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Abstract 
We present a novel micro-kernel approach to parallel/distributed simulation.  Using the micro-kernel approach, we develop a 
unified architecture for incorporating multiple types of simulation processes.  The processes hold potential to employ a variety of 
synchronization mechanisms, and could alter their choice of mechanism dynamically.  Supported mechanisms include traditional 
lookahead-based conservative and state saving-based optimistic execution approaches, as well as newer mechanisms such as 
reverse computation-based optimistic execution and aggregation-based event processing, all within a single parsimonious 
application programming interface (API).  We also present the internal implementation and a preliminary performance 
evaluation of this interface in µsik, which is an efficient parallel/distributed realization of our micro-kernel architecture in C++. 

1. Introduction 
High-performance parallel and distributed discrete 

event simulation (PDES) systems have traditionally been 
built from the ground up, for each major variant of 
various PDES techniques.  However, it is desirable to 
have the freedom to add new techniques without having 
to develop entirely new simulation engines from scratch 
for every variant.  To this end, we are interested in 
isolating the core invariant portion of PDES techniques, 
and provide a generalized framework for building 
traditional as well as newer techniques on top of the 
core.  The core constitutes the micro-kernel, and the 
traditional implementations (conservative or optimistic) 
form the system services on top of the micro-kernel.  
This permits the incorporation of newer techniques on 
top of the core, as well as optimization of system 
services, without the need for system-wide changes. 

The simulation micro-kernel approach is based on 
analogy with operating systems[1].  In operating systems 
that are based on micro-kernel architecture, a very basic 
set of services is provided by the operating system core 
(e.g., process identifiers and address spaces).  Using such 
primitive services, the rest of the system services are in 
fact built outside the core (e.g., file systems and 
networking).  We borrow this approach in our system.  
A micro-kernel operating system provides an easy and 
safe way of adding new system/kernel services, such as 
new network protocols and file systems.  Similarly, a 
PDES micro-kernel provides an easy way to add new 
types of simulation processes without the need for an 

overhaul of the entire PDES system implementation. 
The rest of the document is organized as follows.  

Section 2 presents the motivation and background for 
the design and development of the micro-kernel 
approach.  The micro-kernel concepts for PDES are 
introduced in Section 3.  Implementation details of the 
micro-kernel interface are described in Section 4.  
Section 5 describes the implementation of classical and 
newer system services on top of the micro-kernel.  A 
preliminary performance study of µsik on a distributed 
platform is presented in Section 6.  Finally, current status 
and future work on µsik are presented in Section 7. 

2. Motivation and Background 
In some of our current projects in collaboration with 

modeling experts in physical sciences, we are pursuing 
efficient execution of large-scale PDES models of 
physical phenomena such as solar wind interaction with 
the Earth’s magnetosphere. These physics simulations 
are complex, and involve fine-grained event 
computations (typically consuming only a few 
microseconds per event execution).  The models need a 
single engine that not only semi-transparently supports 
multiple synchronization approaches, but also entails 
sufficiently low overhead execution of fine-grained 
models.  As certain models are better suited for 
optimistic execution, while others are appropriate for 
conservative processing, a single unified framework is 
needed for use by domain expert modelers, so that the 
modelers are not burdened with synchronization 
selection decisions a priori and separately for each model. 
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More generally, simulation processes should be free 
to decide for themselves whether they would like to 
process their events out of timestamp order, or wait 
until they are ascertained to be safe. Additionally, they 
should be free to adopt any other newer event 
processing scheme (e.g., aggregate event processing), or 
freely switch between schemes at runtime.  In order to 
maximize communication locality and balance the load 
across the entire system, it should also be possible to 
have a mixture of processes using different mechanisms 
hosted in the same simulator instance.  Since our focus 
is on very large-scale simulations, especially of physics 
models in our current projects, we need large-scale 
parallel/distributed execution capabilities. 

2.1. Need for Comprehensive Approach 
There is a plethora of issues to address in developing 

a comprehensive system for complex models.  The 
PDES research community has developed a host of 
techniques for high-performance execution, but there is 
a need for an elegant framework for incorporating the 
multitude of techniques in an easy and modular fashion.  
Since most of the techniques are mutually orthogonal, it 
should be possible to support them all together in a 
suitably accommodating framework.  Moreover, based 
on our past projects on conservative federated 
simulations[2-5] and optimistic simulation systems[6, 7], 
we see the need for a comprehensive framework for 
incrementally and easily incorporating various PDES 
techniques, as and when needed. 

Simple ad-hoc prototypes do not seem to go far 
enough to sustain serious modeling efforts.  Most 
complex models seem to require a wide variety of PDES 
techniques – e.g., multicast-based indirect 
communication for modularity, transparent load-
balancing techniques for optimal speedup, transparent 
incremental state-saving techniques for complex 
modifications to state, and risk mitigation strategies for 
large-scale optimistic execution.  Very few existing 
PDES implementations are capable of accommodating 
the complexity and supporting most of such techniques, 
and hence new systems are needed.  At the same time, a 
“minimal risk” approach is needed for the new systems 
that does not preclude various optimizations down the 
line. 

A case in point is the complexity associated with 
optimistic simulation.  Implementation of a 
comprehensive modeling support for optimistic 
execution requires the development of a significant 
number of support services.  This includes conversion 
of all traditional system services into optimistic 
execution mode: file I/O (open/read/write/close), 
dynamic memory management (malloc/free), etc.  
Implementation of such services is a complex endeavor. 

Implementation Complexity – Example 

For example, consider the implementation of 
optimistic memory allocation: malloc() and free() need 
to be made resilient to rollbacks.  A generalization of 
this problem is called “optimistic I/O”[8].  An 
optimistic call to malloc() needs to be satisfied by 
allocating new memory.  However, an optimistic call to 
free() should not be satisfied by immediately freeing up 
the memory.  This is because incorrect memory reuse 
can occur if the call to free() happens to get rolled back 
later.  Also, a call to malloc() can be rolled back by 
calling free(); however, an optimistic call to free() 
cannot be rolled back trivially.  One simple solution 
(which is correct, albeit memory-inefficient) is to make 
free() a no-op altogether, but doing so can make the 
simulation consume unbounded amount of memory.  At 
the heart of an entirely correct implementation for this 
problem is the need for efficient event committing 
primitives.  By using appropriate primitives to “commit” 
an event when it becomes safe to do so, a call to free() 
can be committed safely.  Similar treatment can be 
applied to other similar classes of problems, such as 
input/output operations to data files during simulation. 

While general solution approaches to problems such 
as optimistic I/O are documented in literature, few 
usable systems are actually available for use in 
developing complex simulation models.  A probable 
reason behind this lack of availability of usable systems 
is the complexity of their implementation with 
traditional approaches.  One can speculate that existence 
of a comprehensive framework, like our micro-kernel, 
could have made implementations easier to develop and 
more readily available.  The same can be said for a 
variety of other optimizations, such as incremental state 
saving[9, 10] and reverse computation[11]. 

Our thesis is that a large number of techniques in 
PDES can be supported transparently in a single unified 
framework, with a small set of fundamental primitives 
that are aimed at performance optimization.  Based on 
this premise, we develop a unified application program 
interface (API) that encompasses most, if not all, 
synchronization approaches.  Using this interface, 
simulation models can be written in a manner that is 
resilient to changes and optimizations to the underlying 
synchronization protocols. 

The micro-kernel approach appears to be the most 
promising to satisfy all these goals.  We chose the micro-
kernel approach due to the number of advantages that it 
provides.  Some of the advantages include simplicity, 
modularity, ease of development, ease of debugging and 
parsimony of interface. 

2.2. Related Work 
The High Level Architecture (HLA)[12] defined by 
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the US Department of Defense provides services for 
integrating a wide variety of simulator implementations, 
including space and/or time parallel (conservative, 
optimistic) discrete event simulations, and time-stepped 
continuous simulations.  However, the architecture has 
been designed for interoperation of coarse integration 
entities, such as distributed programs communicating 
over the network.  As such, it is not optimized for 
integration of fine-grained entities, as in the hosting of 
multiple event-oriented logical processes and/or threads 
within a single UNIX process.  In particular, primitives 
to facilitate efficient process scheduling are not 
addressed in the standard; such primitives turn out to be 
the key to efficient execution of fine-grained 
autonomous entities. 

The work more closely related to our present subject 
is by Jha and Bagrodia[13] in which a unified framework 
is presented to permit optimistic and conservative 
protocols to interoperate and alternate dynamically. (A 
variation of Jha and Bagrodia’s protocols is later 
discussed in [14], but in the context of VLSI 
applications).  High-level algorithms are presented in 
[13] that elegantly state the problem along with their 
solution approach.  However, they do not address 
implementation details or performance data.  Their 
treatment provides proof of correctness, but lacks an 
implementation approach and a study of runtime 
performance implications†.  Our work differs in that we 
are interested in defining the interface in a way that 
guarantees efficient implementation, and we describe 
details for a high-performance implementation of such a 
unified interface.  Some of our terms share their 
definitions with analogous terms in their work, but our 
interface uses fewer primitives and diverges in semantics 
for others.  For example, our interface does not require 
the equivalent of their Earliest Output Time (EOT).   
Similarly, in contrast to their need for lookahead, we do 
not require that the application always specify a non-
zero lookahead. 

A variety of parallel/distributed software systems are 
available to support distributed conservative execution.  
However, very few software systems exist that support 
distributed optimistic simulation.  Even fewer operational 
systems (almost none that we are aware of) are available 
for switching between conservative and optimistic 
modes at either at compile time or runtime. 

SPEEDES[15] is a commercial optimistic simulation 
framework that is capable of distributed execution; 
however, it has not been shown to be suitable for high-
performance execution of fine-grained applications.  In 
fact, some evidence exists that indicates that its runtime 
and memory performance are not optimized for fine-
                                                           

                                                          

†It is commonly acknowledged that, in high-performance 
parallel/distributed execution, “the devil is in fact in the 
details”. 

grained distributed applications.  GTW[7] and ROSS[16] 
are representative of high-performance implementations 
of optimistic simulators, but they are restricted to 
parallel execution on symmetric shared memory 
multiprocessor (SMP) platforms.  This constraint limits 
the user’s choice of hardware as well as scalability.  An 
exception is the WARPED simulator[17], a shared-
memory time warp system extended to execute on 
distributed memory platforms, but it has been evaluated 
on relatively small hardware configurations.  We are 
interested in scalable execution on large-scale computing 
platforms, such as large clusters (hundreds) of quad-
processor SMP machines typically available in 
supercomputing installations for academic research.  The 
cluster-of-SMPs platform is more appealing since it is 
relatively less expensive as compared to a comparable 
SMP system for large number of processors. 

We note that, while the possibility of switching 
between types of protocol is not new, our parsimonious 
API and our high-performance implementation 
approach are novel. 

3. Micro-Kernel Concepts 
In the micro-kernel view, simulation processes‡ are 

fully autonomous entities.  Simulation processes 
communicate by sending and receiving events to/from 
other processes.  They are free to determine for 
themselves when and in what internal order they would 
process their received events. 

The micro-kernel does not process events in and by 
itself – it only acts as a router of events.  In particular, it 
does not generate, consume or buffer any events.  It 
does not examine event contents, except for the event’s 
header (source, destination and timestamp§).  The micro-
kernel does not distinguish between regular events, 
retraction events, anti-events or multicast events.  It also 
does not perform event buffer management (memory 
reuse, fossil collection, etc.), in contrast to traditional 
parallel/distributed simulation engines.  The distinctions 
among event types and their associated optimizations are 
deferred to protocol-specific functionality of services 
outside the kernel proper.  The responsibility of a micro-
kernel is restricted to only providing services to the 
simulation processes such that the processes can 
efficiently communicate with each other, and collectively 
accomplish “asymptotic” time-ordered processing of 
events. 

 
‡Traditional PDES literature refers each distinct 
communicating entity in a simulation as a “logical 
process”.  We use the terms “logical process” and 
“simulation process” interchangeably. 
§The timestamp of an event (also called its “receive 
timestamp”) is the simulation time at which its receiver 
processes it. 
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3.1. Core Services 3.2. Event Lifecycle and Categories 
The micro-kernel core consists of naming, routing and 

scheduling services, as follows: 
Events can be considered to go through different 

stages in their life cycle.  First an event is allocated and 
scheduled by a sender simulation process.  Next, the 
receiver simulation process performs initial processing 
of the event.  This stage includes executing application 
(model) code associated with that event type.  
Eventually, in a following stage, final actions associated 
with the event are committed.  Finally, the memory used 
by the event is released and recycled. 

• Naming: The naming services of the micro-
kernel provide a uniform way for simulation 
processes to locate and refer to each other, 
within and across processors in a 
parallel/distributed execution setting.  The 
micro-kernel maintains a list of valid identifiers, 
and provides a way to map identifiers to 
processes and vice versa. Based on the disposition of event lifecycle stages, at 

any given moment during simulation, all events 
belonging to a simulation process can be categorized 
into four distinct classes – committed, committable, 
processable and emittable.  The first set of events 
(committed set) is those that have been processed, 
committed and whose memory has been released for 
reuse.  The second set (committable set) consists of 
those that have been processed but are waiting to be 
committed.  The third set (processable set) consists of 
events received by this simulation process that are 
waiting to be processed.  The final set (emittable set) is a 
logical set that comprises those events that are 
schedulable by this simulation process to other 
simulation processes (excluding itself) during the 
processing of its current set of committable and 
processable events. 

• Routing: The routing services ensure that 
events are transparently forwarded to the 
receiver process, regardless of whether the 
sender and receiver are co-located or distributed.  
It does so in a manner that ensures that no event 
timestamp is ever omitted in global timestamp-
ordered processing. 

• Scheduling: The scheduling services of the 
micro-kernel take care of allocating CPU cycles 
among multiple simulation processes in a 
manner that best promotes simulation progress, 
and ensures absence of livelock or deadlock. 

A wide variety of PDES mechanisms can be built 
around this parsimonious set of core services, as 
outlined in . Figure 1

Figure 1: Elements of the micro-kernel architecture, and 
their inter-relationships. 

The event categories and their mutual ordering are 
illustrated in . 

 

Figure 2

Figure 2: Illustration of the simulation timeline and 
important event categories in each simulation process.  
The relation LCTS≤ECTS≤ EPTS≤EETS always holds. 

Application Models 

 

Classical services include support for conservative 
and optimistic processing – event 
processing/commitment, rollback support and 
lookahead specification services.  They also include 
kernel process support for remote (direct) 
communication, retractions and multicast (reflector-
based) communication.  Extensions are envisioned to 
accommodate newer techniques in the future, such as 
aggregate event processing.  Convenience services 
include initialization, wrap-up, timers, and routines such 
as reversible random number generation. 

 

Note that the gaps between the event segments 
represent potential time discontinuities in discrete event 
simulation – since events are instantaneous actions, time 
“jumps” can exist between them. 

A Lower Bound on Time Stamp (LBTS) value is 
defined as a distributed snapshot[18, 19] of the least 
EETS value among all processes in the simulation.  In 
parallel/distributed execution, the exact value of the 
least EETS is difficult to compute due to network 
delays, and hence a lower bound on the least EETS is 
computed and safely used as the LBTS. 

Simulation time →  Classical 
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When simulation time advances to/beyond the 
timestamp of a committable event, examples of actions 
to be performed when committing the event include the 
following: 

• State vector release: Release of state vectors, if 
any, used for state saving during optimistic 
processing.  The state associated with the last 
committed event is noted as the most recently 
valid state. 

• Input/Output: Operations such as 
conservatively printing output to the terminal, 
or reading from a file. 

• Memory allocation/release: Finalizing the 
effect of operations by the application, such as 
memory allocation and memory release. 

3.3. Process Scheduling 
Without loss of generality, assume that the events in a 

process are logically stored in two data structures: FEL 
and PEL.  The Future Event List (FEL) is the set of 
events in the process’ processable event set.  Processed 
Event List (PEL) is the set of events in the process’ 
committable event set.  Let FELi

top be the minimum 
timestamp in FELi (infinity if FELi is empty) and PELi

top 
be the minimum timestamp in PELi (infinity if PELi is 
empty).  Note that PELi

top is always infinity for 
conservative simulation processes. 

The earliest time stamp for each event category is 
computed as follows: 
1. ECTSi = Min( FELi

top, PELi
top ) 

2. EPTSi = infinity if conservative 
FELi

top if optimistic 
3. EETSi = Min( FELi

top + Lookaheadi, PELi
top )

In the preceding equations, EETSi is defined as a 
simple expression, but it could be expanded to include 
additional complexity, as needed.  For example, if 
lookahead is highly variable across events, EETSi could 
be defined on a per-event basis: EETSi=min(Ej+LAj) for 
each event Ej in FELi, and LAj is the lookahead for 
event Ej.  Similar refinements can be made based on 
limiting it by the set of destination processes of process 
i. 

In fact, EETSi for optimistic processes can be easily 
tightened further by noting that PELi

top is the timestamp 
of a local event.  Hence, the earliest emittable timestamp 
is the event generated by this event, and not its own 
timestamp.  Hence the EETSi can be refined to specify 
the minimum timestamp among all processed events 
that are locally generated, destined to other processes.  A 
simple lower bound on this timestamp is 
PELi

top+Lookaheadi.  This could be used instead of 
PELi

top in computing EETSi. 

On each processor, the scheduling algorithm 
proceeds by executing the code in Figure 3 within a loop 
(a formal proof of correctness of progress is being 
outlined in a separate document): 

1. if( ECTSmin < LBTS ) 
2.     ProcessECTS-min.advance( LBTS ) 
3. else 
4.     ProcessEPTS-min.advance_opt( EPTSmin2 )  

Figure 3: Body of micro-kernel's scheduler loop. 

ECTSmin is the minimum ECTS among all processes 
on that processor.  ProcessECTS-min is the process with 
the minimum ECTS value.  ProcessEPTS-min is the 
process with the minimum EPTS value.  EPTSmin2 is 
the second least EPTS value among all processes on that 
processor.  The method P.advance(T) conservatively 
processes all events of process P with timestamps less 
than or equal to time T.  The method 
P.advance_opt(T) optimistically processes all events 
of process P with timestamps less than or equal to time 
T.  Either method is a no-op if P is null. 

The LBTS itself is computed as the minimum EETS 
among all processes across all processors.  Any transient 
event (in transit across processors) is considered to 
belong to the sender process’ queues until the event 
reaches its receiver process.  The LBTS computation can 
be performed concurrently with the scheduler (e.g., in a 
separate thread).  Alternatively, cycles can be allocated 
inside the scheduler for LBTS computation just before 
optimistic processing (line 4). 

3.4. Conservative Processing 
During normal processing, the micro-kernel only 

schedules conservatively executable actions in increasing 
order of their committable timestamps.  Only those 
processes whose ECTS values are less than or equal to 
the LBTS value are considered for conservative 
scheduling.  The process with the least ECTS value is 
scheduled, and it is permitted to advance up to and 
including the current LBTS value.  When that process is 
finished with its processing, the micro-kernel schedules 
the process with the next minimum ECTS value, and so 
on.  Note that new events, if any, generated by the 
scheduled process will have timestamps greater than or 
equal to the current LBTS value.  This is because LBTS 
is guaranteed to not exceed the minimum among EETS 
values of all simulation processes, which in turn implies 
that no process can emit an event with a smaller 
timestamp. 

If no process exists whose ECTS value is less than or 
equal to the current LBTS value, then the micro-kernel 
initiates a new LBTS computation.  A new LBTS value 
typically takes time to be computed, due to 
communication latency across processors.  It is this 
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delay that induces blocking of conservative computation.  
This blocking period can be utilized as an opportunity to 
perform optimistic event processing.  Hence, while a 
new LBTS value is being computed, the micro-kernel 
schedules those processes that are capable and willing to 
perform optimistic event processing, as described next. 

3.5. Optimistic Processing 
In optimistic execution mode, the micro-kernel 

schedules the process that has the least EPTS value.  
Recall that the EPTS value for conservative processes is 
infinity, and it is equal to the minimum timestamp 
among unprocessed events for optimistic processes (or, 
infinity if FEL is empty).  Thus, if there are any 
optimistic processes, their EPTS values can make them 
schedulable for optimistic processing. 

When at least one optimistic process exists for 
scheduling, optimistic execution is scheduled as follows: 
two processes with the minimum and the next minimum 
EPTS values (say, EPTSm1 and EPTSm2) are selected.  If 
only one optimistic process exists, EPTSm2 is set to 
infinity (in this case, this limit needs to be customized, if 
necessary, to throttle unbounded optimism).  Then, the 
process with EPTSm1 is allowed to optimistically process 
its events with timestamps less than or equal to EPTSm2. 

The constraint on optimistic time advance is designed 
to avoid the possibility of unnecessary rollbacks caused 
by violation of dependencies among local simulation 
processes.  To elaborate, suppose the first process (with 
EPTSm1) advances to beyond EPTSm2, and later the 
second process (with EPTSm2) sends an event with 
timestamp EPTSm2 to the first process. The first process 
will then needlessly incur a rollback to EPTSm2, which 
could be avoided in the first place by constraining the 
first process to advance only up to EPTSm2. 

Also, initiating optimistic execution only when all 
conservative processing is blocked ensures that the time 
spent in correct execution is maximized, and the 
possibility for incorrect execution (due to optimistic 
execution) is minimized. 

3.6. Aggregate Processing 
Yet another event processing mechanism is called 

“aggregate event processing.”  In this, events are 
processed in groups, rather than one event at a time.  
The advantages of aggregate processing can include 
reduced event handling overheads, and faster event 
execution.  For example, dequeueing multiple events at 
the same time from the future event list could incur 
lesser cost than dequeueing them one at a time.  The 
bodies of event-handling procedures could be better 
optimized by the compiler when the bodies are merged 
together (e.g., due to better use of common sub-
expression evaluation). 

Our framework permits one to add such an aggregate 
processing implementation without having to change the 
entire PDES infrastructure.  Since a process is 
autonomous, it is free to process its events in any order 
it deems fit, as long as its time advances are performed 
in accordance to the micro-kernel interface.  More 
importantly, such an implementation will seamlessly co-
exist with the rest of the existing mechanisms. 

In fact, aggregate processing could by itself be 
implemented as two variants: conservative aggregate 
processing, and optimistic aggregate processing.  In 
conservative aggregate processing, only events whose 
timestamps are less than LBTS are permitted to be 
merged.  In optimistic aggregate processing, this 
restriction is relaxed (aggregated events are permitted to 
span beyond LBTS), provided the application supplies 
an aggregated-undo procedure (e.g., aggregated reverse 
computation or state-saving) to rollback incorrect 
aggregate processing. 

4. Micro-Kernel Implementation 
We now describe our implementation of the micro-

kernel interface. 
A naïve implementation of the micro-kernel 

approach could entail significant overheads, as 
compared to the traditional monolithic simulator 
implementations.  In a monolithic simulator, it is 
possible to optimize the implementation by employing 
centralized data structures such as event buffers, event 
lists and state vectors.  On the other hand, in a micro-
kernel, the key data structures are, by design, 
encapsulated inside simulation processes.  The challenge 
is to find efficient ways of implementing the micro-
kernel framework so as to minimize or eliminate 
overheads in (a) synchronizing time across all processes 
(b) inter-process event communication. 

A key issue is the problem of keeping accurate 
ordering among processes with respect to their ECTS, 
EPTS and EETS values.  For example, when a new 
event is sent from one simulation process to another, 
the receiver’s ECTS, EPTS and EETS values can 
change.  Similarly, a simulation process will have its 
values changed at the end of processing an event.  Event 
retractions need to be dealt with appropriately, as 
timestamp-ordered events.  Anti-events generated during 
rollback of optimistic simulation need to be accurately 
accounted for in time synchronization.  The choice of 
data structures determines the efficiency of micro-kernel 
operation. 

As its main components, the micro-kernel maintains 
a list of local user processes, a hash table for mapping 
process identifiers to processes, and a list of kernel 
processes.  For scheduler operations, three important 
priority queues are maintained.  Each of these 
components is described next. 
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4.1. Naming Services 
To provide naming services, the micro-kernel 

maintains a mapping of process identifiers to process 
instances.  The mapping is dynamic, and can contain 
gaps in identifiers.  Since processes can be added and 
deleted at runtime, gaps can arise due to deletion of 
processes at runtime.  Identifiers are assigned to new 
processes using a sequentially incremented counter.  As 
a design decision, we opted for a minimal complexity 
solution by always using new process identifiers, and to 
never reuse identifiers even though some identifiers 
might become unused due to process deletion.  We 
believe this will not create the problem of identifier 
exhaustion in applications of interest to us, since they 
are not envisioned to create/delete processes with very 
high frequency. 

Simulation processes can be kernel processes or user 
processes.  Kernel processes are used for internal 
implementation of services on top of the micro-kernel 
(see Section 4.3).  User processes are part of application 
model. 

User processes are assigned positive identifiers, 
starting at 0, while kernel processes are assigned negative 
identifiers, as shown in Figure 4.  The rationale behind 
this scheme is that it allows applications to rely on their 
processes being identified from 0 to n-1 (this is a 
common way in which models are written).  Using 
negative identifiers for kernel processes makes them 
transparent to the application, and will not interfere with 
the traditional modeling methods. 

 

Figure 4: Every simulation process is assigned a locally 
unique identifier as soon as it is added to the simulation.   
User processes are assigned positive identifiers starting 
with 0, while kernel processes are assigned negative 
identifiers starting with -1.  Identifiers are assigned from 
an incrementing counter, and are not recycled when 
processes are deleted. 

Special identifiers are also defined for specifying an 
invalid identifier, and to specify multicast destinations. 

4.2. Scheduling Services 
The scheduler is implemented as a loop inside a 

micro-kernel method. 

Process Ordering 

Three in-place min-heaps are used, one each for 
tracking the ECTS, EPTS and EETS values of 
simulation processes.  Each heap maintains the 
minimum time-stamped process at the top.  For 
example, the process with the least ECTS value is always 
available as the top of ECTS heap.  The heaps are 

designed to rapidly update and readjust the data 
structure when the key of an element is increased or 
decreased.  This rapid update is essential to quickly keep 
the heaps consistent before and after every scheduling 
action by the scheduler. 

Readjusting Timestamp Orders within Scheduler 

When events are sent or received by simulation 
processes, their relative ordering can change with respect 
to their ECTS, EPTS, and EETS values.  The heaps of 
the micro-kernel scheduler need to be readjusted to 
restore correct timestamp order.  This readjustment is 
accomplished via a before_dirtied() and 
after_dirtied() pair of methods within simulation 
process.  These methods keep track of whether any 
changes occurred to the key timestamps.  If (and only if) 
any of the ECTS, EPTS or EETS values of an affected 
process changes, the corresponding scheduler heap is 
updated.  The affected process that needs to be updated 
could be the active (sending) process that is currently 
scheduled.  Additionally, it could also be the set of 
processes to which the currently scheduled process 
generates new events. 

Distributed Time Synchronization 

To compute LBTS values, we employ the distributed 
snapshot algorithm described in [20].  Our latest 
implementation [21] of this algorithm employs 
synergetic time management.  In synergetic time 
management, multiple distinct synchronization 
algorithms are concurrently initiated and superimposed.  
Their combined performance can be expected to be 
better than each of them running individually and 
separately.  Our current implementation includes two 
different modules: one is based on efficient global 
hierarchical reductions[20, 22], while the other is based 
on an optimized variant[23] of the Chandy-Misra-Bryant 
null message algorithm[24].  These have been tested on 
large-scale platforms, and have been demonstrated to 
scale very well, even up to supercomputing 
configurations of more than 1500 processors[22, 23, 25]. 

Kernel processes User processes 

…    -3    -2    -1 0    1    2    3    …

A nuance to be carefully considered in 
synchronization is related to retractions.  It is important 
to ensure that LBTS does not advance as far as a 
retraction’s timestamp, even if a retraction has the least 
timestamp in the entire simulation.  Consider the case in 
which an event is sent from processor A to processor B, 
and later processor A initiates a retraction of that event.  
Suppose no other event exists in the entire system.  If 
LBTS is permitted to advance up to the timestamp of a 
retraction, processor B could (incorrectly) commit the 
event before the retraction request reaches processor B 
(note that no lookahead constraints are violated).  Such 
an incorrect situation is avoided by permitting the LBTS 
to advance to a value that is strictly less than the least 
timestamp of all retractions in the system.  This ensures 
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that events are not incorrectly committed. 

4.3. Routing Services 
Local communication is trivially handled by 

enqueueing the event in the local destination process.  
Remote communication is implemented via a special 
delegation mechanism using kernel processes (see 
below).  Similarly, multicast (reflector) services are 
implemented using additional kernel processes.  The 
reflector kernel processes themselves use the other 
kernel processes for remote communication.  As 
indicated earlier, the micro-kernel itself never stores or 
buffers any events at any time.  Every event routed 
through the micro-kernel is immediately delegated either 
to the destination process (if it is a local user process), or 
delegated to a local kernel process (if the destination is a 
remote process or a multicast group). 

Kernel Processes 

Kernel processes are used to implement remote 
federate communication and reflector-based event 
exchanges.  The reason they are implemented this way is 
that the functionality can be quite seamlessly 
implemented using the scheduling services provided by 
the micro-kernel core.  Operations such as retraction 
services, secondary rollbacks, and multicast exchanges 
are all easier to implement as libraries of simulation 
processes. 

This is fairly analogous to operating system micro-
kernels.  Services such as networking, file I/O, etc. are 
implemented as processes outside the micro-kernel core, 
which themselves utilize many of the services that user 
processes utilize. 

Remote Event Communication 

Events exchanged by simulation processes across 
processor boundaries are handled via a special 
mechanism that is consistent with the micro-kernel 
approach.  Analogous to networking support in 
operating system micro-kernels, the remote event 
exchanges are handled by special kernel processes.  The 
kernel processes for remote communication act as local 
representative proxies for the corresponding remote 
processors. 

These kernel processes are responsible for 
maintaining a mapping from event identifiers to event 
buffers.  Such a mapping is necessary in order to 
implement event retractions (during conservative and/or 
optimistic execution) and anti-events (to realize 
secondary rollback/cancellation in optimistic execution).  
The kernel process is also responsible for periodically 
flushing the hash table when events are committed and 
can no longer be retracted or canceled. 

The use of kernel processes to implement remote 
communication aids in easily adding various 

optimizations.  Sophisticated variants can be 
incorporated with few changes to the rest of the system.  
Here we briefly discuss a few possibilities: 

Optimistic Sends: This is the most common 
method, in which an event scheduled to a remote 
process is immediately sent over the wire to its 
corresponding remote processor.  A downside with this 
scheme is that the network communication cost 
becomes a wasted overhead if the event is later retracted.  
The event retraction could be initiated either by the user 
(in conservative or optimistic processing) to take back a 
previously scheduled event, or by the kernel for event 
cancellation (anti-messages for secondary rollbacks in 
optimistic processing). 

Lazy Sends: Instead of forwarding the event 
immediately over the wire to the remote processor, the 
event could be withheld within the kernel process for dt 
simulation time units, where 0<dt≤(Tevent-Tnow).  Delaying 
the event longer will postpone the network 
communication cost, which is beneficial in case the 
event is retracted later.  On the flip side, it might 
increase the event communication latency, and stall the 
receiving processor waiting to receive the event for its 
own progress.  Adaptive schemes could be devised and 
implemented in the kernel process to exploit this “lazy 
send” optimization. 

Non-aggressive Sends:  The kernel process can also 
be used to easily implement non-aggressive sends – i.e., 
to send remote messages if and only if they cannot be 
retracted in the future.  This is a well-known PDES 
variant in optimistic simulation to separate risk and 
aggressiveness [26], in which events are processed 
optimistically locally, but only “correct” events are 
propagated across processors.  The kernel process adds 
the event in its FEL, and “processes” the events in a 
conservative fashion.  The event is actually sent over the 
wire to the remote processor only when it is committed.  
Since events are committed only when they are 
guaranteed to be not retracted, non-aggressiveness is 
ensured. 

Message Bundling:  To amortize the cost of 
network communication, it is possible to bundle 
multiple events into one message.  The cost savings can 
be good especially when events are small in size, as 
compared to network message headers (e.g., TCP header 
size).  Again, such bundling techniques can be 
incorporated into the kernel process responsible for 
remote communication. 

5. Simulation Process Base 
While conforming to the API required by the micro-

kernel, the simulation processes have the flexibility to be 
implemented in a variety of ways.  Here, we describe one 
such implementation, whose methods can be used for 
both conservative as well as optimistic application 
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processes.  Our implementation encompasses both types 
of processes. 

5.1. Base Execution Framework 
The simulation process interface has three tiers.  Tier 

I consists of methods invoked by the micro-kernel on 
simulation processes on various occasions, as described 
in preceding sections.  Tier II consists of 
implementation-specific methods provided by the 
simulation process to its subclasses, for a variety of 
synchronization modes, including conservative and 
optimistic execution.  Tier III consists of some 
convenience methods, such as for initialization and 
termination. 

Ti
er

 I enqueue() 
dequeue() 

advance() 
advance_opt() 

ects() 
epts() 
eets() 

Ti
er

 II
 dispatch() 

undispatch() 
undo_event() 
commit_event() 

save_state()
free_state() 

Ti
er

 II
I init() 

execute() 
wrapup() 

set_timer() 
timedout() 

retract() 

Figure 5: A subset of methods of µsik simulation 
processes.  Tier I methods define the interface that the 
micro-kernel expects from all simulation processes.  Tier 
II methods define the services provided by the base 
implementation of a simulation process to its subclasses.  
Tier III are convenience services provided for models. 

All events belonging to a simulation process are 
maintained in two data structures encapsulated within 
that process: FEL and PEL, as shown in Figure 6.  
Unprocessed events (previously processed events that 
are later rolled back, or new incoming events that are 
not processed yet) are stored in the FEL, which is a min-
heap ordered by events’ receive timestamps.  Processed 
events are stored in PEL, which is a doubly-linked list 
stored in increasing timestamp order from head to tail.  
Newly processed events are appended to PEL tail.  The 
PEL is rolled back to the point of timestamp fault 
before a new unprocessed event from FEL is processed. 

Lookahead 

Lookahead can be specified on a per-destination 
basis: add_dest() method can be used to specify a 
destination process ID and associated lookahead.  A 
generic lookahead can be given by specifying a wildcard 
process ID.  If a simulation process never adds any 
processes in its destination list, it is assumed to specify 
zero lookahead to every other process. 

State Saving 

State saving is supported in the base process 
implementation via calls to two abstract methods: 
save_state() and free_state().  The base 

implementation for an optimistic process can utilize 
these two hooks, in addition to commit_event(), to 
implement most variants of state saving – e.g., copy, 
incremental and periodic. 

 

FEL: Future Event List 
PEL: Processed Event List 
LVT: Local Virtual Time 

FEL LVT→
t PEL   →t

Figure 6: Internal state of the base simulation process 
implementation.  FEL is implemented as a min-heap 
priority queue, and PEL is implemented as a linear linked 
list of events ordered by their timestamp.  LVT is the 
timestamp of the most recently processed (or being 
processed) event that has not been rolled back. 

Reverse Computation 

Similar to state saving, the base process 
implementation provides hooks to add reverse event 
handlers that are automatically invoked if/as needed for 
rollback.  The application provides reverse event 
handlers by overloading the undo_event() method. 

Aggregate Event Processing 

We are currently in the process of incorporating 
support in our base implementation for both the 
variants of aggregate event processing, as described in 
Section 3.6.  This is essentially achieved by overloading 
the advance() or advance_opt() methods to process 
multiple events at a time. 

Process Migration and Load Balancing 

Process migration is realizable as time-synchronized 
deletion of a process at source processor and addition of 
a new process at the destination processor.  Since the 
deletion is time-synchronized, the process is guaranteed 
to have received all events up to the time of deletion.  
The new process at the destination processor can be 
appropriately initialized with the same set of events as 
with the deleted process at the source processor. 

5.2. Event Retraction 
In order to implement event retraction in a 

distributed memory setting, it is necessary to map event 
pointers to memory-independent identifiers, and vice 
versa.  In each kernel process for remote 
communication (see Section 4.3), a mapping between 
event pointers and event identifiers is maintained in a 
hash table to quickly locate the event to retract across 
distributed memory/address-spaces.  Event identifiers 
are assigned by the kernel processes just before events 
are sent out on the wire.  These event identifiers are 
specified in retraction requests if/when the events are 
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retracted later.  Since the mapping table can grow 
unboundedly over the length of simulation, memory is 
recycled by flushing obsolete mapping entries when 
events are committed by the kernel processes. 

5.3. Event Reflectors 
Multicast (indirect) communication among simulation 

processes is enabled by the concept of “reflectors”.  A 
reflector embodies the state required to maintain the list 
of currently subscribed processes.  Reflectors are 
implemented as kernel processes, one process per 
reflector.  When an event is sent (posted) to a reflector, 
the corresponding reflector process takes care of 
forwarding the event to all processes that are subscribed 
to that reflector.  Subscriptions, un-subscriptions, 
publications and reflections are all time synchronized.  
For example, if a process at time Tp posts an event with 
timestamp Te timestamp, and another process subscribes 
to the reflector at time Ts, Tp≤Ts≤Te, the reflector 
ensures that the newly joined process receives a copy of 
the event (since that process is present in the list of 
subscribed processes by the event’s timestamp). 

The framework is capable of accommodating both 
conservative as well as optimistic operations on 
reflectors.  In the interest of space and time, the details 
of an actual implementation are deferred to a later 
report.  A comprehensive coverage of time-
synchronized multicast implementations is presented in 
[27].  We believe that all the techniques described in that 
work can be easily implemented in our micro-kernel 
framework using reflector kernel processes. 

5.4. Kernel Events 
Certain base functionality, such as process 

initialization and timer services are best provided as 
convenience functions as part of the base class for 
simulation processes.  Implementation of these services 
requires the use of time-stamped events, but those 
events are best kept inside the system implementation.  
Kernel events are used for implementing such internal 
functionality.  Kernel events are just like regular events, 
and are in fact instantiated as subclasses of the base 
event type.  However, they are not exposed to the 
application/model and as such are treated as part of the 
simulator system services. 

5.5. Optimized Queues and Lists 
For a high-performance implementation, it is 

important to design the data structures carefully to 
minimize all runtime overheads.  Traditionally, to incur 
minimal overheads, the norm has been to avoid 
encapsulated data types, and instead manipulate 
elements explicitly via pointers.  For example, GTW[7] 
and ROSS[16] both use pointers and macros extensively 

to manipulate various data structures, such as free state-
vectors, lists of processed events, etc.  While such 
implementations help keep the runtime costs very low, 
they however result in source code that is extremely hard 
to study, understand, debug, test, enhance and maintain. 

One solution to avoid the pitfalls of low-level 
pointers-based implementation is to use standard 
template libraries.  The templates help capture errors at 
compile-time, as well as encapsulate operations on 
complex data structures.  However, the use of templates 
comes at a runtime cost.  The internal implementation 
of standard templates uses dynamic memory 
allocation/de-allocation, which adds to runtime cost.  
The challenge is to retain the advantages of 
encapsulation and compiler-assisted type checking (as 
with templates), but at the same time minimize runtime 
overheads. 

In order to avoid and eliminate overheads associated 
with dynamic memory allocation/de-allocation in 
handling priority queue and list data structures, we 
define our own heap and list data types.  Our definitions 
are different from other library templates in that our 
definitions permit the same object to be linked into 
multiple instances of the same container type, without 
the need to allocate container headers to hold the 
elements.  Standard template libraries are difficult to use 
or inefficient when the same element needs to belong to 
multiple instances of the same type of container. 

For example, in our micro-kernel, we need to link 
each simulation process into three different priority 
queues simultaneously.  This is to order the processes 
along their three basic timestamps: ECTS, EPTS and 
EETS.  Thus, the key used for ordering in each queue is 
different.  Moreover, the keys are overloaded member 
methods, rather than member variables, of the 
simulation base class.  However, the container data type 
is exactly the same: a priority queue (implemented as an 
in-place min-heap). 

With our approach, we are able to employ the same 
priority queue implementation for ordering processes by 
their ECTS/EPTS/EETS timestamps, as well as for 
ordering events within a process by the events’ receive 
timestamps. 

6. Performance Study 
Our implementation currently runs in parallel on a 

network of shared-memory multiprocessors, and is 
portable across homogeneous configurations of 
Windows, Mac and Unix/Linux platforms.  As of this 
writing, it has been tested on Intel Pentium and Itanium 
architectures. 

We present preliminary performance data of µsik 
next, using a standard PDES benchmark known as 
Phold[28].  In our Phold implementation, NLP 
simulation processes are evenly mapped to all available 
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processors.  A fixed population of events, NLP*R, is 
generated at initialization, with random destinations (R, 
an integer, is the ratio of number of events to number of 
processes).  When a process receives an event, it 
schedules a new event into the future to another random 
destination (possibly to itself) with a minimum time 
increment called lookahead.  With probability L, the 
destination is on the same processor as the source.  We 
use a fixed increment equal to a lookahead of value 1.0, 
and use a uniform random number generator to 
randomly determine event destinations. 
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The Phold benchmark is a fine-grained application, 
with very little computation performed per event.  As a 
result, it represents a worst-case scenario that can reveal 
runtime overheads of the simulation engine. 

We report our performance numbers on two clusters: 
(1) the Sith cluster, which is a cluster of Itanium systems, 
each system containing two Itanium II 900MHz 
processors and 8GB memory (2) the Jedi cluster, which 
is a cluster of Intel SMPs, each system with 8-CPUs of 
Intel Xeon processors and 4GB memory. 

6.1. Sequential Performance 
Sequential execution of the Phold application can 

help reveal the overheads associated with process 
scheduling as well as event exchanges.   (for the 
Sith cluster) and  (for the Jedi cluster) show the 
average time taken to process an event in Phold, for 
increasing number of simulation processes and events.  
The time per event includes both send/receive costs, as 
well as process scheduling costs. 

Figure 7

Figure 7: Sequential performance of µsik on Phold, 
demonstrating scalability of implementation up to million 
events and hundred thousand simulation processes, all 
active at the same moment on one processor (on the Sith 
cluster). 

Figure 8

Figure 8: Sequential performance of µsik on Phold, 
demonstrating scalability of implementation up to 10 
million events and hundred thousand simulation 
processes, all active at the same moment on one 
processor (on the Jedi cluster). 

The performance for low event population, however, 
appears to be less than perfect.  While such a low event 
configuration is not common in real applications, we are 
investigating ways to minimize the overhead in such 
situations as well. 
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The process scheduling costs are accentuated when 
the event population is low.  For example, when R=1, 
on average, each simulation process has a single event, 
and holds a high probability that its next send is not to 
self.  This forces the update of time queues for the 
scheduled process as well as the destination process for 
the newly scheduled event.  When R=10, it is ten times 
more likely that the newly scheduled event by a 
simulation process could be sent to itself. 

Note that the simulation processes are plotted in 
logarithmic scale along the x-axis.  The data 
demonstrates that our micro-kernel implementation 
scales excellently with the number of simulation 
processes, without drastic overheads for the 
maintenance of ECTS, EPTS and EETS values. 

In the largest sequential configuration, we are able to 
simulate an event population of 10 million events and 
100,000 simulation processes. 

6.2. Time Synchronization Cost 
In small parallel executions, the cost of time 

synchronization across processors is low, and is shown 
to scale with the number of processors.   
shows the average processing time per event while the 

Figure 10
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6.3. Optimistic Simulation Performance number of processors is varied.  This experiment is 
intended to measure time synchronizing cost in isolation 
from remote event exchange costs.  This is achieved 
with L=100% by choosing random destinations only 
from among local processes (i.e., no event goes across 
processors).  The entire distributed execution, however, 
is still time managed – LBTS computations are 
performed, and time advances of simulation processes 
are permitted only upon LBTS advances. 

In the optimistic configuration, each of the Phold 
processes executes its events optimistically ahead in 
time.  Rest of the application is unmodified.  In fact, the 
only change between the conservative and optimistic 
executions is the invocation to set the optimistic 
execution flag in the simulation process. 
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Figure 9: Conservative parallel performance of µsik on 
Phold with localized communication (on the Sith cluster). 
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Figure 11: Optimistic parallel performance of µsik on 
Phold (on the Jedi cluster). NLP=1000, R=10. 

Figure 11 shows the performance of optimistic 
parallel execution on an example configuration of Phold.  
This execution is intended to demonstrate the capability 
as a working proof-of-concept of our prototype.  
Further work is needed to reduce overheads in larger 
parallel executions, especially by incorporating flow-
control mechanisms that can adaptively throttle over-
optimistic execution. 

6.4. Mixed Simulation Performance 
A simple change of the configuration yields an 

example in which every alternate process in Phold is 
conservative, and every other process is optimistic.  This 
configuration is once again intended to serve as proof-
of-concept demonstration of the micro-kernel approach 
that can accommodate both types of processes.  

 shows the performance of such a mixed 
configuration executing in parallel on up to 64 
processors. 

Figure 
12

Figure 10: Conservative parallel performance of µsik on 
Phold with localized communication (on the Jedi cluster). 

By relating this data to the sequential performance 
shown in , it is clear that the time 
synchronization overhead is low up to 56 processors.  
The performance seems to weaken at 64 processors.  We 
are investigating the reasons behind this degradation at 
larger number of processors. 

Figure 8
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Figure 12: Mixture of optimistic and conservative 
processes parallel performance of µsik on Phold (on the 
Jedi cluster). NLP=1000, R=10. 

6.5. Memory Usage 
Figure 13

Figure 13: Memory usage of µsik in sequential execution 
of Phold (on the Jedi cluster). 

 demonstrates that memory is recycled 
efficiently on large configurations.  Events are 
committed (and hence freed) as fast as possible, in a 
scalable fashion. 
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Memory usage in bytes on the y-axis is computed as: 
(MRP-M1)/(R*P+P).  Here, MRP is the memory usage for 
a Phold execution of P simulation processes and R*P 
event population.  M1 is the memory usage of 1 process 
and 1 event.  This essentially computes the average 
combined memory occupied by all processes and events.  
For example, when R=1, processes and events are 
equally weighted in the average.  When R=100, event 
memory usage dominates, showing that each event on 

the average consumes 165 bytes, which is roughly twice 
the size of each base event.  Each base event is 84 bytes 
long, and each base process is 168 bytes long.  Memory 
for each event consists of the base event plus application 
data for each event, rounded to the next nearest multiple 
of 64. 

The data shows that µsik’s usage of memory per 
event is bounded in proportion to the actual number of 
events, and scales with the both number of events as 
well as the number of simulation processes. 

7. Status and Future Work 
µsik is a general-purpose parallel/distributed 

simulation kernel built upon a micro-kernel architecture 
consisting of autonomous simulation processes. 
Simulation processes are autonomous in the sense that 
they hold and manage their own events, and can be 
optimistic or conservative in their event processing, or 
adopt other techniques such as aggregate event 
processing. The micro-kernel overhead is kept very low 
by design, and runtime and memory are scalable with 
both the number of events as well as the number of 
logical simulation processes. µsik also uses the concept 
of kernel processes, which serve to push kernel-
functionality to outside the micro-kernel, as simulation 
processes themselves (e.g., for inter-processor event 
exchanges and retractions). 

The current implementation is portable across 
UNIX/Linux and Windows platforms. The micro-
kernel source-code is compact, comprising less than 
3000 lines of C++ code.   The implementation is built on 
top of a thin software layer called libSynk[21] which 
provides efficient communication and virtual time 
synchronization across processors in shared and/or 
distributed memory platforms. 

The µsik software release includes the micro-kernel 
source code, example applications, and a user’s manual.  
The most recent version is available for download from 
the following URL: 
http://www.cc.gatech.edu/computing/pads/kalya
n/musik.htm. 

We are currently working on profiling the run-time 
performance on benchmark applications, in order to 
identify the most time-critical paths in execution.  We 
envision being able to further reduce runtime overheads 
for process scheduling, and distributed synchronization 
on larger number of processors.  Optimistic execution 
also needs further enhancement, such as incorporating 
flow control and additional system services. 
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