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CHAPTER 1

INTRODUCTION

1.1 Introduction

This dissertation contains two topics in operations research. The first topic is to
design a distribution network to facilitate the repeated movement of shipments from
many origins to many destinations. A method is developed to estimate transportation
costs as a function of the number of terminals and moreover to determine the best
number of terminals. The second topic is to study dynamics of a buyer’s behavior
when the buyer can buy goods through both option contracts and a spot market and
the buyer attempts to learn the probability distribution of the spot price. The buyer
estimates the spot price distribution as though it is exogenous. However, the spot
price distribution is not exogenous but is endogenous because it is affected by the

buyer’s decision regarding option purchases.
1.1.1 Continuous Approximation for Distribution Network

This research was motivated by our collaboration with two companies that manage
their own inbound distribution systems. One is a large retailer that obtains merchan-
dize from many suppliers in the US as well as overseas. The origins are suppliers
and import warehouses in the US. The destinations are individual retail stores. The
other company is a distributor of a large variety of products, most of which are sold
to retailers, and some to industrial consumers. The origins are the distributor’s sup-
pliers, most of whom are located in the US and Canada, and the destinations are the
distributor’s distribution centers located close to various cities in the US. We consider
the design of a distribution network for the above companies to facilitate the repeated

movement of shipments from many origins to many destinations. A sufficient number



of the origin-destination shipments require less than the capacity of a vehicle, so that
consolidation of shipments is economical. The case is considered in which consolida-
tion takes place at terminals, and each shipment is assumed to move through exactly
one terminal on its way from its origin to its destination.

We formulate this problem as a mixed integer linear program. Very small instances
of such a problem can be solved with available software, CPLEX. In computational
tests, most instances with 6 origins, 6 destinations, and 3 candidate terminals, could
not be solved — the computer’s memory was insufficient to complete the branch-
and-bound procedure. The problems in the real world have hundreds of origins and
destinations, and thus it seems that it will be impractical to solve the mixed integer
linear program.

The first challenge in designing such a distribution system is to determine how
many terminals there should be. Transportation cost is decreasing in the number of
terminals, but the cost of owning and operating terminals is increasing in the number
of terminals. Since we focus on systems in which each shipment moves through one
terminal on its way from its origin to its destination, handling costs do not vary
with the number of terminals. The second challenge in designing such a system
is to determine the best locations for the chosen number of terminals. We argue
that one can accurately determine the best number of terminals without exactly
determining the best locations of the terminals. We also argue that to determine the
best number of terminals it is important to accurately estimate how operational costs,
in this case transportation costs, vary as a function of the number of terminals. The
important operational variables are the numbers of terminals that serve each origin
and each destination. It is shown that these variables have an important impact
on the transportation costs, and thus should be taken into account when choosing
the number of terminals. The major part of the work is the development of a new

Continuous Approximation (CA) approach for the estimation of transportation cost,



especially detour cost and linehaul cost (the average distance from a terminal to the
center of the points on a route), as a function of the number of terminals as well as
the numbers of terminals that serve each origin and each destination, before knowing
the exact terminal locations. Then we use these estimates to search for the best
number of terminals as well as the numbers of terminals that serve each origin and
each destination. Thereafter the terminals are located, and the resulting design is
evaluated through detailed calculations of the vehicle routes to move all the freight

from its origins to its destinations.
1.1.2 Optimal Option-Contracting Strategy with Buyers’ Learning

Traditionally, in revenue management, it is assumed that buyers make purchasing
decisions, depending on the current given price, which is referred to as a myopic buyer.
However, this traditional assumption underestimates the sophistication of typical
buyer’s behavior, since the buyer might take into account forecasted future prices.
Another assumption is that the buyer behaves in a very sophisticated way. Recently,
some research has considered a buyer who is price-sensitive with some patience and
times his/her purchasing decisions while taking into account the dynamic pricing
policy of the seller, which is referred to as a strategic buyer. It is assumed that
the sophisticated buyer knows the seller’s pricing policy over the entire time horizon
in advance. However, this assumption overestimates the buyer’s sophistication too
much. We want to consider more reasonable and practical assumptions about the
buyer’s forecasting behavior than the previous ones. We assume that the buyer has
observed the previous prices, and then forecasts the future price with the empirical
distribution constructed by the observed prices. We analyze this buyer’s learning
behavior with option contracts and a spot market. In the first stage, the seller offers
an option price and strike price to the buyer. Then, the buyer forecasts the spot price

in the second stage using the empirical distribution constructed by the previously



observed spot prices, and decides how many options to buy. In the second stage, the
seller decides the spot price for the good, and then the buyer decides how many non-
contract goods to buy in the spot market. We consider the sequence of these two stage
problems so that the buyer can observe one more spot price in every period in order
to construct the empirical distribution. Traditionally, option contracting problems
are considered for i.i.d spot prices with an exogenous distribution. The spot price
distribution is exogenous means that the spot price distribution in each period does
not depend on the buyer’s first stage decision. In the problem we consider, the spot
prices are not identical and not independent, and the distribution is not exogenous.
This is considered in our model for the following reason: The spot price in the second
stage depends on what the buyer decides in the first stage, which is the quantity of
options, since the seller makes the spot pricing decision in the second stage based on
how many goods are available to sell through the spot market and thus how many
options have been sold in the first stage. The buyer’s decision on the quantity of
options in the first stage is made based on the empirical distribution constructed
by the previous spot prices. Thus, the spot price in the second stage depends on
the previous spot prices. This implies that the spot prices are not identically and
not independently distributed. Moreover, we show that, if the buyer decides to buy
a higher quantity of options in the first stage, the seller would select a lower spot
price in the second stage in stochastic ordering sense and vice versa. This implies
that the spot price is not exogenously but endogenously decided. These findings
raise interesting research questions: How would the seller’s spot pricing decision be
influenced by the option contracts bought in the first stage? Does the sequence of
the quantity of options bought by the buyer converge to any finite limit? If so, how
can it be characterized and be compared with the Nash equilibrium? The impact
of the buyer’s dynamically learning behavior on the seller’s spot pricing decisions in

multiple periods has not been well studied in the existing literature.



CHAPTER I1

A METHOD FOR DISTRIBUTION NETWORK DESIGN

2.1 Introduction

In most distribution systems goods are transported from various origins to various
destinations. For example, many retail chains manage distribution systems in which
goods are transported from a number of suppliers to a number of retail stores. Much of
this transportation takes place by truck, and it often happens that the flow rates for a
substantial fraction of the origin-destination pairs are so small that it is not economical
to send goods directly from each origin to each destination in a dedicated truck.
That is, it is often more economical to consolidate the shipments of various origin-
destination pairs, and transport such consolidated shipments in the same truck at the
same time. There are many ways in which such consolidation can be accomplished.
Next a number of examples are given.

Figure 1 shows the locations of origins (circles) and destinations (squares) for
a small example. Suppose that freight has to be moved from each origin to each
destination in the example every week. To keep the example simple, the volume of
freight is not specified that has to be moved from each origin to each destination
every week, but rather suppose that each week a truck can accommodate the total
freight flowing from up to four origins to all destinations, and the total freight flowing
from all origins to up to three destinations. The question at hand is how to design
the transportation operations to move all freight each week at minimum cost.

There are many alternative designs, and only a few examples are given that are
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Figure 1: Origins (circles) and destinations (squares) for freight flows.

qualitatively different from each other. One alternative is to use out-of-vehicle con-
solidation, that is, to consolidate freight at terminal facilities, also called consolida-
tion terminals, transshipment terminals, crossdocks, or transfer facilities. There are
many alternative ways to design transportation operations involving terminal facili-
ties. Here two simple, but important, ways are presented, distinguished based on the
number of terminals that each shipment passes through on its way from its origin to
its destination. First, even if there are more than one terminal in the system, each
shipment may move through only one terminal on its way from its origin to its desti-
nation. This type of system is quite widely used in the USA to distribute goods from
multiple suppliers to multiple distribution centers or retail stores. In such a system
it is typical for each vehicle to be based at a terminal, and to execute routes that
take freight from the terminal to particular destinations, and after the freight has
been delivered, to visit particular origins and collect freight at these origins and take
it back to the terminal, for organization according to delivery routes and later deliv-
ery. This type of distribution network is called a multistar many-to-many distribution
network, and is the type of system for which a design approach is proposed in this
paper. We will point out some of the advantages and disadvantages of such a system

soon, but first we give an example. Figure 2 shows a solution using out-of-vehicle



consolidation with two terminals denoted by X and Y, in which each shipment moves
through only one terminal on its way from its origin to its destination. The solution in
Figure 2 consists of the following routes: X, D, B,A,1,2,3,X; X,C,E,F,6,5,4, X;
Y,C,B,A,13,12,11,10,Y; and Y, D, E, F,9,8,7,Y. For example, consider a ship-
ment that has to go from origin 1 to destination F'. One week the shipment is picked
up at origin 1 by the vehicle that executes route X,C, B, A,1,2,3,X, then at ter-
minal X the shipment is offloaded from the vehicle and loaded onto the vehicle that
will execute the route X, D, F| E,6,5,4, X next, and later the shipment is delivered

at destination F' while the vehicle executes this route.

Figure 2: Solution in which each shipment moves through only one terminal on its
way from its origin to its destination.

Note that with such a system sufficient routes have to be chosen to ensure that all
freight move from its origins to its destinations, without exceeding constraints such
as vehicle capacity constraints. In Figure 2, freight can move from every origin to
every destination, because each destination receives truck visits from both terminals
(but each origin receives truck visits from only one terminal). In practice, it seems
quite common to ensure that freight can move from every origin to every destination
either by serving each origin from each terminal, or by serving each destination from

each terminal. However, such a solution may lead to unnecessarily many visits during



which very little freight is picked up or delivered, and unnecessarily long distances
traveled by vehicles. In this paper we search for more economical ways to facilitate
all freight flows.

An alternative system that uses out-of-vehicle consolidation is the following. Each
origin and each destination is served from one terminal only, typically the terminal
closest to the point (origin or destination). To enable freight to move from every origin
to every destination, vehicles also move freight between each pair of terminals. The
vehicles that move freight between the terminals are often of a different type (usually
larger) than the vehicles that pick up and deliver freight at origins and destinations.
Such a distribution network is called a complete topology many-to-many distribution
network. In such a system, each shipment moves through either one or two terminals
on its way from its origin to its destination. Figure 3 shows a solution using out-of-
vehicle consolidation with two terminals denoted by X and Y, in which each origin and
each destination is served from one terminal only. For example, consider a shipment
that has to go from origin 1 to destination F'. One week the shipment is picked up at
origin 1 by the vehicle that executes route X, D, B, A,1,2,3, X, then at terminal X
the shipment is offloaded from the vehicle and loaded onto the vehicle that goes from
terminal X to terminal Y, then at terminal Y the shipment is offloaded from the
vehicle and loaded onto the vehicle that will execute the route Y, F,9,8,7,Y next,
and later the shipment is delivered at destination F' while the vehicle executes this
route.

There are various other systems in which each shipment moves through one or
more terminals on its way from its origin to its destination. Some such systems, such
as complete topology systems in which an origin or a destination may be served by
more than one nearby terminals, are reviewed in Section 2.2. Another related design
is a star topology many-to-many distribution network with a central terminal through

which all freight flows. Specifically, with a star topology, each shipment travels from



Figure 3: Solution in which each shipment moves through only one or two terminals
on its way from its origin to its destination.

its origin through the pickup and delivery terminal serving the origin to the central
terminal, from there to the pickup and delivery terminal serving the destination, and
from there to the destination. Thus, in such a system, each shipment travels through
three terminals on its way from its origin to its destination. Some practical systems,
such as distribution systems for small packages, can be much more complicated than
the basic system types described above, involving a hierarchy of terminals and many
vehicle types traveling between terminals, with different shipments moving through
different numbers of terminals on their way from their origins to their destinations.
Complete topology, star topology, and hierarchical systems may facilitate solutions
with less total travel distance than a multistar system. The transportation cost with
such systems may also be less if the cost per unit freight and distance is less for the
vehicles that travel between the terminals than for the pickup and delivery vehicles.
However, when a shipment moves through more than one terminal on its way from
its origin to its destination it requires more loading, offloading, and additional load
sorting operations, and such additional handling incurs not only more cost, but also
increases the risk that shipments are lost or damaged. Which of the types of systems

is best depends on the importance of handling related costs relative to transportation



costs.

Finally, an alternative that does not require any terminals is to use in-vehicle con-
solidation. For example, one vehicle may pick up the loads at origins 1, 2, and 3, in
that order, that have to go to destinations A, B, and D, and then drive to destinations
D, B, and A, in that order, and deliver these loads. From destination A, the vehicle
would next return to origin 1, ready to repeat the cycle 1,2,3, D, B, A,1. Other ve-
hicles would perform similar cycles. Sufficient cycles have to be chosen to ensure that
all freight move from its origins to its destinations, without exceeding constraints such
as vehicle capacity constraints. For example, if in addition to cycle 1,2,3, D, B, A, 1,
cycle 1,2,3, E, F,C, 1 is performed, then all the freight originating from origins 1, 2,
and 3 could be moved to its various destinations. In-vehicle consolidation is a reason-
able alternative if for many of the origin-destination pairs, the amount of freight is not
much less than the vehicle capacity. Figure 4 shows a solution using in-vehicle consoli-
dation with the following cycles: 1,2,3,D,B,A,1;1,2,3, E,F,C,1;4,5,6, D, B, A, 4;
4,5,6,F,F,C,4;7,8,9,10,A,B,D,7,7,8,9,10, F,C,E,7; 13,11,12, A, B, D, 13; and
11,12,13,C, E, F, 11.

Figure 4: Solution using in-vehicle consolidation.

In this paper we focus on multistar many-to-many distribution systems in which

each shipment moves through one terminal on its way from its origin to its destination.
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These systems are sufficiently widely used to justify an in-depth study focused on such
systems. In addition, sometimes there is interest in determining which basic type of
system is the best for a particular case, and clearly it is desirable to be able to estimate
the cost of the optimal design for each type of system in order to find the best overall
system. Our major motivation is to develop a method to design such distribution
systems. To facilitate such design, we develop a continuous approzimation (CA)
method to estimate the cost of the operations that will be conducted with a given
design, and then we use these estimates to search for a good design. Chosen designs
are then evaluated with more detailed calculations of the resulting operations.

As mentioned, often a vehicle makes all the deliveries at the destinations on its
route before it picks up any new loads at the origins on its route. Such a practice
may increase the travel distance over what would have been possible if pickups and
deliveries could have been done in any sequence. However, often this is infeasible
or undesirable, sometimes because of scheduling constraints (for example, loads are
delivered at the destinations in the morning and picked up from origins in the after-
noon), or because loads that are picked up before all deliveries have been done would
obstruct access to the loads in the back of the truck that still have to be delivered.
We focus on the case in which all deliveries on a route take place before any pickups
take place. Some aspects of our approach can also be used if pickups and deliveries
can be done in any sequence on a route.

This work was motivated by our collaboration with two companies that manage
their own inbound distribution systems. One is a large retailer that obtains mer-
chandize from many suppliers in the USA as well as overseas. For the purpose of the
distribution system in the USA, the ports of import (more precisely, warehouses close
to the ports) are regarded as the origins of the imported freight. Thus the origins are
suppliers and import warehouses in the USA. The destinations are individual retail

stores. The retailer owns and operates a number of terminals. Each shipment moves

11



through one terminal on its way from its origin to its destination with transporta-
tion provided by independent contract carriers. In the current system, each origin is
served by all the terminals, and each destination is served by the terminal closest to
the destination. The greater the travel distances of the carriers’ vehicles, the more the
retailer has to pay the carriers, and thus the retailer has an incentive to design a dis-
tribution system that minimizes the total distance traveled, also taking into account
the cost of owning and operating a terminal, and handling related costs. The retailer
was considering increasing the number of terminals, and asked for design guidelines.
The other company is a distributor of a large variety of products, most of which are
sold to retailers, and some to industrial consumers. The origins are the distributor’s
suppliers, most of whom are located in the USA and Canada, and the destinations
are the distributor’s distribution centers located close to various cities in the USA.
The distributor owns and operates a number of terminals, as well as a fleet of trucks.
As for the retailer, each shipment moves through one terminal on its way from its
origin to its destination. Unlike the retailer, in the current system, most origins are
served by one terminal, and each destination is served by all the terminals. Products
are further distributed from the distributor’s distribution centers to the distributor’s
customers with a separate fleet of smaller vehicles.

The first challenge in designing such a system is to determine how many terminals
there should be. Transportation cost is decreasing in the number of terminals, but
the cost of owning and operating terminals is increasing in the number of terminals.
Since we focus on systems in which each shipment moves through one terminal on its
way from its origin to its destination, handling costs do not vary with the number of
terminals. The second challenge in designing such a system is to determine the best
locations for the chosen number of terminals. We argue that one can accurately de-
termine the best number of terminals without exactly determining the best locations

of the terminals. We also argue that to determine the best number of terminals it is
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important to accurately estimate how operational costs, in this case transportation
costs, vary as a function of the number of terminals. As the examples above already
indicate, important operational variables are the numbers of terminals that serve each
origin and each destination. It will be shown that these variables have an important
impact on the transportation costs, and thus should be taken into account when
choosing the number of terminals. The major part of the work is the development of
a new CA approach for the estimation of transportation cost, and especially linehaul
cost (the average distance from a terminal to the center of the points on a route),
as a function of the number of terminals as well as the numbers of terminals that
serve each origin and each destination, before knowing the exact terminal locations.
Then we use these estimates to search for the best number of terminals as well as the
numbers of terminals that serve each origin and each destination. Thereafter the ter-
minals are located, and the resulting design is evaluated through detailed calculations
of the vehicle routes to move all the freight from its origins to its destinations.

The remainder of this chapter is organized as follows. We review related literature
in Section 2.2, and we formulate the problem in Section 2.3. Section 2.4 provides a
qualitative discussion of the factors influencing total cost, and identifies the factors
that do and do not seem important in the selection of the best number of terminals.
Section 2.5 describes our CA method for the design of multistar many-to-many dis-
tribution networks. We also provide a procedure for making operational decisions
(which terminals to use for each origin-destination flow and how to route the vehicles
from each terminal) in Section 2.6 that we use in Section 2.7 to evaluate our solutions

compared with those produced by a widely used approach.

2.2 Related Literature

Optimization problems that incorporate both facility location and vehicle routing

decisions, such as the problem in this paper, are called location-routing problems. (49)
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proposed a classification of location-routing problems, and gave an overview of both
exact branch-and-bound algorithms and heuristics for a number of specific location-
routing problems. However, the paper considered only the case of a single commodity
— all shipments were considered as the same product, and thus a shipment picked up
from an origin did not have a specified destination. In the problem we consider, each
shipment has a specified origin-destination pair. Also, the paper did not consider the
possibility of deliveries and pickups on the same route. The method that we propose
is applicable both for the case with deliveries and pickups on separate routes, as well
as for the case with deliveries and pickups on the same routes. The type of approach
that we consider, namely a two-phase approach in which location decisions are made
in the first phase and routing decisions are made repeatedly, possibly with varying
data, in the second phase, and future routing costs are approximated when location
decisions are made, was mentioned on p. 192 as a promising research area. (50)
formulated and solved integer programming models of stochastic location-routing
problems. The problems involve decisions regarding the location of a single depot
among a set of candidate sites, the vehicle fleet size, and the pickup routes. All
these decisions are made before the pickup quantities become known. The models
constrain either the probability of a route failure or the expected penalty of a route
failure due to insufficient capacity to handle the pickups on a route. (71) surveyed
strategic production-distribution problems, with special emphasis on features that
are important for international supply chains. Some of the problems in the survey
involve facility location and distribution, and an overview is given of some mixed
integer programming formulations and tools for solving these problems.

The approach that we consider can be regarded as a continuous approximation
(CA) approach. In the transportation literature, the term “continuous approxima-

tion” refers to an approach in which some problem data, typically discrete data such

14



as the locations of origins, destinations, or facilities, are approximated with distribu-
tions, typically continuous distributions such as the uniform distribution. (46), (8),
and (7) did some path-breaking work on CA in transportation. (59) described the use
of CA methods to provide insight into the qualitative behavior of various discrete op-
timization problems and sometimes to find good solutions for such problems. Various
researchers developed these ideas further. Here we only give a brief overview of this
line of research, and we compare our work with some of the more closely related work.
(48) surveyed and classified the literature on CA methods in freight distribution.

(25) proposed a method to construct good tours in rectangles and presented for-
mulas, similar to that of (7), to approximate the lengths of the tours. (24) proposed a
cluster-first route-second method to construct vehicle routes and presented formulas
to approximate the lengths of the routes. The effect of the proportions of a rectan-
gular district for each cluster on the sum of the linehaul and detour travel distances
for the cluster was studied. The results in (25) were used to approximate the de-
tour travel distances. We also follow the approach of separately approximating the
linehaul and detour travel distances.

The approximations in (24) were used to study various one-to-many distribution
problems, that is, problems with one origin and many destinations. (Note that a result
for a one-to-many problem gives a result for a many-to-one problem that is symmetric
to it and vice versa). For example, (14) developed formulas to approximate the trans-
portation and inventory costs for one-to-many direct shipping and peddling (routes
with multiple stops) distribution strategies. (26) derived expressions for transporta-
tion and inventory costs, argued that vehicles should be fully loaded (assuming that
inventory costs are not very high), and then derived an expression for the optimal
frequency with which to pick up loads for different classes of items. (28) showed that

if products going to the different destinations are homogeneous, the same vehicles
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operate everywhere, and there are no route length restrictions, then in-vehicle consol-
idation is cheaper than out-of-vehicle consolidation, that is, transshipments are not
economical. (29) considered a setting with more general vehicle capacity constraints
than (28). Also, different items have different characteristics, so that optimal vehicle
utilization (minimizing total vehicle miles traveled) may require careful selection of
the mix of items to place on different vehicles. In such a setting, in contrast with (28),
it may be optimal to consolidate some items at a terminal into more efficient load
combinations. (15) considered a similar setting as (28), except that (15) considered
the case in which there are two vehicle sizes, and the larger vehicles cannot be used for
delivering at the destinations. Distribution networks with transshipment terminals,
in which larger vehicles transport freight from the origin directly to terminals, and
smaller vehicles transport freight from terminals on routes to destinations, were com-
pared with distribution networks without transshipment terminals, in which smaller
vehicles transport freight from the origin on routes to destinations. (18) considered
the same setting as (15), except that in (15), each larger vehicle can visit only one
terminal on a trip (that is, larger vehicles do not make multiple stop routes), whereas
in (18) larger vehicles may visit multiple terminals on a route. Unlike many of the
other papers, and similar to ours, (31) considered a problem that involves both de-
sign and operational decisions. Specifically, the design of a hierarchical distribution
network with one origin and many destinations was studied. Also unlike many of
the other papers, the case in which vehicles with different transportation costs per
distance operate at different levels in the hierarchy was considered. As a result, it
may be optimal for a shipment to undergo multiple transshipments from the origin
to its destination.

Continuous approximations have also been used to study many-to-many distri-
bution problems, that is, problems with many origins and many destinations such

as the problem that we consider. (23) considered many-to-many demand responsive
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transportation systems, such as taxicab systems with at most one request being trans-
ported at a time and dial-a-bus systems that allow multiple requests to be transported
at a time. Three routing algorithms were modeled, and approximate expressions were
derived for the average waiting times and average riding times of customers. (12) de-
rived cost expressions for the following cases: (1) Direct shipping from one origin to
one destination. (2) Direct shipping from many origins to one destination. (3) Di-
rect shipping from one origin to many destinations. (4) Direct shipping from many
origins to many destinations. (5) Shipping from many origins to many destinations
with all loads moving through a single consolidation terminal. Vehicle routing is not
considered — shipments move directly from each origin to the terminal, and directly
from the terminal to each destination. (6) Shipping from many origins to many des-
tinations with some loads moving directly from origin to destination and other loads
moving through a single consolidation terminal. Vehicle routing is not considered.

Our work differs from (12) as follows:

1. We consider the problem of shipping from many origins to many destinations

only, and not the other (easier) cases.

2. In our problem, the number and locations of terminals are to be determined,
but in cases (5) and (6) above, it is given that there is a single terminal with a

given location.

3. We consider transportation costs and terminal costs, but not production setup
costs and inventory costs. Instead, as is the case with all the applications
that we have worked on, it is given that the transportation schedule repeats
periodically (daily or weekly), and thus the inventory costs are not affected by

the distribution decisions.

4. We take vehicle capacity constraints into account.
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5. We consider vehicle routing — we allow a vehicle to visit multiple origins and /or

multiple destinations on a route.

(11) described a number of simple models that were used to evaluate strategies for
the distribution of parts from suppliers to General Motors assembly plants. A variety
of strategies involving direct shipping, shipping through a single terminal, as well
as peddling, were evaluated for the shipments from a single supplier (Delco) with
3 plants to 30 GM assembly plants. The models considered the trade-off between
transportation costs that favor fewer larger shipments and inventory costs that favor
more frequent smaller shipments. A decomposition approach that exploited the small
number of origins was proposed to find the best combination of direct shipping and
shipping through the terminal.

(42), (27), (43), (16), and (17) are closely related to each other. These papers all
considered a setting with an equal number of origins and destinations independently
and uniformly distributed in a square (sometimes rectangular) region. The flow rate
is the same for all origin-destination pairs. Terminals are arranged in a square (some-
times rectangular) grid. The following four distribution strategies were considered by
several of these papers (as described in more detail below, some papers considered

only some of these strategies, and some also considered other strategies):

1. One-terminal-nearest-terminal: Each shipment moves through exactly one ter-
minal. All shipments from an origin move through the terminal closest to the

origin irrespective of the location of the destination of the shipment.

2. One-terminal-minimum-distance: Each shipment moves through exactly one
terminal. A shipment from an origin moves through one of the (typically four)
terminals that surround the origin in the grid, that minimizes the travel distance

from the origin through the terminal to the destination.
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3. Two-terminal-nearest-terminal: Fach shipment moves through one or two ter-
minals. All shipments from an origin move through the terminal closest to the
origin irrespective of the location of the destination of the shipment, and all
shipments to a destination move through the terminal closest to the destination

irrespective of the location of the origin of the shipment.

4. Two-terminal-minimum-distance: Each shipment moves through one or two ter-
minals. A shipment from an origin moves through one of the (typically four)
terminals that surround the origin in the grid, and a shipment to a destination
moves through one of the (typically four) terminals that surround the destina-
tion in the grid, to minimize the travel distance from the origin through the

terminals to the destination.

(42) derived expressions for the average distance from origin to destination for the
one-terminal-nearest-terminal and the two-terminal-nearest-terminal strategies. The
expressions were compared with average travel distances computed between the 37
largest standard metropolitan statistical areas in the United States. (27) considered
the case of one-to-many distribution routes, without transhipment terminals, and the
case of many-to-many distribution routes, without transhipment terminals, in ad-
dition to the four strategies mentioned above. (43) compared the four strategies in
terms of (a) average travel distance, (b) number of terminals, and (¢) number of links.
For a given average travel distance, the number of terminals and number of links were
regarded as measures of consolidation. (16) considered the case in which the trans-
portation cost per unit distance between terminals may be less than the transporta-
tion cost per unit distance between origins and terminals and between terminals and
destinations. The paper compared the two-terminal-nearest-terminal strategy, the
two-terminal-minimum-distance strategy, and the two-terminal-minimum-cost strat-
egy, that takes into account the difference between the local transportation cost and

the transportation cost between terminals. The expressions for the minimum cost
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were used to derive the optimal spacing between the terminals in the grid for a given

number of terminals. Unlike the other papers, the resulting service areas of the ter-

minals were not equal. (17) evaluated the accuracy of the approximation formula for

minimum average transportation cost derived in (16). The approximation formula

was quite accurate, taking into account the extent with which the idealized assump-

tions of the approximation were violated. With two terminals, the errors were around

5%. However, as the number of terminals increased, the errors tended to increase as

well. Our paper differs from these papers as follows:

1.

These papers assume that origins and destinations are independently and uni-
formly distributed in a square or rectangular region, whereas we allow arbitrary

distributions of origins and destinations in a rectangle.

These papers assumed that the number of origins equals the number of destina-
tions, or equivalently that the density of origins equals the density of destina-

tions, whereas we allow the numbers of origins and destinations to be different.

These papers assumed that the flow rate from origins to destinations is a
deterministic constant for all origin-destination pairs, whereas we allow flow
rates that are random with different marginal distributions for different origin-

destination pairs.

These papers required terminals to be located on a square or rectangular grid
in the region (and thus that the number of terminals be a square number or
the product of the numbers of rows and columns in the grid), whereas we allow
any number of terminals, but we assume that, except for a single centrally
located terminal, the terminals are independently and uniformly distributed in

the rectangular region.

. We focus on the case in which each shipment moves through exactly one terminal

on its way from its origin to its destination, whereas these papers consider
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various strategies in which each shipment moves through two terminals on its

way from its origin to its destination.

. For the case in which each shipment moves through exactly one terminal, the
papers that considered this case required that each shipment moves through the
terminal closest to the origin (one-terminal-nearest-terminal routing), or each
shipment moves through one of the (typically four) terminals closest to the origin
(one-terminal-minimum-distance routing). That is, for one-terminal-nearest-
terminal routing, each origin is served by vehicles from the closest terminal and
each destination is served by vehicles from all terminals, and for one-terminal-
minimum-distance routing, each origin is served by vehicles from the closest
four terminals, and each destination is served by vehicles from all terminals. Tt
is easily seen that it can be very inefficient to serve each destination by vehicles
from all terminals. We allow each origin and each destination to be served by
vehicles from a chosen subset of terminals in addition to the central terminal,
where the number of terminals that serves an origin/destination depends on the

total flow rate from/to the origin/destination.

As mentioned before, our approach allows pickups on the same routes as deliv-

eries. Some CA work has addressed similar ideas. (44) considered a distribution

problem with two terminals that serve as origins, and multiple destinations. The

items originating at the two terminals are different, so that items may be sent from a

terminal to destinations close to the other terminal. As a result, after delivering the

items originating at a terminal to some destinations, it may be better for a vehicle

to next proceed to the other terminal to pick up loads there. The paper develops ap-

proximate expressions for the linehaul and detour distances if a vehicle travels from

one terminal to a delivery district, and thereafter travels to the other terminal. (30)

derived expressions to approximate the cost of vehicle routes to do both pickups and

deliveries, where the deliveries on a route are completed before any pickups are done.
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It is assumed that the pickup and delivery points are independent and uniformly dis-
tributed in a region that can be partitioned into approximate rectangles, that each
route can make at most C' delivery stops, and that there is no bound on the number
of pickups that a route can make.

As mentioned above, very few papers address CA methods for network design,
that is, to determine the number and locations of terminals. It was mentioned that
(31) considered hierarchical network design for one-to-many distribution. In addi-
tion, (45) considered the design of a many-to-many freight distribution network in
a local area, such as a metropolitan area. The area has one gateway terminal lo-
cated in the center through which all shipments to and from locations outside the
area pass. Unlike our problem, origins and destinations in the area are independently
and uniformly distributed. Similar to our problem, pickup and delivery terminals are
uniformly distributed, and the number of pickup and delivery terminals is a design
variable. Each origin and each destination is served on vehicle routes from the pickup
and delivery terminal in which service district it is located. Pickup and delivery routes
are separate, and the vehicles used for pickup and delivery routes are different from
the vehicles used to transport freight between terminals. As is the case in our prob-
lem, transportation and terminal costs were considered, and the headway between
successive routes was given. The optimal number of pickup and delivery terminals
and the optimal number of stops on a vehicle route were determined for two distri-
bution systems, namely a star topology and a complete topology. The costs for the
two systems were compared, and a number of conclusions were made, such as that
the star topology is better if the interterminal vehicles are large relative to the pickup
and delivery vehicles, and if handling cost is small. Both (33) and (61) considered
problems in which a number of facilities and their locations are to be selected, and
the region is to be partitioned into service areas such that each facility supplies the

destinations in one of the service areas. (33) considered only outbound transportation
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costs from the facilities to the destinations, in addition to fixed facility costs and fa-
cility capacity costs. (61) considered both inbound transportation costs from a single
origin to the facilities as well as outbound transportation costs from the facilities to
the destinations; thus the problem considered by (61) corresponded to a special case
of the one-to-many distribution network design problem considered by (31) in which
each shipment moves through one terminal from the origin to its destination. (33)
developed a CA that required a service area size, or equivalently a terminal density,
to be selected at each point in the region. (61) proposed an algorithm to convert the
service area size as a function of the point in the region to a solution with discrete
terminal locations, and they also evaluated the differences between the CA costs and
the costs resulting from their algorithm. In all the design problems described above,
the input data include the spatial density of destination demand, and not many-to-
many origin-destination flows as in our problem. Recently, (32) studied a Stackelberg
game in which location decisions are made by two competitors. Each competitor
can decide to locate many facilities, and the location decisions are represented with
location density functions, instead of with discrete variables that specify the exact

location of each facility.

2.3 Model Formulation

In this section we give a formulation of the problem we want to solve. The purpose
is threefold. First, we want to give a precise statement of one version of the problem
that we want to solve. Second, we want to determine what size instances can be solved
with available software. Third, we want to introduce a common approximation to our
problem that we will later compare with our CA method.

Distribution operations take place repeatedly over multiple time periods. We con-
sider distribution systems in which (1) each shipment moves through one terminal

on its way from its origin to its destination, and (2) in each time period, the vehicles
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based at each open terminal transport goods to be delivered from the terminal to the
destinations of the shipments, and thereafter pick up goods at their origins and return
again to the terminals where the vehicles are based. Specifically, in each time period,
goods have to be moved from origins in a set O to destinations in a set D. There is a
finite set ) of flow scenarios. Each scenario w € € has a probability or weight p(w).
The set €2 may represent the support of an input probability distribution, or may be
obtained from an input probability distribution by sampling, or may represent pre-
dictable differences in flow rates in different time periods such as seasonal differences,
or a combination of the above. For each scenario w € 2, let flow rate ¢;j(w) > 0
denote the quantity of goods per time period that must be moved from origin i € O
to destination j € D in scenario w. Each vehicle has the same capacity @),. There is
a set Xg of existing terminals, and a set X'p of potential terminals. For each terminal
m € X = Xg U Xp, let ¢, denote the difference in cost per time period between
having terminal m open and operating, and not having terminal m open and operat-
ing. For each 7,7 € OUD U X, let d;; denote the cost to move a vehicle from point ¢
to point 7. We assume that the vehicle movement cost does not depend on the load
carried by the vehicle. In addition to vehicle movement costs, there is a cost of C,
per time period for each vehicle based at each terminal, whether the vehicle is used or
not, and a cost of ¢, for each vehicle that is used during a time period, independent
of the distance traveled by the vehicle.

We have to decide which of the existing and potential terminals should be open
for all scenarios. Let binary decision variable u,, denote whether terminal m is open,

that is,

1 if terminal m € X is open
U = (1)
0 otherwise.
Let integer decision variable n;" denote the number of vehicles assigned to terminal m.

For each scenario w € €2, we have to decide how to move each shipment from
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its origin to its destination through the open terminals. That is, for each origin-
destination pair (i, j) € O x D with ¢;;(w) > 0, we have to determine through which
open terminal the shipment will move, and we have to decide how all the movements
will be handled with vehicle routes. Let the binary decision variable 27¥(w) denote

whether the shipment from ¢ to j moves through terminal m, that is,

1 if terminal m € X is used in moving the shipment in scenario w € €2
zij(w) = from origin 7 € O to destination 7 € D

0 otherwise.

(2)

The definition of zf; (w) implies that the assignment of an origin-destination flow to a
terminal may vary according to the scenario. If the assignment of origin-destination
flows to terminals must be the same for all scenarios, then one only needs 277 variables
that do not depend on w.

Vehicle routing decisions are formulated in more detail later in the section. At
this stage, it is sufficient to specify that 7 (O', D', Q’,d’,n,) denotes the optimum
cost of the vehicle routing problem with a particular terminal, set @' C O of origins,
set D' C D of destinations, quantities to be picked up and delivered given by @' €
R'f"ﬂm (where for each origin i € O', Q! denotes the quantity to be picked up at i
and brought to the terminal, and for each destination j € D', Q;- denotes the quantity
to be taken from the terminal and delivered at j), vehicle movement costs between the
terminal and the considered origins and destinations given by d’' € ROHOTHDD? and
n, vehicles with capacity @), each. The arguments of interest of the function 7 depend
on the decision variables in (2), as follows: For each m € X and z™(w) € {0, 1}I°</PI
let

O™ (z™(w)) = {ieO : Zzg(w)>o}

jED

D" (2™ (w)) = {jED : Zzl’;’(w) >0}

€0
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Qr(z"™(w),w) = Y gw)(w)  forie O™ (z"(w))

JED™ (2™ (w))
Qr(z™(w),w) = Y W)z (w)  for j € DM(Z"(w))
i€om (zm(w))
Q"(z"(w),w) = [Q"(Z"(w),w) : 1€ O"(z"(w)) UD" (2" (w))]
d™(2™(w)) = [dy @ i,j € O™ (z™(w)) UD™ (2" (w)) U{m}].

Then the optimization problem of interest is

... {Z (et + Com?) + 3 pleo)V >} Q

weN
where
V(u,ny,w) =
minge) Y 7(O"("(W)), D" (" (W), Q" (" (W), w), d™ (" (W), ny)  (4)
meX
subject to Z zii (W) = Tigw)>0) foralliec O, j€D (5)
mexX
zii(w) < U forallie O, jeD, meX (6)
zii(w) € {0,1} forallie O, jeD, me X (7)

gives the minimum cost distribution plan for scenario w given the open terminals
specified by u, vehicle fleet sizes specified by n,, and the origin-destination flows
specified by ¢(w).

Note that in the definition of Q™ (2™ (w),w) above, the quantities that have to be
picked up and delivered in a time period in scenario w are specified by the origin-
destination flows ¢;j(w). In practice, in a time period it is typical to deliver goods that
were picked up in the previous time period and then to pick up goods and bring them
to a terminal to be delivered in the next time period. If the origin-destination flows
vary from week-to-week, then the total amount picked up in a particular week may
not equal the total amount delivered in the same week. For example, if ¢ is positive
every second time period and zero every other period, then in alternating time periods

goods will be picked up (but not delivered), and delivered (but not picked up). To
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capture such behavior accurately, a multistage formulation is needed instead of the
two-stage formulation (3)—(7).

The formulation above can accommodate various definitions of the function 7, and
thus various types of vehicle routing constraints. Below we give a definition of 7 that
allows multiple vehicles to visit an origin or a destination during a time period, and
that requires deliveries to be completed before any pickups are done on a route. This
definition was motivated by the applications described in the introduction. Such a
vehicle routing problem is a combination of two problems that have been studied in
the literature. The one problem is called the vehicle routing problem with backhauls;
see, for example, (41), (3), (63), (65), (66; 67), (57), and (60). The other problem is
called the vehicle routing problem with split deliveries (sometimes split pickups); see,
for example, (36), (35), (58), (4), and (51). As far as we know, the vehicle routing
problem with backhauls and split pickups and deliveries has not been studied in the
literature.

Consider a set O’ of origins, set D' of destinations, quantities to be picked up
and delivered given by )’, vehicle movement costs between the considered origins,
destinations, and a particular terminal given by d’, and n) vehicles with capacity @,
each. Let 0 denote the terminal. Let V' := {0} U O’ U D’ denote the set of nodes.
Because deliveries must be completed before any pickups are done on a route, the

feasible arc set on a route is
A= {(Z,]) c(V)2\O' xD' . 2%]}

The decision variables are as follows:

.
1 if vehicle k is in use
Vk = %
0 otherwise
)
1 if vehicle k travels on arc (3, j)
Tijre = %
0 otherwise
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Y

Qi

Then

ming , 4

subject to

0, the amount of goods picked up at i if i € O or

the amount of goods delivered to ¢ if i € D', by vehicle k.

(0, D, Q' dn)) =

'
nU

SN e te ®)

(i) A k=1 k=1

Z Tjik = Z Tijk for all 7 € OIUD,, k€ {1,,71;}(9)
{7: (Go)eA} {7 : (1.4)€A}

air, < > wp | Qu forallie O'UD, ke {l,...,n,X10)
{j: (i)eA}
Z air < Quuk forall k € {1,...,n!} (11)
€D’
Z air < Quui forall k€ {1,...,n,} (12)
€0’
daw = Q) for all i € O’ (13)
k=1
dap = Q) for all j € D’ (14)
k=1

Z zig < |S|—1 forall k € {1,...,n.},
{(G.5)eA 1 i,jES}

ScO orScD,|S|>2 (15)

v, € {0,1} forall k € {1,...,n} (16)
zir € {0,1} for all (4,5) € A, k€ {1,...,n,} (17)
aj > 0 foralli e O'UD', ke {l,...,n,} (18)

With 7 given by (8)—(18), problem (3)—(7) can be formulated as a two-stage mixed

integer linear program, or simply as a large mixed integer linear program. Very small

instances of such a problem can be solved with available software. In computational

tests, instances with up to 5 origins, 5 destinations, 3 candidate terminals, and a single

scenario, could be solved. Most instances with 6 origins, 6 destinations, 3 candidate
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terminals, and a single scenario, could not be solved — the computer’s memory was
insufficient to complete the branch-and-bound procedure. Problems in applications
have hundreds of origins and destinations, and thus it seems that in the foreseeable
future it will be impractical to solve the mixed integer linear program.

Next we describe an approach to problem (3) that seems to be widely used. Tt is
natural to attempt to improve the tractability of problem (3) by simplifying the vehicle
routing problem (8)—(18). A popular way to do this is to model freight movements as
flows on arcs instead of vehicle routes, and to ignore fixed vehicle costs. The resulting
problem is the following two echelon multicommodity (TEMC) location problem (for
a deterministic version, see for example (40)). Decision variable u,, is the same as
in (1). Decision variable y/7(w) denotes the quantity of goods flowing from origin i to
destination j through terminal m in scenario w. Then the TEMC location problem

is as follows:

min { Z Cm U + Zp(w)W(u, w)} (19)

u€{0,1}1¥] e e

where

W(u,w) = minyg) Z Z Z (dim + dmj) yi5 (W) (20)

i€O0 jED meX
subject to Z yii(w) = gjw) forallie€ O, j€D (21)

meX
yiw) < g(w)u, forallie O, j €D, me X(22)

yi(w) > 0 foralli e O, j € D, m € X23)

Note that, for any u € {0,1}!*l, problem (20)-(23) has an easy solution. For each
origin-destination pair (i, j) € O x D, let m(7, j) := argmin,ex{dim + dnj : Uy, = 1}
denote the cheapest open (given u) terminal to use from origin i to destination j.

Then
W(w,w) = > (dimig) + dmigyg) €5(w)

i€0 jED
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Thus

Yo p@Www) = 3> (dimg) + dmigyg) D p(w)a(w)

en i€0 jED weh
= Z Z (dimig) + dm(ig)g) Tis
€0 jeD

= mgin ZZ Z (dim + dumg) Ui

i€O jED meX

subject to Z Uy = @j foralli e O, j €D
meX
Ui < Gijum foralli€ O, j€D, me X
g > 0 forallie O, €D, me X

where Gjj := > .o P(w)gij(w). Therefore problem (19)-(23) reduces to the following

problem:
TR D SLRIRD %) 9 TRTMIA 2
Y mex i€0 jED meX
subject to Z U= G foralli € O, j €D (25)
meX
Ui < il forallie O, j€eD, meX (26)
g > 0 forallic O, j€eD, me X (27)
u, € {0,1} for allm € X (28)

Formulation (24)—(28) is used in several commercial software packages for distribution

network design.

2.4 Qualitative Discussion of Important Factors in Distri-
bution Network Design

Recall the first stage problem (3), which can be rewritten as follows:

min min min { Z (CmUp + Cynit) + Zp(w)V(u, N, w)}

NE{I,Q,...} {UG{O,I}|X| :EmEXum:N} nv€N|X|

= min f(N)

Ne{1,2,...}

meX weN
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f(N) = min min { Z (CmUp + Cynit) + Zp(w)V(u, Ny, w)}
{ue{0,1}1¥1: 3 v um=N} n,eN¥I meX s

(30)
In words, one can first choose the number of terminals, then the locations of the
terminals, and then the number of vehicles at each terminal. Of course, when one
chooses the number N of terminals, one should take into account how the following
optimization problems depend on N. Next we describe an approach for choosing
the number N of terminals, approximating how the following optimization problems
depend on N.

Suppose that the locations most likely to be chosen for the terminals (typically
the locations with smaller values of ¢,,) have approximately the same fixed costs
¢m =~ c. Then the first term ZmeX CmUpm in the objective function f can be re-
placed with ¢N. Next, note that the total number ) . n7" of vehicles needed
can be estimated quite accurately with the flow data and the vehicle capacity only,
for example, by max,ca ;.0 Zjep ¢ij(w)/Qy, so that the total fixed vehicle cost
Y mex Conyt does not depend much on the chosen number N of terminals. Se-
lection of the optimal number n" of vehicles at each terminal is addressed later.
Next, suppose that we approximate the remaining part of the objective function,
M 0,11%0 5, ume v} Mg enixl Yo peq P@)V (1, 1y, w), with V(N) := 37 o p(w)V (N, w).
Then one obtains an approximating problem

min {f(N) - cN+V(N)} (31)

Ne{1,2,...

It remains to show how an approximation V(N) can be constructed that is both
accurate and easy to compute. In the remainder of this section, we make a few
observations that guide the development of our CA method regarding (1) the locations
of the origins and destinations and the flow rates between them, (2) the importance

of terminal location, and (3) the selection of how many terminals serve each origin
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and each destination.

In most applications, the distribution of origins and destinations is quite different
from the uniform distribution. A relevant question is whether approximation of the
locations of origins and destinations with a uniform distribution may lead, or is likely
to lead, to choosing an incorrect number N of terminals. It is not our purpose to
formulate precise questions and give precise answers in this regard; let us just point
out that it is easy to construct examples in which approximation of the locations
of origins and destinations with a uniform distribution leads to an incorrect number
of terminals being selected. Also, in most applications, the origin-destination flow
rates vary greatly for different origin-destination pairs. It can also easily be seen that
approximating the origin-destination flow rates with a constant rate for all origin-
destination pairs may lead to an incorrect number of terminals being selected. We
also note that in the applications that motivated this work, data on locations of origins
and destinations, and historical flow rates, were easy to obtain. Thus, to select the
number of terminals, it is important to take into account the locations of origins and
destinations, and the origin-destination flow rates, with more accurate detail than
a uniform distribution. For example, suppose that most origins and destinations
are located along the east coast and west coast. If most flows are between origin-
destination pairs on opposite coasts, then it may be good to have a central terminal,
with some vehicles delivering and picking up loads on the east coast, and other vehicles
delivering and picking up loads on the west coast, with the loads being exchanged at
the central terminal. On the other hand, if most flows are between origin-destination
pairs on the same coast, then it may be good to have two terminals, one on the
east coast and one on the west coast. A uniform distribution cannot capture the
distinction between the two cases above.

Next we address the question of whether it is important to accurately take into

account how the terminals will be located when the number N of terminals is chosen.
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First, note that a crucial difference between this question and the questions of the
previous paragraph is that the locations of the terminals are obviously not known
before the number of terminals is chosen, but as already pointed out, often one has
data about the locations of origins and destinations, and the flow rates. Also, it is
reasonable to expect that, given N, the function V' (u, n,,w) will not be very sensitive
with respect to the locations u, the intuition being that the optimization in the second
stage problem (4)—(7) that defines V(u,n,,w) allows the second stage decisions to
adjust to the locations u. Next we describe a crude but simple experiment to illustrate
the intuition regarding the effect of terminal location. We took the locations of the
origins and destinations as well as the flow rates from the data set for one of the
applications that we worked on. The locations of the origins and destinations are
shown in Figure 5. The location and flow data are given in the appendix. Given any
set of terminal locations, for each origin-destination pair the least great-circle distance
from the origin to one of the terminals and from the terminal to the destination
can easily be calculated. For each origin-destination pair we calculate the following

weighted distance between the origin and destination:

(origin—destination flow rate) o least great-circle distance

vehicle capacity from origin through a terminal to destination

Thus the total weighted distance over all origin-destination pairs can be calculated
for any given set of terminal locations. The number N of terminals was varied from 1
to 10. For each number N of terminals, the following procedure was repeated 10,000
times. One terminal was located centrally in a rectangular area covering all the origin
and destination locations in our dataset. N —1 terminals were located independently
and uniformly distributed in the rectangle that contains all origins and destinations.
Then the total weighted distance over all origin-destination pairs was calculated as
described above. The total cost per time period was equal to the total weighted

distance in miles plus 25,000 x N for the terminals. We used 2000 units for the
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vehicle capacity. Table 2.4 shows the average total cost over the 10,000 replications,
and the minimum total cost over the 10,000 replications (approximating the total
cost of the best terminal locations) for each number N of terminals. The number of
terminals minimizing the average cost is equal to the number of terminals minimizing
the minimum cost, namely 4 terminals, which suggests that the optimum number of
terminals can be determined quite accurately without optimizing the locations of the

terminals.

Figure 5: Origins (circles) and destinations (pluses) for one of the applications.

One further observation regarding terminal location is that in practice there are
many factors that play a role in the selection of exact locations of facilities that do
not lead to simple models, such as the local transportation infrastructure, availability
of individual sites, property prices, taxes, cost of local labor, climate, aesthetics of
the location, and other subjective preferences. We agree with (32) that models that

“entail a very precise representation of the locations” are “a fixation in pursuit of
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Number of Cost
Terminal Facilities | Mean  Minimum Standard Deviation

1 415,201 N/A N/A

2 407,240 317,864 48,997
3 391,429 305,709 55,679
4 385,652 300,914 53,914
5 389,874 320,991 50,023
6 398,968 342,544 44,989
7 420,964 359,528 47,112
8 438,693 379,866 44,242
9 458,251 401,393 39,517
10 477,503 418,487 36,558

Table 1: The total cost of locating /N terminal facilities.

theoretical accuracy that has relatively little practical value”. We do not attempt to
model factors such as those mentioned above, and therefore we do not address the
exact location of terminals. Fortunately, the optimal number of terminals does not
seem to be very sensitive with respect to the exact locations to be chosen for the
terminals.

We also want to address the effect of the number of terminals that serve each
origin and each destination. Recall the one-terminal-nearest-terminal distribution
strategy described in Section 2.2. With that strategy, shipments from each origin are
taken to the terminal closest to the origin, and from there the shipment is transported
to its destination. Thus, with such a strategy, each origin is served by exactly one
terminal, and each destination is served by all the terminals. The larger the number
of terminals that serves an origin or destination, the larger the number of vehicles that
have to stop at the origin or destination per time period. It was shown in (7) that
the optimal tour length increases proportionally to the square root of the number
of points to be visited on the tour. Therefore, the detour distance for pickups or
deliveries increases approximately proportionally to the square root of the number of
terminals that serves origins or destinations. At the same time, the larger the number

of terminals that serves origins or destinations, the smaller the linehaul portion of the

35



transportation distance between origins and terminals, or terminals and destinations,
can be made by careful selection of the terminal to be used to flow goods for each
origin-destination pair. Therefore, there is a trade-off between linehaul distance and
detour distance as a function of the number of terminals that serves origins and
destinations, and we want to capture this trade-off with our approach, instead of
fixing a strategy such as the one-terminal-nearest-terminal strategy. Also, it seems
reasonable that the larger the total quantity of goods that should be picked up at an
origin or delivered to a destination in a time period, the larger the number of terminals
that serves that origin or destination should be in the time period. As an extreme
example, if the total quantity of goods that should be picked up at an origin in a time
period is very small, then only one terminal should serve that origin in that time
period, so that only one vehicle has to make a stop at that origin in that time period.
It is typical for the total quantity of goods that should be picked up at an origin or
delivered to a destination to vary significantly among origins and destinations in the
same time period, and also among time periods for the same origin or destination.
Figure 6 shows the distribution over origins and destinations of the average total
quantity of goods picked up or delivered per week for one of the applications that we
worked on. Therefore, we want to allow the number of terminals that serves an origin
or destination to be different for different origins and destinations in the same time
period, and also different for the same origin or destination in different time periods.

Motivated by the observations above, we construct an approximation V(N,w)
that takes into account detailed data regarding locations of origins and destinations,
and the origin-destination flows, that approximate terminal locations with a uniform
distribution, and that chooses the number of terminals that serve an origin or desti-
nation in a time period based on the total quantity of goods that should be picked
up at the origin or delivered to the destination in the time period. Note that this

approach is in some sense the opposite of the approach followed in (42), (27), (43),
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Figure 6: The distribution over origins and destinations of the average total quantity
of goods picked up or delivered per week.

(16), and (17), where it was assumed that origins and destinations are uniformly
distributed, and origin-destination flows are the same for all origin-destination pairs,
and the terminals were carefully located on a rectangular grid. Also note that the
purpose of the papers above was to obtain qualitative insight without data, and not
to develop a method that can produce good solutions, whereas we want to develop a

method that can produce good solutions.

2.5 Continuous Approximation Approach

In this section we describe a CA approach for designing a distribution network in
which each shipment moves through one terminal on its way from its origin to its
destination. First we provide an overview of the approach in Section 2.5.1. Thereafter

we describe the steps of the method.
2.5.1 Overview

It was shown in (29), (4), and (8) that we can make decisions in the following sequence,
and that it should be taken into account how each decision will affect the subsequent
decisions and objective values. The following decisions are made before the scenario w

(and thus the flow realization ¢(w)) is known:
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(i) Select the number of terminals.
(ii) Select the location of each terminal.
(iii) Select the number of vehicles at each terminal.
The following decisions are made after the flow realization ¢(w) is known:

(iv) For each origin-destination pair with flow g;;(w) > 0, determine which terminal

will be used to move the shipment from the origin to the destination.

(v) For each terminal, decide how vehicles are routed from the terminal to do the

pickups and deliveries of the flows assigned to the terminal in the previous step.

Embarking on this work, we were primarily interested in the first design decision,
namely how to select the best number of terminals for a distribution network. How-
ever, inspection of (3), (4), and (8), reveals that the design decision (i) should not
be made without taking into account design decisions (ii) and (iii), and operational
decisions (iv) and (v). It was also argued that taking design decisions (ii) and (iii) and
operational decisions (iv) and (v) into account by solving mixed integer programs was
impractical, and hopefully unnecessary. Thus a major part of the work is aimed at
the development of tractable approximations that take design decisions (ii) and (iii)
and operational decisions (iv) and (v) into account, so that design decision (i) can be
made relatively easily and well.

We also want to test the quality of the decisions resulting from the developed ap-
proximations. To do so, we would like to take the value of design decision (i) resulting
from the approximations and that resulting from formulation (24)—(28), for each solve
the mixed integer programs that produce decisions (ii)—(v), and then compare the to-
tal cost resulting from the two values of design decision (i). The challenge that the

mixed integer programs that produce decisions (ii)—(v) are intractable remain, and
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therefore we developed heuristics to produce decisions (ii)—(v). These heuristics re-
quire significantly more computational effort than the approximations developed to
make decision (i), but are tractable enough to do the comparison for given values of
decision (i). Some of these heuristics may be of interest by themselves.

Section 2.5.2 describes a CA method for selecting the number of terminals. Sec-
tion 2.5.3 describes how the terminals are located in computational experiments to
test the quality of the solutions produced with the CA method. Section 2.5.4 provides

a heuristic for determining the vehicle fleet sizes.
2.5.2 Selection of Number of Terminals

The two major cost components considered in the selection of the number of termi-
nals are terminal fixed cost and transportation cost. Terminal fixed cost increases
proportionally with the number of terminals. Transportation cost should decrease as
the number of terminals increases, because there are more terminals to choose from
when routing shipments from their origins to their destinations through terminals.
Transportation cost is taken to be proportional to the transportation distance. The
transportation distance results from the routes that vehicles travel from each terminal
to perform the pickups and deliveries, and is partitioned into two components, namely
the linehaul distance and the detour distance. The linehaul distance associated with
a route is the distance from the terminal to the center of the points that are visited,
and back again. The detour distance is the remaining distance on the route, and is
approximately the length of a tour through the points that are visited, excluding the
terminal.

As explained in Section 2.4, as the number of terminals that serves each origin or
destination increases, the average linehaul distance, or the average distance from the
origin of a shipment through the terminal used for the shipment to the destination,

decreases, but the total number of stops on vehicle routes increases, and thus the
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detour distance increases. As also explained in Section 2.4, the larger the total flow
from an origin or to a destination, the larger the number of terminals that should
serve that origin or destination. We control the number of terminals that serves an
origin or a destination as follows. Suppose there are N open terminals. Then we
select N — 1 thresholds, 0 < @1 < -+ < Qn_1. Consider an origin ¢ and a sce-
nario w. If 375 gij(w) € (0,Q1], then 1 terminal serves origin ¢ in scenario w. If
> jep Gij(w) € (@n-1,00), then all N terminals serve origin 7 in scenario w. Other-
wise, if Zjep ¢ij(w) € (Qk—1,Qy], then k terminals serve origin ¢ in scenario w. The
number of terminals that serve each destination in each scenario is determined in the
same way. Although the number of terminals that serves an origin or a destination
is allowed to depend on the scenario, the thresholds do not depend on the scenario.

Since not all terminals serve each origin and destination, care has to be taken to
ensure that for each origin-destination pair (¢, j) with ¢;j(w) > 0, there is at least one
terminal that serves both 7 and j. We do that by designating one terminal, called the
center terminal, to serve all origins and destinations.

An outline of the method for selecting the number of terminals and the thresholds

is as follows:

1. A method is developed to approximate total linehaul distance as a function
of the number of terminals and the thresholds. This method is described in

Section 2.5.2.1.

2. Section 2.5.2.2 describes a method to approximate total detour distance as a

function of the number of terminals and the thresholds.

3. The approximations of total linehaul distance and total detour distance as a
function of the number of terminals and the thresholds are used to search for
the optimal (as measured by the approximations) number of terminals and

thresholds. The search method is described in Section 2.5.2.3.
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2.5.2.1 Linehaul Distance Estimation

Suppose there are N open terminals, n = 0,1,..., N — 1, located in some region that
does not have to include the locations of all origins and destinations. The center
terminal, used by all origins and destinations, is indexed by 0. This section describes
the estimation of the total linehaul distance for given values @ := (Q1,...,Qn_1) of
the thresholds.

Consider a scenario w € €2, and an origin 7 € O. Suppose that origin ¢ is served
by a set A; of N; terminals, including the center terminal. The selection of the
N; — 1 terminals that serve origin ¢ in addition to the center terminal from the set
{1,2,...,N — 1} of open terminals besides the center terminal is described later.
Similarly, consider a destination j € D, and suppose that destination j is served by
a set A of N; terminals, also including the center terminal. The numbers N; and
N; depend on the thresholds ) and on the scenario w, but the dependence is not
shown in the notation. Let Nj; := N;NN; denote the set of terminals that serve both
origin i and destination j. The sets A;, N;, and N;; depend on the thresholds @, on
the scenario w, and on the selection of the terminals, but as before the dependence is
not shown in the notation.

Let A;, ; denote the distance from origin ¢ through terminal n to destination j.
Distance \;, ; depends on the locations of the terminals, but the dependence is not
shown in the notation. Then the minimum distance from origin ¢ to destination j

through a terminal that serves both ¢ and j is given by

Ai ‘= min )\i,n,j- (32)

J nGNij
Distance A;; depends on N;; and thus on the thresholds @, on the scenario w, and
on the selection of the terminals; and on distances \;, ;, and thus on the locations of

the terminals.

For the given number N of terminals, and the given thresholds (), the expected
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total linehaul distance L(N, Q) is then calculated as follows:
INQ) = Yo Y3 g (3)
weD i€o jep Y
where E[A; ;] denotes the expected value of A;; with respect to random parameters
involved in the selection of the terminals.

Next we consider the calculation of E[A,; ;] in greater detail. Suppose that the
locations of the N — 1 terminals {1,2,..., N — 1} besides the center terminal are
independently and identically distributed in some region. Suppose that the set M;\{0}
of terminals that serve origin ¢ in addition to the center terminal are selected from
terminals 1, 2, ..., N—1 by making N;—1 random selections without replacement from
{1,2,..., N — 1}, each time selecting each remaining element with equal probability.
The set N\ {0} of N; —1 terminals that serve destination j in addition to the center
terminal are selected in the same way. This selection of terminals is independent for
all origins and destinations.

Note that the linehaul distance A;; is decreasing in both N; and Nj, as it should
be. Specifically, let w; := (w;1,...,win-1) and @w; = (wj1,...,w;N-1) be two
independent and identically distributed random permutations of {1,2,..., N — 1},
with distribution such that each of the (N —1)! permutations has probability 1/(N —
1)!. Consider any n; < N and n; < N. Let Nj := {0,@;1,...,@in,1}, NiF =
{0, @i, ., Win; }s ./\73 = 10,1, .., Tin;—1}, ./\~/',~j = N; N ./\~/'j, ./\7;;r = /\7;+ ﬂ/\~/},
Aij = min, e g Aigp,js and /~\Z+J = minne/\?ij Ainj- Then, N, Nj, Ni;, and A;; have
the same distributions as A;, N, N;j, and A;; respectively, given that N; = n; and

N; = nj. Also, N;", N, and /NX;“]. have the same distributions as A;, Nj;, and A; ;
respectively, given that V; = n; +1 and N; = n;. Note that, w.p.1, N; C ./\~/'Z~Jr and
./\N/'Z-j - ./\71;r Thus /NXiyj > /NXZ]- w.p.1. Hence, the conditional distribution of A;; given

N; = n,; is stochastically decreasing in n;.

Let ./\/;j ={n €N : Nin; < Ao} denote the set of terminals in N;; that give
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a distance from 7 to j strictly less than the distance from ¢ to 5 through the center
terminal. We calculate E[A; ;] by conditioning on || and |N5|, where for a set S,

|S| denotes its cardinality:

NiAN; k-1
E[Ai ] = S PING =KD PN =] NG =K E[Ay | [N;] =k NG| = ] (34)
k=1V(N;+N; —N) =0

(Note that it always holds that |[N;;| > N;+ N; — N, irrespective of how N; and N, are
selected.) First, note that since the terminals in N\ {0} are selected without replace-
ment and with equal probabilities from the terminals 1,2,..., N — 1, independently
of V;, it follows that the random variable |[N;;| follows a hypergeometric distribution.
Specifically, given any set N;, the conditional probability P[|N;;| = k|Nj] for any
ke{lVv(N;+N;—N),...,N; A N;} satisfies

N;—1 N — N;
N

k-1 =k

PNyl =k N] - =
N -1

N, -1

(N; — 1)I(N; — 1IN — NN — N;)!
(& — DN — B)I(N; — E)((N — N; — N; + B)I(N — 1)!

(It is the same as the probability of drawing k—1 red balls from a jar containing N —1
balls, N; —1 of which are red, in a sample of size N; —1 drawn without replacement.)
Since the right side above is the same for all realizations of Aj;, it follows that the
probability that exactly &k € {1V (N;+ N; — N),..., N; A N;} terminals serve both ¢
and j is

(N; — DI(N; — DIN — N)I(N — N;)!
(& — DI(N;: — B)I(N; — B)I(N — N; — N; + k)I(N — 1)

PG| =] =

As before, P[|N;;| = k] depends on the thresholds @) and the scenario w. Next,
since the locations of terminals {1,2,..., N — 1} are independent and identically

distributed, and the terminals in A;\ {0} and N; \ {0} are selected independently of
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the locations of the terminals, it follows that given that |[A;;| = k, the number of the
k —1 terminals n other than the center terminal that have distance \;,, ; strictly less

than ;o ; has a binomial distribution. Specifically, for ¢ € {0,1,...,k — 1},

< k-1 ¢ k—1—2¢
PNl =] NGl =k] = , Py < Aol P[Aing > Aioyl

Since A;; is a nonnegative random variable, it holds for £ € {0,1,...,k — 1} that

E [Aij [ ING] =k, NG| = £]
_ / P[Aiy > o | N| = k, NG| = (] da
0

neN;;

o0
= / ]P’[mln)\ln]>a‘|/\/;y|_k| HE
0 N
/\i,O,] .
— / P [min{Xig, .- Aiegd > @ [ iy < diggo - Aieg < Aoy dar
0
)\1,0,]
— / P [)\i,l,j > Oy )\i,l,j >« ‘ )‘i,l,j < )\i,U,j; ceey )\i,gyj < )\i,O,j] do
0
Ai0,5 ¢
= / P P\z‘,l,j > | Ay < )‘i,U,j] do
0

The third and fifth equalities follow from terminals {1,2,..., N—1} being independent
and identically distributed, and the terminals in A; \ {0} and A/ \ {0} being selected
independently of the locations of the terminals. As a special case, note that it holds
for £ = 0 that

E[Aij [Vl =k WG5I=0] = Xig;

In summary, it follows from (34) that

Ni/\N]‘

(N; — D)I(N; — DIN — N)I(N — N)!
2. (Ni — B)(N; — k)I(N — N; — N, + k)I(N — 1)!

EA:i ;] =

k=1V(N;+N;—N)
k—1
¢ —1—¢
X ; 0k —1—-20) PN < X PN, > Aol

A1,0,
X / ’ P [)‘i,lyj >« ‘ )‘i,lyj < )\iyo,j]é do (35)
0
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It remains to explain how P[A;;; < Ao, ] and P[Ai1; > a1, < Ao, for a €
(0, Xip,;) can be computed. We provide the details of these calculations in the ap-
pendix, where it is shown that if the terminals {1,2,..., N — 1} are uniformly dis-
tributed in a rectangular region, and distance \;;; is given by the L;-metric, then
PN > a1 < Aioj] is a piecewise polynomial in « of degree at most two, and
thus

AiL0,7 P
/ P [)‘i,l,j >« ‘ )‘i,l,j < Ai,O,j] do
0

is conceptually simple. Thus, for a given number N of terminals, and given thresh-
olds @, the expected total linehaul distance L(N, Q) can be calculated quite easily
using (33).

2.5.2.2 Detour Distance Estimation

(7) established the following result that is widely used in the CA literature. Con-
sider an independent sequence of uniformly distributed points in a set A C RF with
Lebesque measure p(A) > 0. Let 7™ denote the shortest tour length, as measured
by the Ly Euclidean distance, through the first n points in the sequence. Then there
exists a constant [, independent of the sequence and of A, such that with prob-
ability 1, lim,_o n~*"D/FT™ = 3 EY2[1u(A)]V*. Specifically, for R?, there exists a
constant 3y € [0.44,0.65] (the exact value is not yet known), such that with proba-
bility 1, limy, oo n ™ /2T™ = $,2/2[u(A)]'/2. The approximation 7" =~ $/nju(A), for
some (3 depending on the distance metric, has been used in many vehicle routing ap-
plications, and in this section we do the same for the purpose of obtaining a tractable
approximation of the detour distance as a function of the number N of terminals and
the thresholds Q.

Consider a given number N of terminals, given values Q) := (Q1,...,Qn_1) of the
thresholds, and a given scenario w € (2. Assume that the vehicles are fully loaded

with goods to be delivered when departing from a terminal and fully loaded with
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goods that were picked up when arriving back at the terminal (one can multiply
vehicle capacity ), with a factor between 0 and 1 to compensate for vehicles not
being fully loaded on average). Then the total number of vehicle routes is equal
t0 > ico 2jep €ij(w)/Qy.  Let the total region be denoted by A with area u(A).
Suppose that each terminal serves origins and/or destinations in most of A (this is
the case even for distribution strategies such as one-terminal-nearest-terminal de-
scribed in Section 2.2). The average number of vehicle routes per terminal is equal
0 D ico 2jep Gij(w)/(NQ,). Thus, if different vehicle routes from the same terminal

do not overlap, then the average area served per vehicle route is equal to

p(ANQ,
Zieo ZjeD 4ij (w)

Note that ;1(A) depends on N and w, but the notation does not indicate the depen-

1(A)

dence.

Next we calculate the average number of delivery stops and the average number of
pickup stops on a vehicle route, as a function of N, (), and w. The number of vehicle
stops at an origin i € O is at least max {Ni, [ 5ep 4ij(w)/Qy] }, and the number of
vehicle stops at a destination j € D is at least max { Ny, [> ;. ¢ij(w)/Qy]} (recall
that N; and N; depend on N, @), and w). Thus, the average number of pickup stops
per vehicle route is approximately
S ico max { No, [ 0:5() /@] }

>ico Zjel) gij(w)/ Qo
and the average number of delivery stops per vehicle route is approximately

zjeD max {Nj7 [ ico @ij(W)/Qy] }
> ico ZjED gij(w)/ Qo

Then, the approximate expected total detour distance D(N, Q) is calculated as fol-

np ==

Ng

lows:

PN.Q) = Y o)== [ ) g = D) + ]
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The approximation is obtained by substituting expressions for the average number of
stops and the average area of the region served into the tour length approximation
= ﬁ\/m. The reason n, —1 and ng—1 are used in the tour length calculations
is because the vehicle does not have to return to the first pickup point or the first
delivery point after completing pickups or deliveries. The term ﬁ\/m approximates
the average distance from the last delivery point to the first pickup point on a vehicle
route. Since /x is a concave function, it follows from Jensen’s inequality that this
overestimates the average tour length. In numerical experiments, this overestimation
did not seem to have much of an effect on the selection of the optimal number of
terminals. In practice, such overestimation is likely to be dominated by the amount
by which actual route lengths on road networks differ from the lengths according to
simple metrics.
Note that n, is increasing in the numbers N; of terminals serving origins ¢, ng
is increasing in the numbers N; of terminals serving destinations j, and D(N, Q)
is increasing in n, and ng. Also, the average area served per vehicle route ;1(A) is
increasing in the number N of terminals, and D(NV, @) is increasing in p(A). Thus the
expected total detour distance D(N, Q) is increasing in the number N of terminals

and in the numbers of terminals serving origins and destinations, as it should be.
2.5.2.3 Search for Number of Terminals and Thresholds

Recall that we want to construct and solve an approximating problem (31):

min {f(N) = cN+V(N)}

Ne{1,2,...}

taking into account the terminal fixed cost ¢/N and the approximate expected trans-
portation cost V(N). Without loss of generality, suppose that the unit of cost or the
unit of distance has been scaled to make transportation cost per distance equal to 1.

The approximate expected transportation cost V(N) is given by minimizing the sum
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of the linehaul cost and the detour cost over the thresholds:

V(N) = min {L(N,Q) + D(N,Q)} (36)

0<Q1<-+<@N-1

Note that the larger the value of N, the larger the set of thresholds that can be
selected, and thus the smaller the value of V(N).

Note that if the total flows . 1, ¢ij(w) for all i € O and >, gij(w) for all j € D
are sorted, then all values of a threshold () between two successive sorted values of
the total flow give the same values of L(N, Q) and D(N, Q). Thus, if N is small, say
N < 4, then problem (36) can easily be solved by enumerating all relevant values of
the N — 1 thresholds. If N is large, then problem (36) can be solved approximately
by a neighborhood search on the set of relevant values of the N — 1 thresholds. In
addition, if a threshold @) is changed from one interval in the sorted list of total flows
to a neighboring interval, the resulting change in the values of L(N, Q) and D(N, Q)
can be computed very quickly, because the value of N; or N; for only one origin ¢ or
destination j is affected by the change.

Finally, problem minyeqi 2,3 {cN + V(N)} can be solved by enumerating a range
of reasonable values of N. The optimal value N* is the number of terminals obtained

with the CA method described above.
2.5.3 Terminal Location

Recall from Section 2.4 that it is not our purpose to model all the factors that should
enter or do enter into the location of terminals. It is our purpose to test the CA
method for selection of the number of terminals described in Section 2.5.2 by more
detailed calculation of transportation costs. To facilitate such detailed calculation
of vehicle routing costs, we need to calculate locations for the chosen number N of

terminals. For that purpose, we choose a set X of candidate locations, and solve the
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following problem:

min {Zcm“m+zz Z (dim+dmj)y§§’}

u’g

meX 1€0 jED meX
subject to Z Ui = @ foralli e O, j €D
meX
gz"; < Gijum forallie O, €D, me X
S =
meX
yg; > 0 forallic O, j€eD, me X
un € {0,1} for allm e X

2.5.4 Choosing the Vehicle Fleet Sizes

The final design decision required to test the CA method for selection of the number
of terminals described in Section 2.5.2 is to choose the number of vehicles stationed
at each terminal. Our approach is simple enumeration, using the operational decision
procedures described in Section 2.6. First, for every scenario w, we assign values to
the decision variables z;;(w) that satisfy constraints (5)—(7), and such that the number
of terminals that serve each origin ¢ or destination 5 does not exceed the numbers N;
or N; obtained from the thresholds @ and the flows ¢(w) as described in Section 2.5.2.
To do this, we use a simple heuristic described in Section 2.6.1. A lower bound on

the number of vehicles required at each open terminal m is then given by

Lo Biep i)

Qo

weN

L, := max[

We use the detailed routing cost calculations described in Section 2.6.2 to calculate
the cost of routing L,,, L., + 1, L, + 2,..., L, + k vehicles from terminal m for
some small number k. We then choose the number of vehicles for terminal m that
minimizes the sum of vehicle cost and transportation cost from terminal m over the
k + 1 fleet sizes. For each fleet size, the detailed vehicle routing cost calculations for

all scenarios described in Section 2.6.2 take a large amount of time. Therefore, as
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described in Section 2.5.2, the CA is based on an assumption of full vehicles, unlike

the more detailed choice of vehicle fleet sizes described in this section.

2.6 Operational Decisions

Section 2.5 described how to make the design decisions, namely selection of the num-
ber of terminals, location of the terminals, and choice of the vehicle fleet sizes. In
the process thresholds were also selected that control how many terminals serve an
origin or destination, depending on the total flow from/to the origin/destination.
In this section we describe methods for making operational decisions. Specifically,
Section 2.6.1 describes a method for selecting which terminal to use for each origin-
destination flow, and Section 2.6.2 describes a method for routing the vehicles from

each terminal to do the pickups and deliveries.
2.6.1 Selection of Terminal for Each Origin-Destination Flow

This section describes how to decide through which terminal to route each origin-
destination flow for a given set of flows ¢(w). Ideally, for given open terminals u,
vehicle fleet sizes n,, and origin-destination flows ¢(w), one would like to solve the
integer linear program (4)—(7). However, solving (4)—(7) exactly does not seem to be
practical. In this section, we describe a heuristic for choosing the decision variables
z(w) that specify through which terminal each origin-destination flow is routed. The
heuristic does not require knowledge of the vehicle fleet sizes n,, but does require
knowledge of the thresholds Q.

Let N;(k) and Nj(k) represent the sets of terminals serving origin i and destina-
tion j respectively at the kth iteration of the algorithm. We require that |[N;(k)| < NV,
\N; (k)| < Nj, and N;(k) C U, N;(k) C U, where U := {m € X : u,, = 1} denotes
the set of open terminals. (Recall from Section 2.5.2 how the thresholds @) and the
origin-destination flows ¢(w) are used to determine the maximum numbers N; and N;

of terminals serving origin ¢ and destination j respectively.) For each origin i € O,
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destination j € D, and set N C U, let
m(i,j,N) € arg m€1/1\1[ {dim + dpmj}

denote a terminal from the set N that minimizes the distance from the origin 4

through a terminal in the set N to the destination j.

Algorithm to Select Terminal for Each Origin-Destination Flow:

(0) Initially, every origin and destination is served by only the center terminal, so
that

Ni(0) = N;(0) := {0} foralli€ O andjeD.

(1) Foreach i € O and j € D,

(a) If |N;(K)| < N; and |N;(k)| < Nj, then set

Nt (k) = Ni(k)um(i,j,u) and N;(k) = N;(k)Um(i,j,U);
(b) Else if |N;(k)| < N; and |A(k)| = N, then set
Nit(k) = Ni(k)Um(i,j,N;(k)) and N (k) = N;(k);
(c) Else if |N;(k)| = N; and |Nj(k)| < Nj, set
Ni"(k) = Ni(k) and Nj(k) = N;(k)Um(i,j,N;(k));

(d) Else [Nj(k)| = N; and [N;(k)| = Nj. Set

NF(k) = Ni(k) and NF(k) = Nj(k).

(Note that |[NV;*(k)] < N; and [N (k)] < Njforallie OandjeD.)
If

2

Nt (k) = Ni(k) and N (k) = Nj(k)

for all i € O and j € D, then terminate the algorithm.
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(2) Choose

-/ -/ k . . d. d i _ . d. d .
(000) € are ggax, 650) | TRy, oy (Bim i) mENF W oy im ¥ )

Set
No(k+1) = NS(k) and Ny(k+1) = NI(k).

Foralli e O\ {i'} and j € D\ {j'}, set
Ni(k+1) = WNi(k) and N;(k+1) = N;(k).
Return to step 1.

At the completion of the algorithm at finite iteration k*, let

zi (W) = Lmem(i Nk o (k))) -
2.6.2 Vehicle Routing with Backhauls, Split Pickups and Deliveries

In this section we describe a method for routing the vehicles from each terminal
to do given pickups and deliveries. The vehicle routes also provide a more accurate
estimate of the transportation cost resulting from a given network design. The method
described in this section is also, as far as we know, the first heuristic proposed for
the vehicle routing problem with backhauls and split pickups and deliveries, and thus
may be of interest in itself.

The vehicle routing problem with backhauls and split pickups and deliveries
(VRPBS) was given in (8)—(18). Recall that the problem input is a terminal in-
dexed by 0, a set O of origins, a set D’ of destinations, quantities to be picked up
and delivered given by ', vehicle movement costs between the origins, destinations,
and the considered terminal given by d’, and n! vehicles with capacity @), each. Note
that the origin-destination flows ¢(w) and the output of the methods described in the
previous sections provide the input for the vehicle routing problem, except for the

fleet size n, which can be determined by enumeration, as described in Section 2.5.4.
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We describe a cluster-first, route-second heuristic for the VRPBS that uses various
ideas of the heuristic for the vehicle routing problem with backhauls (VRPB) proposed
by (67). In both the VRPB and the VRPBS, deliveries have to be performed before
pickups on the same route. The heuristic of (67) has to be modified for the following
reasons. First, as already pointed out, in the VRPBS multiple vehicles are allowed
to visit each origin and destination, whereas in the VRPB exactly one vehicle must
visit each origin and destination. One reason this modification is needed is because
it often holds that @} > @, for some origins or destinations ¢ € O’ U D', and thus
some origins and destinations must be visited by more than one vehicle (recall the
typical nonuniform distribution of pickup and delivery quantities shown in Figure 6).
Second, in the VRPB considered by (67), each of the n! vehicles must visit at least one
destination, and thus no vehicle may travel directly from the terminal to an origin.
In the VRPBS, fewer than n] vehicles may visit origins or destinations, and vehicles

may travel directly to origins (and thus not visit any destinations).
2.6.2.1 Initial Splitting Step

As pointed out, for some points i € O' U D', it may hold that @)} > Q,. If point i
has quantity @) > @,, then it should be served by multiple vehicles, and all these
vehicles except possibly one should carry a full load associated with this point, and
the remaining quantity should be carried by another vehicle which can combine the
remaining quantity with additional loads associated with other points. For example,
if a destination j has Q;- = 3.5Q),, then each of 3 vehicles should deliver full vehicle
loads to 7 and afterward move to pick-up points, and one vehicle should deliver a
load of size 0.5Q), to j and the rest of the vehicle’s space could be used for other
deliveries on its route. Thus, in the first step each point i and its quantity @} is
split, after which each new point ¢ has quantity Q) < Q,. Specifically, for each

point i € O' U D', create [Q}/Q,] copies of point i, of which |Q}/Q,| new points
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i' have quantity Q) = @,, and if |Q}/Q,] < [Q:/Q,], then the remaining point
i' has quantity Q) = Q) — |Q}/Q.,]Q,. Let O" denote the set of new origins, D"
denote the set of new destinations, V" := {0} U O” UD" denote the new set of nodes,
A" = {(i,7) € (V')*\ O" x D" : i # j} denote the new set of arcs, and Q] and Qf
denote the new quantities to be picked up and delivered. For (7, j) € A", the vehicle
movement costs dj; are obtained from the given vehicle movement costs d in the
obvious way, except if ¢ and j correspond to the same original point, in which case
d; ; := ¢ for some chosen ¢ > 0.

Next one can define the following VRPB with input data 0", D", V", A", Q", d",

n,, and @,. The decision variables are

1 if a vehicle travels on arc (i, j)

Tijg =

0 otherwise
nvo := number of vehicles performing pickups
n? = number of vehicles performing deliveries

Note that the number of vehicles used is given by max{n?,nP}. For each set S C
O" or S C D", let ¢(S) denote the minimum number of vehicles needed to serve
each point in S if exactly one vehicle must visit each point, that is, o(S) is the
optimal value of the bin packing problem with item sizes given by @7 for i € S and

bin size Q,. For each combination of n¢ € ”Zieo" Q;’/QJ ,...,n;} and n? e
{ ’VZ]'E/DN Q;I/QU-‘ s ey TL,,U}, let
7_/ (O// D" Q” d// TLO TLD) =

min, Z dy; i (37)

(2,5)€ A"
subject to Z r; = 1 for all s € O" U D" (38)
{7 : (G)eA"}
dooomy =1 for all i € ©" U D" (39)
{5+ (g)eA"}
Z Tip = Ny (40)
icon
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Z zo; = max{0,nd —nl} (41)

iEOII
Zl‘oj = ’I”Ll? (42)
jeD
Z zjo = max{0,n) —nf} (43)
jeD

Z zi; > oS) forall SC O, |S|>2  (44)
{(3,4)e A" :i€S,j¢S}

Z z;; > oS) forall Sc D" |S|>2 (45)
{(i,j)eA" : i¢S,jeS}
r;; € {0,1} for all (4,7) € A" (46)
denote the optimal value of the VRPB given that exactly n¢ vehicles serve the origins

O" and exactly n? vehicles serve the destinations D”. If nQ or n? is too small so

that (38)—(46) is infeasible, then 7" (0", D", Q",d",n$,n?) := co. Then the VRPB

v v
is given by
(0", D",Q",d",n,) = min,o ,»p {c, max{nS, n’} + 7' (0", D", Q" d", n?, ny)}
subject to nf € { Z Q!/Q, ,...,n;}
ieol’

n? € { ZQ;’/QU“,,TL;}}

jepr

2.6.2.2 Initial Clustering Step

Note that, for any ¢ € O", if Q7 = @Q,, then (38)—(46) imply that i is visited by
exactly one vehicle that does not visit any other origin. Similarly, for any j € D",
if Q7 = @y, then j is visited by exactly one vehicle that does not visit any other
destination. Let O" := {i € 0" : Q" = Q,} and D" := {j € D" : Qj = Qu}. Then
for all i € @”, (38) can be replaced by

jeDN

zrj; = 0 for all j € O" (48)
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and for all j € D", (38) can be replaced by

Toj = 1 (49)

ri; = 0 for all 4 € D" (50)
Also, for all i € O", (39) can be replaced by

Ty = 0 for all] € 0” (52)
and for all j € D", (39) can be replaced by

Zj0 + Z Tji = 1 (53)
ieo”
Ty = 0 for all 7 € D” (54)
Note that, given (51), constraint (40) holds if and only if 3. on on Zio = n® — |0"].
If 0"\ 0" # @, then it follows from n > [3, . QY/Q,] that n{ — |0"| >
[Zieo,,\@,, Q;'/QU] > 1. Similarly, given (49), constraint (42) holds if and only if
> jepmpr Toj = ni — |D"|, and if D"\ D" # @, then it follows that n) — [D"| >
’VZjeD”\ﬁ” Q}’/QU—‘ > 1. Also note that constraints (47) and (51) imply that con-
straint (44) holds for all S ¢ O”. Similarly, constraints (49) and (53) imply that
constraint (45) holds for all S C D”. Furthermore, constraints (48) and (52) imply
that constraint (44) is required only for S € 0"\ O”, and not for S C O” such that
SNO" # @ and SN (0"\ O") # @. Similarly, constraints (50) and (54) imply
that constraint (45) is required only for S € D"\ D”, and not for S C D" such that
SND"# @ and SN (D"\D") # @.
Note that it follows from constraints (38)~(43) that >, i > Zicon Tji = 3 jepr Duigpr Tji—

D ienn Tjo = Digpn I jepn Tij = 2 jepn Tjo = I jepn L0j = 2 jepn Tjo = 1y —max{0,n) —

n?} = min{n?, nP}. Thus we can add the following redundant constraint:

szﬁ = min{nd,n” (55)

JED! €O
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Next, we add the following redundant constraints that follow from constraints (38)

and (39) respectively:

voit+ Y w <1 for all i € 0"\ O" (56)
]'GDII

Tio+ Y i <1 for all j € D"\ D" (57)
€O

Also, we add the following redundant constraints that follow from constraints (44)

and (45) respectively:

> z; > 1 for all S ¢ ©"\ O",|S| > 2 (58)
{(i,j)€ A" :i€S,j¢S}
> z; > 1 for all S ¢ D"\ D", |S| > 2 (59)

{(ij)eA" : igS,jeS}
Next we formulate a Lagrangian relaxation for problem (37)—(59). Let the mul-
tipliers associated with constraint (38) for i € ©O" \ O" and associated with con-
straint (39) for i € D"\ D" be denoted by );, and let the multipliers associated with

constraint (44) for S € @\ O" and associated with constraint (45) for S ¢ D"\ D"

be denoted by pg > 0. Then the corresponding Lagrangian relaxation is as follows:

L (O”7 D”) Q”,d”, nl?)”’[}D)A? /"L) =

(i,5)eA” i€\ o {3 : (4:5)eA"}
D SR NS S
ieondr \dj: ()eA"}
X mslo® - > my
Scomor {(6.5)eA” i€S,j¢S}
+ > ps | o(9) - > Tij (60)
scom b {(i)e A" : igS jeS)
subject to wg; + Z r; = 1 for alli € O" (61)
jeD
To; + Z Tji S 1 for all 7 € O” \ @” (62)
jeD"
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ri; = 0 forallic @, je O

zo; = 1 for all j € D"

zy = 0 for all i € D", j € D"
Z z; = 1 for all j € D"\ D"

{i:(i,j)eA"}

zio = 1 for all i € O"

z; = 0 for all i € 0", j € O"

Z zi; = 1 for alli € O"\ O"

Tjo + Z Tj; = 1 for all j € 75”
Z'GON
1‘j0+ Zl‘ji S 1 for all] ED”\ﬁ”
Z'GON
zij = 0 for all i € D", j € D"
Z Tio — an) - ‘@”
iGO”\@”
Z ro; = max{0,nS —nP}
Z’eo//
> wy = ) - ‘15"
jE'D”\'lS”
Z zjo = max{0,n) —nf}
jepr
Z Z zj; = min{n?, n?
jeD" e

Z zi; > 1 forallScO"\0O"|S|>2
{(i,j)e A" : i€S,j¢ S}

Z z; > 1 forall Sc D"\ D" |S| > 2
{(6,§)€A" : i¢S,jES}
z; € {0,1} for all (i,7) € A"
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For each (i,j) € A", let

;

dz, if i,je{0luO"uUD"

i+ ) if ie{0juO"UD",jecO"\O"

df; =Y (scpmpn - jesy 1S if ie{0}uO"UD", jeD"\D"
7o dfi = Y scomon siesy s if ieO”\?ﬂje{O}U?” ~

dii + \i if 1eD"\D",je{0}UO"UD"

d;,] + )‘J - Z{SCO”\@” :i€8,j¢S} s if Z,] € O” \ @”
d;,] + )\z - Z{SC'D”\'ZS” :i%s,jGS} Hs lf Z,] € D” \ 15”
A+ A+ A if ieD'\D"je0"\ O

(81)
Then the objective function (60) is equal to
Z dijij — Z Ai — Z Ai + Z pso(S) + Z pso(S)
(i,7)€A” iEO”\@” iE’D”\'IS” SC@H\@N S'Cfl)ll\’[jll
To interpret feasible solutions of the Lagrangian relaxation (60)—(80), partition

the arcs A" into the following subsets:

Aq::{@mzie@ﬂu{@ﬁ:jeﬁﬂ

,%::{@ﬁ:ieOﬁe@ﬂu{@ﬁ:ie@ﬁeO@u{@ﬁ:ieﬁﬁeﬁﬂ
u{@ﬁ:ieﬁﬂjev}

,ﬂ::{@ﬁ:ieW\@uegnuW\@}

Al = {@j):ieﬂnuzw\ﬁﬂjep"yﬁ}

AL = {(i,j) : ie{0}UD"je{0}UO"}

First, observe that each of the constraints (61)-(79) involves decision variables x;;

for arcs (i, 7) in only one of the subsets above. Specifically, constraints (64) and (67)

involve arcs in A7 only; constraints (63), (65), (68), and (72) involve arcs in A} only;

constraints (69), (73), and (78) involve arcs in A} only; constraints (66), (75), and (79)

involve arcs in Aj only; and constraints (61), (62), (70), (71), (74), (76), and (77)
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involve arcs in AZ only. Also, clearly each individual constraint in (80) involves an
arc in only one of the subsets above. Thus, the Lagrangian relaxation (60)—(80)
decomposes into 5 subproblems, corresponding to the sets of arcs and constraints
identified above. Next we consider each of these 5 subproblems in turn.

For the subproblem involving A7, it follows from constraints (64) and (67) that
z;; =1 for all (i,j) € A.

For the subproblem involving A7, it follows from constraints (63), (65), (68),
and (72) that z;; = 0 for all (7, 7) € Aj.

For the subproblem involving A%, it follows from constraint (69) that exactly one
arc out of each node i € @”\ O”" must be chosen, it follows from constraint (73) that

arcs from nodes i € @\ 0" to the terminal node 0 must be chosen,

exactly n® — ‘@”
and it follows from constraint (78) that for each subset S C O"\ O, at least one
arc out of the subset must be chosen, and thus it follows from constraints (69), (73),
and (78) that the chosen arcs may not form any cycles in @”\ O". In other words, the
chosen arcs in A% must form a spanning anti-arborescence on the nodes {0} UO"\ 0"
with the terminal node 0 being the root node and with fixed indegree n — |0”| at
node 0. Thus the subproblem involving A} is a shortest spanning anti-arborescence
problem with fixed indegree K© := n? — |0"| at the terminal node 0 (K°-SSAA),
and with arc costs given by J;’]

Similarly, it follows from constraints (66), (75), and (79) that the subproblem
involving A is a shortest spanning arborescence problem with fixed outdegree K7 :=
nP —|D"| at the terminal node 0 (K P-SSA), and with arc costs given by df;. Problems
K©-SSAA and KP-SSA can be solved in O(|O0" \ O"[?>) and O(|D" \ D"]?) time
respectively, for example with the algorithm of (39).

Next we show that the subproblem involving AL can be represented as a network
flow problem. The network flow problem has a node for each node in V", as well as

an additional source node s and sink node ¢. The supply at the source node and the
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demand at the sink node are both equal to max{n{,n?}. There is an arc (s, j) from
the source node s to each node j € D” with cost 0. The lower bound of the flow on
each arc (s,7) is 1 if j € D" and 0 if j € D"\ D". The upper bound of the flow on
each arc (s, j) is 1. There is an arc (j,7) from each node j € D" to each node i € 0"
with cost (Z;’Z The lower bound of the flow on each such arc (j,4) is 0, and the upper
bound of the flow on each such arc (j,¢) is 1. There is an arc (i,t) from each node
i € 0" to the sink node ¢ with cost 0. The lower bound of the flow on each arc (i, 1)
is 1ifi € O" and 0 if i € O"\ O", and the upper bound of the flow on each arc (i, )
is 1. Suppose that n? > n?. Then there is an arc (s,0) with cost 0. The lower bound
and the upper bound of the flow on arc (s,0) are both equal to nd — n?. There is
also an arc (0,i) from node 0 to each node i € O" with cost di;. The lower bound of
the flow on each such arc (0,14) is 0, and the upper bound of the flow on each such arc

(0,4) is 1. If nQ < nP, then there is an arc (j,0) from each node j € D" to node 0

with cost d,

lower bound 0, and upper bound 1, and an arc (0,¢) with cost 0, and
lower bound and upper bound both equal to n? —n@. It is easy to see that for every
solution that satisfies constraints (61), (62), (70), (71), (74), (76), (77), and (80) (for
(i,7) € AY), there is a feasible integer flow for the network flow problem described
above with the same cost, and vice versa. The network flow problem can be solved
in O(max{n?,n?}(|O"|+ |D"])?) time, for example with a shortest augmenting path
algorithm; see, for example, (1).

Next we briefly address the following two issues. First, the number of subsets
S cO"\O"and S C D"\ D" in the Lagrangian objective (60) may be very large.

Second, we want to find multipliers A, ;x that solve the Lagrangian dual problem

Y v

rr){ix{L (0", D", Q",d",nf,nl A\ u) : >0}

We use the same subgradient optimization procedure described in (66) to simultane-
ously address both issues. Briefly, instead of enumerating all subsets S ¢ O" \ 0"

and S C D"\ D", at each major iteration the procedure identifies subtrees in the
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KC©-SSAA and KP-SSA that violate constraints (44) and (45) respectively, and adds
the terms corresponding to the subsets S of nodes in the violating subtrees to the
Lagrangian objective (60). The identification of the violating subtrees can be done in
O(|0"\O"]) and O(|D"\D"|) time respectively. During each major iteration, the mul-
tipliers A and p are updated by performing several minor iterations of a subgradient

search. For additional details, we refer to (66).
2.6.2.3 Second Splitting Step

When progress made by the subgradient optimization procedure in solving the La-
grangian dual problem slows down, the procedure is stopped. The last K°-SSAA
and KP-SSA constructed are considered. If there are no subarborescences in the
KO©-SSAA and KP-SSA that violate constraints (44) and (45) respectively, then set
O .= 0", 0"\ O" .= 0"\ O", D" :=D", D"\ D" :=D"\ D", and continue with
the assignment-routing step described in Section 2.6.2.5. Otherwise, a second round
of node splitting is performed, as described in this section.

Suppose there are subarborescences in the K”-SSA constructed on nodes {0} U
D"\ D" that violate constraint (45). The set D" \ D" is partitioned into KP :=
nP — |D"| subsets DY k = 1,..., KP, corresponding to the KP subarborescences in
the KP-SSA rooted at node 0. For each j € D"\ D" and k € {1,...,KP}, let
djy, := min{dj; : i € D}} denote the distance between node j and subarborescence k.
Note that if j € Dj, then dj, = 0. Next the following transportation problem is solved
to assign loads to subarborescences in such a way that the total load assigned to each
subarborescence is less than the vehicle capacity, and such that the total assignment
cost is minimized.

KD
min, Z Z_;'kyjk (82)
jepn\ B k=1
KD

subject to Y i = Q) for all j € D"\ D" (83)

J
k=1
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S oy € Qo forallke{l,... k") (84)
jEfDH\ﬁII
ye > 0 for all j € D"\ D", ke {1,..., K"} (85)

Let y* denote an optimal solution of problem (82)—(85). The new set D" of nodes
and their loads Q7,7 € D" are determined as follows: D" := D" and QY = Q, for
all i € D". Also, for each j € D" \ D" and each k € {1,...,KP} such that yir > 0,
there is a node i € D"\ D" with load size Q!" := Yix- 1f there are no subarborescences
in the KP-SSA that violate constraint (45), then D" := D", D"\ D" := D"\ D",
and Q" := Q" for all i € D". The sets O", ©" \ 0", and the loads Q" for
i € O", are determined similarly based on the K°-SSAA. Note that after this second
splitting, we are guaranteed to find a feasible solution of the VRPBS, as long as
10 > [ieor Q/Qu] and nl > [ 5 Q4/Qu]

Let V" := {0} U O" U D" denote the new set of nodes, and A" := {(i,j) €
(V"M?2\ O" x D" : i # j} denote the new set of arcs. For (i,7) € A", the vehicle
movement costs d;’; are obtained from the given vehicle movement costs d, and as
before if 7 and j correspond to the same original point, then d;”] := ¢ for some chosen

e > 0.

2.6.2.4 Second Clustering Step

After the second splitting step, a second clustering step is performed. The second

clustering step is the same as the initial clustering step described in Section 2.6.2.2,
but with 0", D" V" A" @Q", and d" instead of O", D" V" A", Q", and d"

respectively.
2.6.2.5 Assignment-Routing Step

Consider the K9-SSAA and KP-SSA constructed in the last clustering step. The
set D" is partitioned into nP subsets as follows. First, D" is partitioned into

its singletons: for each k = 1,...,|D"|, choose without replacement i € D" and
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set DI := {i}. Second, the set D" \ D" is partitioned into K? := nP — |D"
subsets D" k = |D"| 4+ 1,...,nP, corresponding to the K subarborescences in

v

the KP-SSA rooted at node 0. Similarly, set O™ is partitioned into n? subsets
O/l =1,...,n9. For each k € {1,...,nP} and I € {1,...,n9}, consider the
traveling salesman problem (TSP) with node set V] := {0} U D} U O}, arc set

w=10,7) € W\ O x D : i#j}, and arc costs djj, (i,7) € Ay;. Note that
by construction the TSP has the precedence constraint that after 0, all nodes in D}’
must be visited before any nodes in O]" are visited, and is thus called the travel-
ing salesman problem with backhauls (TSPB). Let d}; denote the optimal objective
value, or an estimate of the optimal objective value, of the TSPB. Similar to (67),
we use the farthest insertion heuristic to obtain a solution of the TSPB, and set dj,
equal to the objective value of the solution produced by the heuristic. In addition,
for each k € {1,...,nD}, consider the TSP with node set V}§ := {0} U D}, arc set

vo = 10,5) € (Vi)? « i #j}, and arc costs djff, (i,7) € Ajj. Let dj denote the
optimal objective value, or an estimate of the optimal objective value, of the TSP.
Similarly, for each [ € {1,...,n9}, consider the TSP with node set V) := {0} U O},
arc set Ay == {(i,7) € (V§{)? : i # j}, and arc costs djj, (i,7) € Af. Let dg denote
the optimal objective value, or an estimate of the optimal objective value, of the TSP.

Next the following assignment problem is solved to combine subsets of D" and

O™ into vehicle routes.

minz Z d” 0~k0 + Z d 0101 + Z Z d"lzkl (86)

k=1 i=1
subject to  zyo + szl = 1 forall k € {1,...,n"} (87)
ZOZ"‘ZZM =1 forall [ € {1,...,nf})} (88)

Zros 201, 2 € {0,1} forall k € {1,...,nP}, 1€ {1,...,n9}(89)

Let z* denote an optimal solution of problem (86)—(89). If z;;, = 1, then the nodes in
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{0}, D} and O] are included in a vehicle route given by the TSPB discussed above.
Similarly, if z;, = 1, then the nodes in {0} and D} are included in a vehicle route, and
if 2§, = 1, then the nodes in {0} and O}" are included in a vehicle route, given by the
TSP. The resulting routes may violate vehicle capacity constraints. The improvement
step discussed in the next section attempts to modify routes to eliminate violations

of capacity constraints.
2.6.2.6 Improvement Heuristic

After construction of the vehicle routes as described in the previous section, an im-
provement heuristic is applied to modify routes to eliminate violations of capacity
constraints, and to reduce the costs. (Note that another reasonable option is to first
obtain a feasible solution by applying the assignment-routing step in Section 2.6.2.5
to the feasible solution obtained in the second splitting step in Section 2.6.2.3, and to
then use an improvement heuristic to find a solution with a better objective value.)
The improvement heuristic is the same as the post-optimization procedure described
in (67). Briefly, intra-route 2-exchanges and 3-exchanges are performed in each route
to reduce the cost of the route. Also, inter-route l-exchanges and 2-exchanges are
performed to reduce the amount by which capacity constraints are violated, and to
reduce the costs of the routes. We refer to (67) for additional details.

Let 7 (O, D',Q',d',nf,nD) denote the total cost of the resulting solution of the
VRPBS, given that exactly n? vehicles serve the origins O’ and exactly n? vehicles
serve the destinations D'. (Note that O™, D", V" A" Q" and d" are determined

by O', D', @', and d’, and thus we may denote 7 as a function of O', D', @)’, and d'.)

Then let
70, D,Q dn,) = mino,o {c,max{n n]}+7 (0, D, Q ' nY nl)}
subject to nf € { {Z Q:/Qy ,...,n;}
ico’
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JED!

denote the total cost of the resulting solution of the VRPBS.

Recall that, as referred to in Section 2.5.4, the number n]" of vehicles for each
terminal m can be chosen by solving

Mty {Cvnvm +> pw)7 (O™ (")), D" (z" (W), @™ (2™ (w), w), d™ (2" (w)), nvm)}

wEeN
subject to n)' € {Lp,Lym+1,Lyn+2,...,L,+k}

where 2™ (w) can be chosen as described in Section 2.6.1, and O™ (2™ (w)), D™ (2™(w)),

Qm(2™(w),w), and d™(2™(w)) are defined in Section 2.3.

2.7 FEwvaluation of the Proposed CA Solutions

To evaluate our solutions, we considered eight combinations of small and large datasets,
with origins and destinations uniformly and nonuniformly distributed, and with origin-
destination flows correlated and uncorrelated, as described in more detail below. For
each set of origin and destination locations, we generated ten flow scenarios according
to a specified distribution as described below, and used these ten design scenarios to
make the design decisions, namely selection of the number of terminals and the thresh-
olds, and the location of the terminals, using the method described in Section 2.5.
We also solved the TEMC problem (24)—(28) using the same ten design scenarios,
which provided a design for comparison. We selected the same vehicle fleet sizes,
namely L,, + 2, to evaluate both the CA solution and the TEMC solution. Using the
same flow distribution, we then generated flow scenarios for evaluation, independent
of the design scenarios, and calculated the cost for each evaluation scenario using
the approach described in Section 2.6 to make the operational decisions. Specifically,
for each evaluation scenario we selected which terminal served each origin-destination

flow and how to route the vehicles from each terminal to do the pickups and deliveries.
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The origin and destination locations. The industry dataset with 148 origins
and 36 destinations, shown in Figure 5, provided a set of origins and destinations for
evaluation, namely for the two cases (correlated and uncorrelated flows) with small
datasets and nonuniform distributions of origins and destinations. To generate ori-
gin and destination locations “uniformly”, we selected 1097 cities roughly uniformly
distributed across the USA. For the two cases with small datasets and uniform dis-
tributions of origins and destinations, we sampled 148 of these 1097 cities without
replacement to be origins, and 41 of these 1097 cities without replacement to be
destinations. For the two cases with large datasets and uniform distributions of ori-
gins and destinations, the numbers of origins and destinations chosen were 243 and
105 respectively. Finally, for the two cases with large datasets and nonuniform dis-
tributions of origins and destinations, we used only the 788 of the 1097 cities that
were approximately west of Colorado and east of Illinois, and then chose 248 origins
and 134 destinations from the 788 cities without replacement. The reason for having
more origins than destinations was to mimic the observed situations in the motivating

industrial datasets.

Flow generation. Next we describe how we generated flows between origins and
destinations for each of the eight cases. We first decided which origin-destination
pairs would have positive flow. Because long distance positive flows tend to be less
frequent than positive flows between origin-destination pairs located closer together,
we selected each origin-destination pair with the origin located approximately west
of Colorado (east of Illinois) and with the destination located approximately east of
Ilinois (west of Colorado) with probability 0.15 to have zero flow, independently for
all origin-destination pairs. In addition, for the four large cases, each remaining origin-
destination pair, including the above mentioned “cross-country” pairs as well as pairs

closer to each other, was assigned zero flow with probability 0.5, again independently
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for all origin-destination pairs. The remaining origin-destination pairs were assigned

positive flows as described below. The expected number of positive flows was thus

1 total number of origin-destination pairs
iﬂ(“large” case) X

)

—0.15 x the number of “cross-country” origin-destination pairs

which yielded approximately 5000 positive flows for the small cases and 10,000 positive
flows for the large cases.

For the origin-destination pairs having positive flow, we generated the size of
the flow according to a uniform distribution between 0 and an origin-specific upper
bound that follows approximately an exponential distribution among origins. Recall
from Figure 6 that the industrial dataset shows that a small fraction of the origin-
destination pairs accounts for a large fraction of the total flow. Similarly, a small
fraction of the origins, mostly the origins of bulky goods, accounts for a large fraction
of the total flow. To mimic this skewed flow distribution, we generated the flow
upper bounds of the origins as follows. We first generated a random permutation
of the origins to label the origins from 1 to |@|. Then the flow from each origin i
to any destination with positive origin-destination flow was distributed uniformly on
[0, F exp (—pu(i —1))], for i € {1,...,|O|}. Here, pu was chosen as 0.045 for all cases,
and F was chosen as 1200 for the small nonuniform cases, 2500 for the small uniform
cases, 4500 for the large nonuniform cases, 4200 for the uncorrelated large uniform
case, and 4700 for the correlated large uniform case.

Finally, for the four cases with uncorrelated flows, we generated independent
random variables with uniform distributions as described above for every origin-
destination pair with positive flow. For the four cases with correlated flows, we
first generated independent uniform random variables as described above, and then
multiplied all these independently generated flows by a single realization of a uni-

form (0.7,1.3) random variable. It was of interest to also test our approach with
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correlated flow distributions because in practice flows are often correlated. For ex-
ample, for home improvement retailers, shipments between origins and destinations

tend to be relatively large during spring and summer.

Results. First we evaluate the accuracy of the cost approximation obtained with the
CA method. For each of the eight cases described above, we generated 10 scenarios,
and then we calculated, for various numbers of terminals, the cost approximation
obtained with the CA method as well as the actual cost for each scenario using the
approach described in Section 2.6 to make the operational decisions. Table 2 shows
the actual costs and estimated costs obtained with the CA method, averaged over the
10 scenarios. Figures 2.7-7 show the results graphically. Although the CA method
does not always produce a very accurate approximation, in all the cases it correctly
identifies the number of terminals that results in the least cost.

Next we compare the objective values resulting from the CA method and the
objective values resulting from the TEMC solution, using evaluation scenarios inde-
pendent of the design scenarios. Because the time involved in performing the detailed
routing calculations described in Section 2.6.2 was large, it was not practical to gen-
erate a huge number of evaluation scenarios and calculate the cost associated with
each one. Therefore, we only generated enough scenarios (around 35) to ensure that
the sample standard deviation of the sample average cost difference was less than half

the sample average cost difference. Specifically, let

{wi,...,wy} = set of evaluation scenarios
coa(wm) = cost of the CA design for scenario wy,
creme(wn) = cost of the TEMC design for scenario wy,.
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Figure 7: Actual costs and estimated costs obtained with the continuous approxi-

mation method.

Then, the evaluation sample size M is chosen large enough so that

1 1
M (M —1)

m=1

Z (con(wm) — crpme(wnm))” —

(S0 (ccatom) = erpwclon))

M

Z,A,/llzl (CCA (wm) - CTEMC(wm))

et

(90)

Table 3 displays the number of terminals chosen in both the CA and TEMC solu-

tions, the average cost of both solutions, the sample standard deviation of the sample

average cost difference given in (90), and the percentage cost improvement of the CA

solution over the TEMC solution. All the cases investigated showed cost improve-

ment of at least 1%, with one case showing a cost improvement of more than 10%.

Observe that the cases with the largest percentage improvements (4.30%, 7.53%, and

11.21%) are also the cases in which the number of terminals chosen by the CA vs.

the TEMC solution differs by more than 1.

73



CHAPTER I11

MODELS FOR OPTION-CONTRACTING STRATEGY
WITH BUYERS’ LEARNING

3.1 Introduction

This paper considers a option contract and spot market where there are a seller and
multiple buyers. The seller can either contract with buyer to provide a fixed quantity
of goods using option or can sell its goods in an alternative market, called the spot
market. Simultaneously, buyers may contract with seller to satisfy their own future
demand and purchase their extra demand through the spot market. Typical examples
in the option contract and spot market include chemicals (47), semiconductors (13),
electric power (20) and energy such as oil and gas (38).

Traditionally, the option contract and spot market problem is generally evaluated
for a given exogenous price distribution with the assumption that the operational
decisions of the seller are unaffected by buyers’ purchasing behavior. In many cases,
however, common assumptions of independence between buyers’ behavior and seller’s
pricing decision in the spot market are not desirable or reasonable. In practice, buyers
do make a response substantially on seller’s decision and may have a significant effect
on future decision of the seller. These findings raise an important research question
in the option contract and spot market problem: Can the spot price forecasted by
buyers and the actual spot price decided by the seller be well-reacted by endogenously
incorporating buyer’s response to seller’s decision? The impact of the buyers’ response
on option contract decisions and seller’s pricing decisions has not been well studied
in the existing literature. (See section 3.2.)

In this paper, we present a model to analyze an option contract and spot market
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by explicitly recognizing the aforementioned findings. First, there are many buyers in
the market. So, each buyer thinks that his/her decision on the option contract doest
not make any difference on the spot price. Moreover, buyers are uncertain regarding
the future demand level. So, as a spot price forecasting method, buyers learn about
the seller’s offered prices in the spot market from their prior purchasing experience
and modifies their future purchasing behavior in response to the spot prices provided
by the seller in the past history. Thus, buyers dynamically switches the purchasing
decision of options based on the history of spot prices their has actually accumulated,
rather than on the given static and exogenous price distribution. Second, we consider
the notion of buyers’ equally weighed experience over time, that is, buyers weighs the
past purchasing experiences in the spot market equally and thus uses the empirical
distribution as price forecasting method. Under this buyer model, we analyze the
buyers’ learning behavior on spot price decided by the seller in the spot market.
Finally, we consider other two cases in which buyers are smart enough to know how
the spot price will be decided by the seller.

This paper is organized as follows. Section 3.2 introduces relevant literature in the
option contract and spot market. Section 3.3 describes the framework in which buyers
try to learn the seller’s pricing policy by observing the seller’s previous decisions as
if the spot price does not depend on the future demand level and buyers’ decision.
Section 3.4 describes the framework in which buyer are smart enough to know the
seller’s pricing policy. So, buyers know that there is relationship of the spot price
with future demand level and buyers’ own decision. Section 3.5 shows the comparison

among various frameworks.

3.2 Literature Review

The form of option contract modeled in this paper is call option in the following

sense: The buyer of the option has the right, but not the obligation to buy an agreed
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quantity of a particular goods or financial underlying instrument from the seller of
the option at a certain time (the expiration date) for a certain price (the strike price,
K). The seller is obligated to sell the goods or financial underlying instrument should
the buyer so decide. The buyer pays a fee (called a option price, 7) for this right.
This form of contract has been widely used and studied in finance sector. (6) and
(10) are the well-known literatures in the explanation of finance option. (34), (55),
(68) and (69) are another finance literatures in the real option. However, the option
in those literatures assumed to be exogenous in the following sense: they assume that
the market price of the underlying securities moves stochastically which implies that
it is independent of the option contract.

In the operation research and revenue management literature, there are many
studies about relationship between the long-term contract and spot market/e-market
purchasing. (47) address the integration of option contract via spot market and
survey the underlying theory and practices using the option in support of emerging
business-to-business markets. It refers the option contract as long-term contracting
and spot market as Business-to-Business exchanges and gives an excellent literature
review on this option contract market.

(74) and (73) models contract between single seller and one or more buyers where
the non-scalable goods or services are sold. By assuming that the price in the spot
market is uncertain but its distribution function is common knowledge, it shows that
the seller’s optimal pricing policy is to set the strike price to the marginal cost and
characterizes the condition for the existence of positive option contract. It is also
shown that if the seller can sell all its residual goods in the spot market, then the
seller will not sign any option contract with the buyer. In its model, the price in
the spot market assumed to follow the given probability distribution but not to be
determined by the seller. This implies that the price in the spot market is independent

of the option contract.
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(64) incorporates the state of economy into the buyer’s willingness-to-pay (WTP)
function and use the same assumptions as in (74) and (73). Then, it derives analytical
expressions for the buyer’s optimal quantity of option and the seller’s optimal pricing
policy and shows that the main results in (74) and (73) still hold. It refers the buyer’s
quantity of option as buyer’s reservation quantity and the seller’s pricing policy as
the seller’s tariff.

(56) studies the role and value of B2B exchanges and their interaction with supply
chain contracting. They consider two-level but three-stage supply chain with multi-
ple sellers and buyers where forward-type contracting (first level) in the first stage,
participants’ reception of private information in the second stage and a B2B exchange
(second level) as a spot market in the third stage are considered. They derive the
equilibrium on the clearing price, contracted quantities and the traded quantities
of product, and investigates the effect of B2B exchanges on the four factors such
as changes in industry structure, information effects in the second stage, volatility
induced by the multiple manufacturers and price flexibility.

(52) considers the impacts of a Internet-based secondary market in a two-period
model where resellers can buy and sell excess inventories at period 2. However, the
resellers can not buy any additional product from the manufacturer (supplier) at
period 2 but only order the products at Period 1. Then it shows that the secondary
market always improves allocative efficiency but total sales for the manufacturer at
period 1 may increase or decrease.

(62) considers the two-period market model where demands and purchases can
occur at both periods and unsatisfied demand at period 1 is backlogged to period 2.
At the beginning of period 2, the buyer can make additional purchases from one of the
following arrangements: strategic partnership with seller at period 1, auction-based
online search strategy or a combined strategy. It shows that the superiority of one

strategy to the others depends on the distribution of the lowest online price as well as
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the contract price negotiated with the supplier at period 1. Moreover, it shows that
in general no strategy dominates the others but the auction-based online strategy can
be of value to the buyer when procuring a well-define good.

(21) models the selection problem of the long-term vs. short-term contract for a
risk-averse buyer. Short-term contract in this model means the purchase of parts/goods
in the (spot) market which should be immediately delivered to the buyer. The model
is used to analyze the tradeoff between benefit of price certainty, cost improvement
and fixed expense offered by the long-term contract and the flexibility and zero-fixed
expense offered by the short-term contract. It shows that long-term contract may not
always be optimal and introduce the conditions under which the short-term contract
may be better off. (Impact of decision maker’s risk attitude, market price uncertainty
and fixed investment)

(53) models the option contract and spot market problem where there are one
buyer and multiple sellers. In the spot market, the buyer will face the additional
risks and costs from the last-minute nature of spot procurement, which it called as
demand-uncertainty and ”buyer-related” adaptation cost, respectively. It studies the
trade-off between the costs and risks when buyer makes purchases in the spot market.
It shows that the imperfect codifiability (adaptation cost for the buyer and contract
cost advantage for the supplier) tends to push the buyer toward option contract and
may result in lower overall demand.

(70) models the competition problem between procurement auction and long-term
contract. It considers a tow-layer supply chain where multiple suppliers of a ”part”
transact with a set of manufacturers that utilize that part in the production of an end-
product. Then, an auction-based e-market is used for the procurement of low quality
parts and long-term relational contracts are employed for the procurement of high
quality parts. (So, the manufacturer as a buyer purchases goods of different quality

in each market.) It shows conditions under which each procurement mechanism will
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prevail and push the other out of the market, as well as conditions under which they
coexist.

In the existing literatures, the option contract and spot market problem has been
studied in the condition under which the price in the spot market assumes to be
given by some exogenous probability distribution and the model setting itself is static.
”Exogenous” means that the spice in the spot market is decided independently of the
contract transaction between the buyer and the seller. However, if a single seller model
setting is considered, then it is natural to assume that the price in the spot market
be controlled by the seller. Therefore, the seller would take the option contract into
account when deciding the price in the spot market. This implies that the buyer’s
decision and spot price are endogenously related in some sense. Moreover, in the
option contract and spot market, the buyer makes option contracts and purchases
goods in the spot market in multiple times. This implies that there is a chance
that the buyer can learn how the spot prices has been fluctuated in previous history
and would take this accumulated information into account when making the option
contract in the future. Therefore the model should be dynamical when considering
this buyer’s behavior.

Some recent literature on revenue management consider how buyer strategically
react to the seller’s pricing policy and dynamic model setting problem. (2), (5), and
(37) consider the strategic buyer who takes into account the given future path of prices
when making purchasing decisions in addition to his/her positive surplus defined as
a difference between buyer’s valuation and price. They consider that the buyer make
a purchase only if his/her current surplus is larger than the future expected surplus.
(54) considers the strategic buyer who is fully rational as commonly used assumption
in game theory and the seller who know that the buyer is strategic. The buyer
assumes to know how to use stochastic dynamic programming to evaluate his/her

expected profit and to find optimal purchasing timing. Then, it shows the existence

79



of a unique subgame-perfect equilibrium pricing policy. (72) considers the model in
which a fraction of buyers may decide to defer purchase in the hope of cheaper price in
the future and there is a possibility that some customer will make purchase at higher
price if the lower price is not available. However, any literature does not address the
buyer’s learning strategy in forecasting the future price in the market. Models for
buyer’s strategy which are introduced in the existing literature are pretty restrictive
and unrealistic. So, we want to make more practical and reasonable assumption on

the buyer’s learning model.

3.3 Option Contract and Spot Market with Homogeneous
Buyer’s Learning
In Section 3.3, we consider the following case: there are single seller and many ho-

mogeneous buyers with market size of N in the following sense

N:/ dp
0

, where N is some positive number. We assumes that there are many buyers in the
market and the effect of each buyer, du, on the market is negligible and that each
buyer has same demand and utility function as others in the market. Since the effect
of each buyer on the market is negligible, each buyer thinks that the spot price does
not depend on how many option he/she buy. Moreover, buyers think that the spot
price does not depend on the demand level a. Moreover, the homogeneous buyer
means that each buyer uses same objective function, forecasting method and demand
as others in the market. So, each buyer’s purchasing decision will be same as others.
We consider the two-stage problem repeated in multiple periods where the option
contract is made in the first stage and then the spot market is open in the second
stage (Figure 8): At period n, in the first stage, the seller offers an option price 7, and
strike price K, to buyers. Then, buyers decide how many options to buy. However,

the purchasing decision of options is based on how buyers forecast price in the spot
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market. As mentioned in Section 3.1, we use the notion of buyers’ equally weighed
experience over time. This means that buyers forecast the price in the spot market
(open in the second stage) using the empirical distribution H, constructed by the

previously observed spot prices {pg, p1, ..., Pn_1}. For p >0,

n—1
1
Ho(p) = — D lin<n)
=1

So, the empirical distribution is defined as the probability distribution in which each
previously observed price is equally weighted. In the second stage, the seller decides
the spot price p, for the good, and then buyers decide how many additional goods to
buy in the spot market ¢,, and how many options to exercise ¢, ,, where g, is less
than (),. Since this two-stage problem is repeated in multiple periods, buyers can
observe one more spot price in every period so that they can update the empirical
distribution in every period. Since this model setting is dynamic system, it naturally
raises the following questions to be answered; (1) How would the seller’s spot pricing
decision be influenced by the option contracts in the first stage? (2) Does the sequence
of the quantity of options bought by the buyer {Q,}, converge to any finite limit?
(3) If so, how can it be characterized and be compared with the equilibrium in the
case where buyers know how the spot price will be decided by the seller? (4) What
is the relationship of (), with H,, and the seller’s spot pricing distribution at the

limit?
3.3.1 Assumption

We assume that each buyer’s utility function is quadratic and is given by

145 a
Ug) = 550" + 4

This utility function is the revenue function of each buyer as retailer who is facing
the linear demand from his/her own customer, 2a — 2bp. Assume that there exist

M; < +o0 and M, < 400 such that [ adF(a) < M; and [;° a’dF(a) < M,, and
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Option Price 7,

Seller’s  Strike Price K, Spot Price p,
Decisions
A >
Buyer’s
Decisions Option Purchase @, Option Exercise g,
Spot Purchase ¢;,
\
1st stage: Option Contract 2nd stage: Spot Market

Figure 8: Timeline of decisions in period n

F(a) = 0 for all @ < be. With this realized demand in the second stage, the seller
decide the spot price and then buyers decided how many additional goods to buy in

the spot market, ¢, and how many options to exercise, g,.
3.3.2 Buyers’ problem in the second stage

As seen in Figure 8, in the second stage, given option price, m,, strike, K,, the
quantity of options, @), and spot price, p,, the buyers decide how many additional
goods to purchase in the spot market, ¢;,, and how many options to exercise, g, n,

to maximize his/her own profit function R(qon,¢sn); it is given by

R(Qo,na QS,n) = U(Qn) - KnQo,n - ans,n

= U(qn) - KnQo,n + (Kn - pn)QS,n

, where ¢,, = @, +¢s, is total realized demand. Theorem ?7 characterizes the optimal
quantity of goods to buy in the spot market, ¢ ,, and the optimal quantity of options

to exercise, qop-

Theorem 1 Suppose that each buyer’s utility function, Ulqy), is quadratic. Then,

the optimal quantity of goods to buy through spot market, qs ,,, and the optimal quantity

82



of options to exercise, q,,, are given by:

;

Yo, + s, =0+0 if $ <pandj <K,
Qo + s, = 0+ (a —bp) ifp< g andp < K,
(P) = o, + ., = (a—bK)+0 if 59 <K, <pand K, <*¢
Gon + s, =Q+ (a—bp—Q) if K <p< 39
| Gon + 5, =Q+0 if K, <2 <p

3.3.3 Buyers’ problem in the first stage

In this section, we introduce the buyers’ problem in the fist stage. As seen in
Figure 8, given m, and K,, buyers solve their own problem to decide how many
options, ), to buy before knowing the demand. First, assume that buyers know the
distribution function F'(-) of @ on Qp and estimates the spot price p,, using empirical
distribution H,, () on Qp, , where Qp := [0, 00) and Qp, := [0, 00). Here, the empirical
distribution, H,,, is constructed using the observed spot prices to forecast spot price
pn in the second stage. Then, each buyer solves the optimization problem to decide

how many options, (),, to buy in period n:

max/ / U(Qn) - ﬂ-nQ - Kn‘]o,n - pQS,ndHn(p)dF(a) (91)
Qp JQmu,

Q>0

, where ¢, = q,, + ¢s,. Given H,, and () > 0, let the objective function be
f(Hn)(Q) = / / U(Qn) - WnQ - KnQo,n - pQS,ndHn(p)dF(a)
Qp JQp,
and let the function in integrations be
g(Qa Cl,p) = U(Qn) - WnQ - KnQo,n - pQS,n

Since it is clear that we deal with the two-stage problem at period n, we will remove
the index n of 7y, Ky, ¢n, @sn, Go,n but not of H,, before Section 3.3.5. Now, without

loosing the clarity, we will use 7, K, q, gs, g, instead of m,, K, ¢n, Gsn, Go,n- Thus,

1)@ = [ ([ s@amatw)ira = [*( [ @ enitm)ira)
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a

b

— /ObK(/O —%b(a—bp)QwL%(a—bp)—WQ—KO—p(a_bp)dHn(p)

©
+/ —%OM%O—WQ—KO—pOdHn(p»dF(a)
%

Q+bK K a
-|-/bK (/0 —%b(a—bp)2+g(a—bp)—WQ—KO—p(a—bp)dHn(p)
+/K —%(a—bK)QjL%(a—bK)—wQ—K(a—bK)
—pla—bK —a+ bK)dHn(p)>dF(a)

+/Oo (/K—i(a—bp)2+9(a—bp) —7Q — K0 — p(a — bp)dH,(p)
o+vk NJo o 2b b

a-Q
+/K —i(a—bp)2+g(a—bp)—WQ—KQ—p(a—bp—Q)dHn(p)

2b b
+ /% —%QZ + %Q —7Q — KQ —p(Q — Q)dHn(p)>dF(a)

, where the last equality uses the Theorem 1. As you see above, ¢(Q, a,p) is concave

in @ for each (a,p) € Qp x Qy, =[0,00) x [0,00). By rearranging f(H,)(Q),

— 10 + / /F——(a—bp)2+%(a—bp)—p(a—bp)dHn(p)dF(a)

Q+bK K b a2 00 42 K2
—p? — —)dH, / — —aK +—)dH, dF
([ G e )+ [ (G = ok + T, ) ar(a)

K

o [ (TG e e [ i
HGa-0) [ ) +Q- [ - K)ith(p)dF(a)
_ 20 + / "= )+ $(a = bp) — pla — bp)dH, (p)dF (a)

Q+bK K b Cl2 o0 aZ bKZ
—p? — —)dH, / — —aK + —)dH,(p))dF
w [ G e Gt + [ (5= ok + Tt ) aF (a)

00 ab b a2 a Q2 00
+ /Q-l—bK (/0 (§p2 —ap + %)dHn(p) + (EQ - %) /% dH,(p)
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Given any probability function H(-), the objective function, f(H)(Q), is concave and

moreover is differentiable for any ) > 0.

Lemma 1 f(H)(-) is differentiable for all @ > 0 and any probability function H.

Let Vf(H)(Q) be the derivative of f(H)(-) at Q@ > 0. Then, for any Q >0,

vim@=-r+ [~ [To-8) -0 5 ane)ir

So, the optimal solution, @), is characterized by its derivative function as in Theo-

rem 2.

Theorem 2 Suppose that H, is empirical distribution constructed by previous spot
prices {p1,p2, ..., Pn_1} and F are probability distribution function. Let Q be the

optimal solution to each buyer’s optimization problem (91). Then, if

o [ oK - D arFE <o

then Q; = 0. Otherwise, there exists ), > 0 such that
0 = —rt [ [To-K0t - - S )
= +bK J0

3.3.4 Seller’s problem in the second stage

As seen in Figure 8, given total number of option bought by buyers in the first stage
fo Qndpu, the seller in the second stage should decide the spot price to offer to buyers.
Let p be the spot price and ¢(p) be the total demand from buyers. By Theorem 77,

the seller should solve the following problems,

max  pg(p) — cq(p)

subject to p < K

max p(q(p) - (Jo> + Kqo — cq(p)

subject to K <p
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, where the first objective function does not have the revenue from the exercised
options, Kgq,, since the spot price, p, is less than option strike price, K, and thus

buyers do not have to exercise any option.

Theorem 3 In period n, given realized a and fooo Qndpu, the seller decides the optimal

spot price p, such that

a .
% T3 ifgpty =K
Pn =
ann
2b

max| K, 51 otherwise

As shown in Theorem 3, the optimal spot price, p,, is a function of the number of

options, 2,,, bought by the buyer in the first stage.

3.3.5 Seller’s problem in the first stage with Fixed Option and Strike
Price

In this section, we present the case where the seller fix the option price and strike
price for all period n > 1. This means that the seller takes some constant 7 > 0 and

K > ¢ so that, for all n > 1,
m,=7 and K,=K

Then, we analyze the sequence of option, {Q,}, and empirical distribution, {H,,},.
3.3.5.1 Sequence of option, {Qy}, and empirical distribution, {H,},

In this section, we introduce the useful properties of Vf(H,)(Q) and {Q,},. Let P

be the set of all probability distribution functions.

Lemma 2 For any distribution function H € P,

i@ =-r+ [ [To- 8- o= 5 aeir

15 Lipschitz continuous and decreasing in ¢Q > 0.
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Lemma 3 For all H € P, there exists constants 0 < C' < +oo such that

00 00 a — Q
@I = I-r+ [ [T 8- - S anear)
Q+bk Jo
< C
Lemma 4 For alln > 1,
) ) N a — Q N
ViH)(@Q) = —m+ (0= K)" = (p— —5—) " dHu(p)dF(a)
Q+bk Jo
< - +/ (& - Q_ kytar(a)
0
- -7
as Q — +00. So, {Qn}n is bounded for alln > 1.
By Lemma 3, let’s define
AQ)p) = / o UgespdF(a) +/ o Hmai 2524512y F (0)
{a%+§§K} {0%4‘52[(}

as the actual probability distribution of spot price. Then, it is well ordered in the

stochastic sense.

Lemma 5 For 0 < @ < Qq, A(Q1) >5 A(Q2). This implies that A(Q) is stochas-

tically decreasing as Q) increases.

Lemma 6

VHA@)Q =+ [ [T K - (0= "5 aAQ)F @) -

Q+bK b

as () — +oo.

By Lemma 6, we can define

@=u(@z0:—n [* [T 8 - - G IAQIF@ < )
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and Q is finite. Obviously, for all Q € [0, Q)],

/:K /ooo(p ~K)* (= S aAQ) ) (a) # 0

Lemma 7

Via@@ =-r+ [ [Co-10 = o= L i@ mare

is Lipschitz continuous in Q@ > 0 and strictly decreasing in Q@ € [0,Q]. So, if
V f(A(0))(0) > 0, there ezists Q* € [0, Q] such that

via@N@)=-r+ [~ [To- 107 0= 5 @) ware =0

Actual probability distribution of spot price A(Q) is a function of the quantity of op-
tions bought by the buyer (). So, we have sequence of actual probability distribution

of spot price {A(Q,)}» as we have {Q,},. Then, we have the following result.

Lemma 8 Suppose that Q, converges to finite limit Q*. Then A(Q,) converges
weakly to A(Q*).

As mentioned above, in each period n, actual probability distribution of spot price
A(Qy) is a function of @, and @, is decided with empirical distribution H,, which
depends on the previous spot prices py, ..., pp_1. So, A(Q,) is a function of py, ..., p, 1.
Thus A(Q) is not independent and not identical with A(Q,,) for m # n. However,

we have the following general version of Glivenko-Cantelli Theorem.

Lemma 9 Suppose that A(Q,) converges weakly to A(Q*). Then H, converges

weakly to H*.
3.3.5.2  Convergence Result

As already mentioned, the buyer keeps learning the seller’s pricing policy by observing
all the previous seller’s pricing decisions, sine the buyer does not know how the spot

price will be decided. This implies that the buyer does not know that the spot price
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decided by the seller depends on the demand level, a, and the number of options @),
decided by the buyer. Moreover, out model setting is the Stackelberg strategic game
in which the leader is the buyer and then the follower is the seller. So, with this
buyer’s behavior in the Stackelberg strategic game, there exists a Nash-equilibrium of
the buyer’s and seller’s decision, which are the number of option and the spot price,

respectively.

Theorem 4 Suppose that the buyer does not know that the spot price depends on the
realized demand level, a, and the number of options decided by the buyer. Then, there

exists a Nash-equilibrium (Q*, p(a, Q")) such that

> > + a—Q x _
R A e SR CRTRTAO R

and

o] BT fg+5<K

max[K, & + £]  otherwise

In this section, we see whether the sequence (), converges to Nash-equilibrium, Q*.
Lemma 10, Lemma 11, Lemma 12, Lemma 13, Lemma 14 and Lemma 15 are technical

results necessary to prove the main convergent result which is Theorem ?7.

Lemma 10 For allp > 0,

w.p.1.

Lemma 11 Suppose that, for p < +o00 and Q := inf{@ : A(Q)(p) =1} < +o0,

nT /1 e - n< 1 e
(= Y AQD) (= Y A
7T i=1,Qie{Q:A(Q)(B)=1} 7T i=1,Qie{Q:A(Q)(B)< 1}

- AQ)(p)
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, where 0y = 3070 Laom=11 = it Lgsgy and 0 = 350 Laom<y =
S lio,<@y and thus nj =nj; + ns. Then, for all € € (0,1),

.
» where 1j(€) := 32321 1 a0n )24 ) -o)°

Lemma 12 A(Q)(-) is continuous at p. For some €(p) € (0, A(Q)(p)), suppose that

nj, i
_ 1 ~

— > AQ)p) +— > A@i)(p) < A@)(p) — ()

"k i=1,ie{QAQ ()=1) "k i=1,ie{QAQ) (3)<1)

Then, there exists 6 € (0,€(p)) and subsequence { A(Qum,)(p)}o such that for all o > 1

A(Qm,)(p) < AQ)(p) — €(p) + 6

and there exists e, € (0,1) subsequence {n;, }; such that for all l > 1

T(njkl)

T,

€ <

<1
» where T'(n;, ) :=max{o >1:m, < ny, }

Lemma 13 Suppose that there erists subsequence {H,,}; of {Hn}, and H such that
H, (p) — H(p) for all p and p = inf{p : H(p) = 1} < 4o00. Then, for all p > 0
where H(-) is continuous, H(p) > A(Q)(p), where Q = inf{Q : A(Q)(p) = 1}.

Let’s define V2f(Q, H,h)™ and V?f(Q, H,h)™ such that for h > 0,
VAf(Q,H,h)™ = Vf(H)(Q) - Vf(H)Q—h)
Vf(Q H,h)" = Vf(H)Q)~Vf(H)Q+h)

Suppose that @Q* is a solution such that Vf(H)(Q) = 0. Then, if V2f(Q*, H,h)~ <0
and V2f(Q*, H,h)™ > 0 for all h > 0, then Vf(H)(Q) = 0 has unique solution at
Q*. If not, then V f(H)(Q) has multiple solutions around Q*.

90



Lemma 14 For h > 0, suppose that {a < Q +bK + h : F(Q + bK) < F(a)} # 0.
Then,

V2f(Q,H,h)' = iff H(K)=1

Suppose that {a < Q +bK +h: F(Q +bK) < F(a)} = 0.

a-Q—h

VFQH BT =0 iff H

, where @ := inf{a : F(Q +bK + h) < F(a)}.
For h > 0, suppose that {a < Q +bK : F(Q+bK — h) < F(a)} #0. Then,

Vf(Q,H,h)" =0 iff H(K)=1

Suppose that {a < Q +bK : F(Q+bK — h) < F(a)} =0. Then,

a-Q
b

VEAQH ) =0 iff H( )=1

, where @ := inf{a : F(Q + bK) < F(a)}.

Define the linear combination of real-valued functions, f; : R — R for 2 =1,...,n as

follows; for any r € Rand a; e Rfori=1,...,n

n n

(Z a; f;)(x) := Z a; fi(x)

=1 =1

So, for all Q > 0,
Y (H,)(Q)
= e [ [k - S s
= i [ om0 - - ) +
= VIH)Q) + — (VS (1) (@) — VS (H)(@))
= V@) + — (VI (L prz) = V() (@)
= (Vfgay+5%7(vfﬂwwmm%—VfU%D)“”

n+1 (1{5n+1SP} - Hn(p)))dF(a)
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,where second equality holds since Hy,41(p) = Hp(p)+555 (1,41 <py— Hn(p). Lemma 15

is used to prove Theorem 5, called a ”Super-martingale” Type Lemma. (9)

Lemma 15 Suppose that Z,, B,,C, and D, are finite, non-negative random vari-

ables, adopted to the o-field F,, which satisfy

and

o0 o0
ZBn < 00, ZD” < 00
n=1 n=1

Then, we have

Ly — Z <00 a.s. and ZC’n<oo a.s.

n=1

Theorem 5 Suppose that there exists Q* > 0 such that

V@@ =+ [ -0 (- 5L) aa@)re =o

Then, V f(H,)(Q*) — 0 w.p.1

Theorem 6 Suppose that there exists Q* > 0 at which

vi@n@)=-n+ [ [To-r - (- 5L) aa@)er -0

and there exist Q" and Q" with Q< Q" such that Q* € [Q*,@*] and for all Q) €
Q".Q]

via@N@ =+ [ [To-0 - (p-52) wa@mire -0

Then, for any & > 0, there exists N(g) < 400 such that for all n > N(¢)

Qn € [Q* —6,@*4—6]

92



Corollary 1 Suppose that there exists QQ* > 0 at which

V@@=t [ [To-rr - (p-5) aa@)ira =0

and QQ* is the unique solution to

via@N@ =+ [ [To-5 - (1-59) a1 -0

Then, Q, converges to (Q*.

Corollary 2 If Vf(A(0))(0) < 0, then, Q, converges to 0.
3.3.6 Seller’s problem in the first stage with Updating Option Price

In previous section, we present the case in which the seller offers a fixed option price
in every period but in this section we consider the case in which the seller updates the
option price by maximizing his/her profit function. As seen in Figure 8, the number
of options bought by the buyer is decided based on the option price provided by the
seller, and thus, in the first stage of every period, the seller needs to estimate how
many options the buyer would buy given the option price. To estimate the number
of options, it is assumed that the seller knows the buyer’s option purchasing policy,
which means that the seller knows that the buyer use the empirical distribution, H,.
Given estimated options, @), the seller decides the option price, 7 by fixing the strike,
K to marginal cost, ¢ so that 7 is a function of (). Additionally, we assume that for

any r < y with 0 < F(z) and F(y) <1
F(z) < F(y)

This gives the sufficient condition under which the buyer’s optimization problem has

unique solution. Then, the seller solve the following problem to decide 7 by estimating

Q.
max /OO(WQ + K¢, + pgs — cq)dF(a)
0
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subject to  —7 + /OO /Oo(p —o)t —(p— ¢ _b Q)+dHn(p)dF(a) =0
Q+bc

The objective function can be rewritten as follows,
/ (7Q + Kq, + pgs — cq)dF (a)
0
= / (7Q + cgo + pgs — cq)dF (a)
0

= /waQ+cO—|—c(O—O) — c0dF(a)
0

+ /bf+bc7rQ + cQ + max[* 2bQ + g ¢ (maxa — bmax[ ;bQ + g d,Q] - Q)
_cmax[a — bmax|2 ;bQ + g d, QldF (a)

+/Qo:bc7rQ + ¢Q + max[ 2bQ + 5. cl(max(a — bmax[® ;bQ +5.0.01-Q)
_cmax[a — bmax]Z ;bQ + g d, QldF (a)

be
= / 7Q 4+ c0 + ¢(0 — 0) — c0dF(a)
0

Q+bc
+/ 7Q + cQ + c(max|a — be, Q] — Q) — e max[a — be, Q)dF (a)
be
Q -Q

+/Q+bc7rQ+cQ+(Tb+2)(maX[a—b(Tb+2) Q] - Q)
—cmax[a — b(% g), QldF (a)
_ T o=@
= 7@+ [ WG - PP
So, we have
> a—Q c,
max  7Q+ /Q - 5) dF(a) (92)
_ — —@ tdH, (p)dF(a) =0
subject to 7T+/Q+bc/ )" b —) (p)dF(a)
Equivalently, we have
L a—Q *a—Q  cy,
mas Q/WC/ ot Oy dtt, (p)dF () + /me( 2 Spar()
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Since the seller knows exactly how many options the buyer would buy, the number
of options bought by the buyer, ),, is equal to the number of options estimated by
the seller. So, we don’t have to solve the buyer’s problem anymore to obtain the
number of options in each period. From now on, we focus on the analysis of the

seller’s problem in the first stage.

Lemma 16 For all ) > 0,

of [ to-0- -5 aHmir@ g [ ("5 - ofar)

Q+be

15 continuous.

Lemma 17 For all Q)1 < )9,

Ql b * a_Ql 2
[ [ o0 -0 S aear@ [ (5 - ar

Q1+bc
Q? b * CL—Q2 2
L] et -0 S anmare - 3 [ (59 - opar)

Q2+bc
(3|Q2 Q1] +3E(a) +4Q»
2b

<

)|Q1—Q2|

Lemma 18 Suppose that [° a®dF(a) < oo. For any Q > 0 and any H € P(R)

Q (:bc Ooo{(p—c)—(p—$)+}dH(p)dF(a)+%/c:bc(a—bQ_C)QdF(a)
< [T  ar
— 0
7aSQ—>OO.

Define @) such that

@::sup{Q20:/oo(a_bbc_Q)+(3Q+Z_bc)dF( ) >

0

/,, (G- orr@)

OOIQ‘

Then, by Lemma 18, @ < 400 and @, < @ for all n > 1.
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Theorem 7 Suppose that Q,, is the optimizer for (92). If Q, converges to Q*, then

Q* 1is the optimizer for

b [ a—Q 2
max  Qm+ Z/Qerc( e ¢)*dF(a)
a—Q

sjeet 10 5= [ [T =)= (0= “GENaA@ ) )@

@=>0

By Theorem 7, we need to find the candidate point for Q* to which the @, can

converges. This is introduced in Lemma 19 and Theorem 8.

Lemma 19 Fiz Q* > 0. Suppose that a is random variable with probability distribu-
tion function F(-) such that F(bc) < 1 and F(x) is strictly increasing for be < x <

Q + bc and Q** is the optimizer for

b [ a—Q 9
max Qm + 1 / bc( T ¢)*dF(a)
a—Q

subject to w™ = /c:b Ooo{(p —c)—(p— ; )P YAA(Q*) (p)dF (a)

@=>0

Then, Q** # Q*.

Theorem 8 For Q* = 0, suppose that a is random variable with probability distribu-
tion function F(-) such that F(bc) < 1 and F(x) is strictly increasing for bc < x <

Q + be and that Q** is the optimizer for

b [ a—Q 9
max QW+Z/Q+()C( 7 —¢)*dF (a)
a—Q

subject to w™ = h /OO{(p —c)—(p— 7)+}dA(Q*)(p)dF(a)
Q+bc J0

b
Q=0

Then, there ezists probability distribution F(-) such that Q** = Q* = 0.
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Theorem 8 provides the equilibrium which can be possible limit point of {Q,},. The

following example shows that there exists probability distribution such that, for any

Q@ =0,Q™#Q"

Example 1 Suppose that a is random variable with probability distribution function,

F(-) such that

s 0 <z <200
F(z)=q 1+2=20 200 <z < 300
1 z = 300

and that QQ** is the optimizer for

b [ a—Q 9
max Q7r+—4/ bc( b —¢)*dF(a)
a—Q

subject to w™ = /c:b Ooo{(p —¢) — (p— —2) }A(Q") (p)dF (a)

b
Q>0
and b =1 and ¢ = 50. Then, there does not any Q* > 0 such that Q** = Q*.

Theorem 9 Suppose that a is random variable with probability distribution function

F(+) such that F(bc) <1 and F(x) is strictly increasing for be <z < Q + be and

o o a—Q. . b [ a—Q 9
of | o-0-o-"5Eraaomrm g [ (5F -

Q+bc

18 mazimized uniquely at (Q = 0. Then, @),, converges to 0.

3.4 Option Contract and Spot Market Without Buyer’s Learn-
ng

3.4.1 Single Seller and Single Smart Buyer

So far, we assume that the buyer doest not know the seller’s pricing policy but knows
the previous information about the seller’s pricing decisions so that he/she forecasts

the seller’s pricing decision with the empirical distribution which is constructed by
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the previously observed spot prices. In this section, we assume that the buyer is
smart enough to know how the seller decides the spot price. This means that the
buyer knows that the spot price is a function of @ and (). Then, we have the profit

function for the buyer in the first stage and one for the seller in the second stage.

fBuyer(Qap(aa Q)) = / _iq + q_ﬂ—Q qu (aaQ)QSdF(a)

2b b
fsener (@, p(a, Q)) pla,Q)qs + Kq, — cq

where ¢ = ¢, + ¢, and F' is the probability distribution function for a. By Theorem 3,

p is the function of @ and @),

a ¢ ifaec< K
2b 2 2b 2 —
pla,Q) =

max[K, 2 + £] otherwise

Now, solve the buyer’s problem,

1

matgsafnn(@Q = [ =556 + 51 - 7@~ Ko = pla. QudF ()

Lemma 20

P Q) = [ =550 + 50 - 7@ = Ko~ pla. QudF (o)

15 concave in QQ > 0 and

fBuyer (Q + h) - fBuyer(Q)

( h’( -7+ fgiszfbc 3%1?%6 - KdF(a))
) G ke 5P (@) = 0, [ G = R dF @) for 0 < h < Sb(K — <)
h’( -7+ fQ+2bK—bc 3aii§+bc - KdF(a))
L c;i%[( ve P AF (a) — [0, 50(K — ¢)?] for h > 3b(K — ¢)

fBuyer (Q) - fBuyer (Q - h)
eh<—7r+/oo %iégi%—Kﬂﬂ@)

Q+2bK —be 4b
0 3 Q+2bK —bc 1 3
+/ —h*dF(a) + [0,/ ~(K = ¢)h + —h*dF(a)] for h >0
Q+2bK b 3b Q+2bK —be—h 2 8b
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Theorem 10 Suppose that a has probability distribution function F and the buyer
knows the seller’s pricing policy. Then, there exist equilibrium (Qg,s,p(a, Qr,s)) such

that Qs € [Qr, Qu] if there exists constant ¢ < 0 such that

00 3a — 3 b Q;+2bK —be 1
lim —7 +/ Ba=3Q0+5) _ upa) +/ (K — ¢)dF(a) > 0
Q1Qy Q-+2bK —be 4b Q+2bK —be 2
& 3a—3 b
—7r+/ Ba=3Q+6) _ pip(a) = Qe Q1 0]
Q-+2bK —be 4b
and
a+bc if a+bc <K
p(a, QE,S) = 2 ) 2
max|[K, 28T o therwise

2b

, where a has the probability distribution function F.

3.4.2 Single Seller and Multiple Buyers

In section 3.4.1, the single seller and single buyer are considered and it is assumed that
the buyer knows the seller’s pricing policy. This section introduces many homogeneous
buyers with market size of N as introduced in Section 3.3. However, in this section,
we assume that each buyers know that the spot price depends on demand level a.
This implies that the buyer is less smart than the one introduced in Section 3.4.1. In
the second stage, the seller decides the spot price given the number of options bought
by the buyers in the first stage. Let ()5 be the number of options bought by a single
buyer and thus QQsdp be the portion of a single buyer in the market. Now, the buyer’s

and the seller’s objective function in the first stage and in the second stage are

1

fBuyer(Q) = /0 _Q_bQZ + %q - ’/TQ - qu - p(a)qde(Cl)

fseuer(@,p(a,Q)) = pla,Q)gs + Kq, — cq

, where p(a) is the spot price as function of a. By Theorem 3 in section 3.3.4, p is

the function of a and Qg,

+b ‘¢ ath
a2bc ]_f aZbC S K
p(aa QS) =
max[K, =95t otherwise

2b
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, where total demand is fooo a — bpdp = Na — Nbp.

Theorem 11 Suppose that a has probability distribution function F', there are mul-
tiple buyers in the market, each buyer’s portion in the market is du and each buyer

does not know the seller’s pricing policy. (Qgm,p(a, Qr.a)) is the equilibrium such

that
* — b
—_— / 0= Qe b pip(a) = 0
QE,M-I-Z()K—()C 2b
a+tbc - a+be
athe if £ < K
p(aa QE,M) - 2 b 2
max[K, =221 otherwise

2b

, where a has the probability distribution function F.

3.5 Comparisons

In this section, we compare the number of options bought by the buyer in the following
three cases; (1) the limit of number of option @* when the buyer tries to learn the
spot price distribution (2) the equilibrium )g s when the buyer is smart enough to
know the seller’s pricing policy and (3) the equilibrium Qg s when the buyer just
takes a spot price as given. Theorem 12 shows that the more information the buyer
has about the seller’s pricing policy, the more options the buyer would buy as the

best response.

Theorem 12
Q" <Qpum < Qgrgs

3.6 Option Contract and Spot Market with Heterogeneous
Buyer’s Learning

In this section, we will consider same problem introduced in the previous sections
except that buyers are not homogeneous but heterogeneous. Heterogeneous buyers

means that each buyer’s demand is different from others in the following sense. In
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addition to the demand level @ in the market, each buyer has another demand fluctua-
tion ¢ which is independent of demand level «, has a probability distribution %
Qa

wnhaﬁnnemumom[¢h¢ﬂandzﬂ¢]:j;a¢dﬂf%%%:=0.Tmsnmﬂmsﬂmde@m
is the market proportion of buyer who has ¢ of demand fluctuation and ch dG(¢) is
total size of buyers in the market. We consider two possible points when this demand
fluctuation ¢ is realized; (1) it is realized when buyers make their second decision,
which is how many options to exercise and how many additional products to buy

in the spot market (Section 3.6.1), or (2) it is realized when buyers make their first

decision, which is how many options to buy (Section 3.6.2).
3.6.1 Buyers’ demand fluctuation, ¢, is realized in the second stage

In this case, the only difference from previous sections is that we should use another
demand level considering each buyer’s demand fluctuation ¢. So, instead of prob-
ability distribution F' of demand level a, we should use probability distribution F
of a = a + ¢ which is the convolution of a and ¢. Then, all the results hold for
probability distribution F used as demand level by the seller’s and buyers’ objective

function. Buyers’ problems in the first and second stage at period n are

rnax/ / U(Qn) - ﬂ-nQ - Kn‘]o,n - pQS,ndHn(p)dF(a)
Qp JQm,

Q>0

and

R(Qo,n; QS,n) = U(Qn) - KnQo,n - anS,n

= U(Qn) - KnQo,n + (Kn - pn)Qs,n

where ¢, = q,, + ¢5, and

— 1 2 a
Ulg) = —5p0° + 34

After solving buyers’ problem in the first stage, total number of option buyers pur-

chased is fﬂo QndG (o) = Qy, fﬂo dG(¢), since each buyer purchases the same number
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@, of option as others in the market. Seller’s problems in the first and second stage

at period n are

max / (ﬂ'Q + qu,n + Pdsn — Cq)dF(a)
0

subject to  —7 + / / (p—c)t —(p— ﬂ)J“alHn(p)dF(a) =0
Q+bc J 0 b
™>0

and

max  pq(p) — cq(p)
subject to p < K
max P<(I(P) — qo,n) + Kqon — cq(p)

subject to K <p

where ¢(p) = a—bp and ¢, € [0, Q, ch dG(¢)]. Since ch dG(¢) assumes to be finite,

let fQG’ dG(¢) be equal to N. Then, all the results in previous sections hold.
3.6.2 Buyers’ demand fluctuation, ¢, is realized in the first stage

In the section, we assume that ¢ is realized just before buyers decide how many
options to buy in the first stage. In the following sections, seller’s buyer’s problems

in each stage are analyzed.

3.6.2.1 Buyers’ problem in the second stage
The buyer who faces the demand level @ and the demand fluctuation ¢ has the
following utility function in the second stage

_ L, a+ ¢
Ulg) = 5l T

q (93)

Theorem 13 Suppose that buyer facing demand fluctuation ¢ has utility function,

U(qn), is given as (93). Then, the optimal quantity of goods to buy through spot
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market, g, and the optimal quantity of options to exercise, q,pn, are given by:

;

Qo + s, =0+0 if 22 <p and 22 < K,
Qo, + G5, =0+ (a+ ¢ — bp) ifpﬁ%andpﬁ[(n
0 (P) = qon + s, = (a+ ¢ —bK) +0 if =% < K, <pand K, < ¢
Gon + s, =Q+ (a+ 0 —bp—Q) if K, <p< 442
| don + 05, =Q+0 if Kp < “72 <p
Proof. Same proof as in Theorem 1 is used with a + ¢ instead of a. O

3.6.2.2 Buyers’ problem in the first stage

Since ¢ is realized in the first stage, the buyer who faces ¢ has the following problem

rnax/ / U(Qn) - ﬂ-nQ - Kn‘]o,n - pQS,ndHn(p)dF(a) (94)
Q>0 Jo, Jay.
where ¢,, = ¢,,+¢s, and U(qg,,) is given by (93). Again, let f,(H, fQF fQH

T™@® — KnQon — P@sndH,(p)dF (a) be the objective function for the buyer who has ¢

demand fluctuation and thus the objective function f4(H,)(Q) is equal to

/ /—— a4 0=+ 2t 6~ hp) — 7@~ KO~ plat 6~ bp)dH, ()

1 2 a+ ¢
/m TR O_WQ_KO—POdHn(deF(a)

Q+bK K 4 a+¢
" /bK (/0 —%(a+¢>—bp) b (a+¢—bp) —7Q — KO —p(a+ ¢ — bp)dH,(p)

w [T ogpa o= b4 a6 - bK) - 7Q — K(a+ 0 - bK)
+(p) )dF (a)

—pla+ ¢ —bK —a+ bK)dH
d)(a— bp) — 1@ — KO — p(a + ¢ — bp)dH,(p)

% K
+ /Q—l-bK(/O —%b(a—l—qﬁ—bp)

at¢o—Q
b a -+

LT o o) nQ - KQ bl 6 QHL ()
K

s 3@+ R0 -1 - KQ - p(Q - QH, (1) )dF(a)

+o—
b
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Since this is concave and differentiable, the first derivative can be used to find the

optimal number of option the buyer purchases in the first stage and is given

VMUuﬂQﬁz—w+%j;MLAm@—JQ+—(p—2:5%1£»+dH@MFW)

Lemma 21 Suppose that the buyer who has demand fluctuation 0 purchases [Q,]"

of options, where

o / / - Qn)WHn(p)dF(a) =0
n+bC
Then, the buyer who has demand fluctuation ¢ # 0 purchases [Qn + ¢]*.

By Lemma, 21, total number of options bought by buyers at period n is fQG’ Qn(0)dG (o) =
ch [Qn + ¢]TdG () if the buyer who has zero demand fluctuation purchases @, (0) =

(@] of options.
3.6.2.3 Seller’s problem in the second stage

Demand level a is realized, total demand fluctuation is fQG’ ¢dG(¢p) = 0 and total
number of option purchased by buyers in the first stage is fQG’ [Qn + ]TdG(4). With

these information, the seller’s problem in the second stage is given as

max  pg(p) — cq(p)

subject to p < K

max p(ﬂp)—qw0-+Khmn—cq@)

subject to K <p

where q(p) = a + [, 6dG(8) —bp = a— bp and g, € [0, [, [Qn + 6]*dG(0)].

Theorem 14 In period n, the seller’s optimal spot price p, s given as

a C N a C
% T3 if g5 +5 <K
Pn = o Jag @n@)ic©)
) .
max[K, ——5——— + £| otherwise
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where Qn(¢) = [Qn + ¢|T and [Q,]T is the optimal number of options bought by the

buyer facing zero demand fluctuation such that

[ / — 0t — (o= O ()P (a) = 0

By Theorem 14, the actual probability distribution of spot price is given as

AQp 3:/ ljayc dFa+/ 1 J n($)dG () dF(a
Q@ = [ gsedP@+ [ e (a)

J dG (o)
{max[K,—26""" L c]<p}

Then, it is again stochastically decreasing in Q, since for ; < ),

JoglQ1 +91"AG(9) _ Jo, [@2 + 61" dG(9)
Jo, 4G(0) Jor dG(6)

and
fQ [Qi+a]tdG() . fQ [Q24¢]TdG(s)
- dG(¢) N dG(¢)
max|K, f;z + g] > max|[K, f;i + 5]

3.6.2.4 Seller’s problem in the first stage with fixed option and strike price

First, we need to find the equilibrium point to which the sequence {Q,(#)}, can

converge and can use the following result.

Lemma 22 The first derivative of buyer’s objective function who has ¢ demand fluc-

tuation is given as

VRAQ@ =+ [ [Co-m - (- =) sa@ir

15 Lipschitz continuous and strictly decreasing in Q).

Now, we have the following results which are the corresponding results to Theorem 5,
Theorem 6 and Corollary 1 without demand fluctuation ¢. Theorem 15, Theorem 16
and Corollary 3 can be proved using the same procedure as Theorem 5, Theorem 6

and Corollary 1.
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Theorem 15 Suppose that there exists Q* such that

00 L _G—Q* + i N
V@)@ +o =+ [ [To-K) - (p-"5L) da@)ire =0
Then, V fs(H,)(Q" + ¢) — 0 w.p.1

Theorem 16 Suppose that there exists QQ* at which

00 L _G—Q* + i N
V@)@ +o =+ [ [To-K) - (1-"5L) da@)mire =o

and there exist Q*(¢) and Q' (¢) with 0 < Q (¢) < Q' (¢) such that [Q* + ¢]T

3k —k

[Q"(4),Q (¢)] and for all Q € [Q"(¢),Q (¢)]

VF4(A( ——rt /Q . [To-rr - (p-" (f‘¢))+dA(Q*>(p>dF<a>=o

Then, for any € > 0, there exists N(g) < 400 such that for all n > N(¢)

Qn(9) € [Q"(9) —2,Q (9) +¢]

Corollary 3 Suppose that there exists Q* at which

00 L _G—Q* + i =
V@)@ +o =+ [ [To-K) - (0-"5L) da@)wire -0

and Q* + ¢ is the unique solution to

V@@ =-r+ [ [Tom k- (5= =22 0) a0

Then, Q,(¢) converges to [Q* + ¢]*.
3.6.2.5 Seller’s problem in the first stage with updated option price

Seller’s problem in the first at period n is given by

max /0 h <7r( 5 Q($)dG(9)) + Kqon + Pgsn — cq) dF(a) (95)
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00 00 +
subject to  —7 + / / (p—c)t — <p S _b Q) dH,(p)dF(a) =0
0

Q+be
T>0

where Q(¢) = Q + ¢. Here, we again assume that strike price K is fixed at marginal

cost ¢ for all period and that for any < y with 0 < F(z) and F(y) <1
F(z) < F(y)

The second assumption gives the sufficient condition under which the buyer’s opti-

mization problem has unique solution. This implies that, given 7 > 0,

o [ [ (o "9 e

is strictly decreasing in @ for all period n > 1. The objective function in (95) can be

written as follows,

/0 . (r Q(9)AG(6) + Kq, + pgs — cq) aF ()

Qa

— /OOO <7r Q(¢)dG(d) + cqo + pgs — cq) dF(a)

Qa
Jog, Q(9)dG(9) ?
00 Q= —F—aa
Ja, 4G(¢) c
= T Q(¢)dG(¢) + dG(¢) Ja, Q6)AG(¢) b 2b B 5 dF(a)
9 % g e
So, we have
 Jog Q)G() 2
) a T log G0 ¢
max T Q(¢)dG(¢) + dG(¢) fo.. a@ce) D 20 2 dF ()
Q Q ohg T T
a G Jag dG@) ¢

subject to  —m +/ / p—c)"—(p— - Q)+dHn(p)dF(a) =0
Q+be J0 b
T>0

Since Q(¢) = [@ + ¢]",

max [ [Q+ ol dG(0) (96)
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Jo [Q+01FdG(¢) 2

N T
b Jag, 1G(9) c 1F(a)

00 a
+/QG 1G(9) /fG[QﬂW 2b "3

Jog 4G(@)

subject to -7 +/ / (p—c)t —
Q+bcJO
>0

Since —7r—i—fgjrbc fooo(p_c) (

7, (96) can be written

+bc

(p - 3 Q) ) dH,(p)dF(a) = 0

) dH,(p)dF(a) = 0 has unique solution given

</ij /ooo(p i (p -5 Q) + dHn(p)dF(a>> /Q [@+e]7dG(9)

Jag [Q+41*dG(#) 2
> = g 100 c
+/ dG(¢ / b " - =
. (¢) fQGf[fcjjlg(i)Gw)_l_bc 2h 2
So, we have
fog, Q@)G(3)
> “T T e @ e
mac 7 [ QG0+ | dG() |, b LG
o0 0" Jmgerenco 2 2
. %) ) N a — Q N
subject to  —7 + p—c)t—(p———)"dH,(p)dF(a) =0
Q+bc J0 b
T >0
Since Q(¢) = [Q + ¢]*,
max 7T/ [Q + ¢|TdG ()
Qa
o JoglQrolTG() 2
> = Ty 109 c
+/Qc dG(¢) /fQG[Q+¢]+dG(¢)+bcb 22 - 5 dF(a)

Tag 1G9)

subject to  —7 +/ / (p—c)t —
Q+bc J0
m>0

(p - 7 Q>+ dH,(p)dF(a) =0
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Since =7+ [ Jo (P—¢) = (p— “;Q)Jr dH,(p)dF(a) = 0 has unique solution with

given 7 >, (96) can be written

</ij /ooo(p S (p - Q) + dHn(p)dF(a>> /Q [@+eJ7dG(9)

Jo i, |Q+61+dG(9) 2

0 a— —CG—e—
Ja,, 4G(9)
+/QG dG(9) /fQG[Q+¢1+dG(¢> b QZ N

Jag da@) e

NN

Note that as we already see in Lemma 8 and Lemma 9, H,, converges weakly to A(Q*)

if ,(0) converges to Q* w.p.1. Moreover, we have the following result.

Lemma 23

(/QO:()C/OOO(P— o)t — (p— a —b Q>+dHn(p)dF(a)> /szG[Q+¢]+dG(¢)

Jo i, |Q+61+dG(9) 2

00 a— =S
Ja,, 4G (9) c
+/QG dG(¢) /fQG[Q+¢J+dG(¢) b QZ 9

Jag 1G(9) ¢

18 equi-continuous in a compact set of Q) for all period n > 1.

By Lemma 23, if {Q,(¢)}, converges to Q*(¢), then the seller’s objective function
and buyers’ objective function converge uniformly and thus Q*(¢) is the solution in
the steady state. Now, we need to find the equilibrium point in the steady state to

which the sequence {Q,(¢)} can converge.
Lemma 24 The only possible equilibrium point for {fQG’ Qn(P)dG(P) }n is zero.

Theorem 17 Suppose that there exists the equilibrium point, {ch Q*(0)dG ()}

Then {fQG Qn(9)dG(p)} converges to {fQG Q*(¢)dG(¢)} w.p.1
3.7 Conclusion

This paper models the strategic interaction of option contract and spot market be-

tween single seller and single or multiple buyers where buyers try to learn the market
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price, called ”spot price”. Basically, we consider three cases of assumptions imposed
on the buyers’ forecasting behavior on the price in the spot market when deciding

how many options to buy:

1. The buyers use the empirical distribution constructed by the previous spot

prices.

2. The buyers assume to know that the spot price decided by the seller in the

second stage depends on the demand level

3. The buyer assumes to know that the spot price decided by the seller in the
second stage depends on both the demand level and the option decided by the

buyer himself/herself.

For each case, we proposed the model in which the seller and buyers can make op-
tion contract and then will sell or buy goods in the spot market. For case 1, the
model is set as the dynamical system by the nature of the buyer’s learning behavior
in every period. We show when the limit exists for the sequence of number of option.
(Theorem 6, Corollary 1) Consequently we show that the empirical and actual distri-
bution converges if the sequence of number of option converges. Also, we introduces
the model in which the seller’s pricing decision is endogenous, which means the the
seller’s pricing decision depends on the buyer’s purchasing decision on the option.
(Theorem 3). Due to this endogenous property of the problem, the spot price de-
cided by the seller is well ordered in the number of option bought by the buyer in the
stochastic ordering sense. (Lemma 5) For case 2 and 3, the model is set as the static
system since the buyer’s decision is equal in every period. In this paper, we show the
buyer’s optimal decision in the limit and equilibrium sense. Moreover we show that
the more the buyer has information about seller’s pricing policy in the spot maker,

the more the buyer would like to buy the number of option. (Theorem 12)
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Finally, in Section 3.6, we expand the previous model to when buyers is not
homogeneous but heterogenous, which means that each buyer has different demand

from others.
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APPENDIX A

PROOF

A.1 Proof of Linehaul Distance Estimation

For a given origin ¢ and destination j, we show how to calculate the probability
PNi1; < Aio,l (97)
and the conditional probability
PAi1; > al| X < Xioy] for ae (0, Aio;), (98)

which is the key to completing the calculation of the expected linehaul distance E[A; ;]
in (35).

Recall that the NV — 1 terminals besides the center terminal are independent and
identically distributed in a region. To facilitate the calculation of E[A, ;], we use the
uniform distribution on a rectangular region [—a,a] x [—b,b] C R?, with a > 0 and
b > 0. Specifically, terminal n = 1,2,..., N — 1 has coordinates U, € R?, where U,
is uniformly distributed in [—a,a] x [—b,b], and Uy,...,Uy_; are independent. The
center terminal is located at (0,0).

We use the L{-norm
[ yll, = [=]+ ]yl

and the associated metric, as in (42), (27), (43), (16), and (17). The L;-norm is
used for simplicity; for example, calculations using the L;-norm are much simpler
than when using the Ly-norm ||(z,y)||, := /22 + y% Furthermore, the ratios be-
tween the L; and Lo-metrics between pairs of points do not vary much. To illus-

trate this, we show the results of the following simple experiment. We generate
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10,000 pairs of points independently and uniformly distributed in the unit square,
(1(2), y1(2)), (x2(7), y2(7))), 7 € {1,...,10,000}, and calculate the L; and La-metrics

between every pair of points. Figure 9 shows the cumulative distribution function of

the ratio [|(z2(2), y2(2)) = (z1(6), y1.(0)ll2/ || (z2(4), y2(i)) = (21(2), y1(2)) L. Note that the
ratio varies between 1/4/2 and 1, and that 0.8 is a pretty good overall approximation

for the ratio.

1
09 -
0.8
0.7
0.6
05 -
04 r
03 r
0.2 r
01

0

Cumulative fraction of points

0O 01 02 03 04 05 06 07 08 09 1
Ratio of L2to L1 norm

Figure 9: Cumulative distribution function of ratio (||zz2, y||1) '||z1, y1|o-

Let (x1,y;) denote the coordinates of origin ¢, and let (z3,y2) denote the coordi-

nates of destination j. Then, for any terminal n,
Aimg = NUn = (2, y0) |l + [[(22,92) — Ually
The triangle inequality holds for any terminal n, i.e.,
Aimg 2 N(@2,92) = (@r,y)lly = [z2 — 21| + |y2 — w1

and \;,; = |r2 — 1| + |y2 — y1| when terminal n is located within the rectangle
with sides parallel with the coordinate axes and having opposite corners (z1,y;) and
(x9,y2). Note that travel through the center terminal results in a total distance
Aiog = o]+ [za] + |yi| + [vel-
Thus, the random variable A; ; defined in (32) satisfies
o =z + |y =l < Ay <z + @] + |yl + |yel
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To calculate the probabilities in (97) and (98), we consider the following three

cases separately:
1. Origin ¢ and destination j are located in opposite quadrants.
2. Origin ¢ and destination j are located in the same quadrant.
3. Origin ¢ and destination j are located in adjacent quadrants.

If origin 7 and destination j are located in opposite quadrants, then
|z — 21|+ |y2 — 1| = |za| + |z2| + || + |y

and thus

Nij = Ny = |zo| + 22| + yr] + |ue

for all selections of N; and N;. Thus E[A; ;] = |@1| + |z2| + |y1] + |y2l-

It remains to consider the cases in which origin ¢ and destination j are not located
in opposite quadrants. Note that since the distribution of A, ; has support on [|zs —
T1| + ly2 — yi1], |z1] + |z2] + |y1| + |y2]], it follows that the integral in the expression

for E'[A;;] in (35) can be written as follows:

Ai0,j ’
/ P [Ai,l,j >« ‘ >\i,1,j < )‘i,O,j] do
0

1] +|22]+y1|+[ye]

l
= [z — 2]+ |y2 — 1] +/ PAirg > o | Xy < Aig] de(99)

lz2—21[+]y2—y1]
Note that, because terminals 1,2, ..., N —1 are uniformly distributed in the rectangle

[—a, a] x [—b,b], the probabilities in (97) and (98) can be expressed as

]P)[)‘i,l,j < >\i,0,j] (100)

Area (z,y) € [—a,a] x [=b,b] : 1(@,y) = (@1, y)l; + [[(22,92) — (2,9

< |z1| + 22| + [y1] + |ye
4ab

and
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P P\i,l,j >« ‘ i,y < >\i,0,j] (101)

(

% a < |[[(z,y) — (zr, y)l, + [[(z2,92) — (z, 9]

Area | < (z,y) € [—a,a] x [=b,b] :

\ < |z1| + 22| + [y1] + |ye )

aren | L oy) e ol x [og - 1) T i) = @)l

< o] 4 22| + [y1] + [12]

for a € (0, \; ;). The areas in the right side of (101) and (102) are straightforward
to calculate. Figures 10 and 11 show the regions, with origin ¢ and destination j
located in the same quadrant and in adjacent quadrants respectively, in which location
of terminal n provides a linehaul distance J;, ; that satisfies \;,,; < a for a €
(|z2 — 21| + |y2 — yil, |21| + |22 + |[y1] + |y2|). In particular, if terminal n is located on
the boundary of the eight-sided region, then A;, ; = o, and if terminal n is located in
the interior of the eight-sided region, then \;,, ; < a. Setting o = \; o ; = |1+ |22]| +
ly1| + |y2| gives the region in which location of a terminal provides a smaller linehaul
distance than through the center terminal. We show that P [\;;; > a| X1 < Aio,]
is a piecewise polynomial in « of degree at most two, from which the calculation of
fOAi’O’j P[Xi1; > a1y < Aio;]" da follows in a straightforward manner (although it
is numerically dangerous due to catastrophic cancellation).

The remainder of the appendix is organized as follows. We provide the detailed
calculations for the case in which the rectangle [—a,a] x [—b, b] contains (z1,y;) and
(29, 72). The calculations for the case in which the rectangle does not contain (z1,y;)
and (zo,ye) are similar, but involve more subcases. Section A.1.1 shows the calcula-
tions for the case in which the origin and destination are located in the same quadrant,

and Section A.1.2 for the case in which they are located in adjacent quadrants.
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Ala

Origin and Destination Located in the Same Quadrant

First, suppose that 0 < 1 < x5 and 0 < y; < y5. Then 7 and j are both in quadrant I.

For o € (|.’L‘2 — .’L'1| + |y2 — y1|, |l’1| + |.’L'2| + |y1| + |y2|), let

—a—x+Ty+ Y1+
R} () Area({(m,y) c—a<zr<aand —b<y< : 22 l y2}>
—a < g < ZedTitTe—yitye
RS () Area (x,y) : - 2
and —a—£v1+9202+y1+y2 < y < a+$1—£véz+y1+y2
a+ry—To+y+
RS () Area <{(x,y) : —a <z <aand ! 22 gL §y§b}>
(
S a+:v1+:v§+y1—y2 <z<a
R (a) Area | < (z,y) :
and —a—£v1+9202+y1+y2 < y < a+$1—£véz+y1+y2
)
20@—y) > at+z+ a2 — Y1 — Y2
RE () Area | < (z,y) and 7o, < 2 < w
\ and —a—:v1+9202+y1+y2 <y<uy
)
—2(x—i—y) ZOZ—IL’l—IEQ—yI—yg
Rg(a) Area | < (z,y) and 70‘“"”;273“”2 <z<uz
\ and —a—:v1+9202+y1+y2 <y<uy
( )
20y —x) > a—x1 — T2+ Y1 + 1o
R?(O‘) Area | < (z,y) and 7a+m1+§27y1+y2 <z<umz ’
and y, <y < HFm—gEate
\ /
( )
2 +y) > otz + T+ Y1+ Yo
R3 () Area | ¢ (z,9) and x, < g < SELETZENCY ’
\ and Yy <y < a+:v1—évéz+y1+y2 J
Figure 10 shows the regions defining Ry (c), ..., Rg (a) for a value of o € (Jzo — 21| +

lya — w1l |z1| + |z2| + |y1] + |y2|). The lines 1-8 in Figure 10 form the boundaries of

the regions defining R7(«),. .., R3(a), and it will be convenient to refer to the line

numbers in the figure.
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a1 —T2+Yy1+Y2 a+T1—T2+y1+Y2
__________ ) )

e

R3(¢) > | | N RS
I |
I |

6 N
—a+z1+re—y1+y2
( . ,Y2) .

2

3 L1y Y1 }/:

—a sd) | 1] | J RS} |

________ AT N
($1, —a 7I1+9§2+y1+y2 )(x% *Q*I1+52+y1+y2)
RS (o
—b

Figure 10: Example of the region in which location of a terminal provides a smaller
linehaul distance than a € (|ze — 1|+ |y2 — v1], |21] + |22| + |y1| + |y2|) if (21, y1) and
(x9,12) are in the same quadrant.

For the special case with o = ;0 ; = |z1| + |@2| + [y1] + |y2|), let

Then, the probabilities in (101) and (102) are given by

dab — >3 | RS

Py < Xiogl = b

and

8 S _\8 S
P [)‘i,l,j > | )\i,l,j < )‘i,O,j] = Zk:l Rk (Oé) Zk:l Rk (102)

4ab — 22:1 Ry

Next, we allow ¢ and j to be in any quadrant (as long as ¢ and j are in the same

quadrant), and we allow x; > x5 or y; > 3. Using Figure 10, it is easy to observe
that regardless of the quadrant in which 7 and j are, the areas R{(a),..., R ()

depend only on the minimum and maximum of the distances of ¢ and j from the x
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and y axes. Hence, let
z = |z Alzsl, T = |o| Ve, y = |y|Alyel, and 7 = |yi|V[ye| (103)

Then, in general, with ¢ and j in the same quadrant, it follows that

0z +T+y+7
2a 5 + b ) Lia<2b—ztzty+7)

—a—z+7T+y+7y
> - ((—b) \ 5 - >> X ]I{a<2a+£+f—g+§}

a+z—T+y+7
I e ) [
a+z+TH+y—7
Ble) = (a- LT
2
T—T+y+

><]I{cz<2 a+b)—z—T+y+y}

R§(a) = (( A( _a+x+x+y+y>>—(Gﬂ)v_a+£tf_g+g>f
(=

2
o = 3{(on (- ) (o))

><]I{oz<2 (a+b)+z+T—y—7}

1 a+z+T+y—7 a+z+THy+7y ?
o = () o ()

X ]I{a<2(a+b)—g—f—g—y} .

Note that in these area calculations one must keep in mind that part of the bound-
ary of the eight-sided region in Figure 10 may be outside the rectangle [—a,a] X
[—b, b]. Thus, depending on the boundary of the eight-sided region, some of the areas
Ri(a),..., RS (a) may be 0. In the expressions for Ry (c), ..., RS (a) above, this is
accomplished with the indicator functions (except for RZ (), because a > 0, b > 0,

and z +y > 0 imply Rg(a) > 0).
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To finish the expected linehaul distance calculations, it follows from (99) and (102)

that we must calculate

lz1|+|z2]|+|y1 |+ y2] ¢
/ P [)\i,l,j > o | )\i,l,j < )‘i,O,j] do
|

T2—z1|+|y2—y1|

V4
|71 |+ z2]+]y1]+]y2] 8 S N8 S
|

4ab — Zi:l Ry

z2—x1|+[y2—y1
To calculate (104), we write S ¢_, Ry () as a piecewise polynomial in a of degree at

most two. We will choose A(«), B(a), Cy(«), and Cy such that

A(a)a? + B(a)a+ Ci(a) = ZRE(@) and Cy = ZR,‘?

k=1

Considering the interval over which each indicator function in the expressions for
R (a),..., R§(a), is 0, the interval [|zy — z1| + |y2 — v1l, [21| + 22| + |y1| + |y2|] can
be partitioned into intervals over which A(a), B(«), and C;(«) are constant. Also,

for C'(a) := Cy(a) — Oy,

— [A(@)a® + B(a)a + C(a)]’

=Y @ Bl )

£1,69,05
L1+La+l3=¢

/!
= > A(@)"' B(a)?C(a) a2,
01105105!
L1,09,03 :
{51+52+€3=€}
and thus it follows from (104) that
|71 |+ z2]+]y1]+]y2] ;
/ P [)\i,l,j >« | )\i,l,j < )\i,O,j] do (105)
|z2—21|+|y2—y1|
[ 1 e/x1+|x2+|y1+|y2| Z Z' A( )[ ( )l O( )Z 201+4
= a)'Bla)?C(a)?a” 2 da.
dab— S5 RS | J| o 0115105

z2—x1|+|y2—y1|
{41+42+434}

Calculating (106) is easy when the shaded region in Figure 10 is inside the rect-

angle [—a,a] x [=b,b] for all & € (w2 — @1 + [y2 — al, [1] + 22| + [y2] + [p2]). In
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this case, A(a), B(a), and C}(«) are constant for all &« € (|xg — z1| + |y2 — y1|, |x1] +

|z2| + |y1]| + |ye|). For example, suppose that a = b and

11 11
(r1,51) = <Za7 Za) and  (72,y2) = <§a, 5@) .
Then, |zo — 1| + |y2 — y1| = a/2 and |z1| + |z2| + |11] + |y2| = 3a/2, and, for all
a € (a/2,3a/2),

65

, Bla) = 0, and Ci(a) = 6%

Furthermore, 22:1 R? = 25a%/8. Suppose, for example, that ¢ = 1. Then, (106) is

easily calculated as

3a/2 1 3a/2
/ P [)\i,l,j > o | )‘i,lyj < )\i,O,j] da = m/ [A(Oé)OéQ + B(Oé)Oé + O(Oé)] do
a -8 a

/2 /2
1 /327 1 65 25
= 7 |:——CY2 + <—a2 — —a2>] do
ga a/2 2 ].6 8
2
-

Note that when a = 3a/2, then R5(a) = R;(a) = 0. In particular, when o = 3a/2,
the lines 5 and 3 are exactly on the boundary of the rectangle [—a,a| X [—a,al.

Consider a different choice of (x1,y;) and (z2,ys), for example,

1 1 3 3
(1, 51) = <Za’1a> and  (72,y2) = (Za,1a>.

Then R§ (o) = R} () = 0 for a in a nonempty portion of the interval
(lwe = a1 + [y2 — il || + [w2| + [pa] + [g2]) = (a,20),

which causes A(«), B(a), and Ci(a) to be piecewise constant with multiple pieces
(rather than constant) over the interval (|zo — 21| + |y2 — v1), |x1] + |22| + |y1| + |y2])-

Specifically, R (o) = R3(a) = 0 for all « € [3a/2,2a). Furthermore,

1
Ala) = 2
0 if

if a<a<%a

a<a<2a

N W
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0 if a<a< %a
B(a) = A«
—a if %a <a<2a
\
(
%a2 if a<acx %a
01(05) = 9 )
%a2 if %a <a<2a
\

and 320, RS = 21a?/8. When ¢ = 1, (106) becomes

2a
/ P [)‘i,l,j >« | >\i,1,j < )‘i,OJ] dov

— @/ ' [A(@)e® + B(a)a + C(a)] da

8 1 /271 (17T, 21, 2a 37 21
- - = = - o d - st 2 a2 d
i ([ e (5o s [ [ (S )]

In general, integrating (106) requires partitioning the interval (|zo — z1| + |y2 —
y1|, |x1| + |z + |y1] + |y=|) into the subintervals over which A(«a), B(«), and C(«)
are constant. The intervals of a-values over which lines 1-8 are inside or outside
the rectangle [—a,a] x [—b,b], determine the intervals of a-values over which the
triangles RS («), R? (), and R («) have positive areas, and the intervals of a-values
over which A(a), B(«), and C}(«) are constant, from which the calculation of (106)
follows directly. We first consider the cases determined by which of the lines 1,
3, 5, and 7 in Figure 10 are outside the rectangle [—a,a] x [—b,b], and then, if
required, consider further subcases determined by which triangles have positive area.
Fortunately, dependencies imply that many of the 2% x 2% conceivable cases cannot
occur. For example, examination of Figure 10 shows that if line 3 is inside the
rectangle so that (o +x1 + 22 +y1 — ¥2)/2 < a, then @ < 2a — 1 — T3 — Y1 + Yo <
2a 4 w1 + x9 — Y1 + Y2, which implies that line 7 is also inside the rectangle. We show

only the cases that can occur.
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A.1.1.1 Calculating the piecewise constant functions A(«), B(a), and C(«)

For easy reference to Figure 10, and without loss of generality, assume that x; =
z, T3 = T, y1 = Y, and y» = J. Note that in this case RZ(a) > 0 for all a €

(lze — x1| + |ly2 — v1l, |21] + 2] + |y1| + |y2|). The following cases can occur:

1. Lines 1, 3, 5, and 7 are inside the rectangle, that is,

a € [lea—xi|+|y2 —wil, Qa4+21+ 20 —y1 +y2) A (20 — 21 — 29 — Y1 + Y2)

A2b— 21+ 22 +y1 +y2) A (20 — 21 + 20 — Y1 — y2) A (21| + |22] + |y1| + |42]))

which implies that RZ(a) > 0, RZ(a) > 0, and Rg(«) > 0. Then,

Al0) = —
B(a) = 0

1 , 1 ,
Ci(a) = 4ab+§(x2—x1) +§(y2—y1) :

2. Lines 1, 5, and 7 are inside the rectangle, but line 3 is outside, that is,

a € [(lza =21+ |y2 —w|) V (20 — 21 — 22 — Y1 +42),
(20 + 21 + 22 — Y1 +y2) A (20 — 21 + 22 + Y1 +Y2)

A(2b — 21 + 29 —y1 — o) A (|21] + |z2| + y1] + |92])

which implies that RZ(a) > 0, RZ(a) > 0, and Rg(«) > 0. Then,

A@) = —;
B(Ol) = %($1+1‘2)—a

1 1 1
Ci(a) = ala+4b—x — 29) + g(ﬁ + a3) + Z(Iz —11)° + Z(yQ — )

3. Lines 1, 3, and 7 are inside the rectangle, but line 5 is outside, that is,

a € [(lzg =21+ |2 —w1|) V(20 — 21 + 22 — Y1 — Y2),
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(20421 + 22 —y1 +y2) A (20 — 21 — 22 — Y1 + Y2)

A2b — 2y + 22+ y1 + yo) A (|21 ] + |22] + |y1] + |y2])

which implies that RZ(a) > 0, RZ(a) > 0, and R5(«) > 0. Then,

1
A(CY) = —Z
1
Blo) = S +w) -
1 2 1 o, Lo 9
Cila) = b(4a+b—y1—y2)+1(xz—$1) +Z(y2—y1) +§(y1 +v3)

4. Lines 1 and 7 are inside the rectangle, but lines 3 and 5 are outside, that is,

a € [(ltg =21+l —w|) V(20 =21 — 20 —y1 +y2) V (20 — 21 + 29 — Y1 — 1),

(2a 421 + 22 —y1 +y2) A (20 — 21 + 22+ y1 + y2) A (21| + 22| + Jyi| + |v2]))

which implies that RS (a) > 0 and RZ () > 0. The following two subcases can

occur:

(a) Part of line 4 is inside the rectangle, that is,

a € [(|lzg —zi|+[y2 —wil) V(2a =21 — 22 — Y1 +42) V(20 — 21 + 29 — Y1 — 1),
Ra+zi+ze—p1+y) AN2b—z1+ 22+ y1 +y2) A (2(a+b) — 21 — 22 — y1 — Y)

Alr] + J22] + [yi] + [y2])]
which implies that R§(«) > 0. Then,
Ala) = 0

1
B(a) = —(a+0b)+ §($1 + 29 + Y1+ Y2)

1
Ci(a) = (a+0b)?+2ab— a(z) +22) — blys + 1) + 5 (27 + 23 +yi +v3) -
(b) Line 4 is outside the rectangle, that is,
a € [(Jez—mif[+|pe —ml) V(20 =21 — 22 — 1 +y2) V(20 — 21 + T2 — 1 — o)
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V(2(a+b) — 21 — 3 — Y1 — 1),

Qa4+ 21+ 22 —y1 +y2) A (20 — 21 + 22 +y1 +y2) A (|| + 22| + |y1] + |y2])]

which implies that R5(«) = 0. Then,

1
A(a) = —g
1 1
Bla) = —(a+b)+ (@ +22+ v +1)
1 1
Ci(a) = F(a+b)?+2ab+ (b —a)(z1 + 22— 11— y2).

5. Lines 1 and 5 are inside the rectangle, but lines 3 and 7 are outside, that is,

a € [(lrg =2+l —w|)VR2a+z1+ 30 =91 +12) V(20 — 21 — 22 — Y1 + 12),

(20 — 21 + @2+ Y1 + Y2) A (20 — 21 + 22 — Y1 — Ya2) A (Jo1| + 22| + |y1] + |12]))
which implies that RS (a) > 0, RY(a) > 0, and R§ (a) > 0. Then,

Ala) = 0
B(a) = —2a

Ci(a) = 2a(a+2b)+ 27+ 3.

6. Lines 3 and 7 are inside the rectangle, but lines 1 and 5 are outside, that is,

a € [(lra =2+l =) V(20— 21 + 20+ 41 +y2) V(20 — 21 + 22 — Y1 — Y2),

(2a 421+ 22 —y1 +y2) A (20 — 21 — 22 — Y1 +y2) A (Joo| + |22] + Jyi| + |v2]))

which implies that RS (o) > 0, RY(a) > 0, and R§(a) > 0. Then,

B(a) = —2b

Ci(e) = 2b(2a+b) + 3% + y2.
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7. Line 7 is inside the rectangle, but lines 1, 3, and 5 are outside, that is,
a € [(Jzg —2|+ |y —wl) V (2a =21 — 22 —y1 +42) V (20 — 21 + 22 + Y1 + Y2)
V(20 — 21 + 22 — Y1 — Y2), (2a + 21 + 22 — Y1 +12) A (|21 + |z2| 4 y1] + [12])

which implies that RS (a) > 0. The following three subcases can occur:

(a) Parts of lines 2 and 4 are inside the rectangle, that is,
a € [(leo—2i]|+ly2— )V (2a—21 — 20 — 1 +y2) V (20— 21 + 22 + Y1 + Vo)
V(2b—z1 + 22— y1 —y2), 2a+ 21 + 22 — y1 + y2)
AN2(a+0) =z — 25 — 1 = 42) A (Jea] + |22| + [12] + [121))

which implies that RS («) > 0 and R§ (o) > 0. Then,

1
3 1 1
B(o) = —g5a—=2b+ (1 +2) — 2 (11 +42)
2 2 4
1 3
C’l(a) = a2 + 4ab + 2[)2 — Cl(iUl + l’2) + - (l’l + £U2)2 + - (y1 + y2)2 — Y1Y2.

4 4

(b) Part of line 2 is inside the rectangle and line 4 is outside the rectangle,
that is,
a € [(leo—2i|+ly2— )V (2a—21 — 20 — 1 +y2) V (20— 21 + 22 + Y1 + U2)
V(20 —z1+ 29 —y1 —y2) V (2(a+b) — 21 — 9 — y1 — ¥2),
(2a+z1+ 22 —y1 +y2) A(2(a+b) — 21 — 22 + Y1 + 12)
Allar] + 22| + yi] + ly21))

which implies that RS (o) > 0 and R5(a) = 0. Then,

1
1 3 1
B(a) = —§a—§b+1(x1+x2—y1—y2)
3 1
Ci() = (a+0b)*+2ab— a(y +x2) + (a+b)(y1 + y2) — — (@7 + 27) — —(¥7 +3)

4 4

+(11 + 29 — Y1 — Ya)°.
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(c) Lines 2 and 4 are outside the rectangle, that is,

a € [(Jz2—21| +ly2 =)V (2a — 21 — 29 —y1 + 1) V (20 — 21 + 22 + 41 + ¥2)
V(20— 1+ 29 —y1 —y2) V (2(a+b) — 21 — 29 + Y1 + Ya),

(20 + 21+ 2 — y1 +y2) A (Joa| + |z2| + [ + [12])

which implies that RZ(«) = RS () = 0. Then,

1
Ci(a) = b2a+b+a +22) + S (47 +13).
8. Line 1 is inside the rectangle, but lines 3, 5 and 7 are outside, that is,

a € [(lrg =2+l =)V R2a+z1+20 —y1 +y2) V(20 — 21 — 29 — Y1 +¥2)

V(20— x1 + @2 — y1 — y2), (2b — w1+ 22 + Y1+ y2) A (|2 ] + [w2] + |31 + [92])
which implies that RS (o) > 0. The following three subcases can occur:

(a) Parts of lines 4 and 6 are inside the rectangle, that is,

a € [(|[ma—21|+ly2 =)V 2a+x1+20 =91 +12) V(20 — 21 — 29 — Y1 + 1)
V(2b— 21 + 22— y1 — y2), (20— 21 + 22 + Y1 + Uo)

AN2(a+Db) — 21 —m9 — y1 — y2) A (|| + |z2| + |1 + |y2])

which implies that R («) > 0 and Rg (o) > 0. Then,

A@) =

1
Bla) = —2a—b+ §(y1 + 143)

3 1 1
Ci(a) = 20°+4ab+ 0> — b(y1 +y2) + 1 (1 + 332)2 + 1 (1 + y2)2 + 512
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(b) Part of line 6 is inside the rectangle and line 4 is outside the rectangle,
that is,
a € [(|lva—zi|+|y2— 1)) V2a+ 1z + 29 — 31 +y2) V (20 — 21 — 29 — Y1 + yo)
V(2o — 1+ 29 —y1 —Yo) V (2(a+b) — x1 — 9 — y1 — Y2),
(20— + 2o+ 91 +y2) A(2(a+b) + 21 + 22 — Y1 — 1)
Allar ]+ |22| + yil + ly21))

which implies that RS (o) > 0 and R§(a) = 0. Then,

1
3 1 1

B(a) = —§G—§b+1(—x1—x2+y1+y2)
3 5 1, 1 1

Cila) = ¢ +3ab+§b +§(a+b)(a:1 +x2)+§(a—b)(y1+y2)
1 1
+§(x%+x§)+§(x1+x2—y1—y2)2.

(c) Lines 4 and 6 are outside the rectangle, that is,
a € [(Jze =2+ |2 =)V Ra+z1+ 22 —y1 +42) V(20 — 21 — 22 — y1 + 1)
V(20— x1+ 29 —y1 —y2) V (2(a+b) + 21 + 22 — y1 — 42),
(20 — 21 4+ x2 + 1 + y2) A (|z1] + |22 + 1] + |12]))
which implies that RS («) = RS (a) = 0. Then,
Ala) = 0
B(a) = —a
Ci(o) = a(a+2b+y1+yz)+%(aﬁ+fc§)-
9. Lines 1, 3, 5, and 7 are outside the rectangle, that is,
a € [(Jza—2|+ [y —wnl) V(2a+ 21+ 20 =91 +42) V (20 — 21 — T2 — Y1 + 42)
V2b—xy+ x4+ y1 +y2) V(20— x1 + 22 — 1 — y2), |x1| + |z + |y1| + |y2])

The following five subcases can occur:
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(a) Parts of lines 2, 4, and 6 are inside the rectangle, that is,

a € [(|Jze =2+ |y —wl) V 2a+ 21 + 20 — 1 +12) V (20 — 31 — 29 — Y1 + 1)
V(20— x1 + 20+ y1 +y2) V(20 — 21 + 29 — Y1 — Yo),

(2(a+0) — 21 — 22 — y1 — y2) A (|m1] + [22] + |y1| + [92]))

which implies that RZ(«) > 0, RZ(«) > 0, and Rg(«) > 0. Then,

A0) = 5
Bla) = —2(a+0)

1
Ci(a) = 2(a+b)>+ 3 (23 + 23 + yi + v3) + 2132 + Y1y,

(b) Parts of lines 2 and 6 are inside the rectangle and line 4 is outside the

rectangle, that is,

a € [(|[ma—21|+ly2—ml)V2a+21+20 =91 +12) V(20 — 21 — 29 — Y1 + 1)
V(2b =y + 20 +y1 +y2) V(20 — 21 + 22 — Y1 — Y2)
V(2(a+0b) =21 — 22 —y1 — ¥y2), (2(a +b) + 21 + 22 — Y1 — Y2)

A2(a+Db) — 21 — my +y1 + y2) A (21| + |z2| + [yo] + [12]))

which implies that RZ(a) > 0, RZ(«) > 0, and Rg(«) = 0. Then,

3

A(Ol) = g
3 3 1

B(a) = —§a—§b—1($1+$2+y1+y2)
3 3

Cila) = §(a+b)+1(x1+$2+y1+y2)-

(c) Part of line 6 is inside the rectangle and lines 2 and 4 are outside the

rectangle, that is,

a € [(lrg—2|+ =)V R2a+z1+ 20 —y1 +1y2) V(20 — 21 — 29 — Y1 + Y2)

V(2b —z1+zo+ 11 +y2) V(20 — 21 + 22 — Y1 — Yo)
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V(2(a+0b) =21 — 22 +y1 +12), (2(a+b) + 21 + 22 — Y1 — 1)

Allar ]+ |22| + [yi] + ly21))

which implies that R («) > 0 and R§ (o) = R§(«) = 0. Then,

1
Ala) = 4
1 1
B(a) = —a—b—§x1—§x2
1 21 )
Ci(@) = |a+b+g(m+m)) +7+m)

(d) Part of line 2 is inside the rectangle and lines 4 and 6 are outside the

rectangle, that is,

a € [(lrz—21|+ e —w|)VRa+z1+2 —y1 +¥2) V(20 — 21 — 22 — Y1 +Y2)
V(20— x1+xo+y1 +y2) V(20 — 21 + 10 — y1 — Yo)
V(2(a+b)+x1+ 22 —y1 — y2), 2(a+b) — 21 — 22+ 11 + Yo)

Allar ]+ |22| + [yi] + ly21))

which implies that RZ(«) > 0 and R?(a) = Rg(«) = 0. Then,

1
A(Oé) = Z
1 1
B(a) = —a—b—§y1—§y2
1 21 )
Cl(Ol) = a+b+§(y1+y2) +Z(IL'1+JI2) .

(e) Lines 2, 4, and 6 are outside the rectangle, that is,

a € [(Jma—21|+ly2 =)V 2a+21+20 =91 +12) V(20 — 21 — 29 — Y1 + ¥2)
V(2b =y + 20 +y1 +y2) V(20 — 21 + 22 — Y1 — Y2)
V2(a+b)+x1+x2—y1 —y2) V (2(a+b) — 21 — 22+ 11 + y2),

1]+ 22| + lya| + l2l)
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which implies that RS («) = R3 (o) = RS (o) = 0. Then,

1
8
1

1
= —§(a+b)—1(x1+x2+y1+y2)

1
§(a+b)(a+b+x1+x2+y1+y2)
1 9
+§($1+I2+?Jl+y2) .

A.1.2 Origin and Destination Located in Adjacent Quadrants

First, suppose that z; < 0 < x5 and 0 < y; < ys. Then ¢ is in quadrant II and j is in

quadrant I, as in Figure 11. For a € (|22 — 1| + |y2 — w1, |21] + 22| + |y1] + |y2]), let

R}a) = Area

Ry(a) := Area

R{(a) := Area

Ri}(a) := Area

Ré(a) := Area

Ri(a) = Area

R (a) := Area

(
|
(
%

(

c—a<z<agand —b<y<
:—a < x<gand

(z,9)
(z,y) :
(z,9)

(z,y) :

—a—x1+x2+y1+y2}>
2

o —a+zi1+x2—y1+yY2
a<z< 5

and —a—:v1+9202+y1+y2 S y S a+w1—x§+y1+y2

a+xy— T2+ Y1+ Y2
2

<y

})

a+T1+T24+y1 —y2
— S ——<z<a

and —a—:v1+9202+y1+y2 S y S a+w1—x§+y1+y2

2@ —y) > a+r + a2 — Y1 — W2
at+ri1+re2t+y —y
and 1, < ¢ < AR

and —a—:v1+9202+y1+y2 S y S m

20 +y) > —a+x + T2+ Yy + Yo

and *a+$1+§2*y1+y2 S T S T

——T1+T2+Y1+Yy:
and 122y1 yzgygyl

2y —x) >a—x1 — T3+ Y1+ Yo

and —a+:1:1+92£2—y1+y2 S T S Ty

at+x1—T24+y1+y2
and yp <y < R
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2@+y) > a+x+ T2+ Y1+ Yo
Ri(e) = Area|{(z,9) : andzy<z< e

< QFT1I—Ta+y1+yo

and y2 <y 5

Figure 11 shows the regions defining R{}(«), ..., R§(c) for a value of o € (|zg — 21|+
lya — w11, |z1| + |z2| + |y1] + |y2|). The lines 1-8 in Figure 11 form the boundaries of

the regions defining Ri(a), ..., R{(a).

(xl, a+x1—x§+yl+y2) R3A (bo) (fUz, a+:v1—x22+y1+y2)
RA 4 & (d)
(mtzeyiiieda ) ol otnbri e
R2 (o) © ?| R (a)
AN A
_ Rg( 8 X5 (0)

—T1+x2+y1ty2—a

—:v1_+9:2+y1+y2—a) (ZUQ, 5 ) “

—b

Figure 11: Example of the region in which location of a terminal provides a smaller
L, linehaul distance than « € (|2 — 1|+ |yo — y1l, |21] + |z2| + [y1] + |y2|) if (21, 91)
and (z2,y9) are in adjacent quadrants.

For the special case with o = ;o ; = |z1| + |@2| + [y1] + |y2|), let
R} = Ri(\ipy)-

Then, the probabilities in (101) and (102) are given by

dab — S5 R{

Pl < Aipgl = 1ob
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and

8 A _\8 A
Plhn >a | hiny < diojl = 2= Bl 0) 5 Z’T il (106)
dab =>4 Ry

Next, we allow ¢ and j to be in any adjacent quadrants, and we allow z; > x,

or y; > yo. It is easy to see how to choose a new coordinate system with the same
origin and scale as the original coordinate system and with axes coinciding with the
axes of the original coordinate system, so that j will be in the new quadrant I and
¢ will be in the new quadrant II. Furthermore, using Figure 11, it is easy to observe
that in the new coordinate system, the areas Ri'(«),..., R§(c) depend only on the
minimum and maximum of the distances of 7 and j from the new x axis. Hence, if z;

and 5 have opposite signs and y; and y, have the same sign, then let

= —|v|, T = |z2], y = [n|Alel, T = 1|Vl ¢ = a, and bV =0
(107)

Otherwise, if z; and x5 have the same sign and y; and y, have opposite signs, then

let
z= =yl T = |l y = lwlAlel, § o= |5l V]ze|, o =), and V' :=a
(108)
Then
Ri(a) = —da+d(—z+T+y+7) +2aV
at+tr—T+y+y —a—x+T+y+y —a+r+T—-y+y
Ri(a) = <(b’/\ — Y y)— — Y y)(a'+ — yry

a+r+T+y—y a+r—T+y+y —a—x+T+y+y
i) = (- TEEETH) (( OXETT T oot Ty ey

2
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X H{a<2(a’+b’)+g+i—g—@}

1 a+z+T+y—7 a+z+THy+7y ?
Ri(a) = §<<a’/\ — Y y)—(f\/( — ! y—b’)))

XL{a<2(a+b)—z—7—y—T7}

Similar to Section A.1.1, we write 22:1 R}(«) as a piecewise polynomial in « of
degree at most two, and we choose A(«), B(«),Ci(«), and Cy such that
8
A(a)a? + B(a)a + Ci(a) = ZR?(&) and Cy = ZR,?.
k=1 k=1

A.1.2.1 Caleulating the piecewise constant functions A(«), B(a), and C(«)

For easy reference to Figure 11, and without loss of generality, assume that z; = x,
Ty =T, 1 =Y, y2 = Y, a = a, and b = V. Note that in this case Ri{a) > 0
and Rg () > 0 for all @ € (|zg — 21| + |y2 — w1, |21| + |22] + [y1]| + |y2]). As in Sec-
tion A.1.1, when partitioning the interval (|xe — 21| + |y2 — v1l, |21] + 22| + |y1] + |¥2])
into the subintervals over which A(a), B(«), and C(«) are constant, we show only

the cases that can occur, namely the following cases:

1. Lines 2, 4, and 6 are inside the rectangle, that is,

a € [lze—z1]|+ |y2 — ),
(20 + 21+ 2o —y1 +Y2) A(2b— 2y + 29 — y1 — y2) A (20 — 21 — To — Y1 + Yo)
Alz| + [z2] + |yi] + y2]))
which implies that R#'(a) > 0 and Rg () > 0. Then,
Ala) = —

1
2
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1
Ci(a) = 4dab+ 3 (x% + 2l i+ y%) — X1T2 — Y1Yo.
2. Lines 2 and 4 are inside the rectangle, but line 6 is outside, that is,

a € [(lva =2+ lye —wm|) V 20+ 21 + 20 — Y1 +12),

(20— 21+ 22 —y1 —Y2) A (20 — 2y — 2 — Y1 +y2) A (|21] + 22| + |Y1] + |¥2]))

which implies that R#'(a) > 0 and Rg () > 0. Then,

1
Ale) = —=
() = -3
1
B(a) = —a—§($1+$2)
3,5 o 1 s 1
Ci(a) = a(a+4b+x1+x2)+1(xl+x2)—i—Z(yz—yl) — T,

3. Lines 4 and 6 are inside the rectangle, but line 2 is outside, that is,

a € [(lvg =21 +lye —w|) V(20 — 21 — 22 — Y1 +Y2),

(204 21 + 29 — Y1 +y2) A (20 — 21 + 22 — Y1 — y2) A (|o1]| + [@2] + [y1] + |y2]))

which implies that R#'(a) > 0 and R§ () > 0. Then,

1
Al@) = —-
(@) = -
1
B(Ol) = —a+§(x1+x2)
3., o 1 , 1
C’l(a) = a(a+4b — T — l‘z) + Z (l‘l —|—£U2) + Z (y2 - yl) — 53311‘2.

4. Lines 2 and 6 are inside the rectangle, but line 4 is outside, that is,

a € [(lvg =21+ |ye —w|) V(20 — 21 + 22 — Y1 — ¥2),
(20421 + 29 — 1 +y2) A (2a — 21 — 22 — Y1 +y2) A (|21 + |22] + 11| + |y2])

which implies that R#'(a) > 0 and Rg () > 0. Then,

Ala) = —%
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Bla) = —b+ ~(u +m)

2
1 3 1
Cl(&) = b(4a +b— Yy — yz) + Z (IL’Q — 1‘1)2 + Z (y% + y%) - §y1y2.

5. Line 2 is inside the rectangle, but lines 4 and 6 are outside, that is,

a € [(lrg—2|+lro—w|)V2a+z1+ 30— 31 +1y2) V(20— 21 + 39 — Y1 — y2),

(20 — 21 — 22 — y1 4+ 42) A (J2n]| + |22] + [y2] + [121))
which implies that Rg(«) > 0. The following two subcases can occur:

(a) Part of line 5 is inside the rectangle, that is,

a € [(Jlrg—21|+le—w|)VRa+z1+32 —y1 +12) V(20— 21 + 22 — Y1 — ¥2),
(20 —x1 — 22 —y1 +y2) A (2(a+ D) + 21 + 20 — Y1 — Y2)

A(Jzi] + [zo| + [yi] + [y2]))
which implies that R7(c«) > 0. Then,
Ala) = 0
1 1
Bla) = —(a+0b) =5z +22) + 5y +12)
1
C’l(a) = a? _|_b2 _|_4ab+a(x1 +l’2) — b(y1 +y2) + 5 (ZL‘% +l’§ +y% —|—y§) .

(b) Line 5 is outside the rectangle, that is,

a € [(Jzz =21+ |y2 —ml) V (20 + 21 + 29 — Y1 + 1)
V(20— 21+ 20 —y1 —y2) V (2(a+ ) + 21 + 22 — y1 — ya),

(20 — 21 — w2 =y + 1) A (|oa] + 2| + |ya| + |y2)

which implies that R7(a) = 0. Then,

— ool

Bla) = —g(a+b)— 1o +) + 1l + )
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1 1
Ci(a) = 3 (a2 + bz) + 3ab + §(a —b)(z1 + 22 + y1 + Yo)
3,9 o, 9 o 1
+§ (371 +xy+y + 92) + 1 (—z129 + T1Y1 + T1Y2 + Tay1 + TaYa — Y1Y2) -

6. Line 6 is inside the rectangle, but lines 2 and 4 are outside, that is,

a € [(lrg =2+l —wm|) V(20 =21 — 20 —y1 +y2) V (20 — 1 + 22 — Y1 — 42),

(2a +z1 + 32 —y1 +y2) A (Jza] + [22] + 1] + |12]))
which implies that R;(«) > 0. The following two subcases can occur:
(a) Part of line 3 is inside the rectangle, that is,

a € [(|Jzea—2|+ |y =) V(2a =21 — 220 —y1 +1y2) V(20 — 21 + 22 — Y1 — 12),
(2a + 11+ 290 —y1 +y2) A(2(a+b) — 2y — 25 — Y1 — ¥2)

Allza] + 2] + [y2] + ly2)))
which implies that Rg(c) > 0. Then,
Ala) = 0
1
Bla) = —(a+0)+ (21 + 22 +y1 +142)
2 | 2 Lio 2 2 o
Ci(a) = 4dab+a® 4+ b —a(x) + x2) — b(y1 + yo) + §(x1 + x5 + Yy + v3)-
(b) Line 3 is outside the rectangle, that is,
a € [(lz2 =2+ |y2 —nil) V (20 — 21 — 22 — y1 + 12)
V(2b— 1+ 22—y —y) V (2(a+b) — 21 — 22 — Y1 — ),
(20 + 21 + 25 — y1 + y2) A (Jza] + [22] + 1] + [32]))
which implies that Rg(a) = 0. Then,
1
Al@) = —=
(@) = —

Bla) = —g(a+b)+ o+ )+ 10+
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1 1
Ci(a) = 3ab+ §(a2 +b%) + 5(b —a)(zy + 32 — Y1 — Y2)

+%(xf + a5+ y; +ys) — é(ml + 22 + Y1+ Y2)”
7. Line 4 is inside the rectangle, but lines 2 and 6 are outside, that is,
a € [(Jzz =2+ |2 —ml) V(20— 21 — 22 — Y1 +12) V (20 + 21 + T2 — Y1 +Y2),
(20 — 1 + 22 —y1 — y2) A (|71] + |2 + [p1] + [92])
which implies that R7(a) > 0 and Rg(«) > 0. Then,
Ala) = 0

B(a) = —2a

Ci(a) = dab+2a*+ 27 + 3.

8. Lines 2, 4, and 6 are outside the rectangle, that is,

a € [(lrg—21|+lye—wm|) V(20 —21 — 20 —y1 +42) V (20 + 21 + 22 — Y1 +¥2)

V(20— @1 + 22 — y1 — o), |1 ]+ |w2| + [y1] + [y2l)
The following four subcases can occur:
(a) Parts of lines 3 and 5 are inside the rectangle, that is,

a € [(lrz—21|+ e —w|) V(20 =21 — 20 —y1 +42) V (20 + 21 + 22 — Y1 +Y2)
V(20 — 21+ 0 —y1 — yo), (2(a+b) + 21 + 23 — y1 — Yo)

AN2(a+b) — 21 — 22 — y1 — y2) A (|71] + 22| + |11] + [12]))

which implies that R7(a) > 0 and Rg(«) > 0. Then,

A0) = 5

1
Bla) = —2a—b+ 3 (y1 + 1)

1 1 1
Ci(a) = 2a*>+b*+4ab—b(y, + o) + 3 (z7 +23) + 1 (21 + 22)° + % (g1 + 12)°
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(b) Part of line 5 is inside the rectangle and line 3 is outside the rectangle,

that is,

a € [(Jz2—21| +ly2 =)V (2a — 21 — 29 — 1 + 1) V (20 + 21 + 22 — Y1 + ¥2)
V(20 —z1+ 29 —y1 —y2) V (2(a+b) — 21 — 9 — y1 — ¥2),

(2(a+b) + 21+ 22 —y1 — y2) A (21| + 22| + [31] + |92]))

which implies that R;(a) > 0 and Rg(«) = 0. Then,

1
3 1 1
B(a) = —§a—§b—1(x1+x2—y1—y2)
3, 1., 1 1
C’l(a) = 5@ +§b +3ab+§a(x1+x2+y1+y2)+§b(ajl+x2—y1—y2)
1 1
+§($%+$§)+§($1+$2—y1—y2)2-

(c) Part of line 3 is inside the rectangle and line 5 is outside the rectangle,

that is,

a € [(lrz—21|+ e —w|) V(20 =21 — 20 —y1 +42) V (20 + 21 + 22 — Y1 +Y2)
V(20— x1+ 29 —y1 —y2) V (2(a+b) + 21 + 22 — y1 — 42),

(2(a+b) =z — 22 — Y1 — y2) A (|21 + 22| + |y1] + [12]))

which implies that R;(a) = 0 and Rg(«) > 0. Then,

3 1 1
B(Ol) = —§a—§b+1(x1+x2+y1+y2)
3, 1, 1 1
Cila) = ¢ —|—§b +3ab—§a(x1—|—x2—y1—y2)—§b(x1+x2+y1—|—y2)

1 1
+§ (!L’%—Fﬂ?;) —|—§(JI1 +x2—|—y1+y2)2.
(d) Lines 3 and 5 are outside the rectangle, that is,
a € [(Jee =2+ g2 =)V (2a -2 — 22 —y1 +12) V (20 + 21 + 22 — 51 + 1)
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\/(2b—x1+x2—y1—yz)\/(2(a+b)+$1+$2—y1—y2)

V(2(a+0b) — 21 — o — y1 — Y2), |21] + 22| + |y1] + [12])

which implies that R7(a) = 0 and Rg(«) = 0. Then,

B(a) = —a

1
Ci(a) = a®+2ab+a(y, + o) + 3 (27 +23) .
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A.2 Computational Results and Data
A.2.1 Computational Results for MILP formulation

For very small problem instances, the mixed integer linear program (3) can be solved
with available software. Table 4 shows CPU times for some small instances obtained

with CPlex 9.0. All instances were randomly generated, with a single scenario each.

Number of Origins 4 D 6
Number of Destinations 4 5 6
Number of Candidate Terminals 3 3 3
Instance 1 62.62 182.23 43164.04
Instance 2 308.35 | 36895.92 22475.01
Instance 3 31.65 692.00 | Stop after 187643.12
Instance 4 184.23 | 5002.46 | Stop after 115830.61
Instance 5 490.47 | 1873.43 | Stop after 379172.34
Mean 215.46 | 8929.21 N/A
Standard Deviation 188.67 | 15745.65 N/A

Table 4: CPU time in seconds for MILP formulation

A.2.2 Data Sets

The data sets used for the results reported in Sections 2.7 and A.2.1 can be found at
http://www.scl.gatech.edu/research/casestudies/. The distances d;; between
pairs of points ¢ and j were given by the least great-circle distances in miles between
the pairs of points. Also, for the purpose of the continuous approximation, (latitude,
longitude) coordinates were converted to Cartesian (x,y) coordinates according to
the Albers Equal Area Conic Projection Method. The L; metric between pairs of
(x,y) coordinates were multiplied with a factor of 3150, which gives approximately
the least great-circle distance in miles between the pair of points. All scenarios were
assigned equal weights p(w). In addition, the following parameters were used:

Fixed cost per terminal per time period ¢, = $10000.

Transportation cost per vehicle-mile = $1.
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Cost per time period for each vehicle based at each terminal C, = $100.

Cost for each vehicle that is used during a time period ¢, = $100.

Vehicle capacity used in detailed vehicle routing calculations @, = 3000ft>,
Vehicle capacity used in continuous approximation calculations Q, = 2900ft>.
[-coefficient for approximating detour distance 3 = 2.

The rectangle [—a,a] x [—b,b] containing the terminals was chosen as follows: Let

(x;,y;) denote the coordinates of origin or destination 7. Let T := maxX;coup %,
T = Mileoup T4, ¥ = MaXcoup ¥is Y ‘= Mileoup ¥i- Then a := (T — z2)/2 and
bim (7 - 1)/2.
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APPENDIX B

PROOF

B.1 Proof of Models for Option-contracting Strategy with
Buyers’ Learning

Proof of Theorem 1 First of all, the buyer’s objective function in the second stage

is

R(Qoa QS) - U(Q) - qu — Pgs
a

b(Qo+Qs) - qu — Pgs

1 2
- _%(QO +QS) +

Suppose that ¢ < ) and p < K. Then

QOZO

a—bp ifp<7§
qds =
0 otherwise

, since %{;’qs”qo:o = —3¢; + (§ — p) = 0. Equivalently,

0+0 if
Go+qs =

Suppose that ¢ < ) and p > K. Then

a—bK if K<fanda—bK <@
Qo = Q if K <%anda—bK>Q
0 if K> ¢
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dR(QOy‘]s)

, since —g» qszoz—%qo—i—(%—K):O. Equivalently,
0+0 if $ <K <p
Gtq¢ = § (a—bK)+0 f 52 <K<%and K <p
Q+0 ing“;Qanngp

Suppose that ¢ > @Q and p > K. Then a — bK > () and thus ¢, = @) and

a

Q) = —5la+ QP+ 3+ Q) — K- Q-p-g

= @A QP+ s+ Q) K@ pea,
dR(go, gs) 1

e = 5@+ @)+ (- p)

S

Therefore,

a—bp—Q ifp< e
gs =

0 otherwise

Equivalently,

Suppose that ¢ > @ and p < K. Then, ¢, =0

1 a
R(0,q,) = —%(qs+0)2+—

1
= ——=(¢: + 0+ (¢ +0) —K-0—p-g,
2b(q+)+b(q+) p-q

dR(qo, qs) 1 a

dq =0 = —EQsﬂL(g

(gs+0) —K-0—p-qs

Q o

—p)

Therefore,
a—>bp ifp< %

qs =
0 otherwise

Equivalently,
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Thus, the result holds. O]

Proof of Lemma 1 For any ) > 0 and A € R such that Q + h > 0,

= —r(Qem+ [ [ =g+ fa =)~ e~ )AL ()AFG)
Q+bK+h a2 42 2
/ (/ (gp —ap + ) dH, (p) + /K (5 — oK + b%)dHn(p»dF(a)
/Q—I-bK—I—h / N pZ T g_z)dH”(p) * (%(Q Th - “ ;bh)Q) /; )

a—Q—h

—Q+h-/ KdH,( )+(Q+h)-/Kb den(p)>dF(a)

- [ 3 / 0= )+ 0~ bp) — pla — bp)dH, () (a)

N ;Z)dH [ a0

K K
a—Q 2

[l S ie- S [ omin o

+Q-/Ka_bQ den(p))dF(a)

aQ 9 0’ eQ

- —wh+/Q°;K(—/OT<;‘—b—ap+b—>dH(> Grm-LE [ an)
(A=l 2b/ / KdH(p Q+h)/_bcj pdH (p)

a—Q

+h /K ’ pdH (p) )dF (a)

_/Q+bK+h (/Oa‘f‘h(g_z _ap+b—2)dH( )+(%(Q+h) — (Q—i—h,)?)/; dH (p)

Q+bK 2b

a—Q—h

~(@Q+h) /OO KdH(p +(Q+h)/K " pdH(p))dF(a)
[ B+ [y - an o+ S ) ara

O+bK x 2b 2

- —wh+/C:bK(—/0abQ<§—Z—ap+5>dH(> FCoen— L [ g

b
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-Q

+h(“_b / / KdH(p) — (Q + h) /Q pdH (p)

+h,/K— de(p))dF(a)
o (/L &~ Lyan) - G m - L [* ang)

a—Q—h

+(Q+ h) /oo KdH(p) — (Q+h)/K ” de(p))dF(a)
+/Q+bK+h (/OK(;‘—Z —ap+b—)dH( )+ /:(;‘—Z —aK+¥)dH( ))dF(a)

Q+bK
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e o Sy

—wh+h /Q °°K (] - R - [ - "5 ir)
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Q+bK +h
W, (0-Q by’
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b
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Q+bK +h
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bK?2
K ERRA -~ :
i / MK+ (Q+h) (@ ;Lbh) \AH (p)dF (a)
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N
Q+bK/ Q- h(p— / /OO th
Q+bK+h e 2 H
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- o )’ dH (p)dF (a)

/Q-I—bK-l-h /oo bK2
br* (a—Q—h)?
oo 5 Cl Q h)K + Q—b))dH(p)dF(a)

_7rh+h/Q+bK</:( ~ K)dH(p) - /:o(p— a—bQ)dH( ))dF( )

T el
Q+bK/ Q- h(p— / /oo i
—dH (p
Q+bK

Q+bK+h
ST NS =
o 7 )2dH (p)dF (a)

Q+bK

Q-+bK+h
/ / (K- ° cg " i (p)dF (a)

Q+bK
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00 a=Q o e oo 12
S e g - [T B
Qror Jazgon b Qo Ja@ 2b

Q+bK+h K —O—h ) —0O—h
/ /Q_Q_h(p_“ cg )QdH(p)+/ (K -2 cg )dH (p

Q+bK

— b+ /C:M{/‘” ~K)* () dH )P ()

—Q—h /°° h?
_0 (p — VdH(p) + |  —dH(p)}dF
/QK/ ; (p) o P (p)}

—§/Q {/ 7Y (v - “_g_h)QdH(p)Jr/: Z_jdH(p)}dF(a)

+OK L=t=b

p [QPVE+h K —0_h 00 -0 -
+§/ {/Wgh(p—a C[f )QdH(p)+/ (K -2 C[f

Q+bK

So, for any ) > 0 and any h > 0,

f@Q+h) - f(Q)
Q.
T /Q M{ / )" dH (p)}dF (a)

)

_§/Q+bK+h{/;(p_ a—CbQ—h)de(p) /oo Z_jdH( )}dF(a)

Q+bK

+g/Q+bK+h{/K_ (p_a_cbg h) dH(p)—l—/KOO(K— _ng_

Q+bK

< wert [ 4] 0= - 0= GE) () @)

For the lower bound, for any ) > 0 and any h > 0,

h

F(@+h) = f(@)

[ / ) an ) ()
_g/+bK+h / ; (p— 2= cg - h)ZdH(p) + /; Z—jdH( )}dF'(a)
T S

)2dH

(p)}dF (a)
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~hent [ / - S ran p)jar )

T . f i)+ [ iH)ar

S /K e D= Lyary) - [ - =L an)

© 2
+/ LA (p)}F (a)

v

om0 8 - - S e)ar )

_9 S e G—Q_G—Q—h2 S h_2
/Q +bm{ / g_h( ; ) dH (p) + /Q 7 1 (p)}dF (a)
50 00
0 Q+bK+h/ b (a—bQ_a—CbQ—h)de(p)_/ (K—a_f_h’)ZdH(p)

Q—I—bK K

+/ b—QdH( p)dF(a)

. _H/W{/m K)o “;QﬁdH(p)}dF(a))—’;—Z
= M 7r+/Q+bK{/ bQ)+dH( )}dF (a))
__/Q—i—bK—I-h/ Q—h b_QdH
[ / (1 = S L2020 ) (o)
> h,—7r+/Q+bK{/ - —(p— _bQ)+dH(p)}dF(a))

aQ Q+bK+h
b / " iHp)aF () - / "
Q+bE+h Ja=9=" b Q+bK

> e [ K{/ oK) - bQ>+dH<p>}dF<a>>—’;’—Z

Thus,

f(Q+h)— ) € h —7r+/Q+bK/ bQ)+dH( )dF(a)) [0, h_Q]
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Now, using the equation (109), for any Q > 0 and h € R such that Q — h > 0,

F(Q) - F@ -

= —(f(Q+(

AT /Q o / ) dH (p /@—%)*dﬂ( >dF(a>)
+§/Q+M(/#(p - Q+h /Q+bK/Q % dH )dF (a
—g/jj/ (p—“‘if h)dH() o [T = pangar )

I
/\

e f / Ky*dH(p / " ‘b “)r it (p)ar ()

/Q+bK( )(/“_,,Q (p_a_ /Q+bK/ _dH
L Lt o

— (-7t /Q OOK / (o K)tdH(p) - / T Q>+dH<p>dF(a>)

Lo o= [ Sy

[ (/Ka%h 0= R ) - [ - = ) )aF (@

Q+bK—h

( /Q—I—bK/ K)TdH (p /Oo(p_ %ﬁdl{(p)dlj(a))
+g /QH,K (/ o b—ZdH( p) — /f(p - f i h)?dH(p))dF(a)

b

2

/ . (/Ka%h (- =L () - /:<K - R ) )ar (o

N | o

+

b
2
b
2

Q+bK—h
- h( /Q+bK/ K)*tdH (p /Oo(p— %)*dH(p)dF(a))
w5 ) (L () - / v~ =L an () ) dF (o)

+

[ (o= = [ 2= am)aro

Q+bK—h

N | S
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So, for any 2 > 0 and any h > 0 such that () — h > 0, we have the following lower

bound;

vV
>
/\

e[ [ e wring) - [Co- S gira)

a—Q+h

AL B[

S - = ) - [ - =2 ) ar

Q+bK—h

=i [ om0 - [To- %VdH(p)dF(a))
/Q+bK/ o b—ZdH /;;Kh/ K- Q+h) dH (p)dF (a)
> w(=nt [ [T mrane) - [To- bQ>+dH< )iF(a)

For the upper bound, for any () > 0 and any A > 0 such that Q — h > 0,

F(@) -~ 1@~ 1)
= (s [ [T wyrane) - [Co- GEyanpar)
+g/¢:m(/: Z—jdH(p)—/: C Qg ))dF (a)
A e [
< (e [ [To-wyrane) - [Co- GEyanpar)



Q+h

w5 [ (L - / (“‘f”’—“‘f*hmﬂ(p))dﬂa)

b

2

é/Q-l—bK / K_ _ +h
2 JQ4bk—n

Hp)dF(a)
“ (e [ / K)*dH(p / L4 0)
+g /Q » / I AH ()H () (o /Q KK [ = = s ar @
< (- /W | o= xyane) - [Co- S i)

+

g/Q+bK (/ %dH( VdH (p ))dF(a)

g/Q+bK (/OO(K_Q+be Q+h) dH(p))dF(a)

T gl o= o R )
+2/Q+bK (/ ) b—QdH( p)dH (p ))dF(a)ng/;:: (/K Z’—jdH( ))dF(a)
< w(-nt [ [Tw-mrane) - [To- 5 ranwar) +

Thus, for any @ > 0 and any h > 0 such that Q@ — h > 0,

+

Q) -5@=1h)
00 00 N G—Q+ h2
e n(-me [ [ SE @) + .y

Therefore, for all () > 0,

I ICERIC)
h

h—0
I ( - K
€ lim ( —m+ /0 (p

Q+bK
> > + a—Q.
T /Q = - o= )

and

- S @) + 0, 1))
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e tim(=re [* [T K - - GEaneire - 0.5)

> > + a—Q,
i A B e R

Since, for all ¢ > 0,

i J@TN) — Q) _

h—0 h h—0

(@) —f(Q—h)
h

, [ is differentiable for all @ > 0. Let V f(H)(Q) be derivative of f at @, given the

probability distribution H. Then, for any () > 0,

i@ =-r+ [~ [To- 8 -0 aneir

O

Proof of Theorem 2 The buyer’s objective function f is concave in ) > 0 and

differentiable. Its derivative at @) is

i@ = —r+ [ [Co- 8- 0= ) aneir

So, the result holds. O

Proof of Theorem 3 Let p* be the optimal solution. Suppose that “_bQ > K.

Then, by Theorem 3,

max  p(a — bp) — c¢(a — bp) (110)

subject to p < K
max  pla—bp— Q)+ KQ — c¢(a — bp) (111)
subject to K <p
The first derivative optimal condition for (110) is
a— 2bp+bc =0
So, there are two cases for (110):
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Case 1 If K < g; + 35, then p* = K.

Case 2 If ; + 5 < K, then p* = 5 +

o

From (111), the objective function is
pla—bp - Q) + KQ — c(a — bp)
and its first derivative optimal condition is
a—2bp—Q+bc=0
So, there are two cases for (111):

Case 1 If “;bQ +

< K, then p* = K.

4
92 =

a—Q x _ a—Q
Case 2 If K < %5;° + 5, then p* = 55 +

N

Suppose that § < K. Then, we have

max  p(a — bp) — c¢(a — bp) (112)

. a
subject to  p < 7

The solution is p* = 55 + ¢, since F'(x) = 0 for all z < be. Suppose that “;Q < K.

Then, we have

max  p(a — bp) — c¢(a — bp) (113)

subject to p < K

The solution is p* = min[g + §, K]. Comparing each case, the following conclusion

. x * _Q
is made. If & + 5 < K, then p* = & + 5. If 5 +§ > K, then p* = max[K, 5= + §].

O

Proof of Lemma 2 WLOG, assume that 0 < Q) < Q5.

IVF(H)(Q1) = VI(H)(Q2)]l
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IN

Q2+bK

Q1+bK
/Qz+bK
Q2+bK

Q1+bK

IN

IN

|5 - k)
/ (“- Q1 i (p)ar ()

| ‘le ~ K)dH (p)aF (o)

> Q2 — Q1
af AH(p)dF(a)]

Q2+bK
<
Q1+bK

Q1

/ (“- Ql ~ K)dH(p)dF(a)] + | 229

Qa+bK
< [ /|| Ql—KndH( dF(a) + |2 an

Q1+bK

< E“QQ — Q1|

So, Vf(H)(Q)

is Lipschitz continuous for all ¢ > 0 and equi-continuous for any

H € P. Now, need to show that it is decreasing. Again, for 0 < Q1 < Q2,

V(H)(@Q) =
>

>

- /Q B / (0 — K)* - p—%ﬁdﬂ(p)dﬂa)
a— Q2 q) =
o [ [T - - Sy an @) = V(@)

The first inequality holds since (p— K)* — (p— %= =91 L)* is positive for a > Q1 +bK and

b
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also for a > @y + bK. Therefore, V f(H)(Q) is Lipschitz continuous, equi-continuous

and decreasing in ) > 0. U

Proof of Lemma 3 For any () > 0,

- /Q B / v~ ") dH p)dF(a)

< —r+t /Q L Ow(“‘b ~ K)dH (p)dF(a)

Y R el
= +/Q+bK( i — K)dF(a)

_ 7r—|—/0 (“_QT_[’K)WF(@
< —rt [ S
S —7T+%M1
00 00 N a_Q n
>

Thus, by letting C' := max[r, —7 + %Ml] < +00, for any @ > 0

l=rs [ [ -8~ - ) < c

Proof of Lemma 4

Q) = s [ [T K- - S e
00 a — Q
< _r4 /Q+bK(T _ K)dF(a)

_ _7r+/0°o(“_bQ — K)*dF(a)

Since (43¢ — K)* < ¢ and [°%dF(a) = } [,7 adF(a) < +o00, by the Dominated

Convergence Theorem,

_ _7r+/000(“_Q — K)*dF(a)



as ) — +o0

Proof of Lemma 5 For p < K,

AQIW = [ tigesendFle) = AQ0)

{o: g +5<K}

lra_c dFa+/ 1 a—Qq | e dF(a
(a0 (g gory OOl @

Lig+s<pydF(a) +/ o, Hr<pydF(a)
{a:K<gp+§<K+35t

Lig+s<ppdF(a) +/ Lix<pydF (a)

. Q1
{a: K< +5<K+3t

= / 1{;,,+g<p}dF(a)+/ o, HE<pdF(a)
{a:g; +5<K} {a:K<gp+§<K+32}
- l(grsendFla) + [ . LkendFla)
{a:55 +5<K} {a:K<gE+S<K+52
+ / | oos.. dF(a)
ok Qg L@ T2
= lya_ co dF(a)+/ 1 a—Qs | ¢ dF(a)
/{a%ﬁggx} {35 +5<p} (s oK) {max[K,“ 52+ £]<p}
= A(Q2)(p)
Forp > K,
A(@1)(p)

= lya ce dF(a)+/ 1 a=Q ¢
/{a:%+§SK} e (wgrgzr TS

= Lz ecpydF(a) + / Lk <pydF(a)

dF(a)

{aK<&+S<K+31}

" /{a.mczl HesgrsandF (@)
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= Lz ye<pydF(a) + / Lix<pydF(a)

{aigp+5<K} {aK<E+S<K+ U
—l—/ Lia—o, . dF(a) —l—/ 1,0-0, . ,dF(a)
{a:K+%§%+%SK+%} { zblﬁp} {aiK-I-g—szle-i—g} { leﬁp}
= 1{2%+%Sp}dF(a)+/ o Lix<pdF(a)
{agp+5<K} {aK<Z+e<K+3L}

- /{a:K+Q % 1{%+%§p}dﬁ1(a> + /{ : Q9 1{a;§2+%§p}dF(a)

I{KSP}dF(a) "‘/ 1{%4_%3)}(15’(@

{a:K+82<8 1<)

{a:g; +5<K} {a:K§%+§§K+%

+ / Loy . dF(a)
{a:K+%§%+%} {=z=+5<p}
= 1 a 4 c dF a +/ 1 a—Q . dF a
{01%+%SK} {2b+2Sp}’ ( ) {a:%—i_%ZK} {max[K, 2b2+§]Sp}’ ( )
= A(Q:)(p)
So, A(Q1)(p) >s A(Q2)(p) if Q1 < Qo -

Proof of Lemma 6

V@)@

= i [ [k - - @ mar)

= -7+ /Qo:bK /{I:m;b%gdf}(l“ ;bQ n g ~ Ky - (" ;bQ g B a—bQ)+dF(x)
+/{x aqu%ce%}(x i+~ K = (g 5 = ) @)

IA
|
3
_l’_
—
8
—
e
S
D
|
s}
.
s
&




by the Dominated Convergence Theorem.

Proof of Lemma 7 Suppose that 0 < @1 < Q.

O

First, let’s show that it is

Lipschitz continuous. This holds directly from Lemma 2 since A(Q) € P. Now, need

to show that it is strictly nonincreasing. WLOG, assume that Vf(A(Q1))(®Q1) and

Vf(A(Q2))(Q2) are not equal to .

via@@) = -+ [° o= 8 - 0= S 0r)
> [ [ K0 = = 5 YA @
> n [ [ - - S @0
> n [ [ - - S @0
= VIAQ:)(Q)
The second strict inequality holds by the followings;
rn [ - R - - 5 A
- /C:erK /{x:“”;%%s%}(x ;le " g )5 _2le " g N G_TQIWF(“"”MF(“)
+/:+m /{ o }(x ;le - g — )2 ;le g - G_TQI)J’dF(x)dF(a)
s /Q . /{ e Ry (B arar ()
/QIM /{ rpece s }(a_Q1 — K)dF (z)dF (a)
+/Ql+bK /{ oo <m-Q1+%}(a_ ©_ K)aF(x)dF(a)
- /1+bK /{ 2 Q1 e }(x ;b% - g K- _2bQ2 * g _le)mF(x)dF( )
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0 - .
+/ / (Eo@ ¢ gy
Quibk J(z: 2522 pect= Qo ey 2D 2

t—Qy ¢ a—Qi
—( +§_T) dF(z)dF(a)

2b
+/ / (=9 gViF(@)dF(a)
Q1+bK J{z:2= Q1<g” Q2+ <= Q1+ c} b

o0 + _Ql +
= e [C om0 0 5@k

, where the strict inequality should hold by the following reason: suppose that

—T

+ [ Cgt+ 5K = (84 S - S P @ir (@
Qu+bK Sz 2@ eca@ry 20 2 20 2 b

+ / "~ )P (2)dF (a)
Qriok S scmaicrar g b

+ / © QL )P (2)dF (a)
Q1+bK J {x:"— Q1<$7Q2+%<$*?1 +£} b

= —7r—|—/ / (x_QQ+E_K)+_(x_Q2+E_LQI)+dF(x)
Q1+bK {;p r— Q1+ <‘l Ql} 2b 2 2b 2 b

xr — c
/ / G
Q1+bK J{x: %5 Q2 +£< a le S“”;le +<) 2b 2

_(x_Q2+C a— G

+/ / (“= 9 K)aF(2)dF(a)
Quibk JmegBicm g e gy b

Equivalently,

r— Ql (& xr — Ql C —
5 K- -~ Y (z)dF
/C21+bK /{:1: 29 +§§#}( 2b + 2 ) ( 20 T 2 b ) (z)dF (a)
/ / (=9 iR () dE(a)
Q1+bK J{z: %5 Q2+% a le S“”;leJr%} b
/ / (x_QQ+E—K)+—(x_Q2+E_a_7Ql)+dF(m)dF(a)
QubK Jw:25@ pecazary 2b 2 2b 2 b

T — c
/ / ( @ + = _K)-i—
Q1+bK J{z:*5 Q2+ a= Ql <z= Q1+2} 2b 2

c
2

IN
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Since

(«T—Q1+E_K)+_($—Q1+E_Q—Q1)+
2b 2 2b 2 b
T — Qs c T — (2 c a— G
> 2b §_K)+_( 2b 2 b )"
e
T — Qs c T — (2 c a— G
> 2b +§_K)+_( % T2 )"

, equivalently, for alla € {a > 0: F(a) > F(Q: +bK)} # 0 and all z € {z > 0 :
F(x) > F(Q2 + 2bK — bc)} # 0,

G—Q1<$—Q2+E

b~ 2 2
So,
“‘legx;bQHg Vae{a>0:F(a) > F(Q) +bK)}
Vee{r>0:F(zx)> F(Q2+ 20K — bc)}
iff am“b_ @ ;sz +§ Vi e {z>0:F(z) > F(Qy+ 2bK — be)}
. ama.x_Ql Q_QZ &
ff < ‘
' T

iff 2amax - 2Q1 S L — QZ + be
iff Gmax — L S QQI - QQ — OQmax + be

iff Amax — L S _(amax - Ql - bC) - (Q? - Ql)

, where .y == inf{a > Q, +bK : F(a) =1} , z :=inf{x > 0: F(z) > F(Q2 +
20K — be)}. Since 0 < Q1 < Qo < Q < Amax and Q1 + be < Q1 + bK < tpas,

Gmax — L S _(ama.x - Ql - bC) - (Q? - Ql) <0
But,

z=inf{x >0: F(z) > F(Q2+ 20K — bc)} < inf{z > Q; +bK : F(z) = 1} = apmax
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So, the strict inequality should hold. 0]

Proof of Lemma 8 For any n > 1, given (), > 0, we have

A(Qn)(p) = / 1{%+%Sp}dF(a) +/ 1{maX[K’a—Qn+%}§p}dF(a)
{GZ%-I-%SK}

{a: & +£>K)} 2b

Suppose that p < K. Then, clearly A(Q,)(p) converges to A(Q*)(p), since for all
n>1
Q) = 4Q)w) = [ g s <ndF (@)
oy +5<K)
Suppose that p > K. Since ), converges to Q*, for any € > 0 there exists M < +oo

such that for all n > M
1Qn — Q7| <€
Since, for alln > M and p > K
1A4(Qn) (p) — A(Q") ()l

= |l l{maX[K “7Q”+§]Sp}dF(a) _/{ l{max[K,“*Q*Jrg}gp}dF(a)||

"2 P13
{a: 55+ 5> K} aig+5>K}

— | i and =15 o P (@) = /{ Lot ey dP ()]

2b 2b
{a:g;+5>K} a:s+5>K}

= | Ljasgu s e <y dF (a) _/{ Likcp and 259" <y @F (a)]

{a: gz +5>K} a:g+5>K} 2b
o 00
= “/0 Liob K —be<a<@u+26p-bey AF (@) —/0 Li2b K —be<a<@+25p—bey A (a) |

0
= ||/ LobK —be<a<Qn+2bp—bet — L{2bK —be<a<@=+20p—be} A F (a)||
0

< / 1 126K —be<a<@n+2bp—be} — L{2bK —be<a<q*+2bp—be} || AF ()
0
= [|Qn — Q"

< €
, A(Qy)(p) converges to A(Q*)(p). Thus, A(Q,) converges weakly to A(Q*). O
Proof of Lemma 9 See (22). O

Proof of Theorem 4 It is assumed that the buyer does not know that the spot

price depends on the realized demand level, a, and the number of options bought by
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the buyer. So, given (* as the number of options bought by buyer, the seller’s best

response is p(a, @*) and thus actual distribution is A(Q*) given by

AW = [ lgeendF@+ [ Lo dFlo)
{a:g; +5 <K} -

{a:gp+5>K} .
Then, Q* is Nash-equilibrium iff the buyer’s objective function, f(A(Q*))(Q), with
A(Q*) is maximized at @Q*. Thus, by Lemma 7, Q* is Nash-equilibrium iff the first
derivative of f(A(Q*))(Q)

Via@N@ =-r+ [ [To- 107 - - @) par)

is equal to zero at Q*. O
Proof of Lemma 10 Let Z, = Y | (145,<p3 —A(Q:)(p)), where s; has probability

distribution, A(Q;)(p). Then, this is Martingale, since E[Z,|F,_i] = E[l{;<p) —
A(Q:) ()| Fna]l + Zn1 = Z, 1. Also, we have

2": Bl ~ A@)P)?] 2112 < 4oo

;2
i=1
By Martingale convergence theorem (refer to (19)), Z= converges to 0 w.p.1. So, for

all p > 0,

n

B S e~ AQID) = 3" M — £ D0 A@)0)

= ()~ Y AQ() 0
w.p.l. 0]

Proof of Lemma 11 Show it by contradiction. Suppose that there exist € € (0,1)
and § € (0,1) such that for all £ > 1

Ny,

Moreover, there exists subsequence {n;, }; such that

Ny, (6)

T,

—1—-94
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Then,

_ iy, <

| l A i

(S AQE)
i " ,0ie{@A(Q) ()=1) T
1 njkl

> AQ®

ik 21,0, @ A(Q)(B)=1)

njkl

1

N

1
(. S A@Q)(B) +
MM i=1,Qie{QAQ) () —e<AQ)(F)<1}
| &
— > AQ® +
Tk " i=1,Q,e{Q:A(Q)(P)=1}
1 &
bt S AQ:)(P)
MM 21,0, {Q:A(Q) () <AQ) (F)—e}
n]kl
1 1
A(Q;)(p) +
njkl jkl

i=1,Qi€{Q:A(Q)(F) —e<A(Q)(P)}
TL]k

1 ’ 1
< — > L+ —
T i=1,0,6{Q:A(0) () —e<AQ)(P)} T
. njkl
- w2 )
mn; n; €
Tk T 21,00 {Q:AQ)(B) —e<A(Q)(P)}
LM = M (€) 1 zjk‘i
My, Mgy, = Ty, (6)
My, (6) Ny, — My, (6) < ~
_ " A@Q)(5) )
njkl njkl
_ iy, (€) n Wik, — M, (e) (1 _ 62)
njk-l n]kl
5 o1-6+ 5(1 _ e)
= 1—9¢

Thus, for some de > 0,

) njkl n< 1

) Jk A Tk

(S )
e T i=1,Qie{QA(Q)(B)=1} Ty

i=1,Q:€{Q:A(Q)(H)<A(Q)(P)—¢}

@) )

<
J

=

M

L,Rie{@:A(Q)(p)<1}

i=1,Qie{Q:A(Q)(A)<A(Q)(B) —¢}

njkl

D

i=1,Qi€{Q:A(Q)(A)—e<A(Q)(P)<1}

A(@Q) D))

njkl

2.

TL]‘kl

2.

i=1,Q:€{Q:A(Q)(B)<A(Q)(B)—<}

(A

(AQ®) - )

i=1,Q:€{Q:A(Q)(H)<A(Q)(P)—¢}

njkl

D

i=1,Q;€{Q:A(Q)(P)<1}

A(Q:)(p)

AQ)(B)) <1 ey



This contradicts to the hypothesis. 0]

Proof of Lemma 12 Show this by contradiction. First, suppose that there

do not exist such § € (0,¢(p)) and subsequence {A(Qp,)(p)}o. This implies that

A(Q)(p) = A(Q)(p). So,

Ny N
1 ~ 1
— 3y A b — A(Q;
e (@)(p) o > (Q:)(p)
1=1,Q,€{Q:A(Q)(p)=1} 1=1,Q:{Q:A(Q)(p)<1}

- AQ)(p)

This makes a contraction to the hypothesis. Second, suppose that there exists § €

(0,€(p)) and subsequence {A(Q,)(p)}o such that

A(Qm,)(p) < A(Q)(p) — e(p) + 6

,and there does not exist €; € (0,1) subsequence {n;, }; such that

T(njkl)

njk'l

€<

<1

This implies that, for any such subsequence {A(Q,)(P)}o,

M — 0
Ty,
WLOG, {A(Qm,)(P)}o = {A(@Qn)(p),n > 1: A(Qn)(p) < AQ)(p) — €(p) + 6} So,
for %m € (0,1), there exists M < +oo such that for all k > M
T(n;,) - 1 3

i 2AQ)(p) — elp) +9
Thus, for k > M and ¢ € (0,€¢(p)),

Ny Lo
1 ~ 1
— Z AQ)(p) + — Z A(Q:)(p)
Tk i=1,0:6{Q:A(Q)(F)=1} Tk i=1,0:6{Q:A(Q)(P)<1}
nj,

()10

"k i1,Qie{@AQ) ()=1)

Ny, g
1
+—( > A@Q)(p) + > A@Q)())
T im1,Qie{QAQ) (p)—e(p) +0<A(Q)(p)<1} i=1,Q; €{Q:A(Q)(p)<A(Q)(p) —¢(p)+6}
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N,
1 ~

> - > ) (A(Q)(p) — e(p) +9)

i=1,Q;€{Q:A(Q)(p)>A(Q)(p)—e(p)+d}
1 i
L > :
o

i=1,Q:€{Q:A(Q)(p)<A(Q) (p) —€(p)+0}

— M —nf("jk) - _1T(n_ ) 3 (A(Q)(p) — €(p) +9)
Tk Tk Tk i=1,Q:€{Q:A(Q)(p)>A(Q)(p)—¢(p)+0}
T - 1 L
= BT @) - el0) 4 0) 2 !
Jk Tk M 21,0, {Q:AQ)(p)> A(Q) (p)—€(p)+0}
= %_—W(A(@)(p)—e(p)ﬂ”?);(nj —%:1 A A@Q 5 )
n g, —T(njk) k — {Q:e{Q:A(Q)(p)<A(Q)(p)—€(p)+d}}
_ %_R—W(A(@)(p) — e(p) +6)
Tk
- k ~
= (AQ®) — €p) +5) — ~~(A@Q)(p) — e(p) + )
Ik
~ 1 0 ~
> (AQ)(p) —e(p) +6) — A0 — o)+ S(AQ)p) — €(p) +9)
= AQ)p) — elp) + 30
This again contradicts to the hypothesis. [

Proof of Lemma 13 First of all, A(Q) is stochastically ordered since A(Q;) <s

A(Qq) for Q1 > Q2. By Lemma 10, H,;(p) — é S A(Q:)(p) = 0 w.p.1 for all p
and thus é S A(Qi) (p) — H(p) for all p. So,

1 &
;ZA(QD(@
T i=1
LY s+ Y A@p
= n; i)\ D n; i) \P
i=1,Q;€{Q:A(Q)(p)=1} i=1,Q;€{Q:A(Q)(p)<1}

R S A S ({31

LQIE(QAQB=1) T i—1.Qie{QAQ)F)<1)

_ (L S AQ) D) ﬁ(i QD)
A C=RDD @@)+ -z 2 (Q:)(P)
I i=1,Q:e{Q:A(Q)(B)=1} I i=1,Q:e{Q:A(Q)(B)<1}

— H(p)
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= A@f() vQzQ

5 where TLJ: = ZZZI 1{A(Qi)(ﬁ):1} and n]< = Z:ZI 1{A(Qi)(;5)<1} and thus n; = 71]: + TL]<
Since, for all 0 < p,

1 & 1 i 1 i
- ZA(Qi)(p) = - Z A(Qi)(p) + - Z A(Qi)(p)
J =1 T i=1,Q:€{Q:A(Q)(§)=1} 1 i=1,Q:e{Q:A(Q)(P)<1}
1 i ~ 1 i
> — > AQ)(p) + — > A(Qi)(p)
T i=1,Q:e{Q:A(Q)(P)=1} 1 i=1,Q:e{Q:A(Q)(P)<1}

, it is enough to show that

1 n; nj

— 3 AQ)(p) + — > A(Q)(p) = A@)(p)

I i=1,Qic{QAQ)()=1) " i=1,Qie{QAQ) ()<1)
Claim 1 Suppose that

n; nj

S a0e)+EGE > a@)p) - A -

i=1,Q:e{QAQ)P)=1) M Qi {QAQ) () <1}

Then, for any 0 < p < p where A(Q)(-) continuous,

ns 1 - ~ nj (1 ?
DY QW) + 7 (= 5 AQ)(P) = A@Q®)
i=1,Qi{Q:A(Q)(P)=1} 7 i=1,Q:e{Q:A(Q)(p)<1}

To prove Claim 1, we need to consider the two cases: A(Q)(-) is discontinuous or

continuous at p. Case 1: A(Q)(-) is discontinuous at p. Suppose that

nT /1 "y ns /1 "y
S Y a@W) (e Y AQIB) ARG =1
T i=1L,Qie{ QA (B)=1) " Q@A @ <1)

Then, by Lemma 11, for all € € (0, 1),

n;(€)

1

—1

, where n;(e) = > 1{A( Q) (F)>AD)(F)—c}* Choose some ¢ > 0 such that ¢ =
( Q) (p) — limg5 A (@)(x)) and thus

Zl{A )(7)>AQ)@) e}
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= 2 la@i@=a@m)

, since 1 = A(Q1)(p) = A(Q)(p) > limxTﬁA(@)(x) > A(Q2)(p) for all @, Q2 such
that Q; > Q > Qs > 0. Thus,

n-
L =1
1

Then, for any 0 < p < p where A(Q)(+) continuous,

e Y @) iGe Y

J
M ,0ie{QAQ) ()=1) " i=1,Qic{QAQ)P)<1)

Case 2: A(Q)(-) is continuous at p. Claim 1 can be proved by contradiction.

Suppose that there exists p € [0,p) where A(Q)(+) is continuous, €(p) € (0, A(Q)(p))

and subsequence {n;, }, such that

1 njk _ 1 njk "
- 3 AQ)) + — > A@Qi)p) < A@)p) — )
Tk i=1,Q:€{Q:A(Q)(p)=1} I i=1,Qie{Q:AQ)(B)<1}

Then, by Lemma 12, there exists § € (0,€(p)) and subsequence {A(Q,,)(p)}, such

that for all 0 > 1

A(Qm,)(p) < A(Q)(p) — e(p) +6

and there exists €, € (0,1) subsequence {n;, }; such that

Ky

€ < <1

njk'l
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, where k; := max{o > 1:m, <njy, }. Since A(Q)(p) continuous at p and A(Q)(p) is
increasing in @, A(:)(p) continuous at Q. So, there exists v € (0,1) such that for all

o>1,
Qmo <@(1_7)

WLOG, let {Qm, }o = {Qi : Qi < Q(1 —7) Vi > 1}. Since @ = inf{Q : A(Q)(p) =
1} = sup{Q : A(Q)(p) < 1} and A(Q)(-) is continuous at p, there exists ;e € (0,1)
such that A(Q(1 —6))(p) = A(Q)(P) — €2 = 1 — e5. Then, for some ¢; > 0, we have

njkl n]kl
1 ~
LY a@me- Y aen
M =1,0<Qs T im1,G>0;
1 n']kl njkl 1 ’I'ijl
= = Z AQ) (D) + Z A(Qi)(p) + - Z A(Q))(p)
MM i=1,0<q "I i1 5(1-2)<Qi<d MM i=1,Q,<Q(1-7)
1 Mk, 1 Mk,
< — Z A(Q)(p) + — Z A(Qs)(p)
T 1,0(1-7)<Q; MM =1,0(1-7)> Qi
nj, N5
1 ’ 1 ’ ~
< — ) lt— Y AQU-)()
M i=1,0(1-9)<Q; MM i=1,8(1-7)>Q:
njkl njkl
1 1
S T St
MM i21,0(1-7)< Qi MM i21,001-7)> Qs
n]kl 1 njkl
= Z Lio>a0- Z (1-e)
]kl =1 Jkl i= 1,@(1—7)>Qi
n, —k ko1 il
= T M Sl-e) Y1
My My i=1,Q(1—7)>Q;
ni;, —k k
_— ]kl l + l (]_ - 62)
My, My,
k
= 1- : €9
i,
< 1- €1€2
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This contradicts to

L3 AQIE) + HE) =A@ =1

This proves Claim 1. So, for any 0 < p < p where A(Q)(+)is continuous,

1 &
3 AQ)K)
T =1}
1 i 1 i
= Z A(Qi)(p) + - Z A(Qi)(p)
T i=1,Q:€{Q:A(Q)(H)=1} ) i=1,Q:e{Q:A(Q)(B)<1}
1 = ~ 1 i
z Z A(Q)(p) + - Z A(Qi)(p)
7 i=1,Q:{Q:A(Q)(P)=1} 1 i=1,Q:{Q:A(Q)(P)<1}
— A(Q)(p)
So, for all 0 < p < p where A(Q)(+) and H(-) are continuous,
1 &
3 AQ)®P) ~ Hyy ()
J =1
1 o ~ 1 =
z > A@Q)(p) + — > A(Qi)(p) — Hy, (p)
T i=1,0:€{Q:A(Q)(H)=1} 1 i=1,Q:e{Q:A(Q)(7)<1}

- AQ)(p) — H(p)
with

i:A(Qz')(p) — Hy,(p) =0

1
n.
J =1

Thus, for all 0 < p < p where A(Q)(-) and H(-) are continuous,

H(p) > A(Q)(p)

Also, for all 0 < p < p where A(Q)(+) is discontinuous and H(-) is continuous,

H(p) > A(Q)(p)

, since continuity of H(-) is violated if not. Therefore, for all 0 < p < p where H(-)

is continuous,



Proof of Lemma 14 For any h € R,
VZf(Q, H,h)*
— VIH)Q) - VAH)Q+ )
R /Q " / %)J“dﬂ'(p)dF(a)
- /QK/ 0 K)o~ "L am par (o)
= [ et e S an gyar )
A R %ﬁdmmdma)

_ /Q+bK+h/ dH (p)dF (a /Q+bK+h/ - Cg_h)clH(p)dF(a)
FE -,

Now, since each term is positive for any hA > 0, it is equal to zero iff each term is zero.

So, for h > 0, suppose that {a < Q +bK +h: F(Q +bK) < F(a)} # 0. Then,
ViF(Q,H,h)" =0 if H(K)=1

Suppose that {a < Q +bK +h : F(Q + bK) < F(a)} = (. Let @ := inf{a :
F(Q+bK + h) < F(a)}.

VEF(Q H B =0 iff H(a_f_h) _q
Again, for any h € R,
Vif(Q,H,h)~ = Vf(H)(Q) - Vf(H)Q-h)
_ o4 /QM/ -2 @\ dH (p)aF (a)
- /Q+th/0 (p—EK)"—(p- H?%)Wﬂ(p)dli(a)
-/ e Q>+ o= L g)ar o)
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Q+bK

[ w0 - - S e

a—Q+h

- L e - [T [ - Ganwara

b
Q+bK

L[ - - = ran )

So, by the same argument as V2f(Q, H, h)*, for h > 0, suppose that {a < Q + bK :
F(Q+bK —h) < F(a)} # 0. Then,

Vif(Q,H,h)" =0 iff H(K)=1

Suppose that {a < Q +bK : F(Q +bK — h) < F(a)} = 0. Let a := inf{a :
F(Q+bK) < F(a)}. Then,

a—-Q
b

V2f(Q,H,h) =0 iff H( ) =1

O

Proof of Theorem 5 Let < f,g >= [[7 f(Q)g(Q)d1l{g-<g} and then [|f|]* =<
fof >= [ f(Q)dlig-<qy- So, |IfIl = 0iff f(Q) = 0. Set T, = Vf(H,) -
Vf(AQ")) and Z, = ||T,,||*. We have
Zywi = | Tanll* = IV (Hugr) = VF(AQ))]

1
= IVf(Ha) + =7 (VI (i) = VI (Ha) = VAA@Q)I?
= IVf(Ha) = VIAQ)) + —= (VI (Lpsisn) = VI (H)I
1
= ||Tn + n—_H(vf(l{sn+1§P}) - Vf(Hn))||2

_ 1 1 9
= Z,+ Qn 1 <T,, Vf(l{snﬂgp}) Vf(Hn) > -|-(n n 1)2 ||vf(1{sn+1§p}) Vf(Hn)“

Let F, be the o-field generated by {s,, Sp_1, ..., 51, V.f(-)}. Thus,

E[Zn+1|fn]

2
= E[Z, + T < T, VIi(Usu<py) — VI (Hy) >
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1

+mllvf(1{sn+lgp}) = VF(H,)|I°]| 7]

2
= E[Zn|fn] + E[TL—H < Tm Vf(1{8n+1§17}) - vf(Hn) > |fn]

ﬁ”vf (Lonrispy) = VS (HR) ]I 7]

2
= U+ n——i-lE[< T,, Vf(l{sn+1§p}) - Vf(Hn) > |~7:n]

Wll)Zva(l{anQﬁ) - Vf(Hn)“QH:Fn]

+E]

+E]

 where B[Z,|F,] = El|T|2F.] = EIIVA(H,) — VAAQ))2IF] = IV F(H,) -
VHAQDI? = T2 = Z,.

= 2ot B[ BQUTH ) ~ VI @Ligrco)| 7
B 19 () = VI )P

= Zot = [ QBT L) - VIHDIEN Q<o)
+ Bl IV L) = VI

2
= Zn + n——i-l < TnaE[vf(l{sn+1§P}) - Vf(Hn)UTn] >

1
AV Usi<py) = VI HD) IPNIF

+E[(n +1)

, where the second term in the right hand side is

< T, EIVf(1gs,01<py) — VF(Hu)|Fa] >
_ / T(QEIV f(Layrem) — VF(H)F)(Q)dLio-<0y

= [ (V) = VHAQ) QFIT S ()~ THHIFN @10

= (VAH)(@Q) = VFAA@QN@) - (BIVF (Lsr <o) 1Tl (@) = VF (Ha)(Q))

= (VAH)(@Q) = VAA@QN@Q)) - (BIVF (L <o) 1 Fal (@) = VA(AQ)(Q)
+ VA(AQ)(Q) = Vf(Ha) Q"))

= (VF(Ha)(@Q") = VFA(A@QNQ)  (BIVF (Ls<pp) [ Fal (@) = VF(AQ)NQ))
+(VF(H)(Q) = VAAQNQ) - (VFAAQNQ) - VF(Ha) Q"))
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= (VIH)(Q) = VAA@QNQ)) - (VB < Fal) (@) = VA(AQ)(Q))
+(VI(H)(Q") = VA(AQNQ)) - (VFAAQNQ) - VI (H)(Q"))

= (V/(H)(@Q") = VAAQNQ)) - (VF(AQui) (@) = VF(AQ))(Q"))
+(VF(H)(Q) = VAAQNQ)) - (VFAAQNQ) = VF(Ha) Q"))

< 0

Qn+1 is decided by {sp, sp_1, ..., 51, Vf(-)}, which constructs H,, and generates F,. If
Qn+1 < Q7, then A(Qni1) >4 A(Q") and thus V f(A(Qn+1))(Q) > Vf(A(Q))(Q) =

VI(AQH))(Q*). Otherwise, A(Qni1) <s A(Q*) and thus Vf(A(Q.:1))(Q*) <
ViAQ(Q*) = VI(AQ))(Q*). So, the last inequality holds. Moreover, for

any € > 0 such that -||T,(w)|]> = (VF(H.)(Q*) — VF(Q)) - (V(AQ))(Q") —
VI(H.)(QY)) < —e,
< T, EIV f (145,11 <p)) — V. (Hy)|F] > (116)
= (VFH)(Q") = VFA(AQNQ)) - (VFA(A(Qns1))(Q) = VF(AQ))(QY)
+(V(HL)(QY) = VA(AQNQY)) - (VAAQNQ) — V(H,)(QY))

< —e€
Also, the third term in the right hand side is

E(IVf(Lspazpy) = VI (Hn)|[*| 7]
= BV (L{su<p)(Q) = VF(HW)(Q))*|Ful
= BV o) (@) = 2V (Ls <o) (@) VF(H) (Q7) + V £ (H,) (Q7)| 7]

E[C? +27C, + Vf(H,)(Q*)?|F,]

IN

IN

Cy + V f(Ha)(Q")*

Co(1 + Vf(H)(Q")?)

IN

,where Cy := max[1,C? + 27C,]. Let C := Cy(1 + ||V f(H,)||?), which is finite. So,
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for some 0 < C' < o0,

1 1
< . _
BlZunlF) € 2,14 C o) + 2y < T BV (L) = VA (H)I] >
— 1
Ty

Using the ”Super-Martingale” Type Lemma 15,

1
Zy—Z<oo as. and —» 7 < Tw B[V (Li<p) = VF(Ha)|Fa] >< 00 as.

Suppose that there exists w such that Z(w) # 0 with P(w) > 0. Then, there exists
e > 0 and N < oo, such that for all n > N, we have ||T,,(w)|| > € and liminf — <
T, EIVf (Ispin<py) = V
T, EIVf (Lspir<py) = V
T, EIVf(snia<py) = V
VI(H)(Q) = VF(AQR))(Q") =0 w.p.1. m

f(H,)|F,] >> € > 0 by (116). So, we have —> 1 <

n n+l

(
f(H,)|F,] >= oo. But, this contradicts to —Zn#l <
(

f(H,)|Fn] >< oo w.p.l. Therefore, Z, — 0 w.p.l and

Proof of Theorem 6 Let’s define
a(h) = inflacR:F(Q +h+0bK)< F(a)} forsome h> 0
If for some h; > 0 and all Ay > 0 such that
V@ AQ),h) =0 and  V*f(Q,AQ),hs)" >0

, then by Lemma 14

(ha) — Q" — ho
b

W=y a4 ) <1

WLOG, assume that @(0) > @ + bK. If not, then @(0) = Q" + bK and we have

and for all @ > 0



This violates
V2F(QF, AQ"), he)t <0 Vhy >0

Thus, we can assume @(0) > Q  + bK and select hy > 0 such that @(hy) = a@(0). Let

a :=a(hy) =a(0) and
@5 = inf{Q >0: A(Q)(%b_g) =1} for some £ >0
So, since
a_@*_h2 ~ a—@*—hg a—@*

A(Q)( ) <1=A(Qn)( ) = A(Qn,)(

b b b )

, we have Q* < @hz- By contradiction, suppose that there exist ¢ > 0 and subsequence

{Qn,}; such that for all j > 1
Qn, £1Q"— €. Q +4
WLOG, assume that
Qn, > Q +e+d

, for some § > 0. Since {H,, }; is the sequence of monotone increasing function on R,

there exist subsequence {Hnjk }r and an increasing function H such that

H

(1) — H(-) pointwise
by Helly’s selection theorem. So, we have

Vf(Hn;, )(:) = Vf(H)(-) pointwise
Moreover, we have

Vf(Hy, )(-) = Vf(H)(-) uniformly
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, since Vf(Hnjk)(-) is equi-continuous by Lemma 2. Since @, is the solution to
Vf(Hy,;, )(Q) = 0 forall k > 1, Q" +e+46is asolution to VF(H)(Q) =0. At Q", we

can consider the following four cases:

1. V2f(@Q ,H* h)" <0 Vh>0 and V2f(Q,H* h)">0 Vh>0
2. V:f(Q,H*,h)" <0 VYh>0 and
VF(@Q,H*,h)" =0 Yh €0, hy] for some hy > 0
3. V2f(Q',H*,h)" =0 VYhel0,h] forsome hy >0 and
ViFQ ,H*  h)" >0 Yh>0
4. V2f(Q,H*,h)" =0 VYhel0,h] for some hy >0 and

V2F(Q ,H* h)T =0 Vhe[0,hy] forsome hy >0

For the case 1 and 3, since Vf(H)(Q) is decreasing function in @ > 0, we should
have Vf(H)(Q*) > 0. This implies that V f(H,)(Q*) does not converge to 0. By
Theorem 5, this contradicts to the hypothesis. For the case 2, by Lemma 14, for all
h € [0, hyl,

a—-Q

H(b

) <1 and H(

a-Q —h,
T)_1

where hy > 0 is selected such that @(hy) = @(0) = @. Then, this violates the increasing

property of H. For the case 4, by Lemma 14, for h = max[hy, hs],
—  A* — A h
a bQ )=1 and H(%

)=1

So, by Lemma 13, H(p) > A(Qu)(p) for all p > 0 where H(-) is continuous, since

Qn = inf{Q : AQ)(=T=L) = 1}. Since Q" < @y and A(Q1) <u A(Q"),

VF(AQn)(Q%) < VF(AQ))(Q)

, which is shown in the proof of the Lemma 7. So,
VIH)(Q) < VI(AQn)(Q) < V(AQ)Q)
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and

Vf(Hn (@) = VI(H)(Q) < Vf(AQ))(Q)

This implies that V f(H,,)(Q*) does not converge to V f(A(Q*))(Q*). Thus, V f(A(Q*))(Q*) #
0 by Theorem 5 and this contradicts to the hypothesis V f(A(Q*))(Q*) = 0. There-

fore, for any £ > 0, there exists N(g) < +oo such that for all n > N(¢)

Qn€lQ —£,Q +¢
U]

Proof of Corollary 1 Let Q* = @* = @* in Theorem 6. Then, the result holds.
O

Proof of Corollary 2 Suppose that (), does not converge to @* = 0. This
implies that there exists e > 0 and subsequence {Q,,}; such that ||Q,,| > € for
all j > 1. This means that liminf; ., Q,, = €. Moreover, by the Helly’s theorem,
there exists H* and {H,, }x such tat H, (p) converges to H*(p) for all p > 0.

But, we know that H,(p) — = > " A(Q;)(p) — 0 w.p.1 for all p > 0 and thus

Hy,, (p) = 7= 325 A(Qi)(p) — 0 w.p.1 for all p > 0 . So,
1 Ny 1 Ny
Hu, (p) = — > AQ)(p) < Hy (p) - — > A(0)(p)
Jk j—1 Jk =1

= Hy;, (p) — A(0)(p)

— H*(p) — A(0)(p)

Since Hy; (p) — i SR A(Qy) (p) — 0, we have 0 < H*(p) — A(0)(p) for p > 0 and
thus H* < A(0). So, for all @,

V(H")(Q) < Vf(A0)(Q)
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Thus, for all @,

VI(HQ) <0

Moreover,

Vf(Hy, ) (@) = VF(H)(Q)

uniformly in @ as k — oo and Qn; — 0 as k — co . However, this contradicts to

|@Qn, || > € for all j > 1. O

Proof of Lemma 16 Q is continuous for all @ > 0. [, [7{(p —¢) — (p -

_()Q)J’}dH(p)dF(a) is Lipschit continuous and thus is continuous.

b [ a-— L i
_/ (a bQ —¢)%dF(a) = Z/O (a bQ — )’ 1{azq+be}dF (a)

4 Q+bc

,where (%—C)QI{GZQHC} is convex for @ > 0 and thus 2 b ——c *La>01beydF (a)
is convex for @) > 0. So, it is continuous for ¢ > 0. Since the product and sum of

continuous functions is continuous, the result holds. O

Proof of Lemma 17 For Q; < ()2, we have % < —aile and

'/ / Quilp =) = = le> }dH (p)dF (a)
/Q/ QAlp =) = - Q2> }dH (p)dF (a)|

- B Q1
a |/Ql+bc 0 Ql Q2 C) (

+/Q Tl -0
_ / Qullp—c) — (r a‘—@mw@)dnan

Q2+bc 0
Q1

= |/Ql+bCO Ql Qz —C) (
[ et - 0- Ql) JdH (p)dF (o)

Q1+bc

/Qz+bc/ @Alp—) = p- Ql) }dH (p)dF'(a)

——— )" }dH (p)dF (a)

Ql) VdH (p)dF (a)

——) " }dH (p)dF (a)
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IN

IN

IN

/Q/ @Alp =) Q2> }dH (p)dF (a)|

Q2+bc

/ (@~ @)~ 0) ~ o "=y yaH ) (o)

Q1+bc

/ Ql QZ — c ( le) }dH(p)dF(a)
Q2+bc JO
Q2+bc Ql
[ [ -0 - 0= 58
/Q +he / @a{(p - ) Ql) }dH (p)dF(a)
/Q+b / @Al =c) QQ) YdH (p)dF (a)]
Q22+b Q1

/ (@1 = Q)P — ) = (p— =) }dH (p)dF (a)
Q1+bc
/ / (Q1—Q2){lp—c)—(p— bQZ) VAH (p)dF (a)
Q2+bc
Qa+bc Q1
/Q+b / @{lp—o) ) }dH (p)dF(a)

/ | p—“_bQ2> —(p—%)*}dﬂ(p)maﬂ
Q2+bc

“@-env-o-0- 52
@t o - - )
*'/QH O QZ)*}dmp)dF(an
Q2+bc
/ Q2{(p —¢) Ql) YdH (p)dF (a)l
Q1+bc
+ /Q L[ e p—“‘Q2 )= (- SV () ()
Q2+bc
[ @ - et - ganwar )
+|/Q+b/ (@1 — Q2)( —C)dH(p)dF(a)|
Q2+be

+ /Q / (=Y Q2> H(p)dF (o)

Q2+bc c "
/ Q- Qg)(M—C)dH(p)dF(aﬂ

Q1+bc b
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+ /Q [ @—eaGuneare)
Q2+bc
2+bC 1
/ Qu( L= i (p)aF ()

Q1+bc b
Q
+ /Q | e Eingar )
oo @ =@ *
< 1@ - QBT+ 1@ - Qo) [ FaP()+ QB+ 0B )
_ (|Q2—Q1|—|—f0°°adF(a)+2Q2)|Q Ol
b 2 1
Again, for ()7 < Q-,
9 00 a— Ql b 00 -
4/Ql+bc( : —c)QdF(a)—Z/Q ) - bQ2 _ o)2dF(a)
= 9 Q2+be g — h io c
(O orar@ s [ (S (5 orar ()
= 9 Q2+bca_Q1 ;oc -
4(/@1%0 — ¢)2dF(a) +/Q . (- le e+ 12 _bQ2 (@ Ql)dF(a))
b Q2+bc . ’
_ b \2dF 20— Q1 —Q —
:( /ngbc A [ )
_ b Qatbe Q1 o ’ ’ (a)>
© 90 e Qy—Qr.  —Qy —
+/QQ+bC( . ) 2 . 1)+( Q1 Q222Q2—2Q2)(Q22Q1)d},(a))
_ 9 Q2+bc a— Q 00
4 ( /Ql—l—bc ( b - C)QdF(a) +/Q +b (2a - 2622 = + . ; Ql)(QQ 0 Ql)dF(a))
b Q2+be Qs —Q oo o ’
S v 2 1 2 - >
(e [ G [ (G ar)
) Q " Q A 2+be Q2+bc
< Z(( 2b 1)2+(2Eb(a))(Q2bQ1)+(Q2—Q1)2>
_ <(Q2_Q1)+E(a) ’
)@ - Q)
So, for ()1 < @9,
|/ Q1 —C Ql o[
C dH 2 a=Q
A S wE) v [ (i)
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/Q2+bc/ Q2{(p —¢) QQ) YdH (p)dF (a) — Z/Qibc(a —sz _ 02dF (o)

i Q .
< | /Q / Qi{( 8 )y dH (p)dF (a)
/ / Q2{(p —¢) QZ) YdH (p)dF (a)|
Q2+bc
> Ql b e a — Q2 )
+|4 Q1+bc( 7 —¢)dF(a) — /Qm( 7 — 0)%dF ()]
S |(Q1 - Q2)<(Q2 — Ql) _ZE(G) + 2Q2> | + |%(Q2 _ Q1)<(Q2 - le) + E'(a)>|
= 310y - gyl =L A
The result holds. 0

Proof of Lemma 18 For any Q > 0 and any H € P(R)

of" / (o) Danyira 5 [ (L oar)
- I . “olr-0- (- )}dH()F()+§/C:bc(a_bQ—c)2dF(a)
< /Q 0 i )r + 5 [ (GE —orar
_ o Q¢ b Q — ¢)dF(a) + Z /{:bc(a _b ©_ ¢)2dF (a)
- [ b ( Q — 0)2dF(a)

—Q Q
= /QH( 2 C){Q+Z( — — O)}dF(a)

- [ e
Q+be

4
*a—Q—bc  3Q+a—bc
= / ( b )+( 1 JdF (a)
0
Moreover, as () — o0,
a—Q —bc ., 3Q+a—bc

( , )H( ; ) =0
and

(a—Ci—bc)Jr(BQ—i-Z—bc)S (

a—>bc)? _a®> b
<&
3b —3b 3D
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Since 31;70) > 0 and integrable due to [;° a’dF(a) < +oo, by the Dominated Con-

vergence Theorem,

/Ooo(a—Q—bc)+(3Q+a—bc

2 —)dF(a) =+ 0

, as ) — oo. O

Proof of Theorem 7 Let’s define f(Q, H) as

F(Q.H) = Q /Q °° / (-0~ "= D )ar @)+ / (o)

Q+bc
Then, the argument in the theorem is equivalent to the followings; suppose that @,

is the optimizer for

maxg>o f(Qa Hn)

Note that @, < @ for all n > 1 by Lemma 18. If (), converges to Q*, then H,

converges weakly to H* by Lemma 8 and Lemma 9. Now, Q* is the optimizer for

maxg>o f(Q, H")

Moreover, by Lemma 17, for ()1 < Q)2 < @ and all n > 1,

£ (@1, Ha) = f(Qs, Hy)l
= |/Ql+bc/ Qi{lp—c)—(p— Ql) }dHn(p)dF(a)+Z/ (a—bQ1 _ 2dF(a)

Q1+be
Q2 b > a— QQ 2
/Q2+bc/ Qx{lp—c)—(p— b —=)"}dH, (p)dF(a) — Z/ ( P ¢)*dF (a)|

Q2+bc
3|Q2 — Q1|+ 3E(a) + 40,
( 5 )10 - @l

)1Q1 - @l

<

< (SE( a) +7Q
- 2b

,which is equicontinuous since <w> < 4o00. Also, for @) > 0,

f(Q,H,) — f(Q, H") pointwise
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Thus, its uniform convergence in [0, ()] is guaranteed since it is equicontinuous and

pointwise convergence. Moreover, Q* is the optimizer in [0, Q] for

maX,<o<qg f(Q,HY)

Suppose that there is Q' such that Q < Q' < +oo and f(Q*, H*) < f*(Q', H*), which
implies that Q* ¢ argmazg>of*(Q). Take ¢ > 0 and e; > 0 such that f(Q', H*) —
f(Q*,H*) = €1 + €. For ¢, > 0, there exists M; < oo such that |f(Q', H*) —
f(Q', Hy,)| < € for all n > My, since f(Q', H,) converges to f(Q', H*). For all n >
My, [F(@, H) — F(Q Hy)| < e implies F(Q H') — e < F(Q' Ha) < F(QHY) +6
and F(QHY) — e < F(Q) Hy) < F(Q HY) + e implies that supys yp, £(@, Hy) <
f(Q,H*) + e and inf,>, f(Q', Hy) > f(Q, H*) — €. Moreover,

inf f(Q', Hy) > f(Q H") — e = f(Q . H) +e (117)

n>M;

since f(Q', H*) — f(Q*, H*) = € + €5. For %ez, there exists M, < +o0o such that

|F(Q*, H*) — f(Q*, H,)| < 3¢, for all n > M,. This implies

1
sup f(Q", Hy) < f(Q", H") + e (118)
TLZMQ 3
For M362, there exists M3 < +o0o such that |Q* — Q,| < ﬁ%@ for all n > Mj. So, by

Lemma 17 and the definition of M, |f(Q*, Hy) — f(Qn, Ha)| < |Q* — Qu|M < ze.
This implies that f(Q,, H,) < f(Q*, H,) + %ez for all n > M; and thus for n >
maX[MQ,Mg]

F(Qu Ha) < F(Q" Hy) + 5 (19

So, with equation (118) and equation (119), we have

sup f(QuH) < sup f(Q*,Hn)+§e2

n>max|[Ma,M3z] n>max|[Ms,M3]

1
S sup f(Q*a Hn) + 562

TLZMQ

< @ H) e
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So,

sup f(Qna Hn) < sup f(Qna Hn)

n>max|[M1,M2,Ms] n>max|[Ma,M3z]

e+

IN

and

inf f(Q', H,) inf f(Q', Hy,)

anax[Ml,MQ,Mg} n>M1

> f(QaH*)_elzf(Q*aH*)+€2

Y

So, for any n > max[M;, My, Mj],

FQuH) < sup f(QuHa) < FQH) + §€2

anaX[Ml,MQ,MQ,]

[(Q Hy) = inf f(Qn, Hy) > f(Q7, H") + €

anaX[Ml,MQ,MQ,]

Therefore, f(Qn, Hy) < f(Q', Hy) which contradicts that @, € argmazgsof(Q, Hy).
Therefore, there does not exist any Q' > @ such that f*(Q') > f*(Q*). O

Proof of Lemma 19 First of all, there exists @) > 0 due to Lemma 18. If there
exists @ > 0, then, for any H € P(R) with H(c) < 1, fgjrbc oA —c) —(p -
%)J’}dH(p)dF(a) is strictly decreasing in ). Consider any @)1 # (2. And, WLOG,

suppose that (; < Q). Then

/ 1+bc/ {p=c Ql) }dH (p)dF (a)
B /QQ:/ =0 Ql) YdH (p)dF (a)
/ch , === =t (p)dF (a)
B /QQ+:b/ {w=a Ql) YdH (p)dF (a)
/ch/ {w=o QZ) }dH (p)dF (a)

+/Qz+bc/0 o= -lp- a_bQ1)+ =g+ - GTQZ) ydH (p)dF (a)
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= [ -0 - 0- 58 eir

Q/Q | =0 - -5 anpar@

of [ . - ‘QZ}dH<p>+ [ (5 anwara
> [ [ -0 -0 S er)

. /Q / N e _QZ}dH(p)wL /;{QZ Vi (p)dF (a)

> [ -0 -0 S eir)

The last strict inequality holds, since H(c¢) < 1 and, for Q; < Q-,

Q
“Yar) + [
Qatbe J =92 ey

Suppose that Q** = Q*. Then, for any () > 0 with @ # Q*,

Q2 }dH( )dF(a) =0 iff H(c)=1

L [T * a_Q* + * b [ a—-Q" 2
@ [ [w-o-o- 5 ma@eire g [ (5E - orr

> of [ Drpa@ware + ] [ (5E - opar)
But, for Q) =0,
o[ * [0 - -0 mire + 1 [ (5 - orar(
- /(g—c)dF()
Q—l—bc o0 a
_ Z/b +Z/Wbc(g—c)2dF(a)
Q—l—bc 00 a— OF *
- Z/b __C +Z/Q+b( bQ B +%)dF()
Q—l—bc © 4 OF a — OF * *
Q—l—bc 00 a— OF () a— OF c
_ Z/b +%/Q+bc CAN IS L sz *)dF(a)



S G

Q*+bc
B b Q*+bc a b [ Q* h [ CL—Q*
= 3L Groar@eg | Grare g [ (5E o
v [ - par
b 0o * b o0 _N)*
= 5 minlG -t (G 4§ [ (5 - opar)
v [ (S Yarw

orpe’ 202
b &) _ * &) _ *
> Z/ (a bQ —¢)*dF(a) + Q*/ (a @ E)alF(a)

Q*+bc Q*+bC 2b 2

® a—-QF c b/°° a—Q*_

= Q" Q*+bc( 5 —§)dF(a)+_

Q*+bc

= & /ibc/ibc(a_?bQ* )dF /*+bc

2
Q* c T — Q c a — Q
= ¢ /*+bc/*+bc oty O (gt~ ) dF(z)dF(a)

S S
Q*+bc b
a—Qr b [ a—QF 9
- Q/%/{ —0) @ R+ [ (S - o)

Q*+bc

— ¢)*dF(a)

So, Q* can not be optimizer and thus Q** # Q* O

Proof of Theorem 8 One possible and simple probability distribution is expo-

nential distribution with parameter A > 0. For * = 0,

A(0)(p) = / 1{2%,+35p}dF(a)+/ Limaxte, g +£1<ppdF (@)
{a:g55+5<c} {a:g5+5>c}

and, the objective function follows

00 00 CL—Q+ . b 00 G—Q )
of [ tw-o-o-"FEmaa@ i+ [ (5E - orira)

Q+bc

B z ¢ a—Q Az “Xa
_ Q/QW/{ =0 = (5 + 5 = L) e e da

+/ & —Q c)*Ae™da
4 Q+bc b

186



% 11 1 2
— 7)\bc = A(22—2Q—bc) A 7/\ad A(Q+be)
@ Q+,,C{2bA TN WAe Mda+ pige
111 1 9
— —)\bc —)\(Q-l-bc) - A(Q+be) —/\bc A(Q+bc)
Q{Qb)\ %3¢ b et
ol b e @b . L2 a@ibe)
= Qe e HPTSvE

This function is differentiable and thus, for any @ > 0

dcég (Qii —Abe—A(Q+be) 4 41[) )?2 (Q+bc))

_ 31(, i\eAbceA(Qerc) + Q%%e)\bc( )\)ef)\(Qerc) + ib%(_)\) —A(Q+bc)
e~ M@+be) (31b i\e—)\bc Qiie—xb%_)\) + ib%(_)\ )

— o~ M@+be) g=Abe 3%\ _ Q% _ %eAbc)

— o M@tbe) ,Abe

|
Qw|Qw|d
_|_
—
—_

|
S
N—"

< e~ M@+be) —Abe
— o M@+tbe) ,—Abe

< e~ MQ+be) = Nbe

I I =l I A

So, the objective function is strictly decreasing so that it is maximized at @@ = 0.

Therefore, there exists a probability distribution function such that Q** = @Q* = 0.
O

Proof of Example 1 By Lemma 19, there does not any @* > 0 such that
Q" = Q. Now, need to check if Q** = @* = 0. It is enough to show that there
exist any positive ) such that the objective value at this positive @) is strictly larger
than the one at zero. Let this positive value be 25. So, for () = 25 and Q* = 0, the

objective value is

) ) N a—Q+ i b ) CL—Q )
of [ oot o= "GEa@)mar@ g [ ((5F - erir)

Q+bc
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o0

= 25 /2:;0 /Ooo{(p —50)" — (p— (a — 25))T}dA(0)(p)dF (a) + % /25+50(a — 25 — 50)%dF (a)

= 25 /OO /Oo{(p - 50)+ —(p— (a—25))T}dA(0)(p)dF(a) + 3/7 (a — 25 — 50)%dF(a)

5

_ 25/ / (E 20 50 (‘; + 52—0 — a+25)*YdF (z)dF(a) + i /:(a — 75)%dF(a)

= 5 /75 /0 {(x —50)* — (z — 2(a — 50))" }dF (x)dF(a) + 3/7 (a — 75)%*dF (a)

5

Let’s see the first term for the value of a. For 75 < a < 150, (50 < 2(a — 50) < 200)

/ {(x = 50)* — (z — 2(a — 50))" }dF(z)
_ 7(/; " e 50)dF () + /00 {2(a - 50) - 50})

2(a—>50)
2(a— 00
. §(/50< 50)(x—50)dF(~””)+/2(a50)2(a_75)>
=2 (Wlooé(x 50)2 2 4 ﬁma Ty + (5 - 1—10)2(a — 75)
o 2(a— TNl + (5 — 200~ 75))
_ ? (ﬁ%@(a — 50) — 50) + ﬁ%a — 75)(200 — 2(a — 50)) + (% B %)2(“ - )
+ﬁ2(a — 75)(300 — 200) + (% — 11—0)2(a - 75))
— 225 (4000(2a —150)% + 1—102(a ~75) — 5%0(@ — 75)(a — 50) + (% - 1—10)2(a —75)
+1—102(a —75) + (% - 11—0)2(a —75))
So,
150 00
S [ [ =507~ @ =250 JaF(@)aF a)
150 _ _ _
- % 7 <40100(2a — 150)° + 4(611()75) - 755%0((? . + (% B 1_10)4(“_ 75)>dF(a)
= %Wloo(éﬁ(m —150)* + %%04((1 —75)* — 5(1)0(;& - 1—;5& +3750a)
111

+5(5 — 15)4a—75) ) 150
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1 1 1 1 ,150% 125
= 150)% + —4(75)? — —(—— — —==150% + 3750 x 150
160(24000( )+ 5540 — 5553 2 + 3750 x 150)
1 .75 125 1 1
—(— — =752 43750 x 75 — — 275 2)
toolz — 2 0t x15)+ (5 = 15)2(7)
= 31.646

For 150 < a < 200, (200 < 2(a — 50) < 300)
/ {(z —50)* — (z — 2(a — 50)) " }dF (z)
2(a—50) 00
- ?(/50 (« — 50)dF (z) + /20 (x — 50)dF (x) +/2 2(a — 75)dF(x)>

0 (a—50)

- % (ﬁ;( — 50)2[200 (% - 2—10)(200 —50) + ﬁ%(:g — 50)? |25
+ﬁ2(a — 75)a[30_s0) + (% 110)2(a ~75))
= 225 (4000(200 — 50)% + (; 210)150 + 2000((2(a —50) — 50)% — (200 — 50)?)
+$(a — 75)(300 — 2(a — 50)) + (% - 1—10)2(a . 75))
2 _ 2 2 _ _
BTSSRV R

/ / {(z = 50)* — (2 — 2(a — 50))* }dF(z)dF(a)

150" /1502 — 75 1502 — 75)(400 — 2 11
= == ( + (a F + (a i 2 + (= — —)2a>dF(a)
2 Js  \4000 500 2000 500 2 10
25 1 (150> 1(a—75)° 1507 12 11,
- 2 - - 27542 + 30000 — ) 200
2 2000(4000a+ 3 500 2000t 50037 @+ 30000a) + (5 = 75)e” ) iso
1 /150 1 (200 — 75)% — (150 — 75)%  150?
= — 200 — 15) + - — 200 — 150
160 (4000( )+ 3 500 2000( )
12 11
+——(=(200° — 150%) — 275(200* — 150%) + 30000(200 — 150)) + (= — —)(200* — 1502))
5003 2 10
= 51.237

For 200 < a, (300 < 2(a — 50))

/ {(x = 50)" — (z — 2(a — 50)) " }dF(z)

= 3 : (x—BO)dF()
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So,

Therefore,

2 o o0

o[ [ t=50)" - - 2(a - 50)}aF@)dF(a)
75 0

31.646 + 51.237 + 2088.281

2 1000

2 1000

= — 50)dF = 2)(200 — 50
3 (| = 500dF@) + (5= 45) )

300
+/ (& — 50)dF (z) + (= — —)(300 — 50))

200
25, 1 1 o 11 11 -
il (LA S (200 — 50) + —— = (2 — 50
2 (20002(x 50)%50" + (5~ 1) )+ Too02 (@ ~ 99 lem
&= Lyse0 - 50))

> 10
25 /1502 1 1 1 11
2 S 150 4+ = (2507 — 150) + (= — — 250)
> (4000 (3~ 1910+ 3000 )G
25 /1502 1 1 2502 — 150°
= = 400 + 7)
2 (4000 TG 1) 2000

2 /75 /0 {(z = 50)" = (z — 2(a = 50)) " }dF (z)dF (a)

101502 1 1 2502 — 1502
= —)400 7)611?
. (4000 + (G5~ 19400 —500 (@)
1. ,1502 1 1 2502 — 1502
= Z 400 7)
10 (4000 (5~ 1020 5500
2% 1 /1502 1 1 9502 — 1502
1 400 - 7) 300
(4000 + (2 10) 2000 200
1. ,1502 1 1 2502 — 1502
— ) (o (5 — 0400 + )
10’\4000 © ‘2 10 2000
1. ,1502 1 1 2502 — 1502
- S 2400 7)
261 (4000 (5~ 1040 —5500
2% 1 /1502 1 1 9502 — 1502
> ( LN AT =) (300 — 200)
4000 ‘2 10 2000
1. ,1502 1 1 2502 — 1502
S S 2)400 + 7)
10 (4000 510 2000

2088.281

2171.164

Now, let’s see the second term, which is

/

0O(a — 75)2dF (a)
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1 200 1 1
- = — 75)2%dF — — —)(200 — 75)?
([ @=m5par + (- 10—
300 1 1
2 2
+/ (a — 75)2dF(a) + (= — —)(300 — 75) )
" 5 10
1,1 1252 1 1 11
_ oL e 2 1252 4 225%) + — = (2252 — 125° )
4(2000 5 T (5 19)(125° +2259) + 5 )
— 7492.839

Thus, for Q = 25 and Q* = 0, the objective value is

[ N a—Q. . . b [ a—Q 9
of [ ot —o- "M@ mar@ g [ (C5F - erir)

o0

= Q /: /Ooo{(p —50)" — (p— a + 25) }dA(0)(p)dF (a) + i /75 (a — 75)2dF (a)
= 2171.164 + 7492.839

= 9664.003

For @ = 0, the objective value is

00 00 a — b a—
o [Tto-ot - - "GHNaa@wira + [ (G2 -
Q+bc b 4 Q+be b
1
= / / {(p— 50)* — (p— a + 25)*}dA(0)( Z/ (a — 50)%dF (a)
200 1 1
= - — F _ 2 _ 2
4(/50 (a = 50)2dF(a) + (5 = 15)(200 - 50)
300 ) 1 1 )
+/200 (a = 50)°dF (a) + (5 ~ 75)(300 — 50) )
1 1 1502 1 1 1 1
_ 2 . 1502 -+ 9502 Z(9502 — 1502
4(2000 3 + (2 10)( 50%+250%) + 10003( o0 o0 )>
= 9661.458
So, ** can not be Q*, which is 0. The result holds. O

Proof of Theorem 9 Suppose that (), does not converge to @* = 0. This
implies that there exists ¢ > 0 and subsequence {Qp,}; such that ||Qy,| > e for
all j > 1. This means that liminf; . (), = €. Moreover, by the Helly’s theorem,

there exists H* and {H,, }x such tat H, (p) converges to H*(p) for all p > 0.

191



But, we know that H,(p) — 13"  A(Q;)(p) — 0 w.p.1 for all p > 0 and thus
Hy; (p) — é SR A(Q:)(p) = 0 w.p.1 for all p >0 . So,

nyy (P) = — ZA(Qi)(p) < Hy, (p)—— ZA(O)(p)
= Hy;, (p) —A0)(p)

— H*(p) — A(0)(p)

Since Hy; (p) — i Sk A(Q:) () — 0, we have 0 < H*(p) — A(0)(p) for p > 0 and

thus H* <y A(0). So, the objective function evaluated by H* is

— Q. * b [ a—Q ,
Q/Q+bc/ {p=a b — )" }dH()dF(a)+Z/c)+bc(T_C) dF(a)
= Q/Q-l—bc/o {p=c) = b ) }dA(O)(p)dF(a)jL%/wC(a_bQ — ¢)%dF (a)
Thus,

Q/QHC/ {(p—c) ¢ bQ) YdH*(p )dF(a)+Z/OO (“_bQ — ¢)*dF(a)

Q+be

is maximized at () = 0. Moreover,

o0 00 a—Q, . b [ a—Q 2
o [To-0- -5, warw G [ (5 - opar)

Q+bc

saf [e-a-e- e« [ (5E - rar

uniformly in @ as k — oo and Qn; — 0 as k — oo . However, this contradicts to

|@n, || > € for all j > 1. O

Proof of Lemma 20 Let g(a,Q) = [° —5¢* +$¢—7Q — K¢, — p(a, Q)q;dF (a).
Then, for any @ > 0,

fBuyer (Q)
= [ s0@ir@
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_ /0 _iq+ 24— 7Q — Kq, — pla, Q)q,dF(a)

2b b
2K —be a+ be a a + be a+ be a+ be
= ——(a—1> 24 —(a—b — — K0 — —b dF
/0 w ) Tyl by) e 3 (@b )k ()
Q+2bK —be “
+ / ——a—bK) b(a—bK)—WQ—KQ—K(a—bK—Q)dF(a)
2bK —bc
a—Q+bc, a a—Q +bc
+ / a—b——) '+ -(a—b——) —71Q — KQ
Q+2bK —be 2b ) b( 2b )
a— Q + be a—Q +bc
——yy (@b~ Q)dF(a)
So, for any given a, g(a,Q) is concave in ) and thus fpye(Q) is concave in Q.
Moreover, we can rearange fpyyer(Q) as follows
fBuyer (Q)
2bK —be a2 — h2¢2 Q+2bK —bc (a . bK)Q
- —7rQ+/ 7dFa+/ MO GF(a
0 8b (@) 2K —bc 2b (@)
_/oo (a+Q — be)? N (a—Q+bc)(a—Q—bc) ala+Q—be) + KQdF(a)
Q+2bK —be 8b 4b 2b
Now, for any h > 0,
fBuyer (Q + h) - fBuyer(Q)
2bK—bc 2 _ 12 .2 Q+2bK —bc+h — bK)2
— Q4R+ / Y e + / @ =K 1p(a)
0 8b 2K —be 2b
_/°° ((a—l—Q—bc+h)2 N (a-=Q+bc—h)(a—Q—bc—h) ala+Q—bc+h)
Q+2bK +h 8b 4b 2b
HK(Q + h))dF(a)
WK—bc 2 12 2 Q+26K=be (o _ I
Q) — / wdp(a) _ / Mdp(a)
0 8b 2K —be 20
00 o 2 _ _ _ —
+/ (a+C§b be) +(a Q+bci§)a Q bc)_a(a+26i bc)+KQdF(a)
Q+2bK —be
Q+2bK—beth (112
= —7rh+/ wd}?(a)
Q+2bK —be 20
/Q+2bK_bC+h (a+Q—bc+h)* (a—Q+bc—h)la—Q—bc—h)
+ ( +
Q+2bK —be 8b 4b
_ala+ Q2; be + h) L RQ+ h))dF(a)
_/°° ((a+Q—bc+h)2 N (@a—Q+bc—h)la—Q—bc—h) ala+Q—bc+h)
Q+2bK —be 8b 4b 2b
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YK(Q + h,))dF(a)

+/°° (a+ Q — be)? N (a—Q+bc)(a—Q—bc) ala+Q—be) + KQdF(a)
Q+2bK —be 8b 4b 2b
Q+2bK—beth (372
_ah+ / Mdp(a)
Q+2bK —be 2b
+/Q+2bK"C+h ((a+Q—bc+h)2 N (a—Q+bc—h)(a—Q —bc—h)
Q+2bK —be 8b 4b
—bc+h
_alat Q% +h | ko n))dF(a)
+/°° (2a—|—2Q—2bc+h)(—h)+(a—Q+bc)h (a—Q —bc)h
Q+2bK —be 8b 4b 4b
h? ah
—— 4+ — — KhdF
T (@)
Q+26K—beth (, _ )2
—mh+ / &d}?(a)
Q+2bK —be 2b
+/Q+2bK”C+h ((a+Q—bc+h)2 N (a—Q+bc—h)(a—Q —bc—h)
Q+2bK —be 8b 4b
—bc+h
_ala+ sz +h ko h))dF (a)
+/°° —2a—2Q+2bc+2a—2Q+2bc+2a—2Q—2bc+4ah
Q+2bK —be 8b
—h? — 2h?
t— KhdF(a)
Q26K —beth (0 _ )2
—mh + / udF(a)
Q+2bK —be 2b
+/Q+2bK_bC+h ((a+Q—bc+h)2 N (a—Q+bc—h)(a—Q —bc—h)
Q+2bK —be 8b 4b
_alat Q2; beth) | K(Q + h))dF(a)
00 - 2
N 6a 6Q+2bch—%—KhdF()
Q+2bK —be 8b 8b
h,( " / 3a=3Q+be KdF(a)) - / 3 24 (a)
Q+2bK —be 4b Q+2bK —be b
Q2K —beth (o pf
N / (@ = PE) ) r )
Q+2bK —be 2b
/+2bK be+h a—|—Q—bc—|—h)2 (a—Q+bc—h)(a—Q—bc—h)
+ +
Q+2bK —be 8b 4b
B a+Q—bc+h)+K 4 WdF(a
( 2b @
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- h( — /OO Ba— 3@ ¥be KdF(a)) - /Oo 3 124 (a)

Q-+2bK —be 4b Q+2bK —be b
QER=beth (g —bK)?2  (a+Q—bc+h)?  (a—Q+bc—h)(a—Q —bc—h)
+ ( n 8b - 4
Q+2bK —be
—beth
_alat Q% M LK@+ h))dF (a)

Let U/(a,) = (0/—2()()[()2 + (a-l—Q;ZC—Fh)z + (a—Q-I—bC—hig)a—Q—bC—h) _ 0/(0/+Q2;b0+h,) +K(Q+h) Then

u(a) is convex and minimized at Q + 30K +h — 3bc = Q +2bK — be+h — 2b(K —¢).
Sofor0<h§§b(K—c) and Q + 20K —bc <a < Q + 20K —bc+ h
(a — bK)? N (a+Q —bc+ h)? N (a—Q+bc—h)(a—Q—bc—h)

u(a) =

2b 8b 4b
—bc+h
_a(a—i—Q2b ¢+ )+K(Q+h)
(Q+ 20K —bc+ h —bK)?  (Q+ 20K —bc+ h+ Q — be+ h)?
= 2% * 8
+(Q+2bK—bc+h—Q+bc—h)(Q+2bK—bc+h—Q—bc—h)
4b
20K — be + h 20K —bc+h+Q —bc+h
@+ ¢+ )(Q+2b c+h+Q—bc+ )+K(Q+h)
_ (Q+DK —be+h)’ | (2Q+ 26K —2be+20)” | %K (DK — 2bc)
B 2b 8b 4b
20K — be+ h)(2Q + 20K — 2bc + 2h
@+ ¢+ )(222+ ¢+ )+K(Q+h)
(Q+bK —bc+h)?> (Q+b0K —bc+h)?  bK(bK — be)
= + +
2b 2b b
20K — be + h bK —bc+h
@+ c+ z);(Q+ c+ )+K(Q+h)
B (Q+bK—bc+h)2+bK(bK—bc)_(Q+2bK—bc+h)(Q+bK—bc+h,)
B b b
+K(Q+h)
B (Q+bK—bc+h)2+bK(bK—bc)_(Q+bK—bc+h,)2_bK(Q+bK—bc+h,)
h b b b b
+K(Q+h)
bK (bK —be)  bK(Q+bK —be+h
_ (b ¢) bK(Q : c )+K(Q+h)
bK (DK —bc)  bK(bK —be) K h
_ ( ) bK( ) (Q+)+K(Q+h)
b b b
=0
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Y

(a—bK)2+(a+Q—bc+h)2+(a—Q—i—bc—h)(a—Q—bc—h)

2b 8b 4b
_a(a+Q2;bc+h)+K(Q+h)
(Q+2bK—bc—bK)2+(Q+2bK—bc+Q—bc+h)2
2b 8b
+(Q+2bK—bc—Q+bc—h)(Q+2bK—bc—Q—bc—h)
4b
_(Q+2bK—bC)(Q+2211))K—bc+Q—bc+h)+K(Q+h)
(Q+bK —bc)®>  (2Q + 20K — 2bc + h)?>  (2bK — h)(20K — 2bc — h)
2 * 8 * m
—(Q+2bK_bc)(2§b+2bK_2bc+h)+K(Q+h)
(Q+bK—bc)2+(Q+bK—bc+g)2+(bK—g)(bK—bc—g)
2b 2b b
_ _ h
(Q@+2bK bc)(§2+bK bc+2)+K(Q+h)
(Q+bK—bc)2+(Q+bK—bc+g)2+(bK—g)(bK—bc—g)
2b 2b b
h h h
_(Q+bK—bc+5+be—5)(Q+bK—bc+5)+K(Q+h)
(Q+bK—bc)2+(Q+bK—bc+g)2+(bK—g)(bK—bc—g)
2b 2b b
_ h)2 _h _ h
_(Q+bebc+2) (K Q(Q:bl{ bc+2)+K(Q+h)
(Q+bK_bc)2_(Q+bK—bc+g)2+(bK—g)(bK—bc—g)
2b 2b b
_h _ h
(K 2)(6221)[( bc+2)+K(Q+h)
(Q+bK—bc)2_(Q+bK—bc+g)2+(bK—g)(bK—bc—g)
2b 2b b
(DK =) (Q+h+bK —bc— %)
b
+K(Q+h)
(Q+bK —be)>  (Q+bK —be+ %)’  (bK —B)BK —bc— %) (bK - 4)(Q + h)
2b 2b b
_h Y S
(oK 2)(b£{ be 2)+K(Q+h)
— be)? _ hy2 _h
(Q+b§) be) _(Q+bK2bbc+2) (K 22(Q+h)+K(Q+h)
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(Q+bK —bo)* (Q+bK—bc+g)2+ b(Q+h)
2b 2b b
(2Q + 20K — 2bc + 1) (=1) N bQ+n)
2b b

h h
%(—Q—bKerc—ZJrQJrh)

h (3h

1 3
(K — iy e

2( c)h—i-gbh

So, for 0 < h < 2b(K — ¢)

fBuyer (Q + h) - fBuyer(Q)

° 30-3Q+b %
€h<—7r+/ w—KdF(a))—/
Q+2bK —bc 4b Q+20K —bc 8b

Q+2bK —be+h ¢ 2
_[0,/ U _ %dﬁ’(a)]

2
%dF(a)

Q+2bK —be 2 8b

Foth%b(K—c) and Q + 20K —bc <a < Q + 20K —bc+ h

v

1
min[0, —§(K —c)h + %hQ] <0

(a—Q+bc—h)(a—Q—bc—h)

(a—bK)* (a+Q —bc+ h)?
n 8 *
—be+h
_a(a—i—Q2b c+ )+K(Q+h)
(Q + 30K 4 h — $bc — bK)?

4b

(Q + 30K + h — tbc+ Q — be + h)?

% +

+

8b

(Q+ 30K +h — tbc — Q +bc — h)(Q + 36K + h — tbc — Q — be — h)

4b

(Q+ 3bK + h — 2bc)(Q + $bK 4+ h — 3bc + Q — be + h)

+ K(Q + h)

20
(Q + 10K — Lbe + h)?

(2Q + 20K — 2bc + 2h)? N

(26K + 2be) (20K — Lbe)

2b * 8b

(Q + 3bK — 3be + h)(2Q + 3bK — 3bc + 2h)

4b
+ K(Q+ h)

2b
(Q + $bK — bc + h)? N

(Q + 20K — 2bc + h)* N

(26K + 1bc) (20K — 2bc)

2b 2b

(Q + 30K — 3bc + h)(Q + 30K — Sbe + h)

b
+ K(Q + h)

b
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(Q+ 30K — 3bc+h)?  (Q + 30K — 2bc+ h)? N (20K + 3bc)(3bK — 2bc)

B 20 * 20 b
2bK — 2bc+ h + 2bK + Lb 2bK — 2bc + h
(@3 2be + h + 2 b+3c)(Q+3 2be + )+K(Q+h)
_ @+ 10K — Lbc + h)? N (Q + 20K — 2bc + h)* N (26K + 1bc) (20K — 2bc)
2b 2b b
2K — 2bc + h)? 2K + Lo 2bK — 2bc + h
_(Q+3 b3c+ ) _(3 +3C)(Q—23 3C+ )+K(Q+h)
_ @+ gPK — gbe+h)> (Q+ 0K — Zbe + h)? N (20K + 3bc) (20K — 2bc)
2b 2b b
2pK + Lb 2bK — 2bc + h
_(3 +3C)(Q—Z3 3C+ )+K(Q+h)
_ @+ K — gbe+h)> (Q+ 0K — Zbe + h)? N (20K + 3bc)(3bK — 2bc)
2b 2b b
2bK + Lbe) (20K — 2b 2K + b h
R G ) QR+ ROQ@ER) |y
_ @+ ébKQ—b e+ h)?  (Q+ §bK2—b Zhe+h)? (2D + %l;c)(@+h) CRQ 1M
_ (@ + 50K — gbe+ h)*  (Q+ 30K — Sbc+h)>  3be(Q + h) +1K(Q+h)
2b 2b b 3
2 bK — bc+ 2h)(—ibK + 1b
_ (2Q + c+2h)(—3 +3C)—C(Q+h)+1K(Q+h)
2b 3 3
1 1 1
= —3(K=0)@Q+50(K =) +h) + 5 (K = )(Q+h)
1
= (K —c)?
So, for h > 2b(K — ¢)
o0 3a — 3Q + bc
fBuyer(Q+h)_fBuyer(Q) € h(_ﬂ——i_/ 4—b _KdF(a)>
Q+2bK —bc
> 3 1
— —h%dF(a) — [0, =b(K — ¢)?
L e @) = 0, G0 o
Now,
fBuyer(Q) _fBuyer(Q_h)
26K —be 2 2.2 Q+2bK —bc 2
a® —bc (a — bK)
= —7rQ+/ 7dFa+/ ~ " dF(a
0 8b ( ) 2bK —bc 2b ( )
00 _ 2 _ _ _ _
_/ (a+Q — be) Jr(a Q+0bc)(a—Q—bc) ala+Q bc)+KQdF(a)
Q+2bK —be 8b 4b 20

2K —be 12 2.2 Q+2bK —bc—h (a — bK)2

Q- h) - /0 AR () + /2 )
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_/OO ((a+Q—bc—h)2+(a—Q—i—bc—i—h)(a—Q—bc—i—h)
Q+2bK —bc—h 8b 4b

_a(a+Q2;bc—h) —|—K(Q—h,)>dF(a)

- h<—7r+/oo W—Kcﬁ’(a)) +/°o 3 n2qr(a)

Q+2bK —be 4b Q+2bK —bc 8b
QraK=te (g —bK)?  (a+Q —bc—h)? (a—Q+bc+h)(a—Q —bc+h)
+ ( T 8 * m
Q+2bK —bc—h
_ala+Q —bc—h)
2b

+ K(Q—h))dF(a)

Let w(a) = (a—beK)Z+(a+Qgsc—h)2+(a—Q+bc+hi£a—Q—bc+h)_a(a+Q2;bc—h)+K(Q_h)_ Then

w(a) is convex in a and minimized at Q+ 30K —$bc—h = Q+2bK —bc—h—2b(K —c).

So, for any h > 0 and Q + 2bK —bc — h <a < @Q + 2bK — bc,

w(a)
_ (a=bK)* (a+Q—bc—h)* (a—Q+bc+h)(a—Q—bc+h)
TR 8 - m
_a(a+Q2;bc—h,)+K(Q_h)
(Q+ 20K —bc—h —bK)? (Q+ 20K —bc—h+Q —bc — h)?
= 2% - 8
QAWK —be—h—Q+bc+h)(Q+2bK —be—h—Q—be+h)
4b
_(Q+2bK—bc—h)(Q+221;K—bc—h+Q—bc—h)+K(Q_h)
(Q+bK —bc—h)2  (2Q + 20K — 2bc — 2h)2  (2bK)(2bK — 2bc)
= + +
2b 8b 4b
_(Q+2bK—bc—h)(22bQ+2bK—2bc—2h)+K(Q_h)
(Q+bK —bc—h)2  (Q+bK —bc—h)?2  (bK)(bK — be)
B 2b - 2b - b
_(Q+2bK—bc—hZ(Q+bK—bc—h)+K(Q_h)
_ (Q+bK—bc—h)2+(bK)(bK—bc) (Q + 2bK — be — h)(Q 4+ DK — be — h)
B b b a
+K(Q — h)
_ (Q+bK—bc—h)2+(bK)(bK—bc) (Q +bK — bc — h +bK)(Q + bK — bc — h)
B b b a b
+K(Q — h)
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IN

(Q+bK —bc—h)?  (bK)(bK —bc) (Q+bK —bc—h)?  bK(Q+bK —be— h)

b N b - b - b
+K(Q — h)
(bK)(bé(—bc)_bK(Q+bI§—bc—h)+K(Q_h)
(bK)(bK—bc)_bK(bK—bc)_bK(Q—h)+K(Q_h)
b b b
0
w(a)
(a—bK)> (a+Q—bc—h)?> (a—Q+bc+h)(a—Q—bc+h) ala+Q—bc—h)
o 8 - m - 2
+K(Q — h)
(Q +2bK — bec — bK)?*  (Q + 20K — bc+ Q — be — h)?
2 - 8
+(Q+2bK—bc—Q+bc+h)(Q+QbK—bc—Q—bc+h)
4b
_(Q+2bK—bC)(Q+221l))K—bc+Q—bc—h)+K(Q_h)
(Q+bK —be)>  (2Q + 2bK — 2bc — h)? (20K + h)(2bK — 2bc + h)
+ +
2b 8b 4b
_(Q+2bK—bc)(2§b+2bK—2bc—h,)+K(Q_h)
(Q+bK —bc)>  (Q+bK —bc—L1h)2  (bK + 1h)(bK —bc+ 1h)
+ +
2b 2b b
_ _bhe— 1
@+ 2K bc)(Ci+bK be 2h)+K(Q—h)
(Q+bK —bc)>  (Q+bK —bc—1h)*  (bK + ih)(bK —bc + h)
2 2 * b
_bhe— 1 1 _he 1
(@ +bK —be 2h+be+2h)(Q+bK be 2h)+K(Q—h)
(Q+bK —bc)>  (Q+bK —bc—3h)?  (bK + 1h)(bK — bc+ Lh)
— +
2b 2b b
1 _bhe—1
_(bK+2h)(Q+bbK be 2h)+K(Q—h)
(Q+bK —bc)>  (Q+bK —bc—Lh)?>  (bK + 1h)(bK — bc+ Lh)
— +
2b 2b b
1 — — 1
(K +m)(@ hb+ bK — be+ 1h) FE(Q-h
_ be)2 — be — Lh)2 1 _
(Q+b§) be) _(Q+bK2bbc Lh) _(bK+2f£)(Q h)+K(Q_h)
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(Q+bK —be)®>  (Q+bK —bc—3h)> b

- 2 B 2 M@ =N
20 + 2bK — 2bc — L) (L h
— ( 2)(2)——(Q—h)
2b 2b
h h
= 2—b<Q+bK—bc—Z—Q+h,)
h 3h
= (oK - o
5 (oK =+ T)
1 3h?
- (K — 2
2( c)h + <
So,
fBuyer (Q) - fBuyer(Q - h)
o 3a — 3 b o 3
€ h( _ +/ Ba = 3@ Fbe KdF(a)) +/ 2 h2dF(a)
Q+2bK —be 4b Q+2bK —be 3D
Q+2bK —bc 1 3
+[0,/ ~(K —¢)h + —h*dF(a)]
Q26K —be—h 2 8b
OJ
Proof of Theorem 10 By Lemma 20, the result holds. U

Proof of Theorem 11 First suppose that K —c¢ > 0. Let’s consider the buyer’s
objective function, fpyye,(Q) and p(a, Qg ) for some Qg s > 0 as spot price func-

tion.
fBuyer (Q)
/0 " h(a, Q)dF (a)

1 a
= / —Q—bff +74—7Q - Kgo — p(a)gsdF(a)
0

B / —5pd+ 50— 7Q — Ko — pla, Q) asdF (a)
0

First consider the value of fpuyer(Q) on 0 < Q < Qg + b(K — ¢). For Nash-
equilibrium to exist, the maximizer should be obtained on this area, since K —¢ > 0

and Qe < Qeym+0(K —¢). On 0 < Q < Qgm + b(K — ¢), we have
QQ—QE,M—F[)CSQ—FbKSQE’M—l-QbK—bC
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and

K<a—QE,M+bc<a—Q
- 2b - b

a—Qp m+bcy _ a—Qp m+be
5 = 5 90,

and thus p(a, Qp,v) = max[K,

fBuyer(Q)
/ZbK—bc 1 ( ba+bc)2+ a(a ba+bc) 70 — KO a+bc(a ba+bc)dF(a)
= ——\a — n B N B B B
0 2 2b b 2b 2 ?
Qr,M+2bK—bc 1 a
- / —5p(@ = VK)* + 5 (a = bK) = 7Q — KQ — K(a — bK — Q)dF (a)
2bK —bc 2b b
00 1 a—Qrm+bc, a @ =~ Q. + be
+ / —5(a—b ’ +(a—b ’ - @K@
QE,Mm+2bK —be 2b( 2b ) b ( 2 |
a— Qgm+ be a — Qpum +be
. > _ 2 — dF
5 (a—b 2 Q)dF(a)

Now, fBuyer(Q) is linear function of () and its first derivative is

o0 — b
e / O Qe tbe pipa)
QE,M+2bK7bC 2b
So, if
o0 — b
aa / 0= Qe tbe KdF(a) =0
QE,M+2bK7bC 2b

, then the result holds. Now suppose that K — ¢ = 0. Then consider the value of
fBuyer(@Q) on 0 < Q < Qg + b(K — ¢) = Qg,m. For Nash-equilibrium to exist, the

maximizer should be obtained at Qg . On 0 < Q < Qg a, We have

2Q —Qepm+bc < Q+bec < Qpnm+be

and
a—QE,M+bc< a—Q
2b )

and thus p(a, Q) = max[ K, “—HE] = “LEMEC S0 for 0 < Q < Quu

K <

fBuyer (Q)

2K—be a+bc, a a+ be a+ be a+ be
_ S (a—p2 ey, Q- K0 — ) dF
/0 (0 b ) Fyle m b)) =@ = KO = = (a = b—m)dF(a)
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Q1 +2bK —be “
+ / ——(a—bK)?* + b(a—bK)—WQ—KQ—K(a—bK—Q)dF(a)

2bK —be 20
o0 1 a—Qem+bc, a a— Qgm+ b
+ / ——(a—>b : +—(a—0 : —71Q — KQ
Q. nt+26K —be 2b( 2b ) b( 2b )
a— Qg,m+ b a— Qgm+ b
SO Quatbe, 2mQnn I G4 ()

Again, fpuyer(Q) is linear function of @) and for h > 0

o a— + be
fBuyer (QE,M) - fBuyer (QE‘,M — h) - h( — T+ / Qggw — KdF(a))
QE,M+2bK7bC
For Q@ > Qg + b(K —¢)
fBuyer
20K~ bc a+bc, a a + be a + be a4+ be
= / bT) —i-g(a—b 5 )—7mQ — K0 — 5 (a—b 5 YdF'(a)
QE M+2bK be 1 a
+ / ——(a—bK)*+ —~(a — bK) — 7Q — K(a — bK)
2bK —be 20 b
K(a—bK —a+ bK)dF(a)
Q+bK a
+ ——(a—bK) —(a —bK) —1Q — K(a — bK)
QE M+20K—be b
—K(a —bK —a+bK)dF(a)
2Q—-Qp,m+be
- +0b
+ / ——QZ + Q rQ - KQ - 2@ 00
Q+bK 2b
— b — b
" / ( S AT T L A TR L N Vo Y e
20— Q. a+be 2b b 2b
a_QE,M+bC a— Qgnm + b
R 0 )iE ()
Since K = ¢ is supposed, for () > Qg we have
fBuyer(Q)
be 1 a + be a a + bc a + be a + be
= —(a—b +—(a—b —7TQ — 0 — —b dF
/0 (0T Fplem b)) — @ = 0= = (a = b—pm)dF(a)

QE,m+be 1 a
+/ —%(a—bc) g(a—bc)—WQ—c(a—bc)—c(a—bc—a+bc)dF(a)
b

C

Q-H)c 1 a
+/ ——(a—bc)* + —(a — bc) — 7Q — c(a — be) — c(a — be — a + be)dF(a)
Qp,m+be 2b b

2Q—-Qg,m+be 1 o
+/ —5 @ a . beo - TQdF (a)

Q+bc

203



o 1 — b — b
+/ ——(a—ba Qpm + C)Q—i—g(a—ba Qpm + C)—CQ
2Q0—Qu.a+be 20 2b b 2b
a— Qgnm + b a— Qgnm + b
— i — > — F
e, a0 )P (a)
b (a—bc)®>  ala—bc) (a+be)(a — be)
= — — — dF
@+ /0 s T 2 m (a)
Q+be (a . bC)2 2Q—-Qp,m+be 1 a— be
~—dF ——Q?
AR /M @ Ty Qi)
+/°° _(a—l—QE,M—bc)Z+a(a+QE,M—bc)_CQ
2Q—Qu artbe 8b 2b
— b —b — b
_(a Qe +bc)(a+ Qrum c) n a—Qpum+ CQdF(a)
4b 2b
For h > 0
fBuyer (QE,M + h) - fBuyer (QE,M)
b (a—bc)> ala—be) (a+be)(a— be)
Qg, M+bC+h 2
+ / bbc) dF (a)
2QE,M—QE, Mm+bc+2h a — be
-|-/ _Q_b(QE’M + h)2 + b (Qe.m + h)dF(a)
Qg m+beth
+ — be)? + —b
+/ (a QE,M C) i a(a QE,M C) _ C(QE,M i h)
2QE M—QE, m+bct+2h 8b 2b
— b —b — b
(a—Qpm+bc)(a+ Qpa — be) +a Qem + C(QE7M+h)dF(a)
4b 2b
b (a—bc)®>  ala—bc) (a+be)(a— be)
— — — dF
TrCem /0 & 2 m (a)
Qr vm+be (a - bC)2 /ZQE,MQE,MHJC 1 a — be
— ~ 7 dF(a) — —— Q"+ Qr.mdF(a
/bc 2b (@) Oae b 2b p QrdF(a)
00 —b 2 —b
_/ (_ (a—i—QE,M C) " a(a+QE,M C) —CQE,M
2Qp,M—QE,m+bc 8b 2b
— b —b — b
B (a—Qrm+bc)(a+ Qpa — be) " a—Qpwm+ CQE,M) dF(a)
4b 20
o — b
= —7rh—|—h/ 0= Q.+ C—ch(a)
QE,m+bc+2h 20
+/QE,M+bC+2h - (QE,M + h)z . (a N bC)(QE,M + h) . (a + QE,M _ bc)2
QE Mm+beth 20 b 8b
_aa+ QQEI;M — be) Qo + (a—Qrm+ bczléa — Qe — be) JF (a)
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Qumtbe 4 a — be
—/ ——Q*2 + QE,MdF(a)

Qpartbe 20 b
+ /QE,MH)CHL (a —be)? + (a + Qu,m — be)® _ a(a + Qp,m — be) +cQpm
QE,m+bc 2b 8b 2b
(0= Qb= Qe =)
00 . b QE,M+bC+2h _ b
_ h(—7r+/ 0~ Qe t C—ch(a))—h/ 0= Qomtbe  ipig)
QE,m+be 20 Qe,m+be 2b
n /QE’M+bC+2h Qe+ h)? N (a—bc)(Qea + h) n (a+ Qp.n — be)?
QE Mm+beth 20 b 8b
+ —b - +b - —b
_a(a QE,M C) Qs+ (a QE,M c)(a QE,M C) dF(a)
2 ' 4b
QE,m+bc 1 a — be
- / Q"+ QAR (o)
Qr,Mm+be
+/QE,M+bC+h (a — be)? + (a + Qpm — be) _ a(a + Qp,m — be) +cQpm
Qr Mm+be 2b 8b 2b
_ b — —b
0= Qe Fbola = Qo = b0)
4b
Qp v +h)? a—be)(Qm,a+h a+Qpam—be)®  a(a+Qp.a—be
(a—QE,M+bci§)a—QE,M—bc) and w(a) = (a—21;c)2 i (a+QE‘8,2/[—bC) . a(a-l-Q;?b,M—bC) + Qpn +

(a—Qr m+be)(a—QE v —be)

0 . u(a) is concave and maximized at Qg + be + 4h. w(a) is

convex and minimized at Qg + be. So,

IN

u(a)

w(Qp,m + be + 2h)

Qe +h)?  (Qear+bc+2h—be)( Qe +h)  (Qpar+be+2h+ Qra — be)?

T b + 3
eQpay— (Qen +be+2h)(Qpa + be+2h + Qp a — be)

EM 5
n (Qen +bec+2h — Qg+ bc)(Qp.a + be +2h — Qg ar — be)

4b
+ h)? +2h +h 2 + 2h)?
_ (QE,]\;[) ) n (Qe,Mm 2(QE,M ) n ( QE,]\;b ) Qs
(Qr.ar +be +2h)(2Qm . + 2h)  (2be + 2h)2h
- +
2b 4b

h2
b
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v

v

IN

u(a)

w(Qp.r + be+ h)

(Qe.a + h)? n (Qem+bc+h—0b0)Qerp+h) (Qeam+bc+h+ Qra — be)?

T b + 8
(Qrm +bc+h)(Qrrv +bec+ h+ Qrp — be)
+cQp v — %
+(QE‘,M +bc+h—Qpum+bc)( Qe +bc+h—Qprp — be)
4b
+ h)? +h +h 2 + h)?
B (Qr,m ) " (Qr,m W QEe,m ) " (2QE,m ) + Qo
2b b 8b
(Qem +bc+h)(2Qpm +h) | (2bc+h)h
- +
2b 4b
 (@pm + h)?
2b
LA4Q7 4 4Qp i + 17 — 8Qp . — 8bcQpnr — 8Qarh — 4Qpah — 4bch — 4h?
8b
+cQp,m
e
8b
w(a)
w(Qp,m + be)
(QE,M + bec — bC)2 " (QE,M + be + QE‘,M — bC)2 B (QE',M + bC)(QE’M + be + QE,M — bC)
2b 8b 2b
bc — b bc — —b
+eQuar + (Qem+bc— Qe+ Czl(bQE,M +bc— Qe c)
QR  (2Qem)?®  (Qem +bc)(2QE M) B
2% T s 2 +eQpar =0
w(a)
w(Qenm +be+h)
(Qem +bec+h—0bc)*  (Qpum+bc+h+ Qra — be)?
+
2b 8b
(Qrm +bc+h)( Qe +bec+h+ Qp v — be)
— 5 +cQp M
+(QE,M +bc+h—Qpum+bc)( Qe +bc+h—Qra — be)
4b
Qe +h)?*  (2Qem+h)?*  (Qeum+bec+h)(2Qpm + h) (2bc + h)h
2 8b N 2 T eQua +
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4Q% 1 + Qearh + 407 +4Q™ + 4Qpah + B — 8Q™ — 8Qp arbe — 8Qp b
4bch + 2h?

a5

—4Qparh — 4bch — 4h%) + o~ @e
. 3h2—8bCQE7M —CQ
- ) E,M
_ s
- 8b

Thus, for @ > Qg and h >0

fBuyer (QE,M + h) - fBuyer(QE',M)
00 _ b Qr,m+bc+2h b
= h(—7T+/ - QE’M+C—ch(a)>—h/ ¢ QE’M+C—ch(a)

Qp,m+be 2b Qr,m+be 2b
N /QRMHCH}Z B (Qe.m + h)? N (a —bc)(Qem + h) N (a+ Qpm — be)?
Qp,m+bc+h 2b b 8b
a(a + —be a— + be)(a — — be
_al Q2Eb’M )t eQupy + 0= 4)12 Qe =19 ip ()
+/QE‘,M+bC+h (a N bc)2 N (a + QE,M N bc)2 B a(a + QE,M _ bc) N cQE,M
QE,m+bc 2b 8b 2b
O SRS SRR
00 _ b Qp,Mm+bct2h b
€ h(—7r+/ 0~ Qe F C—ch(a)) —h/ 0= Qpm b ipg)
QE,m+be 2b QE,m+tbc 2b

QE,M+bC+2h h2 QE,M+bC+2h 3h2
+{f arG), [ S iR ()
QE,pm+bcth Qp,m+be

So,
i JBwer Qe 1) = fouyer @em) + /OO a—Qpum+be cdF (a)
hﬁo h Qr,m+be 2b
= lim [Buyer (@p,m) = fBuyer (Qu,mr — h)
h—0 h

and thus fpyyer is differentiable at Qg and its derivative is given as above. The

result holds for K = c. O

Proof of Theorem 12 We can show this inequality by comparing each first order

derivative for three cases; for any ) > 0,

- +/ a—-Q+be KdF(a)
Q+2bK —be 2b
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_ —7r+/ 3a—3Q+bc—a+Q+bc_KdF(a)
Q+2bK —be 4b
_ —7r+/ 3a—3Q+bc_a—Q—bc_KdF(a)
Q+2bK —be 4b 4b
> 3a—3 b > —Q—b
— —7r+/ 30 —3Q+bc _ KdF(a) _/ wdp(a)
Q+2bK —be 4b Q+2bK —be 4b

VAN
|
3
_l’_

So, Qg,s should be greater than or equal to Qg since —m + fc())inbec %ﬁm —
KdF(a) is decreasing function in Q > 0. Now, for any @ > 0,
o0 — b
o +/ a—-Q+be KdF(a)
Q+2bK —be 2b
* a— b
_ _WJF/ (w — K)*dF(a)
0 2b
© xr— b
— —7T+/ (m K)—I—dF( )
0
o — b
> 4 / (= Q T K)YdF(2)dF(a)
Q+bK Jo
> o (Z Q+ gyt (P@Ee 0= QR (a)
Q+bK 0 2b b
— + a— Q +
= T+ (p—K) = 0= =) dAQ) (p)dF (a)
Q+bK Jo
Thus, Qg s is greater than or equal to tQ*. Thus, the result holds. 0]

Proof of Lemma 21 For the buyer who has zero demand fluctuation,

o+ / » / p—c)t Q”)mHn(p)dF(a) —0

Then the first derivative of buyer’s objective function who has ¢ # 0 demand fluctu-

ation is

—T p—oc)t a+¢ Q.+ a
" /Q . / CEO =yt (p)dF (a)

and then put @), + ¢ in the first derivative of buyer’s objective function so that

[ [Te-ar - o T D i ar(a

Qn+¢—¢+bc J O
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. / / p— o~ (o~ O b ) (o)

So, the result holds. O

Proof of Theorem 14 Let p* be the optimal solution. Suppose that

g @G (6) = Ji, Qu(0)dG(9)
Joy,, bAG () =

Then, by Theorem 13,

max p</Q a+¢—bpdG(¢>>—c</Q até—pdG(g)  (120)

G

subject to p< K

max p</ﬂ 0t 6—bp—Qud)G(9) + K [ Qu(@)dG(s) (121)

e / 0+ bpdG(e))

subject to K <p
Since fQG’ Qn(¢)dG(¢) = 0, then (120) and (121) are equivalent to
max  p(a — bp) — c¢(a — bp)
subject to p < K

Jop Qu(@)AG(D) . [, Qu(6)dG(9)

max  p(a—bp — )+ K — c(a — bp)
Jo, G (9) Jo, G (9)
subject to K <p
Then by the same procedure as in Theorem 3, the result holds. 0]

Proof of Lemma 22 Suppose that @)1 < Q5. First, let’s show that it is Lipschitz
continuous. This holds directly from Lemma 2 since A(Q) € P. Now, need to

show that it is strictly nonincreasing. WLOG, assume that Vf(A(Q1))(@Q1) and

Vf(A(Q2))(Q2) are not equal to .

via@n@) = —r+ [* e 07 - - 58 e ware)
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AV4
|
3
+
@\
1: 8
=
——
=
|
=
+
|
=
|

AV
|
N
+
@\
“4;: g
=

Jag[@+el"dG(@)

The second strict inequality holds by the followings; let r(Q) = =)
Qg

() () N a — Ql n
e [ -0 - -5 aseumar

— s [ (ﬂiﬂ@l+E_Ky
Q1+bK {x:%(le)_F%S“—Ql} 2b 2
— —)*"dF(z)dF (a)

x—r(Ql) c
(% *3 ;

oo r—1 :
+/ / (v (Ql) ¢ k)
Q40K J {:2=2L <2 (Q1) | oy 2b 2
)

— @

_(% ¢ —lemF(x)dF(a)
N z—1(Q1) ¢
- /Ql-l-bK /{x Eor(@) | oz Ql}( % + 5= K)*
(- S ar wap

2b 2 b

+/ / (=9 Ky (@)dF ()
Qubi @ g ceien@ gy b

+/ / (“= 9 K)aF()dF(a)
Q1+bK {a: “—Ql <E—T(Qz)+ Sz—r(Ql)Jr } b

c
2

Q14K J{z: 2= T(Q1)+c 2b 2

—(%b@?) + Lo “%f?l)w:(x)dm)

= Xr—T C
S E=r@) e g
Qu+bK J {22 Q2) L e ca=Q1c2o1(@)) Loy 2b 2

2 r—7r(Q) ¢ a—Q

{p=K)" = (p- _TQIV}CJA(QZ)(p)dF
A (Qu) ()
(- K)* — - ") aa@p)ir

()
()
()

—(——= + - — —)"dF(2)dF(a)

2b 2 b

+/ / (=9 Ky (@)dF ()
Q1+bK {LL‘ a— Ql <z T(Q2)+§ 7‘2(bQ1)+§} b
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a

o0 o n — Q14
B /Q . / (0K~ (0~ "= ) )aAQ0) )dF (o)

where the strict inequality should hold by the following reason: suppose that

—7T+/ / (x — (@) Lo K)*
Q1+bK J{z: "™ T(Q1)+c 2b 2

- r—r(@) ¢ a—G
‘(T+§—T

/ / (=9 ) ap(a)dF(a)
Q1+bK z— T(Q2)+% Sz—g(le)_'_%} b

/ / (=9 )ap(a)dF (o)
@bk J{a: =@ r @) e cror @) eyt b

= —7r+/ / Er@) o gy

1+bK {x:%(le)-l-%Sa_le } 2b 2

r—r(Q2) ¢ a—Q

YT dF (z)dF(a)

(5 Ty~ )TdF@)dF(e)
r—r(Q2) ¢
/QlerK/ z— T(Q2)+% <o- TZ(,]QI)Jrg}(T —+ 5 _ K)-l—
r—r(Q) ¢ a—@Q
~ 20 + 9 b )+dF(l")dF(a)

/ / (=9 Kyap(@)dF(a)
Qi+bK J {x:%= Q1<9” T(Q2)+£ z— 7‘2(1)@1)_,_%} b

2=

Equivalently,

00 v .
) EorQ) e
Q1+bK {x:%(le)_F%S“—le} 2b 2

—(l@l) TR . Ql)*dF(x)dF(a)

/ / (=9 fyap(2)dF(a)
Q1+bK fa:2n@2) e cam@ cmon(Q1) | oy b

Q1+bK J {a: 2] L e c2-@1y 2b 2
rt—7r(Q2) ¢ a—0
(——*53 ;

> xr—7rT C
o ETr@) e .
Q1 +bK J {a: 2= r(Q2)+% Q1§$722Q1)+%} 2b 2

b
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(= _;b(QQ) +5- “_TQl)mF(x)dF(a)
Since
(LU—T(QI) —i—E—K)J’—(x_T(QI) _|_E_ a_Q1)+
2b 2 2b 2 b
r—1(Q2) ¢ r—r(@) ¢ a—Q
> (5 R A S e Sy e
and

, equivalently, for all a € {a > 0: F(a) > F(Q1 +bK)} # D and all z € {x > 0 :
F(x) > F(Q2 + 2bK — bc)} # 0,

a— <I—T(Q2)+E
b - 2b 2

So, for all @ € {a > 0 : F(a) > F(Q: +bK)} and all x € {z > 0 : F(z) >
F(r(Q2) + 20K — be)}

a— <33—7"(Q2)+E
b - 2b 2

iff “m“b_ @ _;IEQQ) + g Vo€ {z>0: F(z) > F(r(Qs) + 26K — be)}
. Gmax — Ql L — T(QQ) c

< _
it b = 2 3

iff 2amax - 2Q1 S L — T(QQ) + bc
lff Qmax — L S 2@1 - T(QZ) — Omax + bC
iff Gmax — L S _(ama.x - Ql - bC) - (T(QZ) - Ql)

, where oy :=1inf{a > Q) +bK : F(a) =1} , z :=inf{z > 0: F(z) > F(r(Q2) +
20K — be)}. Note that 7(Q) > @ for all Q since

_ Jog[@ + ¢1"dG(9)

Q@ = Q-7
_ Jo, QAG(@) — [o,[Q + 9]*dG(9)
- Jai AG(9)
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_ Jag @+ $dG(9) — Jo, [@ + 9]7dG(9)

Jo, 4G (9)
< 0

where the second equality holds since fQG ¢dG () = 0. Since Q; < Q < Q < Gmax,

Ql + be S Ql + 0K S Amaz and Q S T(Q) for all Qa

Omax — L S _(amax - Ql - bC) - (T(QZ) - Ql)
S _(ama.x - Ql - bC) - (T(QZ) - T(Ql))

< 0
But,
z=inf{x >0: F(z) > F(Q2+ 20K —bc)} <inf{z > Q, +bK : F(z) =1} = aax

So, the strict inequality should hold. O

Ja, [Q+¢17dG(9)

Proof of Lemma 23 Let R(Q) := fQG [Q+¢]TdG () and 7(Q) := fn aG(%)

For Q; < 2, we have “7—QZ < LQI and
Q1
[ reote-0 - 0= 52 pmer)
/2+¢L/ Os{(p— <) QZ)}dHundF@w|
B |/Ql+bc/ Q1) — R(Q2)){(p—¢c)—(p— Q_TQIV}dH(p)dF(a)
[;H(/ R@)(p— ) — (0 — ) )b () dF (o)
/Q ) / R@Q){(p— ) — (0 — ") JaH ()P (a)
a— Q4
= |/Ql+b0/ N{p—rc)—(p— ; )" YdH (p)dF (a)

Qa2+be a—Q,
[ [ R@0 -0 - - Sy )ar )
Q1+bc 0

[ [ R@ =0 - - 5 s i)

_ /QOOH) /Ooo R(QQ){(p - C) — (p — G_TQQ)—l—}dH(p)dF(a”

213



IN

IN

IN

Q2+bc  poo “— 0, )
'/Mc / (F(Q1) = R(@)){(p = ) = (p = =) }dH (p)dF(a)
) ) a— Q4
’ /ch/o (F(Q) = R(@)){(p = ) = (p = —==) " }dH (p)dF(a)
2+be oo e .
+/Ql+bc / RQ){(p =) = (p = =) }dH(p)dF (a)

8

0= Q0 gk (p)dF (o)

8

a— Q2

[ @t 0 - o= S gar)

Qa+be  poo “— Q.
[ @) r@a e -0 - - "5 EpaF )
o] Q) - R - - 0= 5 @@

Q2+b 00 a— Ql
[ [ R@ -0 - 0= ) Y p)aF @)

Q1+bc
[ a—Qa a— Qi
o] @Ry - o= SR war @)
Q2+bc 00 a — Ql
[ ] @) - 5@ (- o - - “SE) )
Q1+bc 0
00 00 a — QQ N
¥ /Q | m@) - m@ - - - 5 ar )
Q2+bc
- | r@a =0 - - 2 Y ar @)
+| e / R(Q2){(p - G_QQ) — (- TQI)JF}dH(p)dF(aH
Q2+bc —
Q1+be / b c)dH (p)dF(a)|
a — Q2
+ /Q / 2 dH () (o)
o / RQI S~ par(a)
Q1+bc ? P

+ /Q A ‘le ) iH () (a)
Qxrtbe _ QQ +be — 1 B
|/ / (R(Q R(Q2)) (————— — ¢)dH(p)dF (a)]

1+bc b

4] /Q / () dH () dF (o)
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Q2+bc 00 c—
o[ [ r@a @ ganara)

Q1+be b

Y Q2 — Q1
[ R gar )

LD (RQ) - RQ) [ GaP@]+ 2R@ ()

Q2 — Q1

< J(R(Q1) — R(Q2)) (

= (Lm0 ;) - i@+ 2R 2L
. (|Q2—Q1|erfoooadF(a)>|Q2_Ql|+2|R(Q2)(Q2;Q1)|

_ <|Q2 — Q1|+ [T adF(a) + 2Q
B b

)1Q: - @il
Again, for Q1 < Qo,
b [ a—r(Q1) 2 b [ a—r(Q2) 2
v —¢)%dF(a) — ~ —¢)idr
4 /r(Q1)+bc( b ° @) 4 [( 2)+bc( b ) “

_ 9</rr(Q2)+bC(a—7[;(Q1) — ¢)%dF(a) _i_/r:;)% (i(@l) e (%@2) _ c)zdF(a))

4 (Q1)+be ’
b r(Q2)+bc a — T(Ql)
- 4 ( /T(Ql)-i'bc ( b - C)ZdF(a)
+ /:; b (— Z(Ql) —e+ 1T Z(QQ) - (@) 3 T(Ql))dF(a»
by e 0 ()
T4 ( /r(Q1)+bc ( b A

00 2a — r(Q1) — r(Q2) 7(Q2) — r(Q1)
* /(Q2)+b ( b — 2 )dF(a)>

T c b
b T(Q2)+bc _ 1 9
_ _</r( & Z(Q ) _ o2aF(a)

4

. /j:"(g ey 1Q2) (@) _ (@) Q) (@0 ~r(@0) )
A
) [;2)+bc(2a —b 2bc)(r(Q2) ; T(Ql))
(@) Q)+ 2(Qa) = 20(@0) @) (@)
X T
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—2be,,r(Q2) —

r(Q1) r(Q2) —r(Q1)

r(Q2) —r(Q1)

b r(Q2)+be 7(Q2) — 7(Q1) o > 2a r(@2) — (@)
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Proof of Theorem 17 By the Lemma 24, the only equilibrium point is {fQ (9)dG(9)} =
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0. Using the proof of Theorem 9, the result holds.
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