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SUMMARY 
 

Electric power delivery is an old and well-established sector of service providing 

in the United States. The power utilities, which provide the service, are under continual 

scrutiny from both the public and the government. Power reliability indices are published 

periodically showing trends in performance improvements or declines of power services. 

While severe environmental hazards are considered “acts of God” and do not affect 

utility indices, customers still expect a significant level of hazard preparedness from the 

utilities to avoid interruption of power and life in the midst of hazard seasons. 

Environmental hazards include wind storms (tropical storms and hurricanes), ice storms, 

and earthquakes, among others. The performance of utility assets during severe weather 

is related to the management of the assets before the hazard. 

The traditional approach to managing electric utility assets involves running them 

to failure: a corrective and reactive approach that could cost the utilities dearly during 

severe weather. Public perception and reputation of the utilities turns negative with even 

a slight appearance of poor asset management. The run-to-failure approach allows assets 

to sometimes get as old as the power utility: a disaster waiting to happen. In the wake of 

fatalities and customer complaints as storms appear to increase in severity over the years, 

some power utilities are now expected or even mandated to conduct strict regular 

management programs on their assets.  

Preventive maintenance approaches can be very costly. Power utilities currently 

spend millions of dollars annually to discover a relatively small number of assets that 

may fail only under stress of environmental hazards. When the frequency or intensity of 

the hazards the assets are exposed to is small enough, the millions could be viewed as 
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wasted investments. To make informed decisions on the management of these decisions, 

the power utility requires useful information on the failure of the assets and statistical and 

probabilistic expertise to process the information. 

Findings in this research suggest a number of improvements that could save 

power utilities millions of dollars annually from the expenses they currently make in the 

management of their assets. Real-time decision-making on inspections of assets could 

also be improved by combining models developed in the course of this research with 

good data acquisition processes on asset failures.  

In the first chapter of the research work, available data on replacement of assets 

from power utilities were analyzed statistically to infer asset reliability as reflected by the 

diagnostic company serving the utility. Using prior knowledge on the inaccuracy of the 

diagnostic procedure, an experiment was designed to test the effect of both diagnostic 

inaccuracy and an incomplete database of a population of identical components on 

reliability estimates of the components.  

A metric was developed to quantify the disparity between the reliability estimate 

using diagnostic replacement data and corresponding hypothetical failure data for the 

experimental results. The results showed that diagnostic tests that fail to detect a 

significant number of components at high risks of failure (low sensitivity) overestimate 

reliability estimates. On the other hand, tests that wrongly classify low risk components 

as high risk components (low specificity) underestimate reliability estimates. The 

experiment simulated an inspection database consisting of about 10% of a population of 

components, and diagnostic sensitivity of 0.38 and specificity of 1.00, the deviation 

between true reliability and diagnostic-measured reliability was about 80%. Thus, for 
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accurate reliability estimation of utility assets, the power utility should embark on 

recording and processing failure data rather than diagnostic replacement data. 

In the next chapter of research, methods that applied failure data in predicting 

future failure occurrences or estimating annual failure numbers were developed: first for 

non-stress failures and then for stressed failures. The non-stress failures were assumed to 

be age-based or time-based, which is a general assumption by electrical reliability 

engineers. Exponential distributions are very common in reliability studies because their 

hazard rates are constant and easily differentiable or integrable. They are also related to 

other density functions like Weibull and gamma, which represent more realistic hazard or 

instantaneous failure rates than exponential distributions.  

A Bayesian approach was developed in the course of this research to obtain the 

predictive distribution function of lifetimes of surviving components from a dataset of 

recorded lifetimes assumed to be sampled from an exponential distribution. The 

contribution of the work was both in estimating the function when the rate parameter is 

unknown and its convergence even when the failure dataset was small relative to a larger 

population of surviving components. The distribution function was found to depend on 

the population size, the number of failed components, the times-to-failure of the observed 

failures and the distribution parameters of a Gamma density function assumed to be the 

prior density of the rate parameter. The Gamma density function was chosen because it is 

a conjugate prior of an exponential likelihood function, making the product of the 

functions easy to integrate. While the procedure is strong in predicting the distribution of 

future lifetimes under uncertainty in the rate parameter, it relies on the choice of the 

posterior density function of the parameter. This is a limitation. 
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The exponential assumption was found to be useful for gradually building a 

bathtub hazard curve of a population of components as failure information is acquired 

over small intervals of time: one year, for instance. Maximum likelihood estimation was 

applied to the lifetimes of components that failed within the period of say one year, the 

number of failures that occurred before the time interval and the number surviving to 

obtain estimates of time-varying rate parameters. The estimates were then processed 

through a Kalman filter and a model that uses extreme value theory to detect increase in 

failure risk. The work serves as a tool to prompt an asset manager of the onset of 

increasing failure risk and possibly an appropriate age to begin preventive maintenance 

on the component. 

 Historically, some sets of components have been reported to fail more 

significantly from environmental hazards than aging. These components require stress-

based reliability estimation. Fragility assessment techniques are often applied in 

structural engineering to estimate probabilities of loss from the damage of structures like 

residential buildings, bridges and the like from environmental hazards. However, for the 

sake of research on aging and aged utility assets, the loss of strength with age was 

incorporated into fragility assessment.  

Fragility curves were generated for distinct ages of components. Analytical 

experiments were conducted for utility wood poles under hurricane stress. The results 

showed that under the same intensity of wind speeds, newly installed wood poles 

carrying overhead lines and 25-year old poles performed approximately the same. Thus, 

replacing a 25-year old pole preventively would not decrease its probability of failing 

under a hurricane. Modifying utility inspection strategies to incorporate this finding for 
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the current utility inspection cycle led to 25% savings in annual inspection investments 

alone for a power utility studied, or approximately $1 million. 

To improve diagnostic recommendations, results of destructive tests used in 

evaluating the accuracy of different diagnostic techniques for one set of utility assets 

were analyzed. A technique popularly used in at least the eastern part of the United States 

was found to have a low sensitivity to detecting high risks of failure in a small sample of 

components. Misclassification costs were found for this technique and compared to those 

of other techniques. The technique was found to be inferior to some others. However, 

when the classification pairs of the popular technique and that of a more superior 

technique were combined using an “OR” logic rule, savings were obtained of over $200 

per component per year for an expected component failure rate. The study showed strong 

performance in combining two diagnostic techniques. The costs began to escalate with 

every other additional combination of diagnostic techniques. 

The question of the benefit of preventive maintenance in light of diagnostic 

inaccuracy and uncertainties in failure probabilities from unpredictable environmental 

hazards arises. This was handled by defining a cost-benefit function between a preventive 

maintenance approach and its competing run-to-failure (RTF) counterpart. A stochastic 

optimization framework was developed for decision-making over a planning or budgeting 

horizon. Two decision or choice variables were chosen for component management: an 

inspection cycle of the components of interest and the proportion of the components to 

replace preventively per year. The latter is important because it provides room for the 

deliberate reduction (replacement) of aged components.  
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Excluding potential penalties for failing to run a stringent maintenance program, 

the benefit of the preventive maintenance program to the utility may be observed in the 

number of failures that can be averted through accurate diagnostic detection. The 

simulations run using utility wooden poles as a case study showed the power utility may 

have the potential to save over 75% of their current expenditures on inspections and 

preventive replacements by targeting only poles at high risk of failure under 

environmental stress. For some power utilities, this results in over $5 million in savings 

annually. By focusing on the higher risk poles and saving the utility millions, out of every 

10,000 poles, the probability of discovering a high-risk pole improves by about 30%. The 

results show an improvement to current asset management strategies. 

In all, the objective of this PhD research is in optimizing electric utility decisions 

on the inspection and maintenance of environmentally-stressed aging power system 

components, accounting for uncertainty in diagnostics, failures and unit cost variables 

that influence life cycle cost model of the components. The current utility strategy was 

found to be inefficient in both cost and discovery potential of high-risk components. It 

lacks risk-based analysis of the failures and consequences of inaccurate diagnostic 

actions on the components studied. As part of the research, useful data on diagnostic 

recommendations were statistically analyzed, novel failure prediction and estimation 

approaches were developed, and management decisions were stochastically optimized. 

The optimum decision ensures as much economic and reliability benefits as realistically 

possible from adopting a preventive maintenance program within some specified 

planning horizon. 
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1 INTRODUCTION  

 

 The deregulation of the electric power industry increased competition between 

power utilities to sell electricity to consumers at relatively low rates, causing the utilities 

to seek cost reductions in other areas of their business including in the management of 

their assets. A significant number of electric utility assets are run to failure: that is, are 

utilized in service until they fail. Only then are they replaced. With relatively slow rates 

of failure in normal environments, the industry has seen a growing amount of aging 

infrastructure that some reliability engineers believe will fail to meet power demands in 

the coming years. Fear of the outlook of power infrastructure around the United States in 

the next few decades has prompted much discussion as seen in [1], [2].  

However, fear and criticism alone are unlikely to change the traditional electric 

utility behavior on managing their assets. An understanding of the maintenance 

investment-payback, on the other hand, might. (It should be noted that the terms utility, 

power utility and electric utility will be used interchangeably in this dissertation.) Utility 

managers assume that the cost of preventive maintenance far outweighs run-to-failure 

cost, especially when the majority of failures of some groups of the utility components 

occur only during natural disasters like earthquakes, hurricanes, ice storms, and other 

similar events. Nonetheless, below-par performance of utility assets during these disasters 

sometimes attracts the scrutiny of public service commissions (PSC’s). In the event that 

performance is lower than expectations, asset management audits are performed. The 

outcome may include mandatory regulations that could prove highly cost-ineffective for 

utilities. Thus, pre-emptive cost-effective strategies should be sought to avoid any hints 

of negligence in management of assets. Such strategies would also promote public safety 

and judicious use of annual budgets, even following inevitable natural disasters. 
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The year 2005 was a tragic year for power utilities in the wake of two powerful 

hurricanes: Katrina and Wilma. Florida Power & Light (FPL) was one such utility. It 

faced both public and government criticism in light of the damages to their assets and the 

resulting loss of power to millions of customers, which took weeks to restore. Customer 

disapproval and general concern over performance caused the utility to hire an external 

consulting company to evaluate its management methods and prove that it had performed 

within electric reliability standards and codes. While FPL showed it performed 

reasonably, the utility now faces the mandate to tighten its preventive maintenance 

program. Among other things, FPL is now required to inspect each of its wood poles, a 

subset of its infrastructure that suffered greatly, every eight years. Meanwhile, most other 

utilities, which apply regular inspection schedules, inspect their wood poles on an 

average of about 10 - 15 year schedules. 

Concern over the impact of severe weather to power utilities did not start in 2005. 

Prior to 2005, damages caused by storms to power utilities have been recorded and 

analyzed by researchers and consultants in the power field. The Edison Electric Institute 

published a report in 2004 with a listing of utility losses and outage durations caused by 

past storms. For instance, according to the report, a 2002 North Carolina ice storm cost 

Duke Power about $87 million, affected over 1.3 million customers, and caused a 9-day 

outage. Hurricane Fran of 1996 destroyed about 5,500 poles supporting overhead lines; 

2,800 transformers; and about 3,000 miles of wire [3]. Though utilities replace failed 

assets and lose revenue during these extreme weather events, they are typically fined only 

if found negligent in observing reliability and safety codes. Environmental hazards 

(storms for instance) events are normally treated as “acts of God.” Such events are 

currently not included in reliability indices used to measure trends in quality of service of 

the utilities.  

Given that management practices on components are relatively flexible within 

reasonable limits: inspection schedules in most states are unregulated, it is in the best 
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interest of electric utilities to define a cost-effective approach to strengthening their 

infrastructure and reducing asset loss and failure risk even under severe weather 

conditions. As the infrastructure ages, asset failure under naturally hazardous conditions 

will shift from the safe net of “acts of God” event classifications to debates on 

negligence. The likelihood of hefty fines and penalties will increase with the latter. Major 

areas of component management that require substantial analysis to increase 

effectiveness of maintenance operations against fundamentally corrective approaches 

include: 

 Failure prediction, 

 Failure prevention, and 

 Scheduling of preventive measures affecting lifecycle costs. 

The problem statement is defined in the following section. 

1.1 Problem Statement 

The three areas listed constitute interesting research in component management 

literature. They affect expenditures, performance and potentially public safety. It is 

important to mention that the field of asset management is very vast and complicated: 

there are many assets, maintenance operations and lots of uncertainty, with often little 

data. Tthe next step in this research was naturally to define the asset management 

problem in a manageable way.  

Electric power utilities are very capital-intensive, and the bulk of their capital is in 

their assets. The Edison Foundation puts the total value of generation, transmission, and 

distribution infrastructure in the United States to about $440 billion, with capital 

expenditures expected to exceed $70 billion as of 2007 [4]. Diagnostic and replacement 

procedures for each type of utility equipment are different; failure assessment also differs 

by equipment. For this reason, this work focuses on generating frameworks for effective 

management of certain groups of utility equipment rather than procedure for specific 
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equipment. Qualifying equipment include those that are vulnerable to natural disasters, 

may not be individually critical to power delivery when they fail, but are in such large use 

in service that their simultaneous failures would cost the utility millions of dollars in 

replacement and lost revenue. Such equipment includes supporting infrastructure like 

some transmission structures, wood poles, and overhead lines, among others. 

In tackling issues of failure prediction, failure prevention and scheduling in power 

utilities, it became obvious, though not surprisingly so, that key data required for analysis 

from the utilities were incomplete. The utility is not in the habit of recording and storing 

data. This may partly be because utility managers are unsure what constitutes relevant 

data for decision-making, and lack expertise, labor and time to deal with the data. 

Researchers sometimes assume that the data is complete. However, by assuming 

completeness, results of analysis are misinterpreted. As part of this work, the effects of 

making decisions with incomplete data in failure prediction and budgeting are analyzed. 

The uncertainty in the data and developed failure models represents some of the 

stochastics applied in the work.  

The use of algorithms, especially complex algorithms that integrate stochastics, in 

decision-making is very common in the financial sector: trading, investments, stock 

broking. In the past few decades, stochastic optimization algorithms have also been 

applied in the power sector: hydrothermal capacity scheduling, energy planning, 

distributed generation, energy trading, among others. The algorithms have been used in 

these fields because the underlying issues are too complicated to be handled by the 

human brain. Also, the decisions are so critical that they could result in hundreds of 

thousands and possibly millions of dollars lost daily or weekly. While the issue of 

component management may be less financially critical than say energy trading, the 

drudgery of complex analytics could still result in annual savings of millions of dollars to 

the utility from their current practices. These savings could be applied towards other 
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utility needs. So, the “complex” algorithms are worth the investment. This dissertation 

work shows that. 

The objective of this PhD research is to optimize power utility decisions on the 

management and maintenance of environmentally-stressed aging power system 

components, accounting for uncertainty in variables that influence annual utility budgets 

on the components. Useful data from utility inspection databases are extracted and 

statistically analyzed. The databases provide information on the current practices of the 

utility and reflect the potential for improvement. Novel failure prediction and estimation 

approaches are developed for power system components using the risk of exposure to 

damage and the consequence of aging. Also, utility annual investments on component 

management are stochastically optimized relative to a traditional run-to-failure 

management approach by solving for optimum decisions on inspection scheduling and 

preventive replacements of inspected components. Optimizations are carried out for one-

year and then multi-year planning horizons. The benefits of the strategies developed will 

be observed both in economics and reliability (measured in the loss of assets using 

probabilistic models of environmental hazards in specific geographical locations of the 

components).  

1.2 Literature review 

1.2.1 Failure prediction 

The plethora of work in reliability studies involving electric utility or power 

delivery components focus on time dependency: how the probability of failure changes 

with time. This is logical since the failure risk of most components increases with time. 

Time-dependent reliability functions are survivor functions, hazard functions, failure 

probability density functions, mean-residual life functions, and their derivatives. The 

functions are explained in great detail in [5].  
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Survivor functions represent the conditional probability that a component that has 

survived up to some instant in time will survive past that time. The failure probability 

density function (pdf) gives the probability that a component will fail at some time 

instant. Hazard functions are not probabilities but are defined as the ratio of the 

probability density function to survivor function of components. They show the evolution 

of failure risk of the components. Let the hazard function of a component with time be 

h(t), the pdf be f(t) and the survivor function be S(t). Then, the hazard function is 

 

Say the failure risk (hazard) of a component does not start to increase until time T. Then, 

utility maintenance actions on the components before time T will not be very helpful 

towards the failure risk of the population of the components. After time T, however, the 

hazard could be significantly reduced if the maintenance actions are effective. Obtaining 

the time T for some component constitutes some of the relevance of failure modeling. 

Each reliability function: f(t), h(t), S(t), can be derived from the other. Thus, if 

one function is known, others can be easily estimated. The survivor function is a 

complement of the cumulative probability function of failure (or time-to-failure, to be 

more precise). In reliability studies, the term “complete datasets” is typically used to 

describe datasets that consist of all times-to-failure of components, when all the 

components in the study have been observed to fail. This should not be confused with 

whether information is missing from a dataset. Censored datasets, on the other hand, refer 

to when a proportion of studied components have either not failed or have fallen out of 

observation by the time of analysis. The majority of failure datasets of groups of identical 

components are censored. This is because a large percentage of most types of utility 

components have neither failed nor been replaced since installation; hence, the problem 

and controversy of “aging infrastructure.” Reliability modeling can be used in analyzing, 

understanding, estimating and predicting failures of the components.  
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In [6], Begovic et al. discusses the use of data on times-to-failure of equipment to 

predict future failures. It was found that for the components analyzed, failure risk became 

evident (or started increasing) several years after installation of the components. 

Parametric modeling was used, as it often is, for failure prediction. A Weibull distribution 

was applied to the dataset and found to be a good fit. The Weibull function is actually a 

distribution frequently used to model failures of most components because its hazard 

function is flexible: can be constant, increasing or decreasing.  

The two-parameter Weibull function is characterized by a scale β and a shape α 

parameter. The hazard function is constant when α is equal to one (becomes an 

exponential distribution), is increasing when α is greater than one, and is decreasing for α 

less than one. The scale parameter affects the width of a plot of the pdf of the Weibull 

distribution. The pdf f(t) is shown below. 

 

For α greater than one, an increase in β implies a right-shift of the peak of the density 

function.  

In [7], Ng constructs prediction intervals for mean lifetime and intervals for few 

missing times-to-failure of components when the failure dataset is complete. The work 

was done for a dataset that follows a two-parameter exponential distribution. That is, the 

dataset could be left-, right-, or doubly-censored dataset. The results presented by Ng 

were a generalization of a prediction distribution obtained by Leemis in [8], which finds 

predictions for a right-censored dataset. Knowledge of expected failure times of 

components helps in planning for maintenance, possible outages, and even budgeting.  

The modeling of failures of power utility components under severe weather has 

been studied by a number of researchers. In [9], Zhou et al. apply Poisson regression and 

Bayesian network models to actual overhead line failure data for different weather 

conditions: thunderstorm and wind, in Kansas. The purpose of the paper included an 
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evaluation of weather impact on distribution lines and an estimation of failure rates under 

the conditions. The effects of lightning and winds on line failure were analyzed 

simultaneously by assuming that the counts of weather failure events followed a Poisson 

distribution.  

Wind speeds of magnitudes 45 mph and higher were analyzed as a group, and 

prediction bounds for the estimates were obtained using a Monte Carlo simulation in [9]. 

Similar analysis was performed for medium voltage overhead lines and underground 

cables in [10], which uses a simple regression model for estimating outage rates for 

observed wind speeds. In [11], dynamic traveling wave techniques were applied in 

simulating lightning events on unshielded transmission lines, and then used to predict 

outage rates of the lines depending on the location of the lightning strike and the type of 

line. 

Outage predictions of distribution and transmission networks under hurricane 

loads are obtained in [12]. Fragility curves: functions that relate probability of damage to 

the intensity of stress (hurricanes, in this case), are found for components of the power 

networks. The components include substations, utility wood poles, and transmission and 

distribution lines. Using the interconnectivity between substations and distribution load 

points provided by Texas electric power utilities, Monte Carlo methods were used to 

simulate hurricane fields and measure impact on spatially distributed outages for the 

entire system. The approach utilized led to a 15.59% outage prediction model error and a 

small standard deviation of 0.02%. The results were validated against historical observed 

results from Hurricane Ike of 2008. 

The papers and works listed in this subsection provide some prior research into 

applications and approaches for failure modeling in reliability theory. Also, the use of 

fragility analysis is frequent in civil engineering for structural design, reliability 

assessment, or loss predictions from natural hazards. Novel approaches in parametric 
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modeling and interesting results on reliability for aging infrastructure are provided in this 

dissertation. 

1.2.2 Diagnostics 

Power system components undergo different types of condition monitoring during 

their lifetimes, depending on how critical the components are, regulations, whether the 

components are repairable, and ithe costs of diagnostics and maintenance. The accuracy 

of applied diagnostics affects the benefits of the resulting maintenance actions. For 

instance, say a component that is healthy and still has a long time-to-failure is replaced 

prematurely due to inaccurate diagnostic recommendations, the replacement is a waste of 

diagnostic investments. When there are several such components, the effect on the power 

utility becomes more severe. Avoiding such inaccurate diagnostic recommendations is 

key to managing components well. The concept of diagnostic accuracy is well-studied 

especially in the medical or clinical field (epidemiology). This is discussed in the 

following paragraphs. 

In [13], the principles of receiver operating characteristics (ROC) are explained. 

ROC curves are often plotted to determine the accuracy of a diagnostic test in terms of its 

sensitivity (how well a diagnostic test detects a “disease”) and specificity (how well a 

diagnostic test does not misclassify a “non-disease” or “good health”). The term disease 

is used here because the majority of literature in this field is clinical. Disease implies a 

state of non-normalcy in a patient; it is equivalent to a component that is below reliability 

or safety standards for the purpose of this dissertation. In other words, a component 

below standards may be substituted for a patient with some disease in the medical 

research. An ROC curve is a plot of the true positive rate (TPR) against the false positive 

rate (FPR) of a diagnostic test, where “positive” is a disease or some damage state (below 

standard). Because TPR and FPR are within the range of zero to one, the area under a 
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perfect ROC curve is one. A perfectly accurate test has a TPR of one and an FPR of zero. 

Curves of real tests appear below the ROC of a perfect test. 

Comparisons between samples of several patients known to be at low or high risk 

of some disease, disorder or illness may help show the characteristics of disease in a 

person. A gold standard is required to determine the accuracy of a diagnostic test; that is, 

to find out where the diagnostic decision or finding is the same as the findings of the gold 

standard. Realistically, there are often no obvious or perfect “gold standards.” The gold 

standard is determined based on knowledge and understanding of a good amount of 

historical data or evidence. 

The accuracy of a diagnostic test can be determined from a long-term assessment 

of decisions of the test. Here is a simple illustration. The error rate of an over-the-counter 

pregnancy test may be determined by collecting data over time on the number of women 

who tested positive for pregnancy but showed no eventual signs of pregnancy. This 

would yield a false positive rate. Likewise, women who test positive and were confirmed 

pregnant through growth of egg(s), miscarriage or delivery, among other obstetric signs 

could be used to determine the true positive rate of the pregnancy test. 

In the case of components that fail mechanically, the “gold standard” may be 

found through destructive testing. That is, assuming a component will fail under 

hurricane load because it is below standard, a destructive test simulating intensity of the 

environmental load would cause the component to break, become damaged or fail. 

Destructive tests are expensive and render components useless. This is why diagnostic 

tests are important. If a diagnostic test is accurate, it eliminates the need for a destructive 

test. However, a destructive test may be used in the front end to determine the accuracy 

of the diagnostic test rather than wait long periods of time to assess accuracy. In such 

cases, the diagnostic test is as accurate as the number of component health classifications 

that match those of a highly accurate destructive test. Destructive tests were performed on 

fiberglass distribution poles in [14] to determine the strengths of the poles. In [15], the 
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variability and bias that may come from using a few samples or components for assessing 

diagnostic test accuracy are discussed. 

The accuracy and validity of diagnostic testing may be increased by combining 

classifications from multiple tests. In [16], by assuming that the costs of misclassification 

of diagnostic tests are equal, binary regression, linear (LDA) and non-linear discriminant 

analyses, decision trees, Bayesian and neural networks are mentioned as possible 

statistical approaches used to determine the level of accuracy achievable by combining 

diagnostic tests. LDA results in a new scale of analyzing diagnostic test scores; linear 

combinations of the scores may be difficult to interpret in the field. Other papers on 

combining diagnostic tests to improve accuracy include [17] and [18].  

1.2.3 Economics of Management of Power Utility Components 

The lifecycle cost assessment of components involves purchase, installation in 

service (into the power network), operation, possible inspections (diagnostics) and 

maintenance, and then end-of-life. End-of-life typically implies replacement of the 

component, either correctively or preventively. “Correctively” means a failure occurred 

while “preventively” means replacement is based on diagnostic recommendations. 

Research on lifecycle costs (LCC) of power utility components constitute the estimation 

of expected cost rates: the ratio of expected cost during the life of the component to the 

expected lifetime of the component. The latter is estimated using reliability or survival 

analysis. The expected cost is partly based on choice, like the frequency or probability of 

inspection of a component, and partly on prevalence of failure risks or causes.  

Age replacement policies are common for LCC analysis of components. 

Sometimes, the cost of purchase is neglected since it is a sunk cost and will not affect 

decisions on component management. Other times, it is not. In [19], cost models are 

developed for replacements of components with warranty and those without. Optimal 

replacement ages are found for the components using a calculus-based approach on the 
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lifecycle cost function. The results show that the optimal replacement age policy for the 

preventive approach should be adjusted based on warranty to exploit possible cost rate 

reductions.  

In [20], the recommendation is to compare optimal replacement decisions based 

on these cost criteria: using the expected average cost per unit time (averaging costs over 

an unbounded horizon applying limit theory), or using expected discounted costs 

(cumulative net present values of lifecycle costs). The decisions of the optimal 

replacement age may differ depending on the cost criterion of choice. There is no clear 

explanation of which criterion is preferable. An illustration of the application of the 

models is done for the maintenance of a cylinder on an existing swing bridge. Given the 

formulation of the failure and cost models, the plots of the cost functions were convex 

showing a clear age replacement intervals, within which the costs were minimum. The 

optimum interval differed for each cost criterion. 

Heuristic optimization approaches have been applied in decision-making 

concerning power utility components. In [21], a genetic algorithm (GA) was developed 

for selecting the appropriate maintenance strategy for a substation. The approach was 

used rather than a traditional LCC analysis because of the large and diverse number and 

ways of making decisions affecting the substation. One decision is the choice of an air-

insulated substation (AIS) over a gas-insulated substation (GIS) since the AIS is more 

easily maintainable than a GIS or vice versa. The GIS is of course more reliable. 

However, the  the expected lifetimes of substations can be assumed to be a function of 

the interval of maintenance. Thus, the choice of maintenance, inspection cycles, expected 

lifetimes, type of substation, interconnectivity between substations, costs of maintenance 

are just a few parameters influencing the maintenance decisions for the GA approach. 

The mutations and crossovers search for combinations of the choices that give 

sufficiently small LCC’s, where the LCC is the fitness function. 
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Since the parameters that cause the lifecycle cost of a maintainable power utility 

component are subject to change in each year and are often times uncertain, stochastic 

optimization approaches are better suited to obtaining risk-informed decisions. For 

instance, the occurrence of natural hazards in a geographical location is unpredictable. 

Likewise, the damage caused to vulnerable components is also uncertain and likely 

dependent on the intensity of the hazard. Applying stochastic optimization approaches 

rather than deterministic ones provides information of the statistics of objective cost 

functions. One such piece of information would be the probability that the objective 

function would exceed a certain value of interest: the amount of risk a manager is willing 

to take in implementing a decision.  

Stochastic programming methods are often applied in the field of finance as seen 

in [22]. In [23], the methods were applied for optimization purposes in control systems, 

signal processing, telecommunications (fields of electrical engineering), and stochastic 

finance. When the decisions in future periods or years are dependent on the present or 

past periods, multi-stage optimization techniques are applied. This is as seen in [24] for 

decision-making in hydrothermal capacity generation. 

A stochastic optimization approach is applied in decision-making for the 

management of environmentally stressed aging utility components since the parameters 

influencing annual costs of management are largely stochastic in nature. These 

parameters include vendor service costs, component failure probabilities and accuracies 

of diagnostic classifications. To ensure that optimum decisions on preventive 

maintenance are carried out with regards to reliability and cost, numerous possible 

scenarios of combinations of parameters are simulated using stochastic sampling 

approaches.  
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1.3 A new approach to component management 

Novel approaches developed in this dissertation work for the three major sectors 

described in the prior subsection are summarized here. The approaches and frameworks 

are of intellectual merit to the field of power utility asset management should provide 

motivation for electric utilities to modify their current management strategies. 

1.3.1 Failure prediction 

Maximum likelihood estimation is one popular technique for parametric modeling 

of failure rates of components using observed failures. In this dissertation, a Bayesian 

approach is applied in predicting the distribution of future times-to-failures of surviving 

components even when the rate parameter of an exponential failure dataset is unknown. 

The prior density function is however assumed to be a known Gamma density, which is 

the conjugate prior of the exponential likelihood function. Simulations show the approach 

performs well even for a small proportion of failures from a large population of identical 

components. However, it is limited by the choice of the prior density function of the 

unknown rate parameter. That is, the approach becomes inconvenient when the prior 

density function is not a conjugate prior of the exponential likelihood function. 

The relative simplicity of the exponential assumption lays some groundwork for 

generating the more realistic bathtub hazard curve of most components, even without 

using a Bayesian approach on observed data. The failure rates of components were 

estimated gradually per period (say, years) as though the failure dataset was exponential. 

The approach is applied in real-time detection of an effective time in the life of a 

population of components to begin inspections and maintenance operations. The 

appropriate time is logically at the onset of increasing failure risk in the population. The 

approach uses both Kalman filtering and extreme value theory for decision-making. 

Another Kalman filter application is discussed in [25] and the theory of extreme values 

for detecting novelties in signalsis discussed in [26]. 
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While conventional research on reliability of components uses time (or age) as the 

dominant factor for observing the evolution of failure risk of the component, history has 

shown that environmental stress plays a strong role in the failure rate of components. 

Fragility assessment adapted from civil engineering is employed in modeling failure rates 

of power utility components vulnerable to natural hazards like hurricanes. Because the 

power utility infrastructure is aging, for the first time, at least based on literature 

searches, a framework is developed for estimating age-dependent fragility of vulnerable 

utility components. This is extended to formulating information-driven strategies for 

scheduling and prioritizing the inspections of environmentally affected utility 

components.  

1.3.2 Diagnostics and preventive replacements 

While the cost of misclassification of diseases by diagnostic tests in clinical trials 

may cause death (false negatives) or raise false feelings of fear (false positives), the costs 

are more financial in the testing of electric utility components. Depending on the kinds of 

components, the costs of corrective replacements for false negatives may be upwards of 

three times the cost of a preventive replacement for a false positive. The use of 

economics rather than just statistical approaches for ranking the effectiveness of 

competing diagnostic tests or combining tests to increase accuracy is more beneficial for 

interpretation and applicability. For instance, the use of linear discriminant analysis, a 

statistical approach used in medical research for combining competing diagnostic scores 

generates a new scale, different from that of each diagnostic test. This is often difficult to 

implement in the field or explain in simple terms. 

In addition, a different turn is taken in this dissertation on the justification of 

acquiring information on the accuracy of diagnostic tests. Here, analysis of how 

information gained on accuracy affects maintenance-investment planning is performed. 

The costs and benefits of short-term and long-term assessment of diagnostic accuracy are 
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quantified in terms of whether a power utility would save by switching diagnostic testing 

companies based on accuracy. If the diagnostic accuracy of the current testing company 

is high, then assessment of diagnostic accuracy may appear unnecessary but the 

confidence in the choice of the diagnostic test would be high. On the other hand, if the 

accuracy is found to be low, the power utility would be equipped with information to 

seek a more accurate diagnostic testing company. 

Economics is highlighted here as a strong decision-making tool for selection of 

diagnostic testing methods used in determining whether to perform preventive 

replacements of components diagnosed as below standard. It is a very practical tool for 

decision-making in business.  

1.3.3 Economics 

Penalties, reliability indices and management costs play roles in choosing 

maintenance strategies for components. Utilities try to avoid penalties, and United States 

reliability indices are generally high but vary with utilities. Thus, in literature, cost 

functions are defined as objectives to obtain the optimal replacement, warranty, and 

maintenance age in age-based. It should be noted that utility reliability indices exclude 

storm days considered “acts of God.” Utilities are often not penalized for energy not 

served during periods of natural hazards. The cost functions minimized are usually the 

expected lifecycle costs of components with respect to their expected lifetimes. However, 

lifecycle costs may not be practical to asset managers, who may only serve in their 

positions for a shorter amount of time than the expected lifetime of the class of 

components. It is therefore important to analyze optimum inspection and preventive 

replacement decisions based on annual costs to the utility for managing a population of 

components rather than lifecycle costs. 

A few lessons can still be learnt from lifecycle cost (LCC) analysis. For one, as 

discussed in [27], acquisition costs can be left out of LCC analysis since they do not 
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affect future costs or decisions. For the same reason, they will be left out of the analysis 

for annual utility costs resulting from component management. Other costs that are 

candidates for analysis include: 

 Annual lost revenue from energy not served due to natural hazards, 

 Annual corrective replacement costs, 

 Annual preventive replacement costs, and 

 Annual inspection costs. 

You may observe that switching costs are neglected. This is because realistically, when 

severe storms occur, it is possible for all lines to and around feeders to be damaged, 

making switching impossible. The analysis in this dissertation neglects lost revenue 

because it is complicated and difficult to isolate lost revenue caused by one class of 

components from another.  

A segment of the cost effectiveness analysis presented in this dissertation is based 

on the comparison between the annual cost of a run-to-failure program and a preventive 

maintenance program. Lost revenue from severe weather for both programs may not be 

substantially different. This provides another argument for neglecting lost revenue in the 

cost-effectiveness analysis between the two management programs and optimization of 

the cost function defined in the work.  

In this dissertation, Monte Carlo (MC) methods are chosen to simulate numerous 

scenarios of varying parameters in costs, diagnostic accuracies and component failure 

risks. The probability density functions of the parameters are defined to be discrete. The 

use of MC is also much simpler to understand than the more complicated decision 

mechanisms of say genetic algorithms. Because the objective cost functions are non-

convex in the decision parameters (either an inspection cycle or the proportion of 

components to replace preventively annually or both), random search is used as the 

relatively simple stochastic optimization algorithm in the work. 
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1.4 Navigating the dissertation 

The dissertation begins, after the introduction, with a statistical analysis of 

preventive replacement data records on components kept by electric power utilities. It 

then proceeds in the next chapter to deal with modeling and predictions of failure rates of 

components. Diagnostics and preventive replacements are studied in the following 

chapter, before the stochastic optimization of the maintenance process. The dissertation 

ends with listings of intellectual and practical contributions of this work to the field of 

asset management, and finally references for works cited in the body of the dissertation. 

 

 

1.5 Summary 

Failure prediction, failure prevention through diagnostics and preventive 

maintenance operations, and optimization of management decisions continue to be strong 

subjects of research in asset management. The increasing average ages of power 

infrastructure are a cause for concern on future electric safety and corrective replacement 

costs of utility equipment especially following severe environmental hazards. If it is 

assumed that the hazards become more severe with time based on the concept of global 

warming and observing worsening trends of time-to-severe storms, the average annual 

failures of exposed aging components may also increase significantly. Pre-emptive 

actions are necessary to mitigate and control these likely failures. 

The models and frameworks developed in this dissertation are important in 

learning conditions of systems of identical components and making cost-effective 

decisions on managing the components. Novel failure estimation, failure prediction, 

diagnostic decision and annual cost optimization models are developed. Simulations of 

the proposed method shows a superiority of at least $5 million annually for the 
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environmentally exposed utility components studied, over the current utility strategy on 

maintenance.  

In the conclusion of the research, information gained and processing completed 

on diagnostics and failure data are combined to present electric utilities with an optimum 

practical solution to managing the set of infrastructure that is aging more rapidly in recent 

years and are under environmental stress. 
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2 RELIABILITY-TYPE MODELING OF COMPONENTS IN ELECTRIC 

POWER UTILITIES USING PREVENTIVE REPLACEMENT DATA 

Introduction 

Power system components can be removed from service for different reasons. For 

instance, components installed on rights of way may be replaced for reasons of 

construction or vehicular accidents. In terms of the management of components, 

components can be said to be replaced correctively if they fail abruptly while in service, 

or preventively based on some diagnostic recommendation. The ability to model 

replacements of components for any of the listed (or other) reasons depends on 

availability and access to replacement data.  

A thorough dataset for modeling reliability consists of an inventory of groups of 

identical components owned by a power utility, times (years) of installation of the 

components, times of replacement, vivid descriptions of the reason(s) for replacement, 

among others. The reason for replacement, especially whether preventive or corrective, is 

a good attribute to use for classification in replacement modeling of components. 

Reliability modeling is the term used when replacements are corrective, describing 

failures of components.  

In the absence of failure data, reliability-type functions may still be found for the 

components using age information from diagnostic recommendations. The information 

may be stored in what some utilities call inspection databases of the components. It is 

important that the functions found for preventive replacements not be substituted for 

corrective replacements as has been done by some researchers in the past. The functions 

may instead show hazards of age-based diagnostic replacements of the components or 

deterioration trends of the components. 
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In this chapter, preventive replacement data for components in power utilities are 

analyzed using conventional reliability models (survivor functions, hazard functions etc). 

These data were provided by the utilities in the hope that the resulting models would be 

conclusive and informative about the failures of the components. The models, if accurate, 

would then be useful for failure prevention and prediction. Investigations showed that the 

datasets were incomplete, that is, that information on only a small percentage of identical 

components owned by the utilities (those inspected) was recorded. The larger percentage 

of the components has not yet been inspected and thus, did not provide any replacement 

information. Out of the components inventoried, several of them lacked the year of 

installation or reason for preventive replacement. The incomplete data would of course 

create a lack of confidence in generated models. Unless otherwise specified, the 

reliability functions in the “Sample Results” subsections of the chapter are not from 

failures, which are ideal, but from preventive replacements, since age-failure data were 

unavailable from the utilities. 

As a part of this chapter, comparisons are made between reliability functions 

obtained from a component inspection database and those obtained from a hypothetical 

ideal failure database. The latter are generated by using realistic accuracy-parameters of 

diagnostic recommendations on the components. The comparison will be used to show 

the extent to which wrong decisions can be made when preventive replacement data are 

used in place of corrective replacement (or failure) data.  

2.1 Reliability-Type Analysis of Preventive Replacements of 

Components from Utility Inspection Databases 

A complete failure dataset would contain ages of all failed components as well as 

ages of surviving components. Then, by grouping the ages and applying the Kaplan-

Meier product limit estimator, approximate survivor functions (and related lifetime 

functions like hazard and failure probability functions) are obtained. Identical 
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components are grouped for analysis. This means conductors are analyzed differently 

from transformers or generators, for instance. The times-to-failure of the components are 

assumed to be independently and identically distributed (i.i.d). 

Here, because preventive replacements are the parameters of interest, the term 

“times-to-failure” in this section will be changed to “times-to-replacement,” where 

replacement means preventive replacement. The terms are used interchangeably in this 

chapter unless otherwise mentioned. Then, using the Kaplan-Meier product-limit 

estimator method explained below for the reader’s ease, the survivor function is obtained 

from component inspection databases. 

2.1.1 Applying the Kaplan-Meier Method to Preventive Replacement Data 

The ages of components inspected in some year I can be found as the positive 

difference between the year of inspection of each component and the year of inspection. 

If the component is scheduled for replacement during the year of inspection, the age at 

replacement can be easily extracted using any data-extraction software. We assume that 

the risk of diagnostic replacement is similar across all vintages (years of manufacture or 

installation) of the components. This prevents sparseness or thinness of datasets, 

especially since the data that will be extracted is really not of the component but of 

diagnostic decisions. Assuming there are k distinct ages at replacement from a discrete 

distribution, y1 < y2 <…< yk, the conditional probability or hazard function h(yj) can be 

interpreted as 

, 

where T is the lifetime of the component (as caused by preventive replacement and not 

failure). Let R(t) be a risk set for all components at risk just before some time t. Then, for 

the complement R(t)`, the survivor function S(t) can be written as 
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Since only a small percentage of the components are typically replaced 

preventively, the dataset of replacement ages may be called a right-censored dataset for 

reliability-modeling purposes. The likelihood function L of the lifetimes for a right-

censored dataset, where only a proportion of components have failed or are replaced, is 

 

 where fT is the probability density function of lifetimes; ni is the number of components 

in each distinct age group ti, di is the number of observed replacements per age group, 

ST(ti) is the survival probability of components of age group, and N is the total number of 

identical components in the inspection database.  

By maximizing the log-likelihood function, an estimate of the hazard function is 

the ratio of dj at yj to the number of components still surviving just before time yj. Using 

the estimate, the estimate of the survivor function S(t) becomes 

 

An estimate for the variance of the estimate of the survivor function V[S(t)], often 

known as Greenwood’s formula, is 

 

The asymptotically valid confidence interval for the survivor function is then 

 

where zα/2 represents the number of standard deviations from the estimate at the (1-α) 

confidence level. 

The survivor function of populations of power system components found using 

the non-parametric method is terminated at the last observed replacement age, and does 

not have a value of zero at that point. Note that the survivor function of a set of 
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components that have all been replaced by the time of analysis has a value of zero at the 

last observed replacement age. The probability density of replacement per age is then 

estimated as a product of the hazard and survivor estimates at that age. An illustration of 

an algorithm that estimates the reliability-type functions of a power system component is 

in Figure 1. The inputs to the algorithm are the ages of the components, the number of 

components per age group and the number of components replaced per age group. The 

outputs are the estimates of the reliability-type functions: hazard, survivor and probability 

density function of replacements. 

 

Figure 1 Black box showing inputs (left) and some outputs (right) of a reliability function algorithm. 

 

The shape of the resulting hazard function gives an idea of how the perceived risk 

associated with the replacement (preventive or diagnostic replacement) of the component 

changes with time. Since non-parametric methods can only estimate lifetime functions up 

to the last replacement or failure age, parametric distribution-fitting methods are used in 

predicting those of incremental ages. Exponential and Weibull distributions are typical 

distributions used in lifetime modeling. Q-Q plots and goodness-of-fit tests such as 

Anderson Darling and Cramer von Mises tests can be used for fitting parametric models 

and estimating optimum distribution parameters for observed data. The expectation of the 

lifetime of the components may then be derived from the reliability-type functions. 

Sample Results: Wood Poles 

Hazard function 

Survivor function 

Lifetime probability 

function 

Number of items 

replaced per age group 

Reliability Function Algorithm 
Number of items per 

age group 

Item Age 
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One set of power system equipment for which inspection data are kept and 

updated is utility wood poles. Utility wood poles support overhead distribution lines. 

Some utilities have wood poles that have been in service since the 1900’s, though 

inspection databases may date back only to a decade or two in a number of utilities. 

While wood poles in some utilities receive remedial (in-service) chemical treatment to 

reduce fungal decay, those in other utilities do not. A power utility termed Utility D in 

this work for privacy purposes, which provided inspection data on its wood poles for 

analysis, applies remedial treatment to a portion of its population. Sample data from the 

populations of remedially treated and untreated poles are separated for analysis to 

illustrate interpretations of comparisons between survivor functions. The populations of 

the poles inspected and preventively replaced in Utility D over five years are given in 

Table 1. 

Table 1 Population of wood poles inspected, treated, and preventively replaced in Utility D during 

years 2003-2007. 

Description Number of Poles 

Number of poles inspected 222,284 

Number that received remedial chemical treatment 47,894 

Number that did not receive remedial chemical treatment 174,385 

Number with unknown treatment history 5 

Number of poles preventively replaced 6369 

 

According to the table, only 2.87% of wood poles inspected in those years were 

diagnosed as weak or preventively replaced. This is a very small proportion of the nearly 

quarter-million wood poles that incurred diagnostic costs in those years. The age 

distribution of the inspected dataset is in Figure 2; separated into treatment populations in 

Figure 3.  
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Figure 2 Population distribution of inspected Utility D poles. 
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Figure 3 Population distribution of inspected Utility D poles, which received remedial chemical 

treatment (left) and did not receive treatment (right). 

 

It can be speculated from the plots that either a large number of wood poles were 

installed in the 1960s’ and/or a large number of those poles were inspected (with regards 

to the spike around 40 years). The range of populations in Figure 3 also shows that a 

larger proportion of wood poles have not received chemical treatment up to the current 

inspection year than those that have received treatment. The treated or untreated poles 

scheduled for preventive replacement are in Figure 4. 
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Figure 4 Population distribution of Utility D poles scheduled for preventive replacement, which 

received remedial chemical treatment (left) and did not receive treatment (right). 

 

The survival functions of the population of wood poles are shown in Figure 5, and 

make it easier to compare the per-age replacement or survival of the poles. One survivor 

function appears above the other. The higher survival function is of the treated poles and 

shows that the risk of preventive replacement of treated poles is lower than the risk for 

poles that were not chemically treated.  
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Figure 5 Survival Function of inspected Utility D poles, which received remedial chemical treatment 

(top) and did not receive treatment (bottom). 
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It is important to mention that the inspection company in this illustration 

schedules wood poles for replacement when the poles show extensive decay at the 

ground-line. Depending on the level of decay, approximate strengths of the poles are 

found. Poles are then replaced if the computed strengths fall below two-third of the 

original required strength of the poles. Research from National Electric Energy Testing 

Research and Applications Center (NEETRAC) has shown that such computations of 

strength are often inaccurate. This is why this chapter finds reliability-type models and 

does not assume that preventive replacement data can be used in place of corrective 

replacement data.  

2.2 Comparing Reliability Models Generated from Power Utility 

Inspection Databases to Models from Failure Databases 

As explained in the introduction, reliability-type models generated from utility 

inspection data are for preventive replacements; whereas, ideal reliability models would 

be from failure or corrective replacement databases. There are two major characteristics 

that are expected to cause discrepancies between reliability models obtained from either 

type of data. They are listed below. 

 Missing data 

 Diagnostic inaccuracy 

“Missing data” means that the data corresponding to the inputs of the reliability 

algorithm of Figure 1 are not complete. That is, records of ages of the components in the 

inspection databases are incomplete, even of those scheduled for replacement. This 

encompasses loss of information and is expected to affect results of reliability-type 

analysis. The term “missing” is used instead of “completeness” since the latter is also 

used in reliability modeling to describe a dataset where all components studied have 

already been observed to fail. “Missing” here implies “not available.” 
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“Diagnostic inaccuracy” describes the false classifications of inspected 

components. Components that are good or reliable but are diagnosed as bad or unreliable 

are called false positives. Similarly, components that are bad or unreliable but are 

diagnosed as good are called false negatives. In the event of the maximum normal 

environmental loading in the neighborhood of the components, the false negatives will 

fail and incur high corrective replacement costs. The false positives receive premature 

replacements since they otherwise would not have failed if left in service. True negatives 

are good or reliable components accurately diagnosed as such. Likewise, true positives 

are bad or unreliable components accurately diagnosed as such. 

Diagnostic inaccuracy can be measured in terms of diagnostic classifications of 

components (as good: “don’t replace” or bad: “replace”). It can also be measured in terms 

of some gold standard of the true condition of the component. An example of such gold 

standard could be determining whether a component fails a destructive test. The measures 

of inaccuracy using diagnostic classification are  

 Negative predictive value (NPV) and  

 Positive predictive value (PPV).  

Using the gold standard of the true condition of a component, the measures of diagnostic 

inaccuracy are sensitivity and specificity. 

Specificity is the ratio of true negatives to the number of good components. 

Diagnostic negatives represent inspected components left in service. These are 

components found to be above set reliability or safety standards. A high specificity 

implies that the number of good components inaccurately diagnosed as bad is relatively 

small. Sensitivity, on the other hand, is the ratio of true positives to the number of bad 

components. Diagnostic positives are scheduled for replacement. These components are 

those that are found inadequate in meeting set standards based on diagnostic procedures 

or measurements. A high sensitivity implies that a diagnostic test shows relative accuracy 

in detecting components that are really below par. 
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2.2.1 Metric for Quantifying Difference in Reliability Estimates of 

Components using Corrective or Preventive Replacement Data 

One significant purpose of reliability models of components is for failure 

prediction and prevention. By finding the age at which the risk of failure of components 

starts to increase, an effective age-based strategy for running diagnostics and conducting 

preventive maintenance on components can be found. The inability of power utilities to 

provide complete failure databases but instead providing inspection records with 

information on preventive replacements is unfortunate. The results of reliability-type 

modeling of diagnostic replacements can be misleading in learning the evolution of 

failure risk of components. Regrettably, inspection companies and some researchers have 

used results from diagnostic replacements to describe failures of components. In this 

subsection, missing data and diagnostic inaccuracy will be simulated to quantify 

misinformation that may arise from using diagnostic replacement models.  

Given known or expected accuracies (sensitivity or specificity) of a diagnostic 

test, the following metrics are developed for quantifying the dissimilarity between the 

true survivor function of a complete population of a vintage of components and that 

found using an inspection database (diagnostic replacement data from power utilities). 

Let Pop. 1 be a label for a complete population of components with available failure data. 

Also, let Pop.2 be a label for a subset of the population representing incompleteness alone 

(the small percentage inspected) and Pop.2.1 be the label that accounts for both 

incompleteness and inaccuracy in diagnostic records. Then, for each (sub-)set, Pop.1 

through Pop.2.1, define a variable S_diffj as follows. 

 

(1) 
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where j is one, two, or two point one for any of the three sample-labels; ti is each distinct 

age group of either failure or diagnostic replacement in a population; value one represents 

the maximum value of a survivor function; and Sj is the survivor probability of the j-label 

sample set at age ti.  

Since the true survivor function of a component is that of Pop.1, the survivor 

function of Pop.1 is the baseline survivor function. The deviation DS2.1 of the survivor 

function S_diff2.1 using a hypothetical inspection database from that of a failure database 

S_diff1 can be found using the following formula. 

 

(2) 

The closer DS2.1 is to value ‘one,’ the better the reliability-accuracy of the 

inspection database. If DS2.1 is greater than one, it can be interpreted that the survivor 

function of the inspection database appears below the true survivor function—

underestimates it. Thus, the survivor function is pessimistic, giving the impression that 

components are more hazardous than is true. This may lead electric utilities to replace 

more components than they should. Likewise, if DS2.1 is less than one, the true survivor 

function is overestimated. This would cause utilities to replace less components than they 

should. In calculating the metric, when the last observed replacement age according to an 

inspection database is less than the last observed failure age, the expression [1 – Sj(ti)]
2
 in 

Equation (1) in the remaining age groups ti is assumed to be one.  

Sample Results: Hypothetical Failure Dataset 

A population of wood poles gotten from a real power utility is analyzed. The age 

distribution of the poles is shown in Figure 6. The largest number of wood poles is of 

vintage (installation year) between 1965 and 1970. This may be a result of either large 

power-plant expansion during that period or the acquisition of a power plant that had 
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been operating for that long. The population is assumed to fail according to a Weibull 

density function with shape parameter 5.2 and scale parameter 107. The scaling was used 

because it is the age of the oldest wood poles in the population. The shape parameter was 

chosen to ensure an increasing hazard rate in the poles. This is shown in Figure 7. 
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Figure 6 Age distribution of over 150,000 wood poles in a real power utility. 
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Figure 7 Hypothetical hazard rate and probability density function of real wood pole data under an 

assumed normal weather condition. Here, a Weibull density is used with shape parameter 5.2 and 

scale parameter 107. The pdf decreases for larger ages > 107 years. 
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The oldest 10% of the population is simulated to be inspected to coincide with a 

logistical methodology for inspecting wood poles in the country. This results in simulated 

inspections of age-44-and-up wood poles. In reality, there may be a sparse population of 

younger wood poles in the vicinity of the older poles. However, for ease of illustration 

and because such populations are likely relatively small, the younger population is 

ignored in this experiment. The sensitivity and specificity of a popular wood-pole 

diagnostic technique are used to estimate the number of wood poles diagnosed to be 

under specification. They are assumed to be the same for all ages of these poles were 

simulated to be replaced preventively. The sensitivity and specificity of the technique are 

0.38 and 1.00 respectively. 

Using the Kaplan-Meier approach, the number of poles estimated to fail d(t) per 

age t for the Weibull hazard h(t) and number of poles per age N(t) is   

).()()( tNtftd   

Then, with test sensitivity as s1 and specificity as s2, the number of poles, out of those 

inspected, estimated to be replaced d1(t) and those not replaced d2(t) is the inspected 

proportion of  

    

).()()(

,1)()()()(

12

211

tdtNtd

stdtNtdstd




 

The empirical survivor functions of the poles using the failure counts and 

replacement counts from the Kaplan-Meier approach are estimated and the plots shown in 

Figure 8. Given the selection of inspected poles, the result of the reliability analysis 

shows that the survivor curve generated from preventive replacement data is optimistic 

relative to the true survivor function (lower curve). It appears above that of the failure 

dataset giving the impression that the poles behave better than they actually do. 
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Figure 8 An empirical survivor function of wood poles estimated using a hypothetical Weibull failure 

density function to represent real failure data and a corresponding function estimated using 

preventive replacement data obtained from statistics of inaccuracy of diagnostic testing on the poles. 

 

The metric developed in this section is used to quantify the difference between the 

two survivor functions. The parameter S_diff1 in Equation (1) is calculated to be 2.00
-3

 

and S_diff2.1 is 4.31
-4

. The ratio DS2.1 in Equation (2) is found to be 0.21. It can be said 

that the survivor function generated using preventive replacement data deviates by over 

four-fifth of the survivor function generated using failure data. It represents almost five 

times the number of preventive replacements that utilities should have replaced to avert 

component failures. Assuming the cost of corrective replacements is three times that of 

preventive replacements, it translates into approximately fifteen times the cost of 

preventive replacements that would retroactively would spent in replacing failed poles. 

The results of this experiment show why preventive replacement data from 

inspection databases should not be used to learn failure patterns of components. 
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2.3 An Ideal Failure Database for Components in an Electric Power 

Utility 

Analysis of the hypothetical databases in the illustration of the previous section 

showed the insufficiency of reliability models generated from inspection databases for 

learning failure risks of power utility components. In the first section, an application of 

Kaplan-Meier or non-parametric methods to replacement datasets was illustrated. The 

work shows that for reliability analysis where age is used as the independent variable, the 

following properties need to be recorded for every component. 

 Installation year, 

 Boolean or other indicator variable identifying whether the component is 

still in service or has been replaced, 

 The reason or mode for replacement or failure (corrective measure: broke 

unsuspectingly without environmental impact or broke as a result of 

extreme weather conditions; preventive measure: reason for preventive 

measure; other damage: vehicular accident, construction purposes), and 

 Year or other time-unit of replacement.  

Other properties of the components, like physical properties accounting for 

dimensions, geometry and the like, may also be recorded for classification purposes. 

However, for age-based reliability modeling, the listed properties are required. 

Given these properties, the Kaplan-Meier method may be applied to the datasets 

using the algorithm of Figure 1. A right-censored dataset is expected, where a portion of 

the components is likely to be surviving at the point of analysis. Though provision of 

such an ideal database will be useful for modeling, it does not provide direct savings to 

the utility. It will instead help with making better decisions in failure prediction and 

prevention of components. The economics of inventory should be analyzed to find 
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adequate timing or scheduling of keeping records of all components, whether failed or 

not. 

In the next chapter, innovative methods of failure prediction and estimation 

methodologies will be explored and used for practical decision-making strategies. 

2.4 Summary 

Electric power utilities rarely keep or update failure databases on their 

components. Databases generated by inspection companies are however more available 

and accessible. Performing reliability-type modeling using diagnostic replacement data 

from the inspection databases may show evolution of the risk of replacement but not 

necessarily failure. Missing data and inaccuracy of diagnostic recommendations 

(premature replacement of good components or undetected bad components) were used 

in simulations in this chapter to show erroneous decisions that can result from modeling 

with inspection data.  

For an inspection database consisting of about 10% of a population of 

components, and diagnostic sensitivity of 0.38 and specificity of 1.00, the deviation 

between survivor functions generated from real failure data and diagnostic replacement 

data was about 80% using the developed metric S_diff. This study serves as a motivation 

to discourage electric power utilities from relying strictly on diagnostic data for making 

appropriate decisions on inspections of their assets. 
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3 MODELING FAILURE RATES  

Introduction 

Failures of power system components may lead to disruption of power-service to 

residential, commercial or industrial customers, depending on contingency design and 

whether the components are connected in series, parallel or some combination of either. 

The management of components affects the lifetimes of the components. As paraphrased 

from Leemis (1995), reliability is a term used to describe the probability that a 

component will perform satisfactorily whatever purpose it was installed for, for some 

expected amount of time and environmental condition. Electrical engineers typically 

model reliability of power system components with age as the independent variable. 

However, because some power system components fail mechanically and not electrically, 

stress-based reliability models are needed in estimation of their failure rates. 

The simplest age-based parametric model assumes that the times-to-failure of a 

component are exponentially distributed. This implies a constant failure rate and is not 

common among components, which tend to have increasing risk of failure after a certain 

amount of time. Times-to-failure are random variables. Given well-known statistical 

tools, the distribution of times-to-failure of components that are still surviving by some 

present time instant can be obtained using already observed failures. However, the tools 

are often complicated and sometimes unsolvable analytically. It takes intricate design of 

the model to reach simpler analytical results.  

In this chapter, Bayesian learning will be used to predict future failures 

probabilistically for an exponential rate assumption. Since it has been established that 

power utilities rarely keep or update failure data on their components, the effect of 

incomplete data on failure prediction is explored. 
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A growing risk of failures with age is expected for most components, implying a 

less simple failure model than an exponential distribution. The bathtub hazard curve is 

sometimes used to generalize the failure risk of components. It has three regions of risk: 

an early decreasing failure region (burn-in or early mortality), a constant failure region 

(random failures) and an increasing failure region (aging effects). The Bayesian process 

utilized for the exponential assumption is restricted to an assumed prior density function, 

and may not be effective or optimum for failure prediction in the non-exponential case. 

Instead, a new interval-based estimation method is developed in this chapter for obtaining 

the failure rate of components by assuming the failure rate is constant (exponential) for a 

small enough interval of time. This avoids cumbersome calculations of Fisher’s 

information matrices and multiple parameters that must be found for parametric modeling 

of failures using mixtures of Weibull, lognormal, and other such densities. 

The second major section of the chapter uses a mix of environmental stress and 

age rather than solely age as the independent variables in estimating reliability or the 

probability of failure. It involves analytical modeling of the age-specific failure of a 

component given the profile of the identified environmental stress.While environmental 

stress is aptly studied in civil engineering, it is the inclusion of aging in the fragility 

process that makes the approach very interesting, unique and applicable to the utilities’ 

aging infrastructure. Together, the resulting age-specific fragility curves of components 

are used in developing a framework for geographical risk-informed prioritizing of annual 

inspections of sub-populations of components.  

3.1 Age-Based Failure Estimation and Prediction 

Under normal environmental conditions, failures may be highly attributed to 

aging effects of a component including accumulation of loading (mechanical, electrical, 

environmental, or otherwise). Data for normal or extreme weather failures or 

replacements from a power utility may be contrasted to show this. Discussions with 
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utility managers show that age-based failures in power utilities have been somewhat low 

in normal weather, but are expected to rise over the next few decades as the components 

installed at the beginning or middle of the twentieth century start approaching 70 years 

and above. With records of age-failure data, failure predictions can be carried out. We 

look first at an exponential case and then migrate to the more realistic non-exponential 

case of failure rates. 

3.1.1 Exponential Case 

Given k uncensored (observed) lifetimes t1, t2, t3…tk of a proportion of an entire 

population N of identical components by some present time instant T, their times-to-

failure are assumed to be exponentially distributed. The rate parameter θ is unknown, but 

the times-to-failure of the remaining N – k components are to be predicted from the 

known failure times. The probability distribution function (pdf) of the times-to-failure 

may be written as 

 

Assuming independence and identical distribution (i.i.d) of the times-to-failure, 

the distribution of times-to-failure of the remaining components is the predictive 

distribution p(t | D, t > T), where   

  

 

(3) 

The conditional probability p(t| θ, t>T) is the exponential pdf of time t given the 

parameter θ and the condition of remaining lifetimes t > T, where T is the current time 

instant; p(θ| D) is the a posteriori density of θ given the failure information.   
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The first term in the integrand in (3) can be written as: 

 

The second factor of the integrand is defined by first specifying a prior of θ. Taking the 

prior p(θ) to be a Gamma density, which is a conjugate prior of the exponential likelihood 

with parameters α and β, the posterior of θ can be easily found.  

 

 

(4) 

The posterior of θ can be written as 

 

As is expected, the posterior of θ is another Gamma density, with parameters 

 

 

Having defined the factors in the integrand in Equation (3), the predictive distribution 

 is found by integrating for θ from 0…∞ to yield 

 

(5) 

The cumulative distribution of t is in turn given by 
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(6) 

From (5), we can find the estimate of the expected time-to-failure E (t). With T as 

the current time instant, the estimate is  

 

(7) 

As is observed in Equations (5) to (7), the predictive density, the cumulative 

distribution and the expected time-to-failure are not directly dependent on the unknown 

parameter θ. Instead, they rely on the current time instant T, the parameters α and β from 

the prior of θ, the total number of items N, the number of failed items k at time T, and the 

sum of all known failure times. In other words, knowledge of the rate parameter of the 

exponential distribution of observed times-to-failure is not necessary for prediction of 

future failures given the assumptions made. The prior of θ and the observed failure times 

are however, required.  

With subsequent failures, the parameters of the posterior density change, and the 

cumulative distribution function of the surviving items is Bayesian-updated. Prediction is 

sharpened with an increasing number of failing items. Since the Gamma distribution is 

the distribution of choice which makes for closed-form solutions for the predictive 

functions above, it is of great interest to observe how much impact the parameters of the 

prior has on Bayesian learning.  

When the Gamma shape parameter is one, the Gamma distribution resembles an 

exponential distribution; its posterior may not converge for a long period of time. On the 

other hand, Gamma distributions with shape parameters greater than one are uni-modal 

so that the resulting posterior distributions are expected to converge relatively fast. The 
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experiments below test for the convergence of the posterior of θ using Bayesian learning 

for different values of the shape parameter α and then illustrate the developed Bayesian 

process for predicting future failure times with an unknown rate parameter for the 

selected shape parameter α. 

Sample Results: Influence of Prior Parameters on Convergence of Posterior 

Distribution of θ 

Let the population of the items N be 1,000 and the number of failed items k be 10. 

The prior distribution of θ is assumed to have Gamma density parameter β equal to one; 

distinct values of α are tested. The times-to-failure of the N items are randomly generated 

following an exponential distribution with θ equal to three (three failures in one time 

unit). The times to failure may then be sorted so that the failure time of the k = 10
th

 item 

is selected as the current time instant T. The posterior of θ calculated using Bayesian 

theorem, is observed after each subsequent failure in Figure 9. 
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Figure 9 Bayesian updates of posterior distributions for β=1 and α=2 (top subplot), and α=3 (bottom 

subplot). Peaks of the 10 posteriors are observed to shift to the right for each additional failing item. 

The prior distribution is the innermost curve. 
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The posterior distributions shift to the right, in the direction of the true value of θ 

equal to three, as failure data are updated. After k = 10 failures, the posterior distributions 

from prior shape parameters α equal to three and four (in Figure 10) converge very close 

to θ = three. On the other hand, for the same failure data, the posterior distributions for 

prior α equal to two and five shoot way past θ equal three. They may require more 

information for a better prediction of θ. The results show that using α equal to three or 

four should be sufficient for future predictions. 
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Figure 10 Bayesian updates of posterior distributions for β=1 and α=4 (top subplot), and α=5 (bottom 

subplot). Peaks of the 10 posteriors are observed to shift to the right for each additional failing item. 

The prior distribution is the innermost curve. 

 

A similar test may be conducted to test the scale parameter β. However, this is 

unnecessary since the posterior distributions for α equal to three or four and β equal to 

one, as seen in Figure 9 and Figure 10, converge towards the true value of θ. Shape 

parameter α equal to three and scale parameter β equal to one are used in illustrating 

predictions of future failure times in the following illustration. 
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Sample Results: Prediction of Future Failures 

The times-to-failure of a population of N =10 components are randomly 

generated, following an exponential distribution with θ = 1/3 (one failure in 3 time units) 

and k = 5 failed items. The prior Gamma density parameters α and β are chosen to be 

three and one respectively for the prior distribution of θ. The times-to-failure are then 

sorted so that the failure time of the k = 5
th

 item is selected as the current time instant T = 

1.3094 time units. The prior and posterior distributions of θ are plotted in Figure 11, 

showing a fair approximation of θ when information is gained from the failure of 50% of 

a very small population. 
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Figure 11 Prior (large variance) and posterior (small variance) distributions of θ for N = 10 items, k 

= 5 items, with true θ = 1/3 and α and β equal to 3 and 1, respectively. 

 

Using the developed Bayesian process, the predictive distribution function of the 

times-to-failure of the five items that had not failed by T = 1.3094 time units is shown in 

Figure 12, overlaid with the true distribution function of the remaining simulated times-

to-failure. The expected time-to-failure is estimated to be 3.0551 time units using 

Equation (7), while the actual expected time to failure is 3. This is within a 95% 

confidence interval of the true value.  
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Though the distribution functions are visually dissimilar, their Pearson correlation 

is calculated to be 0.980 at a p-value of 0. Also, a two-sample T-test of the two 

distributions shows that they are equal based on a 95% confidence interval, where the test 

found them equal with a T-value of 2.31 at a p-value of 0.022. A low p-value means there 

is not enough evidence to reject the hypothesis (equality of the distributions). 
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Figure 12 Plot of F(t|t>T) versus time—probability distribution function of times to failure of devices 

still surviving at T = 1.3094 time units, showing the true distribution (bottom curve) for θ = 1/3, and 

the distribution predicted using Bayesian updates of posterior of θ (top curve). Here, N = 10 items 

and k = 5 items. 

 

By increasing N to 1,000 components; θ to 3; and leaving the number of failed 

items k as 5; the resulting posterior density is shown in Figure 13. The posterior has a 

mode that is very close to three. It shows that even when only 0.5% of a large number of 

components have failed, a very good estimate of θ can still be found. 
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Figure 13 Prior (left) and posterior (right) distributions of θ for N = 1000 items, k = 5 items, theta= 3, 

α and β equal to 3 and 1, respectively. 

 

Figure 14 shows the distribution functions from the Bayesian-prediction 

methodology and the real data. The closeness of the estimation of θ for k equal to five 

compared to one thousand components is a very strong observation since most 

components in the power network have small failure rates (sometimes less than one per 

cent).  
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Figure 14 The conditional probabilities of time to failure F(t|t>T) for N = 1000 items, k = 5 items, 

where the bottom curve is the true distribution obtained using θ = 3 of the generated times to failure, 

the top curve is the predictive distribution using the prior and posterior of θ and T = 0.0025. 

 

The times to failure of the five items that have failed by T = 0.0012 time units are 

0.0008, 0.0008, 0.0010, 0.0012 and 0.0012 time units. Figure 15 shows that with the 

failure of 15 more items by T = 0.0096 time units, the prediction of θ is improved relative 

to the prior distribution. The predicted cumulative probability distribution, though 

underestimated, does not deviate much from the true distribution. The p-values for two-

sample T-tests of the distributions show the failure times may come from the same 

distribution. Figure 16 is the corresponding cumulative distribution pair. 
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Figure 15 Prior (left) and posterior (right) distributions of θ for N = 1000 items, k = 20 items, theta= 

3, α and β equal to 3 and 1, respectively. 
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Figure 16 The conditional probabilities of time to failure F(t|t>T) for N = 1000 items, k = 20 items, 

theta= 3 and α and β equal to 3 and 1, respectively. True distribution is top curve and predicted is 

bottom curve. 

 

3.1.1.1 The Effect of Missing Data on Failure Predictions 

Failure prediction is expected to suffer with incompleteness in failure 

information; it will in turn affect the Bayesian updates, which rely on observed failure 

times.  An experiment is developed to simulate the exclusion of proportions of observed 

failure times from a failure database using a Monte Carlo method. Then, its effect on 

failure predictions is analyzed. Estimates of expected lifetimes E (t) for a complete 

dataset and expected lifetimes for an incomplete dataset are compared to find how much 

missing data excludes the true expected lifetimes of components.  

Let D1 be a completely random subset of D from Equation (3), such that D1 

contains only a proportion of the observed failure times and all the unknown failure times 

of remaining components. Let k be the actual number of failed items by the present time 

instant T, tA be the available failure times, and (k - l) be the number of recorded times-to-

failure; that is l is the number of completely random missing failure times. Then, 

  



 53 

Then the predictive density function p (t|D1, t > T) of the times-to-failure of remaining 

components given the incomplete recorded times-to-failure is obtained as   

 

(8) 

The first factor of the integrand remains unchanged. As before, the second 

integrand requires the probability of the time-to-failure given the unknown parameter θ. 

However, the set of failure times is now D1, so that p (θ | D1) is given by 

 

The posterior of θ is again a Gamma density but now with new shape and scale 

parameters as defined respectively below, 

 

 

Note that the number of future failures is still the difference between the entire 

population N and the number of components that have actually failed k, since we assume 

that the number of remaining components is known. Having defined the factors in the 

integrand, the predictive distribution p (t|D1, t > T) is found by integrating 

for θ, 0…∞ to yield  

 

(9) 

The cumulative distribution of t is in turn given by 



 54 

 

(10) 

The new estimate of the expected time-to-failure EA(t) can be found, as shown in 

Equation (11), utilizing the less than actual number of failure times (k – l). With T as the 

current time instant, the estimate is given by 

 

(11) 

The new estimates are expected to be different from the estimates obtained using a 

complete failure database. An illustration of the new results is given in the following 

subsection. 

Sample Results: Hypothetical Dataset 

A population of N = 1,000 components is generated in MATLAB assuming k = 

50 failed components. The simulated times-to-failure of the 50 components are shown in 

Table 2.  
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Table 2 Complete set of failure times of k = 50 items with T = 0.0155 time units. 

t1 t2 t3 t4 t5 t6 t7 t8 

0.0002 0.0008 0.0010 0.0011 0.0013 0.0015 0.0016 0.0019 

t9 t10 t11 t12 t13 t14 t15 t16 

0.0026 0.0028 0.0036 0.0039 0.0039 0.0039 0.0040 0.0044 

t17 t18 t19 t20 t21 t22 t23 t24 

0.0047 0.0051 0.0053 0.0064 0.0064 0.0066 0.0068 0.0070 

t25 t26 t27 t28 t29 t30 t31 t32 

0.0071 0.0085 0.0085 0.0087 0.0091 0.0092 0.0092 0.0095 

t33 t34 t35 t36 t37 t38 t39 t40 

0.0096 0.0097 0.0098 0.0105 0.0115 0.0123 0.0124 0.0124 

t41 t42 t43 t44 t45 t46 t47 t48 

0.0128 0.0128 0.0129 0.0131 0.0145 0.0145 0.0145 0.0149 

t49 t50 

      0.0149 0.0155 

       

The true and Bayesian-estimated predictive distributions at T = 0.0155 time units 

are shown in Figure 17, assuming all k failure times ≤ T are known and accurately 

recorded. The true distribution is gotten directly from the simulated data. The 95% 

confidence interval of E (t) that accounts for sampling errors in MATLAB is (0.2725, 

0.4569) for a thousand-trial Monte Carlo simulation that generates a sorted list of N = 

1,000 exponentially distributed times-to-failure with θ = 3. The interval also accounts for 

errors in the convergence of the posterior density of θ, and is used in evaluating the 

deviation of EA(t) from E(t) estimated from a complete dataset. 
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Figure 17 The conditional probabilities of time to failure F(t|t>T) for N = 1,000 items, k = 50 items, 

theta= 3 and α and β equal to 3 and 1, respectively. For the complete failure dataset, the true function 

is the bottom curve and the predicted is the top curve. 

 

Randomly sampling distinct proportions of the failure times in Table 2 using 

bootstrapping, the predictive distributions and expected time-to-failure EA(t) of the 

incomplete dataset are generated. The graph of the new posterior density when 40-50% of 

failure data is missing is shown in Figure 18. The distribution functions found for the 

incomplete failure datasets get progressively farther away from the distribution function 

of the real failure data, and the Bayesian estimates from a complete dataset. 
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Figure 18 Prior (largest variance) and 3 posterior densities (small variances) of theta θ are shown in 

the top subplot. In the clockwise direction, the true distribution F(t|t>T) and Bayesian-predicted 

distributions for a complete failure dataset, 40%, and 50% missing failure data are shown in the 

bottom subplot for k = 50 and N = 1000 items.  

 

The distribution of EA(t): that is, the expected time-to-failure found from the 

incomplete dataset, is shown in Figure 19. It is obtained by selecting 40% or 50% of 

failure times completely at random from the failure dataset 1,000 times. The distributions 

fail to include the true E(t), which is one-third.  
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Figure 19 Histograms of the mean time to failure EA(t) for failure data missing 40% and 50% of the 

failure data(left subplots), and the deviations from predictions with complete data (right subplots). 

 

Similar graphs for other levels of missing failure data can be obtained but are not 

shown here. The summary of the results is shown in Table 3 for varying population sizes 

N and number of failed devices k. As was expected, increasing the amount of missing 

failure data resulted in increasing deviations from the true expected time-to-failure.  

A right shift is observed; that is, predicted failure times are larger than the true 

values, and estimates are optimistic. On the field, this means that using estimates of the 

predictive distribution from an incomplete dataset, power utilities will expect components 

to fail much later than they actually would. Thus, assuming a preventive replacement 

policy is being adopted, a good number of components may fail before even being 

inspected or preventively replaced. 

Table 3 Table of deviations of predicted expected times to failure from the true MTTF for different 

values of k, N and ratio k/N given different levels of missing failure data. 

N

k

Ratio l/k

Deviation 

from MTTF

Number 

of 

missing 

failure 

times

Deviation 

from MTTF

Number 

of 

missing 

failure 

times

Deviation 

from MTTF

Number of 

missing 

failure 

times

Deviation 

from MTTF

Number of 

missing 

failure times

2.00% 0.30% 1 8.71% 1 1.85% 2 3.03% 10

5.00% 0.90% 3 10.41% 3 2.93% 5 4.09% 25

10.00% 2.30% 5 12.26% 5 4.87% 10 6.03% 50

15.00% 4.60% 8 15.33% 8 7.03% 15 8.17% 75

20.00% 6.30% 10 17.65% 10 9.47% 20 10.60% 100

25.00% 9.20% 13 21.55% 13 12.23% 25 13.35% 125

30.00% 11.30% 15 24.48% 15 15.33% 30 16.45% 150

35.00% 15.10% 18 29.57% 18 18.93% 35 20.05% 175

40.00% 17.90% 20 33.47% 20 23.20% 40 24.25% 200

50.00% 27.10% 25 45.78% 25 33.88% 50 35.15% 250
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The relationship between the Monte-Carlo-average estimated expected lifetimes 

for an incomplete dataset and the proportion or number of missing data is shown in 

Figure 20. Even for the same k/N ratio of missing information, but with different values 

of k and N, there is some variation in percent difference from the true expectation of the 

lifetime. For instance, the pairs (k=50, N = 1,000) and (k = 500, N = 10,000) have the 
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same ratio of missing failure data, that is 5%. Yet the curves that define their predictions 

of the mean or expected time-to-failure (MTTF) vary in both figures.  

 

Figure 20 Graph showing the relationship between percent differences of predicted expected times to 

failure from the true MTTF for different values of k, N and ratio k/N (k = 50 and N =1000, k = 500 

and N = 10000, k = 100 and N = 10000, k = 50 and N = 10000, respectively) with respect to different 

levels of missing ratio l/k (left subplot) and failure data l (right subplot). 

 

The deviation of the predicted expected time-to-failure EA(t) from E(t) for the 

larger population (N = 10,000 items) is higher than for N = 1,000 in Figure 20. The 

prediction error of the smaller population (N=1000 items) is much larger than for N = 

10,000 items. Both plots in Figure 20 have this in common: increasing missing failure 

times leads to more inaccuracy in predictions. Also, the worst prediction errors were for 

the combination of the smallest value of k and the smallest value of ratio k/N, that is k = 

50, N= 10,000, and k/N = 0.5%. 

Based on the illustrations presented in this section, it can be inferred that storing 

over 80% of failure times of components that rarely fail (so that k is small) is critical to  

predicting the expected failure time to within 95% of its confidence interval. 

3.1.2 Non-Exponential Case 

The hazard or failure rates of most components are not exponential over all times. 

The rates may decrease in early life and increase in older life. This describes a bathtub 

hazard rate. However, not all components show a burn-in or early mortality region of 
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failure. For the components that do, the time interval within which burn-in occurs is 

relatively short compared to the entire expected lifetime of the component. So, the burn-

in region may be excluded leaving only two regions of concern for the bathtub curve. 

Non-exponential parametric modeling has historically been used to estimate the 

hazard rates of components that indicate a bathtub behavior by obtaining multiple scale 

and shape parameters of assumed time-to-failure distributions from failure data. These 

distributions include exponential power distributions, double exponential power 

distributions, and mixtures of Weibull distributions. Other methods include the 

application of Bayesian statistics to some assumed prior density of the scale or shape 

parameter as done in the previous section. Drawbacks to the techniques include 

tediousness in finding multiple parameters for the distribution of times-to-failure and the 

non-existence of closed-form solutions to the integrations of posteriors, among others. 

Though numerical methodologies such as exploiting Monte Carlo may present a solution 

to the closed-form problem, computational complexity and sampling size of the 

techniques complicate the estimation. A simpler, more tractable method of approximating 

bathtub-shaped hazard curves is therefore beneficial.  

Rather than estimate the hazard rates in the two identified regions by finding 

several parameters for cumbersome probability distribution functions from a large failure 

dataset, the hazard curve is generated gradually as failure data is acquired over time. 

Processing of the data is done as though the observed lifetimes were sampled from an 

exponential dataset. The gradual process is like sliding a time window through the life of 

a population of components. The rate parameters found within each time window are thus 

allowed to vary. An illustration is shown in Figure 21. The probability density function 

pdf is then a time-varying exponential density function. 
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Figure 21 Illustration of sliding time windows of length ti where approximately exponential failure 

rates htv are estimated. The difference between consecutive sliding windows is defined to result in a 

large overlap between the windows. 

 

While the maximum likelihood estimate (MLE) of the rate parameter of the 

exponential distribution is simply the ratio of the number of observed failures to the sum 

of the observed lifetimes, the estimate required for analysis in this work is not as obvious. 

Because the small time window will truncate failure information to its left and right, 

another estimate is needed. The truncation results in the need for an MLE of a doubly-

censored exponential dataset.  

An algorithm is developed in this work to estimate a bathtub hazard curve using a 

new methodology. The uniqueness of the algorithm is that the onset of a growing failure 

hazard is simultaneously investigated. This is described in detail in the following 

subsections. Design variables for the algorithms include the following. 

 Length of the sliding time window for counting the number of components 

failing within the window,  

 Time interval between consecutive shifting windows, and  

 Initial length of an evolving nested window of analysis for testing the 

development of the hazard rate within the window.  

The strategy for estimating the hazard curve assumes that the hazard rates are constant 

(an exponential failure rate) within small-enough time intervals of observation. 

The algorithm is tested both with synthesized and real datasets of replacements or 

failures of components. For the hypothetical dataset, either the thinning algorithm or 

inverse transformation of the cumulative distribution function may be used for random 
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variate generation. A mixture of Weibull density functions is used in forming the 

cumulative distribution function from which the random variates are generated.  

3.1.2.1 Simulating failures using random variate generation from a mixture of 

Weibull densities 

The bathtub hazard curve is, in general, defined as a piecewise function on time, 

with time intervals signifying regions of burn-in (neglected in this work), random failures 

and aging (increasing failure rate). The flexibility of a Weibull distribution function in 

representing constant, increasing or decreasing failure rates, depending on the magnitude 

of its shape parameter α, makes the distribution good for modeling bathtub curves. The 

bi-regional bathtub hazard curve discussed in this paper can be defined as a piecewise 

function in time.  

The shape parameter α of a Weibull function can be chosen to produce a constant 

or increasing hazard function. When α is equal to one, the hazard function is constant or 

exponential. When it is equal to two, an increasing linear hazard function is obtained. A 

value greater than two results in a non-linear increasing hazard function, which is a 

typical shape for hazard function of aging components. With this in mind, let aging of a 

set of identical components begin at time t0. Thus, before t0, the hazard function is 

constant, and afterwards, it is increasing non-linearly. See Equation (12). 

 

(12) 

where t is the time-to-failure (or age of failure) of the component, t0 is the knee of the 

hazard curve: where the failure rate starts to increase, tn is a design variable: the 

maximum observed lifetime simulated, α1 is the shape parameter of the Weibull density 
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function in the constant hazard region, α2 is the shape parameter of the Weibull density 

function in the aging region, β1 is the scale parameter of the Weibull density function in 

the constant region, and β2 is the scale parameter of the Weibull density function in the 

aging region. 

To ensure that the hazard function is continuous for all time [0, tn), the same 

parameter β1 is defined to have the minimum value of the hazard function in the aging 

region, that is at t0.  

 

(13) 

An illustration of a hazard curve designed using the equation is in Figure 22.  
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Figure 22 Hazard curve used for generating random variates with t0 = 30 time units, tn = 100, α = 5, β 

= 50. 

The cumulative distribution function F(t) is easily found from the hazard function. 

The relationship is given here for ease of understanding. 
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Since h(t) is both integrable and continuous, F(t) can be found in closed form. The 

inverse transformation method can then be applied on F(t) to generate random lifetime 

variates. Implementing this using a Monte Carlo method implies that lifetimes T← F
-1

 

(U), where U ~ U(0,1). Alternatively, the thinning algorithm can be used. A 

Kolmogorov-Smirnov test can be used in comparing the distributions of generated 

lifetimes to the true distribution F (t). The test returns a statistic and a p-value used to 

decide the probability that the distributions are equal at a specified confidence level α. 

Due to the inexactness of randomization in generating the variates, a non-smooth 

function of the hazard htv is expected. That is, computer programs such as MATLAB use 

pseudo-random numbers usually dependent on clocks in generating uniformly distributed 

random numbers. Thus, a plot of several random numbers distributed on U(0,1) generated 

on a computer program will not show a perfectly flat box distribution. See Figure 23 for 

two sizes of vectors generated: 1,000 and 10,000 data points. 
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Figure 23 Histograms of pseudo-random numbers distributed on U(0,1), the uniform distribution 

with minimum and maximum 0 and 1 respectively. They show limitations of computer programs in 

generating perfect uniform distributions. 
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3.1.2.2 Estimation of time-varying exponential rate parameters from failure 

data 

Numerical integration may be required to obtain maximum likelihood estimates of 

parameters of multi-parameter distribution functions. Such computations can be tedious, 

and the accuracy and variance of the estimates would depend on sampling size of the 

Monte Carlo methods. Recognizing that the hazard curve of failing components can be 

built in portions of time simplifies the problem of estimation.   

Let the time interval of the time window ti, as shown in Figure 21, be the 

difference between tm1 and tm2 the minimum and maximum time instants of the time 

window respectively. So, m1 and m2 represent the order indices of lifetimes captured in 

the window. Then, the time window will start from t = tm1 = 0 to estimate the exponential 

rate parameter within the time window and end close to t = tm2 = tn. 

The failure rate at time instant tm1, assuming an exponential distribution, is 

 

(14) 

where htv is the time-varying exponential hazard rate, and nwd is the number of lifetimes 

observed or captured in the time window that extends from tm1 to tm2. While tm1 starts at 

zero, consecutive time instants tm1 are chosen so that overlaps between regions covered 

by preceding windows exist.  

The algorithm for obtaining the time-varying exponential hazard rate from the 

generated random variates follows. 

1. Set ti to some design length. 

2. Initialize tm1 and tm2 to zero and ti respectively. 

3. Set the sliding length v to some design value. 

4. Initialize a variable j to one for the length of estimated htv. 
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5. While tm2 ≤ t(N), 

a. Find the number of lifetimes between tm1 and tm2 as nwd. 

b. Find htv(tm1) using Equation (14). 

c. Increment j by one. 

d. Increment tm1 and tm2 by v. 

One application of estimating the bathtub-shaped hazard curve of a component, 

like the one shown in Figure 22 is in finding the time at which the hazard/failure rate 

changes from being approximately constant to increasing t0. This time instant—the knee 

of the distribution, is usually a start-age for preventive maintenance on components. It is 

when the components are defined as “aging.” The goal would be flattening the hazard 

curve and reducing the rate of failure from t0 onward. 

3.1.2.3 Detecting the Onset of Increase in Failure Risk of Components 

A plot of the estimated hazard curve for a complete lifetime dataset, where all 

components have failed, will graphically show where the failure rate starts to increase. 

This is where the aging region begins, and may be called the knee of the failure 

distribution. For purposes of proactive maintenance, it would be beneficial to detect the 

approximate instant when the failure rate starts to increase. Proactive and preventive 

maintenance operations, when initiated in a timely format, are expected to maintain the 

approximately flat level of the constant region of failure.  

Segmented regression techniques are applied in estimating “break-points,” 

“change points” or “switch points” in relationships between some response variable and 

explanatory variable. Algorithmic methods that have been used in dealing with 

segmented regression include simple grid-searches, modifying a probability distribution 

of the response, differentiating the response function over the entire range of the 

explanatory variable, using regression splines, and Bayesian Markov-chain Monte Carlo 

(MCMC) methods. These methods will not be efficient in dynamically estimating the 
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onset of an increase in the hazard curve since they might require a large number of 

samples to the right of the breakpoint to identify a change in the slope. 

An algorithm is developed to estimate occurrence of a knee (change-point) while 

approximating the actuarial failure rate of the components. This algorithm is embedded 

within that of the failure rate estimation. Since the bathtub curve studied in this work 

ignores the burn-in region, only two regions (the region of constant or random failures 

and the region of increasing failures) are possible. So, the algorithm should find only one 

knee. 

Ideally, the hazard curve modeled here is perfectly flat in the random failure 

region before it starts to increase. In this sense, the onset of risk increase would be 

detected easily using a derivative approach, assuming the curve were differentiable. (The 

minimum point at which the derivative of the function was positive would be the onset.) 

However, in the practical sense, especially given the partitioning of failure rates in this 

paper, the estimated hazard function is a discrete function. Also, the number of failures in 

each time window of failure observations is unlikely to be uniform. Thus, the derivative 

approach is an unlikely solution to detecting the onset. Instead, a Kalman filter is used to 

determine the state of the hazard process and a procedure that relies on extreme value 

theory is used to identify the onset. 

The dynamics of the state space of the failure rates can be modeled using a simple 

Kalman filter. Given the data set of failure rates 
T

j 0










  , consisting of the one-

dimensional estimates of the time-varying failure rates. The Kalman model, which relies 

on a normal distribution assumption, is considered as  
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where aj is the state variable and follows a Gaussian diffusion process with Markovian 

dynamics; yj is the observation variable, which is essentially each estimated failure rate; 

and wj and vj are the noise variables in the state and observation spaces respectively. The 

noise variables in a Kalman filter are also Gaussian and distributed with a mean of zero 

and variances of Wj and Vj, as shown in the equations. Control variables have been 

neglected since the failure process is not expected to be controlled by any external 

systems. Also, the state transition matrix is assumed to be identity meaning that no 

systematic trends in the state are expected. Finally, the observation matrix is also identity; 

in this model, the state relies perfectly on the observation and vice versa in the time 

update and observation update evaluations. 

Though the failure process is not Gaussian-distributed, we assume that the 

variances of the noise in updating or predicting a future hazard state or measurement does 

not change with time but may be modeled as a Gaussian distribution. Then, Wj is some 

constant Q and Vj some constant R. If the estimated error covariance is Pj, the time 

updates of the state and covariance are 

 

 

 

where Kj is called the Kalman gain, and yj is the j-th estimated failure rate obtained using 

the developed hazard algorithm of Equation (14). 

The state estimate in the equations is used for detecting onset of failure increase 

since it is a smoother estimate of the time-varying failure rate from Equation (14). Before 

the convergence of the Kalman error covariance, the estimate of the state is not confident. 

When the covariance reaches steady state at a fast rate, the training set of normalcy 
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(random failure region) will consist of useful data early. Else, some errors may occur 

from using the state estimate before convergence. A trigger may be set to check for 

convergence. For instance, the following may be used as a test. 

 

(15) 

Around the transition of the failure rates of a component to increasing failure 

rates, almost every new state estimate will be more extreme (greater) than the prior 

estimates. Let Am = {a1, a2, …, am} be the set of m independent and identically 

distributed random variables of the Kalman state estimates. Define xm = max (Am) as the 

largest element observed in the set of m samples. Then, by the extreme value theorem as 

discussed in [11], the probability of observing some extremum xm ≤ x is  

 

(16) 

 

where ym is a reduced variate of the extrema, μm and σm are as norming parameters. The 

generalized extreme value (GEV) distribution is used as the limit distribution of 

normalized maxima of a sequence of i.i.d. random variables. In the case of Equation (16), 

the GEV reduces to a Gumbel distribution. While the asymptotic forms of the norming 

parameters in [11] are given for Am drawn from a one-sided normal distribution, the 

parameters are defined somewhat differently in this paper.  

For a set X consisting of a growing number of maxima of m-sized consecutive 

Kalman states xmi, μmi and σmi are defined as the expected value of the elements of set X 

and the corresponding standard deviation at each point of estimation i. In [11], a 

“novelty” or onset for the bathtub case is detected when the probability in Equation (16) 

exceeds about 0.95. This threshold is loosened to 0.9 in this work. 
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Sample Results: Simulation 

Experimentation begins with a large-sized population of components, N = 10,000, 

simulated to fail within at most 100 years. The average age of power system components 

like substation transformers, wood poles and transmission structures in some regions of 

the United States is greater than half a century. A proportion of such components may be 

close to 100 years old. An identical set of the N components is simulated to have a 

constant failure risk up to t0 = 30 years.  

The parameters of the Weibull and exponential density functions used in the 

illustration were based on the shapes and scaling of the hazard functions. In the 

probability density plot of Figure 24, for small values of the shape parameter (α < 5), the 

population of components appears to fail in relatively large volumes in the early life. As 

the shape parameter increases for β = 50, the likelihood of failing around the scale 

parameter β increases. On the other hand, by increasing β for one value of α, the 

probability density flattens. Assuming the majority of the simulated components fail 

around 50 years and with moderate transition from the constant region of failure risks to 

increasing risk, the parameters of the Weibull distribution are set at α2 = 5 and β2 = 70 for 

Equations (12) and (13).  

0 50 100
0

0.02

0.04

0.06
Prob. Density Fcn for =50

Age (Years)

 

 

0 50 100
0

0.05

0.1
Prob. Density Fcn for =5

Age (Years)

 

 
=20

=30

=50

=70

0 50 100
0

2

4
Hazard Rate Fcn for =50

Age (Years)

 

 

=2

=3

=5

=7

0 50 100
0

2

4

6
Hazard Rate Fcn for =5

Age (Years)

 

 

 



 71 

Figure 24 Probability density functions (top sub-plots) and hazard functions (bottom subplots) of 

Weibull densities with varying shape α and scale parameters β. The legends in the top subplots apply 

to the bottom subplots. The probability density functions (pdfs) shift to the right for α = 5 as β 

increases from 20 to 70. The pdfs reduce in variance and increase in height for β = 50 as α increases 

from 2 to 7. Non-linearity reduces in the hazard functions for β = 50 as α increases from 2 to 7. The 

hazard rates stretch to the right for α = 5 as β increases from 20 to 70. 

 

The histogram of times-to-failure of the components is shown in Figure 25. Given 

the Weibull parameters, all the components are observed to fail within 70 years. 
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Figure 25 Histogram of generated lifetimes for N = 10,000 components for Weibull parameters α2 = 5 

and β2 = 70  . 

 

The true and theoretical distribution functions of the times-to-failure of the 

components are shown in Figure 26. 
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Figure 26 Theoretical cumulative distribution function (cdf) of the simulated times-to-failure (line 

with triangular marker) and the empirical cdf of the generated times-to-failure (stairs directly 

behind the theoretical cdf). 

 

The time-varying hazard rate estimates θ_hat are calculated from Equation (14) 

within time windows of length equal to two years. The resulting approximate hazard 

curve using the developed time-varying technique and the theoretical Weibull hazard 

curve used for simulation are shown in Figure 27. The time-varying hazard curve is 

observed to slightly overestimate the theoretical hazard curve, increasing for longer 

stretches of time. 
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Figure 27 Theoretical hazard curve (dashed line) and time-varying exponential hazard rates (solid 

line), showing slight overestimation of the failure risk with increasing time. 

 

The Kalman filter is designed with constant, low noise variances of R = 1e-3 and 

Q = 1e-5. The sensitivity of a Kalman filter to the values of R and Q can be found in 

literature. The state error covariance is initialized with P0 = 1e-5 and the intial state of the 

failure process (failure risk) f0 = 0. The resulting Kalman filter, which smooths the time-

varying estimate, is seen in Figure 28, with the error covariance Pi. Note that Pi is not a 

probability but an error covariance. Convergence of the error covariance is observed 

around 10 years. Thus, the first trigger P-trigger is set around 10 years. Consequently, the 

Kalman filter starts to approximate the true state of the failure risk more accurately 

around the same age of 10 years and closely follows the theoretical hazard curve up to 

age 50. Then, it starts to overestimate the hazard risk slightly.  
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Figure 28 Smoothed estimate of the time-varying exponential hazard rates using a Kalman filter 

(solid line in top subplot) overlayed with the theoretical Weibull hazard curve (dashed line in top 

subplot) and the error covariance of the Kalman filter (bottom suplot), showing convergence of the 

error covariance around 10 years. 

 

Using the concept of the extreme value theory, the probability of getting a 

maximum value over time is shown in Figure 29, and does not exceed the threshold of 

0.9 till 38 years. The number of data points used for finding the maximum is 10. Roberts 

mentions in [11] that most data point sizes behave well. The increase in the probability 

before the age of 10 coincides with the increase in the Kalman state during this period, 

before the error covariance settles. Each point of increase in the probability other than at 

age 30 represents points that may have been false alarms in a decision function that used 

the mean or variance of the states directly.  
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Figure 29 Plot of the probability that the most recent failure rate estimate at some age is the 

maximum point among prior estimates. 

 

The attributes of the failure risk displayed as an output of the algorithm are shown 

in Table 4. The hazard rates of the components are observed to increase more 

consistently after 38 years. 

Table 4 Table of attributes of component failure risk at the time instants that an onset alert is 

triggered: time-varying hazard rates at those instants and the binomial probability of observing an 

onset (a run length of one) within three trials.  

Onset flag raised 

at 

Time-varying hazard 

rate (θ_hati) 

Probability of a 

three-time onset occurrence 

up to flagged time 

38 years 0.040 0.958 

39 years 0.045 0.964 

40 years 0.049 0.960 

… … … 

72 years 0.709 0.930 
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Sample Results: Real Wood Pole Data 

The algorithm is applied to a real wood pole dataset for evaluation. There are over 

150 million wood poles in service in the United States used to support overhead lines and 

other loads (like service transformers) in electric power utilities. Neglecting failures from 

natural disasters such as hurricanes and ice storms, wood poles are suspected to fail when 

their strengths decline over time in contrast to the loads they support. Unfortunately, 

power utilities do not routinely record the times or causes of non-environment-related 

failures of the poles. Influence of public service commissions has resulted in regular 

inspections of the poles in most states. Consequently, the replacements of the wood poles 

relying on the recommendations of the diagnostic companies are recorded. If we assume 

that a preventive replacement of a wood pole accurately reflects averted failures of the 

poles, such replacement databases may be analyzed for observing failure (more correctly, 

replacement) risks of the poles. 

The dataset extracted and analyzed here consists of 27, 098 replaced power utility 

wood poles. The histogram of the replaced poles is shown in Figure 30.  
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Figure 30 Histogram of wood poles replaced in a power utility. The replacements show a partial 

bathtub hazard behavior up to about 45 years as seen in the figures following. 

 

A constant failure rate is observed within the first ten or so years after which the 

failures increase. The hazard curve of the wood poles was found using an actuarial 

method in MINITAB and shown in Figure 31. The curve reflects a partial bathtub 

behavior (constant and increasing failure risk regions) up to about 40 years. Other 

lifetimes are ignored with regards to this work since they are not consistent with the 

bathtub assumption. It is important to note that the sudden increase in the hazard plot at 

40 years might be a result of a large proportion of 40-year old poles in the inspected 

region and may not be directly connected to replacements or failures. 
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Figure 31 Nonparametric hazard plot of replaced wood poles using the actuarial method in 

MINITAB. Here, N = 27,098. 

 

The estimated time-varying exponential hazard rates using the developed algorithm are 

shown in Figure 32. This closely resembles the hazard plot estimated using the actuarial 

method in MINITAB. 
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Figure 32 Time-varying exponential hazard rates for a real power utility wood pole replacement 

dataset. 

 

The estimate of the failure risk using the same initial and noise parameters for the 

Kalman filter as in the synthetized dataset is shown in Figure 33. 
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Figure 33 Smoothed estimate of the time-varying exponential hazard rates using a Kalman filter (top 

subplot) and the error covariance of the Kalman filter (bottom suplot), showing convergence of the 

error covariance around 12 years. 

 

The onset is detected at around 18 years as shown in Figure 34. This can be seen 

as the point at which the failure risk in the early state becomes very pronounced in Figure 

32. Though the threshold missed the initial onset around 10 years, the detection around 

18 through 22 and 35 through 44 years are very beneficial since the hazard risk increases 

very sharply around these points. The decrease in the probability around 44 years is also 

consistent with the observed risk using the actuarial method, where the bathtub behavior 

is no longer observed.  
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Figure 34 Plot of the probability that the most recent failure rate estimate at some age is the 

maximum point among prior estimates. 

 

The algorithm was applied on a synthesized dataset of N = 500 and 1,000 

components. For the dataset consisting of N = 500 components, two false alarms were 

raised at 12 years and 19 years but a steady increase in the probabilities of onset occurred 

at 33 years. For the dataset consisting of N = 1,000 components, one false alarm was 

raised at 12 years and the true alarm was raised at 32 years. 

 

3.2 Stress-Based Failure Estimation and Prediction 

Power system components that are not housed within buildings face 

environmental stress that may cause them to fail. Over the past few decades, a number of 

hurricanes have caused the failure and subsequent replacement of such exposed 

components as transformers, overhead lines, utility poles and the like. A simple 
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regression analysis of failures in past hurricanes has been used to show that the failure 

rate of wood poles increases exponentially with the category of hurricanes as set by the 

Saffir-Simpson scale [1]. Since scaling is derived from wind speeds, an analytical model 

of failures related to wind speeds is more appropriate for failure prediction and making 

risk-informed decisions on the inspections of power system components exposed to the 

environment. 

Since the components discussed here are assumed to fail mechanically more 

frequently than electrically, structural analysis is used. Modeling the failure of a 

component by obtaining the probability that stress on the component exceeds its strength 

is called fragility assessment in civil engineering. Fragility curves have been used in 

assessing seismic vulnerabilities of bridges and residential buildings to earthquakes, 

hurricanes and other hazards. It may also be seen as reliability modeling of the 

components with environmental stress rather than age as the independent variable. In 

fragility assessment, the damage state of the modeled component and the intensity of 

stress on the component must be specified. 

 In this chapter, only one damage state of a component is identified: failure that 

leads to replacement of the component. Its complement is the survival of the component 

under loading. For conductors, the damage is when they snap; for poles, when they break. 

The failure patterns of components and measures of each environmental condition are 

different. Earthquakes are measured on the Richter scale depending on the magnitude of 

ground shaking and seismic wave generated. Lightning strikes are defined by the number 

in a certain location and the charge carried. To avoid generalization, the intensity 

measure of stress here is focused on wind speeds since some data is available on failures 

of some electric utility components from historical hurricanes. 
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3.2.1 Fragility Assessment of Wind-Stressed Components 

Using the provisions of the American Society of Civil Engineers 7 (ASCE7) 

standard, an analytical model for wind load profiles along an exposed component is 

considered [2]. Physical and material properties of the component that affect its moment 

of capacity are assessed. To represent the variability in material properties of the 

components and wind profile, uncertainties in applied wind loads and the structural 

response of the components are accounted for in this framework to improve the accuracy 

of the derived fragility curves. The wind load is called the demand on the component.   

The cumulative distribution function of the probability that the demand on the 

component (wind load) exceeds its capacity (strength) can be computed as follows. 

 

(17) 

where C is the component capacity, D is the demand of the wind, Φ[.] is the normal 

standard distribution function, mC is the moment of capacity, mD is the moment of 

demand, βC is the logarithmic standard deviation of the capacity, and βD is the 

logarithmic standard deviation of the demand. 

The log-normal distribution has been found to be effective in modeling fragility. 

The composite logarithmic standard deviation, which is the denominator in Equation 

(17), represents dispersion. Dispersion in the demand and capacity can be estimated from 

historical analysis of wind loads in a specified region of interest and analysis of the 

properties of the component. 

The moment of capacity of a component can be estimated using a physics 

approach. The moment of a force at any point, for instance, is often calculated as a cross-

product of the force on a component and the distance-vector between that point and the 

point where the force is applied. The moment is found specific to a component. 
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Wind pressure F acting in the lateral direction on the face of an exposed 

component can be calculated from the following relationship that is provided in the 2010 

ASCE 7 standard [2]. 

 

 

where qz is the velocity pressure evaluated at height z on the pole, G is the gust-effect 

factor, Cf is the force coefficient, Af is the projected area normal to the wind, Kz is the 

velocity pressure exposure coefficient, Kzt is the topographic factor, Kd is the wind 

directionality factor, V is the basic wind speed which corresponds to 3-sec gust speed at 

33 ft above ground in open ground. The values can be found in literature. 

A Latin hypercube sampling technique can be used to generate and randomly pair 

samples of parameters of wind load D and component or structural response C. The 

realization of the wind demand and component capacities may then be compared in a 

Monte Carlo simulation across a wide range of wind speeds, which serve as the intensity 

measure of the demand. The failure fragility curve is developed from the comparisons as 

the ration of the number of times D exceeds C per wind speed to the number of samples. 

Theoretical results from the assessment are weighed against real failure observations to 

evaluate how closely the analytical method predicts failures. 

Sample Results: Wood Poles 

The capacity of distribution wood poles is characterized in terms of their fiber 

strengths. Experimental studies have shown that the following factors affect the fiber 

strength of a wood pole: 

 Species of the wood pole, 

 Geometric form (dimensions), 

 Moisture content, 
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 Pretreatment conditioning, and 

 Load sharing. 

Data from one year of inspections of wood poles in a real power utility are 

analyzed. The distributions of classes and heights of the 5, 792 poles are shown in Figure 

35. It can be observed from the histogram that classes three and five are significantly 

denser than other classes represented. No wood pole of class eight, nine or ten was 

inspected in the year analyzed. Seventy poles were class two poles while there was fewer 

than fifty of each of the other four classes. Due to the class distributions, fragility 

assessment is conducted for classes three and five poles alone. 

 

Figure 35 Number of poles per class for one year of inspection data in a real power utility, showing 

that there are significantly more wood poles of classes three and five than any other class, of the 

5,792 poles analyzed. 

 

The distribution of heights of the poles per class three or five is shown in Figure 

36, with their respective cumulative distribution function (cdf) shown in Figure 37. 

Empirical and fitted cdfs are found. A lognormal distribution effectively fits the sample 

of heights, as confirmed using a non-parametric Kolmogorov-Smirnov test of equality.  
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Figure 36 Distribution of heights of wood poles for classes three and five. 

 

Figure 37 Empirical and fitted cumulative distribution functions of heights of class three and five 

poles. The fit is for a lognormal distribution function. 

 

Using the parameters of the lognormal fit, 5,000 samples of heights of each class 

were generated with the Latin Hypercube sampling (LHS) technique. LHS is a 

constrained Monte Carlo sampling scheme used to obtain a smaller variance and faster 

convergence than that of the same sampling size of a conventional Monte Carlo 

technique. When used efficiently, it reduces the computational time of a stochastic 

sampling problem. The resulting cumulative distribution function (cdf) found using the 

LHS-sample is shown in Figure 38. 
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Figure 38 Cumulative distribution function (cdf) of heights, in feet, of poles sampled from the fitted 

lognormal distribution using the Latin Hypercube Sampling technique. 

 

The heights are required for generating the minimum groundline circumferences 

of wood poles from the American National Standards Institute (ANSI O5) standard on 

wood poles [3]. The dimensions of each sample of the utility poles including the 

minimum circumference at top of the poles, ground-line distance from bottom of the 

poles, minimum circumference at 1.8 m from bottom, and minimum circumference at the 

ground-line are thus obtained for each class dimension. These dimensions are required to 

estimate the moment capacity of the wood poles and determine the induced moments in 

the poles as a result of lateral wind pressures. 

The fiber strengths of the wood poles are derived as the product of some constant 

A and the ground-line circumference raised to a power B. The constants A and B are 

8,480 and 0 respectively for Southern pine poles [4]. Other than species and classes, 

another factor that affects the fiber strengths of wood poles is the mode of pre-treatment 

of the poles before installation into the distribution network. Poles that are dried by 

heating in a non-aqueous solution under vacuum are said to be boultonized. This process 

reduces the strength of poles. Steaming may also reduce the strength of poles. 

Assume the following proportions of modes of pretreatments of poles. The 

assumed percentage reduction in strength per pretreatment type is also given. 

 10% of the poles boultonized →10% reduction in strength 
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 10% of the poles steamed→15% reduction in strength 

 80% of the poles air-dried →0% reduction in strength 

The accepted calculation for the moment capacity of a pole at the ground line Mgl 

as given in [4] is  

.
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The distributions of moment capacities for the class three and five poles, with 

ground-line circumferences derived from wood pole databases, are shown in Figure 39. 

 

Figure 39 Distributions of moment capacity of class three and five wood poles. 

 

Five thousand samples of the moment demand of wind loads were generated 

using the LHS technique with the following assumptions on the variables in wind 

pressure F, for a given wind speed. The probability distributions and associated 

parameters for the wind pressure model provided in [5]is used in this study and presented 

in Table 5.  

Table 5 Wind load statistics for ASCE 7 load criteria (Ellingwood and Tekie, 1999). 

 Variables Distribution Coefficient of 

Variation (COV) 

G Normal 0.11 
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Cf Normal 0.12 

Kz Normal 0.16 

Kd Normal 0.08 

 

Using LHS, 5,000 random samples of wind pressure parameters are generated. 

These samples are randomly paired with the 5,000 random samples generated for the 

dimensions of the utility poles. The applied wind lateral forces on the poles for a given 

wind velocity are then calculated by determining the wind pressure on the poles using the 

sampled parameters and multiplying the resulting pressure by the sampled width of the 

poles. The induced moment in the poles at the ground level is then equal to the 

summation over height of the lateral forces times their distance from the ground. 

Combining the capacity and demand models, the assessment of the probability of 

failure of wood poles can be performed at a given wind velocity. Figure 40, for instance, 

shows the probability distribution of demand and capacity for classes 3 and 5 for the case 

where the wind velocity is 200 mph. The area of the section where the demand overlaps 

the capacity is the probability of failure. 

 

Figure 40 A plot of probability versus moment: The distribution of moment demands of wind loads 

and moment capacities of wood poles of classes three and five for V=200 mph in power distribution 

networks. 
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Repeating this analysis for a range of wind velocities will provide an estimate of 

the probability of failure of wood poles conditioned on the wind velocity which is 

essentially the fragility curve of the utility poles. The fragility curves of the poles in 

classes three and five are shown in Figure 41. Considering the distribution of the 

parameters involved in capacity and demand estimation phases, the standard deviation 

around the mean fragility curves is determined and the curves one standard deviation 

above and below the mean fragility curves are shown in Figure 41. 

 

Figure 41 Combined mean fragility curve of Class 3 and 5 wood poles (solid line)  1 standard 

deviation (dashed lines), excluding wind loads on overhead lines. 

 

The reported wood pole failures are from Florida Power and Light (FPL) as was 

published following the huge devastation caused by Hurricane Wilma of 2005. Table 6 

shows the proportion of failures of wood poles replaced by Florida Power and Light as a 

result of five historical hurricanes [6]. The maximum wind speeds experienced within the 

time window of Wilma were used for validation. The reported failure rates fall within one 

standard deviation of the fragility curve so obtained. It must be noted that the fragility 

assessment was done ignoring the effect of load sharing and the ages of the poles. The 

assessment models uncertainty of the capacity of new wood poles of different dimensions 

and classes. 

Table 6 Proportion of Florida Power and Light wood pole restorations after five real hurricanes [6]. 
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Year Name 

Poles exposed to 

74+ mph wind 

speeds 

% of exposed 

poles that failed 

Max Wind Speed 

(in mph) 

2005 Katrina 343,200 0.3 96.6 

2004 Frances 397,134 0.9 108.1 

2005 Wilma 773,700 1.5 117.3 

2004 Charley 222,666 3.1 149.5 

1992 Andrew 203,500 10.1 201.25 

 

 

3.2.2 A Second Predictor of Stress-Based Failure Risk: Age 

The vulnerability of components is expected to increase as they age, especially 

under extreme weather conditions. Incorporating aging into fragility assessment implies 

two dominant predictors of failures of components. Age is an important variable to model 

since the physical assets owned by electric power utilities are becoming very old. The 

average age of transformers, substations, underground cables, overhead lines and wood 

poles in the utilities continue to increase. Several around the country are already in excess 

of 40 years old, way past their average design lifetimes of approximately thirty-five years 

[7]. An age-dependent fragility model of the components would require that the capacity 

of the components be written as a function of time. 

Let the capacity of a component be represented by some random variable R, the 

age of the component by random variable T, and the aged state of the component at time 

t by some binary random variable D. The aged state could be severe decay in the 

component. Let D be equal to one if the component is found to be in the aged state that 

would make it highly vulnerable to failure and zero if it is not. Then the conditional 

expected capacity of the poles can be written as 
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Since random variable D is binary, the summation can be written as a sum of two 

expressions as given in 

 

(18) 

The first expectation to the right of the equality sign can be read as the expectation of the 

initial capacity of the component, assuming the aged state is the only time-dependent 

factor that affects its capacity. The last probability is the probability that the component is 

in an aged state. Finding the relationship between the initial capacity and the capacity 

after time t is useful in estimating the time-dependent expected residual capacity of the 

components at its aged state. By so doing, samples of demand and capacity can be 

generated using the Latin hypercube sampling technique. These are compared as in the 

previous subsection to develop the fragility model for a range of wind speeds.   

Sample Results: Wood Poles 

Deterioration of wood poles may occur over time (as they increase in age) from 

such environmental conditions as moisture content, temperature and oxygen. This is 

expected to reduce their capacity or strength. Environmental conditions differ all over the 

country. However, due to the scarcity of a variety of field test data, analysis of wood pole 

decay carried out in [8] is used in developing a model for age-dependent fragility 

assessment of wood poles.  

The age-decay relationship found in [8] was derived using field test data 

consisting of age, initial strength, and one effective ground-line circumference per pole 

for 13,940 wood poles. The ages of the poles ranged from 1 to 79 years with a mean age 

of 30 years. From these data, it was found that the percentage of decayed poles increases 

linearly and takes the form  
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where Per(.) is a time-dependent function that describes the percentage of decayed poles. 

From the regression analysis of field test data, the values of b1 and b2 are found as 0.004 

and 0.04 respectively. By extracting and analyzing values of the data-points in their 

publication, an exponential model was found to provide a good fit to the data. 

Clearly, Per(.) is the conditional probability that a wood pole at age t is decayed, 

that is, 

 

 

Therefore, 

 
( 

The use of min-max functions ensure that the postulates of probabilities are obeyed. 

Finally, E[R|D=1,T] in Equation (18) is the expected residual capacity of the 

decayed poles at age t.  The loss in the capacity R can be written as the multiplication of 

the initial capacity by the percentage loss as a function of age. 

 
 

where L is a time-dependent function describing the percentage loss in the initial capacity 

of the poles. Assuming that the decay process is statistically independent from the initial 

capacity of the poles as is realistic,  

 
 

Considering the fact that the current state of decay as well as the age of the pole 

does not impact the initial capacity of the poles, the equation can be further expanded as 

 
 

Using field test data, [8] showed that the strength loss percentage of wood poles follows 

also follows a linear model, 
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where Lspm(.) is the lost strength percentage mean, and a1 and a2 are the regression 

parameters found as 0.014418 and 0.10683 respectively. Consequently, one can write 

 

 

Substituting the equations into Equation (18), 

 
 

Figure 42 shows the expected residual capacity of the poles as a function of poles 

age for the case of linear and exponential fits to Per (t).  

 

Figure 42 Expected residual strength of the poles as a function of age. 

 

Incorporating the time-dependent capacity model of Equation (18) in the 

formulation of fragility models, a set of fragility curves are developed for wood poles of 

Classes 3 and 5 for various ages and for the two models of Per(t). These relationships are 

derived using Monte Carlo simulations with 20,000 samples generated through Latin 

hypercube sampling method. These fragility curves are shown in Figure 43. 

As the age of the poles increases, their probability of failure increases. This 

increase is not noticeable from age 0 to age 25 but the increase in the probability of 

failure becomes significant for older wood poles especially for the exponential models 

(Figure 43 b, d). The curves also show that newer distribution wood poles are not 
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susceptible to damage from low category hurricanes (under 100 mph) as are aged poles. 

In the coming years, electric utilities may start to experience annual failures of old wood 

poles rather than failures in years of severe (category 3+) hurricanes as the average ages 

of their older poles increase. 

 

 

Figure 43 Fragility curves of utility poles of (a) class 3 with linear model for Per(t), (b) class 3 with 

power model for Per(t), (c) class 5 with linear model for Per(t), (a) class 5 with power model for 

Per(t). “C” is the capacity of the wood pole and “D” is the demand of wind on the poles. 

 

3.2.2.1 Onset of Increasing Fragility by Age 

The developed framework for age-dependent fragility assessment of components 

is useful for understanding the impact of preventive maintenance on components as they 

age. For each possible simulated wind speed, the difference between the probability of 
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damage or failure of a newly installed component and that of a component that has been 

in service for a longer period reflects the benefit of preventive replacement of older 

components. It represents failures that have the potential to be averted. 

In the age-based scenario of failure analysis, which assumes mild or regular 

environmental stress, the suggested start-age of component inspections is logically the 

threshold or onset of increasing failure risk. Similarly, the start-age in a combined stress 

and age-based failure scenario is recommended to be the age at which the difference in 

fragility or the probability of wind-failures becomes evident. The failures of components 

that have been in service for short periods of time cannot be regarded as negligence. They 

constitute random failures (with or without preventive measures). Thus, inspecting them 

would be of no benefit to the electric utilities. 

Significance may be measured in terms of a simple average of the difference 

between pairs of fragility curves (for an older component relative to a new component) or 

statistically using a two-sample t-test for means. Modifying the notations of Equation 

(17) from P(C<D|IM), where C is the capacity of the component, D is the demand of the 

wind load on the component and IM is the intensity measure (wind speed) to Pf(w, t), 

where w is the wind speed and t is the age of the component, the measure of difference in 

fragility curves is defined as 

 

where MD(t) is the average of the differences between fragility curves of age t and the 

fragility curve of a new component, Pf(w, t) is the failure probability at wind speed w and 

age t, and nw is the number of simulated wind speeds used in generating the fragility 

curves. 

For age t at which the difference is small, the measure MD (t) is expected to be 

negligible. However, at some age of significance, the measure should become noticeably 
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greater than zero. The t-test may be used to provide some information on the statistical 

significance of their differences. 

Sample Results: Wood Poles 

The age-dependent fragility curves generated for wood poles are analyzed to 

estimate the age at which difference in fragility becomes evident. The measure MD (t) is 

found for t = 25, 50, 75 and 100 years using the linear and power models of degradation. 

Results are shown in Table 7 using 100 simulated wind speeds from 0 mph to 300 mph, 

with both extremes being very unlikely in high-wind events in the United States. The 

results show a relatively low value of 0.005 obtained for t = 25 years when all the wind 

speeds are used. 

Table 7 The average difference of the fragility curves are shown as MD(t) for t = 25, 50, 75, 100 years 

using 100 simulated wind speeds . The recommended minimum age for inspections is highlighted in 

bold. 

Ages of poles 25 years 50 years 75 years 100 years 

Linear model MD(t) 0.006 0.044 0.126 0.183 

Power model MD(t) 0.005 0.049 0.186 0.349 

 

 

The ratios between consecutive measures MD(t) may be regarded as the increase 

in failure risk for the 0 – 250 mph range of hurricane wind speeds between the pole ages. 

For the linear model, where MD(100) is about 30 times MD(25), it could be said that the 

failure risk for the simulated speeds increases by a factor of about 30 between the ages 25 

and 100 years. The age 25 years is recommended as the minimum age for pole 

inspections given the estimates in the table. 

Running a two-sample t-test on the fragilities per age, where one sample is that of 

0-year old poles and the other is one of 25 - 100 years old, the p-values of the t-statistics 

can be used to determine statistical significance of the differences between the fragilities. 
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Table 8 shows the results. For both the linear and power models, the p-values are below 

the 0.05 level for ages ≥ 50 years. However, the p-value reduces by about half between 

ages 25 and 50 years. The table provides some statistical corroboration to decision-

making using the metric MD (t). 

 

Table 8 Mean of fragilities per age and p-values of the t-statistics of the difference between fragilities 

with the null hypothesis being that the fragilities are equal and α = 0.05. 

t (years) 0 25 50 75 100 

Mean Pf (t,w) for linear model 0.267 0.273 0.311 0.395 0.453 

p-value for linear model - 0.918 0.486 0.049 0.005 

Mean Pf (t,w) for power model 0.267 0.272 0.317 0.456 0.622 

p-value for power model - 0.932 0.439 0.004 0.000 

 

3.2.3 A Strategy for Prioritizing the Geographic Scheduling of 

Component Inspections using Environmental and Fragility Risk: 

Development of the Inspect Index 

Exposed power system components that are geographically spread around a large 

area served by a power utility, like a state or several counties in the state, tend to be 

inspected geographically. This works best logistically for inspection companies. Usually, 

the region with the oldest population of components is inspected first. Then, in 

consecutive years of inspection, the surrounding regions are inspected progressively 

based on proximity and inspector allocation till the number budgeted to be inspected in a 

year is met. This method makes it easy to track the components in the schedule that have 

already been inspected. The technique, though sensible, can be improved by the inclusion 

of fragility and environmental stress risk assessment of the components. This involves 

both age, as has partly been discussed in the former subsection, and historical hurricane 

information. 
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Component age data in different regions of a power utility can be extracted from 

geographical information systems (GIS), while hurricane data on each region may be 

obtained from different hurricane databases. One such database is the Historical 

Hurricane Track archive from the National Hurricane Center of the National Oceanic and 

Atmospheric Association (NOAA). Unisys and HurricaneCity are other sources of 

hurricane information. Using the age-dependent model on fragility assessment of a power 

system component, an index by which to identify regions of a power utility to inspect 

annually is developed.  

The decision index developed is called an “inspect index” for identical 

environmentally stressed aging components per district or county served by a power 

utility. The intention is that inspections of the components can be scheduled 

geographically by sorting respective districts in descending order of the inspect index. 

The inspect index per district or region is defined as the evaluation of the fragility curve 

at a point s for age a. 

 

),,( aaf twPexInspectind   

(19) 

where wa is the average of all historical hurricane wind speeds in the region greater than 

the maximum no-effect wind speed derived from the fragility curve of the component and 

ta is one standard deviation more than the average component age (or the average 

component age past the minimum age of inspections) in the same region. The maximum 

no-effect wind speed is the minimum wind speed at which the loading or moment 

demand of the hurricane can exceed the moment capacity of the component. In other 

words, for greater wind speeds than the maximum no-effect wind speed, the fragility of 

the component is greater than zero. The standard deviation is used as a worse care 

scenario age since its failure risk would be higher than the average age. 

See Figure 44 for illustration.  
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Figure 44 Illustration of derivation of the “inspect index” for a component in a county or district, 

signifying the fragility-risk of components in that region given historical hurricane information.  

 

A flowchart of the scheduling of components for inspections is shown in Figure 

45. It begins with a selection of cities served by a power utility. Data on component 

locations and hurricane data are extracted from GIS and hurricane databases per city. The 

respective ages and wind speeds are used in determining the inspect index as illustrated in 

Equation (19) and Figure 44. The indices are sorted in descending order for selection of 

the highest priority cities. In each city or district, only nci components that are over the 

recommended start-age of inspections as found in subsection 3.2.2.1 are selected for 

inspection. Assuming the inspection interval or schedule is set at c years, the excess of 

∑nc[i] (the sum of all components over the start-age in the ordered cities) from the number 

of components planned to be inspected per year (N divided by c) is scheduled for the 

following year(s). If there are no excesses, the cumulative cost of components not 

inspected represents savings in adopting this strategy relative to the traditional strategy of 

the utility. 
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Figure 45 Flowchart of strategy for scheduling inspections of environmentally stressed aging 

components in electric power utilities, where MNE stands for maximum no-effect winds, City [i] is an 

ordered list of cities, nc[i] is the number of components over the inspection start-age of components 

for the ordered list of cities, N is the total number of components owned by the electric utility and c is 

the inspection interval or schedule. 

 

The inspect index should be determined each year since the age distributions 

(average ages) of the components per county or region may change annually with 

replacements of failed components or components replaced preventively. The proportion 

of components in each ranked region inspected in a year should be a function of their 

relative inspect-indices. For instance, if two regions have the same index, an equal 

number of either should be inspected in that year. The number of components inspected 

per year should coincide with the utility budget and should not include those recently 

inspected. The inspection intervals for most components are often set by inspection 
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companies and communicated to the power utilities. Scheduling represents a consulting 

need for power utilities. Thus, it is defined to be a choice variable in Chapter 5 for the 

optimization of preventive replacement programs for environmentally stressed aging 

components. 

3.2.4 Economic Effects of Component Replacements 

The replacement of any component comes with a charge. It includes the cost of 

purchasing new or spare components, the cost of locating the component for “change-

out,” the accessibility of the component at the time of change-out, the labor involved in 

replacing the component, the time of replacement, among other charges. Corrective 

replacement is best when the consequences and costs arising from failures of a 

component are low. On the other hand, preventive replacement is best if component 

failures lead to severe costs and consequences.  

3.2.4.1 Replacing Components Correctively versus Preventively 

By running components to failure, the utility incurs costs of corrective 

replacement. During inspections, components that are diagnosed to be below some safety, 

electrical or reliability standard may be scheduled for replacement (preventive 

replacement). The cost of replacing components after a failure is sometimes greater than 

the cost of replacement during inspections. This depends on a number of factors, some of 

which are listed below. 

 Time of replacement of the component: When critical components fail, 

technicians may be sent to the site of the component at off-hours in the 

day. This could result in overtime hours billable to the utility. The United 

States Department of Labor (DOL) has rules covering certain employees 

under the Fair Labor Standards Act (FLSA). Using specified guidelines, 

such employees may receive overtime of at least one and one-half times 
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their regular rates of pay. When the replacement occurs during normal 

working hours (as for preventive replacements or corrective replacements 

that occur during normal working hours), overtime pay does not count. In 

addition, when the number of components that fail exceeds the number of 

spare components, the cost of rush deliveries of the components may be 

significantly higher than the cost of normal deliveries of the components. 

 Union or non-union workers: Say employees performing corrective or 

preventive replacements in a certain state are union workers. The 

difference in labor costs for either type of replacement remains unchanged 

during normal work hours. However, the difference arises outside normal 

hours where overtime rates may apply. Unions have been known to make 

significant efforts in securing good employee benefits. Thus, overtime 

rates for change-out technicians in a union may be higher than those of the 

technicians not in a union. 

  Accessibility of components: The grid as a whole is not yet completely 

“smart”. As such, it is not always easy to locate failed components. When 

they are located, gaining access to the component may be difficult, 

especially when failures occur during bad weather conditions like floods 

and storms. This may cause the cost of replacement in such circumstances 

to be higher than normal. On the other hand, when the replacement occurs 

during times of inspection, the “change-out” personnel typically knows the 

location of the component and often comes prepared (with the right tools) 

to do the job. 

 External utility workers employed: When replacements occur following 

harsh storms, utilities are sometimes forced to solicit help from 

neighboring utilities and contractors. Press releases and studies show that 

the number from past hurricanes sometimes exceeds one thousand. 
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 Location of the utility and components in the United States: The cost of 

replacing bulky power system components in the West coast is different 

from the cost in the East cost. For instance, preventive replacements of 

wood poles in the Southeast may cost less than $4,000 per pole versus 

over $12,000 in California. The cost of replacing a wood pole after a 

storm may be over five times its regular cost in the southeastern region of 

the country, while the factor may be smaller in the West. 

In general, the cost of replacing components correctively especially in times of 

harsh weather could be significantly higher than the cost of replacing components during 

inspections. However, because of the variety of components replaced in such conditions, 

it is often difficult to distinguish between the costs specific to one particular group of 

components.  If component failures were self-announcing, the location and timing of 

replacements would be straightforward, but since most failures are not self-announcing, 

the challenges in replacements continue. 

In prior research,  the cost ratio between corrective and preventive replacements 

has been used to show potential benefits from choosing preventive measures of 

component management over corrective measures. As the cost ratio increases, the benefit 

of preventive measures increases also. 

Sample Results: Wood Poles 

The locations and ages of wood poles inspected in the years 2000 and 2001 in a 

real power utility were extracted from the utility inspection database. Historical hurricane 

information on these locations was found and the average of the high intensity hurricanes 

(those over “Category 3”) obtained. Note that Category 3 hurricanes are over 96 knots or 

111 mph. This speed is used as a threshold because fragility assessment showed that the 

probability that a newly installed wood pole that meets NESC and ANSI specifications 

hit by a hurricane under 96 knots is negligible. 
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The average wind speeds and one standard deviation of the average ages of the 

poles in the locations of the wood poles over the two years of inspection are shown in 

Figure 46. Data extracted from both years of inspections show that the same general areas 

were inspected twice, though the same wood poles were not inspected. The different 

regions (dashed boxes) shown in the figure were allocated to different inspectors in each 

year.  

 

 

Figure 46 Regions of a power utility, where wood poles were inspected in 2000 and 2001, showing the 

numbers in parentheses (#, #) as the historical averages of wind speeds from 1900 to present in mph 

and one standard deviation of the average ages (in years) of the poles inspected in the regions 

respectively. While Region 2 has the highest inspect index, Region 1 has the least. 

 

The color-coding of the regions in the figure: red for Region 2, orange for Region 

4, blue for Region 3 and green for Region 1, is used to show the suggested priority order 

of inspections, where red represents high priority and green, low priority. The wind 
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speeds and average ages were compared to the appropriate fragility curves and ordered. 

The risk of poles in Region 2 through Region 1 in order is evaluated at inspect-indices 

equal to 2.8x10
-4

, 2.7x10
-4

, 1x10
-5

 and 0, using the linear model of degradation for the 

age-dependent fragility curves. The rankings are the same even when the exponential 

model is used though the specific risks differ. Since the indices for Region 2 and Region 

4 are very close and much greater than that of Region 3, an equal number of either should 

be inspected in one year. 

Using a minimum age of 25 years as the minimum age for inspections of wood 

poles as from Chapter-section 3.2.2.1, the power utility saves some cost and reduces its 

pool of searching for poles most at risk. The latter increases the likelihood of inspecting 

and potentially replacing at-risk poles before they fail. The numbers and costs of 

excluding either under-20 or under-25 year old poles are shown in Table 9. The search 

volume is reduced to 40% of the original inspection volume by inspecting poles over the 

age of 25. 

The table shows that for a unit cost of inspections Ci of $20, the utility stood to 

save over $1.5 million in 2000 by excluding under 20 or 25 year old poles; in 2001, over 

$2 million. In a year of high wind speeds (105 mph), assuming the number of poles under 

20 or 25 years are uniformly distributed, the numbers failing for either differ by less than 

100, translating into $200,000 savings for inspecting poles between 20 and 25 years old. 

While the total cost is less for 25 year old poles as highlighted in the table, either is 

recommended as the minimum age for inspections. 
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Table 9 Number of wood poles inspected in years 2000 and 2001 from an inspection database and 

costs of excluding poles less than 20 or 25 years using an inspection cost Ci of $20 per pole. The cost 

of failures less than either minimum age is used with the inspection cost to determine the benefits of 

recommending either 20 or 25 years. 

INSPECTION YEAR 2000 2001 

N poles 141,929 196,143 

Ci $20 $20 

Total for inspecting all N $2,838,580 $3,922,860 

Cost of inspecting N > 25 years 55,809 => 

$1,116,180 

77,426 => 

 $1,548,520 

Cost of inspecting N > 20 years 68,736 => 

$1,374,720 

94,567 =>  

$1,891,340 

Cost of one failure $2,000 $2,000 

At 105 mph, cost of failures for 

fragility ≈ 0.005 on average for N ≤ 25  

431 =>  

$862,000 

594 =>  

$1,188,000 

At 105 mph, cost of failures for 

fragility ≈ 0.005 on average for N ≤ 20  

366 =>  

$732,000 

508 =>  

$1,016,000 

Cost of inspecting N > 25 only + 

Failure cost for N ≤ 25 

$1,978,180 $2,736,520 

Cost of inspecting N > 20 only + 

Failure cost for N ≤ 20 

$2,106,720 $2,907,340 

 

 

Since the inspect-indices of the regions in Figure 46 were found to be 2.8x10
-4

, 

2.7x10
-4

, 1x10
-5

 and 0, the proportion of poles to be inspected in each region (Region 2, 

Region 4, Region 3 and Region 1) in order is approximately 50%, 50%, 0% and 0% of 

the number of poles budgeted for inspections in that year. 
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3.3 Summary 

Useful decisions that may affect utility expenditure on component replacement 

are made by acquiring and analyzing complete failure information on the components. 

For failures that are approximately  age-based (possibly failures in mild environmental 

conditions), an exponential assumption on time segments of times-to-failure of the 

components can be very helpful in predicting the distribution function of future failures 

and for detecting an onset of increase in the failure risk. 

In the earlier part of the chapter, an exponential failure dataset is analyzed as a 

precursor to failure datasets that have an increasing failure risk with age. Using a Gamma 

distribution, which is a conjugate prior to an exponential likelihood function, an 

algorithm was developed to obtain a closed-form solution to the predictive distribution of 

times-to-failure of components surviving by some present time instant using Bayesian 

statistics. The benefit of the methodology is that it does not rely on the rate parameter of 

the failure dataset, which is unknown at the beginning of observation. Instead, it uses the 

observed times-to-failure, the original number of components in the population, the time 

instant of analysis, and the parameters of the Gamma prior.  

One limitation to the algorithm for application to real components is the 

unavailability of complete failure records. When the times-to-failure of proportions of a 

population of components are missing and say, missing completely at random, the 

algorithm tends to overestimate the expected time-to-failure of the surviving components. 

There are no known methods for compensating for the loss of information since it is not 

possible mathematically to produce or invent information that does not exist, though 

assumptions could be made from known data. An evaluation of the extent of wrong 

information can be deduced from missing failure data is conducted in this chapter. For a 

population where only 0.5% of the population had failed by the time of analysis, 

assuming that 50% of the failure was missing completely at random, an overestimation of 
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the rate parameter by about 27% was observed. The lesson in this evaluation is the 

importance of storing failure data: a mechanism that automatically records the time-to-

failure of power utility components in a system would be beneficial. 

Another limitation to the developed algorithm is a mix of the restriction of the 

prior density of the rate parameter to the Gamma density function and the assumption that 

the hazard risk of a component is exponential; when in general, most components show 

some type of bathtub shape. However, the ease of use of the exponential distribution may 

be exploited by modeling times-to-failure of components within an appropriately sized 

window as though they were from an exponential distribution of unknown rate parameter.  

An algorithm was developed to estimate this rate parameter by assuming a doubly 

censored exponential dataset within a sliding time window. The failure risk of the 

component was therefore built gradually over time. Given that power utilities can take 

timely actions in performing preventive measures on their components, an algorithm that 

detects the onset of failure risk was integrated into the hazard estimation algorithm. For 

real replacement data and a synthesized dataset consisting of times-to-failure of different 

population-sizes generated using a Weibull distribution of scale parameter 50 and shape 

parameter 7 with a simulated onset at 30 years, the developed algorithm detected major 

increases in failure risk. A Kalman filter was used to determine the dynamic state of the 

failure process (smoothing the time-varying exponential rates). Extreme value theory was 

applied to detect the onset of increasing failure risk.  

The high failure-volumes of sets of components under environmental stress 

prompted research into reliability of those components under stress. In structural 

engineering, this field deals with the fragility assessment of the components. The 

reliability analysis here is no longer with respect to time or age but the intensity of stress. 

Fragility curves were developed for new wood poles and the results compared to actual 

failure rates from known historical hurricanes. The fragility curves were found to 

estimate the actual events well within one standard deviation of the mean curves. 
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A key issue facing the power industry of late is that of aging infrastructure. So, 

aging of the environmentally stressed components was incorporated into the fragility 

model to evaluate failure risk. By applying an age-deterioration function from literature 

to the fragility function of the components, a framework was developed for generating 

age-dependent fragility curves of the components. For some intensities of stress, the 

performance of all ages of components was unchanged. However, for increasing 

intensities and ages larger than a certain threshold, the difference in performance became 

evident. 

The developed frameworks and fragility curves were used in generating cost-

efficient strategies for component inspections and creating inspection schedules. The 

mean differences between fragility curves of different ages compared to the fragility 

curve of a new component were used in identifying the age at which probability of failure 

across several levels of environmental stress became significant. This became a measure 

to define the recommended minimum age at which the environmentally stressed 

components should be inspected. The recommendation could potentially lead to millions 

of dollars in annual savings for the utility. It also improved the chances of inspecting, 

detecting and preventively replacing high-risk components. The fragility with respect to 

average age of components in a given region and the average maximum wind speed in 

that region were used as an index for ranking regions for inspection according to failure 

risk.   
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4 PREDICTIVE MAINTENANCE: DIAGNOSTICS AND PREVENTIVE 

REPLACEMENT OF HIGH-RISK COMPONENTS 

Introduction 

The terms “inspections,”  “tests,” and “diagnostics,” are used to describe 

processes of qualification, verification and quantification of the extent to which a 

component is functioning and meeting design intent. Inspection focuses on condition 

parameters that can be visually, audibly or otherwise sensed by human beings and that 

have relation to deterioration (e.g. corrosioin, rot, discoloration, signs of leakages, etc). A 

test on the other hand could be defined as a verification of a certain aspect of component 

condition or health. Tests normally involve measurement equipment, focus on a single 

condition parameter, and have clear procedures and standards against which the results 

can be screened. Yet, both inspection data and test data can be used to assess the overall 

component condition. Lastly, diagnostics involve measurement equipment and typically 

focus on combining several condition parameters and have less defined pass/fail 

standards as is the case with single parameter tests.  

Each one of these techniques, or all combined (as data collection input) allow for 

the determination of the condition or health of a component with the conclusion of 

deciding whether a maintenance operation should be performed on the component. 

Recommended actions or predictive maintenance operations are logical follow-throughs 

of diagnostics. Yet one technique that provides more accurate data may be more invasive 

and expensive than the other. Hence, this chapter suggests a framework for the optimal 

combination of these techniques. The three terms will be used interchangeably in this 

chapter.  

This chapter deals with developing a risk-informed process for making decisions 

on performing maintenance operations on components. The risk here is one of the 
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inaccuracies of diagnostic tests, and the maintenance operation covered is the preventive 

replacement of a component diagnosed to have fallen below performance requirements. 

Diagnostic tests are supposed to be non-destructive evaluations of the health of 

components. They should produce the same results of health as destructively testing the 

components. Here, destructive tests are used as the “gold standard” of the health of a 

component; comparison with diagnostic tests will give information on the accuracy of the 

diagnostic test. 

Maintenance operations vary by components, costs and effect on failure-risk of 

components. Preventive replacements are by far the most expensive maintenance 

operation on a component. Some researchers do not view it as a maintenance operation 

while others do. It is classified as a preventive maintenance operation here since it is one 

possible follow-through from running diagnostics. It could be the single recommendation 

when other maintenance operations do not improve performance of the component or are 

unknown.  

Navigating this Chapter 

 

The focus of this chapter is the increase of diagnostic validity and accuracy in 

identifying components that fail to meet reliability standards by combining condition-

classifications of multiple diagnostic tests. The complexity of the algorithms that 

compute the combined accuracies increases with the number of testing methods carried 

out serially on one sample of identical components. 

Components sampled from the group already scheduled for preventive 

replacement are suggested for long-term assessment of diagnostic accuracy so that the 

loss of capital to the electric utility is small. This increases the sample size of components 

for destructive testing though narrowing assessment to only one type of accuracy 
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measure. The effect of length of the accuracy assessment period on utility spending is 

evaluated. 

Statistical and subjective approaches found in literature are applied to accuracies 

of multiple diagnostic tests for ranking purposes, but are less practical from a business 

point of view in selecting the optimum diagnostic testing method. An economic analysis, 

on the other hand, is performed as a more persuasive and practical decision tool. 

Statistical and combinatorial logic approaches are applied to classifications of 

individual diagnostic testing methods relative to classifications from destructive tests to 

obtain the best combination of tests that minimize misclassification costs in replacements 

or failures of components.  

4.1 Analyzing the Accuracy of Individual Diagnostic Tests 

The techniques applied in monitoring the conditions or health of power system 

components are numerous and varied. Components with several mechanical parts may 

receive multiple diagnostic testing on each part. The outcome of which may involve 

preventive replacement of parts at different times during the lifetime of the component. 

The decision to preventively replace the entire component may then be based on the 

series or parallel connection of the parts or the health of critical parts of the component.  

Selection of a diagnostic testing company for each group of components depends 

on the cost of the test, sensitivity of the test, location of diagnostic vendors (for 

import/export reasons), among others. Testing methods differ with components. Megger, 

TTR and Doble tests are applied on transformers for predictive maintenance purposes. 

Visual inspections, sound and bore tests, and transmission of signals are a few tests 

performed on wood poles, which support overhead lines, to determine deterioration, 

reliability and strength of the poles. 

The fields of epidemiology and biostatistics are replete with statistical and 

mathematical methodologies for the assessment of diagnostic test accuracies and 
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classifications of test subjects as healthy or not healthy. A control group is used as a 

baseline for comparing symptoms or progression of a disease in a test group. Similarly, 

for non-living subjects: power system components in this case, two groups used for 

assessing the accuracy of diagnostic tests could be a healthy group that passes destructive 

tests and a non-healthy group that does not. For ease in referring to the two groups, 

components that meet reliability standards or pass a destructive test are called good 

components. Those that do not are called bad components. Note that destructive tests are 

used here because the focus is on components that fail mechanically (from environmental 

loading). Destructive tests yield accelerated results compared to waiting for natural 

hazards to occur before analysis of accuracy.  

4.1.1 Measures of Diagnostic Accuracy 

Common measures used to characterize the accuracy of a diagnostic test are  

 Sensitivity: The probability that a bad component is detected by a 

diagnostic test, P (positive test | bad component). 

 Specificity: The probability that a good component is accurately classified 

by a diagnostic test, P (negative test | good component). 

 Positive predictive value (PPV): The probability that a component that 

tested positive is bad, P (bad component | positive test). 

 Negative predictive value (NPV): The probability that a component that 

tested negative is good, P (good component | positive negative). 

Since the measures are probabilities, they must obey the postulates of probabilityand fall 

within the [0, 1] interval. An illustration of the classifications between destructive and 

diagnostic tests is given in Figure 47. 
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Figure 47 Illustration of the classification of components as good and bad based on destructive test 

results (lower sets), and predictions of conditions of the components using diagnostic testing (dashed 

sets). The circled markers are inaccurate diagnoses of the conditions marked by squares.  

 

Notice that the areas of intersection in the Venn diagrams differ. This reflects higher 

predictions of good components (diagnostic negatives) than bad components (diagnostic 

positives). That is, the diagnostic tests are less likely to classify a good component as bad, 

than a bad component as good. 

Mathematically, given N components in a field trial classified as follows: x 

components that test positive, y components that test negative, m bad components and n 

good components, a 2x2 contingency table for classification is in Table 10.  

Table 10 2x2 contingency table for classification of conditions and diagnostic test results of 

components. 

Destructive test (Health 

of the component) → 

 

 

Bad component 

 

 

Good component 

 

 

Total Diagnostic test result     

↓ 

Positive a b x 

Negative C d y 

Total m n N 

 

Estimates of the measures of accuracy are given below.  



 117 

 

(20) 

 

(21) 

 

(22) 

 

(23) 

Bootstrapping may be applied to a small set of sample results to determine the 

statistics of the measure of accuracy by assuming observations from the component 

population are independent and identically distributed. The re-sampling method usually 

produces a larger sample size per run than the original size.  A 95% confidence interval 

of the accuracy measure would be [0.025*K-th element, 0.975*K-th element] of the 

sorted elements from the bootstrapping experiment, where K is the number of 

bootstrapped samples.  

A binomial proportion confidence interval (CI) may also be generated for the 

measures by assuming that success is the accurate diagnosis of the condition of a 

component and failure is the inaccurate diagnosis for each trial on the N components. 

This method relies on the assumption of a binomial distribution. Using a normal 

approximation interval for large enough sample size N, the CI found by approximating 

the binomial distribution with a normal distribution is 

 

where ŵ  is an estimate of any of the previously mentioned measures of diagnostic 

accuracy, z1-α/2 is the 1-α/2 percentile of a standard normal distribution, and N is the 

number of components on test. 
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4.1.2 Sampling Power System Components for Destructive Tests 

An arbitrary, usually small, number of components are often used in running 

destructive tests with the goal of either learning about components: how they react in 

different environments, or evaluating the accuracies of diagnostic testing procedures on 

the components. Some examples are five components in [1],fifty components in [2], and 

eighty-eight components in [3]. The advantage of using small samples is that testing costs 

are low; the disadvantage, that bias in results may occur. In general, the following are 

important issues to consider. 

 Identification of samples to test: Since destructive tests used  in evaluating 

diagnostic tests incur costs for the purpose of gaining information, the 

components selected for testing should not affect power delivery 

unjustifiably. They should not cause shutdown of power. 

 Determining a sufficient number of test samples to avoid bias in 

estimation: The dimensions, material and other properties of the same type 

of some components vary greatly. Their performance in destructive tests 

may therefore differ. Without appropriate representation of components, 

especially when sample size is very small, estimated diagnostic accuracies 

will be biased. 

 Justification for carrying out destructive tests: of the idea of destructive 

testing of utility components for evaluating diagnostic tests is a hard idea 

to sell to an industry that has been conducting service in the same way for 

decades. The value or worth of a diagnostic test should be clearly stated. 

Using dollar values is expected to be more persuasive than presenting the 

statistics of accuracy of a contracted diagnostic test provider. 

These points are addressed in this subsection. 
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4.1.2.1  Smart  Selection of Destructive Test Samples 

The cost of performing destructive tests may seem looming in an industry that 

tends to be rigid in its management operations. This is especially so when the benefit of 

the tests is unquantifiable or stated incomprehensibly. Thus, to keep costs low, external 

researchers sometimes request only a few components from the utilities to run tests. The 

utilities are not always cooperative.  

Rather than persuading utilities to relinquish their in-service or operational 

components for destructive tests, a natural selection of potential destructive test samples 

occurs annually for aging utility components. For instance, the public service commission 

in the state of Florida mandates that wood poles be inspected every eight years. During 

these inspections, wood poles considered below standard are scheduled for replacement. 

Since these wood poles or other such components are not recommended for further use in 

the electric utility industry, they can be transported to external researchers for testing. 

Either the utility or the testing agency, as the utility sees fit, may then bear the 

responsibility of the costs of transportation, testing and eventual disposal of the 

component. Figure 48 is an illustration of the components that are a part of an annual 

utility inspection database and also candidates for destructive testing. This selection of 

components should therefore not influence system reliability when they are given to 

researchers. 
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Figure 48 Illustration of annual destructive tests performed on some proportion of unique 

components (with label “R”) that test positive over n years of inspections for estimation of the 

positive predictive value (PPV).  

 

The setback to this set of components scheduled for replacement is that only the 

positive predictive value (PPV) of a diagnostic test can be estimated. The selection of 

components for evaluation of the negative predictive value (NPV) may be accomplished 

using the former challenging strategy of writing proposals to the electric utility. That is, 

components that passed diagnostic test evaluations or that were not scheduled for 

inspection in some present year may be destructively tested.  

4.1.2.2 Determining a sufficient sample size of destructive tests for assessment 

of diagnostic positive predictive value 

A small sample size may lead to a biased estimate of positive predictive values 

(PPV), but will cost relatively little. Though increasing the sample size may improve the 

estimate, it will increase the cumulative cost of the destructive tests. Assume that the 

utility is interested in sponsoring the research on the evaluation of diagnostic test 

accuracy. Since management budgets are typically revised and allocated yearly, the 

assessment of diagnostic test accuracy may be a long-term process. In other words, a 

portion of each annual budget can be assigned to destructively testing a proportion of 

replaced components. In each consecutive year, more tests are carried out and integrated 
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with test results from prior years. The number of years that experimentation should be 

carried out depends on these factors. 

 Steady-state (stability) in the estimate of the positive predictive value 

(PPV) 

 Economic value to the power utility of conducting the destructive tests. 

Technically, conducting the tests does not directly reduce or increase replacement 

costs or safety. Performance results of diagnostic test procedures are instead provided to 

support better decision making, leading to improved diagnostic process performance and 

better allocation of utility expenses.  

4.1.2.2.1 Long-term assessment of diagnostic accuracy: positive predictive value 

The estimate of the predictive value of a diagnostic test using a small sample size 

is expected to be biased. This is especially the case when the types of components tested 

have large variability in material properties or effects of age on their performance, though 

the components are otherwise identical. Interpretation of the statistical results in such 

cases may be misleading. For instance, during the NEETRAC evaluation of wood-pole 

diagnostic testing procedures, where 50 wood poles were broken to measure pole 

strengths, a diagnostic test provider considered leading in the market was found to be 

largely insensitive in detecting poles below ANSI standard.  

In the provider’s defense, the material properties of poles and the differentiation 

among pole species cause decay to occur in sometimes invisible areas. The leading 

provider, under the assumption that the majority of poles fail in the ground-line, restricted 

identification of decay, which is considered related to strength, to the ground-line. 

Meanwhile, the majority of the tested poles had properties that caused them to fail above 

the ground-line. Thus, the provider was unable to detect the majority of these poles. 

Publication of such performance results on diagnostic providers requires qualification of 
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the types of components likely to be undetected by the provider, and what types are likely 

to be detected. This entails large sample sizes for experiments. 

An increased sample size can be accomplished in either one year or annually by 

combining new destructive/diagnostic test results with results of prior years, depending 

on the utility budget. Large sample sizes would go a long way to reduce bias in PPV 

estimation early and provide more confident information. In the absence of real-life 

results, long-term assessment of a diagnostic test is simulated in this section under the 

following assumptions.  

1. The accuracy of a diagnostic test is fixed from year to year. 

2. The components tested are identical and do not have much variability. 

3. The accuracy of a diagnostic test for all ages and material properties of 

components is the same. That is, the test does not perform better for 

certain ages for instance, compared to others. 

The estimate of the PPV for each consecutive year is a combination of the results 

from the previous year and the destructive test results in the present year. Thus, with each 

year, new information is acquired and the confidence interval of the mean is reduced 

since the sample size increases with every year. 

Assuming initial bias from the first-year estimate of the positive predictive value 

of the diagnostic test, the optimum time to terminate destructive tests or have confidence 

in the estimated PPV is when steady-state characteristics are observed. In [4], 

Pawlikowski provides a listing of methods in literature used to determine the initial 

transient period in queuing theory: time before steady-state occurs. Since effectiveness of 

the decision rules varied by application or were unavailable, the coefficient of variation, 

which is sometimes found to be superior to variance in some applications, like in [5], is 

used here.  

At steady-state, 
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where the first term in the inequality is the average PPV found for the n-th year of 

simulation, PPVx is the steady-state estimate of the PPV: represents the true value of the 

PPV and εx is some threshold of maximum allowable difference between the annual 

estimates and the steady-state response: implies approximately no bias in estimation of 

the PPV. The coefficient of variation (CoV) per year of running the destructive tests is 

 

where the numerator is the standard deviation of the mean of the PPV in the n-th year and 

the denominator is the mean or average of the estimate in the n-th year. The objective in 

this section is defined as estimation of the number of years within which the coefficient 

of variance is small enough, for a given proportion of replaced components that are 

candidates for destructive tests. 

For presentation to management, the coefficient of variation in this context is 

analogous to a measure of risk per unit return on evaluating the PPV with a proportion of 

the preventive replacements. A PPV of 0.6 implies that 60% of components preventively 

replaced were truly below specifications, standards or requirements. So, if the utility 

spent $1,000,000 in preventive replacements of 500 components at a rate of $2,000 per 

preventive replacement, the positive impact is in 60% of that cost or $600,000. Similarly, 

the wasted investment is in $400,000 of components that were replaced prematurely. The 

utility would work to reduce the latter cost by either finding another diagnostic test 

provider or encouraging the current one to improve. 

Using a wide margin of uncertainty in PPV, say 0.5 to 0.7, the utility would 

estimate a loss between $300,000 and $500,000, which gives a $200,000 difference. A 

much smaller variance implies a better estimate of the positive predictive value, and 
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therefore a better estimate of the cost of retaining the utility’s current inaccurate 

diagnostic test. 

4.1.2.2.2 A Framework for Defining the Economic Value of Conducting 

Destructive Tests 

It was previously mentioned that a justification for conducting destructive tests 

can be challenging since the power industry tends to be inflexible in management 

practices. Unfortunately, researchers are often more interested in novel intellectual 

contributions using sometimes complex tools than in providing complete decision 

analysis tools that may be directly relevant to a manager. Thus, research findings that do 

not clearly translate into costs are usually not of interest to the utilities. 

Literature in engineering can be found on experiments that use destructive testing 

to evaluate performance of components under different conditions, assess diagnostic 

testing procedures, and statistically analyze and compare diagnostic testing procedures. 

The interests are similar in the medical field, where diagnostic tools are applied in 

clinical trials to determine how well the tools identify disorders or illnesses in patients. 

Prior research focuses more strongly on accuracy values than on economic value. 

Analysis performed in this chapter presents the economic value of conducting destructive 

tests and serves to encourage power utilities to promote destructive testing program. This 

way, they will make better decisions on selecting diagnostic testing procedures for their 

components. 

Given annual utility budgets on component management, the cumulative cost of 

running destructive tests for a number of years on a portion of components scheduled for 

preventive replacement is equal to  
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(24) 

where n_d is the number of years of the destructive test program before steady-state 

occurs as discussed in subsection 4.1.2.2.1, Cdt is the cost of one destructive test, d is the 

interest rate of money, num_replacedi is the number of components replaced in year i, 

and prop is the proportion of replaced components that are destructively tested in the 

year. It is realistic for the choice of proportions to be dependent on utility budget. 

This cumulative cost represents a cost to the utility for gaining information on the 

accuracy of a diagnostic test. What does the utility gain by learning the PPV of a 

diagnostic test? A test with  a PPV less than one replaces good components prematurely 

and leads utilities to waste their annual budgets. These components are actually above 

safety or reliability standards but were misdiagnosed.  

Therefore, assuming it takes a destructive test program n_d year(s) as in Equation 

(24) for the mean of the PPV to settle, the benefit of obtaining a good estimate of the 

PPV is in providing the power utility with confident information about the economic 

impact of the utility’s current diagnostic test provider. A PPV estimate tells the power 

utility how much of its annual investments on preventive replacements are lost to 

inaccuracy of the diagnostic test.  The cost of inaccuracy from first year of destructive 

testing to n_dth year, when steady-state is reached is  

,__)1( dnreplacednumCPPVC prxpmr   

 

(25) 

where Cpmr is the annual cost of premature replacements: inaccurate classifications of 

components that are above specifications as being below specifications, PPVx is the 

steady-state estimate of PPV: mean of the PPV found by replicating a destructive test 
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experiment (using Monte Carlo sampling if strictly theoretical), Cpr is the cost of one 

preventive replacement of a component, and num_replaced is the number of components 

replaced in one year. 

Recall that when a large proportion of replaced components are selected for 

destructive testing per year, it takes a shorter amount of time to reach steady state 

compared to when a small proportion of components is destructively tested annually. By 

making early decisions on the positive predictive value (PPV) of a diagnostic test, a 

power utility can correspondingly take early actions in either changing a diagnostic test 

provider for a more accurate diagnostic provider or being convinced of a current accurate 

one.  

In considering the economics of sizing the destructive test samples, enumerating 

the savings or lack thereof that result from potentially switching diagnostic providers, is 

an important decision-making tool for a power utility. An illustration of these concepts 

when 5%, 10%, 30% or 50% of annual preventive replacements are destructively tested 

follows. In the absence of real experiments, a numerical example is presented. Monte 

Carlo sampling is applied in repeating assessments of diagnostic test accuracies. A 

unique set of components are selected for destructive testing during each trial. Since the 

experiment is theoretical, the true conditions of all replaced components are 

predetermined given a PPV. The assumptions for this experiment are same as those listed 

at the beginning of the subsection. For the algorithm given, it is assumed that logic “0” 

represents components that are above specifications but were scheduled for replacement. 

In the same light, logic “1” represents components that are below specifications and were 

accurately scheduled for replacement.   

Sample Results: Hypothetical Dataset 

One hundred thousand of a certain type of components are simulated to be owned 

by a power utility. Of these, the number of components inspected or scheduled for 
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replacement per year by a diagnostic test is obtained as a proportion of the variables 

listed in Table 11. The destructive test results of all the replaced components are assumed 

to be known and equal to logic “1” for the number of components equal to PPV_true 

times the number of replaced components. They are logic “0” for the remainder of the 

components. 

Table 11 Parameters of simulated test for estimating the positive predictive value (PPV) of a 

diagnostic test over a 10-year inspection cycle. MC size is the Monte Carlo size, PPV_true is the 

simulated PPV, Cdt is the cost of a destructive test, Cpr is the cost of a preventive replacement, U 

represents a uniform distribution. 

N 100,000 

MC size 10,000 

Number of years 10 

PPV_true  0.6 

Cdt ($) 200 

Cpr ($) 2000 

% inspected U ~ (1/12, 1/8) 

% replaced U ~ (0.02, 0.07) 

 

Out of all the simulated replaced components, 5% to 50% are randomly selected 

for destructive testing up to 10,000 times which represents the Monte Carlo sample size 

for each year. The means and standard deviations of the estimates of the PPV for each 

year of simulation are found. 

Descriptions of the variables used in the algorithm are 

 num_of_insp_years: this is the number of inspection years to simulate. 

 num_insp: this is the number of wood poles inspected during the 

inspection year analyzed. It is designed to be a random variable, 

distributed as the product of a fixed variable N components and a 

uniformly distributed percentage inspected. Here, num_insp ~ U(0.08*N, 

0.125*N). This is based on limits from real utility inspection databases. 
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 num_ replaced: this is the number scheduled for diagnostic replacement. It 

is designed to be a random variable, distributed as the product of 

num_insp and a uniformly distributed percentage replaced. Here, num_ 

replaced ~ U(0.02, 0.07)*num_insp. This is based on limits of percentages 

replaced from real utility inspection databases. 

 num_d: number of components destructively tested. 

 diag_positive: this is a vector of all ones representing poles scheduled for 

replacement and left in service respectively during the inspection year 

analyzed. 

 true_condition: this is a vector of ones and zeros for poles simulated to 

have failed and those simulated not to fail respectively using a given PPV. 

 PPV_true: this is a fixed variable representing the true PPV of a diagnostic 

test. 

 PPV_EST: this is output of computed positive predictive values (PPVs) 

for either one year of inspection or a combined number of years of 

inspections. 

 Cdt: cost of a destructive test. 

 Cpr: cost of a preventive replacement. 

 Info_cost: cost of gaining information on prediction accuracy using 

destructive tests. 

The algorithm to calculate the PPVs for single or combined years of inspections 

and simulated destructive tests is as follows: 

PPV_INDIVIDUAL_COMBINED (N) 

1. for i = 1 … num_of_insp_years 

2.       N = 100,000 

3.        num_insp ← {0.08 + 0.045*rand(1)}*N  
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4.        num_replaced (i) ← round ({0.02 + 0.05*rand(1)}* num_insp) 

5.        diag_positive ← [ones(1, num_replaced)] 

6.         PPV_true = 0.6 

7.        true_condition ← diag_positive 

8.         for j = 1: 10000  

9.            locate ← random sample (1:num_replaced,     

  (1 – PPV_true)*num_replaced) 

10.            true_condition (locate)  ← 0 

11.            Cdt ← 200; Cpr ← 2000 

12.            num_d (i) ← proportion*num_replaced 

13.            locate1← random sample (1:num_replaced, num_d)  

14.            num_true_positives (i, j) ← sum {true_condition(locate1)} 

15.           PPV_EST(i,j) ← sum {num_ true_positives(:, j)}/sum(num_d) 

16.           Info_cost ← Cdt * num_replaced 

17.        end 

18.           E_PPV_EST (i) ← mean (PPV_EST, 2)  % row-averages (per year) 

19.           SD_PPV_EST (i) ← stdev (PPV_EST, 2)  % row-deviations (per year) 

20. end 

 

The mean of the 10,000 positive predictive values (PPV) found per year of testing 

for the four proportions of selected components simulated is shown in Figure 49, with 

only four standard deviations of each proportion indicated. 
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Figure 49 A plot of mean positive predictive value (PPV) versus number of years. Expected PPV of a 

diagnostic test per year of analysis for different sizes of destructive tests. The standard deviations of 

5% and 50% PPV estimates for years 1 and 10 are also shown. 

 

The table of means and standard deviations of the PPV estimates per proportion 

of preventive replacements is shown in Table 12. 

Table 12 Table of means (E_PPV) and standard deviations of PPV estimates for a Monte Carlo 

sampling size of 10, 000 showing 4 proportions of preventive replacements that were destructively 

tested. 

Years 1 2 3 4 5 6 7 8 9 10 

5% 

E_PPV 0.5992 0.5989 0.5994 0.5999 0.6002 0.6001 0.6000 0.5999 0.6001 0.6000 

Standard 

Deviation 0.0835 0.0664 0.0508 0.0436 0.0415 0.0384 0.0362 0.0343 0.0313 0.0302 

10% 

E_PPV 0.5996 0.5988 0.5994 0.5997 0.5999 0.6002 0.6003 0.6002 0.6003 0.6003 

Standard 

Deviation 0.0745 0.0464 0.0387 0.0330 0.0288 0.0255 0.0247 0.0226 0.0209 0.0197 

30% 

E_PPV 0.5981 0.5990 0.5992 0.5990 0.5991 0.5991 0.5994 0.5997 0.5997 0.5997 

Standard 

Deviation 0.0386 0.0244 0.0207 0.0190 0.0169 0.0155 0.0141 0.0129 0.0117 0.0110 

50% 

E_PPV 0.6010 0.6005 0.6006 0.6008 0.6006 0.6006 0.6004 0.6005 0.6006 0.6004 

Standard 

Deviation 0.0298 0.0188 0.0154 0.0126 0.0110 0.0102 0.0094 0.0088 0.0085 0.0081 
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The standard deviations of the means are observed to reduce with each year of the 

destructive test program and are commensurate with the increasing number of samples. 

The coefficients of variation (CoV) for each proportion of preventive replacements are 

shown in Figure 50.  

 

Figure 50 Coefficients of variation for PPV estimates for 1 through 10 years of destructive testing 

simulations, showing that the least coefficients were found when 50% of preventive replacements 

were destructively tested. 

 

Using a minimum CoV of 5% as a threshold for confidence on the PPV estimate, 

the number of years n_d it takes to accept the expectation of the PPV estimate PPVx is 

shown in Table 13. Note that the experiment makes a number of assumptions that caused 

the variances of the PPV estimates to be small among the proportions. In a real 

experiment, the variances are expected to be very large. 
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Table 13 Table of the length of period in years it takes to reach minimum coefficient of variation of 

5%. 

Proportion tested 5% 10% 30% 50% 

Number of years to reach steady state (n_d) 10 5 2 1 

 

Simplifying the problem for illustration, it is assumed that the same number of 

components (500) was replaced preventively for the n_d years for each proportion of 

destructive tests. Also, that the cost of destructive tests stays the same. The total costs of 

destructive testing for n_d and premature replacements estimated up to n_d years is 

shown in Table 14. Then, if the utility switches the diagnostic test provider to one that is 

higher, say 0.8, the reduced cost of premature replacements is shown.  

Table 14 Table of costs of a destructive testing program when 5% - 50% of annual preventive 

replacements are destructively tested in each year. The number replaced is assumed to be 500 per 

year, the cost of one destructive test is $200, one preventive replacement is $2,000,the initial PPV is 

0.6 and later 0.8 for proportions 10%- 50% after n_d years. 

Proportions 5% 10% 30% 50% 

PPVx 0.600 

n_d (years) 10 5 2 1 

Cost of destructive 

tests for n_d years 

(Cdest) 

 $        

50,000.00  

 $         

50,000.00  

 $       

60,000.00  

 $         

50,000.00  

Cost of premature 

replacements for n_d 

years (Cpmr) 

 $   

4,000,000.00  

 $   

2,000,000.00  

 $     

800,000.00  

 $       

400,000.00  

PPVnew after n_d 

years up to 10 years - 

0.8 for latter 

5 years 

0.8 for latter 8 

years 

0.8 for latter 9 

years 

New cost of 

premature 

replacements for 

remaining years (10 

– n_d) - $1,000,000 $1,600,000 $1,800,000 

Sum over 10 years 

of destructive test 

program and 

preventive 

replacements 

 

$4,050,000.00   $ 3,050,000 

 

$2,460,000.00  

 

$2,250,000.00  
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The analysis shows there is a $1.8 million dollar difference in destructively 

testing 50% of the 500 components preventively replaced per year relative to a 5% 

replacement. Fifty-percent sample size testing implies early decisions on whether to 

retain a diagnostic testing provider based on the PPV, while five percent testing implies a 

longer decision time. Assumptions in the analysis include that the number of components 

replaced preventively per year stays constant and that the electric utility has knowledge 

of a diagnostic testing method that has a higher PPV. The latter may be the result of 

another electric utility assessing the accuracy of a competing diagnostic method 

concurrently. The analysis excludes the present value theory of money. While the latter 

may change the dollar amounts, the decision of 50% versus 5% will remain unchanged. 

 Inclusion of the NPV is important for complete decision-making on retaining or 

switching a diagnostic testing provider. The NPV gives information on the number of 

inspected components left in service that may fail in a short amount of time and incur 

large corrective replacement costs. The NPV is difficult to measure accurately since it 

depends on either the occurrence of sufficiently strong environmental hazards or very 

expensive destructive testing. It would take a much longer time to measure NPV 

confidently than the PPV.  

The conclusion of the results is that it may be more beneficial to destructively test 

a large number of components per year rather than a few components. This encourages 

the power utility to take timely actions in switching or seeking new diagnostic testing 

companies for their components and averting future losses in premature replacements. 

The utility actions would create more demand for accurate diagnostic techniques, reduce 

monopoly in the field, and encourage more research and development of improved 

techniques, enhancing the chances of increased safety of in-service components in 

general. 
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4.1.3 Ranking Accuracies of Diagnostic Tests using Statistical Tools and 

Economics of Diagnostic Decisions 

The rules ranking accuracies of diagnostic tests differ in literature. The statistical 

tools that can be applied indecision-making include logistic regression analysis, use of 

the receiver operating characteristics (ROC) curve and discriminant analysis. These are 

discussed in this section with applications to real power system components. 

4.1.3.1  Ranking Using Deviance in a Logistic Regression Analysis 

Logistic regression is used to predict the response of a categorical variable from 

one or more explanatory variables. In the case of diagnostics, the destructive test 

condition of a component (“good” or “bad”) is the response variable to be predicted from 

diagnostic test results. The analysis generates the coefficient estimates β, and their 

standard errors and p-values for the function in Equation (26). 

 

(26) 

where P[bad] is the probability that a component is bad (and will fail a destructive test), 

Xi is the condition diagnosed by a diagnostic test, and p is the number of diagnostic tests. 

For one diagnostic test, as studied in this subsection, the value of p is one. 

The p-value of the regression coefficients is used to determine whether a 

diagnostic test contributes significantly to the prediction of the condition of the 

component. If the p-value is less than a specified characteristic value, the diagnostic test 

is considered to be significant in prediction of the response variable.  

Inference for logistic regression analysis is often based on deviance (twice the 

log-likelihood ratio statistic).  A large deviance indicates that the logistic model does not 

fit the data well, and that another model may be appropriate. Asymptotically, the 

deviance has a χ
2
 distribution. Hypothesis tests involving deviance are therefore 
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compared to percentiles of a χ
2
 distribution.  The number of degrees of freedom is the 

number of observations minus the number of parameters estimated.  

Sample Results: Wood Poles 

Six wood-pole diagnostic companies (called providers here) were evaluated by 

National Electric Energy Testing Research and Applications Center (NEETRAC). 

Initially, 52 poles were chosen for evaluation. Due to mechanical or transportation issues, 

which affected confidence of some results, a few of the poles were later eliminated from 

reports. The evaluation methodology involved prediction of strengths of the wood poles 

by the non-destructive (diagnostic) test providers, and then the breaking or bending of the 

wood poles to measure their moduli of rupture (true strengths of the poles). The breaking 

tests are destructive tests. 

Based on American National Standards Institute (ANSI) and National Electric 

Safety Code (NESC) standards for allowable wood pole strength, the diagnostic tests 

were used to classify components as either bad (schedule for replacement) or good (leave 

in service). The difference between the means of the diagnostic test scores for bad 

components and good components is obtained per test. A two-sample t-test is carried out 

to find out whether the differences between the means are statistically significant; that is, 

if the classification or cut-off score was obvious. The null-hypothesis is stated to be 

equality between the means of either class. The results of the test are given in Table 15. 
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Table 15 Means and standard deviations of strengths of wood poles predicted by diagnostic tests one 

through six. They show the separations between predicted strengths for poles that failed the 

destructive test and those that passed, for significance level α = 5%. 

Mean psi 

(Standard 

Deviation) 

Diagnostic 

Test 1 

Diagnostic 

Test 2 

Diagnostic 

Test 3 

Diagnostic 

Test 4 

Diagnostic 

Test 5 

Diagnostic 

Test 6 

Bad 

components 

5920 

(3232) 

3718 

(2534) 

4149 

(2316) 

4558 

(2612) 

4372 

(1495) 

6254 

(2653) 

Good  

components 

7897   

(565) 

5836 

(1170) 

6826 

(1139) 

6872 

(1543) 

5750   

(957) 

7684   

(484) 

 

Any intersections between the classes are small. In general, the mean scores 

differed substantially between bad and good components. For a significance level of 5%, 

the null hypothesis was rejected. In other words, classification is clear among the 

diagnostic results.  

The correlation coefficients between the predicted strengths and moduli of rupture 

were found for each diagnostic test. The correlation coefficients and corresponding 

accuracies of the tests are shown in Table 16 in order of NEETRAC’s ranking for this 

experiment. 
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Table 16 Sensitivity and specificity of six diagnostic testing techniques applied to at most fifty 

distribution wood poles. The tests are arranged in the order that NEETRAC considered best 

performance.  

Diagnostic Test 

Correlation 

Coefficient for 

Strength Prediction 

% of Reject Poles 

Correctly 

Diagnosed 

% of Non-Reject Poles 

Correctly Diagnosed 

(34 poles were Non-

Reject) 

5 0.49 81 (13 of 16) 100 

3 0.69 53 (8 of 15) 100 

1 0.32 38 (6 of 16) 100 

6 0.27 19 (3 of 16) 100 

4 0.53 53 (8 of 15) 97 

2 0.32 69 (11 of 16) 91 

 

NEETRAC placed high priority on not diagnosing any good poles as bad 

(premature replacements). Thus, though diagnostic test 2 has a general accuracy (ratio of 

sum of true positives and negatives to the total number of wood poles tested) only second 

to diagnostic test 5, it has the worst ranking. The priority order for this decision rule is 

specificity first and then sensitivity. On one hand, the rule appears subjective; on the 

other hand, the rule is strict on specificity because of the difficulty in measuring the 

negative predictive value or the sensitivity from a small sample of poles. 

Deviances of each test provider are obtained using logistic regression analysis. 

The coefficients of the analysis: β0 for intercept and β1, the standard errors of the 

estimates, respective p-values and the deviance per model per diagnostic test, are shown 

in Table 17. The values in each column are obtained by using each of the diagnostic tests 

as sole predictors in the regression model. 
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Table 17 Statistics of coefficient estimates of logistic fits of distinct diagnostic scores. The response 

variable is the classification of poles as weak or strong by destructive tests. The diagnostic scores are 

the predictor variables. Lower deviances are better than higher deviances. 

Statistics of 

Logistic 

Regression Model 

per Diagnostic 

Test 

Diagnostic 

Test 1 

Diagnostic 

Test 2 

Diagnostic 

Test 3 

Diagnostic 

Test 4 

Diagnostic 

Test 5 

Diagnostic 

Test 6 

β0 3.5766 2.1167 4.21 2.7091 6.4937 6.3599 

Standard error of 

estimate 2.1218 0.9884 1.6906 1.2583 2.6897 4.5123 

p-value for 

estimate 0.0919 0.0322 0.0128 0.0313 0.0158 0.1587 

β1 -0.0006 -0.0006 -0.0009 -0.0006 -0.0014 -0.001 

Standard error of 

estimate 0.0003 0.0002 0.0003 0.0002 0.0005 0.0006 

p-value for 

estimate 0.0919 0.0013 0.0021 0.0045 0.0058 0.096 

Deviance 55.6161 53.2695 41.707 46.0632 50.6889 54.8678 

 

Ranking predictions of the binary response (a destructive test result of weak or 

strong for the poles) per diagnostic test using deviance shows the following order. 

 Best to worst diagnostic test: 3, 4, 5, 2, 6, 1. 

These rankings differ greatly from NEETRAC’s. The logistic regression analysis 

looks at overall prediction of the response variable (whether a wood pole is weak or 

strong if destructively tested) from the diagnostic tests.  
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4.1.3.2  Ranking Using Receiver Operating Characteristic Curves 

The receiver operating characteristics (ROC) plot is a tool for visualizing the 

accuracy of a diagnostic test. It is a plot of the true positive rate TPR of a diagnostic test 

against its false positive rate FPR given a threshold that is used in classifying a diagnostic 

test result as either right or wrong. The TPR is mathematically equivalent to sensitivity 

while the FPR is the complement of specificity. The ROC plot area is a 1-by-1 space in 

the x-y plane; that is, the maximum value on either the vertical or horizontal axis is one. 

Using the ROC curve, a given diagnostic test can be easily compared to a perfect test or 

the result of a random guess. A perfect test should have a vertically-inverted L-shape, 

with its vertex on the (0, 1) point of the ROC plot area. Meanwhile, a random guess 

would be a diagonal line connecting points (0, 0) and (1, 1) on the ROC plot area. 

The area under the curve (AUC) is a quantitative measure of the ROC that can be 

used in ranking diagnostic tests. The AUC typically has a value ranging from 0.5 (area of 

a right-angled triangle for a random guess) to 1 (area of a square of length 1). ROC 

analysis can be applied to logistic regression results by using the response variable in 

Equation (26) to denote the classification of a component. The closer an AUC is to the 

value one, the better it is.  

Sample Results: Wood Poles 

The ROC curves of the diagnostic tests on the wood poles tested by NEETRAC 

are shown in Figure 51. The classification variable used for the ROC analysis is the 

response variable of the logistic regression analysis. The figure shows that all diagnostic 

tests fall above the random-guess line, which runs between the points (0, 0) and (1, 1). 

The curves are seen to intersect making it difficult to identify what tests are superior to 

others. From the figure, however, the curves of diagnostic tests three and five appear to 

be the most consistent in terms of proximity to the (0, 1) point on the plane. The visual 
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qualitative method of ranking is inefficient and inconclusive; so the area under each 

curve is estimated. Results are in Table 18. 
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Figure 51 Receiver operating characteristics curves of six diagnostic tests using the results of logistic 

regression analysis for classification of components. 

 

Table 18 Area under the curve (AUC) for logistic regression model of each diagnostic test and 

combined prediction of tests one and three. 

Diagnostic 1 2 3 4 5 6 

AUC 0.6609 0.7281 0.8363 0.7398 0.7828 0.7150 

 

The table shows the following descending order of superiority:  

 Best to worst diagnostic test: 3, 5, 4, 2, 6, 1. 

The order is similar to the results of the logistic regression model, since the model was 

used in generating the ROC curves.  
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4.1.3.3  Ranking using the Economics of Decisions 

The costs of corrective replacement of a component, especially following extreme 

weather conditions, and the costs of preventive replacement of the same type of 

component are sometimes substantially different.  

Ranking diagnostic tests using any of the statistical methods applied in the 

previous sections does not account for the effects of misclassification costs.  The cost of 

replacing a good component prematurely (false positive) is a sum of costs of preventive 

replacement and diagnostics. The cost of not identifying a component at high risk of 

failure is the sum of costs of corrective replacement and diagnostics. Even if the costs of 

preventive and corrective replacements are assumed equal, the ranking of the superiority 

of diagnostic tests may still differ from the results of logistic regression and ROC 

analysis. 

The costs used in ranking the diagnostic tests include the costs of individual 

diagnostic tests and the costs and probabilities of misclassifications. A tree diagram 

showing the progression of decisions in diagnostics of one component is shown in Figure 

52. The total cost shown per leg of the tree is one scenario of either a false positive or a 

false negative (misclassification of components). 
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Figure 52 A tree diagram showing costs and decisions of diagnostics and replacements of a 

component with costs in parentheses. 

 

The total cost for accuracy-informed decisions on selection of diagnostic tests is 

defined as follows. 

 

(27) 

where Ci is the cost of a diagnostic test, Cpr is the cost of a preventive replacement, and 

Ccr is the cost of a corrective replacement. Note that the costs of replacement are 

weighted by the probabilities of making erroneous decisions. The results of destructive 

testing experiments can be used in obtaining estimates of each prior probability. The 

diagnostic test with the least cumulative cost would be the most superior diagnostic test. 

 

Sample Results: Wood Poles 

The results of diagnostic and destructive testing on the wood poles listed in Table 

16 are analyzed for ranking based on economics. It is assumed here that the costs of all 

the diagnostic tests and the costs of preventive and corrective replacements are equal. The 

probabilities and costs of each diagnostic test are shown in Table 19.  
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Table 19 Error probabilities of diagnostic decisions taken by six testing procedures. The tests were 

compared to destructive test results for evaluation of accuracy. The performance ranking in 

ascending order of costs is 5, 3, 4, 2, 1, 6. 

 

 P[good|tests 

bad] 

P[bad|tests 

good] 

P [tests good] P[tests bad] Cost ($) 

Diagnostic 1 0 0.2273 0.880 0.120 410.00 

Diagnostic 2 0.2143 0.1389 0.720 0.280 330.00 

Diagnostic 3 0 0.1622 0.804 0.196 270.87 

Diagnostic 4 0.1000 0.1714 0.778 0.222 321.11 

Diagnostic 5 0 0.0811 0.740 0.260 130.00 

Diagnostic 6 0 0.2609 0.939 0.061 499.80 

 

Diagnostic tests five and three were found to have top rankings when economic 

effects are considered. This coincides with NEETRAC rankings. The margin of 

difference between the cost of diagnostic five and three is large (almost double). This 

implies that diagnostic test five is significantly better than diagnostic test three (and other 

tests for that matter) based on the assumptions used in the calculations. In contrast, the 

costs of diagnostic tests two and four are relatively close with a difference of less than 

nine dollars between them. Diagnostic tests six and one have consistently been ranked 

lowest by the statistical methods, and now, the economic method.  

The economic method is the most practical method of all those mentioned in this 

chapter since it accounts for misclassification costs. It is suggested that the technique be 

used for making decisions on selection of diagnostic tests. 

4.2 Improving Diagnostic Accuracy and Validity by Combining 

Diagnostic Test Results 

Accurate diagnosis eliminates the need for destructive testing of components. As 

was seen in the previous subsection, the usefulness of a diagnostic test can be quantified 
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by the likelihood and costs of condition-misclassification for that test. When the 

cumulative cost in Equation (27) is unacceptably high, there are a number of ways to 

improve the accuracy of the diagnostic test. One way is choosing a more accurate test. 

Another is combining the decisions of that test with another diagnostic test that adds to 

the information derived from the first test.  

A consecutive increase of the number of diagnostic tests used in making a 

decision of preventive replacement may increase accuracy. However, it will increase the 

expense of diagnostic testing, which is still just an information-gathering system and does 

not directly improve reliability of the component. The number and selection of diagnostic 

tests that yield the minimum cumulative cost of diagnostic testing and misclassification 

cost are optimum design variables for making decisions on preventive replacement of a 

component. The objective function Copt is given in Equation (28). 

 

(28) 

subject to  

 

where n is the number of diagnostic tests combined and therefore an element of a set of 

integers Z, Pn[.] is the probability of some event when n tests are combined. The 

optimization problem can be solved by dividing it into sub-problems and solving 

sequentially. The probabilities change for each combination of diagnostic tests. 

Therefore, different estimates of the total cost will be found per combination. The costs 

can then be compared after calculations to output the objective cost and corresponding 

objective design variables n and the selection of diagnostic tests that produce Copt. 

With two classes of the condition of a component: “bad” or “good,” let the vector 

of classifications predicted by n tests for one single component be Di = [Di1, Di2,…,Din]
N
 

for the i-th component. Similarly, each element is either “bad” or “good,” represented 

using binary variables: “1” or “0” respectively. If the class of the components as 
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determined from a destructive test is X, then the contribution of the ith component to the 

likelihood is 

),1|()1()0|()0()(  iiiiiiiiii XdDPXPXdDPXPdDP  

noting that the dependencies between the n tests can take the form of  

).,...,,|()...,|()|()()...( 121213121321  nnn DDDDPDDDPDDPDPDDDDP  

It is obvious how the complexity increases with the number of tests. 

Correlations between tests are expected to affect the relevance of combining tests 

for the purpose of improving classification of components by their conditions. Perfectly 

correlated tests do not provide additional information in accuracy. However, the tests 

may increase the confidence of any decisions to preventively replace (or not replace) a 

component depending on the accuracy of the tests. Combining diagnostic tests with 

correlation coefficients less than one will provide new information. Based on the decision 

rule for combination of the diagnostic tests, the accuracy of tests may improve 

significantly, improve by a small degree, or actually decrease. 

The degree of correlation between events Di (classifications of distinct individual 

diagnostic tests) can be represented as the ratio of the conditional probability of D2 given 

D1 (for 2 tests) to the unconditional probability of D2 alone. This indicates the degree to 

which D1 influences D2. 

.
)()(

),(

)(

)|(

21

21

2

12

DpDp

DDP

DP

DDP
g   

If g is equal to one, the events are independent and not correlated. If it is greater than one, 

they are positively correlated. If it is less than one, they are negatively correlated, and if it 

is zero, if D1 occurs, then D2 will not. When data is present, combinatorics may be used 

as the likelihood estimates of each probability. 

Various methods exist for obtaining the best classification of the condition of 

components from some mathematical combination of diagnostic test results. The 

response variable would of course be the true class of the component, which we take to 
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be the destructive test result of the component. The explanatory or predictor variables are 

the diagnostic test results. Statistical techniques or models include logistic regression, 

linear discriminant analysis (LDA), naïve Bayes classifier, and support vector machines. 

The steps taken in applying any of these techniques involve the following. 

1. Training the classifier (fitting/training the model using observed values of the 

predictor variables and the response variable), 

2. Measuring the classifier accuracy (finding error estimates between predicted 

response and observed response using non-training dataset), 

3. If the accuracy of the trained classifier is not high enough, any of the other 

statistical techniques may be applied,  

4. Else, the classification model can be used for new datasets in predicting the 

response. 

Some of the listed methodologies are tedious to compute and yield results that are 

hard to interpret or apply in practical. For instance, linear discriminant analysis in 

conjunction with analysis of area under a receiver-operating curve (AUC) was applied by 

Pepe and Thompson in [6] to find the optimum linear combination between two 

diagnostic tests for cancer screening research. The equation analyzed was similar to αY1 

+ βY2, where α and β are weights, and Y1 and Y2 are two diagnostic test results for the 

same class of conditions.  The weights that optimized the AUC were obtained but did not 

present a solution implementable by a decision-maker seeking to either replace or not 

replace a component.  

The results of regression, LDA and similar methodologies are new quantities on 

completely different scales from the original scales of the individual diagnostic tests. This 

is one reason outcomes of the techniques are difficult to interpret. A decision-maker 

requires an intuitive implementable rule or model.  

Logic combinations of diagnostic test classifications are easier rules to 

implement; in which case OR, AND, and NOR combinations can be applied to identify 
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conjunctive or compensatory relationships between the tests. The response is still a 

binary classification and is therefore on the same decision scale as the individual 

diagnostic tests.  

While statistical and logic combination rules have been applied to fields of 

biostatistics research, it has proved difficult finding applications to preventive 

replacements of components in literature. In addition, the algorithms found in peer-

reviewed publications (even in biostatistics research) have been focused on combination 

of only two diagnostic tests. The algorithms developed here are designed specifically for 

application to evaluations of diagnostic tests using destructive tests and for multiple 

combinations of diagnostic tests.  

Sample Results: Wood Poles 

The Pearson correlations between predicted strengths and predicted classifications 

of wood poles from the six diagnostic test providers and procedures introduced in Table 

16 are given in Table 20 and Table 21. The strengths are continuous numeric values 

while the classifications are binary variables with logic values zero for poles that tested 

“good” and one for poles that tested “bad.” There are discrepancies between the 

coefficients. The lowest correlation coefficient in Table 20 is 0.549 while that in Table 21 

is 0.425. The diagnostic tests with the highest correlations are diagnostic tests three and 

four in both tables. These tests are actually provided by the same company but using 

different procedures. Other than these two, diagnostic tests three and five follow closely 

in both tables. 
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Table 20 Correlation coefficients between predicted strengths of wood poles from six different 

diagnostic procedures. 

  Diagnostic 

Test 1 

Diagnostic 

Test 2 

Diagnostic 

Test 3 

Diagnostic 

Test 4 

Diagnostic 

Test 5 

Diagnostic 

Test 6 

Diagnostic 

Test 1 

1 0.685 0.651 0.604 0.715 0.744 

Diagnostic 

Test 2 

0.685 1 0.652 0.656 0.690 0.653 

Diagnostic 

Test 3 

0.651 0.652 1 0.903 0.749 0.558 

Diagnostic 

Test 4 

0.604 0.656 0.903 1 0.713 0.549 

Diagnostic 

Test 5 

0.715 0.690 0.749 0.713 1 0.687 

Diagnostic 

Test 6 

0.744 0.653 0.558 0.549 0.687 1 
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Table 21 Correlation coefficients between predicted classifications of wood poles from six different 

diagnostic procedures using logic values zero for poles that tested good and one for poles that tested 

bad. 

 Diagnostic 

Test 1 

Diagnostic 

Test 2 

Diagnostic 

Test 3 

Diagnostic 

Test 4 

Diagnostic 

Test 5 

Diagnostic 

Test 6 

Diagnostic 

Test 1 

1 0.592 0.623 0.734 0.623 0.684 

Diagnostic 

Test 2 

0.592 1 0.542 0.603 0.646 0.425 

Diagnostic 

Test 3 

0.623 0.542 1 0.802 0.786 0.575 

Diagnostic 

Test 4 

0.734 0.603 0.802 1 0.721 0.533 

Diagnostic 

Test 5 

0.623 0.646 0.786 0.721 1 0.448 

Diagnostic 

Test 6 

0.684 0.425 0.575 0.533 0.448 1 

The effect of the correlations on tests combined using logic rules will be 

investigated in the coming sections. 

4.3 Analyzing the Accuracy of Combined Diagnostic Tests 

4.3.1 Applying Logistic Regression Analysis to Multiple Diagnostic Test 

Predictions 

A stepwise or sequential logistic regression model can be used to test whether the 

regression coefficients of diagnostic tests from Equation (26) add significantly to 

prediction of the response. It does this by adding different predictors to a null model, 

which consists of an intercept only, and checking if there is a statistically significant 

improvement in prediction. Inference for logistic regression analysis is often based on 
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deviance (twice the log-likelihood ratio statistic).  A large deviance indicates that a 

logistic model does not fit the data well, and that another model may be appropriate. 

Asymptotically, the deviance has a χ
2
 distribution. Hypothesis tests involving deviance 

are therefore compared to percentiles of a χ
2
 distribution.  The number of degrees of 

freedom is the number of observations minus the number of parameters estimated. 

Stepwise regression can be conducted by starting with a null model, where all the 

β-coefficients of the diagnostic scores are assumed to be zero, and then adding diagnostic 

scores. A significance level or tolerance is used to test whether the diagnostic test added 

at each step statistically improves significance or accuracy of prediction. Sequences of F-

tests, t-tests and other techniques have been used for hypothesis testing. This method of 

adding to the null model is called forward selection. The reverse is called backward 

elimination. Here, all the diagnostic test scores are included in the initial model. Then, 

using a specified significance level, diagnostic tests that are not statistically significant 

are removed from the model. Another method may include a combination of forward 

selection and backward elimination. The results from each method are expected to be 

different. 

Sample Results: Wood Poles 

The predicted strengths of the fifty wood poles tested by six diagnostic tests 

evaluated by NEETRAC were plotted on a normal probability plot to test whether linear 

discriminant analysis (LDA) could be applied on the tests. (Normally distributed test 

scores are a requirement for LDA.) The plot of the scores of each diagnostic test is shown 

in Figure 53. The Anderson-Darling statistics and the alignment of the scores show the 

scores may not be efficiently represented by a normal distribution. Thus, LDA was not 

applied to the sets. 
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Figure 53 Normal probability plots of six diagnostic testing scores of strengths of utility wood poles. 

The plots show that a normal distribution may not be the best fit for the scores.  
 

Assuming the scores had shown a Gaussian distribution, LDA may have been 

used to find a threshold that best separates observations of bad components from good 

components using diagnostic test scores. The following steps would have been applied. 

 Separation of components (wood poles) into two classes using 

destructive test results: those that are bad and those that are good. 

 Obtaining the mean (μ1, μ2) and covariance matrices (Σ1, Σ2) of the 

diagnostic test scores for each class of components separately. 

 The coefficients of the linear combinations of the diagnostic test scores 

can be optimized as the product of the inverse of the sum of the 

covariance matrices of the two classes ([Σ1 – Σ2]
-1

) and the difference 

between the vectors of the means of the scores in the two classes (μ1 -  

μ2). 

Instead of LDA, a forward selection algorithm is applied to the diagnostic 

prediction strengths as predictor variables. The response variable is the classification 

from destructive test results. Starting with a null model, the deviance of the model is 

calculated. By running F-tests to find the likelihood of a non-zero slope for any of the 
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diagnostic tests, the third test is found to add the most to prediction (reduces the 

deviance). It is therefore the first to be added to the null model. This is seen in Table 22.  

The current model (null + diagnostic test three) is compared to the other 

predictors, with the p-values of the F-statistics used to check whether addition of any 

other predictor will improve the deviance. Adding diagnostic predictor four improves the 

deviance significantly. So, it is included in the model. Comparison of the two-predictor 

model (three and four) to other predictor variables shows there will be no more 

significant improvements given a five percent entrance tolerance. Therefore, the forward 

selection algorithm ends here. 

Table 22 Progression of deviance of a logistic regression model using a forward selection algorithm. 

The final intercepts and slopes of the included predictions are in the last rows of the table. 

Initial deviance 67.006 

Step 1 Add diagnostic test 3 as predictor 

New deviance 41.707 

Step 2 Add diagnostic test 4 as predictor 

New deviance 36.955 

Reduced model Intercept Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Coefficients 5.193 0 0 -0.002 0.000 0 0 

Standard errors 2.174 0 0 0.001 0.001 0 0 

 The change in deviance with each step is shown in Figure 54. 
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Figure 54 Change in model deviance from an initial null model to inclusion of the first predictor 

(diagnostic test three) and then, inclusion of the second predictor (diagnostic test four). The other 

predictors were not found to significantly improve the model deviance, as per hypothesis tests. A 

forward-selection algorithm is used. 

 

It turns out that diagnostic test one is a traditional inspection technique applied by 

a good number of utilities, even though it is relatively poor in strength prediction of wood 

poles. The use of this technique is another support that power utilities are prone to 

carrying out operations in the old way versus actively seeking better and more effective 

methods of managing their components.  

A second experiment of logistic regression analysis is carried out with diagnostic 

test one forced into the initial (null) model. Then, coefficients of the other predictors are 

compared to the new model to find which, if any, will significantly improve the model 

deviance. Results are shown in Table 23. 
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Table 23 Statistics and deviance of a forward selection logistic regression model that starts by 

including diagnostic test one in the initial model. The deviance increases to about 38 with inclusion of 

predictor three. 

Initial deviance 

with diagnostic 1 55.616 

Step 1 Add diagnostic test 3 as predictor 

New deviance            38.502 

Reduced model Intercept Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Coefficients 95.575 -0.012 0 -0.001 0 0 0 

Standard errors 138.092 0.017 0 0.000 0 0 0 

 

The table shows that including diagnostic test one to the null model reduced the 

deviance of the null model from 67.00 in Table 22 to 55.62: an improvement of only 

17%. This is compared to improvement of about 38% when using diagnostic test three as 

the first inclusion in Table 22. However, by using the third test as the complementary 

predictor to diagnostic one, the final deviance is found to be 38.5016. It is only slightly 

worse (4%) than the final deviance of 36.95 in Table 22, but still a lot better than the 

deviance of the null model (67.00). 

The stepwise regression analysis shows that classification of components by their 

conditions can be improved by using multiple diagnostic tests rather than one test. While 

the best prediction comes by using both diagnostic tests three and four, the “comfort-

zone” behavior of the utilities might encourage the use of diagnostic tests one and three 

instead. Interestingly, diagnostic techniques three and four are highly correlated 

(correlation coefficient is over 0.8). It is likely the reason that diagnostic test four did not 

significantly improve prediction in the second analysis. Though the analysis encourages 

combination of diagnostic test scores, it does not provide a means of implementation. 
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4.3.2 Applying Receiver Operating Characteristics (ROC) Analysis to 

Multiple Diagnostic Test Predictions 

The area under receiver-operating characteristic (ROC) curves can be used for 

analyzing predicted and true classifications of strengths of a component. This was 

discussed in Section 4.1.3.2. The results of a sequential logistic regression model can be 

evaluated using AUC analysis. Comparison with single test predictions may show 

improvement in predictions. That is, if the AUC of a model with combined predictors is 

higher than the AUC of a model with only one predictor. 

Sample Results: Wood Poles 

The intercept and slope coefficients of the combined diagnostic test one and three 

logistic regression model from the previous subsection are used for classification in ROC 

analysis. The curve is shown in Figure 55. 
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Figure 55 Receiving operating characteristics (ROC) curves for classification of condition of 

distribution wood poles by logistic regression modeling of diagnostic test scores one through six. The 

logistic model that combines predictions from diagnostic test one and three is shown to have a 

generally higher ROC curve than the model of the individual tests. 

Except in very small regions, the ROC of the combined model is above or as good 

as the ROC of the individual tests. The AUC of individual diagnostic tests and the 

combination (diagnostic one and three) is in Table 24. 



 156 

Table 24 Area under the curve (AUC) for logistic regression model of each diagnostic test and 

combined prediction of tests one and three. 

Diagnostic 

Test 

1 2 3 4 5 6 Combination 

(1 and 3) 

AUC 0.6609 0.7281 0.8363 0.7398 0.7828 0.7150 0.8461 

 

The area under the curve of the combined model is higher than all the individual 

tests. However, it is only 1.2% higher than diagnostic test 3. This is not a large 

improvement. Again, the results of this kind of analysis do not present any practical 

contribution since implementation in the field is not clear. Logic combinations and a 

corresponding analysis of economics of the decisions are more practical.  

4.3.3 Applying Combinatorial Logic Rules 

The combinatorial logic analysis relies on “OR” and “AND” operations among 

predicted classes of tested components. While prior analysis (logistic regression) has 

been performed by using scores from the diagnostic tests as continuous variables, this 

analysis uses classification of the components (a binary variable). Logic one is used to 

denote components that test positive (test “bad”) while logic zero is used for components 

that test negative (test “good”). 

The “OR” rule is a compensatory rule. Diagnostic tests compensate for each 

other: a component that tests bad based on one diagnostic test will be preventively 

replaced whether or not the component tests bad using other tests. So, if the sensitivities 

of two tests are relatively high and one test misses a bad component detected by the 

other, the “OR” rule would lead to a good decision. It would be inappropriate to use on 

tests with low sensitivities, and does poorly in reducing false positive errors.  

The “AND” rule is conjunctive. So, components are preventively replaced only if 

they test positive for all combined tests. When a test with high sensitivity is combined 
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with a test that has a low sensitivity, a good number of bad components may be left in 

service. The “AND” rule does poorly in reducing false negative errors. 

Truth tables are useful in analyzing how decisions are made using logic 

combinations. See Table 25 for “AND” and “OR” combinations of two diagnostic 

(predicted) classes of components. The table shows when decisions to replace a 

component occur (logic one outputs on the combinatorial rules). Truth tables for 

combinations of more than two logic inputs (diagnostic tests) can be generated similarly. 

 

Table 25 “OR” and “AND” combinatorial rules between predictions of two diagnostic tests. Logic 

one stands for components that test positive and logic zero stands for components that test negative. 

Prediction of 

diagnostic test 1 

Prediction of 

diagnostic test 2 

OR AND 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 1 1 

 

The probabilities Pn in Equation (28) are found by comparing results of 

destructive tests to the decisions found by applying combinatorial rules to multiple 

diagnoses. The cost of diagnostics increases with the number of diagnostic tests. The 

decision to combine tests as well as the selection of diagnostic tests will depend on the 

probabilities and costs that result from combination of the diagnostic tests. Algorithms 

are designed in this chapter to compute and display results of combinations; they become 

more complex as the number of diagnostic tests increases.  

For any combination of n1 out of n available diagnostic tests combined, the 

number of resulting cost-decisions to compare is equal to n-combination-n1. This is the 

same as  
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where n is the total number of available diagnostic test procedures and n1 is the number 

of combinations to be analyzed. This is a combination problem and not a permutation 

problem since all permutations of the same set of diagnostic tests, excluding any 

relevance of order in which the tests are carried out, will yield the same cost-results. 

4.3.3.1 Algorithm for Combining Multiple Tests 

The tests were carried out serially: one after the other so that the most invasive 

test (which was still only minimally invasive) was performed last. So we may assume 

some independence between the tests. Let the number of combinations to analyze be n1 

equal to two through n, which is the total number of available diagnostic tests. Then, the 

optimum number (and selection) of diagnostic tests that yields the minimum cost Copt in 

Equation (28) can be found using the following algorithm. 

For each n1, 

1. Store all combinations n-C-n1 with n1 elements as rows in a matrix 

comb_n. For instance, given n = 6 available tests and n1 equal to 2 (logic 

inputs), the matrix comb_n will have size 15-by-2. In MATLAB, 

“nchoosek” will produce all combinations of a given sequence {1, 2,…,n}. 

2. Obtain the probabilities Pn1 which are Pn[tests bad], Pn [good|tests bad], Pn 

[tests good], Pn [bad|tests good] in Equation (28) for each row of the 

matrix in step 1. This means errors rates of different selections of 

diagnostic tests are being found. The error rates are estimated by 

comparing the logic output using the “OR,” “AND,” or some combination 

of either rule on pairs of the diagnostic predictions and the destructive test 

results. 
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3. Assuming equality of all diagnostic costs, solve for the cost in Equation 

(28) per row of combinations. Exclude the minimization operation. This 

yields a cost vector Cn for the combination of n1 diagnostic tests. The 

elements of this vector are all possible costs from combining any n1 

distinct diagnostic tests. 

4. Sort the elements of Cn in ascending order keeping track of the indices. 

Output the minimum cost and selection of tests that yield the minimum 

cost. The latter (the selection) is a set of the row-elements of the matrix 

comb_n that has the same row-index as the first element of the ordered 

cost vector Cn. 

After every combination is found for n1 equal to two through the total number of 

available diagnostic tests n, plot the minimum cost per combination against n1 

combinations. The minimum cost of all the minimum costs per combination is Copt. 

Likewise, the optimum selection of diagnostic tests to combine will be clear. 

Sample Results: Wood Poles 

The predicted strengths of the wood poles tested in the NEETRAC experiment 

were compared against a set threshold (the ANSI standard for acceptable remaining 

strength of in-service wood poles). The comparison resulted in the classification of the 

wood poles as bad (to be replaced) or good (to be left in service) using the six different 

diagnostic procedures. This results in two binary classifications of the poles; one 

classification is a prediction from a diagnostic test and the other is the true condition from 

destructive testing. 

The diagnostic tests were all non-destructive and were supposed to have been 

conducted in such a way as not to influence testing from other diagnostic procedures. So, 

we assume independence between the tests and their results. In reality, they might have 
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had some influence on each other. However, we assume that any such effect is so 

negligible that independence is acceptable. 

A table that shows the resulting costs from combining two or three diagnostic 

tests using the “OR” rule is shown in Table 26. Using values from surveys filled out by 

power utility engineers, the cost of one replacement (whether preventive or corrective) is 

assumed to be $2,000 while the cost of inspection one pole is assumed to be $10. 
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Table 26 Selections of two or three diagnostic tests combined using the “OR” logic rule for making 

decisions on preventive replacements of wood poles. The decision costs of each combination are 

shown in the column labeled “Total.” “CNPV” is P[bad|tests good] and “CPPV” is P[good|tests bad]. 

OR Two tests CNPV CPPV Total Three tests CNPV CPPV Total 

 1 2 0.139 0.214 $ 340.00 1 2 3 0.097 0.200 $ 290.87 

 1 3 0.139 0 $ 237.39 1 2 4 0.133 0.267 $ 385.56 

 1 4 0.171 0.100 $ 331.11 1 2 5 0.061 0.177 $ 230.00 

 1 5 0.081 0 $ 140.00 1 2 6 0.139 0.231 $ 356.53 

 1 6 0.209 0 $ 387.35 1 3 4 0.147 0.091 $ 296.67 

 2 3 0.097 0.200 $ 280.87 1 3 5 0.061 0 $ 116.96 

 2 4 0.133 0.267 $ 375.56 1 3 6 0.139 0 $ 252.22 

 2 5 0.061 0.177 $ 220.00 1 4 5 0.065 0.071 $ 163.33 

 2 6 0.139 0.231 $ 346.53 1 4 6 0.171 0.111 $ 348.18 

 3 4 0.147 0.091 $ 286.67 1 5 6 0.081 0 $ 152.45 

 3 5 0.061 0 $ 106.96 2 3 4 0.103 0.250 $ 341.11 

 3 6 0.162 0 $ 286.67 2 3 5 0.067 0.188 $ 247.39 

 4 5 0.065 0.071 $ 153.33 2 3 6 0.097 0.214 $ 296.67 

 4 6 0.171 0.111 $ 338.18 2 4 5 0.071 0.235 $ 296.67 

 5 6 0.081 0 $ 142.45 2 4 6 0.133 0.286 $ 393.64 

      2 5 6 0.061 0.188 $ 234.08 

      3 4 5 0.065 0.071 $ 163.33 

      3 4 6 0.147 0.100 $ 302.73 

      3 5 6 0.061 0 $ 118.89 

      4 5 6 0.065 0.077 $ 166.36 

 

Similar results are available for the larger number of “OR” combinations (four 

through six). These can be found in Table 27 and Table 28. 
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Table 27 Selections and decision-costs of four diagnostic tests combined using the “OR” logic rule for 

making decisions on preventive replacements of wood poles. 

OR Four tests Total 

 1 2 3 4 $ 351.11 

 1 2 3 5 $ 257.39 

 1 2 3 6 $ 306.67 

 1 2 4 5 $ 306.67 

 1 2 4 6 $ 403.64 

 1 2 5 6 $ 244.08 

 1 3 4 5 $ 173.33 

 1 3 4 6 $ 312.73 

 1 3 5 6 $ 128.89 

 1 4 5 6 $ 176.36 

 2 3 4 5 $ 306.67 

 2 3 4 6 $ 358.18 

 2 3 5 6 $ 262.22 

 2 4 5 6 $ 312.73 

 3 4 5 6 $ 176.36 

 

Table 28 Selections of five or six diagnostic tests combined using the “OR” logic rule for making 

decisions on preventive replacements of wood poles. 

OR Five tests  Total 

 1 2 3 4 5  $ 316.67 

 1 2 3 4 6  $ 368.18 

 1 2 3 5 6  $ 272.22 

 1 2 4 5 6  $ 322.73 

 1 3 4 5 6  $ 186.36 

 2 3 4 5 6  $ 322.73 

 Six tests Total 
 1 2 3 4 5 6 $ 332.73 

 

The minimum costs per combination of two through six diagnostic tests are 

plotted in Figure 56. The first data-point in each subplot is the decision-cost when using 

either diagnostic one or diagnostic five alone. The costs are from Section 4.1.3.3. The 

figure shows that a combination of two tests (diagnostic tests three and five) will produce 

the minimum decision costs for preventive replacements of wood poles. The difference 

between using this combination and diagnostic five alone is less than $25 per pole. 

However, when thousands of poles are put into consideration, the value becomes clearer. 

In contrast, there is a large difference of about $300 per pole when the combination of 
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tests three and five is compared to using diagnostic one alone (most popular diagnostic 

procedure on wood poles). 
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Figure 56 Plot of the minimum costs that result from preventive replacements of wood poles using 

single (“Diagnostic 1 alone” or “Diagnostic 5 alone”) or logic OR-combined diagnostic tests. The x-

axis shows the number of tests combined (2, 3, 4, 5 or 6). The selections yielding each minimum cost 

are shown in text boxes in the figure. 

 

The effect of correlations between the diagnostic tests on the probability of 

misdiagnosing a wood pole is shown in Figure 57 and Figure 58. In Figure 57, the 

probability of missing a bad wood pole, P[bad| tests good] is plotted against correlations. 

The plots have been separated for each diagnostic test. For diagnostic test one, which had 

an initial error probability of 0.2273, the probability appears to decrease with decreasing 

correlation coefficients (upward slope). The relationship appears reversed for the other 

tests (downward slope). Notice that the new rates are less than or equal to the initial rate. 
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Figure 57 Plot of error rate of missing a bad wood pole after a compensatory combination of 

diagnostic tests against the correlations between the combined tests. Initial error rate when 

diagnostic test one is used alone is 0.2273; two, 0.1389; three, 0.2143; four, 0.1622. 

 

In Figure 58, other than the rates on the x-axis, the error rates appear to decrease 

with increasing correlation coefficients (downward slope). Comparing the initial false 

positive rates, that is when the tests are used alone, to the new rates when the tests are 

combined, it can be seen that the “OR” rule sometimes worsens false positive rates. 

 

Figure 58 Plot of error rate of prematurely replacing a good wood pole after a compensatory 

combination of diagnostic tests against the correlations between the combined tests. 
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The decision-costs when the tests are combined using an “AND” rule are shown 

in Figure 59. The first data-point on each subplot is the cost when diagnostic five or 

diagnostic one is used alone. 
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Figure 59 Plot of the minimum costs that result from preventive replacements of wood poles using 

single (“Diagnostic 1 alone” or “Diagnostic 5 alone”) or logic AND-combined diagnostic tests. The x-

axis shows the number of tests combined (2, 3, 4, 5 or 6). The selections yielding each minimum cost 

are shown in text boxes in the figure. 

 

It is obvious from the plots that using the “AND” rule improves on using 

diagnostic test one alone (up to three combinations of tests). It however, produces costs 

that are higher than the cost of using diagnostic five alone. The decision-costs increased 

by combining the diagnostic tests using the “AND” rule. The range of minimum costs 

using the “AND” rule is now [$260.00, $560.00] compared to [$106.96, $332.73] from 

the “OR” rule. The error rate of missing a bad wood pole increased as was expected 

while the error rate of replacing a wood pole prematurely was zero for all combinations. 

This includes those that already had a zero premature-replacement rate.  

Combinations of “OR” and “AND” rules were applied to the diagnostic tests to 

investigate if such combinations would lead to a smaller decision cost than that found by 
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“diagnostic test three OR five.” The combinations did not improve the costs. The 

minimum costs found for a few such combinations are shown in Figure 59.  

 

Figure 60 Decision-costs generated by combining diagnostic tests using logic “OR” rules, “AND” 

rules or some combination of the rules. The third and fourth data-points are derived by combining 

the first two tests using the “AND” rule or the “OR” rule. Then, the results are combined with the 

last third test using the “OR” or “AND” rule correspondingly.  

 

The minimum decision costs have been observed when diagnosis from two test 

procedures (test three and five) are combined using the “OR” rule. The “AND” rule is not 

a competitive rule for improving diagnostic accuracy. Mixing the “AND” and “OR” rules 

produce better results than using single diagnostic tests. However, they have not been 

found to improve decision costs as much as the “OR” combination of diagnostic tests 

three and five. 

4.4 Effects of Cost-Relationships on Decisions of Preventive 

Replacements from Multiple Diagnostic Testing 

The optimum number and selection of combined diagnostic tests may be sensitive 

to the actual cost of diagnostics, the relationship between diagnostic costs of distinct 

diagnostic procedures, costs of preventive replacements, or the relationship between costs 

of corrective replacements and preventive replacements. The influence of these costs on 
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decisions should be evaluated before making any conclusions on minimization of 

diagnostic errors using multiple diagnoses. 

Assuming the cost of diagnostics is equal for all diagnostic procedures and the 

cost goes up, a decision-solution that is sensitive would change. Likewise, when the cost 

of corrective replacement is known to be higher than the cost of preventive replacements 

by some factor a1, an evaluation of the influence on the decision to use multiple 

diagnoses should be conducted. These features will be investigated in this section. 

Sample Results: Wood Poles 

For the same wood pole experiment, which uses diagnoses from six different 

diagnostic procedures, the cost of corrective replacement is assumed to be a 

multiplicative factor a1 equal to two greater than the cost of preventive replacements. The 

effect of this change on finding the minimum decision cost (and selection of tests) for 

preventive replacements of wood poles using multiple diagnostic test procedures is 

shown in Figure 61. 
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Figure 61 A plot of minimum costs of different combinations of diagnostic tests used in making 

decisions on preventive replacement of wood poles. Here, the ratio of corrective to preventive 

replacement costs is two. 
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The figure shows that though the range of decision-costs increased from [$106.96, 

$332.73] for a unit value of a1 to [$193.90, $423.60] here, the optimum number of 

combinations is still two. The selected tests are still tests three and five. Other values of 

the factor a1 set to be greater than one showed similar results. 

With a1 back to value one and cost of inspections changed from $10 to $20, the 

optimum number of diagnostic tests to combine remains unchanged at two. See Figure 

62. The difference in costs between using three tests and two tests increases. The range of 

the minimum decision-costs is [$127.00, $392.70].  
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Figure 62 A plot of minimum costs of logic “OR” combinations of diagnostic tests used in making 

decisions on preventive replacement of wood poles. Here, the cost of individual inspections is twice 

the initial cost. 

Assume the costs of each of the diagnostics are related to their individual 

accuracies using the following formula.  

 

where Ci_b is the base cost of an inspection, say $10; Ci+1 is the cost of some other 

diagnostic procedure; ab is the accuracy of the base test and ai+1 is the accuracy of some 

other diagnostic procedure. Let the base test be the one with the least accuracy. Accuracy 
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is defined as the ratio of true diagnosis (sum of true positives and true negatives) to the 

total number of components on test. 

The ratio of accuracies and therefore costs of diagnostics is shown in Table 29. 

Table 29 Accuracies and resulting inspection-cost ratios for six diagnostic testing procedures. The 

base accuracy (for test six) is 0.755. 

 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Accuracy 0.800 0.840 0.870 0.844 0.940 0.755 

Inspection cost 

or accuracy ratio 

1.060 1.112 1.152 1.118 1.245 1.000 

 

Using these ratios for calculating individual diagnostic costs of the tests, the 

resulting plot of minimum decision costs per combination of tests is shown in Figure 63. 

The minimum cost has now increased to $110.90 from $106.96. The decision however 

remains unchanged. That is, the optimum number of tests to combine is two. 
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Figure 63 A plot of minimum costs of logic “OR” combinations of diagnostic tests used in making 

decisions on preventive replacement of wood poles. Here, the costs of diagnostic procedures are 

directly proportional to the accuracies of the procedures. 

The choice of the number of combinations of the tests and the selection of the 

tests that yield the minimum costs are insensitive to the costs of diagnostics and 

preventive replacements. The optimum decisions in preventive replacements of wood 
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poles would be made by using the prediction of the logic output of diagnostic test three 

OR five.  

 

4.5 Summary 

Power system components are expected to be maintained to within National 

Electrical Safety Code (NESC) standards. Electric utilities therefore employ expertise of 

diagnostic contractors to investigate what components meet requirements and which do 

not. The best compliance test is a gold standard test: that precisely and accurately 

evaluates the condition of components. However, these tests are often invasive and 

expensive. One such type of test is destructive test applied to components that fail 

mechanically from say, environmental stress loading. These tests render components 

unusable. To dispense with destructive tests, less expensive and invasive tests are needed: 

diagnostic tests. However, accuracy is an issue in gaining information on the true 

conditions of populations of the components. 

To learn the accuracy of the diagnostic tests, samples of components are selected 

from a population and classifications of the samples using destructive and diagnostic 

tests, compared. A small sample usually results in large bias in assessment of accuracy. 

This work suggests the use of proportions of components already selected for preventive 

replacements since diagnostics is a regular process in the lifetime of populations in 

keeping with NESC standards. Experimental studies on such samples will yield estimates 

of only the positive predictive value of the diagnostic test. The positive predictive value 

(PPV) gives the ratio of components scheduled for replacement that actually do not meet 

NESC standards, where the latter is known based on destructive test results. 

Since destructive tests are costly, though not as costly as preventive replacements 

themselves, only a proportion of annual preventive replacements may be able to receive 

destructive testing based on annual utility budgets. The coefficient of variation, which 
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can be seen as a measure of the risk of returns on destructive testing investments, is used 

to determine when the estimate of PPV has reached a steady-state. The cumulative cost of 

destructive testing, the cost of premature replacements until steady-state is reached and 

the potential reduced cost of premature replacements after actions are taken to mitigate 

low PPVS is used to show the benefit of shorter time assessments over long time 

assessments. The analysis performed excludes the negative predictive value (NPV), 

which may take even longer to determine. Both measures of accuracy would give a more 

complete picture of the benefit, if any, of switching contracted diagnostic test companies. 

Having determined the accuracy of real competing diagnostic tests from a sample 

of components assumed to be unbiased, rules for ranking superiority of the distinct tests 

are compared based on subjective judgment, statistical tools and economics of costs of 

misclassification. Logistic regression analysis and receiver operating characteristics 

(ROC) curves are some of the tools applied. The economical tool provides intuitive 

rankings likely to be preferred by management.   

Statistical and economic tools are also applied in determining the relationship 

between combined diagnostic test scores that gives the most accurate predictions in 

classification of components by whether they meet or fail NESC requirements. Deviance 

of forward and backward propagation step logistic regression analysis was used for 

inferring the combinations of the test scores that were statistically significant in 

predicting classifications. The tool found a combination of two of a total of six tests as 

appropriate using real data. The ROC method did not provide new results since it was not 

independent of the regression methodology. The economical method was defined by 

combining enumerations of all six tests using “OR” and “AND” rules to find the 

combination that yielded the minimum cumulative costs of combined diagnostics and 

costs of misclassification of the components. 

The optimum number of combined testing methods was two based on an “OR” 

rule, as similarly found by the logistic regression method. The use of the optimum 
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combination of two specific diagnostic tests out of the six available tests yielded savings 

up to $300 per component tested than the use of the one traditional testing method. 

Increasing the number of tests combined led to an increase in the cumulative cost of 

testing and misclassifications compared to the optimum of two tests. The economic 

method, which applied logic rules to tests combined serially, was again considered 

superior to the statistical methods since the latter are difficult to implement in the field. 
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5 STOCHASTIC OPTIMIZATION OF PREVENTIVE MAINTENANCE 

PROGRAMS FOR POWER SYSTEM COMPONENTS 

Introduction 

Stochastic optimization tools have played a significant role over the past few 

years in decision-making where financial markets are concerned. Decision-makers in 

equity markets and in the field of Asset and Liability Management require specialized 

algorithms and models to process a large amount of financial data for deciding on how to 

move assets for investors in order to produce gains for the investors. An example of the 

magnitude of financial data and assets is seen in the United States (US) Pension Asset 

Reserves as analyzed in [1]. The decision-making tools applied in the financial markets 

have more recently been applied in energy planning and lifecycle cost planning. 

Decisions include the choosing between make and models of structures or equipment to 

purchase, build or install; choosing between maintenance procedures to apply on 

equipment, among others. The objectives may be the minimization of lifecycle costs of 

equipment or the maximization of some score function like profits and gain.  

The algorithms used for analysis may be based on numerical methods like Monte 

Carlo methods or analytical if the functions are well defined continuous functions. Monte 

Carlo methods are very popular across financial management because of the possibility to 

directly explore effects of specific scenarios of decision-parameters. Accounting for 

uncertainties in parameters while exploring scenarios is what differentiates stochastic 

optimization from deterministic optimization.  

While deterministic optimization techniques are very popular in engineering, 

stochastic optimization is not as common because of computational complexities 

associated with the process. However, stochastic optimization is important because 

making decisions under uncertainty is more realistic than following a deterministic 
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approach. For instance, the exact number of components that will fail in a year is a 

random variable, which may be modeled using an expected value, variance and other 

statistics of a distribution. Each possible number of annual failures could be set up as one 

scenario to analyze and may yield differing optimum decisions in a larger optimization 

problem. 

Power utilities are faced with complex annual decisions on the management of 

their physical assets or components. They are interested in the choice of a cost-effective 

schedule of component inspections and replacements. There are uncertainties in costs, 

probabilities of failures of the components, among other things. In this chapter, a Monte-

Carlo approach is applied in the stochastic optimization of preventive maintenance 

programs. Because the run-to-failure program of management for certain kinds of 

components is considered highly competitive, the objective of the optimization will be 

the minimization of the annual cost of a preventive maintenance program relative to a 

run-to-failure (RTF) program. The kinds of components considered are those that are 

non-critical to power delivery when they fail individually but could result in millions of 

dollars in replacements and penalties when they fail in large numbers. The safety risks 

posed to the public from unexpected failures of these components are also high. 

The RTF program is not sustainable and could carry a high safety risk for the 

public, especially as a significant number of power system components are now 

considered aging infrastructure. In fact, preventive maintenance programs for such assets 

as distribution wood poles are now mandatory in states like Florida. In states with 

flexible management programs on their components, finding parameters for which 

maintenance decisions are optimum would be very beneficial. The decision parameters in 

this chapter are the frequency of inspections of components (inspection-schedules) and 

the proportion of inspected components to replace preventively. The decisions to replace 

components are assumed to be made based on recommendations from diagnostic 

techniques.  
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5.1 Optimizing the Component-Management Process 

The run-to-failure (RTF) program is arguably a competitive management 

program. It requires no expertise in decision-making, no data or data analysis, and no 

additional annual costs of component inspections or maintenance. In regions of low risks 

of failures of components resulting from some environmental stress, the number of 

components failing per year might be very low excluding the effect of age could be quite 

low. As an illustration, see the wind zone map in Figure 64. While failures and 

replacements of wind-exposed and wind-vulnerable components might be high in states 

like Alabama, the number for similar components in Utah might be very low. Decisions 

of inspections and replacements among the zones will therefore, vary.   

 

 

Figure 64 Wind zone map of the United States by Federal Emergency Management Agency (FEMA), 

showing relative risks of high winds among states [2].  

 

The preventive maintenance program, in comparison, for environmentally 

stressed components could involve a significant amount of annual investment in 

inspection and maintenance costs. Sometimes, the benefit of maintenance programs is not 
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immediately evident or obvious. The maintenance program is somewhat of a long-term 

investment. It takes a long time before it pays off in terms of how much money is 

invested into the program. However, when the impact on public perception and power 

utility reputation is factored, the benefit of the program becomes clearer.  

While the RTF program might be competitive in cost, it is deficient in safety 

planning and is unattractive to the public. Power utilities may incur very high costs of 

penalties when they (the utilities) are considered to have been negligent in their duties. 

For instance, civil penalties of up to $1 million per day may be charged to utilities if they 

are found to deliberately violate reliability standards or environmental protection acts. 

The choice of decision parameters that will minimize the annual cost of a 

preventive maintenance program relative to a run-to-failure (RTF) program depends 

greatly on the choice and set-up of constraint functions, fixed parameters, and the bounds 

of the random variables defined in the problem. In the sections that follow, the decision 

parameters (design variables) and their bounds are defined, the random variables and 

their distribution functions are defined, and any constraint functions needed for 

computation will be defined. Finally, the objective function will be defined. 

The use of Monte Carlo methods requires a large selection of possibilities 

(scenarios) picked from continuous probability density functions. To reduce the 

complexity of computation and because finding the global optimum is not critical (the 

alternative decisions are not expected to have as much impact as stock trading or 

hydrothermal generation decisions, for instance), some optimization parameters will be 

defined as a small countable number of values. That is, they will be defined as discrete 

variables with a non-small number of steps between the lower and upper bounds. Local 

optima will be found. 
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5.1.1 Costs that affect Decision-Making in Management of 

Environmentally Stressed Aging Components 

The lifecycle of a typical component that experiences inspections at least once 

before its end-of-life is shown in Figure 65. This represents a component from a 

preventive maintenance program. The component is assumed to be in operational state 

from installation to its end-of-life. Each milestone and replacement has associated with it 

a cost. In lifecycle cost analysis, all costs that occur before a time of analysis, for 

instance, the present time instant, are neglected since they do not affect future costs or 

management decisions. In economics, these costs are called sunk costs. In Figure 65, the 

costs of acquisition and installation as well as the cost of the inspection before the present 

time instant are neglected in decision-making. It is easy to see that the lifecycle of a 

component undergoing a run-to-failure program does not incur inspection costs. 

 

Figure 65 Lifecycle of a typical inspected component up to its end-of-life either from failure or 

diagnostic decision for preventive replacement. 

 

The end-of-life of a power utility component may be directly related to a number 

of resulting costs. This includes 

 Cost of replacement (labor and capital), 

 Cost of energy not served (lost revenue), and 



 179 

 Cost of switching between lines when damage to a component causes 

disruption in power flow in some initial line. 

When the end-of-life of a component is forced by some environmental stress that causes 

the failure of other non-identical components and an outage results, it becomes very 

difficult to estimate lost revenue pertaining to any class of components. Also, in the event 

of severe storms, switching may be impossible. That is, all possible lines in the 

contingency design may have failed. Thus, outages often last very long during severe 

storms: restoration might include replacement of a significant number of non-identical 

components. For this reason, the replacement costs, which are the most quantifiable costs 

for component end-of-life, are the only costs considered here in management decision-

making. 

Going from a microscopic view on the lifecycle of a component to the broader 

view of the consequences of power utility preventive actions on a population of 

environmentally vulnerable identical components, inspection costs and replacement costs 

will be accrued annually. The sum of all the costs represents the costs relevant in the 

decision-making process tackled in this chapter for the run-to-failure program or the 

preventive maintenance program. 

 

5.1.2 Defining the Decision Parameters 

Decision parameters may also be called design variables. The optimum decision 

in an optimization problem is made by evaluating and comparing solutions of an 

objective function from a sufficient number of possibilities of the decision parameters. 

An optimal solution varies for different sets of decision parameters. The design 

parameters must reflect decisions within the power, control and authority of the power 

utility. For instance, while a power utility can define the number of components to 

inspect in a year, it cannot control the environment: weather conditions are unpredictable. 
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Given the definition of the power utility management-problem described in the 

introduction of this chapter, the decision parameters are the following. 

1. The component inspection-schedule 

2. The proportion of inspected components that are preventively replaced 

5.1.2.1 The Component Inspection-Schedule 

 The schedule affects the number of components inspected annually. Assuming 

the inspection-schedule is regular and static, that is the same schedule is used each year, 

the number of components inspected NI per year n is defined as 

   

where N[n] is the total number of identical components to be managed in year n, and c is 

the inspection-schedule. In this work, it is assumed that the total population of 

components in each year remains unchanged. In other words, growth or decline in the 

population size of the components is ignored. Therefore, for all years n, 

 

In this work, the inspection-schedule c is defined to be a bounded integer. 

Because giving c the value of zero implies no preventive maintenance and makes NI[n] 

undefined, c is defined not to include the value zero. Also, the upper bound of c is 

defined so that there are not a large number of years between inspections of components. 

The latter would show a low public safety-interest from the power utilities. Thus, c is 

defined as 

 

 

where a is the lower bound of c, b is the upper bound of c, and N is the set of natural 

numbers (positive integers greater than zero). 
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It should be noted that the results of age-dependent fragility assessment of some 

components may show a recommended start-age for inspections. This would reduce the 

total number of components at the “benefit” of inspections from N to  at
tN )( , where t 

is time or age and a is the recommended minimum age of inspected components. So, the 

formulation of the population-size depends on the component analyzed. 

5.1.2.2 The Choice of Preventive Replacements 

The proportion of inspected components that are preventively replaced in each 

year will affect power utility spending on replacements in that year. Preventive 

replacement of all inspected components will result in maximum replacement-expenses 

and is unjustifiable especially given utility budgets. By prioritizing scheduling of 

components as discussed in Chapter-section 3.2.3, it is possible that a large number of 

high-failure-risk components may be inspected in the first few years. However, with the 

low percentages of historical failures of components exposed to severe environmental 

stress, it is not sensible to replace all inspected components. Note that though the 

percentages of failures may be small, the total number failing may reach thousands, 

translating into millions of dollars in expenditures for certain types of power utility 

components. 

The minimum possible proportion of preventive replacements σmin is zero-

percent: no components replaced preventively. The justification for a drastic decision to 

avoid replacements may depend on the accuracy of diagnostics. For instance, if accuracy 

is high, components identified to be replaced could save the utility in corrective 

replacement costs and system reliability. However, since the power utility faces the 

problem of aging infrastructure and should start progressively replacing very old 

components to avoid much larger failure risks in the future, σ should be chosen to be 

greater than zero. The choice of preventive replacements here will be defined as some 
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proportion of the expected number of failures of inspected components. This will be 

applied to the annual cost of preventive replacements in Section 5.1.4. 

It is suggested that at least the proportion of inspected components expected to 

fail in one year should be replaced preventively. Assuming the number of components 

expected to fail in one year is evenly distributed around the regions of inspection per 

year, the lower bound of σ is 

  
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where E[.] is expected value, a is the recommended minimum age of inspected 

components, and f(t) is in boldface because it is a random variable. 

Because the expected number of failures is likely very small relative to the 

number of components inspected, the upper bound of σ is chosen to be much larger than 

its lower bound, say by a factor of 100. Thus, the bounds of σ are 

 

(29) 

 

5.1.3 Defining the Random Variables 

The comparative annual costs of either a run-to-failure (RTF) program or a 

preventive maintenance program depend on certain variables that are uncertain and not 

fixed. Defining the parameters as fixed makes the problem deterministic, while as 

uncertain makes the problem stochastic. The variables that are more realistically defined 

as stochastic are listed below. 

 Costs of inspections and replacements: preventive and corrective, 

 Probability of failure, 
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 Sensitivity of a diagnostic test (an expression of the accuracy of diagnostic 

techniques applied on components), 

 Discount rate of money. 

The variables are defined in more detail in the subsections that follow. 

5.1.3.1 Discount Rate 

The time value of money is a concept of finance that accounts for the premise that 

societies and governments place a lower value on future dollars than on present dollars. 

The discount rate is commonly used to model the present value of costs that may be 

incurred in future years. This rate reflects preference for present rather than future 

consumption. It is essential for the multi-stage or multi-year optimization of the decision-

problem tackled in this chapter.  

If the year for which a cost is to be estimated is n years from the present time, 

then the present value of the cost C may be defined as  

 

(30)  

where Cn is the present value, n is the year being analyzed and d is the discount rate. 

Interest rate forecasts are not high precision numbers. Long-term and short-term 

rates depend on the global economy as well as the United States (US) economy. During 

bad economies, where incentives for investments and borrowing are needed, interest rates 

are not high. To tackle issues with the economy in the present year, 2012, the Federal 

Reserve announced that it was likely to leave short-term interest rates at rock-bottom 

levels [3].  

Inflation is a variable that shows how the price of commodities and/or services 

rises over time. Putting the economy and unemployment in perspective over the past few 

years, inflation is not expected to rise by much in the next few years. Companies do not 
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and will not be under any pressure to increase the wages and salaries of their employees. 

Though inflation can be defined as a random variable, it will be used as a fixed parameter 

of value 1.6%. The value is an average of the 2012 and 2013 forecasts of inflation from 

the Congressional Budget Office (CBO) publication. Using inflation, Equation (30) 

becomes 

 

where i is the inflation rate.  

5.1.3.2 Costs of Inspections and Replacements 

The costs of inspections have been described in chapter-section 4.1.3.3 and the 

costs of replacements in 3.2.4. Estimates of the costs can be obtained from accounting 

reports within power utilities, accounting reports from inspection companies, or survey 

responses from power utilities. Defining the cost of inspections and replacements as a 

random variable requires some knowledge of how the costs vary or change over time. In 

the absence of this information, the factors that affect the cost of labor (wages, salary, 

income and the like) may be used to estimate variation in the costs.  

Though unemployment rate, the cost of fuels and therefore transportation, and 

competition in market, may affect the cost of labor or services, it is assumed that the 

Employment Cost Index (ECI) causes the only significant variation. The ECI measures 

change over time in labor costs, the inflation of wages and employer-paid benefits, in a 

sense. Quarterly values of past ECIs can be obtained from CBO to learn the statistics of 

distributions of ECIs. The most recent value of the ECI, which will be measured in terms 

of percentage increase in compensation cost, will be used for projecting future labor 

costs, affecting both costs of inspections and replacements. Then, any cost of interest 

(inspections or replacements) can be calculated as 
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(31) 

where ECI is a random variable described by a discrete probability distribution function, 

n is the current year, n – 1 is the prior year, and C is defined as a fixed parameter with a 

known or projected average value. Let ECI be equal to 0.5% and defined as either a 

uniform distribution or triangular distribution. 

The ratio of cost of corrective replacements to the cost of preventive replacements 

is some variable a1 defined as  

 

where Ccr is the cost of corrective replacements and Cpr is the cost of preventive 

replacements. The variable a1 is defined as a uniformly distributed random variable with 

lower and upper bounds at two and five respectively. This reflects the minimum overtime 

pay required for service outside of a normal 40-hour work week or peak hour work. More 

detail can be found in Chapter-section 3.2.4. Note that these costs are defined as fixed 

parameters, only made random by a1 (if corrective) and the ECI. 

5.1.3.3 Probability of Failure of Components from Fast-Moving Hurricanes 

The age-dependent fragility assessment of components developed during the 

course of this dissertation provides expected probabilities of failure of different ages of 

components across a wide range of wind speeds. The hazard curve of wind speeds 

(probability density function of high winds) varies by location. The state of Georgia, for 

instance, has received a lower number of high intensity land-falling hurricane strikes than 

the state of Alabama or Florida, according to archival records kept by the National 

Oceanic and Atmospheric Association (NOAA). 
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The probability of failure of some age t of a component can be estimated using 

both the age-dependent fragility curve of that component and the hurricane hazard curve 

of the component. The procedure is fully explained in [5]. The probability of failure of a 

component of age t out of a population of identical components under a spectrum of 

possible hurricane winds is  

 

 (32) 

where P(.) is the mean probability that the demand (wind load) on the component exceeds 

its capacity (strength) given the age t and a wind speed w, and f(w) is the probability that 

a hurricane-induced wind speed of value w will be experienced in the region: it is the 

hurricane hazard curve. The former probability has already been discussed in Chapter 3. 

The latter is discussed briefly in this subsection. Note that because the fragility curve is a 

cumulative distribution function and it has been observed that it translates (or shifts) to 

the left for increasing ages, at some age of the component, the fragility curve will have a 

value of one for all hurricane wind speeds. That is,  

 

Thus, 

 

The probability F (t) can be interpreted as the proportion of exposed components of age t 

that will fail under wind load. 

The formulation for a wind hazard model differs significantly in literature. The 

uncertainty in the models is discussed in [5], where three distinct pairs of Weibull 

parameters are presented for the estimation of the wind hazard model for Southern 

Florida. In a report by Lai and Kiremidjian [6], severe wind hazard was analyzed for 



 187 

Hong Kong. The Lai model was split into two sub-models: a hurricane recurrence model 

and an extreme wind model. The mean rate of hurricane occurrences was estimated using 

Poisson processes, while the extreme wind model was described by Gumbel and Weibull 

distributions. The Gumbel distribution was found to fit observed data better than the 

Weibull distribution. The hazard curve generated was an exceedance probability: that is, 

the probability that the annual hurricane speed for a specified return period would exceed 

some minimum speed of damage. The application of the probability to a fragility curve 

was however not stated. 

In this work, the risk assessment method in [5] for the Vickery model in [7] will 

be used for estimating the hurricane hazard curve. The hazard curve is region-specific; 

so, parameters of the density function that define the curve will also vary per region. For 

instance, in the southern end of Florida State, a two-parameter Weibull density function 

with shape parameter equal to 1.769 and scale parameter of 61.07 is given for the 

Vickery’s model. By convolving the fragility curve with the wind speed probability 

density function to obtain the probability of failure, the expected number of components 

that will fail in one year Y is  

 

(33) 

where N (t) is the age distribution of the population of components and t is age.  

The uncertainty in the probability of failure could be modeled in different ways. 

For one, a uniform band of uncertainty, say 10%, can be applied around the hurricane 

hazard curve, the fragility curve or the probability of failure. For another, confidence 

intervals of a regression fit of the generated failure probability for distinct ages can be 

used to describe the uncertainty in the failures. Alternatively, enumeration may be used 

for combining mean and corresponding one-standard-deviations of generated distinct 

age-specific failure proportions per age. This gives a distribution of failure numbers that 
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can be fitted to a probability density function to account for stochastics in the parameter. 

The equation of age-specific failure proportions may be estimated using simple 

regression analysis. 

Appropriate implementation of regression analysis requires a normality 

assumption on the residuals. A log-transformation model may be used on the response 

variable (failure probability here) to improve the regression fit. With a simple linear 

regression fit with the estimate of the intercept b̂  and estimate of the slope m̂ , the 

confidence band has a hyperbolic form given by the equation 

 

where τ is the independent variable for age, n is the number of data points used for the 

regression fit, εi is each one of the residuals for each data point, tn-2 is the inverse of the t-

distribution for (n-2) degrees of freedom, and t represents the observed data points for 

age. 

 

Sample results: Application to wood poles  

The provided Weibull parameters in [7] are for the hurricane wind speed 

probability density function in the southern end of Florida. Using the parameters and the 

age-dependent fragility curves of wood poles, the probabilities of failure F (t) for ages 0, 

25, 50, 75 and 100 are shown in Table 30. A simple linear regression model was 

attempted on the points but the residuals did not show normality.  

Table 30 Derived failure probabilities of wood poles for distinct ages 0 – 100 years. 

Ages (Years) 0 25 50 75 100 

Probability of 

failure 

1.091*10
-3

 1.224*10
-3

 2.808*10
-3

 1.810*10
-2

 6.200*10
-2
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The failure probability for these mean failure proportions was log-transformed, fit 

using a simple regression model, and the residuals were tested using a normal probability 

plot. The equation that defines the regression model is  

 

where b is the intercept, m is the slope and t is the age of the wood pole in years. The 

probability plot of the residuals is shown in Figure 66. The low Anderson-Darling 

statistic and the high p-value imply the normality assumption holds. 
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Figure 66 Normal probability plot of residuals of a simple regression fit of a log-transformed F(t). 

 

The plot of the fits is in Figure 67, with a high correlation coefficient of 0.92. All data 

points fall within the confidence bounds. 
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Figure 67 Simple regression fitted plot of the log-transformed failure probability and its confidence 

bounds. 

 

To obtain the values of F(t) from the fits, the exponential of the right-hand side, 

that is (-7.393 + 0.043t), must be found. To ensure that the fit never exceeds the value of 

one, the regression fit is modified so that for the estimates of the coefficients, log-F is 

 

where min[.] represents the minimum between the natural log transformation and zero. 

Note that a zero in the exponent gives a value of one.  A prediction for F(t) is 

 

which is the exponent of the sum of the intercept estimate and the product of the slope 

estimate and a known age t. A similar procedure is used to find the prediction confidence 

bounds of F(t).  

The age-specific proportion of failure F(t) and its 95% bounds are shown in 

Figure 68. From the figure, the interval increases very rapidly after about 50 years. A 

closer view of the lower ages is shown in Figure 69. 
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Figure 68 Mean and 95% confidence interval of age-specific proportions of exposed wood poles that 

may fail under possible hurricane wind speeds. 
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Figure 69 A closer view of F(t) estimate for lower ages. 
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To illustrate the effect of the failure proportions to a realistic population of wood 

poles, the mean proportions are multiplied by a scaled age distribution of wood poles 

from a real power utility. The distribution is shown in Figure 70. The use of the 

probability density function of wind speeds for convolution with the fragility curves for a 

location like Florida State includes a hurricane exposure factor. Thus, no scaling is 

required for component-exposure to some hazard analyzed. A plot of the annual expected 

failures by age is in Figure 71. Because the products of the number of poles per age and 

the failure densities may not be integers, the products are rounded up to represent realistic 

quantities. The total number of wood poles in this power utility is 974,383; the number of 

them that are at least 20 years old is 701,079 (72% of the entire population). 

 

 

Figure 70 Age distribution of wood poles in a real power utility used in comparing three stochastic 

sampling approaches. 
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Figure 71 Age distribution of expected failures during a hurricane event for a southern Florida 

hurricane probability distribution. 

 

To quantify uncertainties in failure proportions, other regression fits are found 

using enumeration: combinations of the means and one standard deviations of fragilities 

per age (0, 25, …, 125 years). The values are shown in Table 31. With six distinct ages 

and three possible proportions per age, there are 3
6
 or 729 such combinations of the 

proportions. One instance of combination is 0L, 25L, 50L, 75L, 100M, 125U, where each 

number is age, “L” is “lower,” “U” is “upper,” and “M” is “mean.” 

 

Table 31 Mean and one standard-deviation limits for age-specific failure proportions F (t) estimated 

for distinct ages 0 – 125 years.  

Age 0 25 50 

  Lower Mean Upper Lower Mean Upper Lower Mean Upper 

F(t) 0.000 0.001 0.003 0.000 0.001 0.003 0.001 0.003 0.006 

ln F(t) -7.920 -6.820 -5.914 -7.786 -6.706 -5.823 -6.863 -5.875 -5.132 

Age 75 100 125 

  Lower Mean Upper Lower Mean Upper Lower Mean Upper 

F(t) 0.009 0.018 0.028 0.042 0.062 0.078 0.192 0.205 0.210 

ln F(t) -4.679 -4.012 -3.578 -3.179 -2.781 -2.552 -1.650 -1.587 -1.559 

 

The combination of (0L, 25M, 50L, 75L, 100L, 125L) yields Figure 72. 
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Figure 72 Simple regression fit of one of 729 possible combinations of age-specific failure 

proportions. 

  

The density of the expected annual failures and those at least 20 years old is 

shown in Figure 73. Note that the recommended minimum age of inspected poles is 20 

years, obtained from inspection of the fragility curve and age-specific proportions of 

failures. The annual expected failures are defined one random variable in simulation. The 

number expected to fail past age “a” or 20 years in this case is 

 

where “a” is the recommended minimum age of inspected components based on the 

results of fragility assessment.  



 195 

0 1000 2000 3000 4000 5000 6000 7000
0

2

4

6
x 10

-4

Number of failures

P
ro

b
a
b
ili

ty

Probability density function of failures in entire population

0 1000 2000 3000 4000 5000 6000
0

2

4

6
x 10

-4

Number of failures

P
ro

b
a
b
ili

ty

Probability density function of failures for poles >=20 years

 

Figure 73 Densities of annual expected failures using simple regression fits of enumeration of means 

and one standard deviation limits of the age-specific failure proportions. 

 

Goodness-of-fit tests are applied to determine parametric fits to the densities. 

While lognormal and Weibull fits were the best distributions, the former exceeded the 

latter in both Anderson-Darling statistics and p-values. Fits are shown in Figure 74 and 

Figure 75. 
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Figure 74 Histogram and lognormal regression fit of the expected failures. 
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Figure 75 Histogram and lognormal regression fit of the expected failures for ages ≥ 20 years. 
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5.1.3.4 Sensitivity of a Diagnostic Procedure 

The sensitivity of a diagnostic procedure is a measure of the accuracy of the 

procedure. It measures the fraction of components known to be below reliability and/or 

safety standards that are accurately detected by a diagnostic procedure (test). The 

possible bounds of sensitivity are zero (lower) and one (upper). A diagnostic test with a 

high value is one that detects a large number of inspected below-standard components. In 

Chapter 4, the possibility of improvement in the accuracy of a diagnostic test was sought 

through the combination of diagnostic testing decisions using combinatorial logic. 

Sensitivity will be defined as a uniformly distributed random variable in this work with 

the lower and upper bounds as some experimental estimate of the sensitivity of a test and 

the simulation estimate of the maximum sensitivity of combined diagnostic decisions 

respectively. 

5.1.4 The Objective Function 

The cumulative cost of corrective replacements for a run-to-failure management 

approach on wind-stressed components is negligible in a year where there are no high 

intensity hurricanes, relative to the corresponding cost for a preventive maintenance 

program. The maintenance program is a proactive approach to component failures and 

encourages safety and good public perception. During very strong storms, even a 

preventive maintenance program may not prevent newly replaced components from 

failing. In addition to the strength of a storm and the corresponding probability of failure 

of components, the sensitivity of diagnostic procedures, which are the decision-making 

for the preventive maintenance approach, affects the benefit a maintenance program 

offers over a run-to-failure (RTF) program. 

As discussed in prior sections of this chapter, it is valuable to obtain the optimum 

inspection schedule and preventive replacement that minimize the differential cost 
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between a traditional RTF program and a preventive maintenance program under 

uncertainty. An enumeration of the competing costs is shown in Figure 76.  

 

Figure 76 Annual costs of competing strategies (run-to-failure RTF and preventive maintenance) 

that play a role in component management decision-making, ignoring the cost of penalties. 

 

The objective in this chapter is the minimization of the difference between both 

strategies. It is expected that the cost of the preventive maintenance approach will be 

more expensive than the traditional run-to-failure approach. The differential cost Cdiff is 

 

(34) 

where Crtf_a is the cost of corrective replacements of identical components that fail as a 

result of high wind loads in a year for the RTF strategy and Cmntc_a is the cumulative cost 

of diagnostics, preventive and corrective replacements of components in a year for the 

preventive maintenance strategy. The maintenance strategy, for cost-efficiency, should be 

made as small as possible in comparison to the RTF strategy, making the problem the 

minimization of the differential cost.  

The expected RTF cost is a product of the expected cost of one corrective 

replacement and the number that fail in a year from Equation (33). Thus, 
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(35) 

where N (t) is the age distribution of the identical environmentally stressed components 

owned by a utility, F (t) is the age-specific expected proportion of failure of components 

exposed to environmental stress in the power utility, and Ccr is the cost of one corrective 

replacement. This cost concludes the relevant costs for the RTF program. The costs listed 

onward are costs in the preventive maintenance program. 

The expected annual cost of inspections for a preventive maintenance program, 

assuming a uniform number of components is inspected per year using a regular 

inspection cycle c is 

 

where 

 

where N (t) is the age distribution of components, It≥a is an indicator function, a is the 

recommended start-age of inspections, c is the inspection cycle and Ci is the unit cost of 

inspections. Note that the summation in the equation can also be written as a dot product 

of a vector of the age distribution N and a vector of ones and zeros of the indicator 

function I. 

The expected annual cost of preventive replacements Cpr_a is flexible since it 

consists of a decision variable. The proportion of components σ preventively replaced 

will be defined as some proportion of inspected components expected to fail. Thus, 
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where σ is a decision variable (proportion to replace preventively) and Cpr is the cost of a 

single preventive replacement.  

Finally, the cost of corrective replacements in the preventive maintenance 

program is of the number of components that would likely fail in the year excepting those 

of them that were accurately replaced preventively. The sensitivity of the diagnostic tests 

will play a role in the “avoided” failures. The following assumptions are important in 

defining the failure cost for the program. 

 The number of components over the start-age of inspections expected to 

fail in each year is evenly distributed across each year and region of 

inspection within a cycle. Thus, the number that will fail in each inspected 

region per year is a proportion of Y divided by c. 

 The likelihood of the sensitivity of the diagnostic procedure applied on the 

components is same across each year of inspection. 

Using these assumptions, the expected cost of corrective replacements per year 

Cr_a is 

 

where s1 is the sensitivity of the diagnostic program and Ccr is the cost of one corrective 

replacement. 

Since the annual cost of the preventive maintenance program is the sum of the 

annual costs of inspections, preventive replacements and corrective replacements for the 

program, Equation (34) becomes for the differential cost,  

 

(36) 
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This equation shows that the differential cost between the RTF strategy and the 

maintenance strategy is in the number of “good” or beneficial replacements made. These 

replacements are the averted or avoided failures of the high-risk components. 

The aggregate of the optimization problem including uncertainties in the variables 

is  

 

which reads “minimize the expected value of the differential cost with respect to the 

inspection cycle and preventive replacement proportion”. The solution to this problem 

also gives the minimum annual cost of a preventive maintenance program for a single-

stage formulation. While the inspection cycle is an integer variable, the proportion of 

preventive replacements is not and can have any value within defined realistic bounds as 

described in Section 5.1.2.2. 

 

5.2 Comparisons between Stochastic Sampling Approaches  

In [8], three methods of stochastic sampling are compared in selecting values of 

input variables for modeling the depressurization of a straight pipe filled with water after 

the pipe ruptures. The methods, which will also be compared for selecting random 

variables in this work, are 

 Simple random sampling, 

 Stratified sampling, and 

 Latin hypercube sampling. 

Let the differential cost Cdiff to be modeled be represented by S, for notational 

simplicity, and the random variables listed in the former sections be represented by vector 

w. If one sample of each random variable within a defined range is seen as a scenario in 

generating the result S1 of the differential cost, then, several other samples could be seen 
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as other possible scenarios under which the differential cost S may be obtained. 

Generating enough scenarios can be used in numerically solving problems such as 

integrals that may not be easily solved analytically. The selection of appropriate samples 

in order to keep the variance in estimating the output S sufficiently low is the focus of 

this section. The procedures for sampling are explained in the following subsections.  

5.2.1 Simple Random Sampling 

Under simple random sampling, assuming the random variables in W are 

independent and identically distributed, an estimate S’ of the expected value of the 

differential cost is 

 

(37) 

where N is the sample size and for k distinct random variables in W, the samples are 

drawn from the associate probability density functions defining the variables. As N → ∞, 

S’ → E [S]. Represent for simplicity,  

 The cost of one inspection Ci as x1,  

 The cost of one preventive replacement Cpr as x2,  

 A vector of the probability of failure of distinct ages of a component f (t) as x3,  

 The sensitivity of a diagnostic test s1 as x4, and 

 The cost of one corrective replacement Ccr as x5. 

Then, one random sample used in generating one S (wi) is wi = {x1i, x2i, x3i, x4i, x5i} for 

the simple random sampling approach. The estimate in Equation (37) is a point estimate 

and is not necessarily accurate. The interval for the estimate can be found from the 

variance of S’, which depends on the sample size chosen. The variance is  
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(38) 

It is well known that the ratio N/(N – 1) times the variance in Equation (38) is an 

unbiased estimator of the variance of S. Say the probability density function of S (W) is 

found using numerous samples of the random variables, and the probability of some 

interesting value (maybe the mean) of S is p’. The 95% confidence interval of the mean 

S’ for large N may be estimated using  

 

where t* is from the t-distribution. When N is sufficiently large, t* at confidence of 95% 

or α = 0.05 is 1.96 ≈ 2.0. Since the population mean and standard deviation are often 

unknown, the sample means and standard deviations may be estimated using some 

smaller sample size, like N = 10, 000 versus millions to generate an initial value of the 

mean and standard deviation.  

From the estimate of the confidence interval, it is easy to see that in order to 

increase the precision of the simple random sampling or crude Monte Carlo approach, N 

must also be increased. The “curse” of √N is that for an improvement in the precision by 

one-tenth, 100 times more Monte Carlo replications would be required.  

 

5.2.2 Stratified Sampling  

The stratified sampling approach can be an improvement to the simple random 

sampling approach when strata are chosen appropriately. Recall that it is assumed that 

)(Wf  is known and that the transformation of W to S is known based on Equation (36). 

Let the range space R of W be partitioned into I non-overlapping subsets of size pi = P 
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(wRi), with the sum of pi over i equal to one. Let Wij, j = 1, … , ni be a random sample 

from stratum Ri. The strata means μi and variances σi
2
 are denoted by  

 

 

Thus, the estimate of the mean for the stratified sampling approach SS, which is an 

unbiased estimator of the overall mean is 

 

with variance 

 

One sample can be chosen per stratum so that ni = 1. Note that when I = 1, this approach 

becomes the simple random sampling approach. For ni = 1, 

 

(39) 

This shows that the stratified sampling (SS) approach offers an improvement to the 

former approach and that the variance reduction is a function of the differences between 

the strata means μi and the overall mean SS. The variance of the SS approach is less than 

or equal to that of the SRS approach when the stratified plan uses equal probability strata 

and one sample per strata. 

If the range of k random variables were divided into two equal probabilities and 

only one sample is used per stratum, an algorithm for the stratified sampling approach 
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would be as follows. Assume that the k-th root of N is an integer. D is a matrix consisting 

of integers from 1 to the k-th root of N in each of K columns. The combination of each 

sample for each random variable sums up to N, for comparison with the simple random 

sampling approach. 

1. D = {1, 2, …, K N ; 1, 2, …, K N ; …; 1, 2, …, K N } 

2. for k = 1,…, K 

3.    for i = 1, …, K N   

a. Uik ~ U (0, 1) 

b. Mik = 
K

ikik

N

UD 
 

c. Wik =  ikW MF
k

1
 

4.    end 

5. end 

In the algorithm, F
-1

 is the inverse of the distribution function of the random 

variable being sampled. All combinations of the variates for the K random variables are 

used to compute the output Sik, yielding N samples of S. 

 

5.2.3 Latin Hypercube Sampling 

The Latin hypercube sampling (LHS) method is an extension of quota sampling 

as seen in [9]. Like with stratified sampling, it ensures that all portions of the range space 

R of the random variables are covered. Even more, each of the input variables Wk has all 

portions of its distribution represented in the sampling. The range of each Wk (the costs, 

sensitivity and failure density) can be divided into N strata of equal marginal probability 

1/N, and sample once from each stratum. Let this sample be Wkj, where j = 1, …, N. So, 

the Wk component, for k = 1, …, K is formed in Wi, i = 1, …, N. The components of the 

Wk’s are matched at random. The advantage of the approach is that each of the 
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components is fully represented in a stratified manner irrespective of what components 

are the most important. 

The process for Latin hypercube sampling can be automated in the following way 

as seen in [10]. Remember that N is the sample size, K is the number of random variables 

and W is a matrix of samples of the random variables. Let Π be a set of size N by K of 

permutations of N integers from 1 to N in each of k columns. 

1. Π1 = PERMUTE {1,…, N} 

2. Repeat independently up to ΠK. 

3. Π = { Πkj}
 NK

  

4. Ukj ~ U (0, 1), for k = 1, …, K, j = 1, …, N independently 

5. Uw = {Ukj}
NK

  

6. W = {Wkj}
 NK

 =  WU
N


1

 

The estimate of the mean for the LHS method SL, which is also an unbiased 

estimator, is  

 

where each W for one j is a row-vector consisting of k random variates for each random 

variables. These are inputs to solving for one sample of S. According to [8], the variance 

of the LHS method is not easily comparable to the SS method. However, it is known to 

provide an improvement to the crude Monte Carlo when the function of the random 

variables is monotonic in nature. In comparison to the variance of the crude Monte Carlo, 

the variance of the LHS method, adapted from [8], is found as follows.  

 

(40) 
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where Var (S’) is the variance of the simple random sampling method, K is the number of 

random variables, R is a restricted space of N
K
(N-1)

K
 pairs (μi, μj) corresponding to 

samples that are not common, and μi is the output of the LHS selection of a set of the K 

random variables. Obviously, the variance of the LHS method is less than or equal to that 

of the simple random sampling method if the expression in [.] is less than or equal to 

zero. 

 

5.2.4 Simulation Results: Application on wood pole data 

5.2.4.1 The effect of sample size on simple random sampling approach 

As previously mentioned, an increase in the sample size of a simple random 

sampling (SRS) approach or a crude Monte Carlo method will decrease the confidence 

interval of the estimate of the expected value of some transformation or function of the 

random variables. This is because of the √N in the denominator used in estimating the 

interval. An experiment is performed in this section to observe the influence of sample 

size on the SRS method for the differential cost problem applied to a population of wood 

poles.  

The inspection cycle in this simulation is assumed to be 10 years and the 

proportion of inspected wood poles replaced preventively is 3%. It is assumed that the 

same proportion is used in each year during the cycle. The estimates of the means and 

variances of the differential cost Cdiff or S are shown for different sample sizes in Table 32. 

Table 32 Computation time, expected value and variance of differential cost S between a run-to-

failure program and a preventive maintenance program for increasing sample sizes. 

Sample size 1000 5000 10000 50000 100000 250000 500000 1000000 

E [S], M$ 8.277 8.280 8.276 8.281 8.284 8.282 8.282 8.283 

V [S], T$ 0.241 0.232 0.237 0.235 0.237 0.237 0.236 0.236 

Comp. time 0.013s 0.014s 0.016s 0.029s 0.050s 0.098s 0.333s 0.186s 
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A plot of the means and confidence intervals is shown in Figure 77. The results 

show that given the selection of the inspection cycle (10 years) and the proportion of 

inspected components replaced preventively (5%), there appears to be no financial 

benefit to the preventive maintenance program. That is, the differential cost is positive, 

even on the extremes of a 95% confidence interval. The analysis excludes the revenue 

lost, unquantifiable public perception (reputation), and the reduction of safety risk and 

anxiety, that would greatly improve the benefit of the program over a run-to-failure 

program.  

 

 

Figure 77 A plot of the estimate of the mean and 95% confidence intervals of the mean for increasing 

sample sizes of the random variables for the simple random sampling scheme. 

 

 

5.2.4.2 A comparison of three stochastic sampling approaches 
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With the number of random variables now reduced to five, comparisons of the 

stochastic sampling approaches are again performed. For ease of understanding, the 

differential cost function between the competing management approaches Cdiff or S in 

this section is shown here using the newly defined Ya. 

 

The random variables are emboldened in the equation. It is obvious from the formulation 

that the decision of the inspection interval does not affect whether there will be a net 

benefit to the preventive replacement program; that is, for S to be less than zero. It 

however acts as a scaling to the net benefit, whether positive or negative. The choice of 

proportion of preventive replacement may on the other hand be able to affect the 

possibility of savings from the replacement program. 

The performance of the three stochastic sampling approaches for the following 

sample sizes is evaluated. 

 5
5
: Each of the 5 random variables is divided into 5 strata of equal 

probability. Thus, the sample size for each method is 5
5
: 3,125. 

 6
5
: Each of the 5 random variables is divided into 6 strata of equal 

probability. Thus, the sample size for each method is 6
5
: 7776. 

 7
5
: Each of the 5 random variables is divided into 7 strata of equal 

probability. Thus, the sample size for each method is 7
5
: 3,200,000.  

 10
5
: 10 strata of equal probability, a total of 100,000. 

 15
5
: 15 strata of equal probability, a total of 759,375. 

The estimates of the expectation, variance, computation time, and memory space 

for each of the methods are shown in Table 33. 
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Table 33 Statistics and properties of three sampling plans: simple random sampling (SRS), stratified 

sampling (SS) and Latin hypercube sampling (LHS) applied to the management cost problem and 

implemented in MATLAB, where “^”: power-exponent. 
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The expected values found using the three approaches show that the stratified 

sampling and Latin hypercube sampling (LHS) techniques provide for faster convergence 

than the simple random sampling technique. While it takes only about 3,000 samples to 

get close to a steady-state value of $8.283 million dollars using the non-simple random 

sampling (non-SRS) methods, it takes about 750, 000 samples for SRS. The factor of 

improvement in needed sample sizes is about 250.  

 

Figure 78 Expected annual differential cost of competing pole-management approaches by sampling 

using three approaches: simple random sampling (SRS), stratified sampling (SS) and Latin 

hypercube sampling (LHS). 

 

The upper and lower 95% confidence limits for each sample size and sampling 

approach were found. However, the ranges (upper limit minus lower limit) were so small 

in comparison that the differences for the approaches were not obvious. Instead, the 

differences between the ranges for the non-SRS methods and the SRS method were 

obstained. These are shown in Figure 79. The figure shows that the range of the limits for 

the LHS method was initially (at 3,125 sample sizes) slightly greater than the LHS 

method. They were less afterwards. However, the confidence-limit ranges for the SS 

method were consistently smaller (and better) than the SRS method. 
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Figure 79 Difference in ranges of 95% confidence limits between the stratified sampling (SS) and 

Latin hypercube sampling (LHS) methods, and the simple random sampling (SRS) method. The SS 

provide provides consistently smaller and relatively significant confidence ranges while the LHS 

range improves after 3,125 samples.  

 

While the LHS and SS methods are superior in variance and convergence to the 

SRS method, they are inferior to the latter method in memory, labor and computation 

time requirements. A plot of memory requirements is shown in Figure 80 while a plot of 

computation time requirements is shown in Figure 81. 

 

Figure 80 Comparisons of memory requirements for three stochastic sampling methods. 
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Figure 81 Comparisons of computation time requirements for three stochastic sampling methods. 

 

The performance of stratified sampling exceeds that Latin hypercube sampling in 

memory requirements, while the latter is an improvement over the former in computation 

time. Taking a product of the ratios of each of the two methods and factoring in 

convergence, the Latin hypercube method may in general be chosen over stratified 

sampling. However, at the time when memory was very expensive, the latter method may 

have been chosen. 

 

5.3 Single-Year Optimization 

The simple random sampling method has been found to be reasonable for analysis 

of the stochastics of the differential cost function, relative to two other sampling 

approaches (stratified sampling and Latin hypercube sampling). The method will be used 

in this section for the optimization of the differential cost between the run-to-failure 

program and the preventive maintenance program. The random variables, constraints and 

decision parameters have been discussed in more detail at the beginning of the chapter. 

The objective function is included below showing the five random variables in boldface.  
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The problem here is to find the optimum proportion of components to inspect per 

year and the optimum proportion inspected to replace preventively so that the objective 

function is optimized on average. Here, this is the maximization of the expected net 

benefit or minimization of the expected net financial loss from a preventive maintenance 

program. Thus, 

 

(41) 

where E[.] is the expected value, c is an inspection cycle in years, σ is the proportion of 

inspected components to replace preventively, and W is a vector of random variables. 

The problem is neither convex nor linear. Given the bounds, a stochastic sampling 

approach may be easily used to solve the problem. 

To hedge against variability, one may consider the following optimization 

problem. 

 

where β represents the weight given to the conservative (possibly secondary) part of the 

decision. If β = 0, the minimization problem becomes the same as in Equation (41), while 

a large β implies that the solution with minimal variance is sought. More details on 

similar formulations can be found in [11]. In [11], a maximization of profits was 

described. So, while an addition operator is used in this formulation, a subtraction 

operator and “max” are used for profit maximization. Because variance can itself be 

defined as an expected value, from a mathematical point of view, the latter formulation is 

similar to the former one. Other properties of random variables like quantiles may be 
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defined similarly in the formulation of an optimization problem without increasing the 

complexity of the problem. 

This formulation is applied to the wood pole problem. 

5.3.1 Simulation Results 

The optimization formulations are applied to a realistic database of power utility 

wooden poles. There are numerous (hundreds of millions) of wood poles used by power 

utilities around the country. Several power utilities in the United States have recorded 

estimates of a varied number of pole failures over the years following hurricane strikes on 

their facilities. Some failure numbers include  

 8,800 from Hurricane Hugo in September 1989 [17], 

 5,500 from Hurricane Fran in September 1996 [17], and  

 Over 20,000 from Hurricane Andrew in 1992 [18]. 

The aged population is taken to be poles over the age of 60 years in the 

simulations. 

In the absence of a time series of information on historical costs, failures and 

evaluations of diagnostic accuracy, subjective judgment must be relied on for estimation 

of the range of each item as discussed in [12]. Unfortunately, a uniform density function 

produces uninteresting results that show no clear direction on decision-making. However, 

a uniform density function may be used as a prior density function for the random 

variables and then updated to find posterior density functions for the variables as new 

data is acquired is over time. Some information on the random variables may be obtained 

from utility surveys (for costs) or analytical modeling (for failure predictions). In the 

future, a Bayesian approach may be used for updating parameters of posterior density 

functions of the random variables as data are acquired over time.  
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5.3.1.1 Assumptions for the single year optimization formulation 

The following assumptions are made in formulating the cost function for the 

optimum net benefit of the preventive maintenance program on wood poles. 

 The population of components remains unchanged during the optimization 

period: there are no new installations. 

 Environmental hazards are the primary and possibly the sole causes of 

failures of the components: no replacements for purposes of construction 

or vehicular or other man-made accidents cause failures of the 

components. 

 The number of components expected to fail per year are evenly distributed 

by the regions inspected in each year: the number of high-risk components 

can be scaled by the inspection cycle. 

 Preventive replacements are done prior to hurricane season (or season of 

the environmental hazard of interest) so that some failures and therefore 

costs of some otherwise corrective replacements are avoided by the 

maintenance program. 

 The unit costs of inspections and replacements are primarily affected by 

the increase of labor salaries and wages per year. 

 Independence of all non-cost random variables is assumed. The costs are 

simulated to be perfectly correlated: since they are dependent on trends in 

labor rates. 

5.3.1.2 Approach for parameter estimation of costs of single inspections, 

preventive replacements or corrective replacements 

The United States Department of Labor’s Bureau of Labor Statistics (BLS) 

provides a procedure for determining the escalation of wages and salaries for bargaining 

agreements for businesses or business contracts from the employment cost index (ECI). 
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This can be found in [13]. This procedure will be used in this work to obtain possible unit 

costs of management from a time series of compensation increases provided by ECI 

information. The general guidelines in [13] are 

1. Specifying the costs to be escalated: In this case, costs of single 

inspections Ci, preventive replacements Cpr, and corrective replacements 

Ccr. 

2. Identifying the appropriate index and series: Since the workers often 

employed by the power utility for maintenance of equipment, specifically 

for wood poles, are often contracted externally, the total compensation 

ECI for private industry workers will be used here.  

3. State the frequency of adjustments: The frequency here is annually as the 

stochastic optimization is for annual net benefits of the preventive 

maintenance program. 

4. Compute the percentage increase: The index number for the most recent 

year is divided by the index number for the prior year to determine the 

percentage increase. Multiply the percentage increase by the base cost to 

determine the “escalated” cost. This is as in Equation (31). The base costs 

in this work will be the costs extracted from utility surveys or contractor 

information.  

The base costs from utility surveys, which will be used in this work are  

 Cost of single inspections Ci: $20, 

 Cost of single preventive replacements Cpr: $2000, and 

 Cost of single corrective replacements Ccr: $6000, 

Sensitivity and failure information are in this work assumed to be uniformly distributed 

until further information is obtained and more appropriate density functions are found for 

the variables. Parameters used from a combination of subjective judgment and analytical 

models of failure and evaluations of diagnostic accuracy are 
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 Sensitivity (an element of diagnostic accuracy) s1: ~ U (0.25, 0.40), and 

 Number failing on average per year as a result of Southern Florida-type 

hurricanes Ya: ~ lognormal (μ=7.73, σ=0.3329). 

The time series of ECI are provided in [14]. The December indices for 1995 to 

2012 will be used to determine percentage increases. While a decade of data might be 

more reasonable to simulate recent occurrences, going back another half decade will 

provide more data points for analysis. Outliers may be neglected in the process of 

analysis. A summary of the statistics of escalated costs is shown in Table 34. Triangular 

and Erlang distributions are fairly widespread and familiar as mentioned in [12]. They 

were also recommended in [15] and [16]. The minima, maxima and mean will be used as 

the parameters of a triangular distribution to describe the costs. The minima of each cost 

are re-scaled to account for net present value. That is, future money having less value 

than present money. Equation (30) is used for scaling. 

  

Table 34 Statistics of escalated costs of inspection, preventive replacements and corrective 

replacements as a product of base costs and ECI percentage increases using ECIs for total 

compensation for private industry workers. “*”: These costs are re-scaled by discount rates. 

Ci Cpr Ccr 

      Mean 15.4704 Mean 2062.721 Mean 6188.162 

Minimum 15.17906* Minimum 2023.875* Minimum 6071.625* 

Maximum 15.63591 Maximum 2084.788 Maximum 6254.364 

 

Optimization will be carried out for two scenarios of diagnostic accuracy: one of 

low sensitivity (between 0.25 and 0.40) and one of high sensitivity (between 0.85 and 

1.00). Recall that the bounds of the decision parameters are 5 to 20 years for the 

inspection cycle c or as in Equation (29) for the proportion of preventive replacements. 
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5.3.1.3 Optimization results for a low sensitivity diagnostic test 

Careful observation of the objective function shows that depending on the number 

of failures expected per year, the accuracy (sensitivity) of the diagnostic test applied to 

the components may affect the net benefit of a preventive maintenance approach. A 

highly sensitive test will lead to a reduction in the differential cost. Because the 

inspection cycle c mathematically is a divisor and the proportion of preventive 

replacements is in a numerator in the function, increasing the cycle and/or decreasing the 

proportion will decrease the expectation of the objective function. Thus, the bounds affect 

the optimum decisions. With the bounds for the inspection cycle set deterministically 

from subjective judgment (5 to 20 years based on creating a band around present 

inspection cycles in real utilities) or constraints set based on performance restrictions, a 

stochastic sampling approach is used for optimization. 

Discrete steps for the decision variables were selected. 

 Inspection cycle c: 5 – 20 years with a discrete step of 1, 

 Proportion of preventive replacements: 0 to 0.1 with a discrete step of 

0.003. 

Thus, in all, there are about 530 combinations of the decision parameters. 

For a single-year simulation, where candidates (components) for inspection are 

selected in the first year within an inspection cycle and not allowed to grow over time, 

Table 35 shows the constraints for the proportion of preventive replacements and other 

fixed parameters used for the simulation.  
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Table 35 Parameters of population properties for single-year optimization. 

Description Value 

Number of poles 974,383 

Number ≥ 20 years: candidates for inspection 701,079 

Ratio of failures expected for poles 20 years or greater to the 

number of candidates 

0.0035 

Number ≥ 60 years: aged population 3,968 

Ratio of aged components to candidates for inspection 0.0057 

 

Given the table and the constraint functions of the decision parameters, the 

proportion of preventive replacements must be at least 0.57% times the chosen proportion 

of the aged population planned to be eliminated per year. Crystal Ball software was used 

in running the optimization. The software allows for the enumeration of numerous 

possible samples of each random variable simultaneously. The random variables are 

assumed to be independent and identically distributed, except for the costs. Perfect 

correlation among the three costs is factored into the analysis. This is because any 

increase in salaries of the employees in one year will affect the costs in a similar way. For 

100,000 trials of a Latin hypercube sampling approach, the optimal decisions are found to 

be 

 Optimum proportion of inspections per year c*: 5% or a 20-year 

inspection cycle, and  

 Optimum proportion of inspected components to replace preventively σ*: 

0.6%. 

The expected value of the differential cost per year is $641, 828.28 with a 

variance of $10.856 million. The cumulative distribution function of the costs is shown in 

Figure 82. The 95% confidence bound is found to be ($423 298.29, $820 126.30). Solely 

looking at these numbers, one may presume then that the power utility loses financially 
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by adopting a preventive maintenance approach. However, when lost revenue from 

energy not served, negative public perception from serving customers with unreliable 

aged infrastructure, penalties from ignoring a state mandate, and safety are factored into 

the results, it becomes obvious that the preventive maintenance approach will by far 

exceed its run-to-failure counterpart. 

 

Figure 82 Cumulative distribution function of optimum expected differential cost between two 

competing maintenance approaches, showing that excluding lost revenue, negative public perception 

from a run-to-failure (RTF) program, penalties for failing to run a preventive maintenance program, 

the RTF appears to be more financially viable than a preventive program. 

 

Using a correlation approach, the sensitivity of the expected differential cost to 

the five random variables is shown in Figure 83. The change in the objective with the 

random variables is observed using their respective correlation coefficients. Thus, 

negative sensitivity signifies an inverse relationship (increase in random variable leading 

to decrease in objective); whereas, positive sensitivity signifies a direct relationship. Note 

the equality in sensitivities of the costs, resulting from perfect correlations among the 

three. The costs and number of failures appear to have the most influence on the annual 

differential costs between the competing management approaches. 
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Figure 83 Sensitivity of expected differential cost of five random variables: cost of unit corrective 

replacement Ccr, cost of unit preventive replacement Cpr, cost of unit inspection Ci, expected annual 

number of failures out of inspected components Ya, and sensitivity s1, using a correlation approach. 

 

Using the same probability distribution functions of the random variables used for 

optimization, the distribution of differential costs for one instance of present power utility 

practices on preventive maintenance is shown in Figure 84. The realistic inspection cycle 

used is 10 years and a proportion of preventive replacements of 3%, a mean from 

historical records of a real power utility. The mean of the distribution is $6,509,583.99 

with a relatively large variance of $196 billion or a standard deviation of about $440,000. 

The difference in means (or expected values) is about $6 million, representing the savings 

achievable by implementing the optimum decision. The present utility strategies are 

flawed by the inaccuracy or inability of current diagnostic tests to appropriately detect or 

distinguish between components at high risks of failure. This becomes obvious in the 

sensitivity ranks of the objective to the individual costs. The differential cost was 

positively correlated to the costs by 31.8% each and negatively to the number of expected 

failures Ya by a small amount: -3.9%. The annual costs of inspection for the current 

practice are significantly more than that of the expected corrective replacement costs. 

Thus the number of failures has a smaller impact on the costs. 
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Figure 84 Cumulative distribution function of differential costs between the present utility preventive 

maintenance approach and a run-to-failure (RTF) approach, showing both a large difference 

favoring RTF and a large variance. 

 

5.3.1.4 Optimization results for a high sensitivity diagnostic test 

The power utility’s decision or choice of diagnostic test providers may affect their 

annual expenditures especially where corrective replacements are concerned. In this 

subsection, a highly sensitive diagnostic test is assumed in optimization. The sensitivity is 

chosen to have a uniform distribution with lower and upper limits at 0.85 and 1.0 

respectively. The range is the same as that used for the low sensitivity case. 

The results show that the same optimum decision parameters are chosen: 20 years 

and 0.6% for inspection cycle and preventive replacement proportion respectively. The 

choice is both a factor of the constraint functions for preventive replacements and the 

structure of the objective which has the inspection cycle as a denominator. The expected 

differential cost using a highly sensitive (accurate) diagnostic test is $251,567.19. 

However, the variance is relatively high at over $44 billion. A plot of the cumulative 

distribution function is shown in Figure 85. 
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Figure 85 Cumulative distribution function of expected management differential cost for a highly 

sensitive diagnostic test. 

 

The upper 95
th

 confidence bound here is only slightly greater than the 

corresponding 25
th

 percentile in the low sensitivity case from Figure 82. With a highly 

sensitive diagnostic test, the power utility has a better chance of maximizing the net 

benefit of its preventive maintenance program to the run-to-failure program. Again, this 

excludes potential penalties to the utility for failing to adopt a maintenance program, lost 

revenue from power outages during storms, and negative public perception. These factors 

may cause the net benefits to be in the millions of dollars.  

5.3.1.5 Solving the Mean-Value Problem: Single Year Optimization 

The optimization problem may be solved deterministically using only one 

scenario of each of the random variables. However, this yields only one number and 

gives no information as to the distribution of the net benefit of (or loss from) the 

preventive maintenance program. The mean values of each random variable, excluding 

net present value, are shown in Table 36.  
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Table 36 Values of the random variables for the mean-value problem, where “a,” “b” and “c” are 

modes, or upper or lower bounds of the distributions. 

Random variable Distribution and 

parameters 

Formula for mean Value 

Cost of inspection Triangular (a,c,b) (a + b + c)/3 $15.43 

Cost of preventive 

replacement 

Triangular (a,c,b) (a + b + c)/3 $2,057.13 

Cost of corrective 

replacement 

Triangular (a,c,b) (a + b + c)/3 $6,171.38 

Number of failures Lognormal (μ, σ) 25.0 e   2,406 

Diagnostic test 

sensitivity 

Uniform (a, b) 0.5 (a + b) 0.325 

 

The optimal solution comes out to be the same as for the stochastic optimization 

problem. However, the differential cost is found to be $732,334.34, which is about the 

70
th

 percentile of the stochastic sampling approach for a low-sensitive diagnostic test. 

The ranks of the decisions are shown in Table 37. 

Table 37 Ranks of 15 feasible solutions of the deterministic optimization problem. The last column 

(σ) is the 3-digit form of the proportion shown more fully under the “Constraints” column. 
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The single-year optimization approach excludes a growing population of 

inspection-candidates over time. In other words, only the population of components that 

is at least “a” years (recommended minimum age of inspections) at the beginning of the 

optimization period is considered. The components that shift to the inspection range in 

subsequent years are not included. Example: A component that is 19 years in the present 

year will be 20 years in the future. While not a candidate for inspection in the previous 

year, it may become one in the following year. The management decisions would be 

more useful if the growing number of inspection-candidates is integrated into analysis. 

This is termed a “multi-year optimization approach” in this work. 

5.4 Multi-Year Optimization 

An asset manager would be interested in optimizing the net benefit of a 

preventive maintenance program on sets of components he manages for at least his term 

in service. Let the length of the planning period within which he wishes to optimize the 

benefit be p. By incorporating the growing population of components that is at least the 

recommended minimum age of inspection, the age distribution in year p from the present 

year is 

 

where N(t-1,p-1) is the population size of the prior age group (t – 1) in the prior year, F 

(t) is the age-specific failure proportion, c is the inspection cycle. The first case in the 

equation is a “don’t care” case since components of age less than “a” are not inspected. 

The second case represents components that were less than “a” in the prior year and did 

not fail. The third case represents those that were at least “a” years in the prior year but 
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were not inspected, and did not fail from environmental hazard events in the prior year. 

Then, the total number of components to inspect in each subsequent year is 

 

The differential cost in each year p from the present year is found using 

 

It is realistic to assume that at the beginning of each year, the number of failures in the 

prior year will be known. This would remove randomness in the failure proportions in the 

prior years and reduce complexity in the stochastic optimization problem. Since the 

failures per age group differ, a function is still required to determine the number of 

components per age group that will fail per year. The mean age-specific failure 

proportion is used in estimating the age distribution in the beginning of each subsequent 

year. The optimization problem is then defined as 

 

where Si is the differential cost at the present (0) or p-th year from the present year. Since 

the differential cost in each year is affected by decisions of inspections in the former year, 

the optimization problem could also be written as 

 

where c0…cp-1 is the inspection cycle at the beginning of each prior year. Note that the 

conditional expectations are independent of σ since preventive replacements in prior 

years do not affect the age distributions of uninspected components in future years.  
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The multi-year formulation is done in such a way as to create ease of 

implementation for an asset manager: the decisions are defined to be static or remain 

unchanged during one planning period or horizon. The period could be the expected 

length of the present manager’s administration, for instance. So, 

 

 

This definition will cause the distributions of differential costs in prior years to differ 

from similar distributions in future years. 

5.4.1 Simulation Results: Multi-Year Optimization 

The optimization formulations are applied to a realistic database of power utility 

wooden poles. There are numerous (hundreds of millions) of wood poles used by power 

utilities around the country. Several power utilities in the United States have recorded 

estimates of a varied number of pole failures over the years following hurricane strikes on 

their facilities. Some failure numbers include  

 8,800 from Hurricane Hugo in September 1989 [17], 

 5,500 from Hurricane Fran in September 1996 [17], and  

 Over 20,000 from Hurricane Andrew in 1992 [18]. 

The aged population is taken to be poles over the age of 60 years in the 

simulations and is found to exceed the number of expected failures per year. The 

optimization results for a low sensitivity diagnostic test and one of high sensitivity are 

presented in the following subsections. Recall that the goal is to find the single decision 

of the combination of inspection cycle and proportion of preventive replacements to be 

made in the first year of a planning period to ensure that the net benefit of a maintenance 

program is optimized with respect to its competing corrective program. 
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5.4.1.1 Assumptions for the single year optimization formulation 

The following assumptions are made in formulating the cost function for the 

optimum net benefit of the preventive maintenance program on wood poles. 

 The population of components remains unchanged during the optimization 

period: there are no new installations. 

 Environmental hazards are the primary and possibly the sole causes of 

failures of the components: no replacements for purposes of construction 

or vehicular or other man-made accidents cause failures of the 

components. 

 The number of components expected to fail per year are evenly distributed 

by the regions inspected in each year: the number of high-risk components 

can be scaled by the inspection cycle. 

 The age distribution in each region inspected per year is identical: each 

age group can be scaled in subsequent years by the inspection cycle.  

 Preventive replacements are done prior to hurricane season (or season of 

the environmental hazard of interest) so that some failures and therefore 

costs of some otherwise corrective replacements are avoided by the 

maintenance program. 

 The unit costs of inspections and replacements are primarily affected by 

the increase of labor salaries and wages per year. 

 Independence of all non-cost random variables across the planning period 

is assumed. The costs are simulated to be perfectly correlated since they 

are dependent on trends in labor rates. 



 230 

5.4.1.2 Optimization results for a low sensitivity diagnostic test: Static or 

known function of age-specific failure proportions in prior years of 

simulation 

For p = 0 year and using the parameters of the random variables from the previous 

subsection, also shown in Table 38 for convenience, a multi-year optimization is carried 

out. In the first year, net present value does not apply. Thus, the range of the unit costs of 

inspections and replacements is small as seen in the table. Consequently, the variance of 

the distribution of differential costs is higher than in the single-year optimization. 

 

Table 38 Parameters of the random variables, excluding net present value scaling. 

Random variable Distribution and 

parameters 

Value 

Cost of inspection($) Triangular (a,c,b) (15.18, 15.47, 

15.64) 

Cost of preventive 

replacement ($) 

Triangular (a,c,b) (1562.84, 2062.72, 

2084.79) 

Cost of corrective 

replacement ($) 

Triangular (a,c,b) (4688.51, 6188.16, 

6254.36) 

Number of failures Lognormal (μ, σ) (7.73, 0.333) 

Diagnostic test 

sensitivity 

Uniform (a, b) (0.25, 0.40) 

 

The Crystal Ball software, which uses advanced search algorithms to find the 

optimum objective, converged to the solution within 40 simulations. For all 512 

enumerations, it took 4.5 minutes to run. The solution was found to again be a 20-year 

inspection cycle or 5% of inspections in this first year, and 0.6% of preventive 

replacements in that year. The distribution is shown in Figure 86. The mean of the 
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differential cost is $732,291.35: very close to the mean value solution. The variance is 

however about $8.0 billion. 

 

Figure 86 Distribution of differential costs for the first year of optimization excluding net present 

value scaling. 

 

The sensitivity of the differential cost to the random variables is shown in Figure 

87. The cost is seen to change most significantly with the number of failures, less with 

the test accuracy and barely, with the costs. This may be a result of the small cost ranges. 

 

Figure 87 Sensitivity of differential cost to five random variables: number of failures for poles at 

least 20 years old (Ya), accuracy of diagnostic test (s1), cost of inspection (Ci), cost of preventive 

replacements (Cpr) and cost of corrective replacement (Ccr), using a correlation approach. 
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The variance gives some information as to risk of financial loss to the preventive 

maintenance program. Thus, it may be used to define requirements to the solution of 

optimization problem. For instance, if the distribution of differential costs is very flat or 

with very wide tails, the one-standard-deviation range of possible differential costs would 

be so large it may become unbeneficial. On the other hand, with a small variance, the 

confidence margin would be small. The range of one standard deviation from the 

expected value of the differential cost estimated for five feasible solutions of 

combinations of the decision parameters is shown in Table 39.  

 

Table 39 Expected values, variances and standard deviations of five feasible solutions of 

combinations of the decision parameters: inspection cycle c and proportion of inspections to replace 

preventively σ. 

c (years) σ (%)  E[.]  V[.]  

 E[.] - 1 

standard 

deviation  

 E[.] + 1 

standard 

deviation  

5 0.60  $2,929,165.41   $127,589,977,431.57   $2,571,968.02   $3,286,362.80  

10 0.60  $1,464,582.70   $31,897,494,357.89   $1,285,984.00   $1,643,181.40  

15 0.60  $976,388.47   $14,176,664,159.06   $857,322.67   $1,095,454.27  

20 0.60  $732,291.35   $7,974,373,589.47   $642,992.00   $821,590.70  

20 1.50  $1,381,285.50   $8,026,112,759.37   $1,291,696.93   $1,470,874.07  

 

The expectations and variances of the solutions are shown in Figure 88. The 

variances for the 20-year inspection cycles are minimal compared to those of other 

cycles. This implies that their standard deviations are closer to their means, having 

narrower tails than for 5 – 15 year inspection cycles. 
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Figure 88 Expectation and variances of feasible solutions of the first year for the optimization 

problem, showing an inspection cycle of 20 years as the solution.  

 

Managers are sometimes more interested in minimizing the risk of loss; that is, 

the probability that loss will exceed a certain percentage, than the expectation. The 

concept is called minimizing value-at-risk (VAR). Rephrased, it is also minimizing a 

certain percentile of a profit-loss function. In the case of the cost function defined in this 

chapter, the 95% percentile will be minimized rather than minimizing the 5% percentile 

often used because the profit is the right tail of most profit-loss distributions in finance.  

 When the planning period is increased to two years, that is, p = 2, and the 

optimization goal is to minimize the 95
th

 percentile of the distribution of the sum of the 

differential costs in the first and second year, the optimal solution changes only slightly 

to 

 A 20-year inspection cycle and a 0.9% proportion of preventive 

replacements. The optimum objective value is $2,023,868.12, which is 

still smaller than the amount of money the power utility currently spends 

in one year on inspections and preventive replacements alone. 
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As can be seen in Figure 89, the distribution of differential costs in the first year 

(p = 0) has a narrower tail than either the sum or the distribution in the second year. This 

is because by the end of the first year, it is assumed that the function of age-specific 

failure proportions is known, rather than a random variable.  

 

Figure 89 Overlay chart of annual differential costs (left distributions) between competing 

management approaches for two years of optimization including the distribution of their sums 

(right). 

 

Also note the decrease in the expectations of the differential costs across the 2 

years. This is the result of a few changes in the distribution of components inspected in 

the second year. The total number of candidates of inspection (those over the age of 20 

years) increased from 701,080 in the first year to 677,500 in the second year. However,  

 The number inspected per year for the 20-year optimal cycle reduced from 

35,054 to 33,875 in the second year. 

 The number replaced preventively decreased from 316 to 305 in the 

second year. 
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 The number of inspected components simulated to have failed within the 

inspected region barely changed: 120 to 119 in the second year. The 

distribution of diagnostic test sensitivity was same for both periods. 

The two-stage sum was found to change most closely with the number of failures 

in the second year. (Those in the first year are assumed to be known by the second year.) 

The accuracies of the diagnostic tests also appear to affect the two-stage sum more than 

the unit costs, as seen in Figure 90. 

 

Figure 90 Sensitivity of the sum of two annual differential costs to nine random variables using a 

correlation approach.  

 

The sensitivity of the multi-stage sum and the differential cost in the third year of 

optimization is shown in Figure 91. Both costs change significantly with the number of 

failures, but the sum changes with the diagnostic test sensitivities (accuracies) in the three 

years more than the differential cost in the third year alone. The latter cost changes more 

with diagnostic test sensitivity in the third year than the sensitivities in the former years.  
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Figure 91 Sensitivity of the sum of three annual differential costs to seven shown random variables 

using a correlation approach. “U13” is for the sensitivity s1 in the 3
rd

 year. 

 

As with Figure 89, in Figure 92, the distributions in the first years (p = 0 and 1) 

have relatively narrow tails than either the sum or the distribution in the third year. This 

is because randomness is removed in the failure information for the prior years. It is 

assumed that the function of age-specific failure proportions is known.  

 

Figure 92 Overlay chart of annual differential costs (left distributions) between competing 

management approaches for three years of optimization including the distribution of their sums 

(right). 
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The optimal solution is the same at (20 years, 0.9%). Note that the proportion of 

preventive replacements is constrained on the aged population and the expected failures. 

Because the aged population is in general greater than the expected failures, the former 

increases more than the latter per year as younger poles consistently get older. The 

minimum 95
th

 percentile of the third year sum of the differential costs is $2,879,247.66. 

The optimal solution even after four years of optimization is (20 years, 0.9%). 

The minimum 95
th

 percentile of the third year sum of the differential costs is 

$3,605,988.61. The overlay of all four distributions is shown in Figure 93. The 

sensitivities as before are in Figure 94. 

 

Figure 93 Overlay chart of annual differential costs (left distributions) between competing 

management approaches for three years of optimization including the distribution of their sums 

(right). 
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Figure 94 Sensitivity of the sum of three annual differential costs to seven shown random variables 

using a correlation approach. 

 

5.4.1.3 Optimization results for a low sensitivity diagnostic test: Defining the 

age-specific failure proportions in prior years as random variables 

In the former simulations, the number and function of age-specific failure 

proportions is assumed to be known prior to each year of optimization. However, at the 

beginning of the first year of optimization projecting forward to the next year, the failures 

would be random. The population of the poles has been truncated in the first year to have 

80 years as the age of the oldest poles. Thus, between 20 years and 80 years, there are 61 

random variables! This, in addition to the other 4 random variables makes a total of 65 

random variables. The goal of this new experiment is to find out whether defining the 

failure proportions per age as individual random variables will affect the optimal 

decision. 

The 729 regression fits of the combinations of log-transformed failure proportions 

using the mean and one standard deviations of each of 0, 25, 50, 75, 100, and 125 aged 

poles in subsection 5.1.3.3 are used here. However, instead of finding the number of 

failures per year from the age distributions, the proportions itself per age are obtained. A 

probability plot of F(80): the proportion of 80-year old poles expected to fail is shown in 
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Figure 95. It shows the best fit being for the lognormal or 3-parameter lognormal 

distributions. 
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Figure 95 Probability plot of distribution of failure proportions for 80-year old poles. 

 

The goodness-of-fit statistics also show that the lognormal distribution is the best 

fit for the sample: the Anderson-Darling statistic is very low with a high p-value as 

shown in Table 40. 

Table 40 Goodness-of-fit statistics for probability plots of the distribution of F(80). 

Goodness-of-Fit; 

 

Distribution 

 

Anderson-Darling 

(adj) 

p-value Correlation 

Coefficient 

Weibull 13.345 <0.005 0.973 

Lognormal 0.336 0.489 0.999 

Exponential 512.606 - - 

Normal 1.684 - 0.995 

 

Four instances of the densities of F(t) for ages 59 – 62 are shown in Figure 96. 
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Figure 96 Four instances of distributions of failure proportions for ages 59 – 62. 

 

With randomness in the failure proportions for two years of optimization, an overlay of 

the resulting distributions is shown in Figure 97. 

 

Figure 97 Overlay chart of annual differential costs (left distributions) between competing 

management approaches for two years of optimization and the distribution of their sums (right). 
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The sensitivity chart in Figure 98 shows that the annual differential costs and their 

sum primarily change with the failure proportions. 

 

Figure 98 Sensitivity charts of the two-year sum of differential costs, the differential cost in the first 

year (p=0) and the cost in the second year (p=1). 

 

The solution is the same at (20 years, 0.9%) with the minimum 95
th

 percentile at 

$1,644,281.27. This is almost $400, 000 less than that of the distribution without the 

failure randomness in the prior years of simulation. However, with the inspection cycle 

and proportion of replacements staying the same, running a simulation for additional 

years may be unnecessary. 

5.4.1.4 Summary of results for a low-sensitivity diagnostic test using the multi-

year optimization formulation 

In general, the optimal solution did not change significantly with additional 

planning (or budgeting) years. The constraints on the aged population and the expected 

failure rates relative to the number of components that were candidates for inspection 

affected the choice of σ: the proportion to replace preventively, but not the choice of the 

inspection cycle. For a four-year planning period or horizon, the optimal decision and 

solution for the age distribution of poles implemented is 

 20-year inspection cycle and 0.9% of inspected components replaced 

preventively per year. 
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The expected value of the sum of the differential costs between the preventive 

maintenance program and a run-to-failure program is less than $2.8 million dollars for all 

four years. This value excludes any penalties imposed on the power utility for each 

period of failing to perform a maintenance program. It also excludes lost revenue from 

energy not served during power outages from failures of the components, and the 

negative public perception the power utility would receive for not managing its assets 

adequately. The result provided was for excluding randomness in failure proportions in 

(p-1) years prior to the length of the optimization planning period. The inclusion of the 

randomness in the previous experiment showed that the mean may be less when the 60-

point randomness is added to the simulation. 

The effect of sensitivity or accurate detection of high-risk components is 

evaluated in the next subsection, where a highly sensitive test is used in optimization.  

5.4.1.5 Optimization results for a high-sensitivity diagnostic test 

With the distribution parameters of the sensitivity of the diagnostic test applied to 

the component increased to (0.85, 1.00), the mean costs reduce by about $1.4 million as 

shown in Figure 99. The savings are significant. 
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Figure 99 Overlay of distributions of differential costs for a highly sensitive diagnostic test. 

 

The corresponding sensitivity chart for the sum and the differential cost in the 

fourth year is shown in Figure 100. As is expected, the sum and annual costs change 

significantly with the number of failures in the fourth year.  

 

Figure 100 Sensitivity chart of the four-year sum of differential costs. 
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5.5 Summary 

 

Decisions the electric utility makes in each year on preventive maintenance of 

their environmentally stressed aging assets can be grouped mainly into the inspection 

cycle of identical assets and loosely in the proportion of the assets that receive some kind 

of maintenance. When preventive replacements are the sole or dominant maintenance 

operation for bringing an asset to as-new condition, the proportion of inspected 

components that will be replaced preventively in each year becomes an important 

decision. The importance is both in estimating the number of annual failures averted and 

consequently annual corrective replacement and failure consequence costs, and also in 

improving safety conditions of a population of utility assets. The inspection cycle calls 

for integer programming since in this case, it is given in years. The proportion of 

preventive replacements on the other hand is not an integer.  

The difference between the quantifiable costs in a preventive maintenance process 

and those of a corrective, more vulnerable process (run-to-failure) depends on unit costs 

of inspections, corrective replacements and preventive replacements, diagnostic accuracy, 

and failure estimates. If these parameters were known, optimizing the net benefits of the 

maintenance process to the run-to-failure (RTF) process would have been deterministic. 

The problem could have been solved as a number of linear programs since the possible 

decisions on the inspection cycle are countable. However, uncertainty in the parameters 

implies the use of stochastic optimization algorithms. These algorithms require that the 

probability density functions of the parameters are known or at least can be estimated. 

With the availability of data, empirical methods may be used to determine the 

probability density functions. Other methods, like Bayesian approaches, may also be 

applied to update the functions over time as new information is acquired, given some 

prior knowledge on the parameters of the density functions. In other cases where 
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historical data cannot be compiled, subjective judgment like in the estimating distribution 

functions of costs may be relied upon. Triangular distributions are, for instance, popular 

for describing costs as shown in prior research. While single data points on unit costs of 

services on components studied are available from utility surveys, the distributions were 

estimated by assuming that labor costs in each year are the dominant influences on the 

annual unit costs. Based on this assumption, historical data on employment cost indices 

from the United States Congressional Budget Office were used to approximate 

parameters of the triangular distribution for each service cost. 

Mean age-dependent fragility curves of the components under environmental 

hazards and the probability density function of hurricanes in some state or region of the 

electric utility may be integrated to estimate the annual age-specific proportions of 

failures of the components. The cumulative of the product of the proportion and a known 

age distribution of the components gives the expected number of failures per year. 

However, using the standard deviations of the fragility curves, other scenarios of failures 

per age of the components can be explored. Normal probability plots of residuals of 

regression analyses of log-transformed failure proportions for distinct ages simulated 

showed that residuals followed a normal distribution. Thus, regression was used for each 

enumeration of the standard deviations and means of the fragility curves to estimate the 

distribution of the number of failures per year. A lognormal distribution was found to be 

the best fit compared to other distributions including Weibull and normal. 

The novelty of evaluations of diagnostic accuracy led to the use of a uniform 

distribution for the uncertainty in accuracy. The bounds of the distribution were obtained 

from research analysis of accuracy and subjective judgment.  

In financial applications, Monte Carlo or stochastic sampling approaches are often used 

when decisions must be made under uncertainty. The approach is both intuitive and 

allows for specific and unambiguous scenario analysis. However, as the number of 

random variables for analysis increases, computational speed and memory sometimes 
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suffers. Two stochastic sampling approaches were compared to the conventional Monte 

Carlo technique for selecting samples from the distributions of the random variables. 

They are Latin hypercube sampling (LHS) and stratified sampling. Analysis showed that 

both approaches converge very quickly to steady-state, within 3000 samples compared to 

about 700,000 samples for the conventional method in the experiment conducted in this 

chapter. The variance and memory requirements of the stratified sampling technique 

were, to an extent, superior to those of the Latin hypercube sampling technique. The LHS 

method on the other hand was superior in speed and convergence. The latter reasons led 

to the selection of the LHS method rather than the conventional stochastic sampling 

method for stochastic optimization. 
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6 FUTURE WORK AND CONTRIBUTIONS 

6.1 Future Work 

This research may be further developed in the following ways. 

 The effect of non-replacement (non-terminal) preventive maintenance 

measures on the fragility or failure risk of newly installed components 

under environmental hazards should be studied.  

 The effect of non-replacement preventive maintenance measures on the 

fragility of aging components under environmental hazards would also be 

an interesting study. Both studies may yield a less costly alternative to 

preventive replacements.  

 Using wood poles as a case study, alternatives to preventive replacement 

include remedial chemical treatments and steel reinforcements. Historical 

decay levels (and conditions) of aging wood poles may be derived from 

inspection databases. Poles that received remedial treatment may show 

less deterioration than those that had not received treatment. Incorporating 

such findings into fragility assessment will show whether treatments affect 

the performance of wood poles under high category hurricanes. 

 Depending on the results of the above research, alternative measures of 

preventive maintenance may be included into a stochastic optimization 

model. Decision parameters for this potential model should include the 

proportion and conditions or properties of components to select for each 

preventive maintenance operation. The optimization may yield benefits to 

the preventive maintenance program that are superior to the benefits from 

using preventive replacements. 

 In this research, a logical method of selecting components to determine the 

positive predictive value (PPV) of diagnostic tests was discussed. This 
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method involves running tests on components scheduled for replacement 

per year. Over time, the confidence in the PPV estimate improves. A more 

logical and convincing method for selecting components used in 

estimating and improving the confidence of the negative predictive value 

(NPV) of tests should also be found. This may involve testing components 

that fail subsequent to high category hurricanes. Estimates of NPV could 

then be generated using prior diagnostic recommendations (replace or not) 

on the failed components. Time between last inspection and failure from 

environmental hazards would play a role in the estimate. An appropriate 

function between the time interval and the failure indicator of the 

components at the time of hazard impact should be found. 

 The effect of incomplete data on the bias of the NPV estimate should also 

be studied. Incomplete data here refers to information from the 

components that were not exposed to environmental hazard in each year of 

severe hazards. 

 

6.2 Contributions 

The contributions of this research include the following. 

 Statistical analysis of electric utility inspection databases on components. 

o Evaluated discrepancies between reliability function estimated for 

components using inaccurate and incomplete diagnostic 

replacement databases and reliability function using possible 

instances of failure information obtained by applying a stochastic 

sampling algorithm on diagnostic databases with diagnostic 

inaccuracy information.  

 Modeling failure rates. 
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o Developed predictive distribution function of lifetimes of surviving 

components sampled from an exponential dataset by applying 

Bayesian theory on observed lifetimes assuming a Gamma prior 

density function on the unknown exponential rate parameter. 

o Assessed the effect of missing historical failure information on 

estimation of the predictive distribution function of lifetimes of 

surviving components sampled from an exponential dataset using 

Bayesian statistics. 

o Developed a methodology for real-time detection of increasing 

failure risk of a population of components that follow a bathtub 

hazard curve by estimating time-varying rate parameters using the 

maximum likelihood estimation method for a doubly censored 

exponential dataset. 

o Developed age-dependent fragility functions of environmentally 

stressed power utility components. 

o Developed a framework for prediction of age-specific failure 

proportions of environmentally stressed power utility components 

in their geographic locations by applying conventional hazard loss 

method of integrating hazard probability function and fragility 

functions to age-dependent scenario. 

 Predictive maintenance: Diagnostics and preventive replacements. 

o Evaluated costs and benefits of long-term assessment of positive 

predictive values of individual diagnostic testing methods on utility 

components. Components used for assessment are logically 

selected as those scheduled for replacement in each year. 

o Evaluated benefits of ranking diagnostic testing methods using 

misclassification costs and probabilities rather than the use of strict 
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statistical approaches that include logistic regression analysis and 

receiver operating characteristics curves. 

o Developed algorithm for combining multiple (up to six) diagnostic 

testing methods using a combinatorial “OR” rule while 

simultaneously evaluating the cumulative costs of inaccuracies of 

the combined methods for ranking purposes. 

 Stochastic optimization of preventive maintenance programs on environmentally 

stressed aging power utility components. 

o Conducted comparative analysis of three stochastic sampling 

approaches: simple random sampling, stratified sampling and Latin 

hypercube sampling, in the selection of inputs of five random 

variables for estimating the distribution of net benefits (or costs) of 

performing a preventive maintenance program over a run-to-failure 

program. 

o Developed framework for optimization of expected net benefits (or 

costs) of performing a preventive maintenance program over a run-

to-failure program by selecting best realistic management 

decisions on inspection cycles and proportion of annual preventive 

replacements of inspected components under uncertainty for a one-

year planning horizon. 

o Developed framework for optimization of expected net benefits (or 

costs) of performing a preventive maintenance program over a run-

to-failure program by selecting best realistic management 

decisions on inspection cycles and proportion of annual preventive 

replacements of inspected components under uncertainty for a 

multi-year planning horizon.  
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6.3 Publications 

The following journal papers are planned for submission prior to or around time of 

defense. 

 A. Shafieezadeh, U. Onyewuchi, M. Begovic and R. DesRoches, “Age-dependent 

fragility models of utility wood poles in power distribution networks against 

extreme wind hazards.” 

 U. Onyewuchi and M. Begovic, “Detecting the onset of growing failure risk.” 

 

The following conference papers have either been accepted or been submitted 

awaiting response. 

 A. Shafieezadeh, U. Onyewuchi, M. Begovic and R. DesRoches, “Fragility 

assessment of wood poles in power distribution networks against extreme wind 

hazards,” ATC-SEI Advances in Hurricane Engineering Conference, Accepted 

for October 2012 presentation in Florida. 

 U. Onyewuchi, A. Shafieezadeh, M. Begovic and R. DesRoches, “A stochastic 

framework to optimizing net benefits of a wood pole preventive maintenance 

program,” 11th International Conference on Structural Safety & Reliability 

(ICOSSAR) 2013, Awaiting acceptance decision. 

 

Other potential journal papers will address 

 The influence of missing data on predicting distributions of future lifetimes of 

surviving components sampled from an exponential dataset, 

 The improvement of diagnostic validity and possibly classification accuracy by 

combining multiple diagnostic tests, 

 Stochastic optimization of a preventive replacement program, 

http://app.message.asce.org/e/er?utm_campaign=ATC-SEI%20Hurricane%20REg%20Open&utm_medium=email&utm_source=Eloqua&s=1360&lid=9882&elq=cc40c4b7cf9a4093be3185bfbd9e30f1
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 Stochastic optimization of a preventive maintenance program that includes a 

combination of maintenance operations. 
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