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SUMMARY
i

. An snalytical investigaetion is made to determine the heat and msss
transfer mechanisms of a binary mixture of gases flowing in a parallel

plate channel where mass injection occurs at one wall. The walls of this

"semi-porous channel" are abt different temperatures, Applications of
this investigation to. freeze-drying of foods are presented, f

The analyéis uses the integral continuity, momentum, energy, and N
diffusion eguations to establish the velocity and pressure distributions, i Eﬁ
the tempersture profiles, and the mass concentration profiles in the ; ,k

channel, The flow in the channel is assumed to be stesdy, laminar, and :

incompressible. Closed fdrm solutions are obtained for the velocity,
temperature, and concentration distributions. 'The accuraéy of the approxi-
mate hydrodynamic solution is established by comparison with existing solu-
tions of the differential equations,

The region between the heater platen and the porous product sur-

face in a typical.greeze-drying installation is typical of a semi-porous

kgt .

| channel, The heaﬁ@r_surface is impermesble, and the dried product sur-
face may be assumeq;uniformly porous. ihéﬁgiﬁéhsions of the platens and
l food trays are largé cémpared with the disﬁ&@%gﬁpetween them, which is
usually about 0,5 inch, Hence, the analyticai results of thié thesis are
applied to the external transport mechanisms of freeze-drying between the

heater and the product. Previous thecreticsal analyses have bean concerned

only with the internal transport mechanisms inside the product itself,

Two typical methods of freeze-drying are examined, PFirst, the

Py I L [ RO S
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megn heater surface temperature is assumed to be constant with respect to |

time, The variation of the product surface temperature during drying is
examined theoretically, and the results are.compared with published ex;
perimental. data which serves to establish the accuracy of the energy
golution, 8Second, the product surface temperature is assumed to be con-
stant with respect to time, and the variation of the mean heater surface
tenperature du;ing drying is examined,

Rediation heat transfer is included in the calculation of the over-
all energy exchange between the heater and product. The relative amounts
of radiation and convection heat transfer te the product surface are cal-
culated. Average heat transfer coefficlents at the product surface and
the overall heat transfer coefficient from the heater surface to the

frozen region of the drying product are defined, and typical values are

presented., The external conditions in the channel are related to successive

stages of drying by means of existing internal drying rate solutiocns.

The semi-porous channel analysis when applied to freeze-drying

g

yields some impdrtant results ! The role of radiation heat transfer to

i .

the product surfade: is established as the dominant mode of heat transfer.
heo § P .

Radiation may range from 60 to 95 per céﬁ%@éﬁ the total heat transfer.

n

Heat transfer by convection and conduction increases as the channel width
decreases. It is shown theoretically that décreasing the chamnel width '
results in an increased overall heat transfer;coefficient and slightly
incregsed drying rates, For the long narrow channel usually encountered
in commercial use, the fluid in the channel is almost pure water-vapor
and only hydrodynemic flow exists, . Any residuwal air is swept away from

the surface of the product at the start of drying, and hence diffusional




xvii

flow is negligible in the channel,
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CHAPTER I
INTRODUCTION

General

Sublimation dehydration, commonly called freeze-drying, is a food
preservation technique wherein a food product is first frozen and subse-
quently dried in low vacuuﬁ surroundings, There are several different
methods for supplying the heat of sublimation for freeze-drying foods,
The methods vary according to the requirements of the individual process.
The ultimate objective of each is, however, the same and that is to remove
the moisture from the food product until it is virtually dry. Since the
friple point of water is 4.65 torr (mm Hg), the product must remain under
lcwg;écuum conditions s¢o that no melting takes place. Further, a path
mist be provided for the escaping water-vapor to leave the immediafte sur-

roundings of the product, Fiﬁéily, care must be exercised to insure that

the resulting drled product is not overheated as the frozen 1nterface re-
---1‘1"

cedes into the prqductf If the product is properly &rled ar lightwelght

' T |E’ ‘H-’ME’._ ] i
easily stored food 1tem is obtained whlchﬂupon reconstltutlon possesses
gt
nearly the same flavor qualltles as the fresh item.

Some of the common methods of supplylng heat for sublimation are
hot shelf drying, spiked plate heating, radiant heating, infrared heating,
and dielectric heating.,

Hot shelf drying is the simplest method but perhaps the least

efficient. The frozen product is simply placed on a heated shelf where-

A
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upon heat is supplied to the bottom surface by conducticn., In this methed,
the cohtact resistance between shelf and product is high, and since the
maximum temperature is gquite limited, radiation from the shelf above the
product is ineffective., Spiked plate heaters are used to pierce the pro-
ducf with a number of spikes which provide heat directly to the internally
frozen region, However, the resulting product suffers in basic appearance,
and this method, although providing rapid drying, is not widely accepted.
Radiant heating plates are successfully employed when the product is
placed on trays which are subsequently suspended between the heatérs, thus
leaving open spaces bebween the top and botbtom of the product for radia-
tion heat transfer, The temperature of the heated plates may be controlled
over a wide range of temperature to provide the maximum heat transfer to

the surface without scorching it, Purther, since the product is on

.separate trays, this facilitates handling during loading and unloading a

4 i

large vacuum chamber which consists of stacks of alternating heaters and
trays., Some work has heen dcne using infrared heaters and dielectric
heaters, but certain basic pro?%ems have prevented wide use of these methods
cn a commercial Sqale. | - _ |

In Europe, the éontact-plate heatlnggmethod has- galned wide accept-
ance, In this method, eexpandable metal grids areplaced between the
heating platens and f;Ld pfoduct. Theée facilitate vaper removal and yet
maintain direct contact under pressure with the product throughout the
drying cycle., This method provides improved drying rates, but the equip-
ment is expensive and irregularly shaped pieces present difficulties.

The majority of analytical studies involving freeze-drying have

dealt primarily with the internal drying mechanisms, This has been due

e T e - — 3

— e £

1
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to the fact that the dried layer offers the greatest resistance to heat
and mass transfer during the greatest part of the process, Recently
interest has revived in improving the external.heat transfer to the pro-
duct surface and in studying the mechanisms involved with the ultimate
objective of improving equipment design-and drying rates.

The most widely used but least understood method is the radiant
heating method. The physical description of this methed may be represented
by a channel infinite in depth but finite in length with one wall imper-
meable (the heater) and the other porous (the product). This type of
channel is termed a semi-porous channel (see Pigure 1), Much related
work has been performed in the field of porous and semi-porous channels
in the literature. Thus, using the semi-porous channel to describe the
typical freeze-drying arrangement for radiant heating provides an excellent
oppertunity to study analytically the external fluid flow patterns and heat

transfer mechanisms.

Literature

General

Much of the%litgratufé written in connection with freeze-dr&ing
deals with the generaf‘aspects of the ?¥9ce$§. The majority of the work
involving the transport processes has ;%?n-éS%finéd t¢ the internal me-
chanism, A brief summary of the lite;éture cn this problem is presented
here.

Harper and Tappel (1) present analytical investigations of the

internal heat and mass transfer. However, they neglect to combine the

diffusional and hydrodynamic flow, Bannister (3) and Koumoutsos and
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Sunderlend (U4) present similar analyses on the basis of hydrodynamic and
diffusional flow through-a bundle of capillaries.

Hardin (2) and Dyer and Sunderland (5) present improved solutions
for drying rates and drying times considering the internal flow to be in
the transitional flow regime., Hill (7) presents approximate solutions
for drying rates and times in all the molecular flow regimes.

In considering the problems associated with the heat transfer

between the heater and the product surface, it is desirable to consider

the physical arrangement of equipment commonly used in commercial. installa-

tions.

The industrial method of freeze-drying large batches of food pro-
ducts in general consists of a stack of alternating trays and héatefs in
a large vacuum chamber., A space of 0.25% inch to 1 inch is left belween
each heater and the top and bobtbom surfaces of the product to allow the
vapor to escape to the condenser (see Figure 2). The physical system
thus resembles a series of parallel plate channels which are semi-porous.
That is, one wall is solid, the heater,_and the other wall is porous, the

A
porous wall and moves down

Er

product. The vaporjis injected through bhe

the channel under Ehe influence of totaljénd partial pressure gradients.
The heater wall isiof course at a higher temperature and heat transfer
occurs by the modes of radiation and combined cogﬁection and conduction.

R
External Heat and Mass Transfer

The published literature dealing with the external transport pro-

cesses is conspicuous by its absence, A few references mentioned here

have considered the prcblem but little substantial analytical work has been

done,
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Lambert (8) has studied analytically and experimentally the heat
and magg transfer internal and external to the food product. However,
the medel treated dces not resemble the industrial methed for freeze-
drying. . The heat transfer occurs by conduction only between a heated
plate and the product resting on it, The vapor issues inbtc an unrestricted
region above the product and hence to a refrigerated condenser, Thus, the
flow is described by diffusion equations, and the hydrodynamic equations
are not applicable,

Peck and Morraine (10) also have studied the heat and mass transfer
external toc the product, Again the mcdel used does not resemble typical
industrial methods. Experimentally 2 block of ice was suspended between

- heaters that are 3 feet gpart. Their conclusion is that the mode of heat
transfer is entirely by radiation which in this case is probably correct,

Kan and deWinter (9) present a simplified analysis of the heat
and mass transfer internal and externsl to the product. They assume that
the heat transfer between the hegter and product surface is by radiation
and conduction with no CODVECtiO;l. They further assumgié?c%hat there is no
total pressure drgﬁa?hrough the dried léyéﬁﬂ%%:down the-éhannel separating
the heater and prégéét. Their analysis more closely reg;esents the in-
dustrial process, However, the assumptions mentioned above are somewhat
questionable, |

Burke and Decareau (6) discuss the relative effects of radiation,
conduction, and convection between the heater and product. They conclude
from experimental results that the main mode of heat transmission is
conduction~-convection in nature. However, their conclusions are based

mostly on speculation and are not rigorously supported. They conclude
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their discussion by mentioning that considerable work must be done in this
area to establish the exact mechanisms involved,

Zamzow and Marshall (51) and Abelow and Flosdorf (52) made some
early experimental studies on improved uses of radiant energy in freeze-
drying. These studies illustrate the relative advantages vadiant heating
has over methods employing pure conduction heating., The work of Zamzow
and Marshall (51) centered around freeze-drying of organic dyes, The
method of supplying radiant heat to the product was through a transparent
retaining medium to the ffozen s0lid. The energy penetrates the frozen
s0lid and sublimation occurs from the cpposite or exposed surface, This

procedure is not readily adaptable to large scale commercial food freeze-

drying,

vantages of using blackened heaters and trays in connection with conven-

Abelow and Flosdorf (52) made some studies which showed the ad-

tional freeze-drying, but they did not fully attempt to arrive at ophimum
drying conditions,
Smithies and Blakley (46) made some extensive experimental studies

involving radiant heating in freeze-drying food products. . They were able

to show that radiant heating could beuised:to operate a moderately fast

-:z

freeze-drying process,
Lusk, et al., (53) more recentlynhave md%g 5qme experimental studies
on the effect of heater temperature, free21ng tem;erature, and chamber
pressure on the rates of freeze-drying shrimp., They clearly demonstrated
the improved drying rates obtainable with higher heater temperatures,
As can be seen, most of the work to present points to radiant heat-
ing as the best all around method for freeze-drying. However, no athempt

has been made to substantiate any experimental findings with analytical
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studies of the transport mechanisms involved between heater and product.

Flow in Porous Channels

An extensive amount of work has been done in the field of porous
channels, tubes, annuli, and flaﬁ plates, The suction or injection of
fluid through the walls bounding a confined flow field find several use-
ful applications. Withdrawing fluid from the flow field serves to reduce
the pressure drop required to maintain flow, Also, suction at the walls
may serve to maintain laminar flow a% highef Reynolds numbérs. Injection
of a cooling fluid at the walls will serve to effectively cool channel
walls élong which hot gases are flowing., For exfernal flow over flat
plates or other arbitrary surfaces, both suction and injection at the sur-
face serve to retard boundary layer separation although for different
physical reasons,

Aside from the practical aspects of flow in porous channels, there
exists an interesiing problem in solving the Navier-Stokes equations and
further confirming their validity. Under certain conditiéﬁs for porous
tube flow, there exist ﬁlosed form solutions of the Navié;;stokes equa~
tions. : _ ;

Berman (11) appears to be among the first to investigate the pro-
blem of the fully porous channel where boﬁhiﬁélls are porous, He defined
a stream function with Which the Navier-Stokes eqﬁations for two-dimen-
sional porous channel flow could be reduced to a single parametric, total
differential equation. He then obtained s first-order perturbation solu-
tion in terms of the wall Reynolds number, a parameter based on the normal
injection or suction velocity at the wall and the width of the channel.

His solution is valid for suction or injection at low wall Reynolds number,
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|R| < 1, It should be noted that a change in sign of R indicates a change
from injection to suctiocn, In effect, he reduced two partial differential
equations to an ordinary differential equation by means of a similarity
transformation in an ana;ogous manner to the way boundary layer flow is
treated. Berman's technigue has been the basis for much of the later work
in this field.

Berman (12) has also investigated the laminar flow in an annulus
with porous walls. By considering injection at one wall and suction at
the other at constant and equal rates, he was able to obtain an exact solu-
tion valid for all values of the cross flow,

Sellers (13) has presented & solution which is valid for large
values of suction at the channel walls.

Yuen (1b4) presented a solution which covered a wider range of wall
Reynolds numbers, IRI £ 10, for the fully porous channel than those of
Berman mentioned above. However, in a later paper Berman (15) showed
that Yuan's solution was inacecurate for large suction.

Donoughe (16) was apparently the first to dotain solutions for the
flow in a semi-porous channel, His approach was similar to that of Ber-
man, but he ¢btained greater accuracy by considering a higher érder per-
turbation solution. He considered his results to be very accurate for
|R] = k. Eckert, Donoughe, and Moore (17) extended this work to include
fully porous chamnels, tubes, and boundary layer flow. They did extensive
numerical scluticns to cover all ranges of wall Reynolds numbers,

White, Barfield, and Goglia (18) presented a unique solution for
the fully porous channe), They employed the same function used by Berman

to reduce the Navier-Stokes equaticns, Then with another transformation,
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they were able to eliminate the parameter R from the differential equation.
This allowed them to solve the equation by a series solubion which, when
transformed back is absolutely convergent for all values of BE. However,

the series converges slowly especially for injection. White (19) employed

this technique further to the case of tubes and semi-porous channels,

. Recently, Terrill (20) has considered the problem of porous wall

channel flow. He has further extended the work of Bermen in fully porous

channels to obtain more accurate soclutions over wider ranges of R. Com-
parisons are made with numerical results., The sclution for large R was
for suction only. In another paper, Terrill {21) considers the solubion

for very large injection R.

Terrill and Shrestha (22) were the first to consider the solution
for flow in a porous channel where the opposing walls have different per-

meability. That is,the injectlon rates at the two walls may differ from

one another, The application ranges from the semi-porous to the fully

porous channel where both walls have equal permeability, The results sre
considered to be accurate for -9 < R < 8, The solutions are of the per- _

turbation type with pumerical results presented. for comparison.

Horton and Yuan (24) consider the’problém of laminar flow in the

entrance region of & porous wall channel., In this csse, the solution ig

gimilar in some respects to a flat plate analysis since the potential
core must be considered,thus requiring a bouggﬁﬁy layer analysis. They
employ the Karman-Pchlhausen integral method to obtain approximate solu-

tions,

Knight and McInteer (23) present solutions for the case of vanish-

ing viscosity valid for small injection.




Morduchow (50) presents a perturbation sclution for large suction
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for a fully porous channel calculated by the method of averages.
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Smith (55) presents an analytical study of wall suction and in-
Jjection upon Steady laminar flow in closed slender channels. A detailed 1
discussion is given to show that the full Navier-Stokes momentum equations ¥

may be reduced to a form identical %o the Prandtl boundary layer equation. it

Numerical solutions are presented for two-dimensional and axisymmetric

okl
o

P 2

Poiseuille flow and for flow in a conical diffuser, His solutions are

valid feor small suction and injection'rates,

iy s i

Ishizawa and Hori (56) study the flow of a viscous fluid through

a porous wall into a narrow gap. The flow pattefn is considered to be
axisymmetric, and all the fluid flowing in the gap originates at the wall. ;
Their analysis is unique in that the flow inside the wall is also consi-

dered in the solution, and the internal and exfternal boundary condiftions

are mated with each other. The infernal and external equations are solved

under the generalized condition that the fluid may flcw radlally in the

porous medium resulting.in a veloclty slip at the exterfil porous surface.

It is shown that for large values of the wall#Reynolds r'{ﬁhnber, the effect
of a slip at the porous wall must be included. This refinement in porous
channel analysis is apparently the first of its kind.

A number of invéSfigators have considered the problem of injécﬁion
or suctien in boundary layers on flat platesigyia?bitrary surfaces,
These workers have considered momentum, heat, and mass transfe: in the
boundary layers., References (37-42) deal specifically with this problem.

In the area of porous pipe flow, Yuan and Pinkelstein (25,26) have

considered the hydrodynamic problem of fully developad laminar flow with

[p—"—_ o S — -
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injection or suction and the corresponding heat transfer problem where l
the injected fluid acts as a coolant., Weissberg (27) and Hornbeck, et )
al, (28) have treated the problem of laminar flow in the entrance region

of a porous pipe by varicus approximate methods. White (29) presents a

power series sélution for the fully developed laminar flow in a porous
tube,

A number of authors have considered the heat transfer problem far
both developing and fully developed laminar flow bebween parallel, im-
permesble flat plates. The boundary conditions employed are equal wall

temperatures, unequal wall temperatures, equal heat fluxes, and unequal

heat fluxes at the walls., All of these investigators employ either series
or numerical solutions of the differential equations. A partial list of
these works is found in the cited literature. :“

Terrill (30) has considered the problem of heat transfer in a fully
porous channel where the.wall temperatures are prescribed and equal. A
gsolution is obtained by separation of variables and the superposition of
an infinite number of solutions. The solution is considered to be accurate
for a range of |RPr|ys:3 where Pr is the Prandtl numver, \Terrill finds
that increasing injection decreases the Nusselt number, wﬁereas increas-
ing suction increases the Nusselt number.

Carter and GiJJ¥(3l) present solutions for combined free and forced
convection in vertlcal;and horlzontal chamnels with uniform injection or
suction, - Again the wal temperatures are considered’to be equal, Lee and
Gill (32) present solu%ions for heat transfer in laminar and turbulent
flow in a channel where the injection at one wall equals the suction at

the other wall, vwhich is called transverse flow. The wall temperatures
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‘blem have been dealt with extensively, but the results have hinged on the

1

are equal.
Inman (33) solves the heat transfer problem for a porous annulus
with unequal temperatures at the walls where transverse flow is super-

imposed on the mein flow,

Purpose and Scope

Much debate is found in the literature on freeze-drying over the
relative effects of radiation heat transfer and conduction-convection

heat transfer between the heater and product where an open space separates

the two, With this in mind, one of the primary objectives of this thesis
is to effectively establish the relative contributions of each modée of
heat transfer in this region.

Another aim of this work is to consider the relative effects of
hydrodynamic and diffusicnal. flow of the air, water-vapor mixture in the

channel separating heater and product. The internal aspects of this pro-

requirement of maintaining a fixed concentration of water-vepor above the
product surface with respect to the total mixture. It igﬁéﬁvious then
that the problem m&gf be considered in the confined space above thé_pro-
duct to complete the physical picture.

The analysis of this problem requires the considération of the
flow behavior and heat tfansﬁer in a semi-porous channel, Thus, gnother
objective of this work is to ;dd to the store of knowledge in the field
of pordus chammels.

The scope of this work encompasses a solution to the Navier-gtokes

momentum equations for the flow in a semi-porous channel. Further, the
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temperature profiles in the channel must be derived from the energy equa-
tion., Finally, the concentration profiles of water-vapor must be derived
from the equation of continuity for the water-vapor species. To include
the effects of radiation heat transfer between heater and preoduct, an
overall energy balance must be performed on the channel,

The extent of this work and the complexity of the problem necessi-
tate the use of approximate integral techniques to effect solutions of
the differential equations. A number of simplifying assumptions are re-
gquired which will not destroy the usefulness of the results bub will allow
a solution to be attained, The integral techniques of Karman-Pohlhausen
have heen widely used in boundary layer work with excellent results, Their

employment in channel flqw hence offers a novel approach to this problem,

T N - ——— B VP
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CHAPTER 11
GOVERNING EQUATIOQNS

General

The physical model used to describe the typical freeze-drying
equipment arrangement is illustrated in Figure 1. The channel extends
infinitely into the page hence enabling a two-dimensional treatment of
the problem. Fluid flow and heat transfer in the channel is asymmetric
with respect to the vertical y-coordinate, therefore its origin was chosen
at the product surface as a matter of convenience. In freeze-drying, all
fluid.flow originates at the porous surface where y = 0. The water-vapor
turns and flows down the channel to one of the exits. The flow is assumed
to be symmetrical about the vertical centerline of the channel, and hence
the longitudinal x-coordinate was chosen to originate at this location.
The channel width H is constant with respect to the x-direction, and the
length 21, is usually much greater than H.

The porous wall at y = O, representing the food surface,:mﬁht be

" maintained at or under a prescribed maximum temperature to prevent

scorching of the surface. The solid or impermeéble wall.at y = H, which
corresponds to the heater sur}ace, must be regulated to é higher tempera-
ture level which will maintain the 1ower-garfa0e at the prescribed level.

This model basically describes the typical indﬁstrial method for
freeze-drying large batches of food, The product is piaced on trays

which slide between heaters stacked on top of each other, as 11lustrated
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in Pigure 2, A space of from 0.25 to 1 inch is required between the
heater and product to allow the vepor to escape, In some instances, the
product is heated by radiation and convection from the top and direct
contact on the bottom. Or using screens as trays, the product may be
arranged to employ radiation and convection heating on top and bottom.

- A1l of the analyses reviewed in the literature consider an infinitely
long channel divided into a section with no porous walls followed by a
section with either one or both walls porous. The main flow proceeds
fully developed from the impermeable walled section into the porous walled
section where mass is added tc or removed from the main flow at the walls.
However, ag mentioned gbove, the snalysis in this work considers all the
mass to originate at the porous wall and hence move down the channel to

one of the exits, depending cn the location of injection.

The effects of a developing region near x = 0 are considered negli- ; il

gible, There is no potential core flow in this situation that is normally
encountered in the entrance region of a channel, and hence the boundary
layer will grow very quickly reaching the upper surface at y = H within

a very few hydraulic diameters of the channel., Also, any exit effects at
Xx =L are negleéted for the sake of s%gg}%city, In ordinary channel or

"

pipe flow, Knudsen and Katz (57) show t;fi’:‘aﬂ;

15 Tow ﬁeynol@s numbers an
assumption of fully deveiopedlflow in eﬁtrance regions results in not too
serious errors in heaé.transfer calculations.'-Ultimately, it will be
shown that the greatest part of the heat transfer from the hot surface to
the porous surface in freeze-drying is by radiation. Thus it appears
reasonable to assume that neglecting certain irregular flow phenomena,

under the particular flow situation described here, will have only a very

T T
SR S O
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small effect on the final results. A somewhat similar analysis has been

done by Ishizawa and Hori (56) for the case of injection into an axisymme-
tric channel. They too neglected any effects at the center of the channel
and at the exits,

Part of the objectives of this thesis are to thecretically analyze
the heat transfer mechanisms between heater and product and to investigate
the relative effects of hydrodynamic and diffusional flow in this region.
Initially, the continuity and momentum equations must be solved for the
velocity and pressure distributions. The results of this solution are
used in conjunction with the energy and diffusion equations to obtain
solutions for the temperature and water-vapor mass concentration profiles
within the confines of the channel, With the proper selection of boundary
conditicns, the convegtion and radiation heat transfer modes are un-
cdupled, and the energy equation is solved independent of the radiation

effect. However, in determining the overall heat exchange between the

surface, the radiation exchange equations must be ap'?q
In obtaining a sclution to the transport equaﬁions,;all properties
including density, viscosity, and thermal conductivitj are assumed con-

stant. In cbtaining numerical results, "{&

1a

wﬁgﬁgture co?rgctions are applied
to these properties for greater accurécy;é H
The flow is assumed to be in the contlnuum flow regime and to be
laminar, The partlcular type of flow depeddé 6n the ratio of the mean
free path of the vapor molecules to a characteristic dimension which in

this case would be the chammel width, This ratio is the Knudsen number,

Kn = . ' (2-1)

fae] g
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The type of flow for different ranges of the Knudsen number is given by

the following:

2 < En Free - molecule flow
L0l s Kn = 2 Pransition flow

Kn = .01 Continuum flow

Under certain conditions in freeze-drying, flow in the channel borders
on transitional flow, but in general it is in the continuum regime. Due
to the very low density of the water-vapor, the channel Reynolds rnumber
based on the average channel flow velocity and the channel width lies

well within the laminar regime, and hence the assumption of laminer flow

is made,

In calculating the radiation heat transfer, the heater surface

and the regions surrounding the exits of the channel are assumed %o be

black bodies, The porous surface is assumed to be grey. Also, the

water-vapor flowing in the channel is considered to be transparent to
thermal radiation. Reference to any standard heat transfer text shows
that at the temperature levels encountered in freeze-drying, coupled with
the low densities and short distances involved, the water+§apor absorpti-
vity is practically zero.

Although the freeze-drying process is time-dependent, it is assumed
that for short time intervals the flow rate and properties may be assumed
constant with respect to time. This type of treatment is called a quasi-
steady solution. It has been successfully employed by Dyer, et al. (5}

and Hill (7) in determining sclutions for flow rates and drying times in

freeze-drying.
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Different;:"l.al Equations

The complete set of differential equations which describe the
cambined momentum, mass, and energy transport in two-dimensional, steady,

incompressible, laminar semi-pbrous channel flow are

E—f+§§-=0 (2-2)
: 2 2
3u du 1 dp du du
u V=T e Dty e oy (2-3)
x Ay p X 32 ay2
P 2
v av 1l op av v
U — + Vv = - Sk oy S by = (2-U4)
3x 3y o oy 2 33r2
2 2 '
u %% + v %% = o g-g + o é_g _ (2-5)
ox Ay
e 2
dw dw _ ., dw 3w _
wE v = D g;g + D ;;5 K (2-6)

Equation (2-2) is the continuity equation satisfying the corserva-
tion of mass in the channel, Equations (2-3) and (2-h) are, respectively,
the momentum equations in the x and y directions, BEquation (2-5) repre-
sents the couservation of energy, and Equation (2-6) the diffusion equa-
tion, represents the coﬁserv&tion of the water-vapor species in a two-
component flow system, The assumpgion of constant properties renders these
quantitieé independent of the energy solution and, from this standpoint,
uncouples the energy equation from the momentum equation., The effect of

the cholce of boundary conditions on the uncoupling of the momentum and

e ————— e e — s ——n
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energy eguations will be discussed later.

. The momentum Equations (2-3) and (2-4) have been solved by several
investigators (16,19,22) for the case of a semi-porous channel where the

injection velocity Vs at ¥y = 0 is constant for all x,- At the upper wall,

of courge, v is Zero., At x = 0 these invesgtigators treat the flow enter-

;% ing the porous region of the channel as fully developed., By defining a
% gtream function

. i ST
© e &

¥ = [Hﬁ(o) - voxJ f(y/H) , {2-7)

! where T(0) is the average flow velocity at x = O, and by defining a wall
X
i
% Reynolds number .
. !
' v.H
) .
= — 2-8
R = - (2-8)

the differential Equations (2-3) and (2-4%) may be reduced to a single

ordinary differential equation, Perturbation type sclutions are then

obtained through a series expansion in terms of R. That is, the injection
or suction disturbance at a wall is represented as a small perturbation
acting on the main flow fiéld.- The length of the seriesg depends on the
range of accuracy desired for R. The results, although very aécurate,

yield quite complicated expressicns for u and v, especially when one con-

siders using them in the' energy and diffusioﬁ‘eQGa%ions. These investiga-

tors have supported their results by presenting numericslly exact solu-

tions of the same eguations,

The well known approximate integral techniques are accepted for

| obteining accurate solutions to complicated flow situations involving
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boundary layers., The method consists of transforming the differential
equations for boundary layer flow into integral egquations in which the
integrals are carried from the surface of the plate to the outer edge of
the boundary layer. A polynomizal approximation representing the velocity
profile is then made to satisfy certain conditions at the surface of the
plate and at the edge of the boundary layer. Using the approximate
velocity profile in conjunction with the integrsl equation, one may solfe
for the.thickness of the boundary layer at any position along the plate,
In the same mamner, the differential equations governing flow in
the semi.porous channel may be transformed into integral equations with
integration cccurring in the y-direction from the porous surface to the
solid surface, In this situation, the bhoundary layer is essentially the
entire flow field, and an unknown pressure distribution must be found.
Hence, it is proposed to assume a velocity distribution in the channel sub-

Ject to conditions at the walls and use this profile in integral equations

‘4o solve for the pressure distribution. In an analogous manner,'apprOXi-

mate solutions may also be obtained for the temperatﬁre distributions and

the concentration distribution of water-vapor.

Integral Equations

Continuity and Momentum:Equations

‘Equation {(2-2), the continuity expression, mey be rearranged as

follows;:
- | (2-9)

and integrated from y = O vwhere v = Vs to ¥ = H where v = 0 to give
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H
o)
voe[8ay ~ (2-10)
. |

It is convenient to consider the y-direction momentum Equation (2-4)
first., The velocity v may be calculsted from the stream function using

the fact that

Y
=-= . (2-11)
Hence, introducing Equation (2-7) into Equation (2-11) gives
v = vof(y/H) . (2-12)

By requiring that the injection velocity at the porous surface be constant
with respect to the x~coordinate, the v comﬁonent of velocity is necessarily
- independent of x at all points in the channel. - As a result, Equation (2-4)

reduces to

2
v 1 9p 3 v
V o= m = e ok YY) — . 2_1

dy G - (2-13)

af

It is convenient here to consider the behavior of the pressure dis-

)

tribution. 8ince v depends only on y;éd;

atieting Equation (2-13)

with respect to x gives

-0, (2-14)

which implies that %% is independent of x. PFurther, since the second

order mixed partial differentials are equal,
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=

2l
2
3p
= 2=
which implies that %—% is independent of y. Thus, the following total
differential expression for pressure
3p 3p
e
dp = 5= dx + == Sy dy (2-16)
may be integrated directly to give
p = fen(x) + fen{y) . (2-17)

This result has also been observed by Donoughe (16),

Now considering Equation (2-3) and adding the continuity Equation

(2-2), multiplied by u, to the left side of Equation (2-3) gives £

2 2
du du du v ldp du du
Us—+ Vot Ut Uge= - =g 4 Y = + Y —= (2-18)
ax 3y ax ¥ p Ox P ay2 ;
or by combining derivatives on the left side
oy o8, Suv __19p v.éEE + v.QEE (2-19)
ox | dy p Ox BXQ By2

Notice that the left side of Equatlon’%
L e

it to the left side of Equatlon (2- 3) does not chenge the equality,

Eéuals zero, and hence adding

In-
tegrating Equation (2-19) with respecﬁﬂto ¥ from zero to H;- noting that

= 0 at both walls and 2 is independent of y yields

ax
I 2u —- ? du du
2
O

du
d.y+v—a? -\Ja

H

.3 (2-20)

'bim

0




- Diffusion Equation ol

which may be used in conjunction with an assumed velocity profile to
calculate-%% or the pressure distribution in the x-direction. Then
Bquation (2-13) may be used to calculate %g and finally Eguation (2-16)

may be used to calculate the complete pressure distribubtion.

Energy Equation

‘Equation (2-5), which expresses the conservation of energy in the
channel, may also be written in integral notation. Multiplying Eguation
(2-2) by T and, as before, adding the result to the left side of Equa-

tion (2-5) gives, wpon combining derivatives,

ul . VT _ 2%

3°T
P 5 - o ax2 + o ay2 . (2-21)

Equation {2-21) must be integrated with respect to y from the
porous wall at y = O where v = Yy to the impermeable wall at y = H where

v = 0, The result is

H H
I—}E— dy - VOTO =& I —2 d.y' + & 'a? - Q"E (2-—22)
0 O

for the integral energy equation, Equation (2-22) will be very useful

in determining the unknown coefficients 'ﬁhﬁgssumed polynomial tempera-

ture profile.

5

oy

Egquation(2-6), which expresses the conservation of the water-vapor
compenent in a two-component system in the channel, may also be written
in integral form, The procedure is exactly the same a8 used to arrive at

the integral energy equation, The result is

B —
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3} 5, _
duw . 3w dw dw .
f'SE" ay - vgu, = n'f — dy +D | -D 5 (2-23)
0 0 H 0

5. for the integral diffusion equation. As with the integral energy equation,
il the above is. useful in determining the unknown coefficients of the assumed

mass concentration distribution of water-vapor.

Boundary Conditions

e P A 1 1
ra i e

Momentum Equaticn

%; The boundary condifions asscciated with the momentum equations are:

gty =0 : u=290o s v =V

0
aty =H u=0 , v=0 (2-2k4) )
at x =0 : u=20 R %% = 0 .

The conditions that u = O at each wall are a result of the no slip '
condition at the walle. This assumption is of course contingent upon
the flow remaining in the continuum regime in the.channel which it does.
under normal drying conditions, Ishizawa and Hori (56) show that under
conditions of a large value of R, there may be a certain amount of slip

at the porous wall which should not be neglected in the analysis even

though continuum flow exists., However, it will be seen in Chapter VI that
the values of R encountered in freeze-drying are ordinarily less than one,
and hence the effect of slip at the wall is probably negligible. At

x = 0, there is no flow in the x-direction since otherwise this location

would have to be a line source, hence u = 0, Purther, due to symmetry of
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the flow about x = 0, it 1s necessary that-%% = 0 at this location., = The
injecticon velocity at y = 0 is taken to be constant with respect to the
¥-direction, and of course at y = H the impermeable wall implies that

v = Q.

Here, it is desirable to comment on the value of v In most

o
practical situations, Yo will be some unknown function of x which must
be solved. The boundary conditions must be so arranged and formulated
that this additicnal unknown can be handled, In this thesis, it is con-
venient in the application to freeze-drying to require that the surface
temperature at y = 0 be constant with respect to x in order to simplify
the solution to the energy equation., However, the injection flow rate

along the surface and hence the injection velocity are a direct function

of the local heat flux and will vary as the heat flux varies. Hence, the

‘momentum equaticn should be coupled with the energy equation and the two

solved simultaneously. It should also be apparent that the concentration
equation would be coupled to the energy equation, hence requiring a

simultanecus golution of three differential equatioﬁ%. Such a problem

would be very difficult to analyze and:would requiréiia complete numerical

solution, However, all of these difficulties are elfminated by requiring

: it
Vo to be constant with respect to x. This device né@tly uncouples the
Ly

momentum and diffusion equa#ions from the energy egu%tion and considerably
simplifies the solutions. _As will be seen in Chapter VI, the effects of
this simplification are negligible when aﬁplied to.ff;eze-drying due to
the low range of R, The choice of a constant s alsd serves to uncouple

the momentum equation from the diffusion equation., This will be discussed

in more detall in a later section,
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In freeze-drying, the flow rate and consequently VO decrease with
increasing drying time. However, flow conditions may be safely assumed
constant for short periods of time, . The wall Reynolds number, defined
in Equation (2-8), may be altered to establish the flow conditions
corresponding to a particular time during the drying cycle. The depth
of the porous layer and the drying time are obtained from the solutions
of Dyer, et al. (5).

Energy Equation

The boundary conditions imposed on the energy equation are:

at y =0 T = TO

at y =H T = TH(x) » Ty > T, (2-25)
-0 s aT _

at x =0 ™ 0 .

By assuming the temperature or at least the temperature distribu-

tion to be known at the walls, the energy equation becomes independent

of the radiastion heat transfer, and the convection an

treated separately. However, if one assumes a known ”?nt of heat trans-

. ih
fer at the walls, the radiaﬁion terms must be included directly in the

boundzary conditionsg, Since temperature raised to the foﬁrth power appears,

the boundary conditiqps_become non-linear and hence the-éolution consi-

o - !
‘:1‘- . N P

derably more difficult'to obtain.  Further, the assumption of a congtant
. i

temperature, or for that matter a constant heat flux, unéouples the energy

equation from the diffusion equation though for a constant heat flux the

reverse is not necessarily true, More general boundary conditions which
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couple the energy and diffusion equétions would not serve any useful pur-
pose here,

. The assumption of a constant surface temperature at y = O with
respect to the x-direcﬁion correspnnds to the actual process where it is
desired to maintain the product surface within a prescribed temperature
range, Also, this allows use of the internal drying solutions of Dyer,
et al. {5) where a constant surface temperature was assumed. The heater
surface temperature distribution will be alleowed tﬁ assume a profile which

will maintain the porous surface temperabure constant.

- Diffusion Equation

The boundary conditions associated with the diffusion equation are:

at y =0 w = wo(x)
at y = H : w = wH(x)
) (2-26)
- ow
at x =0 : % 9]
at x =L w=w(l) = .

The conditions at y = 0 and at y = H are based onjthe water-vapor
mass concentrations at these boundaries., Generally, these conditions are
not known, but as will be seen in Chapter V, tbey can be related to the
v=-component of veloci#y at each wall.

The assumption}of a constant injection velocity at ¥y = O with
respect to x necessarily suppresses any dependence v, has on the variation

0

of water-vapor concentration w. along the surface. In freeze-drying, the

0]

- |




surface concentration w. influences the frozen region temperature which

8]
subsequently affects the flow rate Nﬁ through the dry layer and hence the
injection velocity., However, sample calculations from the results of

Dyer, et al. (5) show that a variation in mass concentration of water-vapor

of 45 per cent from x = 0 to x = L would have only & 6.5 per cent effect

on the injection veloecity along the surface. Hence, the assumption of a

F constant injection velocity for the momentum solution appears justified

S S

e e —— T

and is desirable by reducing the complexity of the problem in uncoupling

- e

i the momentum equation from the diffusion equation.

s

e

The conditions at x = O and x = L are, respectively, due to the

iy

symmetry of the channel and the average concentration of waber-vapor in

P 3

e

e ar

the chamber outside the channel.

The choice of boundary conditions described here for the momentum,

P

energy, and diffusion equations are in part dictated by the relative ease

of obtaining a sclution to the equafions. Part of the objective of this
thesis is to obtain solutions which are in closed form and relatively easy
to duplicate and use in the future, The boundary conditions chosen allow

the equations to be solved independently and, by using approximate techni-

ques, closed form solutions are obtained.

Porous Surface Energy Balance

In freeze—dryﬁﬂgﬁ the temperature of the two walls are net inde-
pendent 1y controlled., léhe sublimating ice within the food product re-
guires energy which is é%pplied by the heater. The temperature level of
the heater which is, of ccurse, higher than that of the porous surface
will then dictate the rate at which drying cccurs, If the heater surface

temperature is predetermined at a fixed value, then the porous surface

T e e e
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temperature is a function of the heater temperature, and it varies dquring
the drying cyecle from a low initial value to finally approaching the
temperature of the heater. If the product surface temperature is to bé
constant during the cycle, then the heater temperature must be so adjusted

during the cycle to maintain the product surface at the prescribed level.

. As the drying cycle proceeds, the rate of drying decreases due to the

formation of a continually thickening dried layer surrounding the frozen

region, Hence, the rate of heat transfer through the dried layer decreases,

and the heater temperature must be continually adjusted to lower levels in
order that overheating does not occur. However, this is a very slow pro-
cess and, as mentioned bhefore, can bé treated as 5 guasi-steady-state
process,

Since the two temperatures are not independent, only one of them
can be considered known and the other determined by performing a heat
balance on the porous surface. With reference to Figure 1, an energy

balance at ¥y = 0 yields
qr + qC = qd. . (2"'27)

The first term in Equation (2-27) represents the net amount of
radiation heat transfer to the perous surface. Radiant exchange exists
between the porous surface and the heater swurface and each of the channel
exits. The second term represents the amount of heat energy which reaches
the porous surface as.a result of convection and conduction across the
channel, The third term represents the heat energy conducted away from

the porous surface toward the frozen region which is of course equal to
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the heat transfer to the external side of the surface. The majority of
the heat conducted away from the porous surface supplies the required heat
of sublimation. The remaining portion is used to heat the water-vapor as
it flows through the dried layer from the temperature of the ice region to
the surface temperature.

The radiation contribution in Equation (2-27).can become a very
complex function of geometry and the temperature of the participating sur-
facegs, The convection term is primarily a function of the two wall tempera-
tures, and the amount of heat conducted away from the porous surface is a
funetion of the pofous surface temperature and the temperature of the
frozen regicn., The temperature of the frozen region may be defermined
from internal soluticns. If the temperature of either the heater or the
product surface is chosen, then the other may be calculated using Equa-
tion {2-27).

After the unknown temperature is determined, it is possible %o cal-
culate heat transfer coefficients and to determine how much heaf_transfer
‘oceurs by radiation and by convection. The effects of other primary
variables such as chaﬁﬁél width and length on the temperature levels may
also be investigated., . Further, by using the internal drying rate sclution
of Dyer, et al. {5}, it is possible to relate the changing heater surface
temperature to time.

The solution to the momentum equations are presented in Chapter
IIT, and comparisons are made with more accurate solutions of previous
investigators in Chapter VI. The energy solubtion is presented in Chapter
IV along with the energy balance on the porous surface, 1In Chapter V the

diffusion equation is solved for the water-vapor concentration profiles.

A A
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CHAPTER II1
MOMENTUM SOLUTION

General

The more general momentum solution for the veloceity and pressure
distributions in a semi-porous channel considered by previous investiga-
tors has been discussed in Chapter II., In this chapter, a special case
for the semi-porous channel applicable to freeze-drying will be considered,
The impeortant boundary condition that distinguishes this application is
that u(x,y) = 0 at x = 0. Thus, all mass flowing in the channel origi-
nates at the porous wall. Basically the solution involves assuming a
polynomial velocity profile, finding the coefficients based on conditions
at the walls, and using the integral momentum equation to establish the

pressure distribution.

Velocity Distribution

It is convenient. to non-dimensionalize the vertical coordinate

of the channel system as follows:
E=F - -G

Substituting for y in Equation (2-20) of Chapter II yields for the x-

direction integral equation

1 1
2
au 13p A u v du v au :
cfuZar- i, [Tuag.yn _v 3 (3-2)
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At this point, a peclynonrial profile for the x-direction velccity

distribution in the following form is assumed,
_ : 2 ; 2
u(x,y) = a(x) + b(x)y + c(x)y” + dlx)y” . , (3-3)

The polynomial is in terms of powers of the y-coordinate, and the coeffi-
cients are assumed to be functions of x. Introducing Equation (3-1) for

¥ gives

w(x,E) = a(x) + B(X)HE + c(x)EE" + A()EE . (3-1)

The general shape of guch a profile is illustrated in Figure 3. The
unknown coefficients in Eguation (3-4) must be calculated subject to cer-

tain conditions at the boundaries, The conditions used here are

at E=0 : u(x,0) = 0 (3-5)
Yo du 13p v 3°
~Loul PP vV % u (3-6)
H § p Ox 2 2
. o B 37|,

at € =1 u(x,1) = 0 , (3-7)

Equation (3-6) is a result of evaluating the differential Equation
(2-3) at the porous surface and using Equation (3-1). Eq@ations (3-5) and
(3-7) express the no-slip conditlons at the walls..

Since there are four unknown coefficients to determine, a fourth
condition is required, and for this the integrallcontinuity Equation (2-10}

may be used. FEquation (2-10) is repeated here in terms of §.
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1
- -B__-J' ;
Vo = H 3= u(x,g) d& . | (3-8)
0 .
Note that the order for differentiation and integration is reversed in
Equation (3-8). This can be done because the limits of integration are
not dependent on x.
- Application of the boundary conditions (Equatibns (3~5), (3-6} and
{3-7)) to Equation (3-4) results in the following set of equations:
a=0 (3-9)
_ 13
VoP = - s 5x + 2 ve {3-10)
bH + CH- + dHO =0 . (3-11)

The coefficients a, b, ¢, and 4 are dependent on x. Substituting Equation

(3-4) into Equation (3-8) yields

0 (3-12)
Integration with respect to § gives
i* .
_ 9 sz cH3 dH :
VoS |2t YT - (3-13)

Bguation (3-13) may be integrated with respect to x to give

2 I
VX = bg + 023 + dE +c (8) (3-14)
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i? where Cl(g) is an arbitrary constant of integration and may be a function
&; of €. The fact that a = O has already been taken into account.,
E? Solving Equaticns (3-10), (3-11), and (3-14) simultaneously for b,
f’" c, and d yields the following results.
B 3 3 2k C.H
24 —— . —
v X PVVLX - BX v Rx
, b= 2 S e (3-15)
H R+6 H
% s pp 12 Ogf
12 R +
V¥ PYV X 3x v X 1
- R > )
: H
oE - o3 p 2L C,H . 12 c.H 1 (3-17)
. V. X pVv,. X  Ox vRx -~ wvx 3 7
i=-2 0 H
é. H R+ 6
E: The wvariocus physical quantities invelved have been arranged so as to in-
troduce the wall Reynolds mumber R defined by Equation (2-8),
Ef Substituting b, ¢, and d into Eguation (3-k4), noting that at x = O
= where u = 0 and %% = O implies that Cl = 0, gives for u(x,E)
3 u(x§)=vox ih-al§+123+3sl 2, -12R - 2k - 28, 3
ke /7y R+ 6 R + 6 R+06
: (3-18)
:? where the quantity Bl is defined as
¥
1]
o i T T e == Ao =
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3
H -
6 = v 8 (3-15)
and
3
B=5% - (3-20)
It is also convenient to redefine the coefficients b, ¢, and 4 as
follows:
2h < Bl
i ey (3-21)
12 R + 3 Bl
e A (3-22)
=12 R - 2h - 2 Bl
d - - . (3-ﬁ3)

R +6

- The solution at this point remains incomplete, however, since B
is still unknown. In order to determine B, Equation (3-18) must be sub-
stitused into the integral momentum Equation (3-2) which can then be solved
afor the pressure dist?iﬁution.

Substituting Equation (3-18) into Equation (3-2) gives

2v. x t F ’ ) 2 ] J * ; 4
G - bb be bd ¢b ce ed db de dd
; 3 + =t 5 +o— z + <z * z + 7+ =
1 v o~ (3-24)
=--EB+“§"-I7I—(20+3C1) ’
H




o

where the primes denote differentiation with respect tc¢ x. The terms b,
¢, and d are used for convenience, but 1t must be remembered that they
contain B also. Note that substitution of u(x,E) into the second term on
the right side of Equation (3-2) reduces that term to zero., Hence, the x-
direction viscous forces are canceled out. |
Substituting for b, ¢, and 4 from Equations (3-21) through (3-23)
and éarrying out the indicated operations results in a differential equa-

tion of the form

CoBB" + CoxB’ + B + Cox = O (3-25)
where
7
210 p
EvVOHh v 2H5

C3 =5t P (3-27)
_e1e 37 23 . ~
¢, = §§_'vv0H MR °H + 18 v (3-28)
o = i@ v l'!'H?’ + v 3}[2 2520 2 2H + 216 V3V . (3-29)

5735 0 | 0

In terms of the pressure p, Equation (3-25) becomes
N # ¢ - _
Cop'p" + CBxp + C,p" + 05x =0 . (3-30)

Equation (3-30) is an ordinary differential equation with variable

e
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b1
;? coefficients, and as such a solution in the form of an infinite series
e |
g provides the most practical method of solution. A power series solution
E* of the following form is assumed to exist.
e
r p=g +gx+gx2+gx3.+ (3-31)
it 0 1 2 3 R
ij Substitution of Equation (3-31) into Equation (3-30) and grouping coeffi-
cients of like powers yields
5 |
g {2 C 8.8, + Chgl) + (6 nglga + 4 cegzgg + 2 03g2 + 2 Ch32'+ Cs)x
¥ (12 Cog,, + 12 C g8, + 6 Cog g, + 6 Cog. + 3 €L )x~
2518, 25283 25283 33 L4=3
Faouw. =0 . (3-32)
?E Since each coefficient of the x-powers must equal zero, it follows
that
g, =0 | (3-33)
;: and
i (C4+C),) e+ 0\ o |2 '
B _ 3 + 1 3 }-l- 5 !J-
a ©=-—he - *3\Te ) "o - (3-34)
i 2 D o
i |
; It is assumed here that three terms of the series of Eguation (3-31) are
?- sufficient to describe the pressure distribution. Substitution of Egua-
L tions (3-33) and (3-34) into Equation (3-31) and noting that g, = p,, the
% pressure at x = 0 gives for the pressure distribution in the x-direction
3 '
1y
i
k
!

Pl

- )
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C + Ch c
C— . X - (3—35)

Note that Equetion (3-35) does not represent the complete pressure
distribution but only amounts to a sclubion for the first term on the right
side of Equation (2-16). In other words, it is only the x-direction compo-
nent of the total pressure distribution. However, to complete the solutibn
for the velocity profiles all that is necessary is B or [ ; and hence,

Ax
Bquation (3-35) is all that is necessary., Calculation of B gives

- %
' 2
fC, + C c
_dp 3 4 5
a = 3% 2 —'E—Eé— - 'C-; X . (3"36)

For Equation (3-18), the quantity_Bl defined by Equation (3-19) is

required, Multiplication of Equation (3-36) by H — and substitution of

pvv,
Equations (3-26) through (3-29) gives
21y | 39 8
P (e
1 pvva-ax
B (3-37)
4
2 2
2h 39, 18 48 g2, 738 o, bos6 , 216
A1 TR ) |E 35 35 R
3 e ‘
105 210

where for the case of fluid injection at the wall, the plus (+) sign is

retained in front of the square root quanﬁity.' For the case of suction
§

at the wall, which is not considered here,; the minus (-} sign should be used.

e e S e ———
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Equation (3¢37) usged in conjunction with Equation (3-18) completes
the solution for the x-component of the velocity distribution. In the

integral energy and diffusion equations, only the x-component is required,

Pressure Distribution

To complete the calculation of the pressure distribution, the y-
direction component of velocity v(£) must first be determined. Substitu-
tion of Equation (3-18) into Equation (2-9) and integrating with respect

to v from Yy to v(E) and € from O to & gives

W(E) = vy - e+ TE P e

The synmbols b, ¢, and d defined by Equations (3-21) through (3-23)

are used a8 a matter of convenience,

Substitution of Equation (3-38) into Equation (2-13) then gives

. 2 2
pv pv. .
QR - - Q 2¢(. 0 _ _ 2
T EE b+ 2cE + 3 dg - bE - ¢

” .
a2 g3 42 (3-39)
2
7ed 6 , 47 .7
M- -

Integration of dp(x,§)=é%%§x+ %% d€ using EQuations (3-36) and (3-39)

results in the complete pressure distribution.
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P(xag) = p(0,0) + ""2""‘- R 'ﬁ + |- R fl -5 f2 3 (3"' O)
where
£, = bE + cE® 4 dg3 (3-41)
and
oo ope2.22g3 (g Do Leh pe 5 (A, FlL 6
2 3 2 |2 3 L 3713
(3-h2)
Lodg?, &8
6 16 .
The pressure change in the x-direction may then be found from
Eguation (3-L0Q):
3 2
o o b{x,8) -p(0,€) Tl|x
by, = BEAL=ER) L i3 (3-43
Similarly, the pressure change in the y-direction is
— p(E,x) - p(0,x} _ _2 - ;
Apy = T 2 =-gfhi-% (3-kk)

Z PV

The velocity profile and pressure distribution derived in this
chapter are compared with the results of previous investigators in
Chapter VI,  The results of this chapter are used in Chapter IV and

T

Chapter V in cbtaining solutions of the energy and diffusion equations,
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CHAPTER IV
ENERGY SOLUTION

General

In this chapter a sclution of the integral energy Equation (2-22)
is presented for the temperature profile of a mixture of alr and water-
vapor flowing in a semi-porous charnel with &asymmetric wall temperatures.
All of the masg flowing in the chammel is assumed to originate at the
porous wall.. The boundary conditions are gelected in order that the
temperature profile may be obtained independently of the radiant heat
exchange between the walls,

Once the temperature profile is known, the heat transfer to the
wall by radiation and convection is equated to the heat required for sub-
limation, This energy balance is used to establish the functional rela-
tionship between the two wall temperatures.

The firgt term on the righﬁ gside of Equation (2-22) represents
heat transfer by conduction in the x.direction in the?chéﬁnel. In this
work, it is assumed that the longitudinal conduction effect is small over
most of the channel 1ength. Hence, the x-direction conduction term is
neglected. This assumption is commonly made in fully developed channel
and tube flow and in boundary layer fiow problems. It greatly simplifies

the solutions without significantly affecting the accuracy of the final

results,




L6
Temperature Distribution
Again, it is convenient to define the dimensionless distance
= L -
E=5 (&-1)
Neglecting the x-conduction term, Equation (2-22) then becomes
1 v T
T g . .00 _ o 3 o O (4-2)
ox H 7 6 ue 98 ’
0 1 0

The assumed polynomial temperature profile is
T(x,8) = a (x) + b (x) B + o (x) HE +a(x) BE .  (4-3)

The x in parenthesis aggin implies that the coefficients are functions of

X

The coefficients in Equation (L4-3) must be calculated subject to

conditions at the boundaries, With reference to Figure L, these conditions

are
at £ = 0: (x,0) = Tb ' ()
v 2
. 0 8T ¢ oT
Ereand = e » h"-5)
T € 2 2 (
o H ¥y
2 iy
.and at § = 1: Q_g =0 . - (4-6)
38
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Equation (4-4) is a result of specifying the surface temperature
and assuming it to be constant with respect to position along the surface,
An assumption of a constent heat flux at § = O instead of a constant
temperature would be more compatible with the constant velocity assumption
used in Chapter III, However, a constant heat flux boundary condition
would necessitate including the radiation terms in the boundary condition
making them non-linear, This problem is avoided by specifying the tempera-
ture instead,

Equations (4-5) and (L4-6) are the results of evaluating the differ-
ential energy Equation (2-5) at the lower and upper boundaries.

Another condition is required in order to completely determine the
four coefficients in Equation (4-3). The most cbvious choice is to use
Equation (4-2), the integral energy equation, to complete the determina-
tion of the coefficients,

The temperature distribution along the impermeable wall is given
in Chapter II as & boundary condition, However, the actual distribution
is unknown and must be determined as part of the solution. Hence, in
place of using the surface'iemperature at £ = 1 as a condition with which
to determine the coefficients in Equation (L-3), it is more convenient ta |
obtain the necessary condiftions from the differential equation.

Application of the boundary conditions in Equafions (4-4) through

(4-6) to Equation (L4-3) yields the following set of equations.
=% | | | (&-7)

Voby = 2 @ ey (4-8)
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2y + 6 dl H=0 ., (4-9)

Wow it is necessary tc substitute the temperature profile and the
x-component of the velocity profile w(x,£) given by Equation (3-18) into

Equation (4-2), This gives

I r r 3
(xbl+bl) H Ce + (xcl+cl) HQC7 + (xdl+dl) H"Cq

c. ol d ch2 (4-10)
1 1
- 2 v - 3 = 0 4
0 Yo
where
b C d
06—§-+E+‘§ (h--ll)
b e 4 :
b d
Cg =+ % + = (4-13)
Substituting Equations (4-8) and (4-9)} into Equatién (4<10) gives
ci + % ¢, =0 (L-1k)
where
(18 + 3R) :
y=1- B. ...._  RPTB el (4-15)
9% , 18R , 1, 162RPr | i, 32 Pr
5 5 10 35 28 35

The combination RPr is the wall Reynolds number times the Prandtl number
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and is defined by

VOH

RPr = —— . (4+16)

The first order differential Equation {(4-1U4) may be solved by means

of multiplication with an integrating factor.

. (4-17)

The solution becomes

¢; = ch'Y , (4-18)

where 09 is a constant of integration to be determined. Using Equation

(4~18), the coefficients bl and dl are easily determined from Equations

{b-8) and (4-9), and upon substitution of all the coefficients into Equa-

tion (4-3) there results

T - Cx'YH2—§+§

Uoll—-'

. (4-19)

i
T
0

H

The term y defined by Equation (h 15) is always p351tlve, and hence
as x spproaches zero the temperature approaches 1nf1nity5. This behavior
ig a result of neglecting the x-direction conduction term in Equation
(2-22), Near x = 0 conduction in the x-direction is the Eame order of
megnitude as convection in the x-direction. .Furthgr, in the limit as x
approaches zero, neglecting thé-x-conduction term éauses é physically

impossible situation. That is, the solution presented in Equation (4-19)}

F o

TSR -
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attempts to compensate for the agbsence of the conduction term by increas-
ing the temperature to infinity at x = 0, This type of behavior is also

cbserved in boundary layer analysis at the leading edge of a flat plate,

At this location, the heat transfer coefficient approaches infinity,

again as a result of neglecting terms which are important at the leading

. edge. However, when considering a long plate, the overall error intro-

duced is considered negligible. Similarly, if the analysis here is con-
fined to long narrow channels, the resulting error near x = O may be
overlooked.

The constant 09 in Equation (4+~19) must now be evaluated. It is
convenient to introduce the temperature of the heater surface into the

solution. The final boundary condition will then be taken as the tempera-

ture of the heater surface at x = L.

at x =L, € = 1z ™L,1) = Tpo . (4-20)

Evaluation of Equation (4-19) subject to Equation (4-20) gives

3 RPr]

)|

. = ]
L‘YH2(6+2 RPr)

9

Hence, the complete solution for the temperature profile becomes

T8) - Ty Y] 3RPr 2 . RPr _ 3
s [f (3 TR S tEvzmr s iz o) (%)

H ,.'_‘i!_jl- .
Tt 4is convenient to define a dimensionless temperature.

KN .

(k-21),
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T(x,§) - TO
9(x,§) = —'I—L'F'O— . (J-I--23)

In ordinary channel flow problems, the temperature is usually non-
dimensionalized in terms of g fluid temperature entering a heated or cooled
section. This entrance temperature serves as the usual boundary condition
with respect to x. This is convenient because in general the increasgse or
decrease of the fluid bulk temperature above or below the initial value
is of interest.

However, no such convenient or useful reference temperature exists
in this problem. The temperatures of most interest are those of the porous
surface and the heater surface and these are not independently controlled
in freeze-drying. It is not possible to specify a temperature at x =0
since the solution is discontinuous at this location. = This means that
another location must be selected for a boundary condition and the logical
one is at x = L. But, the average bulk temperature of the water-vepor
is of 1little interest at this location, However, thg heater surface
temperature is of primary interest, and hence atlk]= L, € =1, it is
assumed that the temperature is known in order to ﬁut the solution in the
form given by Equation (h-22). Once the temperature T

LH
the temperasture at any location along the heater surface méj bhe determined

is known, then

or a mean heater surface temperature may be defined..lﬁlso, the ratesg of

heat transfer from the heater to the porous surface may ﬁe determined for
convection and radistion, Hoﬁever, the surface temperatures are not in-

dependently controlled, and in the next Secti;;f;;-energy balance at

£ = 0 is used to relate those guantities.
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From the tempersture profile of Equation (k-22), it is now possible
to calculate the heat transfer between the porous wall and the fluid layer

next to the wall using the egquatlon

aT
0=~ (k-2k)

0

or in terms of 6 and §,

qc = - T ) sg- . | (h"‘25)

Heat Transfer

The heat balance at the surface € = 0 is given by Equation (2-27).
The energy convected across the channel and conducted to the surface may

be calculated using Equation (4-25) to give

_ - k(ﬁqb‘ 3 =\ (4-26)
qQ = 8 3+Rer(|L)
The mean temperature of the.heater may be calculaﬁeéﬁﬂrom ,
L
1 !
T, =55 T(x,1) dx e (4-27)
-1

Substitution of Equation (4-22) into Equation (4-27) gives

T _T T
- 1H .
Tm = TO + l"'Y 3 (Ll--28)

e
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and Equation (4-26) mey be written

Y

e

s H 3 + RPrjIL

(4-

The mean temperature of the heater surface Tm is a more praciical quan-

tity to measure and to use in subseguent calculstions.

The energy per unit area conducted away from the porous swface

toward the frozen-region is given by

54

29)

Qg = PoVo AH + pyv, (TO Td] R (4-30)

where o is the density of water-vapor at y = 0, AH is the latent heat
of sublimation of the frozen food juices, Cp is the specific heat of
water-vaper, and Td is the temperature of the frozen-region.

Equation (2-27) then becomes upon substitution of Equatidﬁs {(4-29)
and (4-30)

The net radiaticn flux %o the porous surface is a complex function
of geometry, further complicated by the variable temperature of the
heater surface., The equations presented hereﬁutlllze the methods and
terminoclogy of Sparrow and Cess (49). A derlvatlon of the equations pre-
sented here is contained in Appendix A.

The net radiation heat flux from surface i of a system of sur-

faces is given by

: b
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€,
9;(x;) = I‘I&E: g Tih(xi) - Bi(x) | (4
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-32)

where €, is the emissivity of surface i, ¢ is the Stefen-Boltzmann constant,

and Bi(xi) is the radiosity, the total emitted radiation energy per unit

area, and is in general a function of position on surface 1.

The radicsity of surface i may be written zs

ar, |
B,(x,) = e,0 7,%(x,) + (1-¢,) z [oc) 2da, -
A

) d
d

33)

where Bj(xj) is the radiosity function of a typical j surface of the system

and dFi-j is the incremental view factor from an elemental area dAi on
surface 1 to area dAj on surface j. The summation is extended over all
surfaces of the system including surface i if it can see part of itself.
Fach radiosity term must in general-be integrated over the corresponding
surface.

The Bj(xj)'s are in general unknown and hence an equation similar
to (4-33) must be writien for each of the surfaces;, and the set of equa-
tions scolved simultanecusly in order to obtain the radiosity of each sur-
face. For a system of non-black, non-isothermal surfaces this is a for-

i

mendable task, and only with computers can a complek ystem be analyzed.

The system pictured in Figure 5 has four surfaces. The two exits
are treated as black isothermal windows for radiation calculations, and
the heater surface at y = H is treated as a black non-isothermal surface.

The porous surface is, of course, isothermal, but it must be treated as

gray for calculations.
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Figure 5. Enclogure Illustrating Types of Radiating Surfaces
in Semi-Porous Channel
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For freeze-dried beef, measurements by Sevcik and Sunderland (58)
showed that the emissivity is 0.75. Hence, it cannot be treated ag a
black surface, Heater surfaces may be specially coated s¢ that the
emissivity is greater than 0.9, and thus for calculations may be consi-
dered black,

Using the subscripts 0, 1, 2, and 3 to indicate respectively the
porous surface, the heater, the exit at x = -L, and the exit at x = L,
the radiosities may be evaluated for each surface, Since e = €, = 33 = 1,
the radiosities for surfaces 1, 2, and 3 may be successively evaluated

from the general Equation (4-33) to be

N .

By(xy) =0Ty {xy) (4-34)
L

B2 =g T2 (h‘35)
_ L

B, =0T, . (4-36)

The faci that the emissivities of surfaces 1, 2,-énd 3 are equal to one
eliminates any contribution from the summation term in Eguation (4-33)

to the respective radibsities. Since the emissivity of surface O is not

equal to one, the expression for Bo(xo) is not as 'simple, I% must also
include the radiosities of the other surfaces, Writing BEquation (4-33)

for Bo(xo) and substituting Equations (4-34) through (4-36), gives

%
]
dF
B,(x,) = ¢,0 TOLL + (1-¢,) I o Tll*(xl) dz;l an,
A
t (4-37)
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aF

L Fop b To-3
| + (1-ep) I ° T, &, day + (1-€;) I 7 I3 '&Kg" By - £
i © A3 "

Obviously the assumption of three black surfaces greatly simplifies !|-

s> B, and B_ were reduced to 1
1 e’ 3 T

simple functions cof temperature only, and the interdependence among the ”

the radiosity expressions, The terms B

radiosities eliminated. The expression, BO(xO), is now a function of 8
the four surface temperatures and the geometric view factors. The incre-
mental view factors, derived in Appendix B, in terms of the surface coor- |4

dinates of the four surfaces are

2 g, o
dr = ~—~ 7o) {(4-38)
0-1 2 2
_n[zl + H2 + (xl-xo) J
vy(Itx,) dy, dz,
dfp = — = (l{"‘39)
0-2 _n22+ 2+(L+x)2-2'
2 T 0
L. . -
Vo(L-x ) dy, dz
aF, , = a0 "3 3 (L-40)
0-3 1'r22+ 2+(L-x)2"
3 T3 07
L I
The coordinates 205 2o and z3 are in the direction into and oul

of the page. Integration with respect to the z-coordinate is made from

- to +o, The coordinates Yo and y3 are the vertic‘ai'f?"{:odrdinates at each

end of the channel and these range from 0 to H. Note that

da

[}

| = dx, dz, (b-41)

ah, = dy, dz (4-Lk2)
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dA3 = dy3 dz3 . (4-43)

The incremental view factors, Equetions (4-38) through (L-L40)
must be substituted in Equation (4-37) and the indicated integrals eval-
vated, The last two integrals in Equation: (4-37) are relatively straight-
forward to integrate bhecause the temperatures T2 and T3 may be assumed
independent of the position coordinates. These integrals are evaluated
in Appendix C. The first integral, however, is complicated by having

the temperature a function x, and raised to the fourth power., The inte-

1

gration with respect to the z. coordinate may be performed independently,

1
however, and it too is inecluded in Appendix C.

The results of substituting the view factors, performing all the
integrations mentioned except with respect %o xl,.and then substituting

Bo(xo)-lnto FEquation (4-32) for qo(xo) gives

4

. |
T (x.) B dx
% J(a-e)or? —(1-e) o J-———l 1 1 3/2
a,(xy) = I—:—Egﬁ o’" "0 0 C 2‘:(X1;x0)2 N H2}
\
(1-e) ot | (Iax,) ] | |
-8 T X .
S o L Sl /2 L (hebl)
L [FL+xO) + He] _
] (1-e) o T, L (L-x,) _1/2}; E.

2 L Elwxo)z + H%] _ E

Substitubing qo(xo) from Equation (&-Lb4) for q, in Equetion {431}

completes the energy balance at y = 0. The result is still a function of
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xo, however, making it a local heat balance., To ¢obtain an overall energy

balance, integration must be performed with respect to XO from -L to L.

Thus, substituting Equation (4-Wl4) into Equation (4-31) and integrating

term by term with respect to %x. from -L to +L gives

o
( L L
| (1-e) o ® o *(x yax. ax
e -
= 4(1-3)0%”(%\;- : a1
o) i (x,-x + H
( B ]
(4-45)
- \
" " )
(1e) oz, [, [T (1-e,) o T e
b - L } 0 3 |2k - L
- 2 T l- kg 1 5 =+ 1 M{H_J“Ll
|
I
k(T -7 ) '
n" "0 6 L) _ L L|
5 3+RPrjﬁ']'2°ovo‘mﬁ +2va0Cp(TO-Td)(I?I.J.f :

Integrations with respect to x. may be found in Appendix €. Equation (4-45)

0

has been divided by H in order to produce the non-dimensicnal quantity L/H

a length to width ratio., Note that if Té = T3, the contributions from

the exits are identical as would be expected.

L]

b3

There now remains the task of substltutlng T(x 1) from Equation
(L-22) for T (x ) and performing the indicated 1ntegratlons . The result
of this substitution yields sixteen integrals whlch must be integrated
numerically. The details are rather ted%ous, and aﬂ outline of the steps

is presented in Appendix D. Performingﬁtﬁé Substitution, the double inte-

gral in Bguation (4-L5) may be written as

[ i e e e oo
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(l-eo) g n 2
L b 3 ,
Is——p5— 2TO hlﬁl +1 -2TO +hTO (TLH-TO Il
(4-L6)
2 2 3 { L
+ 6 To T.LH-TO] 12 + 4 TO (TLH-TO] 13 + {.ILH-TO I),

where I represents the double integral in Equation (4-4s5) and Il, 12, 13,
and 1) are defined in Appendix D and are functions of vy and L/H and must

be numerically evaluated.

In Equation (L4-U45) either the product surface temperature or the
mean heater surface temperature must be considered as an unknown. All
other temperatures and properties sre considered to be known quantities,
The injection Reynolds number R is a known parameter which is free to
vary cover any desired range of values, If one then chooses either TO or
Im as known, then the other may be calculated from Equation (4-45), 1In
some instances, the heater temperature is fixed at a certain level through-
out the drying cycle, For this case, it is desirable-to know how the
product surface temperature will vary as drying pﬁééresses. On the other
hand, it may be convenient to raise the product surfaée temperature to
a certain level and maintain it fixed throughout the cycle. ih this case,
it is desirable to know how the heater temperature must vary during dry-
ing. Equation (4-L45) will prediﬁt eithér one of these temperatures when
the other is giwven,

During drying, the flow rate decreases steadily with time as the
thickness of the dried porous region increases. For a particular value

of R, Equation {L-45) is applicable for a short period of time during the

- . ——
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freeze-drying process. 8Since R is actually slowly changing, then it must
be considered as an average injection Reynolds number during the time

period, In this work, TO or Tm and R are treated as known parameters in
the problem., In order to relate a set of flow conditions in the channel

to a particular stage of the drying cycle, it is necessary to know the

depth of the dried layer cor the interface position, X The interface

dl
position is defined as the boundary between the dried and frozen regions
of the sample. The interface position and in certain cases the time 7 re-

quired to dry to a specified thickness may be related to R from the inter-

nal drying rate solutions of Dyer, et al. (5). It will be seen in Chapter

VI that the channel flow conditions and surface temperatufes for a complete

drying process may be related to X, or time by simply allowihg R to vary

d

over a gufficient range of values. When Xd is zero or near zero, then R
has a relatively high value. As Xd increases, R slowly decreases and
eventually approaches zero, This simply means thaet the flow rate iz high
at the start of drying when the dried layer is thin. As the dried layer
becomes thicker, the resistance to heat transfer and fluid flow becomes
greater, and the flow rate necessarily decreages. .

For a large number of calculations, Equatlon (h 45) is most con-
veniently solved on a digital computer. Egquation (h-hS) is transcendental
for either Th or T0 and must be solved by trial and error. The additional
complication of the integrals which n@guire numerical evaluation makes a

P

computer solution almost a necessity.

The momentum and energy equations have been S?lVed for the case of
constant properties, and hence all properties in Equatlon (4-45) are to
be taken at the average of the mean heater surface temperature and the

porous surface temperature. In particular, R is evalnated at the average

T
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fluid properties. However, certain of the quantities in BEquation (L-U5)

are evaluated at the heater surface and others at the product surface.

For example, the quantity y is introduced when the temperature is evaluated
at the heater surface and egain when the amount of heat by conduction is
calculated at § = 0. Hence, y should be evaluated at thé respective sur-
face temperature to improve the accuracy of the results.

The procedure for solving Equation (4-45) for T,» &5 an example,

is as follows: ¢

1, The quantities L/H, H, T2, and T, are selected. The chamber

3
pressure, p ., is selected and this establishes the interface temperature
Td.

2, A range of values for R is selected and the initial value sub-

stituted into Equation (4-k5). The desired mean heater surface tempera-
ture, Th, is also substituted.

3. The quantity y is calculated at the temperature, Th.

4, The integrals included in Equation (4-46) are numerically

evaluated using the well known trapezoidal rule.

5. Trial values for Tb are then sysgeqapically tried and rejected
until the two sides of Equation (h-LE)Ear;Jﬁalanced.

6, Using Th and the value calcu;ated for TO, the average Reynolds
nurber is corrected to the temperatures%of the two walls. This is achieved
by correcting the density and viscosity values in the Reynolds number,

7. The quantity vy is tpen re~-evaluated ﬂ?r th? corrected Rs, In

Eguation (L-46) y is evaluated at the mean heater surface temperature,

In calculating the heat conducted to the porous wall, y is evaluated at

the porous wall temperature.
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_; 8. Equation (4-45) is solved again by trial and error for T,.

Eé 9, Steps b through 8 are repeated until T, does not change.

5; 10, The average injection Reynolds number is then changed by a

selected amount and the process is repeated.
In this'way, TO is calculated for steadily changiﬁg flow condi-
it tions. In the case where TO is known and the heater surface temperature

distribution is desired, the process is exactly the same.

For each R, the following quantities are also calculated:

1. The overall convection heat transfer coefficient E; at € = 0,

2, The radiation heat transfer coefficient E; and the sum of the
A radiation and convection coefficients EEr'

3. The depth of the dried layer Xd'

4. The overall heat transfer coefficient U between the heater and
the frozen region.

5. The pressure at x = 0 and § = 0, p(0,0).

6. The time T to dry to the depth calculated in Step 3.

The equations used to calculate the above qﬁantities are presented

i) in Appendix E and Appendix F. The drying time equation is based on the

model defined by Dyer, et al. (5) where all heat transfer to the frozen

region occurs through the dried layer, and no back face heating is pre-

sent. Only for this case is the frozen region temperature constant with

#

respect to time, '
Results based on the equations derived in this chapter are presented

in Chapter VI. Comparison is made with experiméntal data of Lusk, et al.(54).
]
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CHAPTER V
CONCENTRATION SOLUTION

General

In this chapter an approximate sclution for the mass concentration

profile of water-vapor in the semi-porous channel is presented. In the

energy solution, it was convenient and necessary to neglect the x-direc-

tion conduction term in the differential equation. Hence, it might

seem necessary to do the same in the diffusion Equation (2-23), and neg-

lect the x-direction diffusion term. However, ag will be seen in the

solution, by carefully choosing the boundary conditions it was possible

to retain this term and obtain a more general solution to the diffusion

equation.

Concentration Distribution

Again, it is convenient to non-dimensionadlize the y-coordinate as

was done in Equations (3-1) and (4-1)., The integrgi diffusion Equation
(2-23) then becomes

=

ol
Hg
0101
vn|e

1 v 1,

dup 00 3w D
Isi_dg - _D_r-—2d§ +- . (5-1}
0 O

ax

L o
'.I‘.ll‘j
n

For the concentration sclution, a fourth order polynomial profile

was chosen to represent the mass concentration of water-vapor in the

channel, Thus,

T
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0(x,8) = 2,(x) + by(OHE + e (R ER + (D + e ()HE"  (5-2)

where again the coefficients are functions of x. The coordinate system

is the same used in the momentum and energy sclutions, and reference may

be made to either Figure 3 or Figure L.

Five conditions are required to evaluate the ceoefficients in Equa-

tion (5-2). Two are found by evaluating the differential Equation (2-6)

at § = 0 and § = 1. These are
2
dw D 3w .
T T gjg-g (5-3)
O 0
2
28l =0 . (5-)
JE :
1

Note in Equations (5-3) and (5-k) the x-direction diffusion term

~ has been eliminated. 1In evaluating the differential equation at each

wall, it is necessary tc let

2

p28 Lo (5-5)
ax

0,1

because the diffusion coefficient D %;HEhe wall in the i-direction must
necessarily be much smaller than it is in the channel. 'This appears logi-
cal since there is no movement of flﬁid on the walls under continuum flow
conditions. It is important to note that Equation (5-5) is valid because

D is approximately zero on the walls, and not because the second derivative
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is zero. This cbservation makes obtaining a solution te the diffusion
equation including x-direction diffusion pecssible, Necte on the right
side of Equation (5-3) that D is not zero because water-vapor does diffuse
in the y-difection through the poremrhiﬂtotthe channel,

In Chapter iIIthe‘wﬁter-vapor mass concentratién at each wall is
given as: a boundary condition, However, in practice this quantity is
not actually known. The concentration and the normal derivatives at the
wall may be related to the injection velocity at the wall by using Ficks
law which is for the water-vapor species

N, = -pD % + w(Nw-l-Na) . (5-6)

The net mass flux of air'Né, at the interface between the dried region and
the frozen region is zero, and hence must remain zero through the dried
layer and in the channel., Therefore, Equation {5-6) may be rearranged to

give

___pD 2w
NW_- 1-w) oy . (5-7)

Noting that N = p v, and that the definition of the average mass velocity)

given by

pVv._ + p v o
L L S L wp aa v N (5-8)

0, Equation (5-7) may be written

i}

reduces to pv = p v when v
Ww a

-1
o) (5-9)

G T




68

Hence, two more conditions at the walls are found by evaluating Equation

(5~-9) at each wall, These are in terms of g,

-1) (5-10)

dwi _
5e| - o . (5-11)

The fifth equation to be used is, of course, the integral diffusion
Equaticn (5-1).
Substituting Equation (5-2) into each of Equations (5-3), (5-4),

(5-10), and (5-11) results in the following get of equations:

vgb, =2 D c, (5-12)
2o +6d, H+12 eHo =0 (5-13)
2 2 2
Vo )
b, = 5(8,-1) (5-1u)’
by + 2y H+ 3 d2H2 thepd=0 (5-15?-

From Equations (5-12) through (5-15), it is possible to express four of
1
the five coefficients in terms cof the remaining one., Thus, expressing

s b2, 55 and d2 in terms of e, results in

Y
2 + RS8c

e, (5-16)
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Py = Y 5 RSC} €5 (5-17)
. -..:
: _ . %f
2 RSC .
€p = i > FRSc o2 (5-18) :
f
12 + 8 RSc

4, = -H {_6.._____+ > RSC] e, (5-19)

The coefficients are writien in terms of the wall Reynolds number R times

the Schmidt number Sc. This product is defined by

!
RSe = 4 . (5-20)

S i e

it

Substitution of the velocity profile, Equation (3-18), the concen-

¥ tration profile, Equation (5-2), and the coefficients, Equations (5-16)

through (5-19), into the integral diffusion Equation (5-1) yields, after

;g_ considerable rearrangement, the following differential equation for eyt
e”--m—e'--‘l-‘]-z-e =0 . (5_21)_
2 H2 o H 2

il

The gquantity T is defined by

_ 60 RSc + (RSc)™ (60 C4-60 Cq#30°C ) + (RSe)> (30 C,-40 Cg+15 €, )

il

60 + 21 RSc + 3 (RSc)®
(5-22)

Tne quantities Cg, C,, and Cg are defined by Equatidnf (4-11) through (4-13)

and

Con = 2 + +-% . (5-23)

10

-] 0
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Bquetion (5-21) may be rewritten by noting that 5
d(xee) de2
ax = e2 + X ‘_ﬁ ’ (5-2l+)
Therefore, giving for Equation (5-21)
2
d"e d(xe,)
2 _ 1 2 n
-4 -e -—e. =0 (5-25)
dxé H2 dx H2 2
or
e dlxe,)
2 q dlxep (
- = . 5-26)
de H2 dx
Equation (5-26) may be integrated once to give
de
2 1 -
w 2% % o (5-27)
where Cll 1s a constant of integration.
‘ Defining an integrating factor
it .. H T] X 1
IF. =e 7 = expi- ~5 3 | (5-28)
H
maltiplying it ﬁhroughf.i;Equatioﬁl (5-27) and rearranging gives
dfe, exp(-Z)l
%" T €,y exp(-2) (5-29)
AN T
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where
2
- =
2 =35 . (5-30)
The solution of Equation (5-29) may be written in the form
N D
e, = C., exp(z) Y= i 2 exp(-2) a2 | + C., exp(Z) (5-31)
2 11 2 J[ﬁ" “f_— 12
gl m
5 .
° ]

and 612 is the seccond constant of integration., The term in brackets in
Fquation (5-31) is the familiar error function.
Before evaluating the constants Cll and 012, it is convenient to

express the mass concentration profile in terms of ey Substituting

Equations (5-16) through (5-19) into Equation (5-2) will give

o(x,8) = 1 + e,f () | (5-32)

where f3(§) is a polynomial function of §. Its ei@ct form is not necessary
to the development here and hence is omitted, : ;

Two conditions on x are necessary to evaluate cll and 012. Due.to

symmetry at x = O, one condition is

ow _
3= =0
%=0

- (5-33)

From Equation (5-32) then
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z% =0 . (5-34)
x=0
Performing this operation on Equation (5-31) results in
€1 =0 (5-35)
and thus
e, = clg-exp(z) . (5-36)

Another condition results from the assumption that a$t x = I the

average concentration aL is equal %o the chamber concentration @ . Thus,
c

1
Wy dg
o, = 0, = — . (5-37)
1
J o
o

Therefore, evaluation of Equation (5-32) at x = L and substitution into

LR

Equation (5-37) will give the constant C,, in terms of the known chamber

12

concentration, @, Hence, the final result for the mass concentration

profile of water-vapor in the channel is

2 2 : ' 2
w(x,E) - L _{oxp %1% %} 1 _go \ 20035c - lO_c(:RSc) e
P - Hifas 13 13
v Lo 2 : (5-38)_
20+ (R8e)” 3 5 peo(24msc) U
- — g7+ 212 g

13 13

e ]
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where

i3 = 20 + 7 RSc + (Rs::)2 . (5-39)
The concentration profiles are seen to be influenced by the in-

jection Reynolds number R and the Schmidt rumber Sc. More importent, as

will be seen in Chapter VI, is the influence of the parameter L/H. Typi-

cel mass concentration profiles are presented in Chapter VI under various

flow conditions and for short and long channels.
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CHAPTER VI
DISCUSSION OF THEORETICAL RESULTS

General

In this chapter the results of the sclutions found in Chapters

TITI, IV, and V are presented. First, typical velocity, temperature, and

water-vaepor mass concentration profiles are shown, and the influence on

these of R and other basic variables are discussed, The results of the

simple peolynomial velocity profile are compared with the more exact per-

turbation solutions given by Donoughe (16).

iz possible to establish the relative accuracy of the momentum solution

presented here. This alsc serves to establish limits on the accuracy of

the energy and concentration solutions.

The momentum, energy, and concentration solutions are applied to
some typical freeze-drying situations. Two broad cases are considered

here, First, the surface at § = 1 corresponding to a heater surface is

allowed to assume a mean temperature, Th, which is invarient with respect
to time, For this case, the variation of the product temperature, TO’ at
E = 0 is shown for typical drying conditions. Inip@rticular, the theore-
tically predicted surface temperatures are compared with experimental re-
sults given by Lusk, et. al. (54). The second case considered is where
the surface at § = 0, which is'£he product surface, éssumes a cdnstant

temperature TO’ invarient with respect to time.J@For this case, the varia-

tion of the mean healer surface temperature, Th, with respect to time is

7h

Based on this comparison, it
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shown under typical drying conditions.

Also discussed in this chapter are the relative effects of radiation
and convection heat transfer between the heater and product in freeze-
drying, In connection with this, some typical heat transfer coefficients

are presented,

Momentum Solution

In this section, the results of the momentum solution presented in
Chapter IIT are discussed and comparison is made with similay solutions

by Donoughe (16). Equation (3-18) may be written in the form

.VOJ'C
u(x,€) = 5~ £(8) (6-1)
where
_ 24, 12R+38, | o [ -12R-2h-28,| 4
£(8) = ("m— "‘ﬁ%"‘) &+ J e . (62)

When considering the velocity u(x,g) in pofous channels with con-
tinuous mass addition along one wall, fully dEVeldped flow cannot be

achieved because the velccity component in the flow direction is a func-

tion of x. However, Equation (6-1) may be rewritten in the following form:

“—ﬂi’(‘) -, (6-3)

where u(x) is defined by

u(x) = s

- . (6-1)
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The velocity ratio given in Equation (6-3) is a function of R and position
€ only, but not position x. As Donoughe (16) suggests, if fully developed
£low is defined as a constant value of £(§) for increasing flow direction
X, tﬁen analytically fuily developed flow is obtained for_fixed R.

The solution given by Donoughe (16) and other investigators has

the form

u(x,g) = [fr‘(o) . —g—]fm : (6-5)

where U(0) is the average flow velocity at x = 0. Por the special case
considered here, U(0) is zero and hence Equation (6-5) reduces to the
form in Equation (6-1).

The velocity ratio given by Eguation (6-3j may be plotted using R
as a ﬁarameter to give a qualitative feel for what happens to the velocity
‘distribution as R changes. This is shown in Figure 6 for values of R
equal to 0,1, 1.0, and 4,0. As the amount of injection increases at the
porous wall, the shape of the profile is seen to shift foward the solid
wall. As R approgches zero, the profile approachés the typical parabolic
profile for laminar flow.between impermeable walls, Of course, in this

case when R is equal to zero there 18 no flow in the channel since all

the mass originates at the wall.

Figure 6 also shows a comparison between the velocity profiles for
R = 4.0 given ﬁy Eéuation (6-2) and the results Q§Lgonoughé (16). The
curve by Donoughe is shown to bé shifted glightly cioser to the Soiid wall,
For values of R less than four, the difference is too Small to illustrate

graphically. The numerical values of f(E) given by Equation (6-2) and the
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more exact results given by Donoughe (16) are given in Appendix G for
several values of R.

The pressure change in the flow direcftion is given by Equation
(3-43). It shows that the pressure drop in a semi-porous channel is
g' proportional to the second power of x and describes a parabolic curve,
The terﬁ Bl in Equation (3-43) defined by BEquation (3-37) is tabulated

in Table 1 with the corresponding results given by Donoughe (16) for

comparison.

Table 1, Pressure Paraﬁeter 8. from Integral Momentum
' Solution and Perturb%tion Solution

RO o

g D

. R B> Equation (3-37) B,> Donoughe (16)
¢ 0 Approaches -12,000 -12.000
L) 0.1 -12.2k0 -12.232
0.5 -13.200 ~13.170
i 1.0 ~14 402 -1k4,366
b 2.0 ~16.815 -16,824
1?_ 3.0 -19.250 -19.359
L,0 21,678 -21.953

Donoughe (16) shows that for R < 4.0 his perturbation solution is
accurate to within 0.1 per cent of an exact numerical solution. Similar
accuracy for the polynomial'solution presented heré §écurs for R < 3,
This figure is well above the usual maximum injection Reynolds numbers
which occur in fregze—drying.i’ﬂence, the simp;igied pblynomial solution

is entirely adequaﬁe for the purposes of this work.
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Ener Solution

In this section some typical temperature profiles from the enefgy é
solution given in Equation (4-22) are congidered. The effect of the
singularity which arises at x = 0 will be seen. Also, local and average
heat transfer rates must be considered with regard to the effect the
injecticon Reynclds number has on them, The temperature profiles are of
course non-similar in every respect. In order to cobtain a quélitative
feel for the behgvior of the temperature distribution within the channel,
it is necessary to first consider a fixed position in the flow direction
and allow the ccordinate € to vary. Then it 1is necessary to choose g
position for € and allow the coordinate x {or x/L) to vary, All of the
graphical data presented is for a Prandtl number of unity which is the

value for pure water-vapor.

The first situation to be considered is the effect of R on 8(x,E)
at a fixed position of x. In Pigure 7, the dimensionless temperature is
plotted against £ at x/L = 0,5 for values of R equal to 0.1, 0.5, and
2.0, For small R, the temperature profile appears to be nearly linear,
and at the s0lid wall is nearly equal to one, the value at the exit of
the channel, This indicates that the disturbance at the porous wall
caused by the fluid injectiéﬁﬁihto the main flow has a very small effect

on the energy transport mecharisms. Hence, at ldﬁﬁf'fhe heat transfer

across the channel app#oaches the situation of heat.transfer through a
stagnant gas layer, ﬁéth.walls become isothermal in this case, As R
increases, the injecti;n at the porous wall exerts a cooling effect on
the gasges near this wail. At the same time, 6 at the sclid wall increases

for increasing R, and the temperature profile along the solid wall must
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become increasingly non-isothermal,

In Figure 8, the temperature profile is plotted with respect to £

for several values of x/L at R = 0.5 to illustrate the changing nature

of the profile in the flow direction., This is further illustrated in

Figure 9 where the non-dimensional temperature is plotted versus x/L

for several values of R at € = 1, the solid wall, Figure 9 shows the

gingularity at x = 0 where the temperature approaches infinity. Here it

is ¢learly seen that as R approaches zZero the temperature of the solid

surface becomes isothermal. As R increases, the solid wall temperature

profile must necessarily become increasingly non-isothermal in order to

maintain the porous surface isothermal. This reguirement can be met with

individually controlled heat cells placed in the solid wall., Later in

this chapter it will be seen that the range of R for freeze-drying is

ordinarily less than 0,5, Hence, the deviation from an isothermal heating

surface will be small.

The average convection heat transfer coefficient E; at the porous

it

surface is derived along with the corresponding Nusseltfiumber Wu in
Appendix E. This coefficient is based on the arithmetiq{mean temperature

difference between the two walls, The Nusselt number based on the channel
width is

__ BEE

Nu = —— = TR . (6-6)

it
The average Nusselt number is plotted versus R in Figure 10. As

can be seen, when R increases or the injection rite at the wall increases

then Nu decreases, This observation has also been made by Terrill (30)

. R
T I - = T
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for heat transfer in a fully porous channel with symmetric wall tempera-
tures. Note in Equation (6-6) that as R approaches zero, Nu approaches
unity and

- k

By =§ (6-7)
which simply means that the mode of heat transfer is pure conduction
through a stagnant gas layer between the walls.

The local Nusselt number along the porous surface, also derived
in Appendix E, is given by
3 =Y
X
Nu = (l‘Y)'m”L . (6-8)

Figure 11 shows the variation of the local Nusselt number azlong the channel
length for valueg of R equal to 0.1, 0.5, and 2,0, and the average value
given by Equation (6-6). - Again, the singularity at x = O is illustrated
when local conditions are considered,but, as shown, when the average
values are considered the singularity disappears,

It i= important_to note that as R approaéhes zero the local Nusselt
number approaches the aferage Nusselt number at all locations along the
channel. This means that the heat flux as well as the temperature becomes
nearly constant in the flow direction at € = O. Iﬁ'ééﬁaining the momentum
and energy solutions of Chapter II1 and Chapter IV, iélwas convenient and
necessary to assume both Vs and TO constant with respéét to x. This is
tantamount to assuming ghat botH the heat flux and the temperature at £ =0

are constant. This, however, cannot be true unless, as has been shown

here, the injection rate is very low which is true for freeze-drying,as
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will be seen in a later section of this chapter.

It was mentioned earlier that the momentum solution ié considered
quite accurate for R £ 3. Since the approximate momentum solution is used
to obtain the approximate energy solution, the range of accuracy for the
energy solution must be somewhat less than that for the momentum solution,
The exact limits of accuracy sre not estimated here. In a later section

in this chapter the results of the energy solution are used to correlate

some experimental data of Lusk, et al. (54) wherein the accuracy is then

established.

Concentration Soluticn

In this section the results of the concentration solution derived

in Chapter V are presented. The water-vapor mass concentration, w(x,£),

with respect to the § direction is practically unchanging. Some typical

T

profiles with respect to § at various x-direction locations are tabulated

e

in Appendix H. The results of greatest interest in freeze-drying are the

W_ »

profiles in the flow direction at the porous surface, that is w({x,0) or 5

g o

The solution given by Equation (5-38) is seen to be a function of
R and Sc, the Schmidt number, as well as location. The Schmidt number for
typical conditions encountered in freeze-drying ranges from 0.4 to 0.6.

Another important quantity in Egquation (5-38) is the length to width ratio

L/H of the chennel. Note that L is actually half the total length of the

channel, as illustrated in Figure 1. A typical industrial vacuum chamber

may have trays and heaters with a channel half length L equal to 18 inches
and a width H equal te 0.5 inch. Hence, L/H would equal 36. This ratio

could, of course, be higher or, for pilet plants used in experimental work,
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L/H may be as low as 10, or even lower,

For the results presented here, the chamber concentration W, is
taken to be 0,6 lbm H2O/lbm mixture, TFigures 12 and 13 show the surface
concentration w(x,0) plotted as a function of x/I using R as a parameter.
Figure 12 is for L/H equal to 10 and Figure 13 has curves for L/H equal
to 24 and 36. It should be obvicus that as L/H inereagses the water-vapor
concentration in the channel approaches unity at all locations in the flow
direction except of course in the immediate vicinity of the exits, and
for all but the lowest values of R. Even for low values of L/H and R, as
in Figure 12, the concentration is greater than 0.9 lbm Héo/lhm mixture for
over half the channel length, In Figure 13 for L/H = 36, the curve for
R = 0.02 is included to illustrate how amall a value for R must be chosen
to get any profile other than a straight horizontal line. This extremely
low value of R would rarely be encountered in freeze-drying as can be
seen in Figures 18 and 32. Calculations were also made for w, = 0.2 lbm
HQO/lbm mixture. For long narrow channels and the range of R normally
encountered in freeze-drying, they show that the'cpncentration in the
channel ig still almos@ pure water-vapor over tﬁegéntire length.

Physically the results shown here simply méén that the convective

contributicn to mass transfe:]is much greater than the diffusion contribu-

tion in the flow diﬁectioq'ﬁdf'large values of L/H.: In Equation (2-6),

S

this means thet thé"Tirst term on the left side is nuch greater than the
first term on the right side, This conclusion may be more clearly seen by
writing the diffusibﬁ Equatioﬁ?(2-6) in dimensionless form. The dimension-

less coordinates to be used are

e tere, i e St

S
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b
and
= 7 -
g = i {(6~10)
Equation (6-1) is substituted for u(x,f) and Equation (3-38) rewritten
v(§) = v,a(8) (6-11)
18 substituted for v(g) in Equation (2-6). The dimensionless diffusion
equation becomes
| 2 2 2
3 w_ 1 () 2%, 1 2%
£(8) X ¢ + &(€) 3¢ = f6e (L - *+ 553 o (6-12)

A simple order of magnitude analysis shows all the quantities in Equation
(6-12) to be of the same order of magnitude. However, when L/H is large
and hence its reciprocal small, the first term on the right side of Bqua-
tion (6-12) is made small compared with the otherétermS. This term cor-
responds ‘o the x-direction diffusicn and as a re%ﬁlt could well be neg-
lected for long naryrow channels. :

These results have far-reaching implications when one considers the
type of flow which ﬁ%st be present in the channel and in the dried portion
of the product. The results imply that all o?_nearly all the alr in and

above the product is swept away leaving an atmosphere of nearly pure water-

vapor. Sample calculations of the average velocity near the channel exit
show that average velocities as high as 90 fps can occur in the early

staées of drying. As such, the flow mechanism must be purely hydrodynamic
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viscous flow in the pores of the product and in the channel, For this E{

type of flow only, a total pressure gradient is necessary to maintain the
flow. 1In the absence of a partial pressure gradient, diffusional flow
as a result of a binary mixture of two gases does not occur,
Previous investigators in their theoretical work have assumed that
a fixed concentration of water-vapor could be maintained at the product
surface, and hence both diffusional and hydrodynamic flow would be present,
This situation could possibly exist where the space above the product sur-
face were open and unconfined and thé water-vapor able to migrate directly
to a condenser. However, the typical industrial model resembles the semi-
porous channel arrangement analyzed in this thesis, and for this m@del
the solution shows that for long narrow channels, the fluild consists almost
completely of water-vapor with no air present. In the region between the
channel exits and the condenser surface, the flow will of course revert
to a diffusional type flow providing the condenser is efficiently removing
the water-vapor and converting it to ice again,
In passing, it should be noted that negleééing the effect of surface
water-vapor concentration on v. in Chapter II proved to be a valid assump-

0

tion since the variation of w along the surface has been shown to be small

or non-existent.

.. Application to Freeze-Drying

The results Sf the energy solution discussed previocusly are not
complete for application to the freeze-drying process. As was outlined
in Chapter IV, it islnecessary to consider an energy balance at the porous

product surface to establish the relationship between the two wall tempers-
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tures under a prescribed set of flow conditions. In the energy balance
which was derived in Chapter IV, the radiant heat exchange among the sur-
faces was included. As has been discussed by Burke and Decareau {6),
there is much contfoversy aver thé exact role played by the modes of heat
transfer from the heater surface to the product surface. The relative
effects of radiation and convection are illustrated in this section.
Equation (E-hﬁ) of Chapter IV may be used to determine either the
product surface temperature or the heater surface temperature depending
on which is assumed to be kiown. The heater surface is non-isothermal, and
hence in dealing with this surface the mean temperature with respect to
length defined by Eguation (4-28) will be used, In addition to one of
the surface temperatures being specified, the injection Reynolds number R
is also treated as known, Specification of R alsc establishes the injec-
tion velocity o and the flow rate Nﬁ. Prom the known value of R, Equa-
tion (F-3) of Appendix F is then used to determine the interface position
Xd of the product which establishes the first 1link between the external
and the internal process. This is important because it is then possible
to relate a set of exteréél flow conditions and surface temperatures to a
particular stage in the qrying cycle., As discussed in Chapter IV, it is
possible to predict the éémplete range of external conditions associated

with a drying cycle,;gFinﬁlly, in the case where the product surface

temperature, TO’ iszgﬁowﬁéand fixed with respecp.to time, Equation (F-5)
may be used to calcuiéte the time required to dry the ﬁroduct to a parti-
¢ular depth. ﬂff

The equation used to calculate dried layer thickness and drying

time are taken from solutions presented by Dyer, et. al. (5). The solutions
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egtablish the relationship of the surface temperature, TO, and the rate

of heat transfer scross the dry layer to the interface position Xd’ and

the corresponding drying rate and drying time, The model analyzed by

Dyer, et.al, is for a uniformly retreating ice interface through'the pro-
duct and hence is a one-dimensicnal treatment. Aléo, the only heat transfer
to the interface ig across the dried layer as bpposed to the situation

where heat transfer could also cccur through the frozen regioh. His boundary
conditicns at the surface assume a uniform and constant surface temperature
and a uniform drying rate with respect to the cress-section of the product.

The external solution in the channel, however, is a two-dimensional treat-

ment. Hence, the necessity of chooaing the porous surface boundary condi-

tions Vo and TO constant with respect to flow direction becomes more

apparent, Only by doing g0 is it possible to match the existing internal

drying rate and time solutions with the external solutions. The analysis

of the problem under more rigorous boundary conditions of a constant heat
flux at € = C instead of a constant temperature would have been very diffi-

cult and would have rendered the internal solutions useless. The approach

used in this work yields excellent qualitative results and enables one to

grasp a clear picture of the important characteristics of the transport

phenomena ,

The first of the next two subsections consi@ers the case where the
heater surface tempé%&tﬁre distribution is assumed knadwn and the product

surface temperature unknown, BSolutions are presentéqéshowing the surface

temperatures and othér quantities as a function of interface position. The.
next subsection considers the case where the prbduct surface temperature

is known and the mean heater temperature is unknown. Solutions are pre-




sented which show the mean heater surface temperature, Th, and other

guantities as a function of time, The formulas used to evaluate the

variocus heat transfer coefficients are found in Appendix E.

5 Qonstant Heater Temperature

In this section the mean heater surface tempemature, Th, is treated
L as known end fixed with respect to time. . Equation (L-b5) is solved for

the product surface temperature Tb, according to the procedure cutlined

in Chapter IV. A range for R is selected which covers the flow rates
encountered in the typical drying cycle., There are no drying time equa-
tions for the case where TO varies with respect to time, Hence, in this
gection Tb and other guantities can only be related to the interface posi-
tion.

Lugk, et al., (54) experimentally measured the thermal conductivities
f; of Haddock fish during freeze-drying., Included in their work are plots
i relating moisture content of the sample, the product surface temperature,
and the interface témperature to time for a constant Tm. In this case,
the plots show that the surface temperature of t_l__l-,e_;lﬂaddock begins the
process at a very low temperature equal to the éé&iiibrium temperature of
the frozen product at the chamber pressure involvéd; This is, of course,

{ because the surface is covered with ice at the start of the process, As

.drying continues and the interface retreats into the product, the surface

Aol A S
i i

e

temperature rises sharply at first and then levels off. Then TO slowly

increases until at the end of the process it approaches the heater tempera-

T e

ture. In order to provide accurate thermal conductivity data, these ex-
periments were necessarily carefully controlled and monitored, hence pro-

viding an excellent means for correlating the analytical work presented

e R il
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here with experimental data.

Data for two test runs are presented by Lusk, et al. (54). One
sample was Q.75 inch thick and the other was 1 inch thick. Both samples
were 8 by 10 inch slabs. For the theoretical calculations, the dimension
I, was taken to be 5 inches, The samples were dried between heaters that
were 2 inches apart, and hence H was respectively 0,625 inch and 0.5 inch.
The samples were dried at a chamber préssure of 0.08 torr at which the
temperature of the frozen region T, was Li0°R. Since the samples were
symmetrically dried from hoth sides, the frozen region temperature remain-
ed nearly constant throughout the cycle, Also, due to the symmetry only
one side of the sample need be considered for caléulations. The heater
temperature, Tm; was held at 6350R throughout the drying cycle, except
for a very short start-up time. The physical property data necessary for
use in Equation (L4-45) is given in Appendix I. Based on the results of
the concentration solution, the properties of the fluid in the channel were
taken to be those of pure water-vapor.

Lusk, et al. (54) in calculating the thermsl conductivity of the
freeze«dried Haddock used a heat of sublimation QHieQual to that of pure
ice. The work of Dyer, et al. (59) and Hill, et al. (€0) on heats of

sublimation of various meat and poultry products casts some doubt on the

¥

validity of this assumpftion, They show that the hé”% of sublimation of
meat and poultry is congistently higher than that ? %oure ice. However,
since no measuremenﬁs exist at this writing for thé heat of sublimation
of Haddock or any other fgsh, it is necessary to use £hat of pure ice in

the calculations presented here, The heat of sublimation is quite critical

to the accuracy of the heat transfer calculations presented here., As can

—— - -
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be seen on the right side of Equation (4-45), the heat of sublimation AH
directly influences the magnitude of that side, This in turn will affect
the values of the temperature on the left side of Equation (4-45) necessary
to maintain the equality.

The low chamber pressure used forces the flow regime in the channel
to border between continuum and slip flow, However, it is assumed that
the continmuum flow results presented here may be satisfactorily applied
in this situation.

From the data given by Iusk, et al. (5k), it is possible to compare
the experimentally measured product surface temperature at various stages
of drying with those analyt:‘r.calljr predicted by Equation (4-U5). However,
as mentioned above, it is not possible to analytically predict the varia-
tion of the temperature with time as is presented by Lusk, et al. However,
Lusk, et al, also give the variation of moisture content of the test sample
with respect to time. Given this information it is possible to caleulate
the interface position on one side of the sample at successive times dur-

ing the drying cycle and thus relate the changing surface temperature to

the corresponding xd.

The interface position on one side of the product is equal to the

difference between the total?product thickness X

L2 and the frozen region
thigkness, Xf, dividg@ by two. That is, ﬁék
X, - X
. t f w e ER
x, =t . e (6-13)

The thickness of the frozen region is simply the tdtal product thickness

multiplied by the per cent moisture m remaining in the product which is

T ‘ Cy- S
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given by Lusk, et al, in the experimentsal data. Thus,

X, - o
: t t
X; = ——m—" (6-14)
or
Xt
Xd = 5- (l-HI) . (6-15)

Hence, it is possible to replot the data of Lusk, et al. for the surface
temperature and interface temperature as a function of the interface
position. Equation (4-k5) is then solved for T, a8 a function of R and
the corresponding X, calculated using Equation (F-3).

The experimental temperature, TO’ as a function of Xd and the
corresponding theoretically predicted temperature are shown in Figure 1k
for both samples of Haddock, The correlstion between the theoretically
predicted surface temperature and the experimentally measured surface
temperature is excellent especially for the l-inch thick sample. The
theoretical curve for '.I'O is shown to spproach the mean heater surface
temperature Tm asymtotically for an infinitely thick sample where, of
course, the actual sample is of finite thickness and its final surface
temperature is shown to be that of the heater temperature,

Note that in Equation (F-3) it is necessary’ito use the thermal
conductivity of the dried layer to calculate its thiékness. Lusk, et al,(54)
ligt three values forithe thermal conductivity of freeZE-dried_Haddock
according to the sample thicknggs. These are 0,011, 0.013, end 0.015
Btu/hr £t °F for respéctively 0.5, 0.75, and l.Ofénch thick samples. The

variation in conductivity values is attributed to side drying effects on
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the samples., However, other experimental errors may have been present
contributing to this variation, ﬁence, for Figure 14, the conductivity
used to calculate X, from Equation (F-3) was 0.013 Btu/hr ft °F. Figure
15 illustrates the effect of the variation of the dried layer thermal
conductivity by plotting TO versus Xd for all three conductivities. The
variation in the predicted surface temperature still compares well with
the experimental data regardless of which value is used,

It is interesting to cobserwve the effects that certain variables
have on the prediction of T,. For Figure U, the ratio L/H was taken to
be 8 and 10, 1In Figure 16, a comparison is made for the case where L/H
is increased to 36, The dashed line for L/H = 36 and the solid line for
L/H = 10 are both for H = 0.5 inch, and hence serve as a comparison for a
change in L. This corresponds to an increase in channel length to a size
typically used in commercial plants. As can be seen, the effect on Tb
is small and further increases in I have relatively the same effect., The
small increase in efficiency noted is due to the smaller overall effect
the exits of the channel have on radiation losses,

Of more interest is the effect produced when H is varied, This is
also illustrated in Figure 16 where for the solid line H ranges from 0.25
tc 2,0 inch while L remains qonstant at 5 inches, As can be seen for

LR

correspondingly equal inteffﬁ@e positions, T. is considerably higher for

0
small H than for large H. . gince Tb iz higher, this implies that heat
transfer across the d¥y=layer is greater and hence the drying rate is

Lk,
greater for the same hﬁater temperature.

The energy baléﬁ%e derived in Chapter IV considers the effect of

radiation losses at the channel exits, For Figures 1l& through 16, the
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exit temperature Te(Té and T3 in TPigure 5) was arbitrarily allowed to be

53OQR. The radiation losses from the chammel with the exits at this
temperature level for various L/H ratios was shown in Figure 16. Figure
17 shows the effect on T, of varying T, from zero to 635°R for L/H equal
to 10. As can be seen, the effect is small and the variation is at most
approximately 1.5 per cent. For higher values of L/H, the effect of
varying Te is of course smaller,

The only known value for the emissivity of a freeze-dried.product,
as was mentioned earlier, is 0.75 for freeze-dried beef, Hence, this

value was used for the calculation with Haddock., PFigure 17 shows what .

happens when the emissivity is raised to 0.95 in Bquation (4-45), ' The

dashed line is for e

il

0,95 and Te = 530°R. Comparison is to be made with

the solid line at T_ = 530°R for which ¢ = 0.75. Either curve is within
acceptable limits for good COmpafiSOn with the experimental data. Hence,
if the emissivity used for Haddock is in error it.does not significantly.
detract from the qualitative results shown here.

All of the data presented thus far has been:for a mesn heater or
platen temperature Tm of 63593, in accordance witﬁ%that used by Lusk,

et al. (54). PFigure 17 also illustrates the effect on T, of lowering

the heater temperature to 58Q3R.

The excellent agreeme#f illustrated in Figures 14 through 17 between
the theoretical solutions préSented in this thesis and the independent
experimental cobservations of;iusk, et al.(Bh) providesgexcellent confirma-
tion of the validity of the momentum and energy solutions presented in
Chapters IIT and IV for the range of R under consideration. The range of

R is typically illustrated in Figure 18 and is seen to be well less than
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unity for the majority of the drying cycle., It was mentioned earlier in
this chapter that the expected range of accuracy for the momentum and
energy solution would be rather limited, but the flow injection rates en-
countered in freeze~drying fall well within the most conservative limits
of accuracy. The lower curve in Figure 18 is for the channel width H of
0.5 inch used by Lusk, et al. (54),whereas the upper curve is for a width
of 2 inches which would seldom be used in practice because of the wasted
space, Figure 19 shows that the amount of heat transfer to the product
surface by radiation may range from 60 to almost 95 per cent of the total
heat transfer. With this much heat ftransfer by radiation, small errors
in the temperature profile solution of Equation (4-22) become less import-
ant in consideration of the total energy transfer process,

In connection with the amount of heat transfer by radiation from
the heater to product, Figure 19 illustrates the variation of the per cent
radiation with Xd for several values of H. This percentage is calculated
by dividing the total contribution of the left side of Equation (4-45) into
the contribution from the radistion terms after the correct temperature-
levels have been established, As can be seen, thé greater the channel
width the higher the percentagg radiant heat transfer becomes. A lock at
the terms in Equation (lL-'hs) will help explain these results. The con-
vection term is inversely proportional to the channel wi&th H and hence
the greater H becomes the less the heat transfer by convection becomes.
The radiation terms are a function of L/H but there is no direct influence
of the channel width on the amgunt of radiatiqﬁﬁﬁﬁggange hetween the two
surfaces, Since.the total amount of heat traﬁ%;ér must be the same re-

gardless of what H is, then the percentage of rédiant heat transfer must

|
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increase a8 H increases, These results are very important and should help

to clarify much of the existing confusion over the precise modes of heat

transfer that oceur between the heater and product, Radiation heat trans-

fer is obviously the dominating mode in the process. The effects of

channel length and exit temperature on the per cent radiation are insig-

nificantly small when compared to the effect H has on the per cent radia-

tion, These effects, however, are illustrated in the next subsection.

For the conditions described above for the l-inch Haddock sample,

some heat transfer coefficients are shown in Figure 20. These are as

follows: the convection heat transfer coefficient EE’ the radiation heat
transfer coefficient E}, the combined conwvection and radiation coeffici-

ent Eér’ and the overall heat transfer coefficient U between the heater

surface and the frozen region of the product. The surface heat btransfer

coefficients are for the porous surface and are average coefficients for

the entire length of the surface defined in Appendix E. The trends shown

need little interpretation except that it is interesting to note the sharp

decrease of U as Xd increases, The calculation of U of course includes

the resistance of the dried layer and serves to illustrate the dominating
effect that the dried layer has on the heat transfer.
The external surface coefficients experience relatively small

change as drying proceeds when compared to U, It ﬁ

#interesting to note

that for the case of constant heater temperature, E;,;E;, and E;r experi-
ence a maximum at some point during drying and then siowly decrease as
the cycle proceeds. This appears to suggest that drying beyond a certain

thickness must be accomplished in an increasingly inefficient manner. with

respect to external as well as internal heat transfer.

- e e s e
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The most important coefficient in regard to the drying process is
the overall heat transfer coefficient U. A measurable increase in this
coefficient by either external or internal means will directly influence
the drying rates and times involved, The most influentisl varisble noted
in this work on the value of U is the channel width H. Figure 21 illus-
trates the effect that changing H has on the overall coefficient where all
other conditions are the same as those employed by Lusk, et al, (5#). It
can be seen that up to an interface position of approximately 0.02 feet a
decrease in H results in a significant increase in U, Beyond this point
the overwhelming resistance of the dried layer to heat transfer dampens

any other influence on U, Figure 22 shows the effect that changing H has

on the flow rate at the porous surface.

Constant Product Surface Temperature

In this subsection the product surface temperature is considered
as known and constant with respect to timé and position, By selecting -
values of R, Equation (4-45) is used to calculate the mean heater tempera-
ture Tm required to maintgin the product surfacegét phe prescribed tempera-
ture and flow rate. Again, Equation (F-3) may bg'used to relate external
flow conditions to the corresponding interface position. However, it is
possible to go a step further in this section and use Eguation (F-5) to
calculate the length_of time to dry to a particular interface position,
Equation (F-5), deri%ég;ﬁy Dyer, et al. (5), is for the case where all
heat transfer to the éﬁ%limating interface at Xd occurs across the dry
layer, and the tempera@u?e of tye frozen-region remains constant during
the drying ecycle. Henée, for this situation, iﬁ'ié possible to estimate

the required heater temperature Tm at any particular time during the drying
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cyele and to graphically illustrate the variation on a plot of Th versus
time,

No experimental data is avalilable for comparison with the analytical
results for this case, However, the accuracy and reliability of thé solu-
tion have been confirmed for the case considered in the last section.

Essentially the same quantities are considered in this section as
in the last. TFirst, the mean heater temperature is plotted versus time
for a number of changing conditions., Also considered are several of the
important heat transfer coefficients as they change with time. The physi-
cal property data used in this section is for freeze-dried beef, These
properties are listed in Appendix I, Based on the results of the mass
concentration solution outlined earlier which shows that nearly pure
water-vapor exists in the channel, the properties of the mixture are taken
to be those of pure water-vgpor. The product surface temperature, T.,
unless otherwise specified is 56003 and the absclute chamber pressure P,
is one torr, The interface temperature, T&, which corresponds to a
chamber pressure of one torr is 466°R. The channel exit temperature, Te’

unless otherwise specified is 5309R. The channel lengbh to width ratio
L/H is indicated on each figure,
Figures 23 through 25 are plots of the mean heater temperature

versus time. Figure 23 illustrates the effect on Tm of varying the

channel width H fori _ élatively long channel, Figure 24 shows the sane

thing for a short cHat %l. The general effect is thé same in both cases

33

pronounced for the shorter channel, The lower

]

» -
heater temperature réqgired for the small widths is due in part to the

although slightly mo;

increased convective heat flux across the channel and the reduced radiant
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heat losses from the channel exits.

Figure 24 also shows the effect of changing length L when the
channel width H is held constant, The curve for L/H = 60 has the same
channel width as the one where L/H = 12, As can be seen, the effect is
smell when compared with the effect a change in H has on Th.. For the
practical limits of the length to width ratio encountered in practice,
there is little effect as a result of varying L. This simply illustrates
that radiant heat leosses from the channel exits are of negligible import-
ance even for relatively short channels,

Figures 23 and 24 also illustrate the influence that & change in
the exit temperature has on Tm for different channel gometries. The
temperature was lowered to absolute zero since this would theoretically
be the minimum temperature of the surroundings. On Pigure 23, the effect
of a lowered T_ 1s shown with the dashed line for the chamnel where L/H =
9., For the long narrow channels, there is no discernable effect on Th.
For the shorter chamnels of Figure 2L, the effect of a lowered T, is
shown for two length tc width ratios again with the dashed lines., As

the geometry changes to 2 short wide channel, the effect becomes quite

pronounced.

The effect that di%?erent values of To-has on the required value
for Tm is shown in Figuréié§. The conly cther external varisble which
could exert an influence oé%Tm would be the chamber pressure p,. How-
ever, over the range of ch&Mber pressures where freeze-drying normally
occurs, in which the flow im ?pg channel coul@ pg congidered continuum
(0.0L to 4 torr), there was no Sbserved effec% gﬁ:Tm in the analytical

i3
work of this thesis. ¢f course, if the pressure is allowed %o go consi-
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derably lower, then other flow regimes are encountered and significant
changes in the convective heat transfer woﬁld be expected to ocecur. This
would then serve to alter the relative contributions of the radiant and
convective modes of heat itransfer,

Figure 26 shows the per cent of heat transfer by radiation to the
product surface with respect to time under varying conditions, The effects
of changing both I and H are illustrated. The solid lines are for a long

channel and the dashed lines are for a short channel. As can be seen,

the effect of a change in chamnnel length for the same value of H is small.
But when the channel length is held constant and H varies, it can bhe seen

that the percentage of heat transfer by radiation undergoes large changes.

. The results shown in Figure 26 are very important and mey help explain

some seemingly contradictory observations made in freeze-drying. It is
obvious that the further the heater surface is from the product the greater
is the per cent radiant heat transfer. This may explain why one observer
whose experimental equipment is arranged so that a large gap exists between
heater and product reports that virtually all heat transfer is by radia-
tion, Hewever, ancther observer may arrange his equipment so that only
a narrow space exists between heater and product, and as a result he re-
ports that there is a significant contribution from the convective or con-
ductive heat transfer mode. The analytical results presented here should
help cléar up some of the confusion that apparently exists in the literature.
Figure 26 also shows the change in per cent radiation which occurs
for different values of the product surface tempg;ature. All of the re-
sults demonstrate the dominant fole played byjfgdiation hieat transfer

between the heat source and the surface of the product in freeze-drying.
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i Pigure 27 is a plot of the convection heat transfer coefficient
versus time. This figure illustrates the large effect that changing H
has on E;. As was mentioned earlier, the convection heat transfer across

the channel is directly influenced by H, and this applies to the convec-

tion heat transfer ccefficient as well., Qf course, the convection heat

transfer is not affected by the channel length and neither is the coeffi-

PRyl

clent. Figure 27 shows that at the beginning of the drying cycle the

convection coefficient is somewhat lower than it is for the majority of

e s

the time, After the initial phase, E; levels off and is relatively un-

changing for the remainder of the cyecle, This initial low value of EE
observed in each case is due to the higher injection Reynolds number which
exists at the beginning of drying. As shown in Equation (6-6), as R in-
creases, E; decreasges, No results are shown to illustrate the effect of

the exit temperature T_ on EE because the effect is negligible.

Figure 28 shows the radiation heat transfer coéfficient E; plotted

with respect to time. The radiation heat transfer coefficient is a direct
function of the temperature levels between the inﬁeracting surfaces. In
Figure 28 this is shown by the sharp decrease in 5} which exists in the
early stages of drying when:Tm is also rapidly changing., The influence
cf the temperature levels iéjalSO illustrated by the effect a change in
TO has on E;. The same chagges in the temperature levels of the walls
results in very little éffeét on E; gince the COnvecﬁion heat transfer
coefficient is not explicitl& a function of temperatéée.

The effect of a change in L on E; is 3159 shown in Figure 28, and
as can be seen, the effect is small. The effeégzof channel exit losses

on E; and on the per cent radiation ig of the same order of magnitude-
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when L changes. For a change in H, the effect on E; is even smaller and
as a result is not shown in Figure 28, This is to be expected since the
radiant heat flux is not explicitly a function of the channel width,

Figure 29 is a plot of the overall heat transfer coefficient U
between the heater and the frozen region of the product., The effects of
changing the chanpel width are shown and some benefit is gained at small
values of H. As was mentioned earlier, an improvement in U represents
a genuine increase in heat transfer to the frozen region and hence an
improved drying rate, It should be observed though that in practice very
narrow channels are often impractical due to the uneven nature of the
product surface, Where the product surfaée is relatively flat, such as
a granulated bed, the small advantage gained in improved overall heat
transfer using the smalilest possible channel width could, on a large com-
mercial scale, result in significant savings, The effect of changing L
on U is insignificantly small.

Calculations were also made of U where Te is a parameter cver a
wide range of temperabures for the same channel geomebrles used in Figure
29. The overall coefficient is relatively unaffected by a temperature Te
as low as absolute zero. This result is of significant interest., In
some commercial installations, the condensers which trap the removed
water-vapor on a very cold surface are placed near the heating shelves.
Worry over excessive heat losses from the heater to the condensers would
appear to be largely unfounded, O0f course, for a shoit wide channel con-
figuration there 18 a measprable effect on U for theféase where Te ig
lowered to absolute zero, But for exit temperatures ordinarily found in

practice, the effect on U is again negligible,
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The effects on U of varying the product surface temperature is . |

shown in Figure 30, This figure shows some rather unexpected behavior

for U when TO is the parameter. The different curves actually cross each

other after an indicated amount of drying time elapses, For Tb = 488° R :5;

the overall coefficient begins the process at a lower value than those %
for higher Tb, but eventually the coefficient becomes greater than those

for higher TO' This behavior is partially explained by a ¢loser lock at

Figure 28 for Er' It is seen that for the lowest values of TO’ the curve ]
exhibits a flatter aspect at an earlier time. Hence, when U is calculated :m
using E} in Equation (E-17), the effect in Pigure 30 arises. This be-
havior is largely of academic interest only since the greatest overall X
advantage is still obtained when Tb is kept as high as possible. §i|:

The pressure drop in the flow direction from the center of the

channel to either exit is of considerable interest, If the pressure drop
ig too large, the pressure at the product surface near the middle of the
channel may be high encugh to allow some local thawing., The solution to

the momentum equation presented in Chapter IIT includes the pressure dis-

tribution in the channel. Equation (3-40) gives the total pressure at
any point in the channel while Bquation (3-k3) and Equation (3-4#4) give,

respectively the pressureﬂdrop in the flow direction and across the channel,

Since the chamber pressure is a known gquantity, it is possible to calcu-
late the total pressure at the center of the chamnel on the product sur-
face using Equetion (3-40), That is at x = 0 and € = 0 calculate p{(0,0).
This is the point of maximum pressure in thefﬁ@annel and hence is suffici-

ent to determine if the pressure is too high. .The pressure at x = L and

g = 0.5 or p(1,0.5) is taken to be the chamber pressure, P,- Care must
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be taken to use average properties in calculating the pressure change

across the channel due to the temperature dependent properties. Since
the product surface is isothermal with respect to the flow direction,

no difficulty is encountered in evaluating properties for the pressure
change alcng the porous surface.

Figure 31 shows the change of p{0,0) with respect to time for
various channel geometries at a charnber preséure of one torr, As can be
seen, during the early stages of drying when the flow rate is highest,
the pressure near the center of the product can get relatively high,
especially for the narrow channels. An increase in I at H = 0.25 inch,
of course, results in even higher pressufes. At wider channel widths,
the increase in pressure near the center is insignificant for all practi-
cal channel lengths encountered in practice. In Figure 31 the chamber
pressure, P.» is seen to approach one as drying proceeds. Hence, the
préssure drop along the porous surface from x = 0 to x = L, may be de-
termined at any time by calculating the difference between p(0,0) and
one. As can be seen, the pressure changes in the flow direction are quite
small in freeze-drying., This result can be attributed to the very low
densities encountered in normal freeze-drying situations, . Reference %0
Fguation (3-43) shows that the magnitude of the density directly influ-
ences the pressure changes.

Figure 32 shows the typical range of the injection Reynolds number
for the case consideredain this section. The variation is shown for two
values of H to illustré%e the widest range of-wahich might be encountered.
Of course, the smaller‘éhannel width is most commonly found in industry

for which values of R become quite small. PFigure 33 and Figure 34 ave,
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respectively plots of flow rate versus interface position and interface
position versus time for a surface temperature of 5609R and a chamber
pressure of one torr. These curves are taken from the results of Dyer,
et al, (5) and are presented here to provide a more complete picture of
the combined externsal and internal mechanisms.

The material discussed in this chapter in connection with freeze-
drying represents é very practical application of the thecretical analysis
of a semi-porcus channel, Previous work in the literature has consisted
of very elegant mathematical analysis of porous channels of all types.
However, few practical applications are considered, and the results
usually appear too cumbersome to employ. The boundary conditions and
solutions presented in this thesis were purposely simplified as much as
possible in order to arrive at some practical results. Even so, the

actual application to freeze-drying required considerable computer work

in order to cbtain a sufficient quantity of results.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

The principal conclusions drawn from this investigation are dis-
cussed in the following paragraphs.

Based on the comparison with existing solutions, the polynomial
solution for the velocity distribution in a semi-porous chamnel is shown
to be quite accurate for R £ 3. The accuracy of the polynomial solution
for the temperature profile is established by comparison with published
experimental results for a limited range of RPr < 1. The application of
the semi-porous channel model to the heat transfer and fluid flow in the
region between the heater platen and the food product in freeze-drying
correlates well with the actual physical process since R is usually not
greater than one.

In comnection with freeze-drying, it is shown that radiation heat
transfer is the dominant mode of heat transfer to the prodﬁct surface
where an open region separates the heater and the product. Depending on
the channel width, the relative amount of radiation heat transfer may
range from 60 to 95 per cent of the total heat transfer to the product
surface, It is alsc shown that decreasing the channel width increases
the convection heat transfer to the product surface and the overall heat
transfer coefficient between the heater and the'frézén region. The in-
crease in the overall heat trahsfer coefficient results in slightly in-

creased drying rates in the early stages of drying.
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. Other observations indicate that radiant heat losses from the
chammel exits are relstively unimportant for leong narrow channels. Also,
the hydrodynamic pressure drop in the flow direction of the chamnel in
freaze-drying is ordinarily insignificant,

Finally, it is observed that for the long narrow chammel usually
found in commercial use, the fluid in the channel is almost pure water-
vapor, and hence only hydrodynamic flow exists. Any residual air is swept
away from the surface of the product at the start of drying, and diffu-
sional flow in the channel is negligible.

The following items are presented as a logical extension of the
work which has been presented in this thesis:

1, The complete set of differential equations describing the heat
transfer and fluid flow characteristics in the semi-porous channel should
be solved numerically using the most compatible set of boundary conditions.
The solutions could also be extended to include the internal aépects of
the flow processes.

2. Although the sclutions presented in this thesis are apparently
substantiated by experimental evidence, considerably more experimental
work should he done in regard to the external transport mechanisms to
confirm optimum drying conditions. Work especially needs to be done ta
verify the results of the mass concentration solution.

3. The diffusion equation should be solved under conditions where
an inert gas is forcibly injected into the channel at some point to theore-
tically determine the feasibility of the use of such gases,

4, As dsta becomes available on the spectral and directional

emiggivities of food products, the external sclubtions should be refined
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to_include these effects,

=
i
I
]
]
t




ST el lediasm o ollIomRERA AL T

T T Tt Tt . i it e S AT

136

APPENDICES




137

- APPENDIX A
RADTATTON EQUATIONS

The approach used here to derive the radiant exchange equations
is based on the material in Chapter IIT of Sparrow and Cess (49). The E?

nomenclature is also basically the same. :

The rate at which radiant energy streams away from an incremental

surface area, dAi, is termed ihe radiosity and is given by

1
Bi(xi) = eia T (xi) + piHi(xi) 3 o (A'l)

where the symbol B denotes the radiosity., The first term on the right of
Bquation (A-1) represents the radiation emitted by the surface, and the

second term represents the reflected radiation, The radiosity has units

of energy per unit time and unit area, In general, the radiosity is a
function of position, and hence the position coor@?nate, xi, is used to
show this dependence explicitly. “

The radiant flux, Hi' incident on the surface i comes from the
other surfaces in the enclosure denoted by the symbeol j. From an incre-

mental area on j, an amount of energy Bj(xj).dAj streams away in sll direc-

tions. The amount of energy which arrives at i is Bj(xj)dAJ.dFj i’ where

&Fj . is the incremental geometric factor between elements dAj and dAi.

By employing one form of the redipiocity rule given by dAdej_i = dAidFi_j,
it follows that the rate at which energy arrives per unit area at dAi from

surface j is Bj(xj)dli'i 3 The contribution from the entire j surface is
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B. JC. dI‘. » L3 A-e
[ 3w, (a-2)
A
J
Such a contribution arrives at dAi from all surfaces in the enclosure
and hence Hi is expressible as a sum
Bx) =2 [Be)ar, . (8-3)

Ja,
i

Equation (A-3) may be used to eliminate H, from Equation (A-1) to

i
give

aF, .
B,(x,) = ¢.0 ‘I‘iu(xi) + (1-¢,) ;ﬂ ~fBj(xJ.) ﬁjﬂ- ah; s (a-k)
A,
3

where use of the fact that Py = 1 - € has been made.

The net rate of heat transfer leaving surface i per unit area is

given by
qi(xi) = Bi(xi) - Hi(xi) - (A‘S)

Solving Equation (A-1) for Hi(xi) and substituting the result into Equa-

tion (A-5) results in

c _
qi(xi) =7 -iei G Eih(xi) - Bi(xi) . (A-6)

If the temperature distributions on each surface of the enclosure

PR gttty i o iy allidygigi - Y
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are known, then Equation (A-4) applied at each surface yields a set of
linear integral equations for the unknown radicsity functions of each

surface, Sclution methods can become quite complex and numerical compu-

ter solutions are commonly used. Once the radiosities are known, the

‘heat flux at each surface may be calculated using Equation (A-6).
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APPENDIX B
GEOMETRIC VIEW FACTORS

The general equation used to calculate radiation exchange geome-
tric view factors mgy be found in any standard text on radiation heat
transfer, For two elemental areas, dAl and dAj, the equation is

cos ¢, cos ¢, dA.
aF. = ¢1 ¢J J

i1 - T . (B-1)

The angles ¢i and ¢j are formed by the respective normals to the area ele-
ments and the connecting line r between the elements.

The incremental view féctor between two area elements located on
opposing parallel plates may now he easily derived, Reference is made to
Figure 35 where two infinitely long perallel strips are shown. Different
locaticons of dAO and dAl with respect to z musit be Faken inteo account.

The connecting line hetween the elements is

2 2 2 '
r-o=z," + i+ (xl-x0 s (B-2)

= dz_,
snd dAl dxl zl

Evaluation of the cosines of the angles ¢O and ¢l gives

H
cos ¢, = = . 1/2 B-3
0 [zl2 + H2 + (xl-xo):l / ( )
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Figure 35.

Relationship of Incremental Areas on Parallel Planes
Illustrating Coordinate System for Caleculation of
Jeometric View Factors '
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1k2
cos ¢, = ! - (B-4)
1o e + H2 + (x,-x L/ )
[21 1™ ]
The view factor then becomes
H2 dxl dzl
dF (B-5)

0-1 ~ nl: 312 +H 4 (xl-xo)z]-‘2 .

Integration with respect to z, from -® to +» will yield the view factor

1
between a palr of infinite strips on the two surfacés. This integration
is performed in Appendix .

The geometric view factor bhebween an ares element on a horizontal
surface and an element on a perpendicular surface may alsc be evaluated,
Pigure 36 illustrates the relative positions of the elements and the

appropriate nomenclature. Again, the z-direction must be considered.

The connecting line between the element is
2
+ (L-xo)2 ; (B-6)

and dA_ = dy3dz

3 37

Evaluation of the cosines of the angles ¢ and ¢3 yields

- 3
¢C = [ Z} B-7

and

L - KO ’
cos @, = = 5 w=1/2 - (B-8)
[23 ¥yt (L-x ) ]
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Figure 36.

Relationship of Incremental Areas on Two Adjacent Perpen-
dicular Planes Illustrating Coordinate System for Calcula-
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Substitution into Equation (B-1) yields for the view factor

¥, (Lx,) dy éz,
aF, ., = 3 3

0-3 Tl'—[z + y3 + (L-x )2]

1hh

(B-9)

Again, integration with respect tc z_ from -» to +» will yield the view

3

factor between two infinite strips on the surfaces, This integration is

performed in Appendix C.

The view factor between surface 0 and 2 of Figure 5 is derived in

the very same mammer and is

yg(L+X ) dyé dz,
dp =
0-2 2
11[22 + 3’2 + (L"'X )Z]

(B-10)
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APPENDIX C
TYPICAL INTEGRATIONS

The integrations performed on the geometric view factors given
in Equations (B-5), (B-9), and tB-lO) hecessary to dérive Equations (L-lk)
and (L-45) are indicated here. These results were obtained from standard
integral tables.

In Equaticn (BI-5), integration with respect to 2, from -= to +x

will yield

G0
J . " 3/2
2 = 53/2 -
zle'+ }12 + (xl-xo) 2 ]-I2 + (xl-xo 2
- (c-1)
In Equation (B-9), integration with respect to V3 from 0 to H and
74 from -® to +® yields for use in Equation (4-ll)

—
PN

T v (1-%,)
¥4(Le=x,) dy, dz L-x .
J'J‘ 170 T3y L (c-2)
0

_[ + (L-x )2]1/2

Integration of Equation (B-10) with respect to the same l:.mits gives

-0

( L+x

4. L (c-3)
[ + (L-I-x )?]

1 -

I
M b

8 “————33

H
J yg(L+xo) dye
0

n[z +y2 + (L+x )?]

O S I P
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Equations (C-2) and (C-3) must also be integrated with respect to

x. from -L to +L for use in Equation (4-L45), Doing so on Equation (C-2)

0

gives

| | 1/2

L
-é- 1l - [HE_—-——}J_/Z dx0=ﬁ—-+l- '-l-lﬁ + 1 . (C—Ll-)
L

+ (L?xo)

Integration of Equation (C-3) over the same limits gives the same results

28 in Equation (C-L).
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APPENDIX D
DERIVATION OF NUMERICAL INTEGRALS
In this appendix, the details of substituting T{x,1) into Equa-
tion (4-U5) for Tl(xl) are given.
The temperature T{x,l) evaluated from Equation {(4-22) gives
X, -y
T(X,l) = TO + (TLH-TO) L_ . (D---'_)
In Equation (4-45), T(x,1) is raised to the fourth power. Hence,
Y -2y
T 3 *1 2 2{*1
[T(X,l)] = TO + 4 TO (TLH- O)(i_ + 6 TO (TLH-TO) L-—-
(p-2)
3 [ * -3y % ~by
1 1
+ 4 TO(TIH--TO) i + (TLH-TO) = .

Substituting Equation (D-2) into Equation (L-L5) yﬁglds five double

integrals of the type

L ,
J To 0xy &%
L

i =

17 %!

and

L L -ny
*
r - I J Lr] axy dxy o (D-1)
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if where n = 1, 2, 3, or 4,
EE Equation (D-3) may be integrated using standard integral tables
3; to give
k b z L
_2 L
15 =5 TO h(H +1 -2 TO . (D-5)

Equation (D-L4) may be integrated with respect to x, to give

T P Y I S S
O S e V) ;

-(x_ -L}) (x,+L) (f-J-HY

1 1 1 1

I =% - — ~1/2 ax, .

nog2 | li(xl-L)2 + H2]1/2 i l:(xl+L)2 + Hz] /2T t
-L (D-6)

Equation (D-6) is evaluated from -L to +L. It can be shown that the por-
tion from -I to O is equivalent to the porticon from O to +L. Hence,

Equation (D-6) may be rewritten as

L . "
(%, -1) (x,+L) x, )Y
T, - : . - (_l) dx, .
A (xi;L)2‘+ Hzfl/e + [(K1+L)2 + H | 20 \T 1
° | _ (D-7)

Equation (D-7) may be put in dimensionless form by defining

i} |
1
X, == (D-8)

and noting that at Xy %ﬂp, Xl =0, and then x. =L, X, = 1. The result is
i

T T
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5 X _ X l-ny X l-ny
1 =2|k 1/2 + L 1/2
n HI|H I 2 5 L 2 >
0 :I:ﬁ (Xll) + 1 [IT (Xl+l) + 1
(D-9)
-ny -1y
X X
1 1
WEFES S

%)2(Xl+l)2 + l:]

+ 1/2 +
e

The term, vy, which arises in the energy solution of Chapter III

is always positive, Hence, the last twoc terms in Equation (D-9) are dis-
continuous at Xl = 0, The first two terms will also be discontinuous at

X, = 0, when ny > 1, but this situation will not occur for most typical

1
freeze-drying applications. The last two terms may be transformed so that
they too will result in convergent integrals at the lower limit for most

freeze-drying applications, The transformaticn which accomplishes this

is

e o, (D-10) -

1 . i,
2 2 =X -ny S X 1-ny
2L 1 L 1
I - S _1/2 ) 2 'L/Q
b Ll x-1)2 4 1 Ll x.+1)% + 2
0 ol ‘M H] ‘™M1
‘ (D-11)
5 Xll-Q ny
[(ﬁ-] (Xl_-l'l) + 1
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The last two terms in Equation (D-11) have been transformed
according to Equation (D-10). Then in order to keep the notation con-

sistent, the transformation

(D-12}

is used to give the final form shown in Eguation (D-11).
For each value of n in Equation (D-11), there results four inte-

grals., That is, I, consists of four integrals, I2 four integrals, and

1

so forth., Hence, there are sixteen integrals in all, and they must be

numerically evaluated, The trapezoidal rule for numerical integration

was used in this work. It wag found that at least two hundred steps

were necesgary to pfoduce good convergence, As a check, the Gauss-Legendre

quadrature formuls for numerical integration was used in some of the early

computations, i
The final form of the double integration in Equation (4-45) is |

indicated in Equation (4-46)}. The H contained in front of the integral

in BEquation (4-45) cancels with the H in Eguation (D-5) and Equation (D-ll)f
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APPENDIX E
HEAT TRANSFER COEFFICIENTS

Details of the derivation of heat transfer coefficients are given.
Heat transfer to the porous wall from the adjacent fluid layer is given
by Equation (4-29).

k(Tm-TO)
Qg = - —2— (1-y)

The local convection heat transfer coefficient is defined as

g, = B (T -T)) . (E-2)

Hence, sebting the right sides of Equations (E-1) and (E-2) equal to each

other gives

=Y

= K1 (-3
b, = g(1 Y)(3+RPr i

Equation (E-3) may be rewritten in terms of the Nusselt number defined by

h k
: M = . (B-4)
Hence,
-y
W= (1-y) | 335 |2 : (E-5)

The average Nusselt number is given by

-Y
e )

. (B-3) °

&

Y ——r v
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L
Mo o=2 | Nudx (E-6)
2L '
-L
Substituting Equation (E-5) into Equation (E-6) gives
0 v L )
o= A 3 |-z} L 3 ||z
= J(l'y) 7ReT || L) W+ oL I(l‘Y) 3+RPT ,L .
e 0 (E-7)

It is necessary %o divide the region of integration as shown above because
the energy solution from -L to O has a minus (-) sign in front of x,
whereas from ¢ to L it does not. The indicated integrations are easily

performed and the result is

—_— 3
Nu = 3 + RPr ’ (E-8)

In an analogous manner, a local radiation heat transfer coefficient

may be defined as
4, = hr(Tm-Tb) » (E-9)

and a correspondingi&vefage radiation heat transfer coefficient

L
= _ 1
h, =5 Ihr dx (B-10)
-L
cr, in terms of 4.
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R :1_(;
r 2L Tm-TO

J'qr x (E-11)

-L

The integral in Equation (E-11) has already been evaluated and is composed
of the radiation terms on the left side of Equation (4-4S5), Since H was
divided through Equation (4-45), it is necessary to include an H in the

numerator of the right side of Equaticn (E-11). Hence,

- H
h, =5g

L
L )Iq ax (E-12)
T -T T *
m "0
L

Numerical values of E} are obtained after Equation {4-45) has been solved
for the unknown temperature and the magnitude of the radiation contribu-

tion to heat transfer has been established.

P

Finally, an overall heat transfer coefficient between the heater ¢

and the frozen region may be defined as

q=U(T-T) . (E-13)'
Since
q = (B+h ) (T -T,) ~ (E-1Y4)
and
kg
a=3 (T-Tg) (E-15)

o
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where kd is the thermal conductivity of the dried layer and X3 is the

dried layer thickness. Eliminating T, between Equations (E-14) and (E-15)

gives

x5 (T -1,) . (E-16)

P S (E-17)

where

% +%h , (E-18)

which is the combined surface heat transfer coefficient, f
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APPENDIX F
INTERFACE POSITION AND DRYING TIME EQUATIONS

The thickness of the dried layer of a sample may be determined
from a simple energy balance at the interface bhetween the dried and fro-
zen regions. The heat conducted across the d&riedlayer to the interface

is given by
(F-1}

If no heat is supplied through the frozen region, the heat conducted
across the dry layer is just equal to that required %o sublimate the ice
and raise the temperature of the water-vapor from Td to Tb. This is re-

presented by
94

Setting the right sides of Equations (F-1)yand (F-2) equal and solviﬁgf%

for X, gives

a

| k. (T.~T.)
X, = a‘"o""d ] (F-3)
Nﬁ[AH + cp(TO-Td)]

The flow rate or drying rate may be calculated using

Nﬁ = Po¥o ?

= NwaH + chp(TO'Td) . (F-2) .
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and 4 is caleulated from the injection Reynolds number R,
Dyer, et al. (5) show that, for the case of no back face heating,
that is, all heat for sublimation is conducted across the dried layer,

the time to dry to a depth Xd is given by

2
_ Pe 8 %54

T = - » (F'5)
kd(TO-Td)

A + cp(Tb-Th)

2

where Py is the density of the frozen region and 6§ is the porosity of the

dried layer.
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APPENDIX G
SEMI-POROUS CHANNEL VELOCITY DISTRIBUTIONS
Comparison is made of the polynomiasl and perturbation solutions
for the velocity profile in a semi-porous channel,
The shear stress at the walls is given by
_ [

Hence, from Equation (6-2) the derivative £/(£) evaluated at each wall is
a measure of the shear stress. This quantity is also necessary as a

basis for comparison with the perturbation solution. At each wall then

2k - B,
£0) = 7w (c-2)

and

24 . al 6 sl + 24 R ?eé Bl - 3R - 72
R+6 ' R+6 R+ 6 ¥ (e-3)

C e

£(1) =

Donoughe (16) presents similar expressions for caléﬁiatihg the wall shear
stresses from the pertufbation solutions, |

The velocity profiles from the polynomial aﬁﬁ;perturbation solu-
tions are compared in Tgﬁlés 2, 3, and 4. The quantities £'(0) and’f’(1)

from both solutions are compared in Table 5,

Lt v..?‘,:u.‘
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Table 2. Comparison of Integral Momentum and Perturbation
Solutions for Velocity Profiles, R = 0.1, 0,5
R =0,% ' R = 0.5
£ Ea. (6-2) Donoughe (16) Eq. (6-2) Doncughe (16)
0.0 .0.0 - 0.0 0.0 . 0.0
0.05 0.282 0.283 0.273 0.274
0.10 © 0.536 0.53%6 0.520 0.522
0.20 0.954 0.955 0.933 0.936
0.30 1,255 1.256 1.237 1.240
0.40 1.437 1.438 1.het 1.k29
0.50 1.500 C1.500 1,500 1.501
0.60 1.hk2 1.L43 1,453 1.k52
0.70 1.265 : 1.264 1,283 1.281
0.80 0,9%6 0.965 0.987 0.983
0.90 0.544 0.5L3 0. 560 0.557
0.95 0.288 0.287 0.297 0.295
1.00 0.0 0.0 0.0 0.0

Table 3. Comparison of Integral Momentum and Perturbation
Solutions for Velocity Profiles, R = 1.0, 2.0
R = 1.0 R = 2.0 _

g Eq. (6-2) Donoughe (16) Bq. {6-2) Donoughe (16)
0,0 0.0 0.0 0.0 0.0 {fi'{:i
0.05 0.263 0.264 0.2h7 0.2K7%
0.10 .0.503 0,505 #0475 0.476
0.20 0.911 0,91 0.87h 1 0.874
0.30 1.217 1.220 1.185 1.183
0,40 1.415 1.hk17 1,397 1.395
0.50 1.500 1.500 1.500 1.498
0.60 1.465 1.463 1.483 1.482
0.70 1.303 1,301 - 1.335 1.337
0.80 1.009 . 1.006 1.046 1,049
0.90 0.577 0,57k 0.605 0.606
0.95 0.307 0,305 0.323 0.324
1.00 0.0 0.0 0.0 0.0
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Table 4, Comparison of Integral Momentum and Perturbation
Solutions for Velocity Profiles, R = 3.0, 4,0
R = 3.0 R =4,0
E BEqg. (6-2) Donoughe (16) Eq. (6-2) Donoughe (16)
0.0 0.0 0,0 0.0 0.0
0,05 0.234 0.233 0.22h4 0.221
0.10 0.454 0.451 0.437 0.431
0.20 0.845 0.839 0.823 0.810
0.30 1,160 1,150 1.1%0 1,121
0.540 1.383 1.372 1.371 1.351
0.50 1.500 1.493 1.500 - 1.487
0.60 1.497 1,498 1.509 1,509
0.70 1.360 1.369 1.380 1.397
0.80 1.075 1.089 1,097 1.125
0.90 0.626 0.637 0,643 0.667
0.95 0.336 0.343 0.346 0.360
1.00 0.0 0.0 0.0 0.0
Table 5., Comparison of Integral Momentum and Perturbation
' Solution Wall Friction and Pressure-Change Relations
| N :
£(0) £(2)
R Eq. (G-2) Donoughe (16) Eqg. (G-3) Donoughe (16)
0.1 5,941 5.946 16,059 6.046
0.5 5.723 5,742 - 6.277 6.228
1.0 5.486 5.509 6,51k 6.5k
2.0 5,102 5.109 6.898 6.901
3.0 4,805 L,781 7.195 7.336
L,o 4,568 4,508 7.h32 7.756
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APPENDIX H
MASS CONCENTRATION DISTRIBUTIONS

In this section some typical water-vapor mass concentration pro-
files with respect to the £-direction are given. They are presented here
in tabular form to illustrate the very small variations in mass concentra-
tion which coccur across a semi-porous channel, The profiles tabulated
here are at the same conditions as for some of those illustrated in
Figures 12 and 13 where the x-direction profiles are shown.

The data presented here are calculated using Equation (5-38) for
a chamber concentration, wc equal to 0.6 1bm H20/lbm mixture and a Schmidt
number, S¢ equal to O.4.

Table 6, Mass Concentration Profiles in the Dimensionless
B~direction for L/H = 10 and R = 0.1

€ w(C,§) ®(0.5,8) w(1.0,%)
0.0 0,947 0.912 0.605
0.1 0.947 0,912~ - - - 0,604
0.2 0.946 0.911 0.603
0.3 0.946 0,911 0.601
0.k 0.946 - o0.911 0.600
0.5 0.946 0.911 0.599
0.6 0.946 0.911 ' 0.598
0.7 0.946 0.910 0.598
0.8 0.946 0.910 0.598
0.9 0.946 0.910 0.598
1.0 G.946 0.910 0.598

- 1
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Table 7. Mass Concentration Profiles in the Dimensionless
g-direction for L/H = 10 and R = 0.5
g w(0,§) w(0° 5}5) w(l'osg)
0.0 1.000 1.000 0.627
0.1 1.000 1.000 0.619
0.2 1.000 1,000 0.612
0.3 1.000 1.000 0.605
0.b 1.000 1.000 0.600
0.5 1.000 1.000 0.5%9%
0.6 1.000 1.000 ' 0.592
0.7 1.000 1.000 0.5%0
0.8 1,000 1.000 0.589
0.9 1.000 1.000 0.588
1.0 1.000 - 1.000 0.588
Table 8, Maess Concentration Profiles in the Dimensionless
g-direction for L/H = 36.dnd=R = 0,02

g w(0,E) w(0.5,E) . w(1.0,E)
0.0 0.998 0.992 0.601
0.1 0.998 0,992 0.601
0.2 0.998 0.992 0.601
0.3 0.998 0.992 0.600
0.k 0,998 0.992 0.600
0.5 0,998 0.992 0.600
0.6 0.998 0.992 0.600
0.7 0.998 0.992 0,600
0.8 0.998 0.992 0.600
0.9 0.998 © 0,992 0.600
1.0 0.998 0.992 0.600
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PROPERTY DATA USED IN THE THEORETICAL CALCULATIONS
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The following equations and data were used for numerical calcula-

tions for freeze-drying:

- Reference
. Number

1. ILatent heat of sublimation of frozen beef

AH = 1488 Btu/1bm (59)
2. Iatent heat of sublimation of pure ice

AE = 1220 Btu/lbm (61)
3. Thermal ceonductivity of freeze-dried beef at one torr

ky = 0.0503 Btu/hr £t °F (62)

Y4, Thermal conductivity of freeze-dried Haddock at 0.08 torr

k, = 0.013 Btu/hr £t °p e

i

&
5. Density of water-vapor

P

- _c 3
o = FT 1bm/ft
g O

where p_ is in lbf/fte.and T is in °R.

(54)

(64)




6. Absolute viscosity of water-vapor

3/2
0659 T x 10‘6
b= 623,0 + T

1bm/Tt sec (63)

where T is in °R.
7. CQConstant pressure specific heat of water-vapor

cp = 0.445 Btu/lbm °r (61)

8., Emissivity of freeze-dried beef
¢ = 0.75 (58)

9. Stefan-Boltzmann constant

8 b

@ = 0.173 x 10"~ Btu/hr ££2 (°F) (41)
10. Gas constant for water-vapor
R, = 85.8 £t Ibf/lbm °r - (61)
11, . Density of frozen beef, approximated by the density of ice
! ST v:[ : ; )
op = 62.1 Tbm/ft> - (61)
12, Porosity of frgeze-dried beef
5 = 0070 (l)

13. Thermal conducltivity of water-vapor

k = 0,012 Btu/hr £t °F (41)
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