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SUMMARY

Similarity search is everywhere, and so are its solutions. If exact search is the

task at hand, there is no ambiguity in the task – we seek the objects most similar

to our query. But the increasing size of data necessitates approximation. And once

we start approximating, it is natural to think about and investigate the “right” way

to approximate. Approximate search allows us to incur some error in our answers

in exchange for efficiency. A lot of methods have been developed for approximate

search with rigorous guarantees on their efficiency that present the precise relation-

ship between the amount of error incurred and the resulting efficiency gain. In this

scenario, approximate search has two key pieces: (i) the definition of search error

that will be tolerated in approximate search, and (ii) the precise input to the search

algorithm which indicates that we can tolerate error in exchange for fast results. The

usual notion of error is relative value error which judges how similar the answer is to

the query relative to the best possible answer to the query. The input to the search

algorithm is usually the amount of search error that can be tolerated. Hence the

search algorithm is required to return an answer which satisfies this condition. I call

this the error-constrained setting.

I explore alternate forms of these two pieces in approximate search: (i) I present

an alternate notion of search error, rank error, which corresponds to the number

of objects that are better than our answer, and (ii) I consider an alternate form of

approximate search algorithm where the input to the algorithm is the amount of

time available for search instead of the amount of search error that can be tolerated

(time-constrained setting). The notion of rank-error makes the choice of the tolerable

search error easier in various applications. The choice of time as the input to the
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search algorithm appears more intuitive to me because it is the lack of time that

usually necessitates approximation of search. Choosing time as an input will ensure

that the search is completed within a fixed amount of time.

I present rank-approximate search algorithms in the error-constrained setting

which utilize random sampling and tree data structures. I develop some very simple

algorithms for time-constrained search which employ permutations of the data and

space-partitioning tree data structures. The performance of these search algorithms

in the time-constrained setting are improved upon by using machine learning tech-

niques. Finally, I present an exact algorithm for similarity search in a more general

setting where the objects do not need to have a fixed-length vector format and the

similarity function does not need to be a metric.
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CHAPTER I

NEW PARADIGMS FOR

APPROXIMATE SIMILARITY SEARCH

In this thesis, we tackle the problem of similarity search. Similarity search has three

main ingredients – (i) a set or collection of objects R , (ii) a query q whose similar

objects we seek, and (iii) a similarity function that tells us, in terms of a real or

natural number, how similar any object in question is to the query. Given these, the

main task of similarity search is to find the object(s) in the collection most similar

to the query. Finding similar images, a widely performed task in computer vision, is

an example of similarity search (Figure 1(a)). Here we have a collection of images

as the set of objects, the query is yet another image, and the goal is to find similar

images to the query image with respect to some image-specific similarity function.

Similarity search also appears in drug discovery in the form of molecule subgraph

matching (Figure 1(b)). Here we have a set of molecules represented as labelled

graphs and the query is a motif (a subgraph) and we want to find the molecule(s)

in our collection that best matches the query. Similarity functions here are generally

graph matchers which assign some scores to matchings. Even the task of movie

recommendation (Figure 1(c)) is an instance of similarity search; the set of objects is

the movie collection and the service user is the query. The similarity function is the

user’s (predicted) preference score for any movie. Then the task is to find the most

preferred movie(s) for the user.

Beyond these specific applications, similarity search is ubiquitous. It has a big

presence in machine learning and computer vision. Traditionally spawning from com-

puter science theory and databases, it is currently a core task in information retrieval,
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(a) Image matching (b) Subgraph matching (c) Movie recommendation

Figure 1: Examples of similarity search in practice.

various web applications and even collaborative filtering. Search is also a vital task in

various scientific computing problems such as particle simulation and drug discovery.

Since similarity search is fairly ubiquitous, a lot of research has focussed on similarity

search. All the work has been to:

“efficiently find objects of interests in oceans of data.”

This is achieved by efficient exact similarity search. If approximation is necessary,

we usually strive for efficient and accurate approximate search. By efficiency, I refer

to query times sub-linear in the number of objects in the collection with storage

requirements sub-quadratic in the number of objects in the collection. It would be

preferable to have sub-quadratic preprocessing times as well. Given this goal, the

main challenges in similarity search are (i) the sheer size of the data, and (ii) the

numerous variety of data types.

1.1 Understanding the Challenges

The first challenge of size is best motivated by some examples. Netflix had over

100, 000 titles in 20091. Pandora, the online music radio, has around a million songs2,

1http://techcrunch.com, 2009
2http://nysemagazine.com
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and Youtube have over 120 million videos in 2010 itself3. In 2011, Facebook an-

nounced that over 100 billion photographs were uploaded on their site4, and Google

indexed a trillion (that is 1012) unique URLs almost 4 years ago5. These numbers ne-

cessitate sub-linear time algorithms – algorithms that are more efficient than simply

comparing the query to the whole list of objects in our collection and returning the

most similar object.

This simple algorithm, usually known as linear search or brute-force search or

exhaustive search, does suffice when the collection size is less than 1000 and each

object in the collection (as well as the query) does not have too many features.

For large collections of objects with small number of features, tree-based methods are

extremely efficient. This method involves indexing the set of objects into a hierarchical

structure, and the search is performed with a branch-and-bound algorithm on this

tree. When the objects themselves have large number of features, the hope for exact

search is usually abandoned and approximate search is achieved with search on some

tree, skip-lists or hash-based indices. These techniques will be discussed in Chapter

2. The high level idea in all cases is to preprocess the set of objects into an index and

then search the index for an acceptable neighbor candidate. We will briefly discuss

here what approximate search means.

1.1.1 Approximate Search

Search approximation allows us to accept objects other than the true best match

as similar objects for a query from our collection. However, the restriction is that

the similarity of these objects to the query is almost as much as that of the best

match. This is a very intuitive notion of approximation and we will refer to it as

value approximation. However, the appropriate level of approximation is not very

3The book Youtube: 120 million videos and counting came out in 2010.
4http://allfacebook.com, 2011
5http://googleblog.blogspot.com, 2009
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easy to guess; a large enough approximation can trivialize the problem by accepting

any object in the collection as a similar objects, while a small enough approximation

will allow for no approximation, possibly allowing for no search efficiency gain.

Figure 2: An example depicting the ideal situation where there is significant gap
between the similar objects and the dissimilar objects (the solid circles) to the query
(the hollow circle).

To choose the appropriate level for approximation, we need to understand the

motivation for this form of approximation. Value approximation stems out of the

intuition that for any query, the set of “true similar objects” (which includes the best

match and possibly some other objects) are significantly more similar to the query

than all other objects in the collection. This implies that there is a significant margin

between the similarity values of the set of true similar objects to the query and the

similarity values for the rest of the objects. Figure 2 depicts such a scenario for

objects lying on a plane. The appropriate level of approximation accepts only objects

from the small set of true similar objects.

Provided that the search problem at hand has this property, the appropriate level

of approximation not only varies between collections, the appropriate level can and

does vary among different queries for the same collection of objects. Hence, the task

of guessing the appropriate level of approximation, when there exists one, is non-

trivial. There are some domains where the approximation level does come out of the

application. But in most cases, guess work guides the choice of approximation level.
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I will discuss this further in Chapter 2.

The approximation level is generally an input to the search algorithm and the

returned candidates are supposed to be within the specified approximation. The the-

oretical guarantees are on the search runtime based on the specified approximation

level. This is very intuitive and in line with the general form of approximate al-

gorithms in computer science. The high level goal of approximate search algorithm

development can be stated as follows (exact search can be thought of as a special case

of approximate search with zero approximation):

Error-constrained search: Minimize search time subject to the restric-

tion that the returned match is within the specified approximation level.

This implies that the search algorithm needs to guarantee the approximation level,

that is, verify that the search error of the returned match is in fact within the de-

sired approximation level. However, it is the lack of time that generally necessitates

approximation of search. Yet it is the approximation level that is usually (explicitly)

guaranteed by the search algorithm, not the search runtime. There are usually rig-

orous theoretical search times guarantees, but it is generally hard to deduce actual

runtimes from these bounds.

As discussed earlier, appropriate approximation levels are hard to guess; different

values are usually tried until some acceptable result is obtained or the search is com-

pleted within an acceptable amount of time. Moreover, some search algorithms spend

time validating the approximation level; they seek a certificate that guarantees that

their search result in fact satisfies the approximation constraint. Some applications

have actual constraints on the search time – they require the answer within a hard

time limit. In this setting, error-constrained search becomes hard and suboptimal –

it is hard to guess the appropriate value of error for obtaining an answer within the

given time limit, and it is suboptimal to spend part of the limited time on guaran-

teeing the error bound (the approximation level) instead of improving it. I will visit
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this possible issue again in Chapter 2.

1.1.2 Beyond Fixed-Length Data

As mentioned earlier, depending on the number of features representing each object

in our collection, there are many efficient methods to solve the search problem ex-

actly and approximately. However, it is expected that the data has a fixed-length

representation (that is, each object is represented by a fixed number of features) and

some `p metric based similarity functions (such as Euclidean or Hamming distances)

are used.

Various objects do not inherently have a fixed length representation. Some such

objects with a standard structure are graphs, strings or time series. For example,

our collection might contain graphs as objects, and the graphs can have the different

number of vertices and/or different number of edges. In this scenario, it is hard to

represent all the objects in a fixed number of features without losing a lot of structure

in the data. Even strings and time series do not inherently have a fixed length form.

Beyond these types of objects, there are much more complex objects out there which

employ similarity search. For example, a movie can be represented as a time series of

audio and images along with meta data concerning the cast and contributors to the

movie. A website can be represented as a combination of text, images and various

other meta data and link information.

Complex objects like these can and are coerced into some fixed length form before

using Euclidean or Hamming distance for similarity search with existing methods.

This might suffice in many scenarios. However, it might be desirable to retain the

objects in their native non-fixed length form and to use a domain or application spe-

cific similarity function. In this case, efficient search algorithms need to be developed

for non-fixed length data. Domain specific search techniques exist for certain appli-

cations such as biological sub-sequence search and time series search. However, a
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general search framework would be useful for emerging domains as well.

1.2 Thesis Statement

In this thesis, we try to address the issues with nearest-neighbor search briefly dis-

cussed in the previous sections. Specifically,

“we develop new paradigms for nearest-neighbor search (along with new

theory and algorithms in these paradigms) that make nearest-neighbor

search more usable and accurate.”

To this end, the following are my contributions:

• We consider a more robust and usable notion of approximation, rank approxi-

mation, and present algorithms for efficient rank approximate search.

• We consider approximate search in the scenario where time is a hard constraint

(we call this time-constrained search) and present various algorithms for time-

constrained search.

– We present ways of learning to search where we utilize machine learning

methods to improve search performance in the time-constrained setting.

• We focus on similarity search for a general class of (fixed-length or non-fixed-

length) objects by considering the versatile class of kernel similarity functions

applicable to a variety of data types to get the problem of max-kernel search,

and present exact and approximate algorithms for max-kernel search.

1.2.1 Rank Approximation

Instead of approximating search in terms of the relative value error with respect

to the similarity values (Figure 3(a)) (the precise form of value approximation), we

consider approximating search in terms of the rank error, the number of objects in

the collection that are more similar to the query than the returned match (Figure
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3(b)). Equivalently, rank-error also corresponds to the fraction of the collection closer

to the query than the returned match.

(a) Relative value error ε (b) Rank error τ

Figure 3: Notions of search error. The traditional notion of relative value error
and the proposed notion of rank error error is shown here for an approximate nearest-
neighbor of the query.

This notion of error means the same across different queries in the same set and

even across datasets. Moreover, the choice of approximation level is more straight-

forward and intuitive – you can chose to have any neighbor among the 10 nearest-

neighbors or you can chose to have a neighbor among the closest 1%-tile of the objects

to the query. The robustness of this notion of error makes it harder to work with;

the relative value error of a neighbor candidate can be guessed with the query’s sim-

ilarity to this candidate and a guess of the query’s similarity to its nearest-neighbor.

However, it is not apparent how to guess the number of better candidates in the

collection given a candidate without enumerating these better candidates. However,

enumeration is computationally expensive.

Chapter 3 presents algorithms for rank approximate nearest-neighbor search that

utilize random sampling and indexing schemes to return guaranteed rank-approximate

neighbors. These algorithms have been shown to be efficient while returning mean-

ingful answers (Ram et al., 2009b). These algorithms have also been used for efficient
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k-nearest-neighbor classification of objects with large number of features (Ram and

Gray, 2013). The specific contributions are :

• A new notion of approximation for nearest-neighbor search.

• A simple random sampling based algorithm for rank approximate search.

• A tree-based algorithm for rank approximate search with runtime guarantees.

• A detailed empirical comparison of the proposed rank approximate algorithms

with existing exact and approximate nearest-neighbor search algorithms.

1.2.2 Time-Constrained Search

To overcome the inappropriateness of the error-constrained search for nearest-neighbor

search on a time budget, we propose a new paradigm for approximate nearest-neighbor

search – consider the nearest-neighbor error (value or rank error) incurred for answer-

ing a given time-limited query. To formalize, the nearest-neighbor search methods

would be required to perform the following task:

Time-constrained search: Minimize nearest-neighbor error subject to

limited computation time.

This setting requires the query to be answered within a hard time constraint, but

the goal is to obtain the best possible results within that time. If enough time is pro-

vided, the algorithm should return the exact nearest-neighbor. A lot of applications

with limited response times fall in this framework – they can incur slight loss in the

accuracy of the result, but they only have a small search time budget they need to

strictly adhere to. For example, new users at an online music library want to listen

to a playlist of songs as soon as they sign up and input their preferences, but they do

not require the perfect songs to be played right away. However, users would prefer
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the service provider with the better results. Similar situations exist in various other

applications.

The notion of time-constrained search was proposed in Ram et al. (2012). Chapter

4 discusses the notion of time-constrained search and presents various algorithms

that can return an approximate nearest-neighbor within a given time constraint. The

specific contributions are:

• A new paradigm of time-constrained search for accurate search on a time budget.

• A permutation based algorithm that uses a permutation of the object set to an-

swer time-constraint queries. This will serve as the baseline for time-constrained

search.

• A binary space-partitioning-tree based algorithm that uses a greedy depth-first

traversal of the tree to answer time-constraint queries.

• A binary space-partitioning-forest based algorithm that employs defeatist-search

on a forest of random trees for very accurate solutions to time-constraint queries

at the cost of extra storage.

1.2.3 Learning to Search

Even though we consider time-constrained search, we still want an accurate answer

(preferably the exact answer in most cases). Since we might not have time to im-

prove the results during time-constrained search, we would need data preprocessing

which lead to better results. Indexing schemes that explicitly learn from the data are

shown to be more effective for nearest-neighbor search (Cayton and Dasgupta, 2007;

Clarkson, 1999; Maneewongvatana and Mount, 2002). These methods utilize “exam-

ple queries” to learn indices that have optimal performance on this example queries.

Machine learning techniques are also heavily used to create explicitly data-dependent

hash functions that assign binary codes to points, assigning same code to similar
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points and different codes to dissimilar points (Weiss et al., 2008; Wang et al., 2010;

Norouzi and Fleet, 2011; Gong and Lazebnik, 2011). These techniques are heavily

used in computer vision and are shown to empirically perform better than the widely

popular mostly data-oblivious locality sensitive hashing (Indyk and Motwani, 1998).

Figure 4: Max-margin tree.

Driven from the success of these “learned” searching techniques, we develop data-

dependent preprocessing schemes for better search performance under a time-constraint

in Chapter 5. We theoretically analyze the performance of the proposed time-

constrained search algorithm to discover the factors affecting performance. Explicitly

exploiting these factors, we propose a new binary space-partitioning tree. Specifically,

my contributions are:

• A technique to learn permutations with example queries for better permutation-

based time-constrained search performance.

• A theoretical analysis of the proposed binary tree based time-constrained search

algorithm, exposing factors that affect search performance.

• A new binary space-partitioning tree, the max-margin tree (Figure 4), which

utilizes a large margin split of the data at each level of the tree.

• Theoretical guarantees for the max-margin tree and its efficient variants.
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1.2.4 Max-Kernel Search

We consider the following general task of max-kernel search: for a given set R of n

objects (the reference set), a Mercer kernel function K(·, ·), and a query q, find the

object p ∈ R that is most similar to q with respect to the similarity function K(·, ·).

A Mercer kernel can define a measure of similarity for various classes of objects

including points in RD , and extending to objects which do not have natural fixed-

length representations. Kernel similarity functions are ubiquitous and can be devised

for any new class of objects, such as images and documents (which can be considered

as points in RD), to more abstract objects like strings (protein sequences (Leslie et al.,

2002), text), graphs (molecules (Borgwardt et al., 2005), brain neuron activation

paths), and time series (music, financial data) (Müller et al., 1997). The beauty of

kernels is the renowned “kernel trick” – the ability to evaluate similarity between any

pair of objects in some richer but hidden feature space without requiring the explicit

representations of those objects in the richer feature space.

The problem of nearest-neighbor search in metric spaces is a special case of max-

kernel search where the closest object to the query with respect to a distance metric is

sought. However, the requirements of a distance metric and the explicit representation

of the objects in some fixed-length form make many efficient methods for exact and

approximate nearest-neighbor search inapplicable to the general problem of max-

kernel search.

In Chapter 6, we present a method to accelerate max-kernel search for any class

of objects with a corresponding Mercer kernel (Curtin et al., 2013; Ram and Gray,

2012). The contributions are:

• The first concept for characterizing the hardness of max-kernel search in terms

of the concentration of the similarities values – the directional concentration.
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• A way to utilize an existing O(n log n) indexing scheme to index any set of ob-

jects directly in the Hilbert space defined by the kernel without requiring explicit

representations of the objects in this space.

• A novel branch-and-bound algorithm on the index in the Hilbert space, which

can achieve orders of magnitude speedups over linear search.

• The first O(log n) runtime bound for exact max-kernel search with our proposed

algorithm for any Mercer kernel.

• Value-approximate and rank-approximate extensions to the exact max-kernel

search algorithm.

1.2.5 Unanswered Questions

While I have tried to validate this thesis with the aforementioned contributions, there

are various other related questions that I have encountered during this process which

I am yet to answer (and sometimes, yet to formulate properly as a problem). In

Chapter 7, I will discuss some of these questions to conclude this thesis.
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CHAPTER II

A BRIEF HISTORY OF SIMILARITY SEARCH

The problem of nearest-neighbor search is formally defined as:

Nearest-neighbor search. Given a dataset R of size n, a query q, and a similarity

function S : {q} × R → R, efficiently find a point p ∈ R such that

S(q, p) = max
r∈R
S(q, r). (1)

However, nearest-neighbor search is usually considered in a metric space associated

with a distance metric:

Nearest-neighbor search in a metric space. Given a dataset R ⊂ X of size n in

a metric space (X ,d) and a query q ∈ X , efficiently find a point p ∈ R such that

d(q, p) = min
r∈R

d(q, r). (2)

Here the similarity function is based on a distance metric, low distance implying high

similarity. For the ensuing discussion, we will consider nearest-neighbor search in

a metric space since that is the most extensively studied general form of nearest-

neighbor search. We will return to general similarity search (Equation (1)) in Section

2.5. A common extension of the nearest-neighbor problem is to find the k closest

points to q instead of only the closest point. This is formally defined as:

k-nearest-neighbor search. Given a dataset S ⊂ X of size n in a metric space

(X ,d) and a query q ∈ X , efficiently find a set Sk(q) ⊂ S of k points such that

∑
p∈Sk (q)

d(q, r) = min
R⊂S ,|R|=k

∑
r∈R

d(q, r). (3)

This chapter will be a review of existing methods for search and related tasks. I will

begin by discussing existing methods for efficient exact nearest-neighbor search and
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the need for approximation in Section 2.1. Following that, I will present the traditional

form of approximation, distance-approximation, and the existing techniques for fast

approximate search in Section 2.2. I will discuss different kinds of space-partitioning

trees widely used for search as well as the closely related task of vector quantization

in Section 2.3. In Section 2.4, I will review the use of machine learning techniques to

enhance nearest-neighbor search, while in Section 2.5 I will discuss the task of nearest

neighbor search beyond usual vector data and distance metrics. After reviewing this

existing literature on similarity search, I will motivate the goals of this thesis in

Section 2.6. I will present the need for the new paradigms that will subsequently be

presented in this thesis.

2.1 Exact Nearest-Neighbor Search

The simplest approach of exhaustive search over R for the nearest-neighbor is easy

to implement, but requires n distance computations for a single query, making it

computationally prohibitive for moderately large n. Tree data structures built on the

dataset are used to answer queries efficiently. Binary space-partitioning trees, like kd-

trees (Friedman et al., 1977), ball trees (Omohundro, 1989) and metric trees (Preparata

and Shamos, 1985) utilize the triangle inequality of the metric d(·, ·) (commonly

the Euclidean metric) for a branch-and-bound algorithm that can potentially answer

queries in empirically O(log n) distance computations.

The generic tree-based algorithm using a binary tree is presented as Algorithm 1

(for exact search, the error is zero1). The algorithm determines the appropriate side

of the space partition (the splitting hyperplane) for the given query and traverses

down to the leaf (corresponding to a region in the data space) containing the query.

The algorithm then finds a neighbor candidate for the query from that leaf and

subsequently uses the current neighbor candidate to prune away certain branches of

1Algorithm 1 refers to binary tree based error-constrained search. However, exact search is
essentially error-constrained search with zero error.
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the tree (corresponding to regions in data space) while backtracking along the depth-

first traversal path in the tree. The neighbor candidate is updated if better candidates

are encountered. Non-binary cover trees (Beygelzimer et al., 2006) answer queries in

theoretically bounded O(log n) time using a similar branch-and-bound algorithm.

Finding nearest-neighbors for O(n) queries would require at least O(n log n) com-

putations using the trees. The dual-tree algorithm (Gray and Moore, 2000) for

nearest-neighbor search also indexes the queries in a tree data structure to amor-

tize the cost of search over the queries. The dual-tree algorithm utilizes the intuition

that queries spatially “close by” follow the same path down the tree on R . Hence the

dual-tree search amortizes the search cost by consolidating such tree traversals into a

single one. This algorithm shows orders of magnitude improvement empirically and

has been to be shown to take a total of O(n) time for answering O(n) queries using

the cover trees (Ram et al., 2009a) (which is essentially the lower bound).

The runtimes of all these algorithms to find the k-nearest-neighbors increase with

increasing k . If k = n, then all the proposed algorithms would take the same time

as the exhaustive search algorithm. But in most applications k � n, hence most of

these algorithms are much more efficient than exhaustive search.

Remark. For any decently sized dataset, the preprocessing time required for tree

construction on the dataset is generally insignificant compared to the improvement

in efficiency it provides over exhaustive search. The efficiency gained is generally

measured by the amount of “speedup” obtained in the query time over exhaustive

search.

2.1.1 Nearest-Neighbor Search in High Dimensions

The frontier of research in nearest-neighbor methods is high dimensional problems

where objects are defined by a large number of features. These problems stem from
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common datasets like images and documents to micro-array data. But high dimen-

sional data poses a possible problem for Euclidean nearest-neighbor search as implied

by the following result:

Proposition 2.1.1. (Hammersley, 1950) Let C be a D-dimensional hypersphere with

radius a. Let A and B be any two points chosen at random in C , the distributions of A

and B being independent and uniform over the interior of C . Let r be the Euclidean

distance between A and B (r ∈ [0, 2a]). Then the asymptotic distribution of r is

N(a
√
2, a2/2D).

This implies that in high dimensions, the Euclidean distances between uniformly

distributed points lie in a small range of continuous values. This means that al-

most all pairs of points could be almost equally far away from each other and the

nearest-neighbor distances approach the farthest-neighbor distances with increasing

dimensionality. However, real high-dimensional datasets are generally assumed to

have some structure which avoids this concentration of pairwise distances.

We present the density of the pairwise distances of 11 real datasets and 3 synthetic

datasets in Figure 5. For all datasets, the pairwise distances are scaled to the range

[0, 1]. The 3 synthetic datasets (presented in each plot as reference) correspond to

uniformly distributed points in a 10, 100, 1000 dimensional unit hypersphere respec-

tively. The description of the real datasets will be presented in Table 3 in Section

3.4 in Chapter 3 (the dimensionality of the real datasets vary from 16 to over 25000).

It is apparent from Figure 5 that the pairwise distances of the synthetic datasets

get more concentrated with increasing dimensions (as expected from Hammersley’s

theorem). However, the real datasets do not behave in any predictable manner. The

pairwise distances of the digits and the image datasets have a distribution similar to

a Gaussian. Some of the datasets have a peak in the pairwise-distance-distribution

close to zero. This possibly implies the presence of some tightly packed clusters and

some far away outliers.
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(a) UCI/KDD datasets
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(b) Digits datasets
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(c) Image datasets
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(d) Text datasets

Figure 5: Hammersley’s theorem on real and synthetic datasets. The dis-
tribution of the pairwise distances (please view in color). The numbers at the end of
the labels for each dataset corresponds to the dimensionality of the dataset.

Even in the presence of this structure in real datasets, kd-trees and metric trees

can only scale to datasets of low and medium dimensionality respectively. Beyond

that, the tree-based search performs no better than exhaustive search. This is usu-

ally attributed to the fact that the branch-and-bound algorithm with these trees are

generally unable to obtain sufficiently tight bounds in high dimensions. Hence the

algorithm is unable to efficiently remove (prune) large parts of the dataset R from

the computation.

Another way of understanding this phenomenon is the following – in the worst-

case, the number of leaves of the tree visited by the branch-and-bound algorithm
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(Algorithm 1) is speculated to be exponential in the dimensionality of the data (the

number of features representing every object). For high dimensional data, this depen-

dence on the dimensionality of the data outweighs the dependence on the number of

points, forcing the tree-based algorithm to perform comparably to exhaustive search.

There is empirical evidence that even in high dimensions, these tree-based algo-

rithms are usually able to locate the nearest-neighbors quite early in the algorithm,

and, in the absence of tight bounds, spend most of the search time validating the

correctness of the neighbor candidate (Ram et al., 2012). Theoretically confirming

this observation remains an open question. This inefficiency of exact search in high

dimensions necessitates the approximation of nearest-neighbor search.

Algorithm 1 Error-constrained search with trees. Every non-leaf node N in the
tree T is partitioned into a left (N .left) and a right (N .right) child with the hyperplane
(N .w,N .b). The function ‘cannot prune node(q,N , d , e)’ decides if the node N can
be safely ignored for query q with distance d to the current best neighbor candidate
p and allowed approximation e.

Input: Data R , Tree T Query q, Allowed approximation e
Output: Neighbor candidate p

3: Initialize: Set d ←∞, set stack S .push(T )
while S is non-empty do

Node N ← S .pop
6: if cannot prune node(q,N , d , e) then

if is a leaf node(N) then
for r ∈ N ∩ R do

9: if d(q, r) < d then
p ← r ; d ← d(q, r)

end if
12: end for

else
if 〈N .w, q〉+ N .b < 0 then

15: S .push(N .right); S .push(N .left)
else

S .push(N .left); S .push(N .right)
18: end if

end if
end if

21: end while
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2.2 Distance-Approximate Nearest-Neighbor Search

The traditional form of approximation views nearest-neighbor search as a discrete

optimization problem (minr∈S d(q, r)) and considers the following form of value ap-

proximation:

Distance-approximate nearest-neighbor search. Given a dataset R ⊂ X of size

n in a metric space (X ,d), ε > 0 and a query q ∈ X , efficiently find a point p′ ∈ R

such that

d(p′, q) ≤ (1 + ε)min
r∈R

d(r , q). (4)

The k-nearest-neighbor search is approximated in a similar manner:

Distance-approximate k-nearest-neighbor search. Given a dataset R ⊂ X of

size n in a metric space (X ,d), ε > 0 and a query q ∈ X with its k-nearest-neighbors

Sk(q) in R , efficiently find a set Sεk (q) ⊂ R of k points such that

∀p ∈ Sk(q)∃ a distinct p′ ∈ Sεk (q) such that d(q, p′) ≤ (1 + ε)d(q, p). (5)

Many algorithms for distance-approximate nearest-neighbor search can be broadly

grouped into three categories: (1) methods using hierarchical trees, (2) methods using

skip-lists, and (3) methods utilizing random projections. The literature on distance-

approximate nearest-neighbor search is huge and this is not a complete survey. How-

ever, we present the different flavors of existing methods for distance-approximate

nearest-neighbor search.

Hierarchical structures. The distance approximation can be achieved with space-

partitioning trees by using a relaxed branch-and-bound search algorithm to prune

more aggressively. This relaxed algorithm is shown in Algorithm 1. A node is now

pruned if the current upper bound to the nearest-neighbor distance (i.e. the distance

to the current best nearest-neighbor candidate) for a query is less than (1 + ε) times
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the distance of the query to the node in question. This returns a (1 + ε)-distance-

approximate nearest-neighbor and provides some speedup over the exact search algo-

rithm. Another approach modifies the tree to obtain the desired approximation with

a root-to-leaf traversal of the tree instead of the branch-and-bound algorithm for sig-

nificant speedups (Liu et al., 2005). This root-to-leaf traversal is usually referred to

as defeatist search. This algorithm achieves desired approximation by allowing sibling

nodes in binary space-partitioning trees to share points near their boundaries to get

spill trees. These algorithms have been shown be empirically efficient, but lack any

theoretical guarantees.

The idea of approximately correct nearest-neighbor (satisfying Equation (4)) is

further extended to a formulation where the (1 + ε) bound can be exceeded with a

low probability δ, thus forming the PAC-nearest-neighbor search framework (Ciaccia

and Patella, 2000). The distribution of the distances of the query from the points in R

is estimated to predict an approximate upper-bound on the nearest-neighbor distance

for a query. This estimate is used to improve the efficiency of the branch-and-bound

algorithm on a metric tree by allowing the search algorithm to ignore nodes in the

tree farther away than this predicted upper bound. This results in 1-2 orders of

magnitude improvement in moderately large datasets.

Various tree based algorithms have rigorous theoretical bounds. A hierarchical

decomposition of the input space containing n points in RD into a balanced box-

decomposition tree in O(Dn log n) time and O(Dn) space can return a (1+ε)-distance-

approximate nearest-neighbor of a query in O (d1 + 6D/εeD log n) time (Arya et al.,

1998). In general, the distance-approximations to the k-nearest-neighbors of a query

can be computed in additional O(kD log n) time. Krauthgamer and Lee (2004) build

a hierarchy of progressively finer ε-nets of size O(n) which can answer a query ap-

proximately in O(logφ+ε−O(d )) where φ is the aspect ratio of the set R with respect
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to the metric d(·, ·)2, d is the intrinsic dimension of R , and ε is the distance error.

A faster construction of these hierarchical nets proposed by Har-Peled and Mendel

(2005) has an expected preprocessing time of 2O(d )n log n with 2O(d )n space require-

ment and a similar query time of O(2O(d ) log n + ε−O(d )). If the distance between

points can be computed in constant time, this query time is essentially optimal since

there are examples of point sets in which the query time is 2Ω(d ) log n , and examples

in which the query time is ε−Ω(d) (Krauthgamer and Lee, 2004).

Skip-list. Skip-lists (Pugh, 1990) have been used for the purpose of nearest-neighbor

search. Any n element set S ⊂ RD , using randomization, can be preprocessed into a

“flattened” skip-list in higher dimensions of size O(n log n), and a query can be an-

swered approximately in O(log3 n) expected time (Arya and Mount, 1993). Clarkson

(1994) provides an algorithm that builds a skip-list of size O(nη)O(1/ε)(D−1)/2, where

η = log(φ/ε) and φ is the aspect ratio of the set R , and approximately answers a

nearest-neighbor query in O(log n)O(1/ε)(D−1)/2 with high probability.

Random projections. The Johnson-Lindenstrauss transform (Johnson and Lin-

denstrauss, 1984) allows embedding of data in `D
2 into `

O(log n)
2 (effectively reducing

the dimensionality of a high-dimensional dataset) while approximately preserving

the pairwise distances of the points by projecting the points onto multiple random

directions (this is also known as a low-distortion embedding). Kleinberg (1997) pro-

posed two algorithms for distance-approximate search using projections onto ran-

dom lines through the origin – one answers queries in O((D log2 D)(D + log n)) time

with storage requirement of O(n log D)2D , other runs in O(n + D log3 n) time with

2The aspect ratio is defined as the ratio between the largest and smallest inter-point distances in

R: φ =
max

x ,y∈R
d(x ,y)

min
x ,y∈R

d(x ,y)
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O(Dn poly log(Dn)) space requirements. Kushilevitz et al. (1998) improved these re-

sults to obtain a query time of O(Dε−2 poly log(Dn)) in the D-dimensional Hamming

cube with the `1 metric, and O(D2 poly(1/ε) poly log(Dn)) in the Euclidean space

with (Dn)O(1) storage .

Indyk and Motwani (1998) proposed the first algorithm to obtain poly(D, log n, ε−1)

query time and polynomial storage for fixed ε by reducing a distance-approximate

nearest-neighbor query to O(log2 n) ε-PLEB (approximate point location in equal

balls) queries (later improved to O(log(n/ε)) queries by Har-Peled (2001)). Locality

sensitive hashing (LSH) (Gionis et al., 1999) hashes the data into buckets using hash

functions which guarantee that “close” points are hashed into the same bucket with

high probability and “farther apart” points are hashed into the same bucket with

low probability. LSH answers approximate PLEB queries in O(n1/1+ε) time with

near-quadratic storage (for small ε). Random projections are used to perform dimen-

sionality reduction to provide O(ε−2D log n) query times for ε-PLEB with nO(ε−2)

storage. This method has significant improvements in running times over traditional

methods in high dimensional data and is shown to be highly scalable. Datar et al.

(2004) extend the LSH method to the Euclidean space. LSH is widely used in practice,

especially in the computer vision community for finding similar images.

Figure 6: Planted nearest-neighbor model.

The authors suggest that LSH performs well when the dataset fits the “planted
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nearest-neighbor model”, “in which there are few points that are relatively close to

the query point, and most of the database points lie quite far from the query point”.

Figure 6 provides an artificial example of the planted nearest-neighbor model. He

et al. (2012) presented a quantification of this notion of planted nearest-neighbor

known as the relative contrast. Relative contrast is defined as the ratio of the average

distance of the query to the points in the set to the nearest-neighbor distance of

the query. Higher the relative contrast for a problem instance, more planted the

nearest-neighbor.

The random projections can be preconditioned by the Fourier transform (via

fast Fourier transform) to obtain Fast-Johnson-Lindenstrauss-Transform (Ailon and

Chazelle, 2006). This embeds `D
2 to `

O(log n)
p , p = 1, 2 in O (D log D +min{Dε−2 log n ,

εp−4 logp+1 n}
)

time, where ε controls the distortion in the embedding. This is used

to provide two different algorithms for distance-approximate nearest-neighbor: (1)

the first algorithm works in RD and answers a query approximately in O(D log D +

ε−3 log2 n) time with nO(ε−2) storage, (2) the next algorithm works in the D-dimensional

Hamming cube and answers a query in O((D + ε−2 log n) log n) time with D2nO(ε−2)

storage.

Hybrid spill trees (Liu et al., 2005) combines two different techniques used in

nearest-neighbor search by building hierarchical spill trees on randomly projected

data to obtain significant speedups on high dimensional data.

2.3 Space-Partitioning Trees

Binary space-partitioning trees (or BSP-trees) are simple data structures and are

heavily used in practice for search. Standard worst case analyses of BSP-trees in

high dimensions usually lead to trivial worst case performance guarantees (such as,

an O(n) search time guarantee for a single nearest-neighbor search query in a set of n

points). This can generally be attributed to the “curse of dimensionality” – the high
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dimensionality can force the search algorithm to visit every node in the BSP tree.

However, these BSP trees are still widely used in practice, even in the presence of

more sophisticated methods.

There are several heuristics for the construction of BSP-trees. The most popular

kd-tree uses axis-aligned splits (Algorithm 2), often employing a median split along

the coordinate axis with the largest spread. The principal-axis tree (PA-tree) splits

the data in each level at the median along the principal eigenvector of the covariance

matrix of the data in that node (Sproull, 1991; McNames, 2001; Verma et al., 2009)

(Algorithm 4). Another heuristic partitions the space based on a 2-means clustering

solution for the data in the region to form the two-means tree (2M-tree) (Fukunaga

and Nagendra, 1975; Nister and Stewenius, 2006) (Algorithm 5). The more recent

random-projection tree (RP-tree) is built by projecting the data along a random unit

direction and choosing an appropriate splitting threshold (Dasgupta and Freund,

2008) (Algorithm 3).

Algorithm 2 Axis-aligned kd-tree split.

Input: Set S , Region A
Output: Regions Al and Ar

ds ← argmaxi∈{1:D} range(S(i))
b ← median{x(ds) : x ∈ A ∩ S}
Al ← {x(ds) ≤ b}
Ar ← {x(ds) > b}

Algorithm 3 A RP-tree split.

Input: Set S , Region A
Output: Regions Al and Ar

z ← a random standard normal vector
b ← median{〈x , z〉 : x ∈ A ∩ S}
Al ← {x : 〈z , x〉 ≤ b}
Ar ← {x : 〈z , x〉 > b}

Algorithm 4 A PA-tree split.

Input: Set S , Region A
Output: Regions Al and Ar

R ← centered(A ∩ S)
p ← the principal eigenvector of R>R
b ← median{〈x , p〉 : x ∈ A ∩ S}
Al ← {x : 〈p, x〉 ≤ b}
Ar ← {x : 〈p, x〉 > b}

Algorithm 5 A 2M-tree split.

Input: Set S , Region A
Output: Regions Al and Ar

M1,M2 ← 2-means solution for A ∩ S
Al ← {x : ‖x −M1‖ ≤ ‖x −M2‖}
Ar ← {x : ‖x −M1‖ ≤ ‖x −M2‖}

Figure 7: Splitting heuristics. Some hyperplane based splitting rules for binary
space-partitioning trees.
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The favorable performance of different BSP-trees in high dimensions is usually

attributed to the low “intrinsic” dimensionality of real data. However, no clear re-

lationship between search performance of BSP-trees and intrinsic dimensionality has

been established. Moreover, the precise definition of the data-dependent intrinsic

dimensionality varies between problems. Recent work by Verma et al. (2009) has

established novel rigorous guarantees on the vector quantization performance of sev-

eral of these BSP-trees. These guarantees present precise relationships between the

quantization performance of some of these BSP-trees and intrinsic data-dependent

properties.

Given a set of points (vectors) S ⊂ RD of n points, the task of vector quantization

is to generate a set of points M ⊂ RD of size k � n with low average quantization

error. The optimal quantizer for any region A is given by the mean µ(A) of the data

points lying in that region. The quantization error of the region A is then given by

VS(A) =
1

|A ∩ S |
∑

x∈A∩S

‖x − µ(A)‖22 , (6)

and the average quantization error of a collection of regions {A1, . . . ,Ak} is given by:

VS({A1, . . . ,Ak}) =
∑k

i=1 |Ai ∩ S |VS(Ai)∑k
i=1 |Ai ∩ S |

. (7)

Note that we use the subscript S to denote the quantization error of the data in

S lying within the region in question. This is because the quantization error depends

on both the region and the set of points. We will use this subscript notation unless

it is obvious from the context.

Tree-based structured vector quantization in widely used for efficient vector quan-

tization – a BSP-tree of depth log2 k on S partitions the region containing the set S

into k disjoint regions, with the centroid of the points in each region as the quantizer.

The theoretical results established for various tree-based vector quantization guar-

antee the improvement in average quantization error obtained by partitioning any

single region (with a single quantizer) into two disjoints regions (subsequently with
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two quantizers). The guarantee for various binary trees have this following general

form (introduced in Freund et al. (2007)):

Definition 2.3.1 (Quantization error improvement). Given a set of points (vectors)

S ⊂ RD, a region A split into two disjoint regions {Al ,Ar}, and a quantity β depending

on the data in the region A, the quantization error improvement is characterized by:

VS({Al ,Ar}) < (1− 1/β)VS(A). (8)

Table 1: Quantization error decrease rates for various trees. λ1, . . . , λD are
the (sorted) eigenvalues of the covariance matrix of the points in A∩S , and dc < D is
the covariance dimension of data in region A. All the results are due to Verma et al.
(2009) which also has the definition of dc . No single split guarantees for kd-trees are
known to us.

Tree Definition of β

PA-tree O(ρ2)− O(ρ) : ρ
.
=
(∑D

i=1 λi

)
/λ1

RP-tree O(dc)
kd-tree ×
2M-tree optimal (smallest possible)

This general definition characterizes the quantization performance of different

trees, which depends inversely on the data dependent quantity β – lower β implies

better quantization performance. We present the definition of β for different BSP-

trees in Table 1. For the PA-tree, the improvement rate depends on the ratio of the

sum of the eigenvalues of the covariance matrix of data (A∩S) to the principal eigen-

value. The improvement rate of the RP-tree depends on the covariance dimension

of the data in the node A (β = O(dc)) (Verma et al., 2009), which roughly corre-

sponds to the affine plane of lowest dimensionality that can best approximate the

data. The 2M-tree does not have an explicit form for β but it has the optimal theo-

retical improvement rate for a single partition. This is because the 2-means clustering

objective is equal to |Al |V(Al) + |Ar |V(Ar ) and minimizing this quantity maximizes
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the improvement. Note that the 2-means problem is NP-hard and generally an ap-

proximate solution is used in practice. We will use these quantization performance

guarantees to obtain guarantees on nearest-neighbor approximation.

Algorithm 6 A split by distance to remove outliers.

Input: Set S , Region A
Output: Regions Al and Ar

b ← median{‖z −mean(A)‖ : z ∈ A ∩ S}
Al ← {x ∈ A : ‖x −mean(A)‖ ≤ b}
Ar ← A \ Al

Algorithm 7 Construction of a binary space-partitioning tree.

Input: Set S
Output: BSP-tree T

Initialize: T ← region containing S , set queue Q.enqueue(T )
while Q is not empty do

Current node A← Q.dequeue
if |A ∩ S | > MinimumSize then

if ∆2(A) < ηVS(A) then
Split A with a hyperplane into Al and Ar

else
Split A by distance into Al and Ar

end if
A.left← Al ; A.right← Ar

Q.enqueue(Al); Q.enqueue(Ar )
end if

end while

These theoretical results are valid under the condition that there are no outliers

in the node A (containing the set of points A ∩ S). This is characterized as

∆2
S(A) ≤ ηVS(A),

where ∆2
S(A) = maxx ,y∈A∩S ‖x − y‖2 for a fixed η > 1. This notion of the presence

of outliers was first introduced by Dasgupta and Freund (2008) for the theoretical

analysis of the RP-trees. Verma et al. (2009) describe outliers as “points that are

much farther away from the mean than the typical distance-from-mean”. In this
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(a) Split by hyperplane (b) Split by distance

Figure 8: BSP-tree splits. The two kinds of splits used for the tree construction.

situation, an alternate type of split is used to remove these outliers (Algorithm 6)

and this split is guaranteed to reduce the diameter of the nodes by a constant fraction

(the original result is modified here to follow the notation used here):

Proposition 2.3.1 (Diameter decrease). (Dasgupta and Freund, 2008, Lemma 12)

Suppose ∆2
S(A) > ηVS(A) so that A is split using Algorithm 6 into Al and Ar . Then

|Al ∩ S |∆2(Al) + |Ar ∩ S |∆2(Ar )

|A ∩ S | ≤
(
1

2
+

4

η

)
∆2(A). (9)

The split by distance (Figure 8(b)) is used until a region does not violate the

outlier condition, at which point, a hyperplane split (Figure 8(a)) is used. The implicit

assumption is that the split by distance is not used very often in the tree construction.

These results on the quantization performance of BSP-trees indicate that different

heuristics are adaptive to different properties of the data. Lower the quantization

error, tighter is the index created by the BSP-tree. However, there is no existing

result that relates this performance of BSP-trees to the search performance of these

same trees. The precise connection between the quantization performance and the

search performance of these BSP-trees is yet to be found.
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2.4 Learning to Search

The BSP-tree construction hierarchically partitions the space based on certain heuris-

tic. This split is a decision boundary that determines a query’s candidate set. Instead

of using a heuristic, the decision boundary can be learned to minimize runtimes and

approximation error. This idea has been recently used by (Cayton and Dasgupta,

2007; Li et al., 2011). These methods use machine learning techniques for search that

empirically minimize a combination of approximation error and search time. Cayton

and Dasgupta (2007) theoretically demonstrate that the performance of the learned

tree on the training set is close to the performance in general. The idea of learning

hyperplane splits to reduce search time was initially proposed by Maneewongvatana

and Mount (2002). Clarkson (1999) uses training queries to learn a data structure

that effectively tries to estimate the Voronoi tessellation of the reference set.

Learning to search has garnered a lot of interest in the computer vision and

representation learning community, leading to various data-dependent extensions to

locality-sensitive hashing (LSH). The idea of LSH is to map data points to binary

codes such that similar objects (based on some metric) have the same binary codes.

Andoni and Indyk (2006) suggested calculating every bit in the code by a random

linear projection followed by a random threshold. This leads to long code lengths

for a low distortion Hamming cube embedding. The search for a new query involves

generating a code for the query and then seeking the corresponding bucket in the

hash lookup table to find the similar objects.

Long codes imply high precision, but lead to low recall in the hash lookup table.

Hence, plain-vanilla LSH uses multiple hash lookup tables to get enough recall, leading

to increased storage and longer search query times. Machine learning techniques have

thus been used to learn shorter and shorter codes. A simple data-dependent code

generation technique based on principal component analysis is as follows – for a binary

code of length c , project the data to the space spanned by the top c eigenvectors of
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the covariance matrix of the (centered and scaled) data and assign every point the

binary code corresponding to the vertex in the c-dimensional binary Hamming cube

closest to the point’s projection. This was improved upon by Gong and Lazebnik

(2011). They proposed an orthogonal rotation of the projected data to minimize the

quantization error of mapping the projected data to the vertices of the c-dimensional

binary hypercube.

Various “supervised” hashing methods exist which make use of some extra infor-

mation. Cayton and Dasgupta (2007) still use random linear projections but learn

data-adaptive thresholds using example queries to reduce the code length and in-

crease recall. A nonlinear embedding to the Hamming cube is learned using a re-

stricted Boltzmann machine by Salakhutdinov and Hinton (2007). If the similarity

graph of the data is based on the Euclidean distance, spectral hashing (Weiss et al.,

2008) generates bits by thresholding a subset of the eigenvectors of the Laplacian of

the similarity graph. To generate code for out-of-sample queries, the graph Lapla-

cian eigenvectors are extrapolated to eigenfunctions. Semi-supervised hashing (Wang

et al., 2010) incorporates given pairwise semantic similarity and dissimilarity con-

straints from labelled data to learn hash functions that empirically minimize error on

the labelled data (in terms of the code mismatch for similar objects and code match

for dissimilar objects) while maximizing variance and independence of the bits on

labelled and unlabelled data to minimize the code length. In most cases, the codes

are learned one bit at a time. All codes can also be learned together at the same

time by considering the code as a structured label of the point. The structural SVM

framework has been used to learn such codes at the same time while minimizing the

distortion in the Hamming space embedding (Norouzi and Fleet, 2011).

The widespread interest in the use of machine learning techniques to enhance

search is awarded by better empirical performance in terms of precision and recall in

the search for similar images. All these various data-dependent methods try to adapt

31



to some structure in the data. In the case of binary code generation of LSH, this

generally amounts to capturing the variance in the data with the minimum number

of bits. However, the precise (theoretical) relationship between these different data-

dependent hashing techniques and their search performance still remains unknown.

2.5 General Similarity Search

Since similarity search is ubiquitous, a lot of research has been done for similar-

ity search. Various domains have very domain specific but highly efficient search

techniques. For example, BLAST (Altschul et al., 1990) is the method of choice for

biological subsequence search. Rakthanmanon et al. (2012) present a search technique

for time-series data that scales up to a trillion objects. However, to solve similarity

search in a general sense, the search problem has to be first posed in a general form.

To this end, the problem of max-kernel search has obtained some attention.

Max-kernel search finds the best match for a query with respect to a kernel simi-

larity function. These kernel functions are widely used in machine learning. Not only

do these kernel functions allow for a variety of similarity functions for a single class of

objects, they are applicable to a wide variety of data types. Kernel functions provide

a versatile class of similarity functions. In fact, there is a subfield in machine learn-

ing that focuses on engineering and developing appropriate kernel functions for data

types and applications at hand (Table 2 presents some examples of kernel functions).

Table 2: Some examples of kernel similarity functions for different data types.

Objects Kernel functions
Images linear, Gaussian, polynomial, pyramid match
Documents cosine
Sequences p-spectrum, matching and alignment kernels
Trees subtree, syntactic, partial tree
Graphs random walk
Time-series cross-correlation, dynamic time-warping
Natural language convolution, decomposition, lexical, semantic
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Although there are existing techniques for max-kernel search, almost all of them

solve the approximate problem under restricted settings. The most common assump-

tion is that the objects are points in some metric space and the kernel function

is shift-invariant – a monotonic function of the distance between the two objects

(K(p, q) = f (‖p − q‖)), such as the Gaussian radial basis function (RBF) kernel. For

shift-invariant kernels, a tree-based recursive algorithm has been shown to scale to

large sets for maximum-a-posteriori inference (Klaas et al., 2005). However, a shift-

invariant kernel is only applicable to objects already representable in some metric

space. In fact, the max-kernel search with a shift-invariant kernel is equivalent to

nearest-neighbor search in the input space itself, and can be solved directly using

existing methods for nearest-neighbor search, an easier and better-studied problem.

For shift-invariant kernels, the points can also be explicitly embedded in some low-

dimensional metric space using random Fourier features such that the inner product

between the representations of any two points approximates their corresponding ker-

nel value (Rahimi and Recht, 2007). This step takes O(nD2) time for a set R of n

points in RD and can be followed by nearest-neighbor search on this embedding to

accomplish max-kernel search. Raginsky and Lazebnik (2009) build on these random

features to obtain short binary codes that can then be used for efficient approximate

similarity search with LSH. This method of utilizing random features to approximate

the inner product is closely related to the low dimensional mapping for black-box

kernel functions proposed by Balcan et al. (2006). This mapping projects points into

a low dimensional space such that if the classes are separable and have a large mar-

gin between them in the kernel space induced by the black-box kernel function, then

the classes are still separable with a large margin in the low dimensional projections.

This method does not necessarily approximate the kernel value, but rather preserves

separability. The low dimensional mappings are performed by accessing samples from

the underlying distribution of the unlabelled points.
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Locality-sensitive hashing (LSH) (Gionis et al., 1999) has been widely used for

image matching, but only with explicitly representable kernel functions which admit

a locality sensitive hashing function (Charikar, 2002)3. Kulis and Grauman (2009)

apply LSH to solve max-kernel search approximately for normalized kernels without

any explicit representation. Normalized kernels restrict the self-similarity value to a

constant (K(x , x) = K(y , y) ∀ x , y ∈ S). Hashing requires a random vector in the

kernel space, but this is not obtainable since the explicit representation of the objects

in the kernel space are not generally known. Kulis and Grauman (2009) accomplish

this in a very smart way by creating a quasi-random-Gaussian vector in the kernel

space by using p points in the dataset. The preprocessing time for this kernelized

LSH is O(p3) and a single query requires O(p) kernel evaluations. Here p controls

the accuracy of the algorithm – larger p implies better approximation; the suggested

value for p is O(
√

n) and the approximation guarantees are inherited from LSH.

Another technique to perform LSH in the kernel space expresses the problem as a

kernel SVM problem (Joly and Buisson, 2011). p points are randomly selected from

the dataset and are randomly divided up into two equally sized classes. Then the

kernel SVM problem is solved for these p artificially labelled points and the separating

large margin hyperplane is used to assign a bit for every point and the query. c such

hyperplanes are learned to obtain a c length binary code. The preprocessing step

requires the training of c instances of a kernel SVM, each requiring O(p2 ∼ p3) time.

A single query requires O(cp) kernel evaluations. Much like kernelized LSH, this

random maximum margin hashing technique inherits the approximation guarantees

from LSH.

3The Gaussian and cosine kernels admit locality sensitive hashing functions with some
modifications.
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A case for un-normalized kernels. While some of the kernels used in machine

learning (for example, the Gaussian and the cosine kernel) are normalized, some com-

mon kernels like the linear kernel (and the polynomial kernels) are not normalized.

Many applications require un-normalized kernels: (1) In the retrieval of recommen-

dations, the normalized linear kernel will result in inaccurate user-item preference

scores. (2) In biological sequence matching with the domain-specific matching func-

tions, K(x , x) implicitly corresponds to the presence of (genetically) valuable letters

(like W, H, P) or invaluable letters (like X)4 in the sequence x . This crucial infor-

mation is lost in kernel normalization. We wish to consider general un-normalized

kernels as well as the special case of normalized kernels.

None of the existing techniques can be directly applied to every instance of max-

kernel search with general Mercer kernels and any class of objects. Moreover, almost

all existing techniques resort to approximate solutions. However, these approximate

techniques do exhibit good empirical performance, especially for the problem of image

matching. In Chapter 6, I present a method for exact max-kernel search with any

Mercer kernel with sub-quadratic preprocessing time and sub-linear query time, as

well as approximate extensions for further efficiency.

2.5.1 Combinatorial Framework for Similarity Search

Beyond Mercer kernels, a more general form of similarity search was proposed by

Goyal et al. (2008) in which we do not have access to the similarity function itself;

only a comparison oracle is available which answers questions of the form “For any

object a, is object b more similar to a than c?”. The goal is to efficiently answer

similarity search queries in this setting. This combinatorial framework for similarity

search is applicable to various problems and this framework does not require explicit

representations of the objects or even a precise similarity function, making it even

4The score matrix for letter pairs in protein sequences can be found at http://www.ncbi.nlm.

nih.gov/Class/FieldGuide/BLOSUM62.txt.
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more general than max-kernel search. Quoting Yury Lifshits (Lifshits, 2009), the

combinatorial framework allows for a “model of computation for problems dealing

with an informal concept of closeness”.

In such a general setting, certain assumptions are needed for efficient (and exact)

similarity search. Goyal et al. (2008) proposed a very natural assumption of bounded

disorder constant. This assumption implies two things: (i) if the neighbor rank of b

with respect to a is small, then the neighbor rank of a with respect to b cannot be

very high (this assumption provides a form of approximate symmetry for the neighbor

ranking function), and (ii) if the neighbor rank of a with respect to c is small and

the neighbor rank of b with respect to c is small, then the neighbor rank of a with

respect to b is small as well (this assumption provides a form of approximate triangle

inequality for the neighbor ranking function).

Given this assumption, two randomized algorithms for exact similarity search in

the combinatorial framework was proposed by Goyal et al. (2008). The first algo-

rithm performs a random walk on a quadratic sized data structure while the second

algorithm performs a walk on a O(n log n) size data structure known as the navigation

array. A deterministic algorithm for exact search utilizes a combinatorial net (Lif-

shits and Zhang, 2009)(which is combinatorial analog of a navigating net proposed

by Krauthgamer and Lee (2004)).

2.6 The Need for New Paradigms

In this section, we will motivate the need for new paradigms for approximate search.

We will first present the possible issues with the traditional relative value approxi-

mation. Then we will motivate the need for the paradigm of time-constrained search

by presenting the issues with error-constrained search.
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2.6.1 Possible Issues with Distance-Approximation

Exact nearest-neighbor search becomes hard in high dimensions mainly because of two

reasons – (1) the possibility of concentrated pairwise distances, and (2) the inability to

have “tight” indexing of the data. Multidimensional trees like kd-trees generally fail to

perform well in high dimensions mainly because of the second reason, albeit there are

moderately high dimensional sets on which the kd-trees provide over a magnitude of

speedup over exhaustive search (for example, Figure 5(a)). Distance-approximation

is common but only makes sense in the “planted nearest-neighbor” setting. This

setting is intuitive since it is natural to assume that the boundary separating the

similar objects (to a query) from the dissimilar ones has a significant margin in terms

of their distances. However, given that this assumption holds, finding an appropriate

ε for each dataset is not an easy task (and the appropriate value of ε might vary

even between queries for the same dataset). If this assumption does not hold, it is

not clear if distance-approximation is appropriate.

In this subsection, I will first discuss the appropriate choice for the approximation

level ε, and then present two situations where distance-approximate nearest-neighbor

search is not appropriate – (1) the pairwise distances are relatively concentrated,

and (2) the pairwise distances are heuristic metrics developed to capture ordering

information.

Choosing appropriate ε. Even if the similar points are significantly separated

from the dissimilar points in a dataset, selecting the value of ε which matches this

boundary is non-trivial – too low of an ε value allows for no approximation and too

high of an ε trivializes the search since every point is now an approximate answer.

Ideally, ε needs to be selected after an analysis of the distribution of the pairwise

distances, where the latter task is computationally expensive. In most cases, the

value of ε is chosen without the knowledge of the distribution of the distances and
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hence lacks any meaningful interpretation. One usual technique of choosing ε is

“guess and halve”, selecting the value appropriate for the current need (based on

required accuracy level or amount of time available). One can consider the (average)

fraction of the points in dataset R within the (1 + ε)-nearest-neighbor ball of the

query τ(ε) – if τ(ε) is large, then the value of ε is reduced, but only until ε is large

enough to still be an approximation and allow for efficient search.
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Figure 9: Effect of ε on neighborhood quality. This figure presents τ(ε) with
varying ε for different datasets (please view in color). The numbers at the end of the
labels for each dataset corresponds to the dimensionality of the dataset.

We perform this task of choosing ε with respect to τ(ε) for all the previously used

datasets. The average τ(ε) over all queries for varying values of ε is presented in

Figure 9 (the results for the 3 synthetic datasets are again presented in each of the
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Figure 10: Effect of small ε on neighborhood quality. This figure presents τ(ε)
with varying ε for different datasets magnified for small ε (please view in color). The
numbers at the end of the labels for each dataset corresponds to the dimensionality
of the dataset.

plots for reference). It can be seen that for most datasets in Figure 9, after a point

(ε ≥ 0.25), τ(ε) is extremely sensitive to the value of ε – τ(ε) varies from less than

0.1 to more than 0.8 in just 3 (or less) doubling of ε. For smaller values of ε (as

shown in Figure 10 for the same datasets), τ(ε) is really small and can be considered

to obtain appropriate values of ε. Finding the “sweet spot” for ε with appropriate

τ(ε) requires this detailed analysis (something like Figure 9 & 10) for every dataset.

Moreover, the appropriate value of ε also varies for each datasets, and it might even

vary among queries for the same dataset.
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A related issue is that many of the random-projection-based algorithms for distance-

approximate nearest-neighbor search rely on the specified ε for the data preprocessing.

This implies that the data preprocessing needs to be repeated for any new value of

ε, making such algorithm less usable when the appropriate value of ε is not known

beforehand. While this issue can be mitigated by performing the preprocessing at

multiple values of ε, this creates a storage overhead.

Concentrated pairwise distances. If the pairwise distances are concentrated in

a small interval, distance-approximation can trivialize the search. For example, if the

all pairwise distances are within the range (100.0, 101.00), any distance approximation

ε ≥ 0.01 is inappropriate. Another toy example demonstrating the above mentioned

situation is shown in Figure 11(a). This is because the concentration of the pairwise

distances removes the significant margin between the similar and dissimilar points

(for a query). Moreover, in such a situation (where the distances lie in a small

interval), random projection based dimensionality reduction can completely corrupt

the ordering of the neighbors (Figure 11(b)), which could be critical.
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Figure 11: Toy examples. Artificial situations where distance approximation is not
the way to go (please view in color).
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Moreover, the concentration of the pairwise distances is not limited to high-

dimensional datasets. Datasets with low dimensional structure can still have their

pairwise distances concentrated in a small interval. The pairwise distances can even

get concentrated by the addition of uninformative dimensions to low dimensional data.

For example, consider the two-dimensional dataset (1, 1), (2, 2), (3, 3), (4, 4), . . . with a

query at the origin (0, 0). Appending non-informative dimensions to each of the points

produces higher dimensional datasets of the form (1, 1, u1, u′1, ....), (2, 2, u2, u′2, ...),

(3, 3, u3, u′3, ...), (4, 4, u4, u′4, ...), . . . where each of the ui and u′i are uniform noise.

The pairwise distances of this dataset gets more concentrated with increasing dimen-

sions.

Heuristic distance metrics. In many applications of nearest-neighbor search, the

numerical values of the distance are not as important as the ordering of the distances

of the query from the points – the ordering information defines similar and dissimilar

points. Distance-approximate methods focus on the numerical values of the distances,

and risk the loss of this ordering information. Moreover, in many datasets like doc-

uments, images and songs, the distance measures used are generally heuristics which

try to preserve the relative ordering of the objects (Goyal et al., 2008). The numerical

values of the distances themselves have no clear meaning. Moreover, methods using

low distortion dimensionality reduction techniques (like random projections) run the

risk of corrupting the ordering information of the pairwise distances which can be

essential in some applications of nearest-neighbor search. This might be too large of

a loss in accuracy for scalability.

These reasons imply that distance-approximation can be inappropriate in situa-

tions where the pairwise distances are concentrated and the orderings of the distances

is crucial. Moreover, the unclear dependence between the user specified distance-

approximation (ε) and the returned accuracy makes it hard to use. For these reason,
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we propose a new form of approximation for nearest-neighbor search, rank approxi-

mation, in Chapter 3 which directly works with τ(ε).

2.6.2 Possible Issues with Error-Constrained Search

A traditional theme in nearest-neighbor research is to develop algorithms that ob-

tain the most efficient runtime for a fixed approximation (sometimes only with high

probability). The exact search is a special case of this setting with zero error. While

error-constrained search is widely studied, search approximation is necessitated by

the lack of time. In error-constrained search, we usually have direct control on the

allowed approximation level (or search error), but we lack any control on the amount

of time the algorithm spends in answering the query. The search time can be im-

plicitly controlled by the allowed search error. This poses the following issues – (1)

for applications requiring search queries answered in a limited time, the choice of

the appropriate search error (the parameter we have control over) is unclear, and

(2) various error-constrained search algorithms spend time validating the search error

bound, possibly wasting precious time in the time-constrained setting.

For the first point, the runtime guarantees for the error-constrained search al-

gorithms can be used to guess the appropriate error that would guarantee a search

result within the desired time budget. However, these runtime guarantees often have

hidden constants and/or dependence on data dependent properties that cannot be

easily computed. Nonetheless, it is still possible to obtain some appropriate guess of

search error for our time constraint.

On the other hand, some error-constrained methods require the search to algo-

rithmically validate that the error constraint is actually satisfied. This implies that

just locating an acceptable candidate is not enough, a certificate is required for its

acceptability. This validation phase is not computationally free. We do not have

a precise grasp on how much of the search time is spent in the validation phase
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for high dimensional data. We empirically verify this phenomenon by the following

experiment:
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Figure 12: Location vs. validation in the depth-first search on a kd-tree.
The histogram of the number of leaves of a kd-tree visited by the query to locate
the true nearest neighbors are contrasted with the histogram of the total number of
leaves eventually visited by the depth-first strategy on the kd-tree.

Experiment. We consider 2 digits image data sets - Optdigits (64 dimensional)

(Blake and Merz, 1998) and MNIST (784 dimensional) (LeCun, 2000). We perform

the depth-first nearest-neighbor search for the exact nearest-neighbor of the each of

the queries in the reference set (Algorithm 1) using kd-trees (with a leaf size of 30)

to index the reference sets. We present the histogram of the number of leaves visited

to locate the true nearest neighbor for each query and total number of leaves to find

as well as guarantee its correctness in Figure 12. The maximum number of leaves

visited by any query was 76 for Optdigits and around 3500 for MNIST. In both

the cases, around 60% of the queries located their true nearest neighbors in the first

5% of the leaves visited. But only less than 5% of queries finished validating the error

bound within that time. This empirically exhibits the capability of the depth-first

nearest-neighbor search on tree data structures to locate the correct answer early even

in high dimensional data, but the failure to validate efficiently.
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Applications requiring bounded errors require error-constrained search. However,

for applications with limited time, it is suboptimal to spend the available time in

guaranteeing the error bound instead of possibly improving upon the current result.

However, the argument against validation is not necessarily that straightforward –

part of the work done in the validation phase is to look for better candidates. Hence an

easy fix to any error-constrained search algorithms is, if possible, to have a provision

to stop the search algorithm at any time. This would allow the search algorithm to

locate and validate as long as there is time available, while being able to return an

answer within the time constraint by cutting the search algorithm short if required.

And this is precisely the basis for some of the time-constrained search algorithms I

will present in Chapter 4.

Remark. Note that there is a significant difference between the way LSH and the

way tree-based error-constrained search algorithms deal with approximations. The

usual tree-based search strategy (Algorithm 1) ensures the upper bound on the ap-

proximation by visiting all required parts of the tree, guaranteeing the approximation

algorithmically, yielding more stable and accurate results (obviously, at the cost of

some efficiency). With LSH, a query is answered by collecting the points in the

buckets of the hash lookup tables which contain the query. The number of lookup

tables used is chosen by making the failure probability small (here failure implies

the inability to find an approximate nearest-neighbor). However, the actual search

approximation is handled during the preprocessing where the buckets are created

so as to answer (1 + ε)-distance-approximate nearest-neighbor queries. Unlike the

tree-based algorithm, the LSH search algorithm does not algorithmically verify the

approximation guarantee. This makes LSH a highly efficient algorithm, albeit, at the

cost of having inaccurate as well as no results with very low probability.

An interesting observation is that the requirement to consider multiple hash
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lookup tables makes search with LSH easily suited for the time-constrained setting –

the search can just go through the lookup tables one-by-one until time runs out. The

only remaining issue is the choice of the approximation level that is generally required

for the creation of the binary codes for the points – small ε indicates that only really

close points get hashed into the same bucket, while a larger value of ε allows for less

close points to also be hashed into the same bucket. This can be mitigated by creat-

ing hash tables for multiple values of approximations (multiple scales) at the cost of

extra storage requirements. In this scenario, the time-constrained search algorithm

can begin with hash lookup tables for the smallest scale and move up to larger scales

as time permits. This is probably how LSH is usually applied in large scale limited

time searches. This does imply that time-constrained search is not sometime entirely

new and has possibly existed in practice for quite a while. However, we are not aware

any formalization of time-constrained search in literature.

The goals of time-constrained search is very similar to the goals of the paradigm

of online aggregation proposed by Hellerstein et al. (1997) for the task of computing

aggregates in a database. The goal of this work is to compute aggregates (such as

mean, counts, etcetera) for a chosen attribute(s) in a database table, but with an

added desire to get good estimates early on, improving on the estimate with more

time available. This is similar to our goals for time-constrained search where we desire

a good neighbor candidate early on even if we cannot verify if our neighbor candidate

is in fact good.

However, the focus in online aggregation is on aggregation tasks (as suggested by

its name). Since early estimates are desired with confidence intervals, the authors sug-

gest random access of the data that is being aggregated, emulating random samples

from the data. Any form of sorting or indexing of the data, leading to non-random se-

quential access of the data, will lead to biased estimates. The goal in time-constrained

search is a little different – we explicitly desire a non-random sequential access of the
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data; we desire candidates closer to the search query as early as possible. This im-

plies that some form of sorting or indexing is desirable in time-constrained search.

This difference arises from the fact that nearest-neighbor search is more of an opti-

mization task than an aggregation task, and the techniques used for aggregation are

not directly applicable to the task of similarity search. However, the overall goals of

good early solutions (possibly without validation) in online aggregation aligns with

our goals in time-constrained search.

2.6.2.1 Doing Better in Time-Constrained Search

In the time-constrained setting, the goal is to locate the similar objects as early as

possible. In LSH, this is being achieved by “learning” shorter and shorter binary

codes that capture maximum information (implying high independence and variance

among the bits) which are also easy to generate for a new out-of-sample query (Section

2.4). In BSP-trees, this can be achieved by “learning” trees on which the depth-first

algorithm locate the similar objects early on, preferably in the first leaf visited. In

terms of Figure 12, this implies a highly left-skewed green histogram.

In Chapter 5, we learn BSP-trees with improved time-constrained search perfor-

mance. While there is a lot of research in learning hash functions, we focus on learning

BSP-trees. This choice is primarily because BSP-trees present a hierarchical view of

the data with increasing resolution, which allows any search algorithm to definitely

find the best match if enough time is available (which is not necessary for LSH based

methods). Moreover, hash based methods are prone to low recall (implying small

number or zero returned neighbors), whereas the hierarchical tree can easily provide

any desired amount of recall.
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CHAPTER III

RANK APPROXIMATE SEARCH

When approximation is involved, a notion of error is necessary. The traditional form of

approximation of optimization problems focus on the relative value error. The quality

of an achieved solution depends on how close (relatively) the value of the objective

function at this solution is to the optimal value of the objective function. Nearest-

neighbor search is effectively an optimization problem, albeit a discrete optimization

problem, where we seek the optimal solution from a large number of choices. Hence

value approximation appears natural. However, discrete approximation presents a

new form of error – the number of solutions better than our achieved solution. In

this chapter, I explore this notion of error, which I call rank error.

The notion of rank approximation is introduced formally in Section 3.1 along with

its application to k-nearest-neighbor search. I present a simple random sampling

based algorithm for rank approximate search in Section 3.2, and combine this to a

tree-index-based search scheme to have a possibly more efficient algorithm with better

guarantees in Section 3.3. In Section 3.4, I evaluate the efficiency and accuracy of

the proposed algorithms for rank approximate search and conclude with a discussion

of the empirical results.

3.1 A New Notion of Error

The rank approximate nearest-neighbor search was recently proposed in Ram et al.

(2009b). We slightly modify the definition for simplicity as follows (the following

definition is for nearest-neighbor search in a metric space, but can easily be modified

for general similarity search):
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Rank approximate nearest-neighbor search. Given a dataset R ⊂ X of size n

in a metric space (X ,d), τ ∈ (0, 1) and a query q ∈ X , efficiently find a point p′ ∈ R

such that

|{r ∈ R : d(q, r) < d(q, p′)}|
n

≤ τ. (10)

This formulation of approximate nearest-neighbor search introduces the approxima-

tion in the ranks of the nearest-neighbor (as opposed to the distance values). The

true nearest-neighbor for a query is the rank 1 nearest-neighbor with a rank-error of

zero; this new approximation accepts any neighbor with a true rank less than τn + 1

with respect to the query. Another way of looking at it is that this form of approxima-

tion allows the search to return any point within the closest 100τ%-tile of the points

for a query. For a dataset of size n = 100, a τ = 0.05-rank-approximation implies

that any point among the 6-nearest-neighbors of the query is acceptable. Similarly,

for n = 1000, the same τ = 0.05-rank-approximation accepts any point among the

51-nearest-neighbors of the query.

Rank approximation has the following advantages over distance approximation:

(1)This form of approximation is immune to the concentration of the pairwise distance

– for the same value of n and τ, this approximation is the same whether all the

pairwise distances are in the interval [100.0, 101.0] or the interval [100.0, 10000.0].

It is important to note that this robustness of rank approximation does not imply

that the computational cost of achieving this approximation is independent of the

distribution of the pairwise distances. (2) Given the size of the dataset, the level of

approximation, τ, can be intuitively selected as per the application. For example, τ

can be chosen as is – as the nearest 100τ%-tile of the data for the query. τ can also be

chosen such that any point among the t-nearest-neighbors of the query is desired (in

this case, τ = (t− 1)/n). No analysis of the pairwise-distance distribution is required

to select an appropriate value of τ. Obviously, a very low value of τ might imply

no-approximation (τ < 1/n). But this can be detected without any computation.
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The k-nearest-neighbor search can be approximated in multiple ways in the rank

approximation framework. We consider the approximation which allows the method

to return any k points within the nearest τn points to the query. This is formally

defined as:

Rank approximate k-nearest-neighbor search. Given a dataset R ⊂ X of size

n in a metric space (X ,d), τ ∈ (0, 1) and a query q ∈ X , efficiently find a set Sτk (q) ⊂ R

of k points such that∣∣{r ∈ R : d(q, r) ≤ maxp∈Sτ
k (q)

d(q, p)
}∣∣

n
≤ τ. (11)

3.2 Rank Approximate Search by Random Sampling

Given a query and its nearest-neighbor in a dataset R , it is easy to compute the

distance error of any new point in R . However, the same is not true when dealing

with ranks – given a query and its nearest-neighbor in R , it is not generally possible to

guess the rank of any new point with respect to the query. The ordering information

is required to obtain the rank of a new point and this information is much harder

to obtain (possibly requiring computation of all pairwise distances of the query with

points in R). This is the cost of working with a most robust form of approximation.

This is possibly one of the reasons why distance approximate nearest-neighbor search

is usually considered. Even though rank approximation appears hard, we present

a really simple algorithm to achieve any user-specified rank approximation in this

subsection.

We utilize random sampling to obtain this robust form of approximate nearest-

neighbor search with high probability. Consider a τ-rank-approximate search prob-

lem. For a query q, if a single point p1 is randomly sampled from R , then the

probability that p1 is not among the closest τ fraction of points to q is given by:

Pr

( |{r ∈ R : d(q, r) < d(q, p1)}|
n

> τ

)
≤ 1− τ.
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If m samples p1, p2, . . . , pm are made from S with replacement, then the probability

that none of them is among the closest τ fraction of points to q is given by:

Pr


∣∣∣∣{r ∈ S : d(q, r) < min

i=1,...,m
d(q, pi)}

∣∣∣∣
n

> τ

 ≤ (1− τ)m.

Hence, if the rank approximation is desired with probability greater than (1 − δ),

then the number of samples required can be determined by choosing the smallest

m satisfying the inequality (1 − τ)m ≤ δ. Algorithm 8 summarizes this method.

Thus, the rank approximate search via random sampling has the following runtime

guarantee:

Theorem 3.2.1. For a given set R ⊂ RD of n points and a query q, and for τ ∈ (0, 1)

and δ > 0, the τ-rank-approximate nearest-neighbor of q can be obtained via random-

sampling with probability at least (1− δ) in time O
(⌈

log 1/δ
log 1/(1−τ)

⌉)
.

Algorithm 8 Rank approximation by random sampling

Input: Dataset R , query q, rank-approximation τ, failure probability δ
Output: τ-rank-approximate nearest-neighbor of q

m←
⌈

log 1/δ
log 1/(1−τ)

⌉
S ′ ← m random samples from R
return argminp∈S ′ d(q, p).

The runtime of Algorithm 8 depends on the number of samples m = d(log 1
δ
/ log 1

1−τ)e.

The dependence on the dimension is solely through the computation of distances d(·, ·)

of the query to the samples. These distance computations can usually be done in O(D)

time. It is interesting to see that this runtime bound has no explicit dependence on

the size n of the set S . This is because the rank approximation factor τ implicitly

depends on n. The dependence on n can be made explicit in the following corollary

by considering the rank approximation in a different manner:
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Corollary 3.2.1. For a given set S ⊂ RD of n points and a query q, and for 1 < k < n

and δ > 0, a neighbor among the k-nearest-neighbors of q (implying the (k − 1/n)-

rank-approximate nearest-neighbor of q) can be obtained via random-sampling with

probability at least (1− δ) in time O
(⌈

log 1/δ
log 1/(1−(k−1)/n)

⌉)
.

Caveat of Algorithm 8. For a fixed k and δ, the runtime of Algorithm 8 grows

linearly in n. This can be seen as follows: For a fixed k , if t(n0) is the time taken

by Algorithm 8 for n0 points, then the time taken for cn0 points t(cn0) > ct(n0) for

c > 1. This is because |log(1− x)| > c |log(1− x/c)| , by the Taylor-expansion of

log(1− x) for x ∈ (0, 1) and c > 1. This implies that, for a fixed k and δ, the runtime

of Algorithm 8 grows at least multiplicatively with the size of the set R . Contrast

this to an additive growth of an algorithm with only logarithmic dependence on the

size of the set for a fixed k – if t ′(n0) = C log n0, then t ′(cn0) = C log c + t(n0).

3.2.1 Random Sampling for k > 1

For rank approximate k-nearest-neighbor, if m samples p1, p2, . . . , pm are made from

R with replacement, and assume without loss of generality, that p1, . . . , pk are the k

closest point to q among the m samples. Then the probability that at least k of those

samples are among the closest τ fraction of points to q is given by:

Pr

( |r ∈ S : d(q, r) ≤ d(q, pk)|
n

≤ τ
)

=
m∑

j=k

(
m

j

)
τj(1− τ)m−j .

Hence, finding the smallest m satisfying the following inequality

m∑
j=k

(
m

j

)
τj(1− τ)m−j ≥ 1− δ

gives us the appropriate choice for m. Since the above equation does not have a closed

form, it can be solved using binary search in the range [k , n]. Since we are considering

sampling with replacement, it is possible that some points are sampled more than

once, resulting in less than k distinct neighbors satisfying the rank approximation.
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However, random samples with replacement from a large set are usually distinct.

And the procedure to compute the minimum required number of samples can be

easily modified to consider sampling without replacement for distinct samples.

3.2.2 Generality of the Random Sampling Technique

Algorithm 8 can be used for rank approximate nearest-neighbor search even if d(·, ·)

is not a metric. In fact there is no restriction for the dataset S to even be in any

vector space if there is a way to compute the distance between any pair of points

(or equivalently the similarity). The random sampling technique will work for any

similarity function for the rank approximation of any maximum similarity search.

Moreover, this same technique can be used to obtain the rank approximate version

of the farthest-neighbor (or minimum similarity search). However, this generality

obviously comes with the cost of the (previously discussed) multiplicative scaling of

the runtime of the algorithm.

3.3 Rank Approximate Search via Stratified Sampling

As discussed in the previous section, τ-rank-approximate nearest-neighbor search with

simple random sampling (Algorithm 8) does not scale well with increasing number

of points n in the database if τ = Ω(1/n) (that is, τ decreases with increasing n).

The minimum required number of samples, m, grows at least multiplicatively with

the factor of increase in the size of the dataset. However, if the random sampling is

executed in a manner that allows the search to ignore the samples farther away from

the query, the computation can be more efficient than O(m).

A tree data structure can index the dataset. With a tree index on R , random

samples from R are effectively indexed. If the random samples themselves are indexed

then the random samples closer to the query q can be accessed before random samples

from farther parts of the dataset. This indexing provides us with two potential

advantages – (i) having obtained random samples closer to q, the farther parts of the
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set R for q can be removed from computation with the branch-and-bound technique

on the tree if possible (hence ignoring the required samples from the farther parts of

the set R and saving computation), and (ii) stratified sampling usually implies lower

variance in the quality of the results.

q

q

1

(a) Sampling the whole set

q

1

(b) An indexing of the set

q

q

Node “pruned” by
branch-and-bound

Node approximated by
random sampling

1

(c) Sampling from the index

Figure 13: Rank approximate search with random sampling.

It is important to note that both these possible advantages depend on how well the

tree (or any index) is capable of indexing the set. If the indexing is fairly tight, the

branch-and-bound technique should be capable of saving more computation while

picking high quality candidates (with low error) from the index. Figure 13 pro-

vides an example of how sampling from a tree might save computation: Figure 13(a)

demonstrates the sampling by Algorithm 8 over the whole set of points. Figure 13(c)

demonstrates that if the set is indexed into two tighter nodes of a tree (as shown in

Figure 13(b)), samples can be obtained first from the set of points closer to q, while

samples from the farther set of points can be subsequently removed from computation

by branch-and-bound.

3.3.1 Random Sampling on a Binary Tree

If the dataset R is indexed in a (binary) tree T , and m random samples are required

from the whole set, we require a way to randomly sample points from subsets of the

data present in the nodes of T without violating the requirement of the sampling being

random from the whole of the dataset. The following fact provides a way to sample
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points from just the nodes of the tree and still provide the required randomness:

Fact 3.3.1. Let ml and mr be the number of random samples from the subsets Sl

and Sr of the dataset S respectively, where S = Sl ∪ Sr , |Sl | = nl , |Sr | = nr and

|S | = n = nl +nr . Then, making m random samples from S is equivalent to making ml

and mr random samples from Sl and Sr respectively if ml+mr = m and ml/mr = nl/nr .

This fact provides a way to decide how much to sample from a particular node

without violating the τ-rank-approximation (with high probability). This can be

used to obtain a lower bound on the number of samples required to approximate

the unpruned and unexplored part of the tree. Since the ratio of the sample size to

the population size is a constant β = m/n, Fact 3.3.1 is generalizable to any level

of the tree. Using these tools, we present a tree-based algorithm combining random

sampling with the usual branch-and-bound technique.

3.3.1.1 The Tree-based Rank Approximate Search Algorithm

The complete rank approximate search algorithm is presented in Algorithm 9. This

algorithm is an extension of the tree-based depth-first branch-and-bound exact search

algorithm using binary trees. The dataset R is indexed as a binary tree rooted at

Troot . After obtaining the number of required samples m and the sampling ratio β, the

recursive sub-routine TreeBasedRANN(q,T ,β) computes a τ-rank-approximate

nearest-neighbor of the query q. During the search, if a leaf node is reached (since

the tree may not be balanced), the best candidate from the leaf is computed with

exhaustive search. If a non-leaf node cannot be approximated, the child node closer

to the query is always traversed first.

The branch-and-bound part of the algorithm works as follows – if the minimum

possible distance of q to any tree node T (min dist to node(q,T )) is less than q’s

distance to its current best candidate q.nn, the node T is considered for traversal,

otherwise the node T is pruned from the computation. The branch-and-bound section
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Algorithm 9 Rank Approximate search via Random Sampling on a Binary Tree

Input: Dataset R , query q, rank-approximation τ, failure probability δ
Output: τ-rank-approximate nearest-neighbor of q

m←
⌈

log δ
log(1−τ)

⌉
, β← m/|R |, Troot ← BinaryTree(R)

//T .S contains the sets of points contained in the node T
//T .lchild & T .rchild denote the left and right child of T respectively
q.ub←∞, q.nn← ∅.
//q.nn is the current best neighbor candidate for the query q & q.ub = d(q, q.nn)
TreeBasedRANN(q,Troot,β) //The depth-first tree-search sub-routine
return q.nn.

TreeBasedRANN(query q, Tree Node T , Sampling Ratio β)

if q.ub > min dist to node(q,T ) then
// Cannot be pruned by branch-and-bound

3: if is a leaf(T ) then
q.nn← argminr∈T .S∪{q.nn} d(q, r); q.ub← d(q, q.nn)

else if dβ · |T .S |e ≤ MaxSamples then
6: // Can approximate by sampling

S ′ ← dβ · |T .S |e random samples from the tree node T
q.nn← argminr∈S ′∪{q.nn} d(q, r); q.ub← d(q, q.nn)

9: else
// Otherwise recurse in a depth-first manner
if min dist to node(q,T .lchild) ≤ min dist to node(q,T .rchild) then

12: TreeBasedRANN(q,T .lchild,β), TreeBasedRANN(q,T .rchild,β)
else

TreeBasedRANN(q,T .rchild,β), TreeBasedRANN(q,T .lchild,β)
15: end if

end if
end if

of the algorithm does not introduce any approximation to the search. The intended

approximation occurs in the unpruned portion of the tree. The traversal down the

tree is stopped at any node T which can be summarized within desired error bounds

with a small number of samples (below a certain threshold MaxSamples). Required

number of points, (dβ · |T .S |e), are sampled from the set of the points contained in

that node (T .S), and the best candidate is selected via exhaustive search over these

samples. The following theorem proves the correctness of the Algorithm 9:

Theorem 3.3.1. For a query q and a dataset R, and specified values of δ and τ,
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Algorithm 9 computes a τ-rank-approximate nearest-neighbor of q in R with probability

at least (1− δ).

Proof. A query requires at least m =
⌈

log δ
log(1−τ)

⌉
random samples from the set R to

have a τ-rank-approximate nearest-neighbor with probability at least (1 − δ). Let

β = (m/|S |). Let T .S denote the set of points contained in a node T . In Algorithm

9, sampling occurs when a base case of the recursion is reached. There are three base

cases:

• Case 1 - Exact Pruning (if q.ub ≤ min dist to node(q,T )) (Line 1): Then

number of points required to be sampled from the node is at least dβ · |T .S |e.

However, since this node is pruned, we ignore these points and nothing needs

to be done in the algorithm.

• Case 2 - Exact Computation (if q.ub > min dist to node(q,T ) and is a leaf(T ))

(Line 3): In this subroutine, the best candidate is obtained by exhaustive search.

Hence number of points actually sampled is |T .S | ≥ dβ · |T .S |e.

• Case 3 - Approximate Computation (if q.ub > min dist to node(q,T ) and

dβ · |T .S |e ≤ MaxSamples) (Line 6): In this subroutine, exactly β · |R | samples

are considered.

Let the total number of points effectively sampled from S be m′. The recursion implies

that every subset of S is encountered in any one of the aforementioned three base

cases of the algorithm. Hence, m′ ≥ dβ · ne = m, giving us the statement of the

theorem.

Algorithm 9 is not as general as Algorithm 8 and relies on the triangle-inequality

of the distance metric d(·, ·) to employ the branch-and-bound technique. Hence the

runtime of Algorithm 9 will have some implicit dependence of the data dimensionality.
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3.3.2 Random Sampling on a Cover Tree

The cover tree data structure (Beygelzimer et al., 2006) has been shown to have

rigorous runtime bounds for a single nn query. The cover tree based rank-approximate

search algorithm is presented in its entirety in Algorithm 10. The main goal of this

is to leverage the existing cover tree analysis to obtain a runtime bound for rank-

approximate search (Algorithm 10).

Analysis. The runtime analysis of nearest-neighbor search with cover trees makes

use of a data-dependent quantity known as the expansion constant. While our analysis

here mostly leverages the original cover tree analysis and does not explicitly make

use of the definition of the expansion constant, we provide the precise definition here

for completeness. We will discuss the expansion constant in more detail in Chapter

5. It is defined as following:

Definition 3.3.1. For p ∈ R, let B(p,∆) = {r ∈ R : d(p, r) < ∆}. Then the

expansion constant of (R ,d) is defined as the smallest c ≥ 2 such that |B(p, 2∆)| ≤

c |B(p,∆)| ∀p ∈ R and ∀∆ > 0.

From Beygelzimer et al. (2006, Lemma 4.3), the maximum depth of any point in

a cover tree is O(c2 log n) ≤ K c2 log n for some K . Now there are two ways in which

subtrees are removed at each level. It is pruned either because the best possible can-

didate in the subtree is farther than the current best candidate for the query (subtree

“pruned” by branch-and-bound) or because the subtree contains small enough

number of points to be approximated by a single sample (subtree approximated by

random sampling).

Consider an explicit node r whose subtree is not approximated by random sam-

pling. Then β|L(r)| > 1. Let d be the minimum depth of any such subtree by itself.

The minimum depth would be achieved when the branching factor is tight at each
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level. By Beygelzimer et al. (2006, Lemma 4.1), this implies that for the smallest

possible depth d , (c4)d > (1/β), giving us

d >
log(1/β)

log c4
.

This implies that the maximum depth of any explicit node visited by the algorithm

is given by K ′ = K c2 log n − (log(1/β)/ log c4).

Algorithm 10 Rank Approximate search via Random Sampling on a Cover Tree

Input: Dataset R , query q, rank-approximation τ, failure probability δ
Output: A τ-rank-approximate nearest-neighbor of q

m←
⌈

log δ
log(1−τ)

⌉
, β← m/|R |, T ← CoverTree(R)

// C∞ corresponds to the tree root ; Ci contains all nodes in the tree at level i
// L(r) corresponds to the set of points in the subtree rooted at point r
q.ub←∞, q.nn← ∅.
//q.nn is the current best neighbor candidate for the query q & q.ub = d(q, q.nn)
TreeBasedRANN(q,Troot,β)
return q.nn.

TreeBasedRANN(query q, Cover Tree T , Sampling Ratio β)

Initialize S∞ ← C∞.
for i =∞ to −∞ do

S ← {Children(r) : r ∈ Si} //the set of children of Si .
q.nn← argminr∈S∪{q.nn} d(q, r); q.ub← d(q, q.nn)
S ′ ← {r ∈ S : d(q, r) ≤ q.ub + 2i}
// all children of Ri whose subtree might contain the q’s nn
Si−1 ← {r ∈ S ′ : β|L(r)| > 1}
//the set of children of Si which cannot be approximated by sampling at level i
S ′′ ← { some r ′ ∈ L(r)∀r ∈ S ′ \ Si−1}
//sample from the subtrees rooted at nodes in S ′ which can be approximated
q.nn← argminr∈S ′′∪{q.nn} d(q, r); q.ub← d(q, q.nn)

end for
q.nn← argminr∈S−∞∪{q.nn} d(q, r)

Following the original cover tree analysis, let S∗ be the last explicit (completely

unpruned) Si considered by the algorithm. Then the maximum number of iterations is

bounded by K ′|S∗| ≤ K ′ ·maxi |Si |. Total number of children encountered throughout

the whole algorithm bounded by K ′ ·c4 ·maxi |Si |. The total time required throughout
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the algorithm to decide which nodes require explicit descend (nodes that cannot be

pruned by branch-and-bound) is given by K ′ ·maxi |Si |2.

The amount of work done to approximate small subtrees with samples never ex-

ceeds the work done in the previous decision phase, which in turn, is bounded by the

product of the number of iterations K ′ ·maxi |Si |2. Hence the total time taken by the

algorithm is bounded by

2K ′max
i
|Si |2 + K ′max

i
|Ri |c4.

Now maxi |Si | is upper bounded by c5 as in the original algorithm because the

pruning based on distances is not changed, and the sampling only makes Si smaller.

Hence the final runtime is bounded by 3c10K ′. This gives us the following result:

Theorem 3.3.2. Given a cover tree T on a dataset R and query q, let the expansion

constant of ({q}∪R) be c. Then Algorithm 10 returns a τ-rank-approximate neighbor

of q with probability at least 1− δ in O
(

c10
(

c2 − 1
log c4

)
log n + c10

log c4
log 1/δ

log 1/(1−τ)

)
time.

This analysis is not very tight since it implies that it has effectively the same

worse-case runtime guarantee as the exact search runtime guarantee of O(c12 log n)

with cover trees (Beygelzimer et al., 2006). However, the implications are meaningful;

the result implies that the algorithm is logarithmic in n, however, the approximation

allows for a slight reduction in the dependence on the expansion constant c in the

first term, while implying more work for smaller approximations in the second term

of the bound.

3.4 Empirical Evaluation of Rank Approximate Search

We evaluate the performance of the proposed Algorithms 8 (RS) and 9 (TSS) on

various metrics in this section. For the tree-based rank-approximate search, we use

the kd-trees (Friedman et al., 1977) to demonstrate the performance of TSS with the

simplest form of trees. The axis-aligned splits of the kd-tree are performed along the
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mid-point of the dimension with the largest variation. The kd-tree is built recursively

and the maximum leaf size is 20. The value of MaxSamples in TSS (Algorithm 9) is

also chosen to be 20. While the best values for both the leaf-size and MaxSamples can

be chosen by cross-validation, we just considered a single value for our experiments.

The rank approximate search algorithms are implemented in MLPACK (Curtin et al.,

2012)1.

We begin by demonstrating their efficiency over tree-based exact search methods

for different levels of rank-approximation and their scaling with respect to the size of

the dataset. Following that, we compare our proposed algorithms to Locality-sensitive

hashing (LSH) with p-stable distributions (with p = 2) (Datar et al., 2004) in terms

of their error/search-time tradeoff. We consider both forms of nearest-neighbor error,

distance error and rank error (we will provide the exact definition of the errors in the

relevant subsection).

Table 3: Details of the datasets.

Dataset Abbrv. # points # queries # dimensions
Synthetic 10-dim ball unitSp10 100000 100000 10
Synthetic 100-dim ball unitSp100 100000 100000 100
Synthetic 1000-dim ball unitSp1k 100000 100000 1000
Covertype covtype54 380000 200000 54
Protein Homology bio74 145000 139000 74
Quantum Physics phy78 50000 100000 78
MNIST mnist784 60000 10000 784
Optdigits optdig64 3823 1797 64
Pendigits pendig16 7494 3498 16
Corel corel32 27750 10000 32
Layout Histograms lh30 7500 2500 30
Images im4096 523 175 4096
80 million tiny images tinyIm384 100000 100000 384
Live Journal blog liveJ25k 10000 1000 25327

1The code is available at the following repository: http://svn.cc.gatech.edu/fastlab/mlpack/trunk.
The source code for the rank-approximate search methods (RS & TSS) is in the following sub-
directory: http://svn.cc.gatech.edu/fastlab/mlpack/trunk/src/mlpack/methods/rann.
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Datasets. We use a variety of datasets. We use 3 synthetic datasets (generated by

uniformly sampling from a unit hypersphere in 10, 100 and 1000 dimensions) and the

following real datasets: (i) Science datasets – we use the Covertype set (Blake and

Merz, 1998) and the Protein homology and the Quantum physics sets from the KDD

cup 2004, (ii) Handwritten digits datasets – we use the MNIST (LeCun, 2000) and

the Optdigits and Pendigits sets (Blake and Merz, 1998), (iii) Image datasets – we use

the Corel, Layout Histogram, Images (Tenenbaum et al., 2000) sets and a subset of

the 80 million tiny images (Torralba et al., 2008), (iv) Text dataset – we consider the

LiveJournal blog dataset (Kim et al., 2011). The sizes of the datasets are provided

in Table 3.

The datasets are chosen based on the applications of nearest-neighbor search.

Nearest-neighbor search is heavily used in machine learning, hence justifying the

choice of multitude of machine learning datasets from the UCI Machine Learning

Repository (Blake and Merz, 1998). Image search is also a very common application of

nearest-neighbor search. Hence I chose these commonly used image datasets in search

literature (such as Corel and Layout Histogram) as well as datasets in computer vision

literature (such as Tiny Images). Similarity search is also widely used in document

search and scientific computing, hence we chose some widely used sets from data

mining literature (such as the Protein Homology and Quantum Physics datasets from

KDD cup 2004).

3.4.1 Efficiency and Scaling

We begin by evaluating the efficiency and scaling of the rank-approximate search

algorithms RS and TSS. We compare the efficiency of the approximate algorithms to

the tree-based exact search algorithm. We consider the speedup of the algorithm in

question over the exhaustive search algorithm as the measure of efficiency. For the

scaling experiments, we report the actual search times of the algorithms.
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(a) k = 1, τ = 0.001%, 0.01%, 0.1%, 1%&10%
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(b) k = 10, τ = 0.01%, 0.1%, 1%&10%

Figure 14: Efficiency over exact search. The speedups of 3 algorithms for k-
nearest-neighbor search over exhaustive search are presented here. For each dataset,
the leading white bar represents the speedup of tree-based exact nearest-neighbor
search, the blue bars indicate the speedup of RS and the red bars indicate the speedup
of TSS for different levels of rank-approximation with δ = 0.05. The missing bars for
some datasets indicate that the approximation is too low (τn ≤ k) (please view in
color).
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3.4.1.1 Efficiency over exact search

We present the speedups of the exact tree-based algorithm and our proposed rank

approximate algorithms for k-nearest-neighbor search over the exhaustive search al-

gorithm in Figure 14 with varying values of τ and δ = 0.05. RS (blue bars) and TSS

(red bars) exhibit increasing speedups with increasing levels of approximation. For

appropriately high levels of approximation (τ ≥ 1%), both TSS and RS outperform

the tree-based exact algorithm. The exact search algorithm performs slightly better

than the approximate algorithms for very low levels of approximation in some cases

(for example, for k = 1 bio74, corel32, covtype54, optdig64, unitSp10).

For the datasets where the exact tree-based search algorithm does not exhibit any

speedup over exhaustive search, the approximate algorithms perform better than the

exact algorithms as expected, with RS performing better than TSS for all levels of

approximation. For the datasets where the exact algorithm shows some improvement

over exhaustive search (bio74, corel32, covtype54, lh30, pendig16, phy78 & unitSp10),

TSS outperforms RS for low levels of approximation (τ < 1%). For higher levels of

approximation in almost all datasets, RS slightly outperforms TSS.

3.4.1.2 Scaling

The scaling of the rank approximate algorithms (RS and TSS) with respect to the

number of instances in the set is presented for 3 of the larger real datasets in Figures

15 & 16 The scaling is considered under two conditions – (i) fixed level of rank

approximation τ with τ = 0.01%, 0.1%, 1%&10% and δ = 0.05 in all cases (only the

cases where τn > 1 are reported), and (ii) fixed level of τn (hence finding a neighbor

among the dτne-nearest-neighbors) with dτne = 5, 10, 50, 100 and δ = 0.05 in all

cases.

For a fixed value of τ (Figure 15), the runtimes of RS and TSS appear to be

independent of the size of the dataset. While the scaling of RS and TSS appear to
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Figure 15: Scaling with fixed τ. Time taken is measured in seconds and values
chosen for τ are 0.01%, 0.1%, 1% & 10% (please view in color).
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Figure 16: Scaling with fixed τn. Time taken is measured in seconds and values
chosen for dτne are 5, 10, 50 & 100 (please view in color).

be similar for a fixed τ, the actual values of the runtimes are different for RS and

TSS. TSS has significantly lower runtimes than RS for lower values of τ in the bio74

and covtype54 datasets, while RS performs slightly better than TSS for the tinyIm384

set for low values of τ. For larger values of fixed τ, both TSS and RS have similar

runtimes.

The scaling behavior of RS and TSS varies in the case where τn is fixed (Figure

16). The runtimes of RS increases linearly with the number of points in all datasets

for all values of τn. Under the same conditions, TSS exhibits a sub-linear dependence

on the number of points for the bio74 and covtype54 datasets, and a linear dependence

on the number of points for the tinyIm384 set. The improvement of TSS over RS

(where there is any improvement) appears to decrease with increasing values of τn.
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3.4.1.3 Discussion

In Figure 14, TSS performs better than RS on datasets for low levels of approxi-

mations (τ < 1%) where the exact branch-and-bound algorithm is already signif-

icantly more efficient than the exhaustive search. This is expected because TSS

saves computation by pruning away parts of the dataset far away from the query (by

branch-and-bound). However, for higher levels of approximation, the performance of

TSS and RS become more comparable because the number of samples required for

guaranteeing the approximation is very low and the computational overhead of the

tree-traversal in TSS outweighs any gains obtained by reducing the number of samples

to be considered. For datasets where the exact algorithm records very little speedups

over the exhaustive search, TSS records lower speedups than RS for every level of

approximation. This is expected because all these datasets have moderate to high

dimensionality and the kd-tree is unable to obtain significant computational savings

from the branch-and-bound technique and the tree-traversal overhead outweighs any

gains obtained by branch-and-bound.

This effect is also exhibited in the scaling of RS and TSS. As presented in the

Theorem 3.2.1, for a fixed τ, the runtimes of RS are seen to be independent of the

number of points n in the set. For the bio74 and covtype54 sets, the runtimes of TSS

are better than that of RS because the tree-based branch-and-bound algorithm is

capable of obtaining significant computational gains. However, the difference between

their runtimes reduce as the level of approximation τ increases because the required

number of samples is very low. For the tinyIm384 set, the runtimes of RS is better

than that of TSS since the tree-traversal overhead outweighs any computational gain

obtained by the branch-and-bound. As discussed in Corollary 3.2.1, for a fixed k =

dτne, the runtimes of RS are seen to increase linearly with n for all datasets, while TSS

appears to have a sub-linear dependence on n for the bio74 and the covtype54 datasets

since the branch-and-bound provides significant computational savings. However, for
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the tinyIm384 set, TSS appears to have a linear dependence on n similar to RS

because the branch-and-bound is unable to provide any gain.

As discussed earlier, the performance of TSS appears to depend heavily on how

successful the tree is in indexing the dataset and in allowing the branch-and-bound

algorithm to obtain significant computational gains. A indexing scheme more sophis-

ticated than kd-trees can possibly present much better performance of TSS. However,

for high levels of rank approximation, RS is simpler and more efficient.

3.4.2 Error/Search-time Tradeoff for Approximate Search

Now we compare the error/search-time tradeoff of the two proposed algorithm RS and

TSS to locality sensitive hashing (LSH) (Datar et al., 2004). The preprocessing of

LSH requires three parameters for the first-level hash and two additional parameters

for the second-level hash. The parameters for the first-level hash and our choices

for them are as follows: (i) the number of projections in a hash table (we choose 10

projections per hash table), (ii) the number of hash tables (we use 5, 10, 15, 20, 25

and 30 hash tables2 for the first-level hash to study the error/search-time tradeoff of

LSH), (iii) the bin-width (this parameter should depend on the pairwise distances of

the dataset, so we use the average pairwise distance in the dataset from 25 random

pairs as the bin-width). The parameters of the second-level hash are the hash size

(we choose 99901) and the bucket size in the hash (we choose 300). The 2-stable LSH

is also implemented in MLPACK (Curtin et al., 2012)3.

We present the error/search-time tradeoff of the three algorithms for two different

forms of nearest-neighbor error, rank error τ and distance error ε , defined as follows:

for the approximate nearest-neighbor p′ ∈ R for the query q,

• τ = |{p∈R : d(q,p)<d(q,p′)}|
|R| , • ε = d(q,p′)−minp∈R d(q,p)

minp∈R d(q,p)
.

2We did not choose more than 30 hash tables because of memory constraints.
3The code is available at the following repository: http://svn.cc.gatech.edu/fastlab/mlpack/trunk.

The source code for search with locality-sensitive hashing (LSH) is in the following sub-directory:
http://svn.cc.gatech.edu/fastlab/mlpack/trunk/src/mlpack/methods/lsh.
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For each form of error, we present the mean, standard deviation and the maximum

of the error over all queries. We remove the instances where LSH does not return a

single neighbor candidate for any one of the queries since it is not clear what the rank

or distance error should be. We consider four sets – three sets, liveJ25k, mnist784 and

tinyIm384, in which the exact tree-based algorithm was unable to obtain any speedup

over the exhaustive search in Figure 14, and one set, phy78, where the exact tree-

based algorithm did get more than an order of magnitude speedup over the exhaustive

search. The results are presented in Figures 17, 18, 19 & 20. Of these sets, tinyIm384

and phy78 do contain a lot of near duplicates and can qualify as instances of the

“planted nearest-neighbor” model. Each plot contains the error/search-time tradeoff

of RS (blue), TSS (red) and LSH (green).
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Figure 17: Error/search-time tradeoff for the liveJ25k set. Time taken is
measured in seconds (best viewed in color).

For the liveJ25k dataset (Figure 17), RS performs the best in terms of τ. LSH

has a better mean rank error tradeoff than TSS. However, in terms of standard

deviation and maximum rank error, TSS performs significantly better than LSH,
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while still performing worse than RS. In terms of the distance error ε, RS and LSH

have comparable performance, and TSS performs the worst for each case.
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Figure 18: Error/search-time tradeoff for the mnist784 set. Time taken is
measured in seconds (best viewed in color).

In the mnist784 dataset (Figure 18), RS and LSH appear to have similar behavior

in terms of mean, standard deviation and maximum rank error with RS exhibiting

better error/time tradeoff for the maximum rank error. However, in terms of distance

error, LSH performs significantly better than RS. RS outperforms TSS significantly

in all cases.

Similar to the mnist784 set, RS and TSS have similar rank error time tradeoff for

the tinyIm384 set (Figure 19), with RS outperforming LSH in terms of the maximum

rank error. RS performs better than TSS for all error statistics. However, in terms of

the distance error, LSH outperforms RS by a significant margin. However notice that

the distance error time tradeoff of the mean, standard deviation and maximum ε for

RS and TSS have the same shape. This indicates that the mean and the standard

deviation of the ε is skewed because a single query had really high distance error.
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Figure 19: Error/search-time tradeoff for the tinyIm384 set. Time taken is
measured in seconds (best viewed in color).

This is an artifact of the random sampling used in the algorithms RS and TSS and

will be further discussed in the discussion section (a similar situation occurs for LSH

where the search returns no neighbor candidates). However, the maximum rank error

of RS and TSS indicates that the neighbor candidate with really high distance error

does not have a high rank error. This is possible when the nearest-neighbor of a query

is a near-duplicate of the query, resulting in a really small nearest-neighbor distance.

As expected, TSS significantly outperforms RS and LSH in the phy78 set (Figure

20) for both kinds of errors (distance and rank) and all error statistics. For the

cases where LSH did return a neighbor candidate for every query, LSH demonstrated

comparable mean rank error time tradeoff to RS, while performing significantly worse

than RS (and TSS) for the standard deviation and maximum of the rank error (over

all queries). However, LSH shows better performance than RS in terms of the distance

error ε. Because of the presence of near-duplicates, the maximum ε of RS is really

high, skewing the mean and standard deviation ε.
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Figure 20: Error/search-time tradeoff for the phy78 set. Time taken is mea-
sured in seconds (best viewed in color).

3.4.2.1 Discussion

From the results in Section 3.4.1, we expected TSS to outperform RS in low-dimensional

and easier datasets (datasets where the exact tree-based search algorithm achieves

significant speedups over exhaustive search). This is exhibited in the error/time

tradeoff of the phy78 set (Figure 20). In this set, LSH outperforms RS. However, for

low-dimensional/easy datasets, there is generally no need for approximation because

the tree-based exact search algorithm is already efficient.

For the higher dimensional datasets, RS performs better than TSS because the

tree traversal costs outweigh the computational gains obtained by the branch-and-

bound algorithm. This is because the tree is unable to obtain tight enough bounds in

high dimensions. This is exhibited in the error/time tradeoff of the mnist784 (Figure

18), the liveJ25k (Figure 17) and the tinyIm384 (Figure 19) sets. In these sets, LSH

does not appear to perform significantly better than the simple random sampling
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algorithm RS in terms of the rank error. In fact, RS outperforms LSH in terms of

the rank error τ. However, in terms of the distance error ε, LSH outperforms RS

in the mnist784 and tinyIm384 sets. This discrepancy of the relative performance in

terms of the two different types of errors τ and ε can be attributed to the “planted

nearest-neighbor model”. If the nearest-neighbor distance is in fact really small even

for some of the queries (as is the case when the query’s nearest-neighbor is its (near)

duplicate), not locating that neighbor will result in a really high distance error even

though the rank error can still be fairly low. This occurrence is exhibited with the

tinyIm384 and the phy78 sets.

LSH is expected to perform especially well in an extreme version of the planted

nearest-neighbor model where the nearest-neighbor(s) of the queries are their re-

spective (near) duplicate(s). Hashing techniques will put the duplicates in the same

buckets. In contrast, the random-sampling based searches in Algorithms 8 & 9 can

easily miss the (near) duplicates. In such a setting LSH will significantly outperform

RS and TSS especially in terms of the distance error. While we do not have a way of

extending Algorithm 8 (RS) to work well in this setting, we present a simple way of

modifying Algorithm 9 (TSS) to ensure the location of duplicates – only approximate

by sampling once the tree-traversal has considered all the points in the leaf node

of the tree the query lands in. The duplicates (and possibly near-duplicates) of the

query will lie in the leaf node of the tree in which the query lands in. Hence the above

modification will ensure that any duplicates (if they exist) will definitely be located.

We would like to note that LSH requires multiple hash tables to obtain any desired

level of accuracy, resulting in high preprocessing time and memory/space requirement.

In contrast, the tree-based TSS requires a single tree construction and the same tree

can be used for all levels of approximation. This implies low preprocessing time

and space requirements. The simple RS algorithm has no preprocessing time or

space requirement. The search times reported in this section do not include the
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preprocessing times of any of the methods.

We also have possible avenues for improving the performance of the tree-based

rank-approximate search – (1) While we process multiple queries sequentially in TSS,

dual-tree algorithms (Gray and Moore, 2000) can be used to improve search-times

of TSS for the same amount of error by amortizing the search-cost over multiple

queries (a dual-tree rank-approximate search algorithm was presented in Ram et al.

(2009b, Figure 2)). On the other hand, LSH does not have any equivalent way of

improving query processing for multiple queries. (2) We use the simple mid-point-

split kd-trees for our experiments. kd-trees are traditionally believed to not perform

well in high dimensions. More sophisticated trees like ball-trees (Omohundro, 1989),

metric-trees (Preparata and Shamos, 1985), random-projection-trees (Dasgupta and

Freund, 2008), max-margin-trees (Ram et al., 2012) or cover-trees (Beygelzimer et al.,

2006) are reputed to have better performance in higher dimensions and can improve

the performance of TSS at the cost of increased preprocessing time.

Caveat of this analysis. To end this section, we should note that this analysis is

not a fair analysis because LSH is designed for distance approximate search while RS

and TSS are designed for rank approximate search. The analysis here can at best be

an apples to oranges comparison.
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CHAPTER IV

TIME-CONSTRAINED SEARCH

As seen in the previous chapter, approximate search requires the user to specify the

desired approximation level. While rank approximation might make this choice more

robust and intuitive, the choice is still not straightforward. Moreover, search is not

approximated because we have a desire for answers with some amount of error; it is

the lack of time that requires us to approximate search. Hence, it would be useful to

have algorithms where you can specify the allowed search time instead of the allowed

search error. This would make the choice much easier and usable for the user.

In this chapter, we discuss nearest-neighbor search on a time budget and present

new algorithms for this time-constrained search. We begin by explicitly defining time-

constrained search in Section 4.1. Then we present a very simplistic time-constrained

search algorithm in Section 4.2 that utilizes no data structures and relies solely on a

permutation of the data. Then we consider binary space-partitioning tree data struc-

tures (BSP-trees) and propose three time-constrained search algorithms in Section

4.3 that utilize these binary trees. This chapter concludes with the relative empirical

comparison of the proposed algorithms in Section 4.4.

4.1 Time-constrained Search

In this new setting for the problem of nearest-neighbor search, the true nearest-

neighbor would always be preferred but not necessarily required. The actual restric-

tion is the computation time available for search. Given enough time, the algorithm

should always return the true nearest-neighbor. But in general, the algorithm is re-

quired to return an answer within a fixed amount of time. To formalize, the nearest-

neighbor methods would be required to perform the following task:
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Time-constrained Search: minimize nearest-neighbor error subject to

a limited number of computations.

Suppose that we have a nearest-neighbor search algorithm that can return an an-

swer for any given time constraint t > 0. And suppose that the nearest-neighbor error

of this answer is e(t). In this work, we care about minimizing the quantity
∫

t
e(t)dt.

Empirically, if we have the error v. time plot of a method (for example, Figure 21),

then we wish to effectively minimize the area under this curve. This would ensure

that for any time constraint, the algorithm is performing the best possible. Theoret-

ically, we wish to obtain upper bounds on the nearest-neighbor error for a given time

constraint. Intuitively, we would obtain bounds of the form e(t) ≈ O(f (1/t)) where

f is a monotonic non-decreasing function.

Figure 21: Error v. time plot.

Error combination over queries. Usually the search is performed for various

queries on the given dataset. Hence, we wish to minimize the nearest-neighbor error

over various queries. The question then is how we combine the errors over all queries.

In this work, we consider the average error and the maximum error over all queries.

One pertains to the average case performance of the method and the other presents

the worst case performance of the method.
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Notion of error. As discussed in Chapters 2 & 3, there are two possible notions of

nearest-neighbor error, rank error and distance error, depending on the application

at hand. In this work, we will present empirical results for both notions of error.

The theoretical guarantees might be with regards to distance or rank error (or both)

depending on what we have been able to achieve to date. For clarity, we will redefine

the notions of error we will use from here on. For a given query q and a returned

neighbor candidate p from the reference set S , the nearest-neighbor distance error

ε(q) is defined as

ε(q) =
d(q, p)−min

r∈S
d(q, r)

min
r∈S

d(q, r)
, (12)

and the nearest-neighbor rank τ(q) is defined as

τ(q) = card({r ∈ S : d(q, r) < d(q, p)}) + 1. (13)

Unit of time. While performing time-constrained search, it is essential to specify

the unit of time that we are constraining. There are various quantities that can used

as the unit of time, such as, the number of FLOPS or the user time (in seconds)

or something more high level like the total number of vector operations (a vector

addition and a vector inner-product). In this work, we will consider the number

of vector operations as the unit of time and the time constraint will be in terms of

the allowed number of vector operations. Note that the Euclidean (or `p) distance

computation between two vectors will be considered as a single vector operation. We

are assuming that the evaluation of a particular distance function is the same for all

pairs of points. Effectively, the time constraint is in terms of the number of Ω(D)

operations where D is the dimensionality of the dataset in question.

Datasets. For the empirical evaluation of the proposed time-constrained search

algorithms, we will use consistently use the following 4 datasets: (i) The Optdigits

digit dataset (Blake and Merz, 1998), (ii) a subset of the 80 million tiny images dataset
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Table 4: The datasets used for empirical evaluations in this chapter.

Datasets # points # queries # dimensions
Optdigits 3800 1800 64
Tiny Images 100000 100000 384
MNIST 60000 10000 784
Yahoo! Music 100000 1000 50

(Torralba et al., 2008), (iii) the MNIST digits dataset (LeCun, 2000), and (iv) a subset

of the Yahoo! music recommendation dataset (Dror et al., 2011). The sizes of the

datasets are presented in Table 4. These datasets are again chosen primarily from

the applications of nearest-neighbor search such as machine learning, computer vision

and collaborative filtering. These 4 datasets are chosen because exact search on these

sets with kd-trees do not show any significant improvement over brute-force search.

4.2 Permutation-based Time-Constrained Search

A natural way of returning a solution within a fixed time-constraint (of any size) is to

structure the search algorithm in an incremental manner. One way of achieving this

is to lay the data (the points in the reference set) in some order and then sequentially

search through this list of points and return the best candidate encountered once the

time runs out (Algorithm 11). In this section, we will present different heuristics for

“laying the data” or permuting the data, and present the empirical and, in one case,

theoretical performance of these heuristics.

4.2.1 Random Permutation

One heuristic is to randomly permute the data for every query. So every query q sees

a permutation of the data and sequentially goes through this permutation. While

being extremely simple, this heuristic also provides some theoretical guarantees on

the rank-error of the returned best neighbor.
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Algorithm 11 Time-constrained search with permutations

Input: Data R , permutation P , query q, allowed time t
Output: Neighbor candidate p

Initialize: Set i ← 0, d ←∞
while i < t do

if d(q,P(R)[i ]) < d then
d ← d(q,P(R)[i ]); p ← P(R)[i ]

end if
i ← i + 1

end while

Theorem 4.2.1. For a given set R of n points and any query q with a time-constraint

t, with probability 1−δ for δ ∈ (0, 1) , the maximum rank for time-constrained search

with a random permutation is given by

τ(q) ≤ n
(
1− δ1/t

)
. (14)

Proof. With random sampling, the probability of having at least one candidate from

within the top τ neighbors after encountering t candidates is at least (1− τ/n)t .

Equating this to 1− δ gives the upper bound on the maximum rank-error for a single

query.

4.2.2 Gonzalez Permutation

Gonzalez (1985) presented an approximate clustering algorithm that also serves as

method for obtaining an ε-net of the dataset of size at most twice the smallest ε-net

of this dataset. This algorithm can be used to create a permutation (Algorithm 12) of

the data that serves as a progressively finer ε-net of the data as we proceed along the

permutation. The algorithm to generate this permutation is essentially deterministic.

The randomness only comes from the selection of the first point in the permutation.

4.2.3 k-means++ Permutation

k-means++ (Arthur and Vassilvitskii, 2007) is a heuristic to pick seeds for the k-

means algorithm with interesting guarantees. It can be thought of as a probabilistic
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Algorithm 12 Gonzalez permutation

Input: Data R = {r1, . . . , rn}
Output: Permutation G of [1 : n]

Initialize: Pick a random j ∈ [1 : n]; G [1]← j
for i ← 2 : n do

G [i ] = arg max
j∈[1:n]\G[1:i−1]

min
k∈G[1:i−1]

d(rj , rk)

end for

version of the Gonzalez permutation (Algorithm 12) where points farther away from

points currently in the permutation are given a higher probability for being chosen as

the next point in the permutation. The precise method to generate this k-means++

permutation is presented in Algorithm 13.

Algorithm 13 k-means++ permutation

Input: Data R = {r1, . . . , rn}
Output: Permutation K of [1 : n]

Initialize: Pick a random j ∈ [1 : n]; K [1]← j
for i ← 2 : n do

Create a probability distribution Pi over X ∈ [1 : n] such that

Pr
Pi

(X = j) =

min
k∈K[1:i−1]

d2(rj , rk)∑
j ′∈[1:n]

min
k∈K[1:i−1]

d2(rj ′ , rk)

Randomly pick a sample X ∼ Pi .
K [i ] = X

end for

4.2.4 Empirical Evaluation and Discussion

In this section we will evaluate the performance of time-constrained search (TCS)

with permutations (Algorithm 11) for the three different heuristics presented to cre-

ate permutations. We will consider the datasets in Table 4. As mentioned earlier,

the nearest-neighbor error (τ and ε) are noted for chosen time-constraints (the time

constraints are selected in terms of the number of distance computations or vector

operations). There are no parameters that need to be set for any of these algorithms.
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Since there is randomness involved in each of the permutations, a single experiment

is repeated 10 times and the mean and maximum nearest-neighbor error are averaged

over these 10 repetitions and are presented along with the standard error in the form

of a translucent ribbon (of the same color) around the average in each of the plots.

Figures 22 & 23 present the performance of TCS with different permutations in terms

of the rank and distance error respectively. The top row in each figure corresponds to

the mean error over all the queries while the bottom row corresponds to the maximum

error.

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 22: Rank with increasing time constraint. The top row corresponds to
the mean rank over all queries and the bottom row corresponds to the maximum rank
over all queries (please view in color).

The results in Figure 22 indicate that the random permutation and the k-means++

permutation (Algorithm 13) perform significantly better than the Gonzalez permu-

tation (Algorithm 12) both in terms of the mean rank and maximum rank. The

performance of the Gonzalez permutation with respect to the random permutation

(and the k-means++ permutation) appears to degrade with increasing size of the set.

The relative performance in the larger sets (Tiny Images and Yahoo! Music) are

much worse than in the smaller set (Optdigits). In all the cases, the performance

of TCS with permutations does not seem to be significantly affected with repetitions,
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seen by the very low (often not clearly visible) standard error of the statistics (mean

and maximum τ).

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 23: Distance error with increasing time constraint. The top row cor-
responds to the mean distance error over all queries and the bottom row corresponds
to the maximum distance error over all queries (please view in color).

The results in Figure 23 indicate that the random and k-means++ permutations

perform better than the Gonzalez permutation also in terms of the nearest-neighbor

distance-error. However, in many cases, the difference is not as significant as in

the case of nearest-neighbor rank. In all the cases except for Tiny Images, the

mean ε appears to be not affected by random restarts (validated by the insignificant

standard error). However, in the case of Tiny Images, the standard error is fairly

significant, especially in the case of the Gonzalez permutation. This can be attributed

to the fact that in the Tiny Images set, there are many instances of near-duplicates

(instances where the nearest-neighbor of the query is its almost duplicate), in which

case, the distance error for any object other than the (near) duplicate is very high

(possibly infinite). Hence, for TCS with the Gonzalez permutation, if some queries

find their (near) duplicate in one instantiation of the Gonzalez permutation but do

not in another instantiation, the standard error of the mean distance error can become

very large (as can be seen in our results).
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The relative performance of the three heuristics appear to be the similar in case of

the maximum distance error. The only difference is that the standard error (depicted

by the translucent ribbon around the maximum distance error averaged over 10 rep-

etitions) is significant in almost all situations. The random permutation appears to

perform better than the k-means++ permutation in terms of the maximum distance

error; significantly with the Tiny Images dataset, and slightly with the MNIST

and Yahoo! Music datasets.

4.2.5 Going Forward

Permutation based TCS is a very simple algorithm for TCS. But empirical results

indicate that the random permutation appears to perform best compared to more

sophisticated permutations such as the Gonzalez and the k-means++ permutations.

However, the possible reason why the random permutation performs better than

others is that in TCS with random permutation, every query gets a (possibly) new

permutation, whereas, with the other two heuristics, all the queries get the same per-

mutation. If the completely random permutation performs better than a fixed per-

mutation, it seems intuitive that a more query adaptive permutation scheme (where

every query gets a permutation designed specifically for it) would have a much bet-

ter TCS performance. For this reason, we will explore TCS algorithms that utilize

indexing schemes to get query-dependent permutations.

4.3 Binary Tree based Time-Constrained Search

Binary trees have been extensively studied and used for the task of nearest-neighbor

search. But as mentioned in Chapter 2, the usual tree-based depth-first branch-and-

bound algorithm (presented here again in Algorithm 14) not only needs to find the
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neighbor within the desired level of approximation, but also validate (or get a certifi-

cate) during the algorithm that the returned neighbor is in fact within the desired ap-

proximation (line 6 and line 8 accomplish this validation by visiting all nodes that can-

not be ignored with proper guarantee provided by the ‘cannot prune node(q,N , d , e)’

function).

Algorithm 14 Error-constrained search with trees. Every non-leaf node N
in the tree T is partitioned into a left (N .left) and a right (N .right) child with the
hyperplane (N .w,N .b). The function ‘cannot prune node(q,N , d , e)’ decides if the
node N can be safely ignored for query q with distance d to the current best neighbor
candidate p and allowed approximation e.

Input: Data R , Tree T Query q, Allowed approximation e
Output: Neighbor candidate p

3: Initialize: Set d ←∞, set stack S .push(T )
while S is non-empty do

Node N ← S .pop
6: if cannot prune node(q,N , d , e) then

if is a leaf node(N) then
for r ∈ N ∩ R do

9: if d(q, r) < d then
p ← r ; d ← d(q, r)

end if
12: end for

else
if 〈N .w, q〉+ N .b < 0 then

15: S .push(N .right); S .push(N .left)
else

S .push(N .left); S .push(N .right)
18: end if

end if
end if

21: end while

For any query, the tree based error-constrained search (ECS) traverses the tree in

a greedy manner, encountering those points first that the tree predicts to be closer

to the query. So the greedy tree traversal effectively generates a query dependent

permutation of the data. Figure 24 demonstrates how a tree traversal results in a

permutation. The search algorithm then has to go through the whole permutation,
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only ignoring chunks that can be safely pruned from the computation without violat-

ing the error constraint.

(a) Example 1 (b) Example 2

Figure 24: Generating adaptive permutations. Examples of a tree-traversal
effectively generating a permutation (please view in color).

In the following subsections, we will present three ways of utilizing the query-

adaptive permutation produced by the tree for time-constrained search. The first

algorithm, greedy tree search (Section 4.3.1), simply duplicates the error-constrained

search algorithm with zero error and just stops computation when time runs out.

The second algorithm, lazy defeatist tree search (Section 4.3.2), is a simplification

of the first algorithm which adversely affects its performance with respect to the

first algorithm, but allows for intuitive theoretical guarantees. The third algorithm,

defeatist forest search (Section 4.3.3), utilizes multiple random binary trees instead

of a single one to give a simpler time-constrained search algorithm.

4.3.1 Greedy Time-Constrained Search with Binary Trees

A natural way to convert error-constrained search with a tree to a time-constrained

search algorithm is to keep track of the elapsed time and return the current best

candidate when the time constraint is met. The time-constrained search algorithm

resulting from this modification is shown in Algorithm 15. Here lines 12, 19 and 22

keep track of the time spent (in terms of the number of vector operations performed).
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Lines 13-15 returns the current best candidate if the time has run out. We call this

algorithm greedy tree search since this algorithm greedily traverses through the tree

until time runs out.

Algorithm 15 Greedy tree search. Every non-leaf node N in the tree T is parti-
tioned into a left (N .left) and a right (N .right) child with the hyperplane (N .w,N .b).
The function ‘cannot prune node(q,N , d , 0)’ decides if the node N can be safely ig-
nored for query q with distance d to the current best neighbor candidate p and no
allowed approximation.

Input: Data R , Tree T Query q, Allowed time t
Output: Neighbor candidate p

3: Initialize: Set d ←∞, elapsed time i ← 0, set stack S .push(T )
while S is non-empty & i < t do

Node N ← S .pop
6: if cannot prune node(q,N , d , 0) then

if is a leaf node(N) then
for r ∈ N ∩ R do

9: if d(q, r) < d then
p ← r ; d ← d(q, r)

end if
12: i ← i + 1

if i = t then
BREAK out of search loop

15: end if
end for

else
18: if 〈N .w, q〉+ N .b < 0 then

i ← i + 1
S .push(N .right); S .push(N .left)

21: else
i ← i + 1
S .push(N .left); S .push(N .right)

24: end if
end if

end if
27: end while

We do assume here that the time constraint is large enough to allow the search

algorithm to reach the first leaf node. This is because in a binary tree, the actual

points usually reside in the leaf node. Up until the leaf node, the search algorithm

does not encounter any actual point in R . To obtain a TCS algorithm that can have
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(a) Traversal to first leaf (b) Traversal to second leaf (c) Traversal to third leaf

Figure 25: Progress of the greedy tree search (Algorithm 15). Example I
(please view in color).

any time constraint, we can easily remedy the binary tree to make sure that every

tree node has some pivot points (at least one pivot point associated with it).

(a) Traversal to first leaf (b) Traversal to second leaf (c) Traversal to third leaf

Figure 26: Progress of the greedy tree search (Algorithm 15). Example II
(please view in color).

The greedy tree search (Algorithm 15) traverses the tree in the following way

(this is demonstrated pictorially in Figures 25 & 26): It first visits the leaf in the tree

that contains the query. Then the algorithm backtracks up the tree, again greedily

traversing down subtrees that cannot be provably pruned for not containing any better

candidate than the current one. The algorithm continues until the time runs out, at

which point it returns the current best candidate.
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4.3.2 Lazy-Defeatist Time-Constrained Search with Binary Trees

In the greedy tree search algorithm (Algorithm 15), after visiting the leaf of the tree

containing the query, the algorithm greedily traverses the rest of the tree that cannot

be pruned. This tree traversal can be simplified by greedily traversing only to the leaf

containing the query. This is usually called the defeatist tree search. Since the leaves

of the trees usually only contain few points, there might be time leftover. In this case,

we can backtrack up the tree, but instead of greedily traversing subtrees that cannot

be pruned, we will just consider all the points in the subtree in the sequence that we

encounter them, without pruning any subtree or any further greedy traversal. We call

this the lazy-defeatist tree search (Algorithm 16), because we start with the greedy

algorithm, but resort to a non-greedy traversal of the tree once we have visited the

first leaf node that would contain the query. The progress of the search algorithm

with time is pictorially demonstrated in Figures 27 & 28.

(a) Visit the 1st node (b) Visit the 2nd node (c) Visit the 3rd node (d) Visit the 4th node

Figure 27: Progress of lazy-defeatist tree search (Algorithm 16). Example I
(please view in color).

This algorithm is simpler than the greedy tree search algorithm for time-constrained

search because neither is there any pruning involved nor is there any greedy traversal

in the tree beyond the defeatist traversal to the leaf containing the query. Unlike

the tree traversal of the greedy tree search (Algorithm 15), the tree traversal in the

lazy-defeatist search is quite predictable and hence can allow for some theoretical

analysis. In terms of performance, it is possible that the lazy-defeatist search does
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Algorithm 16 Lazy-defeatist tree search. Every non-leaf node N in the tree
T is partitioned into a left (N .left) and a right (N .right) child with the hyperplane
(N .w,N .b).

Input: Data R , Tree T Query q, Allowed time t
Output: Neighbor candidate p

3: Initialize: Set d ←∞, elapsed time i ← 0, stack S ← ∅, current node N ← T
while N is not a leaf node do

if 〈N .w, q〉+ N .b < 0 then
6: i ← i + 1

S .push(N .right); N ← N .left
// greedily traversing down the left node and saving the right node for later

9: else
i ← i + 1
S .push(N .left); N ← N .right

12: // greedily traversing down the right node and saving the left node for later
end if

end while
15: S .push(N)

while S is not empty do
Node N ← S .pop

18: for r ∈ N ∩ R do
if d(q, r) < d then

p ← r ; d ← d(q, r)
21: end if

i ← i + 1
if i = t then

24: BREAK out of search loop
end if

end for
27: end while

(a) Visit the 1st node (b) Visit the 2nd node (c) Visit the 3rd node (d) Visit the 4th node

Figure 28: Progress of lazy-defeatist tree search (Algorithm 16). Example
II (please view in color).
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some extra work by visiting subtrees it could have provably pruned in the greedy

tree search algorithm. However, in the situations where no pruning was achieved in

a subtree, the lazy-defeatist search would encounter the same set of points without

paying the price of the tree traversal. Hence, it is not apparent as to which of the

algorithms is superior for time-constrained search. We will compare the relative em-

pirical performances of these two and other time-constrained search algorithms in the

Section 4.4 of this chapter.

4.3.3 Defeatist Time-Constrained Search with Space Partitioning Forests

A binary space-partitioning tree (BSP-tree) hierarchically partitions the space con-

taining the data (as suggested by the name) using some heuristic. This heuristic can

be deterministic or randomized. Effectively, this tree assigns a region of the space for

every point in the data. Each region can be shared by multiple points but a point

cannot belong to more than one region. Figure 29 gives two examples of query points

assigned to regions in the space by a BSP-tree.

(a) Example I (b) Example II

Figure 29: Region assigned to a query by the BSP-tree.

When a query point is assigned to a region of the space by a BSP-tree, the hope is

that the points in the same region as the query are potentially the nearest-neighbors

of the query. We will call these the candidate neighbors for the query. Since we

might need and can afford more candidate neighbors, we effectively look at larger

and larger regions of the space when we backtrack up the tree in greedy tree search
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and lazy-defeatist tree search (Algorithms 15 & 16). Figure 30 demonstrates this way

of encountering more (and potentially better) neighbor candidates if time permits.

(a) Deepest level (b) Backtrack one level up (c) Backtrack two levels up

Figure 30: Investigating larger and larger regions in search for the nearest-neighbor.

Another way of securing more candidate neighbors is to introduce some random-

ness in the tree construction so that the same query is assigned different (but over-

lapping) regions of the space for every new tree constructed. In this situation, we can

keep a collection of trees, a forest, and perform a defeatist search on each of the trees

to gather candidate neighbors for the query until we run out of time. This process is

pictorially demonstrated in Figure 31. We call this time-constrained search algorithm

defeatist forest search and is formally presented in Algorithm 17.

(a) Region from tree I (b) Region from tree II (c) Region from tree III (d) Combined regions

Figure 31: Defeatist-forest search. Generating neighbor candidates by looking at
different regions assigned to the query by three BSP-trees.

This defeatist forest search makes the tree traversal extremely simple and pre-

dictable, while still being capable of obtaining more candidate neighbors for queries.

This makes defeatist forest search easier to implement (and theoretically analyze)
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Algorithm 17 Defeatist forest search. Every non-leaf node N in each tree T of
the forest F is partitioned into a left (N .left) and a right (N .right) child with the
hyperplane (N .w,N .b).

Input: Data R , Forest F of trees T Query q, Allowed time t
Output: Neighbor candidate p

3: Initialize: Set d ←∞, elapsed time i ← 0
for each T ∈ F do

Set node N ← T
6: while N is not a leaf node do

if 〈N .w, q〉+ N .b < 0 then
i ← i + 1; N ← N .left

9: else
i ← i + 1; N ← N .right

end if
12: end while

for r ∈ N ∩ R do
if r /∈ S then

15: if d(q, r) < d then
p ← r ; d ← d(q, r)

end if
18: i ← i + 1

if i = t then
BREAK out of search loop

21: end if
end if

end for
24: end for

compared to greedy search and lazy-defeatist search. However, there are two poten-

tial issues with defeatist forest search – (1) Unlike greedy search and lazy-defeatist

search, defeatist forest search is not guaranteed to find the nearest-neighbor of the

query even if ample time is provided to the algorithm. (2) While the previous two

proposed tree-based time-constrained search algorithms only required a single tree

data structure, defeatist forest search needs a forest (collection of trees) instead of a

single tree, increasing the space requirements of this algorithm.
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4.4 Empirical Evaluation of Tree-based Algorithms

In this section we compare the three proposed tree-based time-constrained search

(TCS) algorithms on the 4 datasets described in Table 4. We consider the performance

of TCS with random permutations (Algorithm 11) as the baseline. For greedy tree

search (Algorithm 15) and lazy-defeatist tree search (Algorithm 15), we use the kd-

tree (Friedman et al., 1977) and the PA-tree (Sproull, 1991; McNames, 2001). For

defeatist forest search (Algorithm 17), we use two random binary space-partitioning

trees – the RP-tree (Dasgupta and Freund, 2008) and the metric ball-tree (Preparata

and Shamos, 1985). We will again consider both the distance error and rank as the

notions of nearest-neighbor error. For random methods (such as defeatist forest search

and random permutations), we repeat the experiment 10 times.

4.4.1 Comparison to Locality-Sensitive Hashing

In this first setup, we compare all the proposed algorithms to each other as well as

to the performance of p-stable locality-sensitive hashing (LSH) (Datar et al., 2004).

Time-constrained search with LSH is fairly straightforward – we sequentially lookup

hash tables one at a time, considering more hash tables when time permits.

Figure 32 presents the relative performance of all the proposed binary tree based

TCS algorithms relative to TCS with random permutations and LSH in terms of

the rank. The results indicate that in 3 of the datasets, the tree-based TCS algo-

rithms significantly outperform the baseline (TCS with random permutations) and

LSH. In the Optdigits set, LSH performs comparably to the greedy tree search

and lazy-defeatist tree search algorithms. For all the datasets, the greedy tree search

with a particular tree (kd-tree or PA-tree) appears to perform almost identically to

lazy-defeatist tree search (with the corresponding tree). However, between the two

deterministic trees, kd-tree and PA-tree, PA-tree consistently outperforms kd-tree

significantly for both TCS algorithms (greedy or lazy-defeatist). The defeatist forest
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(a) Optdigits (b) Tiny Images

(c) MNIST (d) Yahoo! Music

Figure 32: Mean rank with increasing time constraint. Each sub-figure corre-
sponds to the mean rank over all queries for different datasets. GS:kd & GS:PA refer
to Algorithm 15 with a kd-tree and PA-tree respectively. LDS:kd & LDS:PA refer
to Algorithm 16 with a kd-tree and PA-tree respectively. DFS:RP & DFS:Ball refer
to Algorithm 17 with a forest of RP-trees and ball-trees respectively (please view in
color).

search with ball-trees performs the best in all instances in terms of the mean rank.

Defeatist forest search with RP-trees performs significantly better than greedy search

and lazy-defeatist search for all trees in two of the cases (Optdigits & Yahoo!

Music), while performing worse than the PA-tree in case of the Tiny Images set.

In case of the MNIST set, the defeatist forest search with RP-trees begin worse than

the PA-tree, but quickly start outperforming the PA-trees once the time-constraint

crosses a certain point.

In terms of the maximum rank (presented in Figure 33), the performance of the

tree-based TCS algorithms and LSH is much more comparable to the baseline. The
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(a) Optdigits (b) Tiny Images

(c) MNIST (d) Yahoo! Music

Figure 33: Maximum rank with increasing time constraint. Each sub-figure
corresponds to the maximum rank over all queries for different datasets. GS:kd &
GS:PA refer to Algorithm 15 with a kd-tree and PA-tree respectively. LDS:kd &
LDS:PA refer to Algorithm 16 with a kd-tree and PA-tree respectively. DFS:RP &
DFS:Ball refer to Algorithm 17 with a forest of RP-trees and ball-trees respectively
(please view in color).

greedy and lazy-defeatist tree search with kd-tree performs slightly worse than the

baseline, and so does LSH. The greedy and lazy-defeatist search with PA-tree performs

at least comparably to the baseline in terms of maximum rank, outperforming the

baseline in 2 of the instances. Defeatist forest search with ball-trees again performs

the best in all instances, while defeatist forest search with RP-trees performs slightly

worse. The relative performance of the proposed tree-based TCS algorithms are

consistent both in the average case (mean rank) and the worst case (maximum rank).

Figure 34 presents the performance of all the proposed binary tree based TCS
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(a) Optdigits (b) Tiny Images

(c) MNIST (d) Yahoo! Music

Figure 34: Mean distance error with increasing time constraint. Each sub-
figure corresponds to the mean distance error over all queries for different datasets.
GS:kd & GS:PA refer to Algorithm 15 with a kd-tree and PA-tree respectively.
LDS:kd & LDS:PA refer to Algorithm 16 with a kd-tree and PA-tree respectively.
DFS:RP & DFS:Ball refer to Algorithm 17 with a forest of RP-trees and ball-trees
respectively (please view in color).

algorithms relative to TCS with random permutations and LSH in terms of the mean

distance error over all queries. The proposed tree-based TCS algorithms and LSH

outperforms the baseline by a significant margin. As in the case of nearest-neighbor

rank, the performances of the greedy search and lazy-defeatist search algorithm for

the same binary tree (kd-tree or PA-tree) appear to be very similar in all the cases,

with the algorithms performing significantly better with the PA-tree. Defeatist forest

search with ball-trees again perform the best among all algorithms in terms of the

mean distance error. Defeatist forest search with RP-trees perform slightly worse

than with ball-trees, but still performing better than the other proposed tree-based
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(a) Optdigits (b) Tiny Images

(c) MNIST (d) Yahoo! Music

Figure 35: Maximum distance error with increasing time constraint. Each
sub-figure corresponds to the maximum distance error over all queries for different
datasets. GS:kd & GS:PA refer to Algorithm 15 with a kd-tree and PA-tree respec-
tively. LDS:kd & LDS:PA refer to Algorithm 16 with a kd-tree and PA-tree respec-
tively. DFS:RP & DFS:Ball refer to Algorithm 17 with a forest of RP-trees and
ball-trees respectively (please view in color).

TCS algorithms in most cases. Defeatist forest search with both the random trees

significantly outperform LSH. The greedy and lazy-defeatist search with both the

deterministic trees perform comparably to LSH, outperforming LSH in two of the

cases.

The performance of the TCS algorithms with respect to maximum distance error

is presented in Figure 35. The relative performance of LSH is much better in terms

of the maximum distance error. LSH outperforms greedy and lazy-defeatist search

in two of the cases, performing comparably in the rest of the cases. However, the

defeatist forest search with both the trees outperform the rest of the algorithms by
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a significant margin, with ball-trees doing better than RP-trees in two cases and the

RP-tree doing better in one of the cases. As in all the previous cases, the greedy

tree search and lazy-defeatist tree search have similar performances for the same tree,

with PA-tree outperforming kd-tree in most of the cases.

The results indicate that the greedy tree search (Algorithm 15) and lazy-defeatist

tree search (Algorithm 16) have empirically similar performance for the same tree in

the high dimensional datasets considered. But between trees, the data-dependent PA-

tree has significantly better performance than the more data-oblivious kd-tree. The

greedy search and lazy-defeatist search with a single deterministic kd-tree performs

at least comparably to LSH in all cases, with the PA-tree outperforming LSH in

most cases. The defeatist forest search has the best relative performance, justifying

the cost of the space requirement of storing a forest instead of a single tree. The

forest of ball-trees empirically appears to perform better than the forest of RP-trees

in almost all the cases. While these are all empirical evidence, we do not have any

theoretical results that can allow us to compare the performance of these different

proposed tree-based TCS algorithms. The results for LSH are expected because LSH

is designed to guarantee maximum distance error (not the mean distance error or any

form of rank error). This is why the relative performance of LSH with respect to the

maximum distance error is much more competitive than with respect to the rest of

the evaluation metrics.

4.4.1.1 Space/Search Quality Tradeoff

In the previous experiment, we saw that defeatist forest search with random forests

consistently outperform locality sensitive hashing (LSH) under all notions of error

across different datasets. While the tree based methods do not have a straightforward

way of increasing the space requirement for better search performance, both defeatist

forest search and LSH are capable of tuning the space used by the method. Here we
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evaluate the relative space/search quality tradeoff of defeatist forest search and LSH.

To study this tradeoff, we fix the number of potential neighbor candidates re-

turned by each method (the best among these neighbor candidates is returned as the

approximate nearest-neighbor). This fixes the computation time of the search algo-

rithms once the candidate selection process is complete. We select different values for

the sizes of this potential neighbor set (we choose N , the potential neighbor set size,

to be 50, 100, 500).

Given the fixed size of the potential neighbor set, these algorithms can possibly

adjust the precision1 of the preprocessing step in the following way for better quality

candidate sets: (i) in LSH, the precision can be increased by increasing the number

of projections for each hash table, and (ii) in defeatist forest search, the precision can

be increased by decreasing the leaf size of each tree in the forest. Now increasing the

precision implies that the number of potential neighbor candidates recovered for the

query will decrease (in case of LSH, this implies that smaller number of candidates

are obtained from each hash table; in case of defeatist forest search, this implies

that smaller number of candidates are obtained from each tree in the forest). In this

scenario, to obtain the desired number of potential candidates N , the space usage of

the search algorithms will increase in the following way: (i) with LSH, the space usage

increases since more hash tables are required to be stored to return a large enough

potential candidate set size, and (ii) with defeatist forest search, the space usage also

increases since more trees are required to be stored to return a large enough candidate

set.

We will evaluate the quality of these recovered potential neighbor sets. Increased

precision should imply better quality candidates, but would also imply increased space

requirements. We note the memory usage of the method to return the candidate set

1Precision here vaguely refers to the probability of finding a query’s true nearest-neighbor in this
fixed-sized candidate set.
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(a) Optdigits (b) MNIST (c) Tiny Images

Figure 36: Rank with increasing space. The top row corresponds to the mean
rank over all queries and the bottom row corresponds to the maximum rank over all
queries. DFS:RP refers to Algorithm 17 with a forest of RP-trees (please view in
color).

of desired size and evaluate the search quality of the candidate set. This is how we

study the space/search quality tradeoff of these methods. Here we will only consider

forests of RP-trees for clarity. The ball-trees have exactly the same memory usage as

the RP-trees, only the choice of randomness varies between these two trees. The time-

constrained search performance of defeatist forest search with ball-trees are always

comparable to (or better than) the performance of the forest of RP-trees. We also

consider subsets of three of the previously used datasets from Table 4.

The relative space/search performance of LSH and defeatist forest search (with

RP-trees) with respect to the rank of the approximate neighbor is presented in Figure

36. The results indicate that, for large enough candidate set (N = 500), defeatist
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(a) Optdigits (b) MNIST (c) Tiny Images

Figure 37: Distance error with increasing space. The top row corresponds to
the mean rank over all queries and the bottom row corresponds to the maximum rank
over all queries. DFS:RP refers to Algorithm 17 with a forest of RP-trees (please view
in color).

forest search has low error in terms of rank (both mean and maximum) even for

really low memory usage, and the search performance is not affected by the memory

usage. The same is also true for LSH with N = 500, where the space usage does

not significantly affect the search performance. However, for N = 500, defeatist

forest search always appears to have better performance than LSH with respect to

the rank.

For small candidate sets (N = 50, 100), the search performance is significantly

affected by the memory usage. As expected, both mean and maximum rank (over all

queries) decrease with increasing memory usage. This behavior is easily seen in case of

defeatist forest search; in case of LSH, this behavior is slightly more noisy. However,
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in almost all cases, for the same candidate set size N , defeatist forest search has a

better space/search performance tradeoff than LSH. For the same level of accuracy

(and N), defeatist forest search always has smaller memory usage (the data points in

the plots for defeatist forest search always lie on the left of the data points for LSH).

This same relative performance is also indicated by the space/search time tradeoff

with respect to the distance error in Figure 37, with defeatist forest search requir-

ing lesser memory than LSH for similar search performance in all cases (mean and

maximum distance error) across all datasets. This implies that defeatist forest search

has a better space/search performance tradeoff than LSH for all notions of error

(mean/maximum rank or mean/maximum distance error).

4.4.2 Performance Dependency on the Metric

We consider a different axis of variation in the problem of time-constrained search

(TCS) and evaluate the performance of our proposed method along this axis. We

consider the performance of the tree based algorithms for three different metrics

and study how the relative performance of the proposed methods are affected by the

choice of the metric. This means that the candidate nearest-neighbor and the nearest-

neighbor error of the candidate nearest-neighbor is chosen with respect to different

distance metrics.

Remark. An important point to note here is that the tree construction is not

modified for each of the metric. So for the deterministic trees (such as the kd-tree

and the PA-tree), the indexing of the points remains the same. This implies that

the tree index is still defined by the space partition in the `2 (or Euclidean) space

containing the points (and the subsequent paths in the tree chosen for the query

remains the same). Now for some algorithms, such as the defeatist forest search

with RP-trees and ball-trees, can metric-specific modifications can be made for the

tree construction. However, the kd-tree construction is entirely metric independent
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and the PA-tree is implicitly constructed for the `2 metric because PA-tree aims to

capture the covariance structure of the data, which is closely related to the `2 metric,

and there are no straightforward extensions of the PA-tree for other metrics. To be

consistent, we consider the same construction (and hence the same indexing of the

data) for search with different metrics. The hope is that methods allowing for metric-

dependent construction should exhibit better performance when appropriate metrics

are chosen for tree construction. Another point of note is that we will no longer

consider the greedy tree search (Algorithm 15) because its performance is almost

identical to the performance of the lazy-defeatist tree search (Algorithm 16) for the

same tree.

Figure 38 presents the time-constrained search performance of the proposed al-

gorithms in terms of the mean rank over all queries for the `1 (Manhattan), `2 (Eu-

clidean) and the `∞ (Chebyshev) metric. For three out of the four datasets, the

performance of the proposed methods are almost identical across all three metrics,

and algorithms with better relative performance in one metric perform relatively bet-

ter in other metrics. The defeatist forest search performs the best with lazy-defeatist

search with PA-tree outperforming lazy-defeatist search with kd-tree. The only sit-

uation where the performance changes is with the MNIST set and the `1 metric.

The only algorithm affected is defeatist forest search with ball-trees, where the per-

formance is drastically worse than the rest of the algorithms. This is possible when,

for several queries, the candidate neighbor has a small rank (low error) with respect

to the `2 metric and a really high rank with respect to the `1 metric (large error).

Since the ball-tree used for this experiment partitions the data with respect to the `2

metric, the query is usually placed in a leaf that is thought to contain close neighbors

with respect to the `2 metric. And since these leaves are of constant size, it is possible

that points which are ranked low with respect to the `1 metric but ranked high with

respect to the `2 metric are always contained in a different leaf node. This should be
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(a) Optdigits `1 (b) Optdigits `2 (c) Optdigits `∞

(d) Tiny Images `1 (e) Tiny Images `2 (f) Tiny Images `∞

(g) MNIST `1 (h) MNIST `2 (i) MNIST `∞

(j) Yahoo! Music `1 (k) Yahoo! Music `2 (l) Yahoo! Music `∞

Figure 38: Mean rank with respect to different distance metrics with in-
creasing time constraint. Each row corresponds to a different dataset and each
column corresponds to a different metric. LDS:kd & LDS:PA refer to Algorithm 16
with a kd-tree and PA-tree respectively. DFS:RP & DFS:Ball refer to Algorithm 17
with a forest of RP-trees and ball-trees respectively (please view in color).

easily mitigated by constructing the ball-tree with respect to the `1 metric instead of

the `2 metric.

The effect of the different metrics is a bit more stark with respect to the maximum
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(a) Optdigits `1 (b) Optdigits `2 (c) Optdigits `∞

(d) Tiny Images `1 (e) Tiny Images `2 (f) Tiny Images `∞

(g) MNIST `1 (h) MNIST `2 (i) MNIST `∞

(j) Yahoo! Music `1 (k) Yahoo! Music `2 (l) Yahoo! Music `∞

Figure 39: Maximum rank with respect to different distance metrics with
increasing time constraint. Each row corresponds to a different dataset and each
column corresponds to a different metric. LDS:kd & LDS:PA refer to Algorithm 16
with a kd-tree and PA-tree respectively. DFS:RP & DFS:Ball refer to Algorithm 17
with a forest of RP-trees and ball-trees respectively (please view in color).

rank shown in Figure 38. For all cases, except the MNIST set with the `1 metric,

defeatist forest search performs the best, and in most cases, lazy-defeatist search with

PA-tree performs better than lazy-defeatist search with kd-tree. Only with respect
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to the `∞ metric does the performance of the kd-tree appear comparable or better

than the performance of the PA-tree with respect to the maximum rank, with the

random permutation baseline performing comparably to lazy-defeatist search in two

of the cases and outperforming lazy-defeatist search in rest (two) of the cases. The

relative performance does not change significantly between the `1 and `2 metric.

Figure 40 indicates that the relative performance of all the proposed algorithms

with respect to the mean distance error over all queries is identical across all metrics.

While the actual values of the mean distance error changes between metrics (seen

by the vertical axis in each plot), the relative performances appear consistent. The

defeatist forest search performs best with the forest of ball-trees outperforming the

forest of RP-trees. The lazy-defeatist search outperforms the baseline of random

permutations, with lazy-defeatist search with a PA-tree exhibiting significantly better

performance than the lazy-defeatist search with a kd-tree.

The story remains almost the same in Figure 41 with the relative performance of

the proposed methods in terms of the maximum distance error over all queries. For

two of the datasets (Optdigits and Yahoo! Music), the relative performances ap-

pear identical across all the three metrics. For the other two datasets (Tiny Images

and MNIST), the relative performances with respect to the maximum distance error

are identical between the `1 and `2 metrics. Similar to the case with maximum rank

(Figure 39), for the `∞ metric, the lazy-defeatist search with kd-tree appears to have

comparable (or slightly better) performance than lazy-defeatist search with PA-tree

with respect to maximum distance error.

The results indicate that for the metrics considered for this experiment (`1, `2 and

`∞), the relative performance of the proposed time-constrained search algorithms is

usually not affected significantly by the choice of the metric. This might be because

the good neighbor candidates with respect to one metric were still good neighbor

candidates for the other metrics. However, there are situations where this might not
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(a) Optdigits `1 (b) Optdigits `2 (c) Optdigits `∞

(d) Tiny Images `1 (e) Tiny Images `2 (f) Tiny Images `∞

(g) MNIST `1 (h) MNIST `2 (i) MNIST `∞

(j) Yahoo! Music `1 (k) Yahoo! Music `2 (l) Yahoo! Music `∞

Figure 40: Mean distance error with respect to different distance metrics
with increasing time constraint. Each row corresponds to a different dataset and
each column corresponds to a different metric. LDS:kd & LDS:PA refer to Algorithm
16 with a kd-tree and PA-tree respectively. DFS:RP & DFS:Ball refer to Algorithm
17 with a forest of RP-trees and ball-trees respectively (please view in color).

be true, as can be seen with the MNIST set and `1 metric for defeatist forest search

with ball-trees. However, such a potential problem can be mitigated by considering

metric specific indexing schemes (that is, utilize metric-specific tree constructions).
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(a) Optdigits `1 (b) Optdigits `2 (c) Optdigits `∞

(d) Tiny Images `1 (e) Tiny Images `2 (f) Tiny Images `∞

(g) MNIST `1 (h) MNIST `2 (i) MNIST `∞

(j) Yahoo! Music `1 (k) Yahoo! Music `2 (l) Yahoo! Music `∞

Figure 41: Maximum distance error with respect to different distance met-
rics with increasing time constraint. Each row corresponds to a different dataset
and each column corresponds to a different metric. LDS:kd & LDS:PA refer to Al-
gorithm 16 with a kd-tree and PA-tree respectively. DFS:RP & DFS:Ball refer to
Algorithm 17 with a forest of RP-trees and ball-trees respectively (please view in
color).
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4.4.3 Performance Dependency on the Data Dimensionality

In this subsection, we consider the relative performance of the proposed algorithms

for time-constrained search for datasets with different dimensionality. One possible

source of datasets with varying dimensionality are synthetic datasets. But the be-

havior of algorithms on synthetic datasets can be very misleading. So I decided to

use real datasets for the evaluation. However, just selecting real datasets with dif-

ferent dimensionality would not present a fair image because different real datasets

usually have some specific intrinsic structure that drive the search performance on

those datasets. For this reason, I considered a single real dataset, the 784-dimensional

MNIST set (this is generally considered to be a hard dataset), to ensure that datasets

with different dimensionality approximately have the same intrinsic structure. This

would allow me to study how the relative performance of the proposed algorithm is

affected just by the dimensionality.

The next piece is to create “real looking” datasets of varying dimensionality from

this chosen dataset. I considered the eigenvectors of the data covariance matrix. To

create a d-dimensional “real looking” dataset, I randomly choose d of these eigenvec-

tors and project the original dataset and the queries along these d eigenvectors. The

hope is that this technique allows me to vary dimensionality of a dataset while still

retaining most of the intrinsic structure present in the original real dataset. Then

I evaluate my proposed algorithms on this synthetic instantiation of a real dataset.

For any chosen dimensionality, I create 10 random synthetic instantiations of the

MNIST dataset and average the performance of the proposed algorithms over all 10

instantiations.

The relative performance of the proposed algorithms in terms of the candidate

neighbor rank for datasets with varying dimensionality (D = 5, 50 & 500) is presented

in Figure 42. The defeatist forest search appears to perform best, with the forest
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(a) D = 5 (b) D = 50 (c) D = 500

Figure 42: Rank with increasing time constraint for datasets with varying
dimensionality. The top row corresponds to the mean rank over all queries and
the bottom row corresponds to the maximum rank over all queries. Each column
corresponds to a particular dimensionality. LDS:kd & LDS:PA refer to Algorithm 16
with a kd-tree and PA-tree respectively. DFS:RP & DFS:Ball refers to Algorithm 17
with a forest of RP-trees and ball-trees respectively (please view in color).

with ball-trees slightly outperforming the forest with RP-trees on average. The lazy-

defeatist tree search performs second best with both the PA-tree and the kd-tree

having comparable performance to each other. But improvement of the forest search

over the tree search increases with increasing dimensionality (as can be seen by the

scales on the vertical axis of the plots in Figure 42). An interesting observation is

that the relative performance of the random permutation baseline with respect to

the maximum rank improves with increasing dimensionality (this improvement is less

apparent in case of the mean rank). The performance of the baseline is independent

of the dimensionality of the dataset. Hence this observation suggests that increasing

dimensionality worsens the performance of the proposed algorithms and brings it

closer to the performance of the baseline, as one would usually expect.

The relative performance of the proposed methods with respect to the distance

error, presented in Figure 43, tell the same story, with the defeatist forest search
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(a) D = 5 (b) D = 50 (c) D = 500

Figure 43: Distance error with increasing time constraint for datasets with
varying dimensionality. The top row corresponds to the mean distance error
over all queries and the bottom row corresponds to the maximum distance error
over all queries. Each column corresponds to a particular dimensionality. LDS:kd &
LDS:PA refer to Algorithm 16 with a kd-tree and PA-tree respectively. DFS:RP &
DFS:Ball refers to Algorithm 17 with a forest of RP-trees and ball-trees respectively
(please view in color).

performing the best. The lazy-defeatist tree search outperforms the random permu-

tations baseline by a significant margin, with PA-tree and kd-tree performing com-

parably to each other. Defeatist forest search with ball-tree appears to perform sig-

nificantly better than the defeatist forest search with RP-trees in most of the cases

(maximum distance error at D = 5 being an exception where the RP-trees outperform

the ball-trees).

The comparable performance of the PA-tree and the kd-tree can be attributed to

the following fact: The PA-tree builds tree by splitting the data along the eigenvectors

of the data covariance matrix. A dataset of any desired dimensionality is created

by projecting the data along the eigenvectors of the original data covariance. So

the eigenvectors of the covariance matrix of this projected dataset are axis-aligned.

Hence, the axis-aligned splits of the kd-tree have the same effect as the eigenvector
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aligned splits of the PA-tree, resulting in similar performance for time-constrained

search. But when the eigenvectors of the data covariance are not axis aligned (as is

the case with usual real datasets), the PA-tree has significantly better performance

than the kd-tree (as shown in the experiments in the previous subsections).

4.4.4 Lessons Learned

These empirical results indicate that in the situation where space (memory) is not an

issue, the defeatist forest search is the method of choice for time-constrained search

because they have consistently had the best performance with respect to all forms of

nearest-neighbor error (mean/maximum rank/distance error) across all datasets and

experimental conditions. Between the two forms of forests (one with RP-trees and

other with ball-trees), ball-trees appear to outperform RP-trees empirically in most

cases. Another advantage of ball-trees is that they have a metric specific construction,

making them more adaptable to the problem at hand.

If only enough space is available for a single tree data structure, lazy-defeatist tree

search performs quite well for time-constrained search with respect to the random

permutation baseline. Obviously, the performance is significantly affected by the

choice of the space partitioning tree. This will studied in detail (both theoretically

and empirically) in Chapter 5 Section 5.2, where we try to understand the precise

intrinsic properties of the data and the tree which affect the search performance.

If no space or time is available for indexing/preprocessing the data, the random

permutation based time-constrained search appears to be the best option at hand.

Moreover, if the notion of error that is crucial is the maximum rank, then random

permutation based time-constrained search has comparable performance to the tree

based time-constrained search methods.
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CHAPTER V

LEARNING TO SEARCH

In the time-constrained setting, we wish to preprocess the data in such a way that

the better neighbor candidates for a query are encountered earlier during the search

process. In trying to achieve this, we have explored certain heuristic permutations

such as the Gonzalez and the k-means++ and heuristic binary trees such as the kd-

tree and PA-tree. These heuristics are intuitive and provide significant improvements

in some cases. However, it is usually not clear as to what structure in the data (or

combination of structures in the data) and what adaptability of the indexing scheme

determine the performance of a time-constrained search algorithm.

The task of classification in machine learning involves labelling objects into rele-

vant categories. The usual way to solve this task is with a set of training examples –

example objects with known categories. These training examples coupled with some

heuristic (such as a choice of the model, regularizer of the model, some structural

assumption) are then used to “learn” a classifier. In case of time-constrained search,

a similar approach can be utilized where some “training queries” are used to pre-

process the data in a way that the good candidate neighbors of future queries are

encountered very early during the search algorithm. This technique has been used to

learn skip-lists (Clarkson, 1999), kd-trees (Maneewongvatana and Mount, 2002) and

bucketing schemes in locality sensitive hashing (Cayton and Dasgupta, 2007). We

will use a similar technique to learn a permutation for time-constrained search in the

Section 5.1 of this chapter.

It is also essential to understand the structural properties of the data which influ-

ence time-constrained search performance. Understanding these structural properties
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can allow us to do better preprocessing by explicitly optimizing on these proper-

ties. We will find two such structural properties of the data that influence the time-

constrained search performance of lazy-defeatist search with binary trees (Algorithm

16) in the Section 5.2 of this chapter, and utilize these factors to motivate a new bi-

nary space-partitioning tree, the max-margin tree, for improved search performance.

In Section 5.3, we present some theoretical properties of the max-margin tree and

its efficient variant. Finally we will empirically evaluate the advantage of learning in

Section 5.4 of this chapter.

5.1 Learning Permutations for Improved Performance

As mentioned earlier, instead of preprocessing the data with respect to some heuristic,

we can use a set of “training queries”, queries which serve as an exemplar for the

future queries, to preprocess the data in a way which minimizes the search error in

the time-constrained setting. There are two notions of search error, distance error

and rank error, and in each of the situation, we may care about the average case or

the worst case performance. Depending on our application, we can choose the type

of error and the aggregate performance over all the queries.

Algorithm 18 presents a simple way to greedily learn a permutation of the data

using a set of training queries Q given an error matrix E , where the (j , i)th-entry E [j , i ]

corresponds to the search error incurred if the point ri is returned as the neighbor

candidate for query qj . This error matrix can correspond to the distance error or

the rank error. In lines 3 and 10, the current error of each of the training queries is

aggregated using an aggregation function. This function can be the sum (or mean)

or the maximum over all the queries.

The algorithm begins by selecting the point in the dataset R that incurs the lowest

error aggregated over all training queries. Once a point is put into the permutation,

the effective error for any other point in the set is the minimum of the error due
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Algorithm 18 Learning a permutation with “training” queries.

Input: Data R , Training set Q, Error matrix E ∈ R|Q|×|R|
Output: Permutation T of [1 : n]

3: T [1]← argmini∈[1:n] aggregate(E [1, i ], . . . ,E [m, i ])
for j ← [1 : m] do

for i ← [1 : n] \ {T [1]} do
6: E [j , i ]← min{E (j ,T [1]),E (j , i)}

end for
end for

9: for i ← 2 : n do
T [i ]← argmini∈[1:n]\T [1:i−1] aggregate(E [1, i ], . . . ,E [m, i ])
for j ← [1 : m] do

12: for i ← [1 : n] \ {T [1 : i − 1]} do
E [j , i ]← min{E (j ,T [i ]),E (j , i)}

end for
15: end for

end for

to the selected point and the error incurred by that point. This is because when

the search procedure goes through the final permutation, the best candidate from

the encountered set of points is returned as the neighbor candidate (Algorithm 11).

Hence, after each selection of a point for the learned permutation, the error matrix is

accordingly updated. This is done in Lines 4-8 and Lines 11-15 for Algorithm 18.

5.1.1 Empirical Evaluation and Discussion

We continue with the 4 datasets used in the previous chapter. We create the trained

permutation using Algorithm 18. The training queries Q are obtained by the ran-

domly selecting 1% of the dataset R . The error-matrix E corresponds to the rank and

the “aggregate” function gives the mean rank over all queries. Similar to the previous

empirical evaluations of the time-constraint algorithms, the nearest-neighbor error is

noted for increasing time-constraints. In our training procedure, there is randomness

in the way the training queries are selected. So the experiment is performed 10 times

and the results are averaged over the 10 runs. The learned permutation is compared

to the previously proposed permutation schemes for time-constrained search (TCS)
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in Section 4.2 of Chapter 4.

Figures 44 & 45 present the relative performance of the permutation based TCS

in terms of the rank and distance error respectively. The top row in each figure

corresponds to the mean error and the bottom row corresponds to the maximum

error. Note that both the figures correspond to the permutation trained with respect

to the mean rank over all training queries. The same experiment can be performed

for the rest of the combinations of error, maximum rank, mean distance-error and

maximum distance-error, but is not presented here.

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 44: Rank with increasing time constraint. The top row corresponds to
the mean rank over all queries and the bottom row corresponds to the maximum rank
over all queries (please view in color).

The results in the top row of Figure 44 indicate that the performance of the

permutation learned with some training queries (as low as 1% of the dataset) has

significantly better performance than the other permutation schemes with respect to

the mean rank. The improvement is prominent for smaller time-constraints (smaller

values on the horizontal axis). This is expected since we explicitly learned a permuta-

tion that minimizes the mean rank over all training queries, and the actual queries are

not that different from the training queries (this is effectively the basic assumption

of machine learning).
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While the permutation is learned to (greedily) minimize the mean rank, the re-

sults in the bottom row of Figure 44 indicate that this learned permutation also

outperforms the heuristic permutation schemes with respect to the maximum rank.

The improvements are again more prominent for smaller time-constraints. The hope

is that in the scenario where we explicitly train with respect to the maximum rank

(i.e., the aggregate function returns the maximum rank over all queries), the perfor-

mance with respect to the maximum rank should be further improved for the trained

permutation.

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 45: Distance error with increasing time constraint. The top row cor-
responds to the mean distance-error over all queries and the bottom row corresponds
to the maximum distance-error over all queries (please view in color).

The relative performances of the permutation schemes with respect to the mean

distance error are shown in the top row of Figure 45. The results indicate that

the permutation trained with respect to the mean rank performs better than the

heuristic permutation schemes even in terms of the mean distance error, even though

the difference is less apparent. The improvement of the trained permutation is again

less apparent in the results for the maximum distance error in the bottom row of

Figure 45. The trained permutation slightly outperforms the rest of the permutation

schemes in the MNIST and Tiny Images datasets. For the rest of the datasets, the
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random permutation and the k-means++ permutation perform comparably to the

trained permutation.

It should be noted that the permutations was learned with respect to the mean

rank. Depending on the application, an appropriate notion of error and an aggregate

function can be used to train the permutation. In that situation, the trained per-

formance should outperform the heuristic based permutations, as indicated by the

results with respect to the mean rank error (the top row in Figure 44).

5.2 Analysis of Lazy-Defeatist Tree Search

A simplified version of the lazy-defeatist binary tree-based time-constrained search

(Algorithm 16) is shown in Algorithm 19. Here the time-constraint t is replaced by the

depth l to which the tree will be traversed, where t = l+(n/2l). For a balanced binary

tree on a dataset R of n points with leaf nodes containing a single point, the depth l can

be chosen for the given time-constraint t as follows: for t ≤ log2 n + 1, l = log2 n− 1;

for t ∈ (log2 n + 1, log2 n + 2], l = log2 n − 2; for t ∈ (log2 n + 2, log2 n + 23 − 3],

l = log2 n − 3; for t ∈ (log2 n + 23 − 3, log2 n + 24 − 4], l = log2 n − 4 as so on.

Algorithm 19 Binary tree based candidate selection: Lazy-defeatist tree search

Input: Dataset R , Binary tree T , Query q and Desired depth l
Output: Candidate neighbor p for q

Initialize: current depth lc ← 0, current node Tc ← T
while lc < l do

if 〈Tc .w, q〉+ Tc .b ≤ 0 then
Tc ← Tc .left child

else
Tc ← Tc .right child

end if
lc ← lc + 1

end while
Cq ← Tc ∩ S
p ← argminr∈Cq ‖q − r‖.

We will be building on the existing results (Verma et al., 2009) presented in

Section 2.3 in Chapter 2 to present the worst case error guarantee for Algorithm 19.
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The following are definitions I will use to state the main result of this section:

Definition 5.2.1 (Quantization error improvement). Given a set of points (vectors)

S ⊂ RD, a region A split into two disjoint regions {Al ,Ar}, and a quantity β depending

on the data in the region A, the quantization error improvement is characterized by:

VS({Al ,Ar}) < (1− 1/β)VS(A). (15)

where VS(A) is the quantization error at node A defined as

VS(A) =
1

|A ∩ S |
∑

x∈A∩S

‖x − µ(A)‖22 , (16)

and VS({Al ,Ar}) the average quantization error of a collection of regions {A1,A2}

given by:

VS({A1,A2}) =
|A1 ∩ S |VS(A1) + |A2 ∩ S |VS(A2)

|A ∩ S | . (17)

Definition 5.2.2 (ω-balanced split). A split partitioning any region A into disjoint

regions A1 and A2 is called an ω-balanced split if

||A1 ∩ S | − |A2 ∩ S || ≤ ω|A ∩ S |. (18)

For an entirely balanced tree corresponding to recursive median splits, such as the

PA-tree and kd-tree, ω ≈ 0. Non-zero values of ω� 1 corresponds to approximately

balanced trees. Approximately balanced trees have a depth bound of O(log n) (Ram

et al., 2012, Theorem 3.1). For a tree with ω-balanced splits, the worst case runtime

of Algorithm 19 is O
(

l +
(
1+ω
2

)l
n
)

instead of O
(
l + n

2l

)
.

Definition 5.2.3 (Expansion constant). Let B`2(p,∆) = {r ∈ S : ‖p − r‖ < ∆}

denote the points in S contained in a ball of radius ∆ around some p ∈ S with respect

to the `2 metric. Then, the expansion constant of (S , `2) is defined as the smallest

c ≥ 2 such
∣∣B`2(p, 2∆)

∣∣ ≤ c
∣∣B`2(p,∆)

∣∣ ∀p ∈ S and ∀∆ > 0.

117



The expansion constant is the maximum ratio of the measure in a ball centered at

a point to the measure in the ball centered at the same point with half the radius. A

bounded expansion constant corresponds to a growth restricted metric (Karger and

Ruhl, 2002). The expansion constant effectively characterizes the distribution of the

data. It is closely related to the doubling dimension or the Assouad dimension but is

more fragile. The expansion constant c ∼ 2O(d ) where d is the doubling dimension

of the set S with respect to the `2 metric. The relationship is exact for uniformly

distributed points in D-dimensional space (i.e., c = 2D).

Given these definitions, I present the following guarantee for Algorithm 19:

Theorem 5.2.1 (Candidate-neighbor distance bound). Consider a dataset R ⊂ RD

of n points with ψ = 1
2n2

∑
x ,y∈R ‖x − y‖2, a query q ∈ RD and the BSP-tree T built

on R with the following conditions:

(C1) For any D-dimensional convex region A ⊂ RD, let (A ∩ (R ∪ {q}), `2) have

an expansion constant at most c̃.

(C2) Let T be complete till a depth L <
(
log2

n
c̃

)
/(1− log2(1−ω)) with ω-balanced

splits throughout the tree.

(C3) Let β∗ correspond to the worst quantization error improvement over all splits

in T .

Further assume the following for any node A in the tree T :

(A1) max
x ,y∈A∩R

‖x − y‖2 ≤ ηVR(A) for a fixed η > 8.

Then the worst-case upper bound du on the distance of q to the neighbor candidate p

returned by Algorithm 19 with depth l ≤ L is given by

‖q − p‖ ≤ du =
2
√
ηψ

n
1

log2 c̃ − 2
(

2
1−ω

) l
log2 c̃

(
2

1−ω

)l
(

1
2
+ 1

log2 c̃

)
exp

(
− l

2β∗

)
. (19)
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The theorem is proved in Section 5.2.2. This result implies that for a balanced

tree (ω = 0) and a query q landing in a node A at depth l of the tree, the maximum

distance between q and its closest point in A ∩ R is at most

2
√
ηψ

n
1

log2 c̃ − 2
1+ l

log2 c̃

2
l
(

1
2
+ 1

log2 c̃

)
exp

(
− l

2β∗

)
.

This implies that between two types of BSP-trees on the same set and the same

query, Algorithm 19 has a better (worst-case) guarantee on the candidate neighbor

distance for the tree with better quantization performance (corresponding to smaller

β∗). The last exponential term in definition of du (Equation (19)) implies a smaller

upper bound for lower values of β∗.

Moreover, for the same tree, du is non-decreasing in l . This is as expected because

as we go deeper down the tree, we can never improve the candidate neighbor distance.

At the root level (l = 0), the candidate neighbor distance is equal to the nearest-

neighbor distance. As we descend down the tree, the candidate neighbor distance

will worsen if a tree split separates the query from its closer neighbors. This behavior

is implied by the above bound.

A less apparent dependence is on the expansion constant. For the set of size n

with a node at depth l in a BSP-tree, the candidate neighbor distance is inversely

proportional to
(

n
2l

)1/ log2 c̃
. This implies that larger c̃ lead to worse upper bounds on

the candidate neighbor distance. Since log2 c̃ ∼ O(d ), larger intrinsic dimensionality

implies worse guarantees, as one would expect from the curse of dimensionality.

The upper bound in Equation (19) will have similar dependence on all the proper-

ties of the data and the tree (β∗, l & c̃) for trees with ω-balanced splits for a non-zero

but fixed ω.

Explanation of the conditions and assumptions in Theorem 5.2.1. Condi-

tion C1 implies that the data lying within any convex subset A of RD has an expansion

constant at most c̃ with respect to the `2 metric. This condition implies that the whole
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set (R , `2) also has an expansion constant at most c̃ . However, if the expansion con-

stant of the whole set is c , this does not imply that the data lying within any convex

subset of RD has an expansion constant at most c . Hence a bounded expansion con-

stant assumption for every convex subset of RD is stronger than a bounded expansion

constant assumption on the whole set. We do not yet have a way to remove this

condition. However, note that condition C1 does not imply that all subsets of R have

an expansion constant at most c̃ with respect to `2, which is a stronger condition.

The condition C2 ensures that the tree is complete so that for every query q and

a depth l ≤ L, there exists a node in the tree at depth l which contains q. The

condition C3 gives us the worst quantization improvement rate over all the splits in

the tree. The worst case quantization performance allows us to give the worst-case

search performance.

Assumption A1 implies that the squared distance between any pair of points in a

region A is within a constant factor η of the quantization error of that node. This refers

to the assumption that the node A contains no outliers as described in Section 2.3.

This assumption ensures that only ‘split-by-hyperplane’ (Figure 8(a)) was invoked

to construct the tree and ‘split-by-distance’ (Figure 8(b)) was never used during the

construction of the tree T . So by making assumption A1 we are effectively ruling

out any split-by-distances. If we do allow a small fraction of the l splits encountered

by the query to be split-by-distance, then a similar result can be obtained by using

Proposition 2.3.1. The differences would be the following – (1) the dependence on

the ψ term will be replaced by the dependence on ∆2(R) = maxx ,y∈R ‖x − y‖2, and

(2) the dependence on l would change.

For two trees with different kinds of hyperplane splits, if split-by-distance is in-

voked the same number of times in the tree, the difference in the worst-case bounds

for both the trees would again be governed by their worst-case quantization per-

formance (β∗). However, for a fixed η, a harder question is whether one type of
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split-by-hyperplane forces more split-by-distance invocations than another type of

split-by-hyperplane. And we do not yet have an answer for this.

Equipped with this bound on the candidate neighbor distance, we can easily bound

the worst-case nearest-neighbor errors as follows:

Corollary 5.2.1 (Distance error guarantee). Under the conditions, definitions and

assumptions of Theorem 5.2.1, the distance error ε(q) for any query q at a desired

depth l ≤ L in Algorithm 19 is bounded as

ε(q) ≤ (du/d∗q )− 1, (20)

where d∗q = minr∈R ‖q − r‖.

This follows from the definition of distance error ε(q).

Corollary 5.2.2 (Rank guarantee). Consider the conditions, definitions and assump-

tions of Theorem 5.2.1. Then the worst-case rank τ(q) for any query q at a desired

depth l ≤ L in Algorithm 19 is bounded as

τ(q) ≤ c̃dlog2(du/d∗q )e, (21)

where d∗q = minr∈R ‖q − r‖.

Proof. We can see from Definition 5.2.3 and Assumption A1 that

|B`2(q, du)| ≤ c̃dlog2(du/d∗q )e|B`2(q, d∗q )|.

Let S = {r ∈ R : ‖q − r‖ < du}. By definition, the rank of the candidate neighbor

is |S | + 1. Also B`2(q, du) contains q and S , and q /∈ S . Then the number of points

contained in B`2(q, du) is |S |+1 which is equal to the rank of the candidate neighbor.

Now using the fact that |B`2(q, d∗q )| = |{q}| = 1, we have the rank bound in Equation

(21).
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The bounds on both kinds of nearest-neighbor error have direct correspondence to

du. Hence, from Theorem 5.2.1, the BSP-tree with better quantization performance

guarantee allows for better nearest-neighbor performance guarantee. Moreover, for a

given tree and a query, the nearest-neighbor error of Algorithm 19 can never decrease

with the increasing depth l of the tree since every child node of a BSP-tree is contained

within its parent node, and a child node can not have better nearest-neighbor error

for a query that the parent. Since du is non-decreasing in l , our bounds in Corollaries

5.2.1 & 5.2.2 are nondecreasing with increasing depth. Note that any dependence of

this approximation guarantee on the ambient or intrinsic dimensionality of the data

is subsumed in the dependence on β∗ and the region-wise expansion constant c̃ .

While our result bounds the worst-case performance of Algorithm 19, a bound on

average case performance of the algorithm can be given by

E
q
ε(q) ≤ du

(
E
q
1/d∗q

)
− 1, E

q
τ(q) ≤ cdlog2 due

(
E
q

c−(log2 d∗q )
)
, (22)

since du does not depend on q and the expectation is over the queries q. For the

purposes of relative comparison among binary trees, the bounds on the expected

error for any tree depends solely on du since the term within the expectation over q

does not depend on the tree.

The error bounds in Equations (20) and (21) also depend on the true nearest-

neighbor distance d∗q of any query q of which we have no prior knowledge. However,

if we try to learn splits (decision boundaries) such that it ensures a large margin

between the two regions, then we can say, with some confidence, that either the

candidate neighbor is the true nearest-neighbor of q or that d∗q is greater than the

size of the margin. We characterize the influence of a large margin split on the

approximation guarantee with the following result:

Corollary 5.2.3 (Margin-based nearest-neighbor error guarantee). Consider the con-

ditions, definitions and assumptions of Theorem 5.2.1. Further assume that γ is the
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smallest geometric margin size on both sides of any split in the tree. Then the worst-

case nearest-neighbor error for q in terms of distance error ε(q) is

ε(q) ≤ du/γ− 1, (23)

and in terms of rank τ(q) is

τ(q) ≤ cdlog2(d
u/γ)e. (24)

Proof. For a margin of size 2γ, if the query q’s true nearest-neighbor is not in the

node A, then the true nearest-neighbor is at least at a distance greater than γ from

q. Hence d∗q > γ. Applying this in Corollaries 5.2.1 & 5.2.2 gives the corresponding

desired results.

This result indicates that if the margins of the splits in a tree can be increased

without adversely affecting its quantization performance, the nearest-neighbor error

guarantees will improve for Algorithm 19. While this result also does not show any

explicit dependence on the ambient or intrinsic dimensionality of the data, margin

sizes can become larger in high dimensions because points are usually more sparse

in the high dimensional data space. This motivated us to build a space partitioning

tree that explicitly maximizes the margin of the split for every split in the tree. We

call this the max-margin tree (Ram et al., 2012). The details of its construction are

presented in Section 5.3.

5.2.1 Empirical Validation

We examine our theoretical results with subsets of 4 real datasets (described pre-

viously in Chapter 3 Section 3.4) – Optdigits (D = 64, n = 3823, 1797 queries),

Tiny Images (D = 384, n = 5000, 1000 queries), MNIST (D = 784, n = 6000,

1000 queries) and Images (D = 4096, n = 500, 150 queries). We consider the

following BSP-trees: kd-tree (Algorithm 2), random-projection tree or RP-trees (Al-

gorithm 3), principal axis tree or PA-tree (Algorithm 4) and the two-means tree or
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2M-tree (Algorithm 5). We also consider our proposed BSP-tree, the max-margin

tree or MM-tree. For the empirical evaluation, we only use split-by-hyperplane for

the tree construction. This is because, firstly, the check for the presence of outliers

(∆2
R(A) > ηVR(A)) is quite expensive to compute, and, secondly, split-by-distance is

mostly for the purposes of obtaining theoretical guarantees.

The performance of these BSP-trees on the 4 datasets are presented in Figure

46. Note that the queries are distinct from the points indexed in the tree. Trees

with missing data points for higher depth levels (for example, kd-tree in Figure 46(a)

and 2M-tree in Figures 46 (b) & (c)) imply that we were unable to grow complete

BSP-trees beyond that depth.
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Figure 46: Performance of binary trees with increasing depth. The top row
corresponds to quantization performance of the trees and the bottom row presents
the nearest-neighbor error (in terms of mean rank of the candidate neighbor (CN)) of
Algorithm 19 with these trees. The nearest-neighbor error plots are also annotated
with the mean distance error of the CN (please view in color).

The quantization performance of the 2M-tree, PA-tree and MM-tree are signif-

icantly better than the performance of the kd-tree and RP-tree and, as suggested

by Theorem 5.2.1, this is also reflected in their search performance. The MM-tree

has comparable quantization performance to the 2M-tree and PA-tree. However,
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in the case of search, the MM-tree outperforms PA-tree in all datasets. This can

be attributed to the large margin splits used to build the MM-tree. The compari-

son to 2M-tree is not as apparent. The MM-tree and PA-tree have balanced splits

enforced algorithmically, resulting in bounded depth and bounded computation of

O(l + n(1 +ω)l/2l) for any given depth l . No such balance constraint is enforced in

the 2-means algorithm, and hence, the 2M-tree can be heavily unbalanced. The ab-

sence of complete 2M-tree beyond depths 4 and 6 in Figures 46 (b) & (c) respectively

is evidence of the lack of balance in the 2M-tree. This implies possibly more compu-

tation and hence lower errors. Under these conditions, the MM-tree with an explicit

balance constraint performs comparably to the 2M-tree (slightly outperforming in 3

of the 4 cases) while still maintaining a balanced tree (and hence returning smaller

candidate sets on average).

5.2.2 Proof of Theorem 5.2.1

For the proof of Theorem 5.2.1, we utilize the following results:

Fact 5.2.1. For any set of points S and a region A containing m of the points in S

and quantized by the centroid µ(A) of these points,

VS(A) =
1

2

1

m2

∑
x ,y∈A∩S

‖x − y‖2 . (25)
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Proof.

1

m2

∑
x ,y∈(A∩S)

‖x − y‖2 =
1

m2

∑
x ,y∈(A∩S)

‖x − µ(A) + µ(A)− y‖2

=
1

m2

∑
x ,y∈(A∩S)

‖x − µ(A)‖2 + 1

m2

∑
x ,y∈(A∩S)

‖y − µ(A)‖2

+
2

m2

∑
x ,y∈(A∩S)

〈x − µ(A),µ(A)− y〉

=
2

m

∑
x∈(A∩S)

‖x − µ(A)‖2 + 2

m2

∑
x ,y∈(A∩S)

〈x − µ(A),µ(A)− y〉

since
∑

x ,y∈(A∩S)

‖x − µ(A)‖2 = m
∑

x∈(A∩S)

‖x − µ(A)‖2

=
2

m

∑
x∈(A∩S)

‖x − µ(A)‖2 + 2

m2

∑
y∈(A∩S)

〈
∑

x∈(A∩S)

(x − µ(A)),µ(A)− y〉

=
2

m

∑
x∈(A∩S)

‖x − µ(A)‖2 = VS(A) since
∑

x∈(A∩S)

(x − µ(A)) = 0.

Lemma 5.2.1 (Multi-level diameter decrease). Under the conditions and definitions

of Theorem 5.2.1, for any node A at a depth l in the BSP-tree T on R,

VR(A) ≤ ψ(2/1−ω)l exp(−l/β∗). (26)

Proof. By definition, for any node A at depth l , its sibling node As and parent node

Ap,

VR({A,As}) ≤
(
1− 1

β∗

)
VR(Ap).

For ω-balanced splits, assuming that |A| < |As |,

VR({A,As}) =
1−ω

2
VR(A) +

1 +ω

2
VR(As) ≤

(
1− 1

β∗

)
VR(Ap).

This gives us the following:

VR(A)

VR(Ap)
≤
(

2

1−ω

) VR({A,As})
VR(Ap)

≤
(

2

1−ω

)(
1− 1

β∗

)
.

The same holds for As and for every node at depth l and its corresponding parent at

depth l − 1. Recursing this up to the root node of the tree A0, we have:

VR(A)

VR(A0)
≤
(

2

1−ω

)l (
1− 1

β∗

)l

≤
(

2

1−ω

)l

e−l/β∗ . (27)
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for any node A at a depth l of the tree. Using Fact 5.2.1, VR(A0) = ψ. Substituting

this in Equation (27) gives us the statement of Lemma 5.2.1.

Proof of Theorem 5.2.1. Consider the node A at depth l in the tree where the query

q lands, and let m be the number of points of R in the region corresponding to the

node A. Let D = maxx ,y∈R∩A ‖x − y‖, and let d = minx∈R∩A ‖q − x‖. Then, by the

Definition 5.2.3 and condition C1,

∣∣B`2(q,D + d)
∣∣ ≤ c̃ log2dD+d

d e|B`2(q, d)| = c̃ log2dD+d
d e ≤ c̃ log2(D+2d

d ).

Now
∣∣B`2(q,D + d)

∣∣ ≥ m. Using this above gives us

m1/ log2 c̃ ≤ D

d
+ 2.

By condition C2, m1/ log2 c̃ > 2. Hence we have

d ≤ D

m1/ log2 c̃ − 2
.

By construction and assumption A1, D ≤
√
ηVR(A). Now m ≥ n(1 − ω)l/2l .

Plugging this above and utilizing Equation (27) in Lemma 5.2.1 gives us the statement

of Theorem 5.2.1.

5.3 Large Margin Trees

We established that the nearest-neighbor error depends on the quantization perfor-

mance of the tree as well as the margin of the splits in the tree. This motivated

us to consider a binary space partitioning tree (or BSP-tree) which is constructed by

explicitly maximizing the margin of every split in the tree (Algorithm 20) while main-

taining some form of balance in the tree. We call this the max-margin tree (Figure

47). While the large margin heuristic might be the reason for the favorable empir-

ical performance of the MM-tree in Section 5.2, good search performance requires

good quantization performance as well. Empirically, the MM-tree has comparable
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Figure 47: Max-margin tree.

performance to the 2M-tree and PA-tree. In this section, we establish a theoretical

guarantee for the quantization performance of the MM-tree. Moreover, we discuss

efficient ways of utilizing large margin splits in trees and show that, for any chosen

direction, utilizing the one-dimensional max-margin split instead of the usual median

split does not significantly degrade the quantization performance of the resulting tree,

while improving the search performance.

Algorithm 20 A large margin MM-tree split.

Input: Set S , Region A
Output: Regions Al and Ar

(w, b)← a large margin split of (A ∩ S)
Al ← {x ∈ A ∩ S : 〈w, x〉+ b ≤ 0}
Ar ← {x ∈ A ∩ S : 〈w, x〉+ b > 0}

5.3.1 MM-tree quantization performance guarantee

The large margin split in the MM-tree is obtained by performing max-margin cluster-

ing (mmc) with 2 clusters. The task of mmc is to find the optimal hyperplane (w∗, b∗)

from the following optimization problem1 given a set of points S = {x1, . . . , xn} ⊂ RD :

min
w,b,ξi

1

2
‖w‖22 + C

n∑
i=1

ξi (28)

1This is an equivalent formulation (Zhao et al., 2008) to the original form of max-margin clustering
proposed by Xu et al. (2005). The original formulation also contains the labels yi s and optimizes
over it. We consider this form of the problem since it makes our analysis easier to follow.
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s.t. |〈w, xi〉+ b| ≥ 1− ξi ∀i = 1, . . . , n (29)

ξi ≥ 0 ∀i = 1, . . . , n (30)

−ωn ≤
n∑

i=1

sgn(〈w, xi〉+ b) ≤ ωn. (31)

This formulation finds a soft max-margin split in the data to obtain two clusters.

The balance constraint (Equation (31)) avoids trivial solutions and enforces an ω-

balanced split. The margin constraints (Equation (29)) enforce a robust separation

of the data while allowing for some points to be within the margin. Given a solution

to the mmc, we establish the following quantization error improvement rate for the

MM-tree:

Theorem 5.3.1. Given a set of points S ⊂ RD, consider an ω-balanced max-margin

split (w, b) of the region A into {Al ,Ar} with αn support vectors and a split margin

of size γ = 1/ ‖w‖. Then the quantization error improvement is given by:

VS({Al ,Ar}) ≤
(
1−

γ2 (1− α)2
(
1−ω
1+ω

)∑D
i=1 λi

)
VS(A), (32)

where λ1, . . . , λD are the eigenvalues of the covariance matrix of A ∩ S .

The result indicates that larger margin sizes (large γ values) and a smaller num-

ber of support vectors (small α) implies better quantization performance. The de-

pendence on ω is not significant because ω is generally restricted algorithmically.

This result also indicates that if γ = O(
√
λ1) then this rate matches the best possi-

ble quantization performance of the PA-tree (see Table 1). We present the proof of

Theorem 5.3.1 in Section 5.3.4. A caveat of this result is that we do assume that we

have a feasible solution of the mmc problem, which might not always be possible in

practice.

5.3.2 Efficient large margin discriminative trees

Finding the unsupervised maximum-margin split is a non-convex optimization prob-

lem and all current algorithms for mmc perform some convex relaxation of the problem
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and use convex solvers. Moreover, these convex relaxations are not only approximate

(without any formal approximation bounds) but also are computationally expensive

to solve in practice. The most efficient algorithm for approximate mmc requires O(n)

time to find an unsupervised max-margin split for a set of n points (Zhao et al.,

2008)2.

Hence max-margin splits are very useful, but too computationally expensive to

utilize with large datasets. One strategy is to use kd-tree splits (median splits along

some coordinate axis) for larger nodes in the tree and utilize the max-margin splits

only on the small nodes (where this threshold size can be chosen according to the

available resources). We call this the Hybrid-tree (HY-tree).

Another strategy is the following – (I) first split the data at the median along a

direction of our choice (for example, it can be the principal axis like in a PA-tree or

simply some coordinate axis like in a kd-tree), (II) then project the data onto the

direction along the line joining the two centroids of the initial partition, (III) finally

perform an unsupervised max-margin split of the one-dimensional projections of the

points. The one-dimensional mmc is an easy task and can be computed exactly in

O(n log n) by sorting the projections. We call the corresponding trees the PA+-tree

and the kd+-tree. We make use of the following result to quantify the degradation in

the quantization error improvement:

Lemma 5.3.1. Give a set S , for any partition {A1,A2} of a set A,

VS(A)− VS({A1,A2}) =
|A1 ∩ S ||A2 ∩ S |
|A ∩ S |2 ‖µ(A1)− µ(A2)‖2 , (33)

where µ(A) is the centroid of the points in the region A.

This result is due to Dasgupta and Freund (2008) and implies that the improve-

ment in the quantization error depends on the distance between the centroids of the

2Note that a lot of constants are hidden in the O(·) and we refer the readers to Theorem 4.4 of
Zhao et al. (2008).
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two regions in the partition. The following result shows that our proposed second

strategy for efficient large-margin tree construction will only degrade the quantization

performance of the original median-split tree by a very limited amount:

Lemma 5.3.2. Consider a region A contained in B`2(0,Ψ) ⊂ RD which is split along

a chosen direction at the median into {Al ,Ar}. Let w denote the unit direction along

the line joining the centroids µ(Al) and µ(Ar ) of the data in the two regions Al and

Ar . Now consider an ω-balanced split resulting from a max-margin split of the one-

dimensional projections of the points in A along the direction w with a margin of γ

and αn support vectors. Let the new partition result in the regions {A′l ,A′r}. Then

‖µ(A′l)− µ(A′r )‖ ≥ (1−ω) ‖µ(Al)− µ(Ar )‖ −ω2Ψ . (34)

The above result shows that the centroids of the new partitions resulting from the

one-dimensional max-margin split are at least almost as far apart as the centroids of

the original split. Since the improvement in the quantization error is directly propor-

tional to the distance between the centroids of the two sides of the partition, Lemma

5.3.2, in conjunction with Lemma 5.3.1, implies that the quantization performance of

the new partition is at most only slightly worse than the quantization performance

of the original partition. The split balance ω controls the level of degradation in the

quantization performance. For the max-margin splits, ω can be directly controlled

by the user. The proof of Lemma 5.3.2 is presented in Section 5.3.4.2.

5.3.3 Empirical evaluation

For our empirical validation, we consider a simpler version of our proposed second

strategy. We simply perform the one-dimensional max-margin split on the projections

of the points on the initially chosen direction (for example, some coordinate axis for

kd+-trees). This is simpler than the original strategy of projecting the points in

the direction of the line joining the two centroids of the initial partition. We again

try to validate our theoretical results with the datasets considered in Section 5.2.1.
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Figure 48: Performance of large margin trees with increasing depth. The
top row corresponds to quantization performance of the trees and the bottom row
presents the nearest-neighbor error (in terms of mean rank of the candidate neighbor
(CN)) of Algorithm 19 with these trees. Note that the line corresponding to PA+-
tree almost coincides with the HY-tree for the MNIST set in Figure (c) bottom row
(Please view in color).

We compare the performance of the discriminative trees with efficient max-margin

splits to their non-discriminative original versions in Figure 48. Trees with missing

data points for higher depth levels (for example, kd-tree in Figure 48(a) and kd+-tree

in Figures 48 (b)) imply that we were unable to grow complete BSP-trees beyond

that depth. The top row shows that, in all cases, the quantization performance of

trees with max-margin splits along a chosen direction is not much worse than the

quantization performance of the original trees even though we used a simpler version

of our strategy. Hence the quantization performance of PA+-tree and kd+-tree is very

close to that of PA-tree and kd-tree respectively. The HY-tree mirrors the performance

of the kd-tree for lower depths and does significantly better than the kd-tree for higher

depths because of the more involved general dimensional max-margin splits.

The bottom row in Figure 48 exhibits the advantage of large margin splits in

PA-tree and kd-tree. The PA+-tree outperforms the PA-tree in all the considered

datasets, with the difference becoming more apparent for higher depths (implying
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lower nearest-neighbor error for small amounts of computation). The kd+-tree out-

performs the kd-tree for the high dimensional Images set. The improvement is less

significant in the MNIST and Tiny Images set while being slightly worse than the

kd-tree for the OptDigits set. However, for the OptDigits set, the original kd-tree is

very unbalanced (even though we used median splits) because of the presence of many

points with coinciding dimensions. This unbalanced structure allowed for a complete

kd-tree of maximum depth 5. The kd+-tree performs comparably to the kd-tree while

being complete and balanced. As expected, the HY-tree mirrors the performance of

the kd-tree for lower depths, but quickly improves to even outperform the PA-tree

for higher depths in all datasets. All these results show that in most cases, a large

margin split does improve the nearest-neighbor performance without degrading the

quantization performance significantly (as predicted by our theoretical results).

5.3.4 Proofs of the theoretical results presented in this section

5.3.4.1 Proof of Theorem 5.3.1

We use these following results to prove Theorem 5.3.1:

Fact 5.3.1. Given a set S and a region A in RD, and let λ1, . . . , λD be the eigenvalues

of the covariance matrix of the points (A ∩ S). Then,

VS(A) =
D∑

i=1

λi , (35)

Proof. Let Cov(A∩ S) be the covariance matrix of the data contained in a cell A and

λ1, . . . , λD be the eigenvalues of Cov(A ∩ S). Then, we have:

VS(A) =
1

|A ∩ S |
∑

x∈A∩S

‖x − µ(A)‖2 = tr (Cov(A ∩ S)) =
D∑

i=1

λi .

Proof of Theorem 5.3.1. The solution for the mmc (w∗, b∗, ξ∗i |i=1,...,n) imply that

n∑
i=1

|〈w∗, xi〉+ b∗| ≥ n −
n∑

i=1

ξ∗i .
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Let x̃i = 〈w∗, xi〉 + b∗ and n+ = |{i : x̃i > 0}| and n− = |{i : x̃i ≤ 0}| and µ̃+ =

(
∑

i : x̃i>0 x̃i)/n+ and µ̃− = (
∑

i : x̃i≤0 x̃i)/n−. Then the above equation can be written

as:

n+µ̃+ − n−µ̃− ≥ n −
n∑

i=1

ξ∗i .

Without loss of generality, we assume that n+ ≥ n−. Then the balance constraint

(Equation (31)) tells us that n+ ≤ n(1 +ω)/2 and n− ≥ n(1−ω)/2. Using this, the

above equation can written as:

µ̃+ − µ̃− +ω(µ̃+ + µ̃−) ≥ 2− 2

n

n∑
i=1

ξ∗i .

Since µ̃+ > 0 and µ− ≤ 0, |µ̃+ + µ̃−| ≤ (µ̃+ − µ̃−). Hence

(1 +ω)(µ̃+ − µ̃−) ≥ 2− 2

n

n∑
i=1

ξ∗i . (36)

For an unsupervised split, the data is always separable since there is no misclassi-

fication. This implies that ξ∗i ≤ 1∀i . Combining this with the above inequality in

Equation (36), we get

µ̃+ − µ̃− ≥
2− 2

n
|i : ξ∗i > 0|
1 +ω

. (37)

The term |{i : ξ∗i > 0}| corresponds to the number of support vectors in the final

max-margin solution. For the means µ(Al) and µ(Ar ), Cauchy-Schwartz gives us:

‖µ(Al)− µ(Ar )‖ ≥
|〈w,µ(Al)− µ(Ar )〉|

‖w‖ = (µ̃+ − µ̃−)γ,

where µ̃− = 〈w,µ(Al)〉 + b and µ̃+ = 〈w,µ(Ar )〉 + b. For Equation (37), we can say

that

‖µ(Al)− µ(Ar )‖2 ≥ 4γ2

(
1− α
1 +ω

)2

. (38)

Also, for ω-balanced splits, |Al ||Ar | ≥ (1−ω2)n2/4. Substituting this and Equation

(38) in Equation (33) from Lemma 5.3.1, we have

VS(A)− VS({Al ,Ar}) ≥ (1−ω2)γ2

(
1− α
1 +ω

)2

= γ2 (1− α)2
(
1−ω
1 +ω

)
.

Reformulating and utilizing Equation (35) from Fact 5.3.1 gives us the statement of

the theorem.
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5.3.4.2 Proof of Lemma 5.3.2

Proof of Lemma 5.3.2. Let {x1, . . . , xm} be the points in the region A and let x̃i =

〈w, xi〉 be the points projected along w. Also, let µ̃(B) denote the mean of the points

in any region B projected along w. Without loss of generality, assume that the median

of {x̃1, . . . , x̃m} is zero and that µ̃(Al) < 0 and µ̃(Ar ) > 0.

Also assume that the max-margin split is at a value b∗ < 0. Then |A′l | = (1 −

ω)m/2 and |A′r | = (1 +ω)m/2. Expanding µ̃(Al), we have

µ̃(Al) =

∑
x̃≤b∗ x̃ +

∑
b∗<x≤0 x̃

n/2

= µ̃(A′l) +
−µ̃(A′l)nω

2
+
∑

b∗<x̃≤0 x̃

n/2
. (39)

Similarly expanding µ̃(A′r ), we have

µ̃(A′r ) =

∑
x̃>0 x̃ +

∑
b∗<x≤0 x̃

n(1 +ω)/2

= µ̃(Ar ) +
−µ̃(Ar )

nω
2
+
∑

b∗<x̃≤0 x̃

n(1 +ω)/2
. (40)

Combining Equation (39) and (40) and simplifying, we have

µ̃(A′r )− µ̃(A′l) = (µ̃(Ar )− µ̃(Al)) +

−µ̃(Ar )
nω
2
− µ̃(A′l)nω

2
(1 +ω) + (2 +ω)

∑
b∗<x̃≤0

x̃

n(1 +ω)/2
.

Now b∗ ≥ µ̃(A′l) and |{x̃ : b∗ < x̃ ≤ 0}| = nω/2. Hence

µ̃(A′r )− µ̃(A′l) ≥ (µ̃(Ar )− µ̃(Al))−
ω(µ̃(Ar )− µ̃(A′l))

1 +ω
(41)

=

(
1− ω

1 +ω

)
(µ̃(Ar )− µ̃(Al))−

ω(µ̃(Al)− µ̃(A′l))
1 +ω

.

Again utilizing Equation (39), we have

µ̃(Al)− µ̃(A′l) ≤ −ωµ̃(A′l) ≤ ωΨ (42)

since µ̃(A′l) < 0 and that |x̃ | ≤ Ψ ∀x ∈ A. By definition of w, ‖µ(Al)− µ(Ar )‖ =

µ̃(Ar ) − µ̃(Al) and ‖µ(A′l)− µ(A′r )‖ ≥ µ̃(A′r ) − µ̃(A′l). Using this fact and Equation

(42) in Equation (42) with the fact that −ω/(1 +ω) > −ω for any ω ∈ [0, 1] gives

us Equation (34) in the statement of the theorem.
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5.4 Empirical Evaluation of “Learned” Binary Trees

In this section we consider the two trees learned from optimizing the factors affecting

search performance. As mentioned earlier, greedily minimizing the quantization error

at each level gives us the 2M-tree, and using mmc to recursively obtain an unsu-

pervised large margin split gives us the MM-tree. In this section, we evaluate the

2M-tree, and the efficient but less accurate version of the MM-tree, the HY-tree (the

hybrid tree).

5.4.1 Greedy Tree Search

We continue with the 4 datasets previously described in Table 4 in Chapter 4 to eval-

uate the greedy tree-based time-constrained search (Algorithm 15) with the learned

trees. First we compare the performance of the greedy tree search with the 2M-tree to

the performance of time-constrained search (TCS) with random permutations (Algo-

rithm 11) and the greedy tree search with the kd-tree and the PA-tree. Since we use

Lloyd’s algorithm (Lloyd, 1982) to solve the 2-means problem, there is randomness

in the construction of the 2M-tree. So we average the performance of the tree over

10 repetitions.

Figure 49 presents the performance of the 2M-tree with respect to the baseline

methods in terms of the rank. The top row indicates that, in terms of the mean

rank, the 2M-tree outperforms the PA-tree significantly on one occasion and slightly

on two occasions while performing worse than the PA-tree on one occasion. The 2M-

tree performs significantly better than the simple kd-tree. In terms of the maximum

rank, the 2M-tree performs comparably to the PA-tree on three of occasions while

performing worse on one occasion.

Figure 50 presents the performance of the 2M-tree with respect to the baseline

methods in terms of the distance error. Similar to the situation with rank, the 2M-

tree outperforms the PA-tree in terms of the mean distance error on three occasions
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(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 49: Rank with increasing time constraint. The top row corresponds to
the mean rank over all queries and the bottom row corresponds to the maximum rank
over all queries. GS:kd & GS:PA refer to Algorithm 15 with a kd-tree and PA-tree
respectively. GS:2M refers to Algorithm 15 with a 2M-tree (please view in color).

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 50: Distance error with increasing time constraint. The top row cor-
responds to the mean distance error over all queries and the bottom row corresponds
to the maximum distance error over all queries. GS:kd & GS:PA refer to Algorithm
15 with a kd-tree and PA-tree respectively. GS:2M refers to Algorithm 15 with a
2M-tree (please view in color).

(significantly once and slightly twice) and performs worse than the PA-tree on one

occasion. In terms of the maximum distance error, the 2M-tree appears to perform

comparably to the PA-tree in all occasions, especially for small time-constraints (small

values on the x-axis).
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The results indicate that, in most cases, the 2M-tree performs comparably to

the PA-tree. This can be attributed to the following observations – (1) the PA-

tree implicitly tries to reduce the quantization error by splitting along the principal

axis, (2) the 2M-tree intends to greedily minimize the quantization error, but Lloyd’s

algorithm solves the 2-means problem approximately and we do not perform random

restarts for each split to pick the split reducing the quantization error the most; we

just perform a single run of the Lloyd’s algorithm, and (3) unlike the PA-tree, the

2M-tree does not enforce any kind of balance in the binary tree, possibly resulting in

trees with depth much worse than O(log n) (this is the possible reason for the adverse

behavior of the 2M-tree in the Tiny Images dataset).

We also compare the performance of the greedy tree search with our proposed

HY-tree to the performance of TCS with random permutations (Algorithm 11) and

the greedy tree search with the kd-tree. Since the HY-tree is same as the kd-tree

in the higher levels of the tree, we compare the improvement of the HY-tree only

over the kd-tree. For the implementation of the HY-tree, we perform a split using

mmc only if the number of points in the node is less than 5000.

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 51: Rank with increasing time constraint. The top row corresponds to
the mean rank over all queries and the bottom row corresponds to the maximum rank
over all queries. GS:kd & GS:PA refer to Algorithm 15 with a kd-tree and PA-tree
respectively. GS:HY refers to Algorithm 15 with a HY-tree (please view in color).
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Figure 51 indicates that the HY-tree shows remarkable improvement over the kd-

tree both in terms of the mean rank and the maximum rank. In terms of the mean

rank, HY-tree outperforms the kd-tree, while in terms of the maximum rank, HY-

tree outperforms the kd-tree significantly for small time-constraints (small values on

the x-axis). This improvement is obviously not surprising since the HY-tree is more

flexible than the kd-tree. On one occasion (for the MNIST set with maximum rank),

the HY-tree and the kd-tree have comparable performance. However, the curve for

the HY-tree has a much smaller starting value compared to the kd-tree.

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 52: Distance error with increasing time constraint. The top row cor-
responds to the mean distance error over all queries and the bottom row corresponds
to the maximum distance error over all queries. GS:kd & GS:PA refer to Algorithm
15 with a kd-tree and PA-tree respectively. GS:HY refers to Algorithm 15 with a
HY-tree (please view in color).

The relative performance of the HY-tree with respect to the kd-tree in terms of

the distance error is shown in Figure 52. As in the case with rank, the HY-tree out-

performs the kd-tree by a significant margin in all cases in terms of the mean distance

error. In terms of the maximum distance error, the HY-tree does not outperform the

kd-tree on one occasion with the Tiny Images set. This can possibly attributed to

the fact that when the data in the node is uni-modal or uniformly spread, an axis-

aligned split might be as good as a large margin split. This is because the margin
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size from a large margin split would not be significantly greater than the margin size

of a heuristic axis-aligned split. A large margin split is only useful if there is a large

margin to be found.

5.4.2 Lazy-Defeatist Tree Search

Even though the empirical performance of the lazy-defeatist search (Algorithm 16)

was seen to be similar to the performance of the greedy search (Algorithm 15) in

Chapter 4, we will present the performance of the learned trees, namely the 2M-

tree and the HY-tree, with lazy-defeatist search for completeness. Again, we first

compare the 2M-tree to TCS with random permutations (Algorithm 11) and the

lazy-defeatist tree search with the kd-tree and the PA-tree. The results are average

over 10 repetitions to cover for the randomness in the construction of the 2M-tree.

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 53: Rank with increasing time constraint. The top row corresponds to
the mean rank over all queries and the bottom row corresponds to the maximum rank
over all queries. LDS:kd & LDS:PA refer to Algorithm 16 with a kd-tree and PA-tree
respectively. LDS:2M refers to Algorithm 16 with a 2M-tree (please view in color).

As with greedy tree search, Figure 53 indicates that the 2M-tree outperforms the

baseline methods in three of the four cases. In terms of the mean rank, the 2M-tree

outperforms the PA-tree significantly on one occasion and slightly on two occasions

while performing worse than the PA-tree on one occasion. In terms of the maximum
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(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 54: Distance error with increasing time constraint. The top row corre-
sponds to the mean distance error over all queries and the bottom row corresponds to
the maximum distance error over all queries. LDS:kd & LDS:PA refer to Algorithm
16 with a kd-tree and PA-tree respectively. LDS:2M refers to Algorithm 16 with a
2M-tree (please view in color).

rank, the 2M-tree performs comparably to the PA-tree on three of occasions while

performing worse on one occasion.

Similar to the performance with greedy tree search, Figure 54 indicates that the

2M-tree outperforms the PA-tree in terms of the mean distance error in three occasions

(significantly once and slightly twice) and performs worse than the PA-tree on one

occasion. In terms of the maximum distance error, the 2M-tree appears to perform

comparably to the PA-tree in all occasions, especially for small time-constraints (small

values on the x-axis). As expected, the relative performance of the lazy-defeatist

search with the 2M-tree is very similar to the relative performance of the greedy

search with the 2M-trees. Hence the reasons for such performance is also the same.

We also compare the performance of the lazy-defeatist tree search with our pro-

posed HY-tree to the performance of TCS with random permutations (Algorithm 11)

and the lazy-defeatist tree search with the kd-tree. Since the HY-tree is same as the

kd-tree in the higher levels of the tree, we compare the improvement of the HY-tree

only over the kd-tree. For the implementation of the HY-tree, we perform a split
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(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 55: Rank with increasing time constraint. The top row corresponds to
the mean rank over all queries and the bottom row corresponds to the maximum rank
over all queries. LDS:kd & LDS:PA refer to Algorithm 16 with a kd-tree and PA-tree
respectively. LDS:HY refers to Algorithm 16 with a HY-tree (please view in color).

(a) Optdigits (b) Tiny Images (c) MNIST (d) Yahoo! Music

Figure 56: Distance error with increasing time constraint. The top row corre-
sponds to the mean distance error over all queries and the bottom row corresponds to
the maximum distance error over all queries. LDS:kd & LDS:PA refer to Algorithm
16 with a kd-tree and PA-tree respectively. LDS:HY refers to Algorithm 16 with a
HY-tree (please view in color).

using mmc only if the number of points in the node is less than 5000.

Figure 55 indicates that, as in the case with greedy search, the HY-tree shows

remarkable improvement over the kd-tree both in terms of the mean rank and the

maximum rank. On one occasion (for the MNIST set), the HY-tree and the kd-tree
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have comparable performance in terms of the maximum rank. However, the curve for

the HY-tree has a much smaller starting value compared to the kd-tree. The relative

performance of the HY-tree with respect to the kd-tree in terms of the distance-error

is shown in Figure 56. As in the case with rank and in the case of greedy tree search,

the HY-tree outperforms the kd-tree in lazy-defeatist search by a significant margin

in all cases in terms of the mean distance error. In terms of the maximum distance

error, the HY-tree does not outperform the kd-tree on one occasion with the Tiny

Images set.
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CHAPTER VI

MAX-KERNEL SEARCH

Max-kernel search. Formally, max-kernel search is defined as follows: for a given

set S of n objects (the reference set), a Mercer kernel function K(·, ·), and a query q,

find the object p ∈ S such that:

p = argmax
r∈S
K(q, r). (43)

This general form of similarity search problem is ubiquitous in computer science.

As mentioned Section 2.5, efficient approximate solutions to this problem exist for

the situation where the kernels are normalized. These techniques accomplish this by

performing locality-sensitive hashing of the objects directly in the kernel space. In

this chapter, we focus on the general problem for any Mercer kernel and we begin

by focusing on exact search. In Section 6.1, we try to understand the problem of

max-kernel search and its inherent hardness. This allows us to find an appropriate

indexing scheme that can index the objects directly in the (Hilbert) space induced by

the Mercer kernel. Using this index, we propose an exact branch-and-bound algorithm

for max-kernel search in Section 6.2 which we theoretically and empirically analyze

in Sections 6.3 and 6.4. We conclude with approximate extensions of our proposed

branch-and-bound algorithm in Section 6.5.

6.1 Understanding Max-Kernel Search

A Mercer kernel implies that the kernel value for a pair of objects (x , y) corresponds

to an inner-product between the vector representation of the objects ϕ(x),ϕ(y) in

some inner-product space H (K(x , y) = 〈ϕ(x),ϕ(y)〉H). Hence every Mercer kernel
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induces the following metric in H:

dK(x , y) = ‖ϕ(x)−ϕ(y)‖ =
√
K(x , x) +K(y , y)− 2K(x , y). (44)

Whenever max-kernel search can be reduced to nearest-neighbor search in H, nearest-

neighbor search methods for general metrics can be used for efficient max-kernel

search. In this section, we show that this reduction is possible only under certain

conditions. Subsequently, we discuss the hardness of max-kernel search and contrast

it to the hardness of nearest-neighbor search. Finally, we discuss desirable properties

of certain nearest-neighbor search techniques and their applicability to max-kernel

search.

Possible reductions and conditions. The nearest neighbor for a query q in H

(argminr∈S dK(q, r)) is the max-kernel candidate (Equation (43)) if K(·, ·) is a normal-

ized kernel. The two problems can have very different answers with un-normalized

kernels. Every kernel also induces a cosine similarity
(
K(x , y)/

√
K(x , x)K(y , y)

)
in

H. Similar to the previous case, the object with the maximum cosine-similarity in H

is the max-kernel candidate only for normalized kernels.

Hardness of nearest-neighbor search. However, even if max-kernel search can

be reduced to nearest-neighbor search, nearest-neighbor search is still hard for general

metrics (Ω(n) for a single query) without any assumption on the structure of the

metric and the set (S ,d). Here we present one notion of characterizing the hardness

in terms of the structure of the metric (Karger and Ruhl, 2002):

Definition 6.1.1. Let BS(p,∆) = {r ∈ S : d(p, r) ≤ ∆}. Then, the expansion con-

stant of (S ,d) is defined as the smallest c ≥ 2 such that |BS(p, 2∆)| ≤ c |BS(p,∆)| ∀p ∈

S and ∀∆ > 0.

The expansion constant effectively bounds the number of points that could be

sitting close to the surface of a hyper-sphere of any radius around any point. If c is
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high, nearest-neighbor search could be expensive. A value of c ∼ Ω(n) implies that,

in the worst case, the search cannot be better than linear scan asymptotically. Under

the assumption of bounded expansion constant, nearest-neighbor search methods with

sub-linear/logarithmic theoretical runtime guarantees have been presented (Karger

and Ruhl, 2002; Beygelzimer et al., 2006).

6.1.1 Characterizing the Hardness of max-kernel search

The kernel values for a query are proportional to the length of the projections in the

direction of the query in H. While the hardness of nearest-neighbor search depends

on how concentrated the surface of spheres are (as characterized by the expansion

constant), the hardness of max-kernel search should depend on the distribution of the

projections in the direction of the query. This distribution can be characterized using

the distribution of points in terms of distances. If two points are close in distance,

then their projections in any direction are close as well. However, if two points have

close projections in a direction, it is not necessary that the points themselves are close

to each other. It is to characterize this reverse relationship between points (closeness

in projections to closeness in distances) that we present a new notion of concentration

in any direction:

Definition 6.1.2. Let K(x , y) = 〈ϕ(x),ϕ(y)〉H be a Mercer kernel, dK(x , y) be the

induced metric from K and let BS(p,∆) = {r ∈ S : dK(p, r) ≤ ∆} for some p ∈ H.

Let IS(v , [a, b]) = {r ∈ S : 〈v ,ϕ(r)〉H ∈ [a, b]} be the set of objects in S projected

onto a direction v in H lying in the interval [a, b] along v . Then, the directional

concentration constant of (S ,K) is defined as the smallest γ ≥ 1 such that ∀u ∈ H

such that ‖u‖H = 1, ∀p ∈ S and ∀∆ > 0, the set IS(u, [〈u,ϕ(p)〉H−∆, 〈u,ϕ(p)〉H+∆])

can be covered by γ balls of radius ∆.

The directional concentration constant is not a measure of the number of points

projected into a small interval, but rather a measure of the number of “patches” of
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Figure 57: Concentration of projections.

the data in a particular direction. The definition implies that for a set of points with

a directional concentration constant of γ, if a subset of points are close in projection

in some direction, then there are at most γ subsets of these points which are close

in distances as well. Consider the set of points B = IS(q, [a, b]) projected into an

interval in some direction (Figure 57(a)). A high value of γ implies that the number

of points in B is high but the points are spread out and the number of balls (with

diameter equal to |b− a|) required to cover all these points is high as well (each point

possibly requiring an individual ball). Figure 57(c) provides one such example. A

low value of γ implies that either B has a small size or the size of B is high and B

can be covered with a small number of balls (of diameter |b − a|). Figure 57(b) is

an example of a set with low γ. The directional concentration constant bounds the

number of balls of a particular radius required to index points that project onto an

interval of size twice the radius.

6.1.2 Desirable Existing Techniques

The notion of bounded directional concentration implies that indexing schemes capa-

ble of efficiently indexing points in a particular direction might be useful for the task

of max-kernel search. Indexing schemes like space-partitioning trees have been widely

used for nearest-neighbor search with success in many cases. Trees offer good hier-

archical indexing schemes in low to medium dimensions; for high-dimensional data,

trees which exploit some low-dimensional structure have been developed (Dasgupta
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and Freund, 2008; Beygelzimer et al., 2006). These hierarchical indexing schemes

lend easily to intuitive branch-and-bound algorithms for efficient solutions (especially

approximate solutions (Ciaccia and Patella, 2000; Ram et al., 2009b)). In addition,

tree-based branch-and-bound algorithms are essentially incremental algorithms, and

can thus be easily extend to anytime algorithms (Ram et al., 2012). Most impor-

tantly, trees only require a single construction – different algorithms can work on the

same tree; in addition, once a tree is built, point insertions and deletions are generally

cheap.

Which tree to use for max-kernel search? Given the numerous advantages of

trees, we wish to select an appropriate tree for efficient max-kernel search. The fol-

lowing two properties are desired of any indexing scheme used for max-kernel search:

• Explicit representation of the objects is not required.

• It should have sub-quadratic construction time.

The kd-tree (Friedman et al., 1977) and the metric tree (Preparata and Shamos,

1985) exhibit good characteristics and are widely used in nearest-neighbor search.

However, the kd-tree requires the explicit representation of the points ϕ(x) in H

for its axis-aligned splits. For similar reasons, random-projection trees (Dasgupta

and Freund, 2008) and principal-axis trees (McNames, 2001; Sproull, 1991) cannot

be used for max-kernel search. Metric trees can be constructed without the explicit

representations since they can work with only the ability to evaluate the induced

metric dK (Moore, 2000)1.

We will consider the recently formulated cover tree (Beygelzimer et al., 2006) for

max-kernel search. It provides a systematic way to build a tree without explicit object

1Calculation of the explicit mean µ of a node is avoidable by using the kernel trick for operations
on the mean:

(
〈µ,ϕ(q)〉 =∑x∈T K(x , q)/|T |

)
(where T is the set of points in the node). However,

this makes the tree construction and tree search computational prohibitive for efficient max-kernel
search.
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representations and with a sub-quadratic construction time. A key difference between

cover trees and the aforementioned trees is that the kd-tree and the metric tree are

binary trees while the cover trees can have multiple number of children. Moreover,

the time complexities of building and querying a cover trees have been analyzed

extensively (Beygelzimer et al., 2006; Ram et al., 2009a), whereas kd-trees and metric

trees have been analyzed only under very limited settings (Friedman et al., 1977).

Cover tree. A cover tree stores a dataset S of size n in the form of a levelled tree.

The structure has O(n) space requirement (Theorem 1 in (Beygelzimer et al., 2006)).

Each level is a “cover” for the level beneath it and is indexed by an integer scale i

which decreases as the tree is descended. Let Ci denote the set of nodes at scale i .

For all scales i , the following invariants hold: (i) (nesting invariant) Ci ⊂ Ci−1, (ii)

(covering tree invariant) ∀p ∈ Ci−1,∃q ∈ Ci : d(p, q) ≤ 2i , and exactly one such q is a

parent of p. (iii) (separation invariant) For all p, q ∈ Ci , d(p, q) > 2i .

Although the cover tree is defined as infinite levelled sets, the tree has a precise

finite representation. As explained in (Ram et al., 2009a), “The implicit representa-

tion consists of infinitely many levels Ci with the level C∞ containing a single node

which is the root and the level C−∞ containing every point in the dataset as a node.

The explicit representation is required to store the tree in O(n) space. It coalesces

all nodes in the tree for which the only child is the self-child. This implies that every

explicit node either has a parent other than the self-parent or has a child other than

a self-child.”

6.1.3 Tree construction in the kernel space H.

For a cover tree built on dataset S , each node is only associated with a single point

p ∈ S . Therefore, because the only distance computations involve points in S , the

explicit representation of the objects in H is not required (by the kernel trick). Given

a Mercer kernel K for a class of objects, the distances between points inH required for
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the tree construction in H can be evaluated using the distance metric dK (Equation

44) induced from the kernel. Three kernel evaluations are required to compute the

distance; however, if the self-kernel values K(x , x)∀ x ∈ S are precomputed and

saved, dK(x , y) can be evaluated with a single evaluation of K(x , y). The cover tree

construction is given in its entirety in Algorithm 21.

Algorithm 21 The cover tree construction (Beygelzimer et al., 2006)

Input: Dataset S , metric dK (·, ·)
Output: Cover tree root p

Initialize: p ← random point in S
p ← Construct(p, 〈R, ∅〉 , log2maxr∈S d(p, r))

Construct(p, 〈Near, Far〉 , i)

if Near = ∅ then
return {p, ∅}.

else
{Self, Near} = Construct(p,Split(d(p, ·), 2i−1, {Near}), i − 1)
add Self to Children(p)
while Near 6= ∅ do

pick q in Near
{Child, Unused} = Construct(q,Split(d(q, ·), 2i−1, {Near, Far}), i − 1)
add Child to Children(p)
{New-near, New-far} = Split(d(p, ·), 2i , {Unused})
Far← Far ∪New-far; Near← Near ∪New-near

end while
return {p,Far}.

end if

Split(d(p, ·), r , {S1, S2, . . .})
Near =

⋃
i{q ∈ Si : d(p, q) ≤ r}; Far =

⋃
i{q ∈ Si : 2r > d(p, q) > r}

∀ i , Si ← Si \ (Near ∪ Far).
return {Near, Far}.

The algorithm calls the recursive function Construct(p, 〈Near, Far〉 , i) where

p is a point, 〈Near, Far〉 are the point sets and i is the current level of the tree.

This recursive function calls a subroutine Split(d(p, ·), r , {S1, S2, . . .}) with d(p, ·)

representing the set of distances of the points in the point sets {S1, S2, . . .} to the

point p and r is the splitting distance to form the Near and Far sets. Hence, the

150



cover tree construction only requires distances between the points in the set; and

therefore construction in H does not require any explicit representation in H. The

tree construction time is bounded by the following theorem:

Theorem 6.1.1. (Theorem 3.6 in (Beygelzimer et al., 2006)) For a data set S of n

objects and a metric dK with expansion constant c, the tree construction requires at

most O(c6n log n) time.

Remark. We would like to point out that while we consider the cover tree to im-

plicitly index points in H without any modification, the cover tree has only been used

for nearest-neighbor search to this date. The novelty of this work is a new branch-

and-bound algorithm using this tree to solve the general task of max-kernel search

with provable theoretical guarantees and supporting empirical evidence.

6.2 FastMKS: The Branch-and-Bound Algorithm

In this section, we present a simple branch-and-bound algorithm on the cover tree

for max-kernel search. Branch-and-bound is widely used in nearest-neighbor search

with the help of the triangle inequality of the distance metric. In the absence of the

triangle inequality for kernel functions, we obtain a novel bound on the max-kernel

value possible between a query and any subtree of a cover tree. Then we present the

algorithm for exact search.

Bounding the max-kernel value. A cover tree node is defined by an object p and

a level i . Let S i
p denote the set of objects in the subtree rooted at a node defined by

object p at level i . In the following theorem, we bound the maximum possible kernel

value between a query and an object in the subtree of the cover tree. For notational

convenience, for any set R , we will denote maxr∈R K(q, r) as K(q,R).

Theorem 6.2.1. Given a cover tree node rooted at an object p at level i in the kernel

space H and a (query) object q, the maximum kernel function value between q and
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any object in the set S i
p is bounded as:

K(q, S i
p) ≤ K(q, p) + 2i+1

√
K(q, q). (45)

Proof. Suppose that p∗ is the best possible match in the set S i
p for q and let ũ

be a unit vector in the direction of the line joining ϕ(p) to ϕ(p∗) in H. Then

ϕ(p∗) = ϕ(p)+∆ · ũ where ∆ = dK(p, p∗) is the distance between ϕ(p) and the best

possible match ϕ(p∗) (see Figure 58). Then we have the following:

K(q, S i
p) = K(q, p∗) = 〈ϕ(q),ϕ(p∗)〉H

= 〈ϕ(q),ϕ(p) + ∆ · ũ〉H

≤ 〈ϕ(q),ϕ(p)〉H + ∆ ‖ϕ(q)‖H , (46)

where the last inequality follows from the Cauchy-Schwartz inequality (〈x , y〉 ≤

‖x‖ ‖y‖) and the fact that ‖ũ‖ = 1. From the definition of the kernel function,

Equation (46) gives us K(q, S i
p) ≤ K(q, p) + ∆

√
K(q, q). We bound ∆ from above

using the covering invariant – for any cover tree node p at level i , the distance to

the farthest child node is bounded by 2i . Applying this bound recursively with the

triangle inequality of dK gives us ∆ = dK(p, p∗) ≤∑i
j=−∞ 2j = 2i+1. The statement

of the theorem follows.

O

•ϕ(q)

•
ϕ(p)

ϕ(p∗)•
∆ · ~u 2i+1

1

Figure 58: Max-kernel upper bound.
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For normalized kernels (K(x , x) = 1 ∀x ∈ S), all the points are on the surface of

a hyper-sphere in H. In this case, the above bound in Theorem 6.2.1 is correct but

possibly loose. In the following theorem, we present a tighter bound specifically for

this condition:

Theorem 6.2.2. Consider a kernel K such that K(x , x) = 1∀ x ∈ S . Given a cover

tree node rooted at an object p at level i in H and a (query) object q, the maximum

kernel function value between q and any object in the set S i
p is bounded as:

K(q, S i
p) ≤


K(q, p)(1− 22i+1) + 2i+1

√
(1−K(q, p)2) (1− 22i),

if K(q, p) ≤ 1− 22i+1

1.0, otherwise

(47)

The proof is similar to the proof of Theorem 6.2.1.

Proof. Since all the points are sitting on the surface of a hypersphere in H, K(q, p)

denotes the cosine of the angle made by ϕ(q) and ϕ(p) at the origin. If we first

consider the case where q lies within the ball bounding cover tree node p at level i

(that is, if dK (q, p) < 2i+1), it is clear that the maximum possible kernel evaluation

should be 1, because there could exist a point in S i
p whose angle to q is 0. We can easily

modify this condition to an easier condition on K(q, p), which is K(q, p) < 1− 22i+1.

Now, for the other case, let cos θqp = K(q, p) and p∗ = argmaxr∈S i
p
K(q, r). Let

θpp∗ be the angle between ϕ(p) and ϕ(p∗) and θqp∗ be the angle between ϕ(q) and

ϕ(p∗) at the origin. Then

K(q, p∗) = cos θqp∗ ≤ cos({θqp − θpp∗}+). (48)

Now we know that dK(p, p∗) ≤ 2i+1 and that dK(p, p∗) =
√

2− 2 cos θpp∗ . Hence

cos θpp∗ ≥ 1 − 22i+1, and θpp∗ ≤ | cos−1(1 − 22i+1)| and take θ = | cos−1(1 − 22i+1)|.

Combining this with equation (48), we get:

K(q, S i
p) ≤ cos({θqp − θpp∗}+) ≤ cos({θqp − θ}+).
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Substituting the value of θ above and simplifying gives us the statement of the theo-

rem.

Algorithm 22 FastMKS

Input: Cover tree T , Query q
Output: p : K(q, p) = maxr K(q, r)

Initialize: R∞ = C∞ // the root of the tree T
for i =∞ to −∞ do

R = {C hi ldren(r) : r ∈ Ri} // tree descend
Ri−1 = {r ∈ R : K(q, r) ≥ K(q,R)− 2i

√
K(q, q)}

end for
return argmaxr∈R−∞ K(q, r) // the leaf nodes.

O

•q

•p

p∗
�

cover tree
node

best possible
in the subtree

query

K(q, p)

K(q, p∗)

1

(a) Best possible kernel value

O

•q

⋆p

p∗
� current best

(K(q, Ri))

1

(b) At level i

O

•q

•
⋆�

�

�

�

�
�

••

••

unpruned nodes

current best
(K(q, Ri−1))

1

(c) At level i − 1

Figure 59: Branch-and-bound tree-traversal. The green nodes are retained and
the red nodes are pruned (please view in color).

The branch-and-bound algorithm. The bound on K(q, S i
p) is used to decide

whether a node is retained for further exploration or removed (“pruned”) from consid-

eration. The branch-and-bound algorithm FastMKS(T , q) is presented in Algorithm

22. If the maximum possible kernel value from a subtree is less than the current best

kernel value, that subtree is not explored any further. The best possible kernel value

from a subtree and a step of the algorithm is depicted in Figure 59. For a retained

node, all its children are explored. The correctness of FastMKS(T , q) follows from:

Theorem 6.2.3. If T is a cover tree on S , then FastMKS(T , q) (Algorithm 22)

returns argmaxr∈S K(q, r).
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Proof. Let p∗ = argmaxr∈S K(q, r) and κ∗ = K(q, p∗). At the beginning of the it-

eration at level ∞, p∗ is in consideration since p∗ ∈ S and for p ∈ C∞, S∞p = S .

At the end of the iteration at level i , all points p ∈ S such K(q, p) ≥ K(q,Ri−1) −

2i
√
K(q, q) are still in consideration. Since κ∗ ≥ K(q,Ri−1), p∗ is still in consid-

eration. Either p∗ ∈ Ri−1 or p∗ is the grandchild of some point p ∈ Ri−1. Hence,

by theorem 4.1, K(q,Ri−1) ≥ κ∗ − 2i
√
K(q, q) ∀ i . Now limi→−∞K(q,Ri−1) ≥

limi→−∞

(
κ∗ − 2i

√
K(q, q)

)
= κ∗ (assuming K(q, q) < ∞). Hence K(q,R−∞) = κ∗

and FastMKS(T , q) returns argmaxr∈R−∞ K(q, r) = p∗.

6.3 Runtime Guarantee for FastMKS

The runtime analysis of FastMKS will make use of the following results from Beygelz-

imer et al. (2006):

Lemma 6.3.1. The number of children of any node p is bounded by c4.

Lemma 6.3.2. The maximum depth of any point p in the explicit representation is

O(c2 log n).

The main result of this section is the search time complexity of FastMKS(T , q)

in terms of the number of objects in S and the properties of (S ,K):

Theorem 6.3.1. Given a Mercer kernel K, if the dataset S of size n has an ex-

pansion constant c (with the metric dK) and a directional concentration constant γ,

FastMKS(T , q) requires O(c12γ2 log n) time.

Proof. The first part of the proof is similar to the runtime analysis of NNS with

cover trees (Beygelzimer et al., 2006). Let R∗ denote the last explicit Ri considered

by the algorithm. By Lemma 6.3.2, the explicit depth of any point in R∗ is at

most k = O(c2 log n). The maximum number of iterations required would be at most

k |R∗| ≤ k maxi |Ri |. The amount of work done in each iteration is at most O(maxi |Ri |),

hence resulting in a total of O(k maxi |Ri |2) work. Moreover, from Lemma 6.3.1,
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the total number of children encountered throughout the whole algorithm is at most

k maxi |Ri |·c4. Hence, the pruning/retaining rule does at most O(k maxi |Ri |·c4) work.

Also, R−∞ ≤ maxi |Ri |. Therefore, the algorithm requires at most O(k maxi |Ri |2 +

k maxi |Ri | · c4) time.

Now we bound maxi |Ri |. Let u = ϕ(q)/ ‖ϕ(q)‖. Then

IS(ϕ(q), [a, b]) = IS (u, [a/ ‖ϕ(q)‖ , b/ ‖ϕ(q)‖]) .

For any level i , let R = {Children(r) : r ∈ Ri} and let κ = K(q,R) and κ∗ = K(q, S).

Then

Ri−1 = {r ∈ R : K(q, r) ≥ κ− 2i ‖ϕ(q)‖} = IS(ϕ(q), [κ− 2i ‖ϕ(q)‖ , κ∗]) ∩ R

⊆ IS(ϕ(q), [κ− 2i ‖ϕ(q)‖ , κ∗]) ∩ Ci−1 ⊆ IS(ϕ(q), [κ
∗ − 2i+1 ‖ϕ(q)‖ , κ∗]) ∩ Ci−1

since κ∗ ≤ κ+ 2i ‖ϕ(q)‖. Then for any r ∈ IS(ϕ(q), [κ
∗ − 2i+1 ‖ϕ(q)‖ , κ∗]),

IS(ϕ(q), [κ
∗ − 2i+1 ‖ϕ(q)‖ , κ∗]) ⊆ IS(q, [K(q, r)− 2i+1 ‖ϕ(q)‖ ,K(q, r) + 2i+1 ‖ϕ(q)‖])

= IS(u, [〈u,ϕ(r)〉 − 2i+1, 〈u,ϕ(r)〉+ 2i+1]).

By the definition of the directional concentration constant, there exists rjs such

that:

IS(u, [〈u,ϕ(r)〉 − 2i+1, 〈u,ϕ(r)〉+ 2i+1]) ⊆ ∪γj=1BS(rj , 2
i+1).

Bounding the size of IS(q, [K − 2i ‖ϕ(q)‖ ,K(q, S)]) ∩ Ci−1 amounts to bounding the

number of disjoint balls of radius 2i−2 that can be packed into each of the γ balls

BS(rj , 2
i+1 + 2i−2). For each of the rj , we have:

|BS(rj , 2
i+1 + 2i−2)| ≤ |BS(r

′, 2i+2 + 2i−1)| ≤ |BS(r
′, 2i+3)| ≤ c5|BS(r , 2

i−2)|.

Hence, ∀ i , |Ri | ≤ γc5. Hence maxi |Ri | ≤ γc5, thus giving us the statement of the

theorem.

Comparing to the query time O(c12 log n) for nearest-neighbor search (Beygelzimer

et al., 2006), it is clear that FastMKS has similar log n scaling, but also has an extra

price of γ2 for solving the more general problem of max-kernel search.
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6.4 Empirical Evaluation of FastMKS

We evaluate FastMKS with different kernels and datasets. For every experiment, we

query the top {1, 2, 5, 10} max-kernel candidates and report the speedup over linear

search (in terms of the number of kernel evaluations performed). The cover tree and

the algorithm is developed in MLPACK2(Curtin et al., 2011).

Table 5: Details of the vector datasets.

Datasets # queries # points # dimensions
Y! Music 100000 600000 50
MovieLens 6040 3706 50
Optdigits 450 1347 64
Physics 37500 112500 78
Bio 75000 210409 74
Covertype 150000 431012 55
LiveJournal 10000 10000 25327
MNIST 10000 60000 784
Netflix 480189 17770 50
Corel 10000 27749 32
LCDM 6000000 10777216 3
TinyImages 5000 1000000 384

Datasets. We use two different classes of datasets – (1) Datasets with fixed-length

objects: These include the MNIST dataset (LeCun, 2000), the Isomap “Images”

dataset, several datasets from the UCI machine learning repository (Blake and Merz,

1998), three collaborative filtering datasets (MovieLens, Netflix (Bennett and Lan-

ning, 2007), Yahoo! Music (Dror et al., 2011)), the LCDM astronomy dataset (Lupton

et al., 2001), the LiveJournal blog moods text dataset (Kim et al., 2011) and a subset

of the 80 million tiny images dataset (Torralba et al., 2008) (the sizes of the datasets

are presented in Table 5). (2) Datasets without fixed length representation: We con-

sider protein sequences from the GenBank3. The datasets are again selected based

2More information on MLPACK is at http://mlpack.org.
3ftp://ftp.ncbi.nih.gov/refseq/release/complete/

157

http://mlpack.org
ftp://ftp.ncbi.nih.gov/refseq/release/complete/


on the usual applications of max-kernel search – computer vision, machine learning

and bioinformatics.

Kernels. We consider all of the following kernels for the vector datasets: cosine,

hyperbolic tangent4, linear, and polynomial (with degree 10). While FastMKS is ap-

plicable to any kernel, max-kernel search with the Gaussian kernel reduces to nearest-

neighbor search in the input space; hence, we omit this kernel from our experiments.

The p-spectrum kernel (Leslie et al., 2002) is used for the protein sequence data.
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(a) Cosine and hyperbolic tangent kernels
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(b) Linear and polynomial (degree 10) kernels

Figure 60: Speedups over linear scan for FastMKS with k = 1, 2, 5, 10 with 4 kernels
and 12 datasets.

Results. The results for the vector datasets are summarized in Figure 60. While

the speedups range from anywhere between 1 to over 104, a speedup close to an order

of magnitude is seen in most large datasets (except MNIST). It is also quite clear

that different kernels give very different speedups for the same dataset. This can be

attributed to the fact that the expansion constant and the directional concentration

constant are properties of the dataset-kernel pair. The results for the protein sequence

data (Figure 61) indicate that the speedups increase with increasing reference set

4While the hyperbolic tangent kernel is not Mercer in general, our proposed algorithm works
correctly with non-Mercer kernels if the kernel is positive definite when restricted to the dataset.
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size, recording a speedup of over two orders of magnitude for a set of around 100000

sequences, exhibiting the logarithmic scaling of FastMKS.
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Figure 61: Speedups over linear scan for FastMKS with k = 1, 2, 5, 10 with sets of
protein sequences of increasing size to demonstrate the scaling of FastMKS.

6.5 Fast Approximate Max-Kernel Search

Similarity search problems can be approximated for further scalability. Even though

we are focusing on exact max-kernel search, we wish to demonstrate that the tree

based method can be very easily extended to perform the approximate max-kernel

search. Approximation can be achieved in the following ways:

1. Absolute value approximation (AVA) – return p ∈ S : K(q, p) ≥ K(q, S)− ε.

2. Relative value approximation (RVA) – return p ∈ S : K(q, p) ≥ (1−ε)K(q, S)5.

3. Rank approximation (RA) – return p ∈ S : |{r ∈ S : K(q, r) > K(q, p)}| ≤ τ.

Care has to be taken for relative value approximation since there is no guarantee that

K(q, S) > 0. The following stopping rules can be used at the end of an iteration in

the for loop in FastMKS(T , q) (Algorithm 22) for the value approximations. The

best candidate up until then is the approximate solution.

5Here we are assuming that K(q,S) > 0. In case K(q,S) < 0, we seek a p ∈ S such that
K(q, p) > K(q,S)− ε|K(q,S)|
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1. AVA stopping: if ε ≥ 2i
√
K(q, q), stop.

2. RVA stopping: assuming K(q, S) > 0, if K(q,Ri−1) ≥
(
2i/ε

)√
K(q, q), stop.6

Theorem 6.5.1. The AVA stopping rule returns a point p ∈ S such that K(q, p) ≥

K(q, S)− ε.

Proof. At the end of iteration at level i , K(q,Ri−1) ≥ K(q, S) − 2i
√
K(q, q). If

2i
√
K(q, q) ≤ ε, the AVA condition is satisfied.

Theorem 6.5.2. Assuming K(q, S) > 0, the RVA stopping rule returns a point p ∈ S

such that K(q, p) ≥ (1− ε)K(q, S).

Proof. WhenK(q,Ri−1) ≥
(
2i/ε

)√
K(q, q), then 2i

√
K(q, q) ≤ εK(q,Ri−1) ≤ εK(q, S).

Using this, we have K(q,Ri−1) ≥ K(q, S)− 2i
√
K(q, q) ≥ K(q, S)− εK(q, S).

Algorithm 23 RAFastMKS

Input: Cover tree T , Query q, Rank error τ, Failure probability δ
Output: p : |{r : K(q, r) > K(q, p)}| ≤ τ
Initialize R∞ ← C∞ // the root of the tree T

Initialize k ←
⌈

log 1/δ

log 1/(1− τ
n )

⌉
// the number of samples

for i =∞ to −∞ do
R = {C hi ldren(r) : r ∈ Ri} // tree descend
R ′ = {r ∈ R : K(q, r) ≥ K (q,R)− 2i

√
K(q, q)} // the cover set

Ri−1 = {r ∈ R ′ : |S i
r | > n

k
} // approximate by sampling

R−∞ = R−∞ ∪ {R ′ \ Ri−1}.
end for
return arg max

r∈R−∞
K(q, r) // the leaf nodes.

Rank-approximation can be achieved by performing stratified sampling on the

cover tree. The rank-approximation of the max-kernel search is defined as follows:

for a given set S of n objects (the reference set), a (Mercer) kernel function K(·, ·),

and a query q, find the object p ∈ S such that

|{r ∈ S : K(q, r) > K(q, p)}| ≤ τ.

6The stopping rule can be easily modified for K(q,S) < 0.

160



As mentioned in Ram et al. (2009b) (as well as Chapter 3), the idea is to draw enough

samples S ′ from the tree such that

Pr (|{r ∈ S : K(q, r) > K(q, S ′)}| < τ) ≥ 1− δ.

The stratified sampling on a tree is presented in Algorithm 23. We assume that

at each node of the tree, we have access to the number of points in the subtree S i
r

rooted at node r at level i for every node in the tree. This algorithm returns a τ-rank

approximate solution to the max-kernel operation with probability (1− δ).
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CHAPTER VII

UNANSWERED QUESTIONS

My thesis has left me with more unanswered questions than questions I have actually

answered. The obvious next step is to improve upon the current answers. But there

are certain questions I find interesting and will briefly discuss these question in this

chapter. These are some of the questions I wish to pursue at some point in my future

research.

• Can we do rank-sensitive hashing? In the usual setting of nearest-neighbor

search in Euclidean or Hamming space, I wish to have a hashing based search

technique that guarantees any desired rank error (say τ). This would be possible

if we could devise hash functions with the following properties:

– if two points are both among the τ-nearest-neighbors of each other, they

should be hashed into the same bucket, and

– if two points are neither among the τ-nearest-neighbor of each other, they

should be hashed into separate buckets.

While the idea seems simple, this needs to be done efficiently in the preprocess-

ing step. And the hashing functions should be such that they can efficiently

hash new queries. It would also be interesting to explore a randomized tech-

nique to create hash functions with these desired properties. An issue with this

idea is that the τ-neighborhood relationship is not symmetric – it is possible for

a (query) point to not be in the τ-nearest-neighborhood of any of its τ-nearest-

neighbors. In this case, the hash functions with the proposed properties will

not return any neighbor for such a query point.
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• What is the true time complexity of nearest-neighbor search? Quoting

Ken Clarkson (Clarkson, 2006), “The task of nearest-neighbor searching can be

viewed as having two parts, finding the nearest-neighbor, and proving that all

other sites are not the nearest-neighbor”. An interesting question is to find out

the actual time taken by the algorithm to find (or locate) the nearest-neighbor.

I do not have a precise form of the bound I am seeking. But under distributional

assumptions on the dataset and the queries, it would be great to have bounds

of the form “with probability 1 − δ, the nearest-neighbor is located in time

at most t”, where decreasing the failure probability δ implies increasing the

location time t. This kind of a result would allow us to provide lower bounds

for the time-constrained search performance of any algorithm (in terms of the

minimum nearest-neighbor error incurred for a given time constraint).

• What is the best strategy for time-constrained search with a batch

of queries? In time-constrained search, for an allowed amount of time, dif-

ferent queries can get different amounts of search error. I aggregated the error

over all the queries with each query getting the same amount of time. It might

be possible to get improved aggregated error over all the queries for the same

amount of cumulative time if the available amount of time is allocated in an

adaptive way – allocating more time to certain queries and less to others. This

would require us to develop a notion of “hardness” for queries and a way to

compute this hardness on the fly without eating too much into the time con-

straint. The allocation of the time (dynamic or static) should also have to be

extremely efficient.

• Can we solve the problem of weighted similarity search in a general

way? There are two forms of weighted similarity search where every point r

in the dataset R is associated with a weight w(r), and the goal is to efficiently
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solve the following weighted versions of similarity search:

– Additive weights: argmaxr∈R (S(q, r) + w(r))

– Multiplicative weights: argmaxr∈R w(r) · S(q, r)

These weights can be arbitrary or be continuous functions with bounded Lip-

schitz constants. In case of data in Euclidean space or the Hamming cube,

arbitrary additive weights can easily be dealt with – artificial features can be

added to each of the points in the dataset such that the pairwise distances be-

tween any query and these points with these additional features is equal to the

(additive) weighted distance between the query and the point in the original

space. At this point, usual methods for nearest-neighbor search can be applied

to the modified dataset and the search performance guarantees would probably

depend on the properties of the dataset as well as the properties of the weights

(or weighing functions). Such a straightforward transformation is not possi-

ble for multiplicatively weighted similarity search even with Euclidean space or

Hamming cube.

For max-kernel search with Mercer kernels, additive weights can be dealt with

seamlessly by adding artificial features again. However, multiplicative weights

can also be dealt with by artificially scaling the points with their corresponding

weights in the Hilbert space induced by the Mercer-kernel. In this case, the

exact (and approximate) search algorithm presented in Chapter 6 can be directly

used for multiplicatively weighted similarity search. I believe that an empirical

and theoretical study of these methods for weighted similarity search would be

interesting.
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