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SUMMARY 

Electrochemical research involves the modeling of electrochemical systems using 

various types of models. Models use adjustable parameters to be able to fit experimental 

data. Parameters of physics-based models are actual properties of the electrochemical 

system; and, if determined accurately, can reveal more about the inner physics of the 

system. Further physics-based models can be extrapolated with more confidence to other 

experimental conditions. Because insights obtained and ability to extrapolate from a 

physics-based model is based on the accuracy of the parameters obtained, the main 

objective of adjusting the parameters to fit the experimental data should be finding the most 

accurate parameter set, not the best fitting parameter set. Because of the complexity of 

physics-based models, adjusting parameters to fit experimental data without forethought 

and estimates may lead to inaccurate parameter sets. 

 This thesis focused on laying out a procedure for estimating parameters for a 

physics-based model to increase the probability of obtaining an accurate parameter set for 

the electrochemical system. As an example, parameters were obtained for a Doyle Fuller 

Newman model for a graphite vs. lithium coin cell battery. These estimates were obtained 

from scanning electron microscopy images, the galvanostatic intermittent titration 

technique, and electrochemical impedance spectroscopy. These estimates were put into a 

Doyle Fuller Newman model in gPROMs and the simulation output was compared to 

experimental discharge data. These estimates can be used as a starting point for fitting the 

model to experimental data to find a final set of parameters for the model.  
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CHAPTER 1. INTRODUCTION 

Batteries have become increasingly widespread as a power source for many of the 

world’s modern technologies. Laptops and cell phones have become a staple of a majority 

of United States adults’ lifestyles. A study stated that as of 2019 96% of U.S. adults own a 

cell phone, with 81% owning a smart phone.1 Cell phones are typically powered by lithium-

ion batteries that companies continually research to improve energy and power density, 

safety, economic viability, lifespan, and charging time. Lithium-ion batteries have also 

emerged as the primary power source for electric vehicles in the automotive sector. The 

need for improvement here is perhaps greater than with consumer devices as the viability 

of electric vehicles depends on meeting consumers’ desired specifications, which are 

influenced by their experience with the internal combustion engine. Some common ones 

include increasing the driving range on one charge, decreasing charging time, and 

increasing the power density of the battery pack. One major push for the electrification of 

the automotive industry is to decrease greenhouse emissions.2 However, the use of electric 

vehicles is only as environmentally responsible as the energy source used to produce the 

electricity at the power plant.3 Batteries can also play an important role here as they can 

store the energy produced by renewable resources like solar and wind that tend to be more 

intermittent than those produced by coal, nuclear, and natural gas power plants.4 The 

storage of power produced by renewable energy sources would allow a power plant to store 

excess energy during times of low demand to be used at times when demand increases. 

Batteries and other electrochemical energy storage devices will play a central role in many 

of the current and future technologies that we use as well as the push to decrease our 
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environmental footprint. However, many improvements are both necessary and desired for 

that future to be realized. 

To improve batteries, research is conducted at universities, corporations, and 

national labs to try to find new materials (electrodes, electrolytes, separators), improve 

current materials, and to better understand the physics behind battery function.5-7 One way 

to improve understanding of the electrochemical processes that occur in batteries is the use 

of physics-based models. Physics-based models attempt to accurately depict what is 

happening in the electrochemical system using material and energy balances and 

phenomenological equations such as Ohm’s law and the Butler-Volmer equation.  This 

approach contrasts with equivalent circuit models (ECMs) that represent the same 

behaviors by using circuit elements, resistors, capacitors, and voltage sources, to 

approximate the physical behavior taking place. As an introduction to ECMs, each of the 

circuit elements commonly used to represent an electrochemical system will be detailed 

below. The following summary is based largely on Plett’s book chapter on ECMs.8 

An ECM starts by representing the electrochemical system as a voltage source. The 

voltage is constant and, at this point, isn’t a very good model of an actual electrochemical 

system. Other circuit elements are added to the ECM to improve the accuracy of the model, 

until the model is found to be a sufficient approximation of the electrochemical system for 

the purpose of the modeler. Some common additions include modeling the dependence of 

the equilibrium voltage on state of charge (SOC). This is because the equilibrium voltage 

commonly changes with SOC, or how many coulombs have passed through the 

electrochemical system. This SOC dependent equilibrium voltage is then used as a starting 

place for other circuit elements to be added.  
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These other circuit elements are added to represent the polarizations experienced 

by the electrochemical system. Polarizations are reasons why the voltage of the 

electrochemical system differs from the equilibrium voltage when the electrochemical 

system is not at equilibrium. Three polarizations that are most often seen in electrochemical 

systems are an ohmic polarization, a kinetic polarization, and a concentration polarization. 

The ohmic polarization is caused by the voltage loss induced by current flowing through 

the electrochemical system. The amount of the ohmic voltage loss is primarily related to 

the conductivity of the materials of the electrochemical system. To represent the ohmic 

polarization in an ECM, a resistor can be added that is termed the equivalent series 

resistance. This is a resistor that changes the voltage based on the current applied to the 

electrochemical system by multiplying the current by the equivalent series resistance 

representing the ohmic polarization. To represent the charge transfer polarization, a resistor 

in parallel with a capacitor is added. The capacitor represents the double layer capacitance, 

the accumulation of charge on the surface of the electrode. The resistor represents the 

charge transfer resistance, the voltage change associated with the electrochemical reaction. 

Lastly, a Warburg impedance, which is an infinite series of resistors and capacitors in 

parallel, is added to represent the concentration polarization. A concentration polarization 

is caused by the resistance to mass transport of the electrochemical system causing 

concentration gradients. The mass transport polarization refers to how these concentration 

gradients change the voltage of the electrochemical system. Most ECMs use a combination 

of these circuit elements to model the behavior of the electrochemical system being 

simulated. 
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Once an ECM has been applied to an electrochemical system, the parameters, 

resistances, capacitances, etc., used for each of the circuit elements are extracted by fitting 

experimental data. Extracting parameters from experimental data means adjusting circuit 

parameters to obtain the best fit possible to an experimental data set. This is often done 

using computers to minimize the difference between the simulations and the experimental 

data set. Estimates can be obtained for individual ECM parameters from specific sets of 

experimental data. These estimates can then be used for the overall fitting of the ECM to 

all of the experimental data being used. Using parameter estimates can improve the final 

parameter set obtained. For example, the equivalent series resistance can be estimated from 

the instantaneous change in voltage after a step change in current. This estimate for the 

equivalent series resistance can be used along with other parameter estimates as a starting 

place for extracting each of the necessary parameters. Once the final parameter set has been 

selected by fitting the ECM to experimental data, it is often then compared to a validation 

data set. A validation data set is a set of experimental data that was not used in the original 

extraction. Comparing the ECM output to the validation data set helps to ensure that the 

ECM can match experimental data beyond that which was used in the parameter extraction 

process without needing to further adjust parameters. Once an ECM is fully parameterized 

it can be used to predict the current and voltage relationship for the electrochemical system. 

Battery management systems (BMS) use models to estimate conditions of the 

battery that are needed to maintain the safety and health of the battery. BMS provide an 

example to help explain the reasons for using ECMs or physics-based models to model an 

electrochemical system. ECMs are often used in battery management systems (BMS) 

because they provide the necessary information and are less complex than physics-based 
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models. When ECMs are used in BMS for portable electronics they are able to perform 

adequately. However, Chaturvedi et al. showed ECMs struggle in BMS for automotive 

applications due to differences in cycling rates and the need to continue to add additional 

circuit elements to be able to adequately represent the electrochemical system.9 

Additionally, ECMs only provide information on the current and voltage of the 

electrochemical system. Physics-based models are needed to gain additional insight into 

the electrochemical system such as concentration, voltage, and current profiles throughout 

the electrochemical system. Physics-based models can also be extrapolated to other 

experimental conditions whereas ECMs cannot be with the same level of confidence. 

ECMs are good for modeling the current-voltage relationship of electrochemical systems 

while minimizing the complexity of the model. Physics-based models are good for gaining 

additional understanding of the electrochemical system. In research, physics-based models 

are often preferred because of the additional insight they provide.  

While physics-based models provide additional understanding, they can be more 

difficult to fit to experimental data than ECMs. The benefit of an ECM model is the ability 

to fit experimental data well with a simpler model. However, the parameters of an ECM 

are not directly related to physical parameters of the electrochemical system. Physics-based 

model’s parameters, on the other hand, are, and because they are physical parameters of 

the electrochemical system, they are well-defined and have true immutable values. When 

parameterizing a physics-based model the goal is to obtain values as close to these true-

immutable values as possible. The only visible way to assess the accuracy of the parameters 

is to compare the output of the model to experimental data. When a physics-based model 

compares well to experimental data it increases the modeler’s confidence that the true 
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values for the parameters have been obtained. Which provides additional confidence in 

using the model outside of the range of the experimental data and the additional insights 

provided by the physics-based model. The value in a physics-based model lies in the 

confidence the modeler has that they have found the actual values for each of the 

parameters of the electrochemical system. The information gathered from a physics-based 

model, as far as increasing physical understanding of the system being investigated, is only 

as accurate as the physical parameters identified for the materials being used.10  

However, even when using physics-based models, there is still a temptation to 

prioritize fitting the experimental data rather than obtaining an accurate parameter set for 

the electrochemical system. While fitting experimental data is the main way to assess the 

accuracy of a model, there are cases where a model can fit experimental data sets using 

parameters that are infeasible or incorrect. Since fitting the experimental data provided 

does not guarantee that the parameter set identified is accurate, fitting the experimental 

data cannot be the only focus of determining parameters in a physics-based model. To 

increase the probability of finding the true values for each of the physical parameters of the 

electrochemical system, a process must be established that helps the modeler to follow a 

methodology that reduces the chance of finding infeasible or inaccurate physical 

parameters. 

Finding an accurate set of parameters is one of the main challenges of model 

parameterization. While some parameters can be determined by direct measurement, like 

the thickness of the electrode or the separator, most parameters are currently determined 

by fitting model results to experimental data.11 Parameters are usually determined either 

by using the personal experience and knowledge of a battery modeler, or, more recently, 
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the use of data science.12 These methods can be effective, but both can give parameters that 

are physically unreasonable. At times, a large number of parameters have been extracted 

simultaneously by fitting experimental data.13 The accuracy of the parameter set 

determined by fitting experimental data is difficult to assess because fitting experimental 

data by adjusting parameters is complex on several levels. Common physics-based battery 

models have on the order of 50 parameters that all interact and are difficult to isolate to 

determine them independently. In theory, a certain experimental data set may be fit equally 

well by two or more different parameter sets due to the interaction of these parameters. The 

process for parameter identification for physics-based models needs to be more well-

defined, and include more than just fitting experimental data, to increase the confidence of 

the modeler in the accuracy of the parameters obtained. 

One common pitfall of parameter identification is the focus on a select set of 

experimental data.14 While the parameters may fit the original set of experimental data 

well, using the same parameters for a different set of experimental data (e.g., Cyclic 

Voltammetry (CV) vs. cycling) can lead to results that do not come close to matching the 

new set of experimental data. The concern of a set of parameters not fitting other data sets 

is often mitigated by using a training set and a validation set to ensure that the parameter 

set fits data other than the data used for fitting.15 However, depending on the data used for 

validation, there still remain concerns about extending a model beyond its limitations. For 

example, if a parameter set for a model is determined by using discharge data and validated 

using charging data, there would be no guarantee that the data would match other testing 

conditions like cyclic voltammetry or high pulse power current test. Tests that are common 

in electric vehicle characterization that use higher and more varied currents than normal 
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cycling data.16-17 Since one of the primary purposes of the physics-based model is to 

highlight areas where understanding is lacking, it is important that the model be valid for 

a variety of experimental data.18 This highlights another area that should be covered in a 

process for identifying parameters for a physics-based model. 

Because of the desire to improve electrochemical systems, there have been many 

papers written on physics-based models and their parameterization. Before refining 

parameters by fitting experimental data, an estimate, or initial starting point, must be 

identified to put into the model.19 The obtaining of these physical parameter estimates is 

one area that is often glossed over or neglected in papers detailing physics-based model 

parameterization. If they do mention how estimates for the parameters were obtained, it is 

usually from a literature search to find parameter estimates for similar electrochemical 

systems.20 However, the literature values can vary by several orders of magnitude for 

certain parameters making it difficult to find a reasonable estimate. For example, Less et 

al. pointed out that the experimental values of the solid phase diffusivity of a Li-ion in 

lithium-manganese oxide spans four orders of magnitude (10-9-10-12 cm2s-1) in the 

literature.19 Even if values in a literature search were viable for well-established materials, 

it is not possible for new materials. One solution to improve confidence in parameter 

estimates obtained for well-established materials and to be able to obtain parameter 

estimates for new materials is to determine parameter estimates independently for the 

electrochemical system being modeled.  

While many papers have identified parameters for models by fitting experimental 

data, there are not many papers that sufficiently outline the process for estimating 

parameters. Though there has been good work done by Ecker et al., Schmalstieg et al., and 
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Plett et al.18,20-23 Obtaining a good estimate for physical parameters before fitting 

experimental data is important because different estimates can lead to very different results. 

Both because of the interaction of the parameters, and because of local minima that may 

cause the fitting process to finish prematurely. Identifying a reasonable estimate for each 

parameter would help improve the odds that the fitting process converges on the most 

accurate values for the system.  A process for estimating parameters would be helpful as a 

starting point for later refining these parameters by fitting experimental data.21 Reasonable 

estimates for physical parameters can improve the confidence in the accuracy of the 

parameters obtained from fitting, reduce the computational cost by improving the 

proximity of the estimates to the final values, and help to identify bounds for parameters 

that can be used for constrained optimization. 

This thesis outlines a process for parameterizing a lithium-ion battery model shown 

in Figure 1. The process starts by identifying all the necessary model parameters. In this 

thesis, a Doyle Fuller Newman (DFN) model was constructed to simulate a graphite vs. 

lithium coin cell. The needed physical parameters for the model will be outlined in Chapter 

2. The process then outlines how to find estimates for each of the physical parameters either 

through measuring, calculating, or experiments. Measuring the parameter values, as 

mentioned previously, is ideal and as many parameters as possible should be measured. 

However, it is up to the modeler to determine what parameters they have the experimental 

capability and knowledge to measure directly. In this thesis, the particle radius and 

electrode thickness were measured using SEM imaging. This is shown in Chapter 3. While 

other parameters could be measured like the porosity or the conductivity they were not 

measured in this thesis. Instead, the porosity was taken from the literature and the 
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conductivity was estimated from EIS data which was then compared to the literature. This 

was a decision made due to the modeler not having the experimental capability and 

knowledge set to measure these parameters directly.  The experiments used as part of the 

process for estimating the physics-based model’s parameters include the galvanostatic 

intermittent titration technique (GITT), outlined in Chapter 3, and electrochemical 

impedance spectroscopy (EIS), outlined in Chapter 4. The EIS data is fit to an ECM and 

the ECM parameters are used to estimate physical parameters. While ECM parameters are 

not directly related to physical parameters, work has been done previously to use ECM 

parameters fit to EIS data to estimate physical parameters. Once estimates have been 

obtained for all the parameters needed for the model, model results using the parameter 

estimates are compared to experimental discharge data in Chapter 5.  

The focus of this thesis was to outline a process to obtain estimates for the 

parameterization of a DFN model. However, future work should be conducted to detail a 

process for refining the parameter estimates to final values by strategically fitting 

experimental data. Future work can also be done on how to best validate the final parameter 

set using additional experimental data. By obtaining reasonable estimates, there will be an 

improved chance of maintaining final parameter sets that are logical, feasible, and accurate.  

This thesis demonstrates the proposed parameter estimation process for a DFN 

model of a graphite vs. lithium coin cell. Experiments and equations are given to obtain 

the thermodynamic, kinetic, mass transport, and all other necessary parameters for the 

physics-based battery model. The model is then constructed in gPROMS, an equation-

oriented modelling platform, and the results of the model using the parameter estimates 

obtained is compared to experimental discharge results.24 
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Figure 1 Proposed process for model parameterization 
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CHAPTER 2. PHYSICS BASED MODELING OF BATTERIES 

There are a variety of models that are used to simulate battery performance. Two 

common types are physics-based models and equivalent circuit models (ECMs).25 ECMs 

offer various benefits such as being simpler than physics-based models and being related 

to circuit elements that are widely available. However, ECMs are not always directly 

connected to physical parameters of the electrochemical system, do not provide additional 

information on the electrochemical system beyond the voltage and current, and cannot be 

extrapolated with much confidence to other experimental conditions. Because of the focus 

on wanting to better understand the physics of an electrochemical system, the model 

selected for this thesis was a physics-based model. Even when only considering physics-

based models there are still many different types of models. Three common types include 

single particle models, lumped parameter models, and the Doyle Fuller Newman (DFN) 

model, a pseudo 2-D model.26-28 While the principles of the parameter identification used 

in this thesis could be applied to any model, the DFN model was selected due to the prior 

knowledge base of the research group. Additionally, the DFN model is one of the most 

widely used physics-based models for batteries. The original paper having been cited 

thousands of times.29 

The full details of the DFN model are explained in previous papers.30-31 Included 

here is a summary to outline the necessary parameters for the DFN model. The first step in 

the proposed process for model parameterization in Figure 1. The DFN model is a pseudo 

2-D model that primarily models the electrochemical system along the thickness of the cell. 

However, in the porous electrodes, the solid phase transport is modeled radially in the 
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particles of the electrode along the thickness of the electrode. In this thesis, a coin cell 

placing lithium foil vs. a graphite electrode was used. The materials used are specified in 

more detail in Chapter 3. Figure 2 shows a simplified representation of the lithium vs. 

graphite cell used in this thesis that helps to show the geometry used in the DFN model.  

 

Figure 2 Representation of lithium vs graphite cell used in this thesis. 

While the geometric parameters outline the area being modelled, the starting point 

for the voltage in the DFN model is the equilibrium voltage. All voltage losses caused by 

the kinetics, thermodynamics, and mass transport in the batteries modify the equilibrium 

voltage baseline to the actual voltage of the battery. This baseline is not constant as the 

equilibrium voltage changes as the battery is charged and discharged. The equilibrium 

voltage depends on the amount of lithium intercalated in the electrode, also known as the 

state of charge (SOC). SOC can be a bit ambiguous depending on how the modeler defines 

it. Sometimes, an SOC of zero does not refer to a fully unlithiated electrode, but rather to 
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a certain non-zero concentration. For example, it could be the solid phase concentration at 

the lower voltage cutoff for charging and discharging. Similarly, an SOC of one may not 

refer to a fully lithiated electrode depending on how the modeler defines it. A fully lithiated 

graphite electrode refers to the stoichiometry of the electrochemical equation for graphite. 

In this equation, lithium and graphite electrochemically interact to produce lithiated 

graphite, represented in the equation as LiC6. When there is a mole of lithium for every six 

moles of graphite the electrode is considered fully lithiated. In this thesis an SOC of 0 refers 

to the completely unlithiated graphite electrode and an SOC of 1 refers to a fully lithiated 

graphite electrode. The equation for state of charge is shown below in Equation 1.  

 SOC =  
𝑐𝑐𝑠𝑠

𝑐𝑐𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
 (1) 

Where 𝑐𝑐𝑠𝑠 represents the solid phase lithium concentration in the graphite and 𝑐𝑐𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 

represents the maximum lithium concentration for the graphite electrode. 

The current in the electrode and electrolyte changes the voltage along the thickness 

of the electrode according to Ohm’s law shown in Equations 2 and 3 for the electrode and 

electrolyte respectively. Equation 3 includes the modification for Ohm’s law to account for 

concentration gradients.32 

 
𝑖𝑖1 =  −𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑𝜙𝜙1
𝑑𝑑𝑑𝑑  (2) 

 
𝑖𝑖2 =  −𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑𝜙𝜙2
𝑑𝑑𝑑𝑑 +

𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒  𝑅𝑅
𝐹𝐹

(1 + 𝑇𝑇𝐹𝐹)(1− 𝑡𝑡𝐿𝐿𝐿𝐿+)
𝑑𝑑 ln (𝑐𝑐𝑒𝑒𝑒𝑒)
𝑑𝑑𝑑𝑑  (3) 
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Where 𝑖𝑖1 and 𝜙𝜙1 represent the current and potential in the electrode (metal) and 𝑖𝑖2 and 𝜙𝜙2 

the same for the electrolyte. 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒  and 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒  represent the effective electrical conductivities 

for the electrode and electrolyte. R represents the universal gas constant, F represents 

Faraday’s constant, and TF represents the thermodynamic factor, which is assumed to be 

0 in this thesis. 𝑡𝑡𝐿𝐿𝐿𝐿+represents the transference number for lithium-ions in the electrolyte 

and 𝑐𝑐𝑒𝑒𝑒𝑒 represents the lithium-ion concentration in the electrolyte. The equation for 

effective conductivity is shown in Equation 4.  

 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿 = 𝜅𝜅
𝜀𝜀𝐿𝐿
𝜏𝜏𝐿𝐿

 (4) 

The electrolyte conductivity is multiplied by the porosity and divided by the tortuosity of 

the electrode, for the effective electrolyte conductivity in the electrode, or the porosity and 

tortuosity of the separator, for the effective electrolyte conductivity in the separator. The 

effective electrode conductivity is similarly found by multiplying by one minus the 

electrode porosity and dividing by the electrode tortuosity.  

As mentioned above, the current through the electrode consists of two parts. The 

ionic current through the electrolyte and the electronic current through the electrode, 𝑖𝑖2 and 

𝑖𝑖1 respectively. In the separator, the current is completely 𝑖𝑖2 as there is only electrolyte. 

However, as the current enters the porous electrode part of the cell part of the current enters 

the electrode while part continues in the electrolyte. This change from ionic current to 

electronic current continues until the end of the electrode is reached, at which point the 

current is completely 𝑖𝑖1. The flux, or change, from 𝑖𝑖2 to 𝑖𝑖1 is modeled using the Butler-

Volmer expression shown in Equation 5.  
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 𝑗𝑗 =  𝑗𝑗0 �𝑁𝑁
�𝛼𝛼𝑎𝑎𝐹𝐹𝐹𝐹𝑅𝑅𝑅𝑅 � − 𝑁𝑁�

−𝛼𝛼𝑐𝑐𝐹𝐹𝐹𝐹
𝑅𝑅𝑅𝑅 �� (5) 

j0 represents the exchange current density, which is the current density at the electrode 

electrolyte interface at equilibrium (when the cathodic and anodic reactions are occurring 

at the same rate). η is the overpotential, which is the difference between the electrode and 

electrolyte potential from the equilibrium voltage of the electrode. This is shown in 

Equation 6. 

 𝜂𝜂 =  𝜙𝜙1 − 𝜙𝜙2 − 𝑈𝑈  (6) 

Where 𝜙𝜙1 represents the metal potential, 𝜙𝜙2 represents the potential of the electrolyte, and 

𝑈𝑈 represents the equilibrium potential of the electrode. 𝜙𝜙1, 𝜙𝜙2, and U are measured relative 

to the same reference electrode. The overpotential serves as the driving force for either the 

anodic or cathodic reaction, depending on if it is positive or negative. 𝛼𝛼𝑚𝑚 and 𝛼𝛼𝑐𝑐 represent 

the charge transfer coefficients. The R and T in Equation 3 represent the universal gas 

constant and the temperature respectively. 

The charge balance for the electrode is shown in Equations 8 and 9.  

 
𝑎𝑎(𝐹𝐹𝑗𝑗) =

𝑑𝑑𝑖𝑖2
𝑑𝑑𝑑𝑑  (8) 

 
−𝑎𝑎(𝐹𝐹𝑗𝑗) =

𝑑𝑑𝑖𝑖1
𝑑𝑑𝑑𝑑  (9) 
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Where a represents the specific interfacial area between the electrode and electrolyte. The 

two equations are equal but opposite since the total current is equal to the sum of the current 

in the electrode and electrolyte. 

The mass transport of lithium through the electrolyte is derived from concentrated 

solution theory where the driving force for mass transfer is the gradient in the 

electrochemical potential.30 A binary electrolyte has three species, but only two 

independent driving forces because of the Gibbs-Duhem relation. In this case for the 

lithium ion and for the phosphate ion. Because electroneutrality is assumed, the transport 

of the lithium and phosphate ions are intrinsically related. The DFN model only uses an 

equation for the flux of the lithium ions while the phosphate ions transport is known 

because of electroneutrality. The transport equation for lithium ions is shown in Equation 

10.  

 
𝑁𝑁𝐿𝐿𝐿𝐿+ =  −𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑𝑐𝑐𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑 + 𝑖𝑖2

𝑡𝑡+

𝑧𝑧𝐹𝐹 (10) 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  represents the effective diffusivity of the salt that makes up the electrolyte (LiPF6). 

𝑡𝑡+ represents the transference number of lithium, while z is the charge on the lithium ion. 

The effective electrolyte diffusivity is calculated the same way that the effective electrolyte 

conductivity was calculated. This is shown in Equation 11. 

 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿 =  𝐷𝐷𝑒𝑒𝑒𝑒
𝜀𝜀𝐿𝐿
𝜏𝜏𝐿𝐿

 (11) 
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Where the electrolyte diffusivity is multiplied by the porosity and divided by the tortuosity 

of the separator or electrode depending on the section of the battery. The i subscript in 

Equation 11 is to show that the effective electrolyte diffusivity value depends on the section 

of the battery. The effective electrolyte diffusivity in the separator is found by multiplying 

by the porosity and dividing by the tortuosity of the separator, while the effective 

electrolyte diffusivity in the electrode is found by multiplying by the porosity and dividing 

by the tortuosity of the electrode. 

Fick’s second law of diffusion is used to model the transport of lithium through the 

electrode particles. Equation 12 shows Fick’s second law of diffusion for the radial 

direction of the particles.  

 𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝑡𝑡 =  𝐷𝐷𝑠𝑠 �

𝜕𝜕2𝑐𝑐𝑠𝑠
𝜕𝜕𝑟𝑟2 +

2
𝑟𝑟
𝜕𝜕𝑐𝑐𝑠𝑠
𝜕𝜕𝑟𝑟
� (12) 

Where 𝐷𝐷𝑠𝑠 represents the diffusivity of lithium through the electrode particles.  

While there are other boundary conditions and equations, the outline above served 

to identify all of the necessary parameters to model the electrochemical behavior of the 

battery in the DFN model. Table 1 shows the parameters needed for the DFN model. The 

table shows which chapter in the thesis the estimate for each of the parameters listed in 

Table 1 is obtained. These parameter estimates can be put into a DFN model to simulate 

an electrochemical system. 
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Table 1 Doyle Fuller Newman Model Parameters 

Property Separator Graphite 
Electrode 

Electrolyte Lithium 
Electrode 

Thickness (m) 3 3 - - 

Porosity 3 3 - - 

Tortuosity 3 3 - - 

Particle Radius (m) - 3 - - 

a (m-1) - 3 - - 

Exchange Current Density 
(A/m2) 

- 4 - 4 

Charge Transfer 
Coefficients 

- 4 - 4 

Conductivity (S/m) - 3 4 - 

Diffusivity (m2/s) - 4 3 - 

Open Circuit Voltage  - 3 - - 

Maximum Lithium 
Concentration (mol/m3) 

- 3 - - 

t+  - - 3 - 

Electrolyte Lithium ion 
Concentration (mol/m3) 

- - 3 - 
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CHAPTER 3. BASELINE PARAMETERS 

Baseline parameters refer to the geometric parameters that outline the dimensions for 

the model and the equilibrium voltage curve that determines the baseline voltage for the 

various polarizations of the cell. To determine these baseline parameters, and all other 

parameters for that matter, an experimental electrochemical system must be selected. For 

this study, a graphite electrode was placed vs lithium foil in a coin cell. The graphite 

electrode was obtained from MTI, part number bc-cf-241-ss-005. The active material was 

graphite with copper as the current collector and styrene butadiene rubber (SBR) and 

carboxymethylcellulose sodium (CMC) as the binder materials. The lithium foil was also 

obtained from MTI, part number EQ-Lib-LiC60-300. The electrolyte was a 1 M LiPF6 

Ethylene Carbonate/Diethyl Carbonate mixture (1:1 v/v) from Sigma-Aldrich, part number 

746746. The separator used was Celgard 2325, which consists of a tri-layer of 

polypropylene, polyethylene, and polypropylene. The coin cell hardware was CR2032 SS-

316 obtained from MTI with stainless steel spacers and springs (Belleville washers).  

The coin cells were assembled in a glove box filled with argon. The graphite electrodes 

and the lithium foils were both punched out with a 7/16” punch. The lithium foil was first 

placed in the bottom of the coin cell hardware as the negative electrode after being brushed 

off to remove the oxide layer. This could be observed from the surface becoming shiny 

after brushing. Eighty microliters of electrolyte was placed on top of the lithium foil using 

a micropipette and then two Celgard separators were placed on top of the electrolyte. 

Eighty more microliters of electrolyte were then placed on the separators and the graphite 

electrode was placed face down on the electrolyte. Three metal spacers and one spring were 
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placed on top of the graphite electrode after which the coin cell was crimped using an 

MSK-110 hydraulic crimping machine from MTI. The coin cells were crimped to the same 

pressure each time using a red indicator on the crimper (approximately 1000 kgf/cm2). Coin 

cells made using this procedure were found to have consistent results throughout the 

experimental process. 

One of the first steps in characterizing the experimental system is to determine the 

theoretical capacity of the graphite electrode. Two methods were used to calculate the 

amount of graphite on the electrode which is used to calculate the theoretical capacity. MTI 

reported a loading of 80 g/m2 of active material for the graphite electrode, which multiplied 

by the surface area of the electrode resulted in a weight of 7.76 mg of graphite. The graphite 

electrode was also weighed in lab to verify the surface loading reported by MTI. The weight 

of the current collector was found by removing the electrode material from the copper and 

weighing the copper in lab. Once the weight of the electrode material was known, it was 

multiplied by the percent active material reported by MTI which resulted in a weight of 

7.65 mg of graphite.  The experimental weight determined in the lab of 7.65 mg was used 

to calculate the theoretical capacity of the electrochemical system. The mass of the graphite 

is converted to moles of graphite using the molecular weight of carbon. The moles of 

lithium are calculated from the moles of graphite from the stoichiometry of the 

electrochemical equation shown in Equation 13.  

 Li+ + 6C +  e−  →  LixC6 (13) 
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The moles of lithium in the electrode can be multiplied by the theoretical capacity for 

lithium which resulted in a theoretical capacity for the experimental graphite electrode of 

2.85 mAh.    

The calculated theoretical capacity is used as a starting point for cycling half cells 

where the graphite electrodes are cycled against lithium counter electrodes. The 

experimental capacity is highly dependent on the voltage limits and C-rate selected for the 

cell. Cells were initially cycled at approximately C/30 (0.0001 A) to determine the 

experimental capacity. For the graphite half-cell, the cell was cycled between 1.2 V and 

0.005 V five times. The voltage limits for graphite are important to avoid plating of 

lithium.33 The experimental capacity was taken to be the average of each of the cells cycled. 

The first cycle of each cell was not used due to the higher capacity of the first cycle 

attributed to SEI growth and other phenomena unique to the first cycle, commonly called 

a formation cycle.34 The experimental capacity on average was 2.3±0.02 mAh for the 

graphite half-cells. 

Once cycling limits and the theoretical capacity are known, experiments can be 

performed to determine the equilibrium voltage vs. state of charge (SOC) for each 

electrode. SOC here uses the same definition as Equation 1 where 0% SOC refers to an 

unlithiated graphite electrode and 100% SOC refers to a fully lithiated graphite electrode. 

The Galvanostatic Intermittent Titration Technique (GITT) was used to measure the 

equilibrium voltage curve of graphite.35 An example of a single GITT step is shown in 

Figure 3. A small current of approximately C/30 (0.1 mA) is applied to the battery for one 

hour and then the cell is allowed to rest for 24 hours. The voltage will stop changing once 

it reaches the equilibrium voltage as seen below in Figure 3 from when the voltage has 
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stopped changing with time. This process is repeated until the cell reaches the upper voltage 

limit of 1.2 V after the 24 hour rest. Then the GITT process was conducted in the same 

manner except a current of –C/30 (-0.1 mA) was applied for 1 hour followed by a 24 hour 

rest for each step. This process was repeated until the cell reached the lower voltage limit 

of 0.005 V after the 24 hour rest. 
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Figure 3 Example of the voltage response to one galvanostatic intermittent titration 
technique step.  

The voltage values for the equilibrium voltage curve were taken to be the last 

reported voltage value for each 24 hour rest step. The SOC was calculated using coulomb 

counting after the initial SOC of the GITT cell was determined from comparing with GITT 

experiments using a fresh cell that started at 0% SOC. The results obtained for the graphite 

equilibrium voltage from the GITT experiments of six cells are shown in Figure 4. 
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Figure 4 Equilibrium voltage of graphite from GITT Results. Values for charge and 
discharge are differentiated to show the hysteresis between charge and discharge values. 

The graphite material used exhibited hysteresis where the equilibrium voltage curve 

measured during GITT charging and discharging differed. Other researchers have also 

reported hysteresis when looking at the equilibrium voltage curve for graphite electrodes.36 

Because each of the cells was cycled in the same manner prior to initiating the GITT 

experiments the initial voltages before starting the GITT discharge are very similar. The 

voltage values, at the end of charging, vary more than the initial voltages before 

discharging. To see if this is because of the GITT starting point, GITT could be conducted 

on cells that initially begin at fully discharged for the experimental cycling procedure 

outlined to compare with the results shown here. Figure 5 shows that there is hysteresis 

throughout the whole equilibrium voltage curve. Though it is not as drastic as seen in the 

0-0.1 SOC range. 
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Figure 5 Close up of Figure 4 to better illustrate hysteresis between 0.2 and 1.0 SOC. 

 The final equilibrium voltage curve estimate was taken to be the average of the 

charge and discharge GITT results and is shown in Figure 6. The average equilibrium 

voltage vs SOC was determined by fitting an equation to the GITT results. The equilibrium 

voltage curve is the starting point for any calculation so the fit obtained should be as close 

to possible to the experimental data. The equation used for the equilibrium voltage of the 

graphite electrode in the DFN model is shown in Equation 14. 

 
5.1tanh�−26.2�

𝑐𝑐𝑠𝑠
𝑐𝑐𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚

� + 0.953�

+ 0.0453tanh�−23.1�
𝑐𝑐𝑠𝑠

𝑐𝑐𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
�+ 5.11�

+ 0.0197tanh�−51.9�
𝑐𝑐𝑠𝑠

𝑐𝑐𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
�+ 26.1�

− 0.0448tanh�49.4�
𝑐𝑐𝑠𝑠

𝑐𝑐𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
� − 44.8� + 5.19 

(14) 



 26 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Graphite Electrode Equilibrium Voltage

V
o
lta

g
e
 (

V
o
lts

)

SOC

 

Figure 6 The results for each step of the galvanostatic intermittent titration technique 
graphed versus state of charge. The line represents an equation used to fit the 
galvanostatic intermittent titration techniques results for inputting the graphite 
equilibrium voltage into the model. 

To outline the physical space of the DFN model, geometrical parameters are 

needed. The thicknesses of the graphite electrode and the separator were provided by the 

suppliers. The thickness of the separator is 0.025 mm, and the thickness of the graphite 

electrode and current collector is 0.05 mm. To obtain the thickness of the graphite 

electrode, the thickness of the copper current collector supplied by the supplier, 0.009 mm, 

was subtracted from the total thickness. This resulted in a thickness of 0.041 mm for the 

graphite electrode. The thickness of the graphite electrode was verified from the SEM 

image shown in Figure 7. 

The particle radius of the graphite electrode was estimated by taking the average of 

the diameters measured from an SEM image. Though the average radius was used in this 



 27 

thesis, and is commonly used in many papers, the author acknowledges that this can 

introduce some error into the system as opposed to using a distribution of radii in the 

model.37 The SEM image was taken by a fellow lab member and is shown in Figure 7. The 

diameters were measured as the longest distance spanned by the particle, since they are not 

spherical in shape. The diameters’ measurements were taken using the imaging software 

Image J. The average particle diameter measured from the SEM image was 17 μm. This 

gives a particle radius of 8.5 μm. 

           

Figure 7 Scanning electron microscope image of a pristine graphite electrode used for 
estimating the particle diameter. Imaging was done by Jung Fang, a member of Dr. 
Fuller’s lab. 

One other geometrical parameter that is needed for the model is the specific 

interfacial area. The specific interfacial area is the ratio of the surface area that is shared 

by the electrode and the electrolyte to the superficial volume of the electrode. One 

challenge with modeling porous electrodes is determining the specific interfacial area. One 

way to estimate the specific interfacial area is to assume spherical particles.38 The process 
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for estimating the specific interfacial area assuming spherical particles is outlined as 

follows. Equation 15 defines the specific interfacial area, a. 

The interfacial area is the surface area of the electrode spheres in contact with the 

electrolyte. This can be found by estimating the total number of spheres and then 

multiplying by the surface area for each individual sphere. Equation 16 estimates the 

number of spheres in the electrode based on the solid phase fraction, the superficial volume, 

and the volume of a single sphere.  

Equation 17 shows the number of spheres equation multiplied by a single sphere’s surface 

area substituted in for the interfacial area.  

Equation 18 shows the final simplification for estimating the specific interfacial area of the 

electrode. 

 
𝑎𝑎 ≡  

interfacial area
superficial volume (15) 

 number of spheres =  
𝑉𝑉(1− 𝜀𝜀)
4

3� 𝜋𝜋𝑟𝑟3
 (16) 

 

𝑎𝑎 =  

𝑉𝑉(1− 𝜀𝜀)
4

3� 𝜋𝜋𝑟𝑟3
4𝜋𝜋𝑟𝑟2

𝑉𝑉  
(17) 
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The porosity of the separator was provided by the manufacturer and was listed as 

0.39. The porosity of the electrode can be determined using Hg-porosimetry. Lacking the 

experimental capabilities to measure the porosity of the graphite electrode, values were 

taken from the literature. The porosity of commercial graphite electrodes from two 

different sources were measured using Hg-porosimetry in two separate papers. The 

reported porosities were 0.292 and 0.329.20,22 This thesis used an average of the two 

reported values for the initial estimate for the graphite electrode porosity. Other parameters 

were also determined from the literature since the equipment to experimentally measure 

the values was unavailable. The effective conductivity for a thin film graphite electrode is 

measured as 3000 S/m using a four point probe method.39-40 The transference number of 

lithium was reported to be 0.162 for a 1 M LiPF6 ethylene carbonate diethyl carbonate (1:1 

w/w) at 25° C.41 The diffusion coefficient of the lithium salt in a 1 M LiPF6 ethylene 

carbonate/diethyl carbonate (1:1 w/w) was reported to be 1.2×10-9 m2/s at 25° C.42 

This chapter estimated each of the baseline parameters using GITT, SEM images, 

and information reported by the electrode manufacturer. Other parameters, not measured 

in this thesis, were estimated using literature values. These baseline parameters will be put 

into the DFN model to outline the geometry of the experimental system being modeled as 

well as establishing the equilibrium voltage curve for the graphite electrode. Parameters 

used to calculate the voltage polarizations from the equilibrium voltage curve are estimated 

in the next chapter from electrochemical impedance spectroscopy (EIS) data. 

 
𝑎𝑎 =  

3(1 − 𝜀𝜀)
𝑟𝑟  (18) 
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CHAPTER 4. ELECTROCHEMICAL IMPEDANCE 

SPECTROSCOPY PARAMETERS 

Now that the baseline parameters have been estimated in the previous chapter, the 

parameters needed to calculate the polarizations of the cell will be estimated in this chapter. 

Electrochemical impedance spectroscopy (EIS) is a popular experimental technique used 

to characterize the impedance of a cell because it is non-invasive and, in theory, can 

separate the different impedances experienced by the cell by the different time constants 

associated with them. For example, low frequency impedance is associated with the mass 

transport polarization of the cell because the time constant for the mass transport 

polarization is usually much longer than the time constants associated with the 

kinetic/double-layer charging, or ohmic polarizations. EIS spectra were taken after each 

step of the GITT process for the graphite vs. lithium coin cells. The GITT process used 

was the same as outlined in Chapter 3 where the cell was discharged at approximately C/30 

(0.0001 A) for one hour and then allowed to rest for 24 hours. EIS was conducted using a 

Metrohm potentiostat using a frequency range from 100 kHz to 0.01 Hz. A 5 mV 

perturbation was applied around the open-circuit voltage of the cell at each SOC. Five 

points were sampled for every decade of frequency. An example of the EIS results is shown 

in Figure 8.  
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Figure 8 Electrochemical impedance spectroscopy results example for the coin cell at 
0.181 V. 

EIS spectra, like other electrochemical experimental data, are often fit by models. 

In this thesis, an equivalent circuit model was used. As explained in Chapter 1, an 

equivalent circuit model uses common circuit elements to represent the underlying 

electrochemical system. Circuit elements are selected to represent the ohmic, charge 

transfer, and mass transport polarizations. Additionally, circuit elements are included to 

represent the double layer. The double layer is a thin film of ions that builds up on the 

interface between the electrode and the electrolyte. Chapter 1 mentions that in the DFN 

model in this thesis the double layer is not modeled as its effects are only seen on the order 

of milliseconds. Since EIS spectra cover a wide range of time scales, the double layer needs 

to be modeled here to paint a more complete picture of the different impedance elements 

present in the cell. The equivalent circuit used to fit the experimental data is shown in 

Figure 9. This equivalent circuit was selected based on the appearance of the EIS data and 
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the elements in the cell. From the literature, a similar equivalent circuit has also been used 

by Mendoza-Hernandez et al. when fitting EIS data from a graphite electrode.43-44  

 

Figure 9 Example of the equivalent circuit used to fit the experimental electrochemical 
impedance spectroscopy results. 

These circuit elements all represent different parts and physics of the cell. The 

resistor on the far left represents the ohmic resistance, which is used to model the ohmic 

polarization. The subsequent resistor is in parallel with an element called a constant phase 

element (CPE). The equivalent circuit uses CPEs in the place of capacitors to represent the 

double layer. EIS usually have depressed semicircles where equivalent circuits using 

capacitors have true semicircles. Because of this, CPEs are used in equivalent circuits to 

better fit experimental EIS data.45 The equation for the impedance of a CPE is shown in 

Equation 19. 

Where 𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶 represents the impedance of the CPE, Y represents the admittance when ω is 

equal to one, j is the square root of -1, ω represents the frequency, and N represents the 

CPE exponent. The equation for the impedance of a CPE is equivalent to the equation for 

the impedance of a capacitor when N equals one. The resistors in parallel with the CPEs 

 1
𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶

=  𝑌𝑌(𝑗𝑗𝜔𝜔)𝑁𝑁 (19) 
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represent the charge transfer resistance while the CPEs represent the double layer 

capacitance. The final part of the circuit includes a resistor in series with a Warburg 

impedance in parallel with a CPE. The Warburg impedance represents the mass transport 

polarization.   

Fitting the EIS data to the equivalent circuit was done using PyCharm, an integrated 

development environment for python. The program used was an open source Python 

module for fitting EIS data begun at the Electrochemical Society 2018 hack week intended 

to make EIS fitting more intuitive and reproducible.46-47 The fitting software used a semi-

infinite Warburg impedance shown in Equation 20.  

Where σ represents the Warburg coefficient, δ represents the Nernst diffusion layer 

thickness, and D represents an average value of the diffusion coefficients of the diffusing 

species. j is again the square root of -1 and ω is the frequency. A semi-infinite Warburg 

impedance is used because the separator is not infinitely thick. An example of the fit 

obtained from PyCharm is shown in Figure 10.  

 
𝑍𝑍𝑊𝑊 =  𝜎𝜎𝜔𝜔−0.5(1 − 𝑗𝑗) tanh�𝛿𝛿 �

𝑗𝑗𝜔𝜔
𝐷𝐷 �

0.5

� (20) 
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Figure 10 Example PyCharm fitting of graphite EIS data. 

The first resistor in the equivalent circuit from Figure 9 represents the ohmic 

resistance of the cell. The resistance value of the resistor being the estimated ohmic 

resistance from the equivalent circuit fitting. The ohmic polarization is a result of the 

voltage loss associated with moving ions to pass current through the cell. Ohm’s law, 

shown in Equation 3 in Chapter 2, shows that the ohmic voltage loss is a function of the 

amount of current as well as the conductivity of the electrode and the electrolyte. Assuming 

that the conductivity of the electrode is orders of magnitude greater than the electrolyte 

conductivity, the ohmic resistance can be used to estimate the electrolyte conductivity, as 

shown in Equation 21. 

 

 𝑅𝑅𝑜𝑜ℎ𝑚𝑚𝐿𝐿𝑐𝑐 =  
𝐿𝐿

𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴
 (21) 
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Where L represents the thickness of the separator, 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒  is the effective conductivity, shown 

in Equation 22, and A is the geometric area of the electrode-electrolyte interface. 

The effective conductivity is the conductivity multiplied by the porosity, ε, and divided by 

the tortuosity, τ, of the separator. Since it was assumed that the electrode conductivity was 

much greater than the electrolyte conductivity the ohmic resistance is only measuring the 

electrolyte conductivity in the separator as in the electrode only a negligible amount of 

current passes through the electrolyte.  

While the porosity of the Celgard 2325 separator is reported by the manufacturer 

to be 0.39, the tortuosity is not reported. T. Joshi, a previous member of Dr. Fuller’s group, 

measured the tortuosity of the separators by measuring how the high frequency impedance 

of experimental EIS data changed with an increasing number of separators in a conductivity 

cell.48 Using an electrolyte of known conductivity, EIS was measured for five different 

conductivity cells to find the high frequency impedance. The conductivity cells each 

contained a different number of separators from 1-5. The tortuosity calculated from each 

of the cells was taken and averaged for a final value of 4.11. Using this value, the electrolyte 

conductivity can be estimated from the high frequency impedance, or ohmic resistance, of 

the cell. 

The estimated value for the ohmic resistance was 6.4 Ω-cm2 taken as the average 

for the resistance of the ohmic resistor from all the equivalent circuits used to fit the EIS 

 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒 =  𝜅𝜅
𝜀𝜀
𝜏𝜏 (22) 
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data for all of the cells. The estimated value for the ohmic resistance was used to calculate 

an effective conductivity of 0.078 S/m using Equation 21. The conductivity was then 

calculated from Equation 21 using the previous values for the porosity and tortuosity. This 

yielded the conductivity of the electrolyte to be 0.82 S/m. This value was the same as the 

literature value of 0.82 S/m.49  

The effective electrolyte conductivity is different in the porous electrode than in the 

separator due to different values for the porosity and tortuosity. Since the tortuosity of the 

graphite electrode is unknown, the Bruggeman relationship was assumed. The Bruggeman 

relationship assumes that the tortuosity is equal to the inverse square root of the porosity.50 

Other papers have left the tortuosity as a fitting parameter, but this thesis elected to use the 

Bruggeman relationship to eliminate one additional parameter.51 If this relationship had 

been used for the separator, the tortuosity would have been 1.6 as compared to 4.11 found 

experimentally.  This shows that the Bruggeman relationship, in the case of the separator, 

is not a good assumption for the tortuosity. However, the Bruggeman relationship is 

commonly used to estimate tortuosity. One other method that has recently been explored 

in our group is the use of FIB-SEM to construct an image of an electrode to better estimate 

the porosity and tortuosity of the material in question.52 This method could be used to 

obtain a more accurate, experimentally obtained estimate for the porosity and tortuosity of 

the graphite electrode. 

The exchange current densities for the graphite and lithium electrodes were also 

obtained from the EIS spectra of the graphite vs. lithium coin cells. The exchange current 

densities were estimated from the resistors representing the charge transfer resistances for 

the lithium electrode, the graphite electrode, and the SEI. At each of these interfaces, 
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electrochemical reactions are occurring where lithium ions and electrons are reacting. Each 

of these electrochemical reactions is associated with a resistance that is termed a charge 

transfer resistance. The equation used to represent the charge transfer resistance from the 

Butler Volmer equation used in this model is shown in Equation 23. 

Where R represents the universal gas constant, T the temperature, α the charge transfer 

coefficient, z the charge of the ion in the electrochemical equation, F the Faraday constant, 

j0 the exchange current density, 𝑎𝑎 the specific interfacial area, and V represents the volume.  

To be able to estimate the exchange current density for each element represented 

by the equivalent circuit, each circuit element must first be assigned to a corresponding 

part of the coin cell. In the equivalent circuit, there are two parallel resistor-CPE pairings 

in series. These in turn are in series with a resistor in series with a Warburg impedance all 

in parallel with a CPE. Initially, it was thought that the resistor and CPE associated with 

the Warburg impedance would represent the graphite electrode, which has mass transport 

limitations. The two RC circuits without the Warburg impedance would then represent the 

Solid Electrolyte Interphase (SEI, a layer that grows on the surface of the graphite electrode 

due to a side reaction between the electrolyte and the graphite electrode), and the lithium 

foil. However, similar fits were obtained independent of which resistor and CPE values 

were associated with the Warburg impedance. An example of this is shown in Figure 11.  

 𝑅𝑅𝑐𝑐𝑐𝑐 =
𝑅𝑅𝑇𝑇

𝛼𝛼𝑧𝑧𝐹𝐹𝑗𝑗0𝑎𝑎𝑉𝑉
 (23) 
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Figure 11 Graphs to show the interchangeability of the resistor-CPE pairs. The top graph 
shows the original fit obtained for the EIS data taken at 127 mV. The bottom graph 
shows the fit obtained for the EIS data when the last resistor-CPE pair is switched with 
the second resistor-CPE pair. Even though this changes the resistor-CPE pair associated 
with the Warburg impedance, the fit obtained is nearly identical. 
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Figure 11 shows that the fit obtained is similar when the resistor-CPE pairing associated 

with the Warburg impedance in the initial fit is switched with the last resistor-CPE pairing 

from the original fit. The cf term in the figure references the hyperbolic tangent term from 

Equation 20 that is used as a correction factor to change the Warburg impedance from an 

infinite diffusion layer to a semi-infinite diffusion layer.  

Figure 12 shows that a similar fit was also obtained when placing the Warburg 

impedance in series with all the other circuit elements.   
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Figure 12 Graphs to show that the Warburg impedance can be associated with a resistor-
CPE pair in the circuit or placed on its own outside the circuit with minimal effect. The 
top graph shows the original fit obtained for the EIS data taken at 127 mV. The bottom 
graph shows the fit obtained for the EIS data when the Warburg impedance is moved to 
be in series with all of the circuit elements instead of in a resistor-CPE pairing. 

Because the EIS fitting was independent from the position of the Warburg impedance, the 

resistor-CPE pairing associated with the Warburg impedance could not be assigned to the 

graphite electrode as initially assumed. Other assumptions will be made to assign each 

circuit element to a component of the electrochemical system. 

While the resistance and capacitance of the three resistor-CPE pairings were 

interchangeable, the resistance and CPE values would consistently appear as the same 

pairs. Because of the consistent pairings, the resistor-CPE pairings were able to be 

consistently identified throughout the EIS data gathering. Because the lithium foil charge 

transfer resistance should not be SOC dependent, it was assumed that the only charge 
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transfer resistance that was not SOC dependent corresponded to the lithium foil. Ideally, 

the SEI and graphite resistor-CPE pairings would also be identified and separated. 

However, since the SEI layer is not included in this model, the charge transfer resistances 

for the SEI and the graphite electrode are added together in the model to estimate the total 

charge transfer resistance for the graphite electrode. The lumped exchange current density 

value made differentiating the resistor-CPE values for the graphite electrode and the SEI 

not necessary for the calculation of the charge transfer estimate for the model. The values 

for the charge transfer resistances for the lithium electrode and the SEI and graphite 

electrode are shown in Figures 13-14.  
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Figure 13 Charge transfer resistance values from EIS fitting associated with the SEI and 
the graphite electrode. They are added together to sum to one total charge transfer 
resistance in the model. 
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Figure 14 Charge transfer resistance values from EIS fitting associated with the lithium 
electrode. 

An average value was used for the charge transfer resistance for the lithium electrode since 

it is assumed to be independent of SOC. The average value for the charge transfer resistance 

was 38.9 Ohm-cm2. The graphite electrode and SEI charge transfer resistances were added 

together as the SEI layer is not included in the model. The exchange current density can be 

calculated from the charge transfer resistance by rearranging Equation 23 as shown in 

Equation 24.  

 𝑗𝑗0 =
𝑅𝑅𝑇𝑇

𝛼𝛼𝑧𝑧𝐹𝐹𝑅𝑅𝑐𝑐𝑐𝑐𝑎𝑎𝑉𝑉
 (24) 
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The estimate for the exchange current density for the lithium electrode was 14 A/m2. The 

estimate for the exchange current density for the graphite electrode, along with the linear 

fit used to input the exchange current density into the model, is shown in Figure 15. 

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

Graphite Electrode Estimated Exchange Current Density

E
xc

h
a
n
g
e
 C

u
rr

e
n
t 
D

e
n
si

ty
 (

A
/m

2
)

SOC (x)

 

Figure 15 Estimated exchange current density for the graphite electrode vs. SOC. The 
linear fit used to input the estimated exchange current density as a function of SOC into 
the model is also shown. 

The equation used in the model for the graphite exchange current density is shown in 

Equation 25. 

In the literature, the exchange current density is sometimes fit to an equation that 

dictates it be 0 when the cell is fully lithiated or unlithiated.22 This is because of the fact 

that the kinetics are dependent on the concentration of the reactants. When the cell is 

 2.3 − 2.26(𝑆𝑆𝑆𝑆𝑆𝑆) (25) 



 44 

completely lithiated, no more lithium can intercalate into the graphite electrode. When the 

cell is completely unlithiated no lithium can be oxidized from the graphite electrode. These 

are factors that affect the current passing through the cell. However, the exchange current 

density is a measure of the equilibrium that exist between oxidation and reduction at an 

electrode’s surface. In other words, the exchange current density is a measure of both the 

rate of oxidation and reduction when the cell is at equilibrium. Even when the cell is not 

passing any current, there is still oxidation and reduction happening at the surface of both 

electrodes. This is what the exchange current density is measuring. Even when the 

electrode is completely lithiated or unlithiated there is still reduction and oxidation 

happening at equilibrium. The exchange current density is a measurement of that rate and 

is not zero even when the cell is completely lithiated or unlithiated. However, the exchange 

current density would be zero if the lithium concentration in the electrode and the 

electrolyte were zero as there would be no lithium ions to reduce and oxidize at the 

electrode’s surface. 

The diffusivity for lithium in the solid phase of the graphite electrode was also 

estimated from the EIS spectra using Equation 26.54-55 

Where 
𝑑𝑑𝐶𝐶
𝑑𝑑𝑚𝑚

 is the slope of the equilibrium voltage curve vs. x, 𝜎𝜎𝑊𝑊 is the Warburg coefficient, 

𝑉𝑉𝑀𝑀  is the molar volume of graphite, F is Faraday’s constant, 𝑎𝑎 is the specific interfacial 

area, and V is the volume.  

 

𝐷𝐷Li+ =  
1
2�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑉𝑉𝑀𝑀
𝜎𝜎𝑊𝑊𝐹𝐹𝑎𝑎𝑉𝑉

�

2

 (26) 
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One cause for concern from using Equation 26 to estimate the effective solid phase 

diffusivity for graphite specifically is the large sections of the equilibrium curve that are 

flat.56 For reference, the equilibrium voltage curve vs. SOC for graphite is provided again 

in Figure 16.  
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Figure 16 Graphite electrode equilibrium voltage curve provided to show regions where 
the curve is flat. 

In Figure 16 the equilibrium voltage curve is flat between SOCs 0.3 and 0.45, and between 

SOCs 0.55 and 0.85. Using Equation 26, areas where the equilibrium voltage curve is flat 

gives values of diffusivity that are orders of magnitude smaller.20 This thesis follows a 

similar approach to Schmalstieg et al. where estimated diffusivity values are only 

considered for regions where the equilibrium voltage curve is not flat.  

Referring again to Equation 26, values must be obtained for 
𝑑𝑑𝐶𝐶
𝑑𝑑𝑚𝑚

 and σw. 
𝑑𝑑𝐶𝐶
𝑑𝑑𝑚𝑚

 is the 

slope of the equilibrium voltage curve at the SOC the EIS data was taken. To find the slope 
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of the equilibrium voltage curve at each SOC, the derivative of the equation used to fit the 

equilibrium voltage curve was taken and evaluated at the appropriate SOC. The SOC was 

obtained from counting coulombs from each GITT step taken between the EIS 

experimental data sets. Figure 17 shows 
𝑑𝑑𝐶𝐶
𝑑𝑑𝑚𝑚

 for each set of EIS data.  
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Figure 17 Equilibrium voltage curve slopes determined by taking the derivative of the 
equation used to fit the equilibrium voltage curve at the SOC of each set of EIS data. 
These slopes are used in Equation 26 to estimate the solid phase diffusivity of graphite. 

As mentioned previously, the slopes from where the equilibrium voltage curve is flat were 

not used to estimate the solid phase diffusivity. It was visually determined to be SOCs 

between 0.3 and 0.45 and SOCs between 0.55 and 0.85.  

σw is the Warburg coefficient and is determined by finding the slope of the real or 

imaginary impedance against the inverse square root of frequency of the EIS data in the 
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Warburg region. The Warburg region is characterized by a straight line on a Nyquist plot, 

which plots the imaginary impedance vs. real impedance. Figure 18 shows examples of the 

real impedance and the imaginary impedance being graphed against the inverse square root 

frequency along with linear fits used to calculate the slopes used for the Warburg 

coefficients. 
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Figure 18 Example of real (top graph) and imaginary (bottom graph) impedances graphed 
against the inverse square root of frequency of EIS data taken at a SOC of 0.325. 

The average of the slopes from the real and imaginary impedance vs the inverse square 

root of frequency was used as the Warburg coefficient to estimate the solid phase 

diffusivity of graphite from Equation 26. The estimate for the solid phase diffusivity of 

graphite is shown in Figure 19 along with the exponential equation fit used to input the 

estimate into the gPROMs model. The equation used in the model for the solid phase 

diffusivity of graphite is shown in Equation 27. 

 

 6.06 × 10−17𝑁𝑁�−
𝑆𝑆𝑆𝑆𝐶𝐶
0.0286� + 4.74 × 10−15 (27) 
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Figure 19 Graphite solid phase diffusivity values estimated from EIS data using Equation 
26. Also including the equation fit used to input the estimate into the gPROMs model. 

The fit shown above was used because it was similar to the fit obtained by Schmalstieg et. 

al.20 
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CHAPTER 5. COMPARING EXPERIMENTAL AND 

SIMULATION DISCHARGE CURVES 

Now that estimates have been obtained for all of the parameters needed for the DFN 

model, simulation results using the parameter estimates will be compared to experimental 

discharge data. Table 2 compiles the parameter estimates obtained in this thesis. The 

parameter estimates in Table 2 were put into a DFN model coded in gPROMS, and the 

simulation results were compared to experimental discharge data for the graphite vs. 

lithium coin cells. Coin cells were manufactured using the materials listed in Chapter 3 in 

a glove box and cycled on an Arbin cycler. Cells were discharged at 0.1 mA, 0.2 mA, 0.4 

mA, 0.67 mA, and 1 mA These rates were between C/30 and C/2 with the C-rates being 

determined based on 2.85 mAh, the theoretical capacity calculated in Chapter 3. The 

simulation results for a 0.1 mA discharge are compared to the experimental data for the 

graphite vs lithium coin cell in Figure 20. 
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Table 2 Compiled Estimates for Doyle Fuller Newman Model Parameters 

Property Separator Graphite Electrolyte Lithium 

Thickness (μm) 50 p 41 p, SEM - - 

Porosity 0.39 p 0.31l - - 

Tortuosity 4.11 m 1.5 c - - 

Particle Radius (μm) - 8.5 SEM - - 

Specific Interfacial Area 
(m-1) 

- 110000 c - - 

Exchange Current Density 
(A/m2) 

- Figure 15 EIS - 14 EIS 

Charge Transfer 
Coefficients 

- 0.5, 0.5 a - 0.5, 0.5 a  

Conductivity (S/m) - 3000 l 0.82 EIS - 

Diffusivity (m2/s) - Figure 19 EIS 1.2E-9 l - 

Equilibrium Potential  - Figure 6 GITT - - 

Maximum Lithium 
Concentration (mol/m3) 

- 39000 c - - 

Transference Number - - 0.173 l - 

Electrolyte Concentration 
(mol/m3) 

- - 1200 p - 

p-provided by manufacturer, SEM – scanning electron microscope, l-literature,  
m-measured, c-calculated, EIS-electrochemical impedance spectroscopy,                 
a-assumed, GITT-galvanostatic intermittent titration technique 
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Figure 20 Simulation and experimental discharges for graphite vs. lithium coin cells at 
0.1 mA. 

The simulation results show good agreement with the experimental data taken at 0.1 mA. 

The main difference being the two voltage plateaus lasting longer for the simulation results 

than for the experimental data. The simulation capacity at 0.1 mA was 2.37 mAh while the 

average experimental capacity was 2.28 mAh.  

The results at such a slow C-rate (approx. C/30) is a good means of analyzing the 

Equilibrium Voltage vs. SOC curve used for the model. Figure 21 adds in the GITT data 

and equilibrium voltage curve to Figure 20 to compare with the experimental data and 

simulation results. 
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Figure 21 Graphite vs. lithium coin cell simulation and experimental discharges at 0.1 
mA compared with the GITT data and the graphite equilibrium voltage curve equation 
used in the model. 

The simulation results closely follow the equilibrium voltage curve put into the model. 

While the experimental results do show some differences from the simulation results, the 

simulation results using the parameter estimates obtained in this thesis are within 40 mV 

of the experimental discharge data at 0.1 mA.   

 To gain a better understanding of how these physical parameter estimates compare 

to experimental data, simulation results were compared to experimental data at higher C-

rates. Figure 22 shows the experimental data for a 0.2 mA discharge compared with the 

simulation results. 
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Figure 22 0.2 mA discharge comparison of simulation results and experimental data. 

The simulation results and experimental data at 0.2 mA are still in good agreement. The 

capacity of the simulation results at 0.2 mA is 2.32 mAh compared to 2.22 mAh on average 

for the experimental data. The capacity values at 0.2 mA decreased by approximately the 

same amount from the capacity values at 0.1 mA. The capacity at 0.1 mA for the simulation 

results was 2.37 mAh and was 2.28 mAh on average for the experimental results. Though 

the difference between the voltage plateaus in the simulation and the experimental data is 

more pronounced at 0.2 mA than it was at 0.1 mA. Additionally, the voltage drop between 

1 V and 0.25 V in the simulation is steeper than in the experimental data and the difference 

is more pronounced at 0.2 mA than it was at 0.1 mA. However, this comparison still shows 
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that the estimated physical parameter set is a good starting place for further refinement 

through fitting to experimental data. 

 Figure 23 shows the experimental data and the simulation results for discharge at 

0.4 mA. 
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Figure 23 Experimental data and simulation results for 0.4 mA discharge. 

The simulation results and experimental data continue to show the same trends as those 

seen at 0.2 mA and 0.1 mA. The difference in the voltage drop between 1 V and 0.25 V 

again is steeper in the simulation results than in the experimental data. Additionally, the 

difference between the voltage plateaus in the simulation and the experimental data is more 

pronounced as the C-rate increases. The capacity for the simulation results at 0.4 mA was 
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2.24 mAh and 2.05 mAh on average for the experimental data. While the differences in the 

simulation results capacities and the experimental data capacities at 0.1 mA and 0.2 mA 

was fairly similar, the difference in the simulation results capacities, 0.08 mAh, is less than 

the difference in the experimental data capacities, 0.17 mAh, between the 0.2 mA discharge 

and the 0.4 mA discharge. Part of this is due to the variance in the experimental data 

capacities between cells. The cell 1 capacity decreased more from 0.2 mA to 0.4 mA than 

the capacities of cells 2 and 3. This could be because of a larger ohmic resistance, perhaps 

due to increased contact resistance. One of the challenges of using coin cells is 

manufacturing reproducible cells. Commercial cells are more consistent in their results due 

to the precision with which they are manufactured. This is one example of how commercial 

cells are preferable to coin cells for comparing experimental data to simulation results.  

 Figure 24 shows the experimental data and the simulation results for the 0.67 mA 

and 1 mA discharges. 
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Figure 24 Experimental data and simulation results for 0.67 mA discharge (top) and 1 
mA discharge (bottom). 
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At higher discharge rates the experimental discharge capacity decreases more than the 

simulation discharge capacity. The capacities for each of the experimental cells and the 

simulation results with increasing discharge rate is shown in Table 3. 

Table 3 Capacity vs. Rate of Discharge 

Discharge 
Current 
(mA) 

Cell 2 
Discharge 
Capacity 
(mAh) 

Cell 3 
Discharge 
Capacity 
(mAh) 

Cell 4 
Discharge 
Capacity 
(mAh) 

Average 
Cell 
Discharge 
Capacity 
(mAh) 

Simulation 
Discharge 
Capacity 
(mAh) 

0.1  2.32  2.28 2.28 2.29 2.36 
0.2  2.21 2.22 2.23 2.22 2.32 
0.4  1.97 2.08 2.11 2.05 2.24 
0.667  1.29 1.55 1.73 1.52 2.12 
1 0.60 0.87 1.19 0.89 1.91 

 

The experimental discharge capacity decreases at a higher rate as the discharge rate 

increases than the simulation discharge capacity. The difference between the experimental 

discharge capacity at for the 0.1 mA discharge and for the 1 mA discharge is 1.4 mAh 

while the same difference for the simulation discharge capacity is only 0.45 mAh. The 

estimated physical parameters do not capture the experimental discharge capacity decrease 

with increasing discharge rate. However, the estimated physical parameter set does provide 

a starting place for further refinement of the parameter set by fitting simulation results to 

experimental data. 

In this chapter, the simulation results using the parameter estimates obtained in this 

thesis are compared to experimental data. While there are areas where the simulation 

results do not match the experimental data, the comparison of the simulation results with 

the experimental data does show that the parameter estimates are a good starting place for 
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further refinement. The parameter estimates provide a starting place for refining parameters 

by fitting experimental data that will increase the probability of finding an accurate 

finalized parameter set. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

Batteries and other electrochemical systems are becoming wide-spread as power 

sources in many industries. Consumer demands require that electrochemical systems 

continue to improve to become viable in new industries and to continue to improve in well-

established industries. Electrochemical research includes the modeling of electrochemical 

systems to both predict performance and to improve the understanding of the physics. 

Understanding the physics of electrochemical systems can help with identifying limitations 

and areas of improvement. However, physics-based models are required for gaining insight 

into the physical characteristics of the electrochemical system. Physics-based models’ 

parameters are found by fitting the model to experimental data. While a physics-based 

model that fits experimental data well is a good indicator that the parameters are accurate, 

there is a risk that the parameters identified through fitting are inaccurate or even infeasible 

because of the complexity of the model. The physical insight gained into an 

electrochemical system is only as valuable as the accuracy of the physical parameters 

identified for the model. Parameter identification for physics-based models should 

prioritize finding the most accurate parameter set possible, rather than focusing only on 

fitting the experimental data. 

A process for parameter identification has been demonstrated in this thesis that will 

lead to a higher probability of obtaining an accurate finalized parameter set. Ideally, all 

parameters would be physically measured, but while this is possible for parameters like 

electrode thickness, there are many parameters that cannot be physically measured. These 

parameters are determined by fitting the model to experimental data. In the past, parameter 
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estimates used as the initial input for the fitting process were often obtained from the 

literature. However, the reliability of the literature to provide good estimates for parameters 

is questionable due to the amount of variance that exist. At times a parameter in the 

literature can vary by orders of magnitude. Even for well-established materials like 

LiMn2O4 or graphite. Also under consideration is the modeling of new materials for which 

estimates for parameters cannot be obtained from the literature. A process to obtain 

reasonable estimates for each of the parameters in a physics-based model would increase 

the chances of obtaining an accurate parameter set by fitting the model to experimental 

data. 

This thesis has outlined a process for obtaining estimates for parameters in a physics-

based model. The process begins by identifying the electrochemical system being modeled, 

the physics-based model being used, and then identifying all of the parameters necessary 

for the model. After the parameters have been identified, the parameters that can be 

measured with the experimental capabilities of the modeler should be measured. Another 

characterization step is to calculate the theoretical capacity of the electrochemical system. 

This allows the modeler to calculate what current to use for the formation cycles of the 

electrochemical system. The modeler must also establish what voltage limits will be used 

for the electrochemical system. Once the system has been through the formation cycles, 

the modeler can perform the Galvanostatic Intermittent Titration Technique (GITT) to 

estimate the equilibrium voltage of the electrochemical system over the voltage limits 

previously identified. The modeler decides how many steps should be taken at what C-rate 

and how long of a rest time is needed for the electrochemical system to reach equilibrium. 
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Once they have gathered the planned number of points, those points can be fit to an 

equation for inputting the equilibrium voltage curve into the model.  

While the GITT is being performed, electrochemical impedance spectroscopy (EIS) 

can be performed on the electrochemical system after each step of the GITT. This EIS data 

can be fit to an equivalent circuit designed by the modeler to estimate other parameters of 

the electrochemical system. After obtaining estimates for as many parameters as possible, 

estimates for the remaining parameters can be obtained from the literature trying to find 

values for materials that are as close as possible to the materials being used in the 

electrochemical system. 

After estimates have been obtained for all of the parameters necessary for the physics-

based model, the model can be compared to experimental data to see how the estimated 

parameter set compares to experimental data. At that point, the parameters should be 

adjusted to final values by fitting the simulation output to the experimental data. The 

process for fitting the experimental data should also be further defined to prioritize finding 

an accurate parameter set, however that process is not defined in this thesis. Once the 

modeler has obtained a finalized parameter set by fitting the experimental data selected, 

the model should be validated using a validation set of data to ensure that the model fits 

data other than the original data used for parameter fitting. Once the model has been 

validated, the physics-based model can be extrapolated to other experimental conditions 

and be used to elucidate the physics of the electrochemical system with more confidence. 

This thesis demonstrated the estimation process for a graphite vs. lithium coin cell. The 

necessary physical parameters for this electrochemical system to be modelled by a Doyle-
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Fuller Newman model were identified in Chapter 2. In Chapter 3, an SEM image was taken 

of the graphite electrode to obtain the geometric parameters for the electrochemical system. 

The GITT process used to identify the equilibrium voltage curve of the graphite electrode 

vs. state of charge (SOC) was also explained. Chapter 4 explained the procedure for 

collecting EIS data along with the equivalent circuit used for fitting the EIS data. The 

equivalent circuit elements were related to the electrolyte conductivity, the exchange 

current densities of the lithium foil and the graphite electrode, and the solid phase 

diffusivity of lithium in the graphite electrode through equations used to estimate physical 

parameters from equivalent circuit parameters found in the literature. Chapter 5 compiled 

all of the parameter estimates obtained in this thesis and used them as input to a DFN model 

coded in gPROMs. The model output was compared to experimental discharges of the 

lithium vs. graphite coin cells at various C-rates. The comparison showed that for low C-

rates the experimental and simulation data matched well. However, at moderate C-rates the 

amount of capacity for the experimental cells was much less than the capacity of the 

simulation cells. This indicates that some of the parameter estimates obtained need further 

refinement to better fit discharge data at moderate C-rates or that the model is lacking some 

of the physics present in the coin cell. However, the parameter estimates obtained in this 

thesis proved to be a reasonable starting place for parameter identification and provide a 

greater chance of finding an accurate final parameter set due to the manner in which the 

estimates were obtained. 

This thesis has outlined a process for obtaining estimates for a physics-based model for 

an electrochemical system using SEM, GITT, and EIS data. The ability to obtain estimates 

for each of the parameters of an electrochemical system improves the probability of finding 
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an accurate parameter set, and reduces the possibility of finding infeasible parameter sets. 

The estimates that are obtained give the modeler additional information to be able to 

constrain the parameter fitting and to help the fitting program by giving better initial 

guesses. Being able to obtain estimates independently rather than from the literature helps 

to improve confidence in the estimates obtained and to be able to obtain estimates for new 

materials not available in the literature.  

Future work remains to compare the model using parameter estimates as inputs to a 

wider variety of experimental data. The process could also be used to estimate parameters 

for a commercial cell rather than a coin cell as coin cells have issues of reproducibility and, 

because of significant internal losses, do not perform well in high C-rate experiments. Once 

parameter estimates have been established for a system, a more detailed process for fitting 

a model to experimental data could similarly be outlined to improve the chances of 

obtaining the most accurate final parameter set. For example, the process could specify 

which parameters to refine by fitting what sets of experimental data. Also deciding what 

experimental data to use for fitting and what experimental data to use for validating the 

physics-based model. While this thesis outlines the process for obtaining parameter 

estimates, the steps in between parameter estimates and the final parameter set needs to be 

further detailed and outlined to improve the accuracy of the final parameter set obtained. 
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