 800 rpm,

respectively. Furthermore, the ratio of the square term to the cubic term decreases for

very worn tools at each cutting speed. Therefore, the importance of the square term

relatively decreases as cutting speed decreases or flank wear increases. Ignoring the

second term in the stiffness results in a much simpler modeling process. Stability limit

predictions without the square term in nonlinear stiffness are to be examined later as a

special case of nonlinear chatter models in order to determine whether the simplification

can be justified. 
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Figure 6-5. Curve fittings of radial cutting force data to a cubic curve and a straight line

Table 6-4. Summary of the nonlinear cutting stiffness for condition index 1 – 4

Conditio

n index

Flank wear

(µm)

Speed

(rpm)

kc

(N/mm)

c1

(N/mm2)

c2

(N/mm3)

c1/c2

1 40 - 60 450 772 -7.8 -229 0.034

2 40 - 60 800 558 -28 -96.5 0.29

3  140 - 160 450 833 -0.93 -96.5 0.010

4 140 - 160 800 534 -9.4 -59.0 0.16
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If the nonlinear relation between cutting force and the feed rate is ignored, then the

linear cutting stiffness kc can be derived for each cutting condition as shown in Table 6-5.

The linear cutting stiffness decreases as cutting speed increases for both wear conditions.

In addition, the linear cutting stiffness increases as flank wear progresses. As a

consequence, the linear cutting stiffness shows the same tendencies as the nonlinear

cutting stiffness. The linear cutting stiffness is used in the proposed linear modeling of

chatter in straight turning.

6.2.2.2. Linear Cutting Stiffness for Inward Turning

The linear cutting stiffness is measured for various values of the depth of cut in

inward turning. Radial cutting force is measured over the range of the depth of cut, which

correspond to condition indices 5 – 12 in Table 6-1. The overhang length of the

workpiece is 76.2 mm during cutting tests. The cutting speed effect is considered by

conducting a series of cutting tests at two different values of cutting speed while the

range of flank wear is remained between 40 and 60 µm. 

It is found radial cutting force is proportional to the depth of cut. In addition, the

cutting speed effect, which induces lower force at the high-speed range is shown more

prominently at a larger value of the depth of cut as shown in Figure 6-6. The results of

the linear cutting stiffness are summarized in Table 6-6.
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Table 6-5. Summary of the linear cutting stiffness for condition index 1 – 4

Condition index Flank wear (µm) Speed (rpm) kc (N/mm)

1 40 - 60 450 606

2 40 - 60 800 500

3 140 - 160 450 759

4 140 - 160 800 605

Figure 6-6. Radial cutting force versus the feed rate for the depth of cut = [0.0625 0.254]
mm, cutting speed = [450 700] rpm, and flank wear = [40 60] µm
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Table 6-6. Summary of the linear cutting stiffness for condition index 5-12

The depth of cut (mm)

0.0625 0.1250 0.1875 0.254

450 303 736 1200 1460Cutting

speed

(rpm)
700 284 685 1080 1260

6.2.3. Structural Stiffness

The nonlinear structural stiffness along the 52100 hollow bar has been obtained

through a series of experiments. Similar to the cutting stiffness, the nonlinear structural

stiffness is used not only as one of main sources of nonlinearity in the modeling for

chatter but also as the converting relation between the stiffness ratio and the critical

chatter location. 

Simultaneous measurements of the radial displacement of the workpiece and the static

force exerted on the bar are carried out for deriving the structural stiffness. The

experimental set up for measuring the structural stiffness is the same as shown in Figure

3-2 except the overhang length of the workpiece became 203.2mm. Static force data are

collected by a dynamometer installed at the tool post. Static force is exerted through a

carbide tool tip on the surface of workpiece since they are relatively less brittle and

cheaper than PCBN tools. In addition, the radial displacement of the workpiece is

measured by the dial gage attached on the opposite side of the bar. 

Similar displacement measurements for different values of static force are repeated at

least four times per position on the bar to derive nonlinearity of the structural stiffness as
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a third-order polynomial. These procedures are performed at seven different positions

along the bar in the longitudinal direction and experimental data of displacement and

static force are summarized in Table 6-7.

The data of static force for the variations of the radial displacement of the bar can be

approximately fitted to a cubic curve at each measured position as

])()()[()( 3
2

2
1 xxxkxF mx ∆+∆+∆=∆∆ ββ                                                                  (6-3)

where ∆x is radial displacement, km is the structural stiffness, β1 and β2 are the

coefficients of the nonlinear structural stiffness, respectively. The values of km, β1 and β2

are obtained as a result of curve fittings as shown in Figure 6-7, and the results are

summarized in Table 6-8. The variations of km, β1 and β2 along the workpiece are shown

in Figure 6-8. Nonlinear squar and cubic terms decrease to zero as the location on the

workpiece proceeds to its end. In conclusion, nonlinearity in the structural stiffness is less

significant as the overhang length of the workpiece increases.

When the same data are fitted to a straight line with the least square method, the

values of the linear structural stiffness are obtained as shown in Table 6-9. The variation

of the linear structural stiffness is shown in Figure 6-9.  

6.2.4. Converting Relations

In order to plot stability charts while varying a more practical cutting parameter, the

converting relations between the stiffness ratio and a cutting parameter are derived. For

outward turning with a fixed depth of cut, the cutting stiffness is assumed to be

independent of the location on the workpiece while the structural stiffness is varied along

it. Thus there is a direct relation between the structural stiffness and the location on the
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Table 6-7. Summary of displacement and static force data along the workpiece

Location (mm) Displacement (mm) Force (N)
0.020 317.0
0.033 425.0
0.051 542.0

51

0.056 564.0
0.028 233.0
0.048 311.0
0.064 374.0

76

0.071 415.0
0.023 140.0
0.036 217.0
0.058 306.0

102

0.084 370.0
0.023 86.0
0.043 140.0
0.069 200.0

127

0.094 284.0
0.084 196.0
0.122 260.0
0.152 312.0

152

0.183 347.0
0.076 163.0
0.137 242.0
0.206 367.0

178

0.312 432.0
0.064 103.0
0.127 152.0
0.254 292.0

203

0.356 323.0
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Figure 6-7. Curve fittings of experimental data for the structural stiffness to a cubic curve
and a straight line at two different locations on the workpiece.

Table 6-8. Summary of the nonlinear structural stiffness along the workpiece

Location (mm) km (N/mm) β1 (N/mm2) β2 (N/mm3)

50.8 22000 111 -16
76.2 13000 120 -16
101.6 6600 -21 -2
127 4800 70 -10

152.4 2600 -1 -1
177.8 1600 -11 3
203.2 1400 -1 -1
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Figure 6-8. Variations of the nonlinear structural stiffness along the workpiece

Table 6-9. Summary of the linear structural stiffness along the workpiece

Location (mm) km (N/mm)

50.8 9700
76.2 5600
101.6 4400
127 2900

152.4 1900
177.8 1400
203.2 900
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Figure 6-9. Linear structural stiffness along the workpiece

bar. In the present study, the converting relation between the stiffness ratio and the

position on workpiece is derived based on the variation of the linear structural stiffness

along the workpiece shown in Figure 6-9. In order to obtain the structural stiffness at an

arbitrary position between measured locations, a linear proportionality of the structural

stiffness to the location is assumed. For example, the structural stiffness in the range of

[50.8 76.2] mm is obtained as a function of the location

17900161)( +−= zzkm                                                                                         (6-4)

where z is the location on the workpiece in the longitudinal direction.

Since the linear cutting stiffness depends on cutting speed effect as well as flank wear,

the converting relation are derived as a function of cutting speed for each tool wear

condition. For example, the relation between the cutting stiffness and cutting speed for

slightly worn tools is
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74118)( +Ω−=Ωck                                                                                                (6-5)

where Ω is cutting speed in rev/sec. Therefore, the resultant converting relation for

slightly worn tools is given as 

( ) 1106.411.0
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Similarly, the converting relation for very worn tools over the same range of the

structural stiffness is obtained as the following:

( ) 1109.4016.0
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Converting relations for other ranges of the structural stiffness can be obtained by

repeating above procedures for each tool wear condition.

For inward straight turning with a short cutting range, the structural stiffness is

assumed to be constant, and the cutting stiffness is varied with the depth of cut. Thus,

there is a direct relation between the cutting stiffness and the depth of cut. In the present

study, the converting relation between the stiffness ratio and the depth of cut is derived

based on the experimental data of the linear cutting stiffness over the range of the depth

of cut. Since the linear cutting stiffness depends on cutting speed, a converting relation is

derived as a function of cutting speed. The converting relation between the stiffness ratio

and the depth of cut is given as followings:

( ) 023.00016.063.0035.0 +Ω−+Ω=
m

c

k
k

doc                                                          (6-8)

where doc is the depth of cut. 
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6.3. Chatter Stability Predictions in Straight Turning

6.3.1. Stability Predictions from the Linear Chatter Model

Without the consideration of nonlinear elements, the minimum stiffness ratios for

fresh tools as well as very worn tools are obtained over the range of cutting speed as

shown Figure 6-10. The tangential stability line for fresh tools is called the absolute

stability line, which corresponds to 2ζ(1+ζ)/[sin(Cs) cos(Cs)]. This stability line

guarantees a stable machining process regardless of cutting speed according to the linear

modeling. Applying the converting relation, the stability chart is presented in the chatter

location versus cutting speed as shown in Figure 6-11. The region below the solid line

corresponds to the stable region and chatter is expected in the unstable region above the

solid stability line. The predicted chatter location is proportional to cutting speed and the

stabilizing effect of flank wear is shown in the stability prediction for different flank wear

length.

The theoretical predictions of chatter in inward turning are also attempted for both

fresh tools and very worn tools. In order to find the critical depth of cut where chatter

occurs, the converting relations shown in equation (6-8) are applied to the values of the

minimum stiffness ratio. As shown in Figure 6-12, the variation of critical depth of cut

with cutting speed shows the increasing tendency. The stabilizing effect of flank wear is

also observed in the stability chart. 
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Figure 6-10. Comparison of the minimum stiffness ratio for fresh tools and very worn
tools in outward turning

Figure 6-11. Stability chart for fresh tools and very worn tools in outward turning
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Figure 6-12. Stability chart for fresh tools and very worn tools in inward turning

6.3.2. Stability Predictions from the Nonlinear Chatter Model

6.3.2.1. Stability Charts of the Nonlinear Model

The three-dimensional stability chart in Figure 6-13 is obtained from the nonlinear

model by expanding the numerical procedures described in Appendix A.2 to the system

of three harmonic equations. Since the minimum stiffness ratio kc/km is the critical

stability parameter, the region below the plane of the minimum stiffness ratio is called

“the stable region”. The region above the plane of the minimum the stiffness ratio is

called “the unstable region” where chatter is expected for given values of cutting speed

and sinusoidal input amplitude. Employing an appropriate converting relation, stability

charts are plotted in terms of a more practical parameter instead of the stiffness ratio. 

The stability line of the linear model corresponds to that of the nonlinear model with

the zero value of A1. Furthermore, the amplitude of oscillation at the critical stability 
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Figure 6-13. Example of the three-dimensional stability chart for the nonlinear chatter
model

limit is indeterminate in the linear model. As a result, the stability charts from the linear

model can be represented in the 3-D space as a series of straight cylinders extending the

stability line normal to the kc/km and Ω plane.

6.3.2.2. Evolution of Chatter

In contrast to linear models, which have the same stability line on the plane of kc/km

and Ω regardless of A1, nonlinear models have distinct stability lines for different values

of A1. The stability line of the linear model corresponds to that of the nonlinear model

with the zero chatter amplitude. Figure 6-14 shows the stability charts for fresh tools

obtained from the nonlinear model. When the chatter amplitude is 0.004 mm, it predicts a

larger stable region than the linear model shown in Figure 6-12. However, when the

chatter amplitude increases from 0.004 to 0.01mm, the stable region decreases.
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Figure 6-14. Variation of the stability line for different A1 values

In order to explore this feature in the nonlinear model, it is convenient to introduce

the cross-sectional view on the A1 and kc/km plane parallel to the Ω axis as shown in

Figure 6-15. The stability line is obtained at the cutting speed of 12 rps when fresh tools

are used in outward turning. The solid line corresponds to the critical stability limit and

the right side of the line is the unstable region since the minimum kc/km is the critical

stability parameter. 

As the value of kc/km is increased along the stiffness ratio axis in Figure 6-15, no

chatter is observed as long as it remains in the left side of the solid line. Chatter starts

when the stiffness ratio reaches the value at the point A, and it follows the solid line as

the value of kc/km is increased. If the initial value on the stiffness ratio axis is larger than

the value at A, then unstable chatter occurs. Therefore, there are three types of solutions

available near the point A: stable chatter on following the solid line, no chatter and

unstable chatter on the kc/km axis. 
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Figure 6-15. Stability line on the plane of A1 and kc/km at the cutting speed of 12 rps

The oscillation at the critical stability limit, which corresponds to a point on the solid

line in the stability chart, is a limit cycle with constant amplitude and frequency. The

stability of a limit cycle can be examined by investigating the variation of amplitude with

a disturbance. As the amplitude of oscillation returns to an original value after

experiencing disturbances, it is called stable; but if otherwise it is said to be unstable.

The solid line between A and B corresponds to the stable branch of limit cycles. When

the amplitude of chatter increases, it reaches the stable region departing from the line. As

a result, amplitude decreases and it returns to the line and vice versa for the decrease of

amplitude. In the branch between the points B and C, unstable chatter is expected. Hence,

the amplitude of chatter grows infinitely or jumps to the next available stable branch once

the point B is met. The CD branch is for stable chatter with the similar argument of the

AB branch.
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If the value of kc/km at the point E in the unstable region is chosen without passing the

point A, then it becomes unstable and the amplitude of chatter immediately grows to the

point E′. After jumping to the point E′, the amplitude of chatter is slowly increased with

the increase of kc/km along the stable branch AB, which corresponds to the finite

amplitude phenomenon observed in practice. If the value of kc/km is decreased on the

branch CD, chatter is predicted for the value of kc/km smaller than the critical stiffness

ratio at A1 = 0. Thus, the absolute stability line suggested in the linear model is not valid

any more. At the point C, the amplitude of chatter abruptly decreases to zero by dropping

to the point C′. Therefore, nonlinear phenomena of chatter such as the finite amplitude

phenomenon and the jump can be explained in the stability chart of the nonlinear model.

Furthermore, not only the existence but also the evolution of chatter can be predicted

from the nonlinear modeling.

The variations of amplitude A1 with the stiffness ratio for the four values of cutting

speed are shown in Figure 6-16. As cutting speed increases from 6 to 9 rps, the range of

A1 for the unstable branch is suppressed from 0.002 to 0.001 mm. At 12 rps, the stable

branch is observed until amplitude reaches 0.0028 mm. The slope of the stable branch

decreases as cutting speed increases from 12 to 15 rps. The variations of amplitude with

the chatter location are obtained in Figure 6-17 after applying the converting relation to

the results in Figure 6-16. The chatter location monotonously increases proportional to

cutting speed for the same value of A1.



91

Figure 6-16. Comparison of stability charts for fresh tools at different cutting speeds

Figure 6-17.Variation of the critical chatter location with amplitude for fresh tools at
different cutting speeds
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6.3.2.3. Flank Wear Effect

In order to see the flank wear effect on chatter predictions from nonlinear chatter

modeling, the stability chart on the plane of A1 and kc/km are obtained for four different

values of cutting speed for slightly worn tools as shown in Figure 6-18. Comparing with

the results from fresh tool cases in Figure 6-17, the solid lines for slightly worn tools are

shifted to right and it shows the stabilizing effect of flank wear. The amount of the shift is

proportional to cutting speed. Therefore, the flank wear effect is more prominently shown

in the high cutting speed range. In addition, it should be noticed that the overall shape of

the curve, which determines the evolution of chatter, is maintained for each cutting speed

regardless of the tool wear condition. 

Figure 6-18. Variation of the critical chatter location with amplitude for slightly worn
tools at different cutting speeds
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6.3.2.4. Nonlinear Effect

In order to investigate the effect of nonlinearity from the structure and cutting force

on chatter stability, stability limits for the various combination of the linear and nonlinear

stiffness are obtained. The area under the stability line for A1 = 0.004 mm is calculated for

fresh tools in outward turning in order to examine the effect of each nonlinear condition

quantitatively and the results are summarized in Table 6-10. It is found the nonlinear

structural stiffness causes a larger variation of the area than the cutting stiffness.

Therefore, the nonlinear structural stiffness is a more dominant factor than the nonlinear

cutting stiffness in the chatter stability predictions of this study. 

Table 6-10. Area of the stable region for various nonlinearity
 

Conditions Area

Linear stiffness 1472

Linear structural stiffness and nonlinear cutting stiffness 1474

Nonlinear structural stiffness and linear cutting stiffness 1463

Nonlinear stiffness 1464

6.3.2.5. Effect of Even Nonlinearity

Since even terms in nonlinearity introduce a bias term of the input to keep harmonic

balance conditions, the modeling of chatter with mathematical simplicity is available if

the assumption of negligible even nonlinearity is justified. The effect of even terms is

examined by considering the variation of the area under the stability line when one of
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even terms of the stiffness is ignored. According to the results are summarized in Table

6-11, the effect of the even term is negligible in the cutting stiffness. However, the even

term in the structural stiffness should not be ignored since it results in a noticeable

variation of the stability line. Thus, the bias term of the input should be introduced in the

nonlinear modeling processes.

Table 6-11. Effect of even nonlinearity on the stable region

Ignored term Area

None 1464

Even cutting stiffness 1464

Even structural stiffness 1475

6.4. Conclusion

The natural frequency and the damping ratio of the workpiece are measured through

impact testing. A series of cutting tests is carried out to measure the force variation with

the feed rate considering the effect of cutting speed and flank wear. The nonlinear cutting

stiffness is obtained through curve fitting of force data to a cubic equation. The nonlinear

structural stiffness of the workpiece is also determined as the form of a third-order

polynomial. Based on experimental data, converting relations between the stiffness ratio

and a cutting parameter are derived for both feed directions in turning.
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The nonlinear model is able to predict not only the existence of chatter but also the

evolution of chatter at given cutting conditions. The finite amplitude phenomenon and the

jump are predicted for certain cutting conditions from the stability chart. It is predicted

that flank wear has a stabilizing effect, which depends on cutting speed. In addition, the

effect of the nonlinear structural stiffness on the prediction is more prominent than that of

the nonlinear cutting stiffness. Finally, it is found that the even term of the structural

stiffness should be considered in the modeling process.
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CHAPTER 7

EXPERIMENTAL RESULTS AND MODEL VALIDATION FOR STRAIGHT

TURNING 

7.1. Introduction

The measurement of chatter stability limits through cutting tests is one of the most

important parts in chatter investigations since it provides not only the practical guideline

for machining operations but also useful information which future modeling research can

rely on. The importance of empirical stability limits is even bigger in hard turning. The

reason includes the poor understanding of the interaction between the workpiece and the

tool, which is affected by dynamic tool wear and high temperature. Nevertheless, there

has been no attempt to measure stability limits in hard turning. In this study, chatter

stability limits in straight turning of hardened 52100 steels are measured for the first time.

In the present study, critical stability limits are measured for both feed directions

available in straight turning. The power spectrum and the time trace of force data as well

as visual inspection are employed as chatter detection criteria. In order to examine the

flank wear effect on stability limits, tools with different flank wear ranges are used for

cutting tests. The characteristics of chatter stability limits in hard turning are discussed,

and the validity of the proposed nonlinear modeling for chatter in straight turning is

examined.
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7.2. Measurements of Chatter Stability in Straight Turning

7.2.1. Chatter Detection Methods

Various methods have been used for detecting chatter phenomena in cutting tests

(Elbestawi et al., 1991, Kondo et al., 1997, Chiou and Liang, 1998, Clancy and Shin,

2002). In cutting operations, chatter can be identified from the time trace and the power

spectrum of cutting force, tool acceleration and sound emitted. The typical example of

cutting force trace shows the steady state of force as shown in Figure 7-1 when chatter

does not exist. However, the abrupt change of force is observed when chatter starts and

the chatter frequency is found in the power spectrum of the corresponding force data as

shown in Figure 7-2. The surface roughness measurement or the visual inspection of the

machined surface also serves as a chatter detecting method. Most experimental

investigations on chatter stability have employed multiple identification methods to

verify chatter phenomenon. 

Figure 7-1. Example of the cutting force trace without chatter
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Figure 7-2. Example of the cutting force trace under chatter and the corresponding power
spectrum of force data

In this study, the time trace and the spectrum of cutting force data as well as the

visual inspection of chatter marks on the machined surface are employed for chatter

detection. Chatter is identified only if following three conditions are satisfied at the same

time. First, more than a 40% increase in cutting force amplitude is observed in the time

trace of cutting force. Second, the chatter frequency is observed in the spectrum from the

Fast Fourier Transform (FFT) of cutting force data. Third, chatter marks on the surface of

the workpiece are visually identified. Figure 7-3 shows an example of chatter marks on

the surface of the workpiece.
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Figure 7-3. Example of chatter marks on the surface of a 52100 bar

The data of cutting force from chatter experiments are collected by a Kistler 9257B

dynamometer, which is mounted on the tool post as shown in Figure 7-4. In order to

avoid the aliasing of the frequency spectrum, the sample rate of the low pass filter is

chosen as 1500 Hz considering the natural frequency of the workpiece.

Figure 7-4. Dynamometer setup mounted on the tool post
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7.2.2. Workpiece and Tool

Hardened 52100 steel hollow bars (HRC 59 ± 1) are used as the workpiece of

experiments for chatter stability measurements. The inner diameter and the outer

diameter of the workpiece are 30.5 mm and 41 mm, respectively. The overall length of

the workpiece is 304.8 mm. A kenloc type Kennametal PCBN insert (KB5625) is used

for cutting experiments. A tool holder Kennametal DCLNR-124B is used for inward

turning and DCLNL-124B for outward turning. All cutting operations in experiments are

performed in a Hardinge Conquest T42 Super Precision Lathe.

All bars are finished before chatter experiments to remove the scale due to heat

treatment since it causes out of roundness in the bar. All finishing operations prior to

chatter experiments are performed with carbide cutting inserts in order to avoid

unnecessary tool wear of PCBN tools.

Three groups of tools with different wear conditions are prepared for cutting

operations. The first group is called “fresh tools,” which are tools used for the first time.

The flank wear is assumed to be zero for this group. “Slightly worn tools” with the flank

wear range between 40 and 60 µm belong to the second group. The last “very worn tools”

group has the flank wear range between 140 and 160 µm. Since the tool wear rate follows

a logarithmic curve in hard turning (Dawson, 2002), flank wear proceeds relatively

slowly after rapid growth at the early stage of machining process. Accordingly, the flank

wear of a fresh tool reaches the range of the second group just after a few machining

runs. In contrast, the second group is well separated from the third group. 
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7.2.3. Experimental Procedures

7.2.3.1. Determination of Stability Limits in Outward Turning

Chatter stability limits are determined for outward turning with the feed direction

toward the end of the workpiece as shown in Figure 7-5. Because the low structural

stiffness causes chatter, cutting operations must proceed from the high stiffness part to

the low stiffness part in order to find a chatter location on the workpiece. According to

the experimental investigation described in Chapter 6, the structural stiffness of the

workpiece has its maximum value at the collar, and then decreases as it advances to the

end of the bar. Therefore, cutting operations should be carried out from the collar side

feeding axially to the end of the bar to find where chatter starts. 

Figure 7-5. Experimental set up for the stability limit measurements in outward turning
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In order to avoid tool tip breaks when the tool is applied on the middle of the bar, a

step is introduced at the middle of the workpiece. The workpiece is machined to have the

outer diameter of 38.1 mm for the half portion of the workpiece and 40.2 mm for the

other portion in order to make a 1.27 mm high step at the middle of the bar. The overhang

length of the workpiece is 203.2 mm.

The outward turning operation starts from the step, which is 50.8 mm apart from the

collar and then it continues to proceed to the end of bar until chatter is detected. The

depth of cut and the feed rate are fixed as 0.127 mm and 0.0762 mm/rev, respectively.

The location where chatter is induced is called “the critical chatter location”. Referring to

the time trace of force data and chatter marks on the workpiece, the critical chatter

location is determined for a given cutting speed. The same procedures are repeated over

the range of cutting speed from 6 to 17 rps for each group of tools. The experimental

procedures in outward turning are represented as a flow chart in Figure 7-8.

In order to maintain the tool wear range for experimental procedures, the length of

flank wear is regularly examined with a Zygo microscope or an electronic microscope.

For example, flank wear of 145 µm is measured in the image of the tool tip obtained by

the Zygo microscope as shown in Figure 7-6. Flank wear is also observed by the

electronic microscope as shown in Figure 7-7. The light colored portion in the upper part

of the picture corresponds to the flank wear of 40 µm. When the size of flank wear is not

uniform, averaged flank wear is derived after measuring the flank wear length at a

multiple number of positions in the flank wear area. 
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Figure 7-6. Measurement of the size of flank wear with Zygo

Figure 7-7. Measurement of the size of flank wear with an electronic microscope
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Figure 7-8. Flow chart of experimental procedures to measure stability limits in outward
turning

Chatter?

Feed
Depth of cut
Flank wear

Cutting speed

Overhang length
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Yes
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Flank wear measurement

Yes

No

No

No
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7.2.3.2. Determination of Stability Limits in Inward Turning

Another series of cutting experiments is performed to find chatter stability in inward

turning with the feed direction toward the collar, which is more commonly used in

practice. The experimental set up is shown in Figure 7-9. A series of cutting tests is

carried out from the end of the workpiece for the range of 12.7 mm. The feed rate is fixed

to 0.0762 mm/rev. The cutting operation is limited to such a short range since the

structural stiffness increases rapidly as the tool advances inward. Slightly worn tools and

very worn tools, which have flank wear in the range of [40, 60] µm and [140 160] µm

respectively, are used for inward cutting tests. The experimental procedures to determine

the stability limits in inward turning are summarized in a flow chart as shown in Figure 7-

10.

304.8 mm
The depth of cut

PC

Dynamometer

Workpiece

Cutting tool

Tool bracket

Feed direction

Figure 7-9. Schematic diagram of the experimental setup for measuring stability limits in
inward turning
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Chatter?

Feed, overhang length, flank wear

Cutting speed

Depth of cut

Cutting operation

Critical chatter location

New cutting speed?

Stop

Yes

Yes

Valid flank wear?

Flank wear measurement

Yes

No

No

No

Increase DOC

Figure 7-10. Flow chart of experimental procedures to measure stability limits in inward
turning
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In order to determine “the critical depth of cut” where chatter incurs, a value of the

depth of cut is increased by a certain amount each time until vibration is observed

satisfying chatter identification criteria. For slightly worn tools, the depth of cut is

increases by 0.0635 mm from the initial value of 0.0635 mm. For very worn tools, the

same amount is increased from the initial value of 0.127 mm. The same procedures are

repeated over the range of cutting speed between 6 and 17 rps.

7.2.4. Experimental Results in Straight Turning

7.2.4.1. Chatter Stability Limits in Outward Turning

The experimental results of critical chatter locations in outward turning with fresh

tools are shown in Figure 7-11. Each circle corresponds to the location where chatter

starts for a given cutting speed. The dash line connecting data points is added to show the

tendency with cutting speed more clearly. In experiments, chatter occurs as the tool

advances over a certain location on the bar. In other words, chatter is observed when the

structural stiffness of the bar decreases below a certain critical value. It is consistent with

the result of the stability analysis that instability is induced as the stiffness ratio is larger

than a critical value. The experimental results for slightly worn tools and very worn tools

are also shown in Figure 7-12 and Figure 7-13, respectively. The precision of

experiments is examined by repeating the cutting test for selected cutting speeds. For

example, the standard deviation of chatter locations for slightly worn tools is 2 mm at the

speed of 13 rps.
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Figure 7-11 Critical chatter locations for fresh tools in outward turning

Figure 7-12 Critical chatter locations for slightly worn tools in outward turning

Figure 7-13 Critical chatter locations for very worn tools in outward turning  
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The features of chatter in outward turning are found from experimental results.

Outward turning of 52100 steels with slightly worn tools has the tendency that the critical

chatter location slowly increases when speed increases from 6 to 12 rps. However, it is

clearly seen that the critical chatter location is increased rapidly in the high-speed region

(>12rps). Similar tendency is commonly found in stability limits measurements for other

tool groups. The feature of chatter found in outward turning of 52100 bars is contrast

with that of chatter in mild turning. Chiou (1995) found that the chatter location in mild

turning is inversely proportional to speed in the low-speed range (<12 rps).

In Figure 7-14, critical chatter locations from three tool groups are overlapped

together in order to see the flank wear effect on chatter stability. The lowest line and the

middle line correspond to fresh tools and slightly worn tools, respectively. Slightly worn

tools have 7% larger critical chatter locations in average than fresh tools. The highest

stability line corresponds to very worn tools, which have 28 % larger critical chatter

locations than fresh tools in average. In conclusion, the stabilizing effect of flank wear is

clearly shown in chatter of hard turning.

7.2.4.2. Chatter Stability Limits in Inward Turning

The experimental stability limits are obtained for slightly worn tools in inward

turning, and the results are shown in Figure 7-15. The circle and the triangle correspond

to the existence of chatter and no chatter, respectively. In experiments, chatter occurs as

the depth of cut increases over a certain value for given cutting conditions. Since the

cutting stiffness is proportional to the depth of cut, the results are consistent with the 
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Figure 7-14. Comparison of critical chatter locations for different flank wear in outward
turning

stability analysis of the present study that chatter is predicted when the stiffness ratio is

larger than a critical value. Because the cutting range is so short, the structural stiffness

can be assumed to be constant. 

The characteristics of chatter for slightly worn tools in inward turning are found from

experimental results. As shown in Figure 7-15, the critical depth of cut varies between

0.0625 and 0.127 mm for the cutting speed range from 8 to 12 rps. At cutting speeds

higher than 12 rps, it is found that the critical depth of cut increases with cutting speed. In

Figure 7-15, the dash line connecting the critical depth cut is added to show the tendency

with cutting speed. It should be noticed that the critical depth of cut is slightly

overestimated since discrete values of the depth of cut are applied during experiments. 

The variation of the critical depth of cut for very worn tools is shown in Figure 7-16.

The critical depth of cut decreases in the range of cutting speed between 8 and 12 rps. At

speeds higher than 12 rps, the abrupt increase of the stable region is observed. At the
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speed range of between 13 and 16 rps, chatter is detected at the range of the depth of cut

between 0.32 and 0.38 mm. When the speed is larger than 16 rps, no chatter is observed

even at 0.38 mm of the depth of cut. Since the tool failures happen for the depth of cut

larger than 0.38 mm when the cutting speed is larger than 16 rps, no data is collected for

the depth of cut larger than 0.38 mm. Even in the case that the critical depth of cut at 16.7

rps is assumed as 0.44 mm, which is the smallest possible value, it is clearly seen that the

critical depth of cut rapidly increases in the high-speed range (> 12 rps). A very similar

tendency is observed in the measurement of the critical width of cut in Chapter 4. 

The critical depth of cut for both tool wear conditions are compared each other in

Figure 7-17. Very worn tools have 3 times larger critical depth of cut in average than

slightly worn tools. Both groups of tools show the same tendency in the high cutting

speed region (> 12 rps). However, the decrease of the critical depth of cut is not observed

in slightly worn tools. 

Figure 7-15. Chatter stability for slightly worn tools in inward turning
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Figure 7-16. Chatter stability for very worn tools in inward turning

Figure 7-17. Comparison of the critical depth of cut for different flank wear
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7.3. Model Validation 

7.3.1. Predictions from the Linear Model versus Experimental Data

The validity of the proposed linear chatter model is examined by comparing

experimental data in outward turning with stability prediction as shown in Figure 7-18.

Solid lines correspond to stability predictions from the linear model for different flank

wear length. The region above the solid line is unstable, in which chatter is predicted. The

comparison of predictions with experimental data are summarized as followings: First of

all, the proposed linear model predicts 25% smaller chatter locations in average than

experimental data for fresh tools and the difference from the experimental results

increases as cutting speed increases. Second, there is good agreement between the

prediction for slightly worn tools and experimental results, especially when the cutting

speed is lower than 12 rps. However, underestimated stability limits are predicted the

other portion of the cutting speed range. Last, the prediction for very worn tools agrees

with experimental data very well for the full range of cutting speed. The prediction shows

the same tendency of experimental data for very worn tools, which is the rapid increase

of the stable region at the high-speed range.

Theoretical predictions from the linear model for inward turning with slightly worn

tools are compared with corresponding experimental data in Figure 7-19. There is good

agreement between the prediction and experimental data except for a slight deviation near

12 rps and the very high-speed range (> 16 rps). The stability predictions for very worn

tools overlap with experimental data in Figure 7-20, and some disagreement is found at

the low-speed range (< 12 rps). 
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Figure 7-18. Validation of the proposed linear model by experimental data in outward
turning
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Figure 7-19. Prediction from the linear model versus experimental data for slightly worn
tools in inward turning 

Figure 7-20. Prediction from the linear model versus experimental data for very worn
tools in inward turning
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7.3.2. Predictions from the Nonlinear Model versus Experimental Data

The prediction from the nonlinear model is verified by experimental data. The

nonlinear stability line is obtained when the value of A1 is 0.012 mm. Compared to the

linear model, the nonlinear model predicts a larger stable area over the full range of

cutting speed. When nonlinearity is considered in the chatter modeling for fresh tools

case in outward turning, the agreement between predictions and experimental data is

improved especially in the speed range higher than 12rps as shown in Figure 7-21. This

result is consistent with that the nonlinear terms of the structural stiffness can not be

ignored in the range of measured chatter locations in outward turning.

The critical depth of cut for slightly worn tools in inward turning is obtained based on

the nonlinear model and compared with experimental data as shown in Figure 7-22. The

nonlinear stability line is obtained when the value of A1 is 0.01mm. The agreement

between the predicted stability line and the measured critical depth of cut is improved in

the speed range large higher than 13 rps. However, the disagreement further increases at

the other range of cutting speed. Since the effect of nonlinear terms of the structure is

diminished in inward turning since the cutting is carried out at the end of the 304.5 mm

long bar. In addition, the nonlinear terms of cutting force is assumed the same regardless

of the variation of the depth of cut. Thus, the nonlinear model doesn’t provide improved

agreement for inward turning.

The existence of the nonlinear effect on chatter stability is verified by the improved

agreement between the stability line from the nonlinear model and experimental data.

However, the applicability of the nonlinear model in the machining operations is limited

since there is no prior information on A1 unless an extra sensor is implemented to
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measure it. The results of experimental stability limit measurements in outward turning as

well as model validations are summarized in Table 7-1.

Figure 7-21. Prediction from the nonlinear model versus experimental data for fresh tools
in outward turning

Figure 7-22. Prediction from the nonlinear model versus experimental data for slightly
worn tools in inward turning
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Table 7-1. Summary of experimental results and model validations in straight turning of
52100 bars

Tools Stable area variation with speed Experimental data vs. Prediction Mild turning
Fresh • Slow increase in 6<Ω<13

rps; 
• Fast increase 13<Ω<17 rps. 

• Predicted stability limits are
smaller than experimental
data for the full speed range;

• Disagreement increases as
speed increases;

• More accurate stability lines
from the nonlinear model in
the high-speed range.

Slightly
worn

• Slow increase in 6<Ω<12
rps; 

• Fast increase in 12<Ω<17
rps;

• 7% larger chatter location
than fresh tools.

• Good agreement in 6<Ω<12
rps;

• Minor disagreement in
12<Ω<17 rps.

Outward
turning

Very
worn

• Slow increase in 6<Ω<13
rps;

• Fast increase in 13<Ω<17
rps;

• 28% larger chatter location
than fresh tools.

• Very good agreement in the
full speed range.

Critical
chatter
location is
inversely
proportional
to speed at the
low-speed
range and
proportional
at the high-
speed range
(Chiou,
1996). 

Slightly
worn

• Slow decrease in 8<Ω<12
rps;

• Slow increase in 12<Ω<17
rps.

• Good agreement in 8<Ω<16
rps;

• Predicted stability limits are
smaller than experimental
data at Ω>16rps;

• Nonlinear model reduces
the disagreement at
Ω>16rps.

Inward
turning

Very
worn

• Fast decrease in 8<Ω<12
rps;

• Fast increase in 12<Ω<17
rps;

• 3 times larger depth of cut
than slightly worn tools.

• Very good agreement in
12<Ω<17 rps;

• Opposite tendency in
8<Ω<12 rps.

Critical depth
of cut
decreases
with speed in
the low-speed
range. After
reaching a
minimum, it
slightly
increases with
speed in the
high-speed
range.
(Minis et al.,
1990)
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7.3.3. Empirical Model

Even though the nonlinear model provides improved predictions relative to those of

the linear model, the disagreement between the predicted stability line and experimental

stability limits still remains, especially when very worn tools are applied in inward

turning at very low ( <8 rps) and very high ( >16 rps) cutting speeds. Furthermore, the

lack of information on certain parameters such as A1 restricts the usage of the nonlinear

model. As an alternative approach, an empirical model is proposed to fit experimental

stability limits for the full range of cutting speed. The new stability line is obtained by

following relations:

docdocnew ]7.1)/36cos(85.0[ +Ω=

where doc is the critical depth of cut, which is predicted in the linear model. Since the

empirical model provides larger stable region in the very low and the very high speed

range, the accuracy of the prediction is certainly improved for the full range of the speed

as shown in Figure 7-23.

Figure 7-23. Verification of the empirical model by experimental data
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7.4. Conclusion

The characteristics of chatter stability in straight turning of 52100 bars are found

through a series of cutting experiments. The slow increase of the stable region with the

increase of cutting speed at the low cutting speed range (< 12 rps) and the rapid increase

of the stable region at the high-speed region (> 12 rps) are commonly found for all flank

wear conditions in outward turning. The stabilizing effect of flank wear is also confirmed

by experiments suggesting that very worn tools have about 28% larger values of the

critical chatter location than fresh tools. It is found that the experimental stability limits in

inward turning are proportional to cutting speed when cutting speed is larger than 12 rps.

In addition, it is found that the experimental stability limits abruptly decreases with speed

at the low cutting speed range (< 12 rps). 

The proposed model is validated by experimental data. There is very good agreement

between the prediction and the experimental stability limits, especially for very worn

tools in outward turning. However, the proposed linear model predicts a smaller stable

region in the high-speed range (> 12 rps) of outward turning for the other tool conditions.

The predictions for inward turning also show good agreement with experimental results

except for a minor disagreement at very high cutting speed (> 16 rps). The empirical

model is proposed as an alternative way to fit the experimental data for the full speed

range.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1. Contributions

This research is motivated by the need for a effective chatter model in order to predict

chatter-free cutting conditions, which are crucial for achieving higher productivity in hard

turning. In order to satisfy the objective, the contributions of this research include the

following: 

8.1.1. Modeling

• A linear chatter model for worn tools in facing operations with non-uniform load

distribution (Chapter 2);

• A nonlinear model of chatter for worn tools in straight turning considering the effects

of cutting speed and tool geometry (Chapter 5);

• Stability analysis for worn tools to decide the critical stability parameter (Chapter 2

and 5).

Chatter of a flexible tool in facing operations is modeled by considering the

regenerative effect and the flank wear effect. A non-uniform load distribution has the

ability to reflect the change of flank wear length as well as the degree of the plastic

deformation on flank wear. Furthermore, the modeling for sharp tools can be derived as a
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special case of the modeling for worn tools by specializing non-uniform load distribution

to be the Dirac delta function. 

A one-degree-of-freedom nonlinear model is developed to describe the radial chatter

of a flexible workpiece in straight turning. The assumption of radial chatter is verified by

the equivalent side cutting edge angle, considering the tool geometry effect caused by the

large tool nose radius and the shallow depth of cut. The proposed model can be applied to

mild turning as well as hard turning by considering the material property through the

cutting stiffness. In addition, the linear model can be derived as a special case of the

nonlinear model with the chatter amplitude of zero.

The stability analysis for worn tools is provided based on the root locus method. The

behavior of root loci indicates that the minimum stiffness ratio is the critical stability

parameter. In addition, the sufficient condition to have a larger chatter-free region with

the increase of cutting speed is derived. The describing function method is employed to

incorporate a third-order polynomial nonlinearity in both the structure and cutting force.

It is found that the minimum stiffness ratio is the critical stability parameter, which needs

to satisfy harmonic balance equations simultaneously. 

8.1.2. Characteristic Parameter Measurements

• Experimental measurements of the natural frequency and the damping ratio for the

tool system (Chapter 3) and the workpiece (Chapter 6);

• Experimental measurements of the linear cutting stiffness for various values of the

width of cut (Chapter 3) and the depth of cut (Chapter 6) considering the effect of

cutting speed;
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• Experimental measurements of the nonlinear cutting stiffness for a fixed depth of cut

considering the effect of flank wear and cutting speed (Chapter 6);

• Experimental measurements of the linear (Chapter 3) and nonlinear (Chapter 6)

structural stiffness of the workpiece;

• Derivation of converting relationships between the stiffness ratio and a cutting

parameter (Chapters 3 and 6).

Characteristic parameters including the natural frequency, the damping ratio, the

structural stiffness and the cutting stiffness of the tool system are measured

experimentally for the purpose of predicting chatter stability. 

After extensive cutting force measurements, the nonlinear cutting stiffness is obtained

as a third-order polynomial for a fixed depth of cut. Since cutting force is measured for

various flank wear and cutting speed, the proposed model implicitly includes the

nonlinearity caused by friction, which depends on speed and tool wear. The tendencies of

force data are consistent with those of existing experimental investigations and the

confidence intervals of force data confirm the reliability of the experiments. The cutting

stiffness increases as flank wear increases or cutting speed decreases. The linear cutting

stiffness for various depths of cut is measured in order to derive the converting

relationship between the stiffness ratio and the depth of cut. The structural stiffness of the

workpiece decreases as the overhang length increases. Furthermore, the converting

relationships between the stiffness ratio and a practical cutting stiffness are obtained as a

function of cutting speed for given tool wear conditions. 
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8.1.3. Predictions of Stability Limits

• Determination of the minimum stiffness ratio as a critical stability parameter over the

range of cutting speed based on the proposed linear model (Chapter 3) and the

nonlinear model (Chapter 6); 

• Demonstration of the effects of flank wear and nonlinearity on stability charts

(Chapters 3 and 6);

• Explanation of nonlinear phenomena of chatter based on theoretical predictions

(Chapter 6).

Based on characteristic parameters and converting relations, 2-D and 3-D stability

charts are plotted from the linear and the nonlinear model, respectively. The stabilizing

effect of flank wear is shown in theoretical predictions when the area under the stability

line is calculated for divided speed regions. The effect of flank wear is the most

significant in the high-speed range (> 12 rps). The nonlinear phenomena of chatter can be

explained by the stability chart on the A1 and kc/km plane. The evolution of chatter with

the variation of the stiffness ratio causes the finite amplitude and jump phenomena in

chatter.The effect of nonlinearity results in either smaller or larger stable region

depending on the value of A1 and cutting speed. Therefore, the prior information on A1 is

required to utilize the nonlinear model for chatter predictions. 

Even though linear models have certain limits in their application, the development of

the linear model are still valid since the lack of information of A1 for most machining

cases in practice. In addition, linear models are much easier to solve than nonlinear

models. Furthermore, when the converting relation is obtained as a function of speed and
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tool wear, the effect of friction is considered implicitly even in linear models, which

certainly improves agreement with experimental data.

8.1.4. Chatter Stability Limit Measurements

• Measurements of the critical width of cut in facing of 52100 bars (Chapter 4);

• Measurements of the critical chatter location in outward straight turning of 52100

bars for three different ranges of flank wear (Chapter 7);

• Measurements of the critical depth of cut in inward straight turning of 52100 bars for

two different ranges of flank wear (Chapter 7);

• Validation of the proposed linear chatter model (Chapter 4) and the nonlinear chatter

model (Chapter 7) with experimental data;

• Derivation of an empirical model (Chapters 4 and 7).

The critical width of cut is measured in facing of 52100 bars and the characteristics of

chatter in hard turning are discovered. A large stable region at very low speed (6 rps) and

a rapid increase in the size of the stable region at high speed (>12.5 rps) are found. In

contrast to mild turning, the abrupt increase in the size of the stable region at the high

cutting speed is the distinct feature in hard turning. The proposed model is verified by

experimental results and very good agreement is confirmed for the cutting speed range

between 6 and 10 rps. However, the proposed model predicts somewhat smaller stable

region in both low (< 6 rps) and high cutting speeds (> 10 rps). The accuracy of

predictions is clearly improved when the flank wear effect is included in the model. The
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new stability boundary of the empirical model is obtained in order to provide predictions

matched with experimental data over the full cutting speed range.

The critical chatter location is measured in outward straight turning of 52100

hardened steel bars for three groups of tools with different flank wear. Experimental data

confirm the flank wear effect on chatter stability in turning. The critical chatter location

slowly increases proportional to cutting speed when the speed is less than 12 rps (slightly

worn tools) or 13 rps (fresh/very worn tools) while it abruptly increases otherwise. The

feature of chatter found in outward turning of 52100 bars is contrast with that of chatter

in mild turning, which is inversely proportional to speed in the low-speed range. There is

very good agreement between the prediction by the proposed linear model and

experimental data for cases involving very worn tools. The minor inconsistency between

the prediction and measured data is observed especially in the high-speed range (> 12

rps) for fresh tools. The nonlinear model provides an improved prediction by indicating

an increase in the area of the stable region in the high-speed range.

The critical depth of cut is measured in inward straight turning of 52100 bars and the

characteristics of chatter depend on flank wear conditions. For slightly worn tools, the

critical depth of cut is remained between 0.0625 and 0.127 mm for the range of cutting

speed 6 < Ω< 14 rps. It is found that the critical depth of cut rapidly increases at very

high cutting speeds (> 14 rps). For very worn tools, the critical depth of cut is decreased

as cutting speed increases when the cutting speed is between 8 and 12 rps. However, it is

increased rapidly in the high cutting speed range (> 12 rps). The stability predictions are

verified by experimental data and the result shows good agreement except in low and
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very high-speed ranges for cases involving very worn tools. In order to fit with

experimental data over the full range of speed, an empirical model is proposed. 

The flank wear effect on the chatter stability limit is observed for all feed directions.

The dependency of the flank wear effect on cutting speed is found in experimental data of

inward turning. 

8.2. Critical Evaluations and Recommendations for Future Works

In this section, a critical evaluation on the material presented in this thesis is offered.

Some recommendations are offered for further advancement of the state of the art.

8.2.1. Modeling

Friction is one of the major sources of nonlinearity and is closely related to flank

wear. Even though its effect is considered in the prediction implicitly through measuring

cutting force for different flank wear and cutting force, a model can be further developed

to address the effect of friction explicitly.

In the present study, a 1-DOF modeling is proposed to describe a radial direction

chatter. However, the dominant direction of chatter can be changed in straight turning as

the cutting conditions change (Pratt and Nayfeh, 1999). Therefore, a 3-DOF chatter

model may be considered to obtain more accurate predictions for an even wider range of

cutting conditions combined with a 3-D force model for oblique cutting.
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8.2.2. Characteristic Parameter Measurements

In the present study, the nonlinear cutting stiffness is obtained only for one value of

the depth of cut. For more accurate predictions from the nonlinear model, additional

measurement of the nonlinear cutting stiffness should be conducted for various values of

the depth of cut. Eventually, a 3-D force model for hard turning can be combined with the

chatter model, in order to provide the cutting stiffness for chatter predictions as long as

reliable force predictions are available for the wide range of cutting parameters and tool

wear conditions. 

8.2.3. Predictions of Stability Limits

In the present study, critical stability parameters are obtained from the converting

relations, which depend on cutting speed and flank wear conditions. However, the

converting relations for facing and inward turning are considered only for cases involving

slightly worn tools. For more accurate predictions, the converting relations for very worn

tools should be obtained for facing and inward turning.

The evolution of chatter shown in the stability charts can be verified either by analytic

methods such as Floquet theory or direct numerical methods. Since the harmonic balance

method only approximates nonlinear elements, some additional independent methods

may need to be introduced to confirm the predictions.

8.2.4. Chatter Stability Limit Measurements

In practice, the feed rate is another important factor affecting the stability in

machining process. The proposed model reflects the effect of the feed rate variations by
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allowing the different values of the nonlinear cutting stiffness. However, experimental

chatter stability limits of the present study are obtained only for a nominal feed rate. In

other words, the validity of the current model has not been examined for other feed rates. 

Even though chatter evolution is available for continuous variation of the stiffness

ratio, no experiments are carried out to verify predictions for a specific value of chatter

amplitude. For the validation of nonlinear chatter behaviors, chatter amplitude

measurements with continuous variation of the critical stability limit should be

conducted.

The abrupt decrease of the stable area at very low speed is a characteristic of inward

turning with very worn tools and facing. However, the prediction provides a smaller

stable region for corresponding cutting conditions. Since the contact force model (Chiou

and Liang, 1998) predicts a large stable region in the low-speed region, it can be

considered as a viable alternative for the future modeling as long as reliable measurement

of the contact volume is available.

8.3. Concluding Remarks

The chatter model in this study will contribute to identifying less conservative

chatter-free cutting conditions during machining operations. In addition, these chatter-

free cutting conditions can be used as a guideline for designing tools and machines.

Experimental data on chatter stability limits in hard turning are obtained for the first time.

Newly found characteristics of chatter in hard turning can contribute to broaden our

physical understanding on the interactions between the tool and the workpiece in hard
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turning. Experimental results on stability limits for different flank wear may serve to help

to develop more sensible approaches to consider the flank wear effect in chatter models

for hard turning. As a result of these contributions, the proposed chatter model will help

to improve productivity in manufacturing process. The chatter experimental data will be

useful to develop other theoretical chatter models in hard turning. 
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APPENDIX A

STABILITY ANALYSIS FOR WORN TOOLS WITH ROOT LOCUS METHOD
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A.1. Analytical Determination of Locations of Poles and Zeros

The closed loop characteristic equation with non-uniform load distribution is  
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Poles of the closed loop system correspond to roots of equation (A-1) for kc/km = 0.

When the numerator of equation (A-2) is 0 with a non-zero value of the denominator,

there are two finite poles given by
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The value of kc/km can also go to 0 as the denominator of equation (A-2) becomes infinite

while the numerator remains finite. Let the value of s be -∞ ± j 2nπ /Tp. Then, the
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Therefore there are an infinite number of poles with a negative infinite real part, which

are apart from each other by 2nπ /Tp, in addition to two finite poles in the left-hand side

of the s-plane.

Zeros of the closed loop system correspond to roots of equation (A-1) as kc/km tends

to infinity. The value of kc/km becomes infinite as the denominator tends to 0 while the

numerator is finite. Let the value of s be ±j2nπ/Tp, then the magnitude of the denominator

of equation (A2) becomes
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Therefore, there are an infinite number of zeros on the imaginary axis, which are apart

from each other by 2nπ /Tp. 

A.2. Analytical Sign Determination

Substituting a+jb into s in equation (A-1) yields
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The real part of equation (A-6) is 
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Equation (A-7) can be solved for kc/km giving



134

















+

−

++−
=

∫
∫

−

−

−

−

θθθσ

θθθσ
ω

ωζω

θ

θ

dbebTe

dbebTe

aba
k
k

a

hp
aT

a

hp
aT

n

nn

m

c

p

p

)sin()()]sin([

)cos()(]1)cos([

2

0

0

2

222

                                      (A-8)

Since we are interested in the sign of the real apart of the roots near zeros, substitute ±

2nπ /Tp into b in equation (A-8) 
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where Γ is 1/(e-aTp –1) as the absolute value of a approaches zero. The absolute value of Γ

is infinite and the sign is opposite that of a. 

When 0)/2( 22 >+− npTn ωπ , the condition to have a positive kc/km requires that

0)/2cos()()]sgn([
02 >− ∫− phn Tna πθθσω . Thus,
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, then –sgn(a)>0 i.e. a<0                                  (A-10a)

If 0)/2cos()(
0

<∫−
θπθθσ dTn ph

, then –sgn(a)<0 i.e. a>0                                  (A-10b)
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, then –sgn(a)>0 i.e. a<0                                  (A-11b)
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A.3. Numerical Procedures to Find Root Loci

Substituting a+jb into s in equation (A-1) yields
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The real part of equation (A-12) is given as 
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The imaginary part of equation (A-12) is 
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The partial derivatives of f(a, b) and g(a, b) with respect to a and b are derived as

followings:
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Suppose a = q, b = r is a root, and expand both functions f(a, b) and g(a, b) as a Taylor

series about the point (ai, bi) in terms of (q-ai), (r-bi), where (ai, bi) is a point near the root

at the i-th step. Then f(a, b) and g(a, b) are represented as the following:
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Truncating the series and rearranging them yields
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The value of ii aqa −=∆ and ii brb −=∆ can be obtained by multiplying the inverse of

the Jacobian matrix to each term of equation (A-18) as the following:
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Based on the results of equation (A-19), an improved estimate of the root, (q, r) is

obtained by the following manner:
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Those above processes are repeated until f(a, b) and g(a, b) are close enough to zero

within tolerance.

A.4. The Effect of Time Delay on Stability

The characteristic closed loop equation (A-1) can be separated into the time delay

term and the non-time delay term by writing
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Differentiating equation (A-21) with respect to Tp results in
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where dsdAsA /)( =′  and dsdBsB /)( =′ .

Then equation (A-24) can be rearranged such that
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If the real part of equation (A-25) is larger than zero, the root crosses the imaginary axis

from left to right parallel to the real axis. This movement indicates the transition to the

unstable region. Substituting the real part of equation (A-25) into a sign function at s = jω

yields
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Because the sgn function is independent of Tp, equation (A-26) can be rearranged as 
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Substituting equation (A-28a)-(A-28h) into equation (A-27) yields
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A.5. Stability Analysis for Sharp Tools

The characteristic equation of the closed loop system for )()( θδθσ =  is
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Equation (A-30) can be solved for kc/km to yield
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Poles of the closed loop system correspond to roots of equation (A-30) for kc/km = 0.

When the numerator of equation (A-31) is 0, there are two finite poles.

222
nnns ωωζζω −±−=                                                                                       (A-32)

The value of kc/km is also 0 as the denominator becomes infinite while that of the

numerator remains finite. Let the value of s be -∞ ± j 2nπ /Tp; then the denominator of

equation (A-31) becomes
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n eω =  ∞                                     (A-33)

Therefore there are an infinite number of poles with a negative infinite real part, which

are separated from each other by 2nπ /Tp in addition to two finite poles in the left-hand

side of the s-plane.

Zeros of the closed loop system correspond to roots of equation (A-30) when the

value of kc/km tends to infinity. The value of kc/km becomes infinite as the denominator
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tends to zero while the numerator is finite. Let the value of s be ± j 2nπ /Tp, then the

magnitude of the denominator of equation (A-31) becomes
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Therefore, there are an infinite number of zeros on the imaginary axis, which are

separated from each other by 2nπ /Tp. As a result, the root locus for a sharp tool has the

same locations of poles and zeros as the worn tool in this study.

The sign of the real part in roots of equation (A-30) can be determined analytically.

Since values of integral in equation (A-10) and (A-11) are unity for a sharp tool, the sign

of the real part of the root is determined as follows:

If 0)/2( 22 >+− npTn ωπ , then [ ] 0)sgn(2 >− anω , i.e. a<0.                               (A-35a)

If 0)/2( 22 <+− npTn ωπ , then [ ] 0)sgn(2 <− anω , i.e. a>0.                               (A-35b)

The integrals in equation (A-19a-d) evaluate to zero except for Ic which becomes

unity. Equation (A-20) simplifies for σ(θ) = δ(θ) to
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The effect of a time delay Tp on stability is expressed in analytical form in equation

(A-36). When 02)/1( 222 >++− nmcn kk ωζωω , the system becomes unstable as the time

delay Tp increases. 
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