

DISCRETE EVENT SYSTEM MODELING USING SYSML AND

MODEL TRANSFORMATION

A Dissertation
Presented to

The Academic Faculty

by

Chien-Chung Huang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2011

COPYRIGHT © 2011 BY CHIEN-CHUNG HUANG

DISCRETE EVENT SYSTEM MODELING USING SYSML AND

MODEL TRANSFORMATION

Approved by:

Dr. Leon F. McGinnis, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

 Dr. Chris Paredis
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Christos Alexopoulos
School of Industrial and Systems
Engineering
Georgia Institute of Technology

 Dr. Chen Zhou
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Marc Goetschalckx
School of Industrial and Systems
Engineering
Georgia Institute of Technology

 Date Approved: [August 18, 2011]

 iii

To Emily, for her encouragement and support.

 iv

ACKNOWLEDGEMENTS

I offer my sincere thanks to many people who helped me accomplish the completion

of my doctoral degree. First of all, I would like to express my sincere gratitude to my

advisor, Dr. Leon McGinnis. I especially thank him for providing me with lots of

professional advice, teaching me how to be a better researcher, and supporting and

encouraging me. Because of him, I am able to overcome many challenges during the PhD

process.

I also offer my sincere appreciation to Dr. Chris Paredis, who was always very kind

and patient in answering my questions about this research. Deep thanks also are extended

to Dr. Christos Alexopoulos, Dr. Chen Zhou, and Dr. Marc Goetschalckx, who gave me

many professional ideas and stimulated my thinking in different ways so that I could

improve the quality and content of my research study. This dissertation would not have

been possible without all the assistance I have received.

In addition, a special acknowledgment goes to my lab mates, including but not

limited to Dr. Kan Wu, Kysang Kwon, Randeep Ramamurthy, George Thiers, Dr. Volkan

Ustun, and Dr. Ola Batarseh, who always discuss with me and enhance my understanding

of these topics.

Finally, I want to express my deepest gratitude to my parents. They always provide

love, encouragement, support, and help to me. Without them, it would have been

impossible for me to study abroad, get a doctoral degree, and make my dream come true.

.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS IV

LIST OF TABLES IX

LIST OF FIGURES X

LIST OF ABBREVIATIONS XII

SUMMARY XIII

CHAPTER 1 INTRODUCTION 1
1.1 Formal Languages 3

1.2 Object-oriented Modeling Philosophy 5

1.3 Problem Description and Research Objective 6

1.4 Overview of the Thesis 6

CHAPTER 2 FORMAL LANGUAGES AND SYSML 8
2.1 Background and Motivation 8

2.2 Factors of Comparison 9

2.3 Formal Languages for Discrete Event Systems 11
2.3.1 Logical Languages 11
2.3.2 Moore Machine 14
2.3.3 Mealy Machine 17
2.3.4 Petri Net 19
2.3.5 IDEF 23
2.3.6 Discrete Event System Specification (DEVS) 26
2.3.7 Unified Modeling Language (UML) 29
2.3.8 System Modeling Language (SysML) 35

2.4 Comparison between Conceptual Modeling Languages 38

2.5 Summary 41

CHAPTER 3 DISCRETE EVENT SYSTEM MODELING PROCESS USING
SYSML 43

3.1 Background and Motivation 43

3.2 Definition of Discrete Event Systems 44

3.3 Object-Oriented Modeling Process for Discrete Event Systems 45

3.4 State Explosion Problem 46
3.4.1 Description 47
3.4.2 Top-down Approach 48
3.4.3 Bottom-up Approach 50

 vi

3.4.4 Parametric Approach 54

3.5 Discrete Event Modeling Process 55
3.5.1 Top-down Approach Using SysML 55
3.5.2 Bottom-up Approach in SysML 55
3.5.3 Parametric Approach in SysML 56
3.5.4 Subset of SysML for DES 56
3.5.5 Proposed Modeling Process in SysML 57

3.6 Conclusion 60

CHAPTER 4 THE GENERIC SYSML SUBSET 62
4.1 Introduction 62

4.2 Literature Review 63
4.2.1 Formal Definition of Object-oriented Models. 64
4.2.2 Automata Theory 66

4.3 Formal Definition of the Proposed SysML Subset 71
4.3.1 System Structure of the Proposed SysML Subset. 73
4.3.2 System Behavior of the Proposed SysML Subset. 78

4.4 The Transformation relationship between the system model and the decomposed model79
4.4.1 The Relationship between System Models and Decomposed Models 80
4.4.2 Transformation Algorithm from Decomposed Models to System Models 81
4.4.3 Transformation Algorithm from System Models to Decomposed Models 82
4.4.4 Example of the Proposed Transformation Algorithm 86
4.4.5 The Interchangeability between System Models and Decomposed Models 90

4.5 Conclusion 92

CHAPTER 5 RELATIONSHIP BETWEEN CONCEPTUAL MODELING
LANGUAGES 94

5.1 Introduction 94

5.2 Transformations between State-based Modeling Languages. 95
5.2.1 Logical Language and Automata 95
5.2.2 Harel Statechart and UML/SysML State Machine Diagram 97
5.2.3 Mealy Machine and Moore Machine 99

5.3 Relationship between State Machine Diagrams, Moore and Mealy Machines 103

5.4 State-based Modeling Language Relationships 105

5.5 Conclusion 106

CHAPTER 6 USING PETRI NETS TO VERIFY CONTROL MODELS
SPECIFIED AS ACTIVITY DIAGRAMS 108

6.1 Introduction 108

6.2 Control Modeling in Petri Nets and UML/SysML 110
6.2.1 Petri Nets 110
6.2.2 UML/SysML 111

6.3 Syntax and Execution Semantics of Petri nets and Activity Diagrams 112

 vii

6.3.1 Syntax of Petri Nets 112
6.3.2 Syntax of UML/SysML Activity Diagrams 113
6.3.3 Execution Semantics of Petri Nets and Activity Diagrams 115

6.4 Mapping Rules 116

6.5 Act-to-PN Transformation Algorithm 118
6.5.1 Valid PN 119
6.5.2 ACT-to-PN Transformation Algorithm 121

6.6 Equivalence Properties 124
6.6.1 Equivalence Properties for Valid PN 124
6.6.2 Equivalence Properties for Invalid PN 128

6.7 Implementation Example 129
6.7.1 Tutorial Model 129
6.7.2 Control Model of Fractal Manufacturing Systems 133

6.8 Conclusion 134

CHAPTER 7 AUTOMATING SIMULATION OF CONTROL MODELS
EXPRESSED AS UML/SYSML ACTIVITY DIAGRAMS 136

7.1 Introduction 136

7.2 Literature Review 138
7.2.1 Control Model Transformation 138
7.2.2 Executable UML 140

7.3 The Proposed Transformation—the Tree Structure 141
7.3.1 Proposed Intermediate Meta-model 141
7.3.2 Formal Definition of Activity Diagrams 144
7.3.3 Transformation from an Activity Diagram to a Parse-tree 145
7.3.4 Transformation from the Proposed Tree Structure to the Simulation Code 149
7.3.5 Transformation Example and Implementation Detail 151

7.4 Example of Control Transformation 153

7.5 Conclusion 158

CHAPTER 8 MODEL TRANSFORMATION USING LIBRARIES AS DOMAIN
SPECIFIC LANGUAGES 159

8.1 Introduction 159

8.2 Literature review 160
8.2.1 Transformation Procedure 161
8.2.2 Model Transformation Technology 161

8.3 OMG Four-layer Meta-modeling Architecture 162

8.4 Model Transformation Framework- Using Libraries as Domain Specific Language 164
8.4.1 Concept of Model Transformation 164
8.4.2 SysML Meta-model 165
8.4.3 AnyLogic™ Meta-model 167
8.4.4 Mapping rules of the Transformation 169
8.4.5 Transformation Procedure 172

 viii

8.5 Demonstration 173

8.6 Conclusion and Future Research 175

CHAPTER 9 CONCLUSIONS 177
9.1 Summary and Conclusions 177

9.2 Future Research 179

REFERENCES 180

VITA 190

 ix

LIST OF TABLES
Table 1: Some attributes of languages, formal languages and formal systems 4
Table 2: The summarized table for the conceptual modeling languages.......................... 39
Table 3: The comparison of the structure diagrams in the conceptual modeling languages
... 40
Table 4: The comparison of the behavior diagrams in the conceptual modeling languages
... 41
Table 5: The number of system states... 48
Table 6: The comparison between system states and decomposed states 53
Table 7: The structure tuple of the blocks .. 77
Table 8: The automata of a decomposed model ... 89
Table 9: Mapping rules for “load-and-send” nodes without execution durations 117
Table 10: Mapping rules for “action nodes” with execution durations 117
Table 11: Mapping rules for “immediate-repeat” nodes... 118
Table 12: Activity tuple of the tutorial example... 130
Table 13: Petri net tuple of the tutorial example in the second step 131
Table 14: Petri net tuple of the tutorial example in the third step................................... 131
Table 15: Corresponding Petri net tuple of the tutorial example.................................... 132
Table 16: Mapping rules between the tree node and simulation language. 150
Table 17: Computational results for the bucket manufacturing process......................... 157

 x

LIST OF FIGURES
Figure 1: The relationship between conceptual model and simulation model [35] 3
Figure 2: Schematic diagram of a simple experiment based on [65] 14
Figure 3: A Moore machine example [62] 15
Figure 4: A Mealy machine example 18
Figure 5: Petri net example [67] 20
Figure 6: Example of IDEF0 [60] 23
Figure 7: Example of IDEF4 [60] 24
Figure 8: Example of UML class diagram 31
Figure 9: Example of UML sequence diagram 32
Figure 10: Example of UML state machine diagram 33
Figure 11: Example of UML activity diagram 33
Figure 12: SysML Diagram Taxonomy [4] 35
Figure 13: Example of Block Definition Diagram 36
Figure 14: Example of Internal Block Diagram 37
Figure 15: A discrete event system [77] 45
Figure 16: Object-oriented modeling methodology for manufacturing information
systems modified from [49] 46
Figure 17: Example of a hierarchical state machine 49
Figure 18: The corresponding state machine 50
Figure 19: Example of an assembly line 51
Figure 20: The state diagram of B1 52
Figure 21: The state diagram of B1 using parameter approach 54
Figure 22: BDD of the assembly line example 58
Figure 23: IBD of the assembly line system 59
Figure 24: State machine diagrams of the buffer and machine 59
Figure 25: The concept of the behavior modeling using SysML 60
Figure 26: SysML example (B1 and B2) 76
Figure 27: SysML example (B1 and B3) 77
Figure 28: The system model of the example with one buffer and one machine 86
Figure 29: The decomposed model of the example without actions 88
Figure 30: The decomposed model of the example 88
Figure 31: The finite state machine of the example 89
Figure 32: A finite-state machine example 97
Figure 33: Example of SysML/UML state machine and Harel Statechart 98
Figure 34: Transformation example from Moore machine to Mealy machine 101
Figure 35: Transformation example from Mealy machine to Moore machine 103
Figure 36: The overall picture of the conceptual modeling language relationship 106
Figure 37: (a) An example of the activity diagram. (b) The corresponding PN of the
example. 110
Figure 38: (a) A two-action example of the activity diagram; (b) A two-action example
with pins; (c) The corresponding PN diagram. 120
Figure 39: A tutorial case of control modeling using activity diagrams. 130
Figure 40: PN constructed from the tutorial activity diagram. 132
Figure 41: An activity diagram of DMA. 133
Figure 42: The corresponding PN diagram of DMA. 134

 xi

Figure 43: Example of control modeling using activity diagrams. 137
Figure 44: Concept of foundational UML based on [3]. 140
Figure 45: Example of parse-tree based on [74]. 142
Figure 46: Example of the proposed tree structure. 143
Figure 47: (a) Example of a cyclic activity diagram. (b) The equivalent acyclic activity
diagram. 147
Figure 48: (a) Example of the activity nodes with multiple input edges. (b) The
equivalent tree structure. 149
Figure 49: Generated Pseudo code of the example in Figure 47(a). 151
Figure 50: Example of a control model using UML/SysML activity diagrams. 151
Figure 51: Corresponding Pseudo code in SimTalk. 152
Figure 52: Tree structure of the control model. 153
Figure 53: Bucket manufacturing process. 154
Figure 54: Pull-based release rule. 155
Figure 55: Tree structure of the pull-based release rule. 155
Figure 56: Generated simulation script of the pull-based release rule. 156
Figure 57: Bucket manufacturing process in Plant Simulation™. 157
Figure 58: Interpretation across meta-layers [3]. 164
Figure 59: SysML meta-model for BDD. 166
Figure 60: SysML meta-model for IBD. 166
Figure 61: SysML meta-model for SM. 167
Figure 62: SysML meta-model for ACT. 167
Figure 63: AnyLogic™ meta-model. 168
Figure 64: AnyLogic™ meta-model. 168
Figure 65: AnyLogic™ meta-model. 169
Figure 66: AnyLogic™ meta-model. 169
Figure 67: Partial mapping rules. 170
Figure 68: Partial mapping rules. 171
Figure 69: Partial mapping rules. 171
Figure 70: Partial mapping rules. 171
Figure 71: Partial structure of the machine library. 173
Figure 72: Partial behavior of the machine library. 174
Figure 73: Generated AnyLogic™ project. 174
Figure 74: Partial generated AnyLogic™ project file. 175

 xii

LIST OF ABBREVIATIONS

ACT Activity Diagram

BDD Block Definition Diagram

COTS Commercial-Off-The-Shelf

CPN Colored Petri Net

DELS Discrete Event Logistics Systems

DES Discrete Event System

DEVS Discrete Event System Specification

FSM Finite State Machine

IBD Internal Block Diagram

IDEF Integration DEFinition

MOF Meta-Object Facility

MPSG Message-based Part State Graph

OO Object-Oriented

PN Petri Net

SD Sequence Diagram

SM State Machine Diagram

SysML System Modeling Language

UML Unified Modeling Language

XMI XML Metadata Interchange

 xiii

SUMMARY

The objective of this dissertation is to introduce a unified framework for modeling

and simulating discrete event logistics systems (DELS) by using a formal language, the

System Modeling Language (SysML), for conceptual modeling and a corresponding

methodology for translating the conceptual model into a simulation model. There are

three parts in this research: plant modeling, control modeling, and simulation generation.

Plant Modeling of Discrete Event Logistics Systems

Contemporary DELS are complex and challenging to design. One challenge is to

describe the system in a formal language. We propose a unified framework for modeling

DELS using SysML. A SysML subset for plant modeling is identified in this research.

We show that any system can be described by using the proposed subset if the system can

be modeled using finite state machines or finite state automata. Furthermore, the system

modeled by the proposed subset can avoid the state explosion problem, i.e., the number

of the system states grows exponentially when the number of the components increases.

We also compare this approach to other existing modeling languages.

Control Modeling of Discrete Event Logistics Systems

The development of contemporary manufacturing control systems is an extremely

complex process. One approach for modeling control systems uses activity diagrams

from SysML, providing a standard object-oriented graphical notation and enhancing

reusability. However, SysML activity diagrams do not directly support the kind of

analysis needed to verify the control model, such as might be available with a Petri net

(PN) model. We show that a control model represented by UML/SysML activity

 xiv

diagrams can be transformed into an equivalent PN, so the analysis capability of PN can

be used and the results applied back in the activity diagram model. We define a formal

mathematical notation for activity diagrams, show the mapping rules between PN and

activity diagrams, and propose a formal transformation algorithm.

Discrete Event Simulation Generation

The challenge of cost-effectively creating discrete event simulation models is

well-known. One approach to alleviate this issue is to describe a system using a

descriptive modeling language and then transform the system model to a simulation

model. Some researchers have tried to realize this idea using a transformation script.

However, most of the transformation approaches depend on a domain specific language,

so extending the domain specific language may require modifying the transformation

script. We propose a transformation approach from SysML to a simulation language. We

show that a transformation script can be independent of the associated domain specific

language if the domain specific language is implemented as domain libraries using a

proposed SysML subset. In this case, both the domain library and the system model can

be transformed to a target simulation language. We demonstrate a proof-of-concept

example using AnyLogic™ as the target simulation language.

 1

CHAPTER 1

INTRODUCTION

A discrete event logistics system (DELS) is a dynamic system that evolves in accordance

with the occurrence, at possibly unknown irregular intervals, of events associated with

material flow [77]. DELS are an essential component of modern society, and represent a

significant portion of global economic activity. They also present significant challenges

in both analysis and design, because of their stochastic patterns, complicated correlations

between state variables, non-stationary, non-renewal behaviors or complex state- and

criterion-dependent control rules.

 Discrete event simulation models are widely used to analyze DELS because there

are no other high-fidelity analysis approaches that can cope with these systems in their

full complexity. Discrete event simulation models are enabled by a wide range of

commercial-off-the-shelf (COTS) tools.

 However, modeling large-scale DELS and creating their simulation models is not

without challenges. Although there are many COTS tools which provide drag-and-drop

functionality to author simulation models, it’s still difficult to reliably create a valid high

fidelity model for a large complex system. For the DELS domain expert, the simulation

model is a black box so validating that the simulation model accurately reproduces the

behavior of the target system is a difficult task. One consequence is that, in contemporary

practice, large scale simulation is time-consuming and expensive.

 There are two distinct phases involved in constructing a DELS simulation:

developing a conceptual model of the target DELS and developing the actual

(computational) simulation model. The conceptual model is an abstract representation of

the target system, and reflects the requirements for the simulation model. A conceptual

model has a particular purpose, i.e., it is intended to answer a specific question or set of

 2

questions. The conceptual model describes the characteristics of the system. There are

many approaches to authoring explicit conceptual models such as mathematics, text

descriptions or graphic representations; the conceptual model also may be implicit, i.e.,

not recorded.

 A simulation model is a computational implementation of a conceptual model,

which produces data representing the time-based and the event-based behavior of the

target system. There is a broad range of simulation languages and specific simulation

tools. Some of the tools provide for real-time user interaction or visual animations, and

all require deep knowledge in order to create high fidelity models of large scale DELS.

Thus, DELS domain experts are rarely ever sufficiently expert in simulation methods and

tools to be able to do the DELS simulation modeling themselves, and as a consequence,

the domain experts must try to communicate a conceptual model to the simulation experts

who do the actual simulation modeling.

 The target system is abstracted to the conceptual model. The simulation model is

created from the description contained in the conceptual model and implements this

description in a computational form using simulation software. The relationship between

the conceptual model and the simulation model is shown in Figure 1. Two reasons to

construct an explicit conceptual model are: (1) to capture a target system description that

can be validated with the problem “owner”; and (2) to provide a well documented basis

for the simulation expert to use in constructing the computational simulation.

 3

Figure 1: The relationship between conceptual model and simulation model [35]

 The conceptual model is a critical link between the target system and the

simulation model. For large, complex systems, such as DELS, the cost and quality of the

simulation model (and its results) are directly related to the fidelity of the conceptual

model—if it is not accurate, or it fails to include important problem characteristics, the

corresponding simulation model will fail to accurately portray the target system behavior.

 The lack of specific tools or methods for conceptual modeling belies its

importance in DELS simulation. A fundamental goal of this dissertation is to establish a

formal approach to DELS conceptual modeling by using formal languages.

1.1 Formal Languages

Mateescu and Salomaa [59] define a language and formal language as follows:

“A language is a set of finite strings of symbols from a finite alphabet.

Depending on the context, the finite strings constituting a language can

also be referred to as words, sentences, programs, etc. When speaking of

formal languages, we want to construct formal grammars for defining

languages rather than to consider a language as a body of words

 4

somehow given to us or common to a group of people. Formal grammars

will be devices for defining specific languages.”

 One example of formal language is arithmetic. The alphabet includes number

symbols and arithmetical operation symbols. Words are either strings of numbers or

single arithmetic operation. One grammar rule requires the words to the left and right of

an arithmetic operation symbol must be a number string. Based on these definitions, the

string “12 + 34 = 46” is valid but not the string “= 12 + 34”.

 A formal system is a subtype of a formal language. Herre and Heister [43] define

formal systems in this way: “Formal systems are formal languages equipped with a

consequence operation yielding a deductive system.” The consequence operations are the

inductive rules or axioms. Elementary algebra is an example of a formal system. The

commutative operation (yzzy +=+) and the substitution operation

(zyxzwyxw ++=+→+=) are inductive rules. These rules imply that the string

(yxzzyx ++=++) and the string (xzyzyx ++=++) also are valid. These strings

can be captured in operations of a formal system instead of describing one by one in

formal languages.

 The differences between languages, formal languages, and formal systems are

summarized in Table 1. Grammars to validate sentences are required in formal languages,

but not in languages. Consequence operations are required in formal systems.

Table 1: Some attributes of languages, formal languages and formal systems

 Languages Formal languages Formal Systems

A finite alphabet

Grammar

Consequence operations

 5

1.2 Object-oriented Modeling Philosophy

One category of formal languages is object-oriented languages, which are the languages

supporting object-oriented concepts. Object-oriented concepts describe the target system

by using classes and instances. An instance represents a corresponding component in the

target system. A class is a blueprint for similar instances. For example, the general

description of a dog is captured in a class and a specific dog is an instance of the dog

class, e.g., the dog named Spot.

 Many researchers propose using object-oriented (OO) languages to create

conceptual models. Compared to non-OO languages, OO languages afford a number of

advantages. Object-oriented concepts such as inheritance relationships, which mean the

source class is a sub-type of the target classes, are inductive rules. If A inherits from B

and B inherits from C, it also is true that A inherits from C. Because of these operations,

an object-oriented modeling language also may be a formal system. Another advantage of

object-oriented concepts is enabling reusability, modifiability and maintainability [96].

Object-oriented concepts can reuse the same description for all instances, i.e. all of the

job with the same product type may have the same description. When a property of the

class is changed, the same property is modified in all the corresponding instances.

Finally, using object-oriented concepts, it is possible to have objects representing

physical components in a real system [13]. Because of these advantages, Robinson [80]

points out that one interest of the current simulation research is to use an object-oriented

language as the conceptual modeling language and then generate the simulation model

rather than create it from scratch.

 These advantages of object-oriented concepts may reduce the modeling

complexity for DELS conceptual models. However, the lack of a unified framework for

using an object-oriented language as a formal DELS conceptual modeling language

makes it difficult to realize these advantages especially for a complex, large-scale DELS.

 6

1.3 Problem Description and Research Objective

This research aims to create a unified framework for modeling and simulating large-scale

DELS by defining a formal language for conceptual modeling and a corresponding

methodology for translating the conceptual model into a specific simulation model.

 There are three distinct contributions of this research.

 The first contribution is the unified framework for modeling large-scale DELS by

applying object-oriented languages. In the literature, some frameworks using object-

oriented concepts have been discussed but few of them are used for DELS. The goal is to

develop a generic and formal framework using object-oriented languages for DELS and

to compare to other existing conceptual modeling languages.

 The second contribution is the control modeling of DELS. Control is especially

critical in the discrete-event manufacturing environment. A new object-oriented and

graphical representation for modeling control will be proposed, demonstrated, and

evaluated.

 The third contribution is the proof of concept that a large, complex DELS

simulation model can be generated from its high-fidelity conceptual model. Creating a

large scale simulation is usually time-consuming and expensive. Instead of directly

creating the simulation model, the proof of concept will demonstrate a transformation

method that will use the specific conceptual model and produce its corresponding

simulation model.

1.4 Overview of the Thesis

The main focus of this thesis is DELS. Since DELS are a type of discrete event system

(DES), the existing conceptual modeling languages for DES and their relationships to the

proposed modeling language is the focus of Part I (from Chapter 2 to Chapter 5). Part I is

organized as follows: In order to describe conceptual models formally, formal languages

used in modeling DES are reviewed and compared in Chapter 2. In Chapter 3, the

 7

modeling principals of the general discrete event system and an object-oriented modeling

process are presented. In Chapter 4, we propose a transformation algorithm between one

formal language, finite-state automata, and the proposed modeling language. Chapter 5

contains the relationships between the proposed modeling language and other conceptual

modeling languages such as Moore machines, Mealy machines, and logical languages.

 Part II (Chapters 6 and 7) of this dissertation addresses control modeling, which is

critical in DELS. In Chapter 6, we focus on DELS in which the control modeling is

important. The control modeling in the literature is reviewed and a control modeling

framework is proposed and demonstrated. In Chapter 7, we discuss the transformation of

the control logic from the proposed control modeling framework to simulation models.

The language used to describe control logic may be different from the simulation

languages. Thus transformation is required to generate the executable simulation model.

 The last part (Chapter 8) shows the proof of concept that that a large, complex

DELS simulation model can be generated from its high-fidelity conceptual model. We

present a transformation algorithm including not only the control logic but also the

structure and the behavior of the system from the conceptual model to the simulation

model. We end up the conclusion and discuss possible direction for future research in

Chapter 9.

 8

CHAPTER 2

FORMAL LANGUAGES AND SYSML

2.1 Background and Motivation

Modeling a large-scale discrete event logistic system (DELS) is not without challenges.

One challenge is to describe the system in a formal way. In practice, the domain experts

create conceptual models in their authoring tools such as AutoCAD, FactoryCAD or

some spreadsheet files. Because these languages are not formal, it is possible that the

conceptual model will not be perfectly understood by the simulation experts who must

use it as the basis for creating the simulation model. One approach to solving this

problem is to replace these informal languages with a formal language.

 Formal languages can be used to create formal conceptual models. A formal

language is normally defined by an alphabet and its grammars. An alphabet is a set of

symbols used to construct sentences and grammars are the rules to validate these

sentences. The alphabet and grammar are defined in a formal language so that other

stakeholders can understand the descriptions. Many formal languages have been

proposed in the past three decades to describe discrete event systems (DES), which

includes DELS. Some examples are Moore machine [65], Mealy machine [62], Petri nets

[72], Integration DEFinition (IDEF) [1], Discrete Event System Specification (DEVs)

[101], UML [5] and SysML [4].

 Since a large-scale DELS may involve thousands of entities, some requirements

for a conceptual modeling language are important. One requirement is model reusability,

i.e. how a description created once can be re-used for similar problems. Another

requirement is support for hierarchical modeling or graphical representations so that the

development of large conceptual models can be managed effectively, and they can be

understood easily by a range of stakeholders. However, not all formal languages can

 9

support these requirements. The comparison of candidate formal languages is required

and addressed in this chapter.

 This chapter is organized as follows. In Section 2.2, we survey and select the

important factors of formal languages for a large-scale DES. In Section 2.3, we review

formal languages used for DES. In Section 2.4, we discuss the comparison between these

formal languages and ends with conclusions.

2.2 Factors of Comparison

There are a number of ways to classify conceptual modeling languages. Heavy and Ryan

[41] identify two categories. One is the formal language with a formal method which has

a formal basis and numerous software implementations. The other is the formal language

with a descriptive method that has little formal basis and is primarily made up of software

implementations. Formal languages with little formal basis usually have a descriptive

specification, but do not provide precise meanings.

 Another classification is based on modeling techniques which the formal

languages can support. Killich et al. [48] identify three modeling techniques which the

formal languages can support: state-oriented techniques, event-oriented techniques and

techniques based on Petri nets. State-oriented techniques describe a system by capturing

all states. Event-oriented techniques focus on the sequence of events, the object flow or

the information flow of the system. Petri nets are a special language which can support

both state-oriented and event-oriented modeling techniques, e.g., a place in a Petri net can

represent either a state or an object flow. The detail of Petri nets will be discussed in

Section 2.3.4.

 Support for object-oriented concepts is another potential comparison factor.

Object-oriented concepts afford some advantages for creating conceptual models:

enabling reusability, modifiability and maintainability [96]. Since a large-scale DES may

 10

involve thousands of entities, and typically they can be grouped into classes, with similar

descriptions for all entities in the same class, the reusability, modifiability or

maintainability of these descriptions by classes may reduce the overall modeling

complexity.

 Killich et. al. [48] compare formal languages by considering hierarchical

modeling, layering mechanisms and purpose-driven views. A formal language supporting

hierarchical modeling can decompose a component into its sub-components. Layering

mechanisms provide a way to describe a system in an abstract model in the beginning and

then elaborate to the more concrete model. Purpose-driven views support different views

for the purpose of addressing a set of stakeholder concerns.

 The graphical representation and model understandability are also important for

modeling a large-scale DES. Compared to a purely textual description, a formal

language with a graphical representation affords a number of the advantages: raising the

level of abstraction, reducing the amount of information to what is needed to perform the

task at hand, and easing browsing the large information space [51]. These advantages

may make it easier to share a descriptive model with stakeholders and for them to

understand.

 Two other criteria of comparison between conceptual modeling languages are

modeling verification and model simulation. Ryu and Yücesan [82] define model

verification in formal languages as providing a formal basis to determine if the

conceptual model is true, i.e. any contradiction in a model can be detected by verification

rules. They also define model simulation in formal languages as providing capability for

a conceptual model represented in the formal language to be simulated directly in a

simulation tool.

 11

2.3 Formal Languages for Discrete Event Systems

There are two major categories of formal languages used in discrete event systems. One

category is “logical languages” which do not include any time information. The other

category includes languages which incorporate deterministic or stochastic time

information [77]. In object-oriented concepts, classes capture blueprints of similar

description so classes are usually described by a logical language. The related logical

languages are reviewed in this research.

2.3.1 Logical Languages

2.3.1.1 Description

A logical language, L , is specified by its events and the set of all possible event

sequences. The set of event types is denoted as Σ , and the set of all of the possible event

sequences, or strings, denoted as *Σ . For example, a customer goes to a clinic. The events

(Σ) of this example are customer arrival events (σ), entering-waiting-line events (δ),

diagnosis events (κ), and departure events (α). *Σ is the set of all possible event

strings. One example of an event string in *Σ is {σδκα }.

 Since the event sequences may have infinite length, these event sequences can not

be modeled explicitly by listing the event sequences. A subset of logical languages can be

modeled by using the prefix relationship if the language has a prefix closure language,

defined as follows. The language L is the prefix closure language of the language L if

and only if

 }:{ *Σ∈∈= vsomeforLL μνμ and LL = .

 A string denoted as μ is the prefix of the string ω if there exists a string ν such

that μνω = . Based on this definition, the prefix can be any possible length from the

 12

beginning of the given string ω . A logical language is a prefix closure language if all of

the prefixes are also included in the logical language itself.

 Logical languages use their event labels and prefix closure to describe a discrete

event system. For example, assume that the discrete event system has two independent

events denoted as {a,b}. The event list is },,{ baε=Σ whereε is the empty string.

....},,,,,{ ababaabbaLL ε== . The waiting line of the clinic is another example. The

number of the entering-to-the-waiting-line events is greater than or equal to the number

of the diagnosed events. We denote
e

w as the number of events of type e in the string

w , μ is an event string, and then },:{ *
ba

uuofprefixeachforwL ≥Σ∈= ωμ

 Logical languages provide a formal basis and are used to analyze all possible

event sequences. However, most cases in the literature are small with fewer than 10

events. In addition, logical languages can be complicated since the number of possible

event strings may be infinite. If the system has more than 4 event types and there exists

some correlations between events, it is not easy to represent in a mathematical

formulation. Furthermore, logical languages only represent events and their sequences,

not the physical structure features of the system generating the events.

2.3.1.2 Comparison Factors

 Logical languages have the following attributes

1. Model type: Logical languages use mathematical formulations to describe all

possible event sequences. According to Heavy and Ryan’s definition [41], the

mathematical formulations provide a formal basis and logical languages are

formal languages with a formal method.

2. Modeling technique: Logical languages describe event sequences, so they can

support event-oriented techniques.

 13

3. Supporting Object-Oriented concepts: The definition of logical languages

includes events and event sequences but logical languages do not support the

definition of classes or instances. As a consequence, logical languages do not

support object-oriented concepts.

4. Hierarchical, layering, and purpose-driven view: The definitions of logical

languages do not support hierarchical, layering, and purpose-driven view.

5. Graphical representation: Logical languages can be described mathematically

but do not support graphical representation.

6. Model understandability: From the domain expert perspective, the

mathematical formulation is not easy to understand.

7. Standardization: The formulation of logical languages is a standard

representation.

8. Model verification: One way to verify a model is to compare the event

sequences between the modeler’s understanding and the model represented by

the logical language [78]. An event sequence can be verified if it exists in the

sets of the logical language or does not violate any logical language definition.

9. Model simulation: Logical languages don’t support simulation directly.

 14

2.3.2 Moore Machine

2.3.2.1 Description

Moore [65] in 1956 analyzed the sequential machine shown in Figure 2. A sequential

machine may have multiple states. When an input symbol is received, the state of this

machine changes. Each state produces output symbols back to the experimenter. The

typewriter is one example of a sequential machine. The input symbols are the input

typing from the typist. The input symbols change the state of the typewriter from “idle”

to “typing” and the output is a new character on the paper. The typist can observe the

output symbol and make the next decision.

Figure 2: Schematic diagram of a simple experiment based on [65]

 The main idea of the Moore machine is to abstract the sequential machine for

which the output symbols are determined by the current state. A Moore machine has a

finite set of states including an initial state, a finite set of input symbols, and a finite set of

output symbols. State changes are defined by a transition function. In operation, the

Moore machine is in some state; when an input symbol is received, it transitions to a new

state (perhaps the same state), and produces an output symbol.

 Mathematically, a Moore machine M can be defined as a 6-tuple,

 },,,,,{ 0 GOxFIXM =

 where

 15

 X is a finite set of states

 I is a finite set of input events

 F is a finite set of transition functions and XIXF →×:

 0x is an initial state and Xx ∈0

 O is a finite set of output events

 G is a finite set of output functions and OXG →:

 Figure 3 is a graphical representation of a specific Moore machine. The system

has three states: },,{ 321 qqqX = . The set of input events I is }1,0{ and the set of output

events O is }1,0{ . Each state has its own output function which is shown as

}1,0,1,0,1,0{ 132312321121 qqqqqqqqqqqqF →×→×→×→×→×→×= . The

output function G is }0,1,0{ 321 →→→ qqq

Figure 3: A Moore machine example [62]

 Moore machines describe all of the states, events, and transitions. However,

Moore machines can’t represent physical components in a real system. In addition, the

number of states in a large-scale model may be too large to be modeled explicitly.

2.3.2.2 Comparison Factors

 Moore machines have the following attributes:

 16

1. Model type: Moore machines can be defined in a 6-tuple. Based on Heavy and

Ryan’s work, Moore machines are a formal language with a formal method.

2. Modeling technique: Moore machines capture the states and the state

transitions, so Moore machines can support state-oriented techniques.

3. Supporting object-oriented concepts: The definition of Moore machines

doesn’t include classes and instances so Moore machines do not support

object-oriented concepts.

4. Hierarchical, layering, and purpose-driven view: Moore machines do not

support hierarchical, layering, and purpose-driven view.

5. Graphical representation: Moore machines can be represented graphically by

using the state charts including all states, events and transitions. However,

there is no formal definition of the graphical representation for Moore

Machines.

6. Model understandability: From the domain expert perspective, the tuple

representation is not easy to understand. Furthermore, for a large-scale model,

the number of states may be too large to be modeled explicitly which can not

be understood easily.

7. Standardization: The 6-tuple is a standard representation.

8. Model verification: A model represented by Moore machines is verified if

there is no contradiction. One example of a contradiction is that two transition

functions have the same states, and input events, but have different output

states.

9. Model simulation: Moore machines don’t support simulation directly.

 17

2.3.3 Mealy Machines

2.3.3.1 Description

Mealy [62] proposed Mealy Machines in 1956. A Mealy machine is a sequential

machine, but has different output functions than a Moore machine. In Moore machines,

output functions are dependent on the current state and return the output events. The

output functions in Mealy machines consider not only the current state but also the input

event.

 A Mealy machine can be represented in a six-tuple.

 },,,,,{ 0 GOxFIXM =

 Where

 X is a finite set of states

 I is a finite set of input events

 F is a finite set of transition functions and XIXF →×:

 0x is an initial state and Xx ∈0

 O is a finite set of output events

 G is a finite set of output functions and OIXG →×:

 One example of a conceptual model represented by a Mealy machine is shown in

Figure 4. This discrete event system has three states represented as }3,2,1{ SSSX = , two

input events represented as }2,1{ eeI = , six output events represented as ,1{AO =

}6,5,4,3,2 AAAAA , six transition functions represented as ,211{ SeSF →×=

}223,113,122,312,321 SeSSeSSeSSeSSeS →×→×→×→×→× and six output

functions represented as ,322,512,221,111{ AeSAeSAeSAeSG →×→×→×→×=

}623,413 AeSAeS →×→× . The difference between Moore machines and Mealy

machines is the output function. The output function in Moore machines is determined by

 18

the current state, but the output function in Mealy machines is determined by both the

current state and input events.

Figure 4: A Mealy machine example

 The elements in Mealy machines describe states, events and transition functions.

However, Mealy machines can’t represent physical components in a real system. Thus,

Mealy machines don’t support object-oriented concepts for modeling complete systems.

2.3.3.2 Comparison Factors

 Mealy machines have the following attributes:

1. Model type: Mealy machines can be defined in a 6-tuple. Based on Heavy and

Ryan’s work, Mealy machines are a formal language with a formal method.

2. Modeling technique: Mealy machines capture the states and the state

transitions, so Mealy machines can support state-oriented techniques.

3. Supporting object-oriented concepts: The definition of Mealy machines

doesn’t include classes and instance so Mealy machines do not support object-

oriented concepts.

 19

4. Hierarchical, layering, and purpose-driven view: Mealy machines do not

support hierarchical, layering, and purpose-driven view.

5. Graphical representation: Mealy machines can be represented graphically by

using the state charts including all states, events and transitions. However,

there is no formal definition of the graphical representation for Mealy

Machines.

6. Model understandability: From the domain expert perspective, the tuple

representation is not easy to understand. Furthermore, for a large-scale model,

the number of states may be too large to be modeled explicitly which can not

be understood easily.

7. Standardization: The 6-tuple is a standard representation.

8. Model verification: A model represented by Mealy machines is verified if

there is no contradiction, e.g. two transition functions have the same input

states, input events, but have different output states.

9. Model simulation: Mealy machines don’t support simulation directly.

2.3.4 Petri Net

2.3.4.1 Description

The original Petri net was developed by Petri [72] in 1962. A Petri net (PN) is a directed

bipartite graph with transitions, places and directed arcs as illustrated in Figure 5. PNs are

executed by using tokens that may pass through the system. The places represented by

the circles may contain one or more tokens. The transitions represented by the bars fire

the events. The arcs connect a transition to a place or a place to a transition. For any

transition, the places with an arc into a transition are called the input places of the

transition, and the places with an arc from the transition are called the output

 20

places.When all input places to a transition have at least one token, this transition is fired.

After it fires, one token is consumed from each input place of this transition and one

token is added to all of the output places.

 A Petri net graph PN can be represented by a three-tuple.

 },,{ ATPPN =

 Where

 P is a finite set of places

 T is a finite set of transitions

 A is a finite set of arcs and)()(PTTPA ×∪×⊆

 Figure 5 shows a conceptual model represented by Petri nets. The places are

denoted from 1P to 6P . },,,,,{ 654321 PPPPPPP = The transitions are the bars from t1 to t5.

},,,,{ 54321 tttttT = . The arcs A are),(),(),(),(),(),{(454433322111 tPtPtPtPtPtP ××××××

)}(),(),(),(),(),(),(15643443522156 PtPtPtPtPtPttP ××××××× .In the first step, the token

in P4 won’t trigger t4 because there are no tokens in P5. P1 can trigger t1 or t2. If t2 is fired,

the token in P1 is consumed and another token is placed in P5. After this step, all of the

input places to t4 have at least one token, and t4 is triggered.

Figure 5: Petri net example [67]

 21

 There are some variations of Petri net. Moore and Gupta [66] classify the

temporal Petri net as two major classes: timed Petri nets and stochastic Petri nets. Timed

Petri nets are Petri nets with deterministic transition times; Stochastic Petri nets are Petri

net with random transition times. Another variation is colored Petri nets (CPNs). CPNs

provide a method for distinguishing between token types by allowing a token type to

have its own attributes or data structure [66].

 A recent development of the Petri net is the objected-oriented Petri net

framework. Lee and Park [53] propose an object-oriented high-level Petri net for real-

time system modeling. They define a new element, “system”, which is composed of

mutually communicating hierarchical systems and their interconnection relations. Each

system contains its own Petri net. The communications between related objects are

supported by a set of interconnection relations which provide message-passing among

related systems. The concept of the “system” is the similar to the concept of the class in

object-oriented concept so each “system” can be used simultaneously in several usages.

Wang [95] extends the concept and uses Petri nets to model an automated manufacturing

system.

 Applying object-oriented concepts to Petri nets can reduce some complexity of

the Petri net models. However, a Petri net itself is not an object-oriented modeling

language.

 In summary, Petri nets are very popular and powerful methods for the modeling

and analysis of systems which exhibit parallelism, synchronization, non-determinism and

resource sharing features [28]. Petri nets are also graphical and formal modeling tools.

However, from the conceptual modeling perspective, their use is difficult due to the

complexity of the techniques [42]. Petri nets are not capable of visually accounting for

complex branching logic or hierarchically decomposing complex models into sub modes

and as a result become cumbersome as system complexity increases [41].

 22

2.3.4.2 Comparison Factors

 Petri nets are analyzed by using the following factors:

1. Model type: Petri nets have an exact mathematical definition of their

execution semantics. Based on Heavy and Ryan’s work, Petri nets are a

formal language with a formal method.

2. Modeling technique: Killich et al. [48] identify Petri nets as a special type of

modeling technique, neither state-oriented nor event-oriented modeling

language.

3. Supporting object-oriented concepts: There are some object-oriented Petri net

frameworks which define new elements like “system”. However, Petri net

itself is not an object-oriented language.

4. Hierarchical, layering, and purpose-driven view: Petri nets provide a

hierarchical modeling, but not layering or purpose-driven view [48].

5. Graphical representation: The Petri net models can be shown in a graphical

representation.

6. Model understandability: Ryu and Yucesan [82] discuss the factor of model

understandability. When the target system is large or complicated, the Petri

net model may have many places or transitions in a diagram. Each place may

represent a physical structure, a state, or a resource, making the model hard to

understand.

7. Standardization: The basic definition of Petri net is well-defined but there are

many different versions [82].

8. Model verification: Petri nets provide properties for model verification like

the rule to avoid deadlocks.

9. Model simulation: There are tools such as JARP [10] and HPSim [7] which

can be used to simulate Petri nets directly.

 23

2.3.5 IDEF

2.3.5.1 Description

IDEF (Integration DEFinition) is a family of graphical modeling languages and

methodologies in the system and software domain. IDEF0 is for functional modeling,

IDEF1 is for information modeling, especially for database design, IDEF2 is for

simulation modeling, and IDEF4 is for object-oriented design. In this section, we

introduce the related diagrams, IDEF0 and IDEF4.

 Figure 6 shows the concept of IDEF0. Each block represents a function. The

upper arc represents control flow. The left arc represents the input to the function. The

right arc represents the output of the function which may link to other functions. The

mechanism arc represents needed resources. The modeling methodology of IDEF0

defines the scope of a system by using a top-down modeling approach. For example, a

function may be composed of multiple component functions. This building block can be

decomposed into a sub-IDEF0 diagram to show the detail function flow between

component functions.

Figure 6: Example of IDEF0 [60]

 24

 Cheng-Leong et al. [23] use IDEF for modeling manufacturing enterprise

systems. Each diagram is a different view of the enterprise system. This approach is easy

to understand and all diagrams are in the same framework. However, most diagrams used

in the framework are not object-oriented.

 IDEF4 is an object-oriented modeling language as illustrated in Figure 7. In

object-oriented language, a class is a construct, which is a blueprint to create similar

objects and is shown as a block in the diagram. The first compartment shows the public

features that all classes can access, and the second shows the private features that the

class itself can access. A feature is an attribute, e.g. the color of a car is a feature of the

car class. The last compartment is the name of the class. Inheritance relationships, which

target classes are sub-types of parent classes, are represented by arcs.

Figure 7: Example of IDEF4 [60]

 In general, IDEF is a descriptive language for conceptual models. While IDEF4 is

an object-oriented modeling language, it is focused on the system structure and not

system behavior. IDEF offers a means of representing complex system branching logic

along with a means of hierarchically decomposing a model into related sub models [41].

One limitation of IDEF is the lack of coupling relationships between different types of

 25

diagrams. IDEF4 is the only diagram which can apply object-oriented concepts, but

IDEF4 focuses only on the structure of the system.

2.3.5.2 Comparison Factors

 IDEF is analyzed by using the following factors:

1. Model type: Based on Heavy and Ryan’s work, IDEF is a formal language

with a descriptive method.

2. Modeling technique: The basic elements in IDEF0 are functions that are

triggered by input events, so Killich et al. [48] classify IDEF as a event-

oriented modeling language.

3. Supporting Object-Oriented concepts: IDEF only partially supports the

Object-Oriented concepts.

4. Hierarchical, layering, and purpose-driven view: IDEF0 provides the

hierarchical modeling mechanism. The top level function can be decomposed

into a lower-level diagram [48]. IDEF does not support layering and purpose-

driven view.

5. Graphical representation: All IDEF diagrams are graphical representations.

6. Model understandability: The purpose of IDEF is to understand the system

being modeled easily, so Ryu and Yucesan [82] classify IDEF as good on

model understandability.

7. Standardization: Each diagram in IDEF has a standard definition [82].

8. Model verification: IDEF doesn’t provide tools or rules to verify a model.

9. Model simulation: The diagrams in IDEF can’t be simulated directly.

 26

2.3.6 Discrete Event System Specification (DEVS)

2.3.6.1 Description

Discrete Event System Specification (DEVS) is a modeling and analysis language for

discrete event systems. Zeigler [101] proposed the DEVS-Scheme to support building

models in a hierarchical, modular manner. In his view, a system has a time base, inputs,

states, outputs, and functions for determining the next states and outputs, given current

states and inputs.

 A basic DEVS model is called an atomic model. DEVS extends from the Moore

machine model, in which the output action is associated with the state. An atomic model

contains a set of external received events, external sent events, states and internal

transition function which is executed itself after some time, the external transition

function triggered by the events, the output function and the time advance function. An

atomic DEVS model aM can be defined as a 7-tuple,

 },,,,,,{ aextina tYXM λδδ∑=

 Where

 X is a finite set of input events

 Y is a finite set of output events

 ∑ is a finite set of states

 inδ is a finite set of internal transition functions and ∑→∑:inδ

extδ is a finite set of external transition functions and ∑→××∑ Xteext :δ which

et is the elapsed time since the last event

 λ is a finite set of output functions and Y→∑:λ

:at R +∑ → is a time advance function

 The differences between Moore machines and DEVS are the internal transition

functions and time advanced functions. In DEVS, an internal transition represents a state

 27

change if the state change is triggered after the lifespan of the original state, which is

represented in the time advanced function. For example, the state of a doctor may change

from “busy” to “idle” after the diagnosis time. This state change is an internal transition

function and the diagnosis time is the time advanced function.

 The execution of an atomic model is as follows: The atomic model starts in some

initial state. If there is no external event during the time advance period, the internal

transition function is triggered and the output function of the state will be produced. If

external events are received, the state will change, based on the external transition

function.

 A coupled model may contain atomic models as sub-components. A coupled

model has not only the coupling from external event to its sub-components but also the

coupling relationship between sub-components. A coupled model may contain other

coupled models and can be used to compose a system.

 A coupled DEVS model cM can be defined as a 8-tuple,

 },,,,,,,{ SIEEMDYXM COCICc =

 where

 X is a finite set of input events

 Y is a finite set of output events

D is a finite set of sub-components which can be DEVS atomic models or other

coupled models

 M is a finite set of all sub-components and }|{ DdMM d ∈=

 ICE is a finite set of external input couplings and i
Di

IC XXE
∈

× ∪:

 OCE is a finite set of external output couplings and YYE i
Di

OC ×
∈
∪:

 CI is a finite set of internal couplings and i
Di

i
Di

C XYI
∈∈

× ∪∪:

 28

S is a selection function which defines how to select the “next” event from

simultaneous events.

 DEVS is capable of representing a system using a mathematic formulation which

includes the structure of the target system and its states, but there is no graphical

representation for a DEVS model. For a large-scale DES, it may be difficult for different

stakeholders to understand the corresponding DEVS model. Heavey and Ryan [41]

discussed DEVS as follows:

 “The DEVS formalism is capable of accurately representing the

various changes in state of a discrete event system along with being

somewhat capable of representing resources, activities and branching

within its mathematical representation. However the formalism is not visual

in nature and does not account for the user’s interactions with

the system, information flows or a user friendly elaboration language.“

 For a complicated system, a graphical representation can be important for

verifying the fidelity of a conceptual model. Compared to the mathematical

representation, the graphical representation may make it easier to share and communicate

the domain knowledge between the domain expert and the modeling expert.

2.3.6.2 Comparison Factors

 DEVS has the following attributes:

1. Model type: DEVS can be defined by a mathematical formulation. Based on

Heavy and Ryan’s work, DEVS is a formal language with a formal method.

2. Modeling technique: DEVS captures the states of the target system, so DEVS

are state-oriented modeling languages.

3. Supporting Object-Oriented concepts: DEVS doesn’t support the definition of

classes or instances, so DEVS doesn’t support Object-Oriented concepts.

 29

4. Hierarchical, layering, and purpose-driven view: DEVS provides the

hierarchical modeling mechanism by using coupling models, but not for

layering or purpose-driven view.

5. Graphical representation: DEVS models lack a graphical representation.

6. Model understandability: Each model in DEVS is represented as a

mathematical tuple, and this is not easy to understand.

7. Standardization: DEVS has a standard definition by using a tuple.

8. Model verification: DEVS can be verified directly.

9. Model simulation: The models represented by DEVS can be simulated

directly.

2.3.7 Unified Modeling Language (UML)

2.3.7.1 Description

UML (Unified modeling language) is an object-oriented modeling language that provides

industry standard mechanisms for visualizing, specifying, constructing, and documenting

software systems [30]. The objective of UML is to provide system architects, software

engineers, and software developers with tools for analysis, design, and implementation of

software-based systems as well as for modeling business process and similar workflows

[5].

In UML 2.0, there are 13 types of diagrams which are used to model not only the

static but also the dynamic aspects of systems. Class diagrams, sequence diagrams,

activity diagrams and state machine diagrams are the diagrams related to our research.

Class diagrams are used to show the static structure of a model. Sequence diagrams,

activity diagrams and state machine diagrams are focused on behavior from an event-

based or state-based perspective.

 30

Class diagrams show the class information and the relationships between the

classes. In object-oriented concepts, a “class” is the blueprint of some common instance,

i.e. if some instances share a common description, the description can be captured in a

“class”. The class information includes the attributes and the operations. For example,

“car” is a class, with attribute “color”, and operations “start” and “stop”. A specific

instance of car will have a particular color, and particular ways in which start and stop are

implemented. In Figure 8, “Class1” has an internal attribute named “attribute1,” which is

of type integer. It also has an operation, “operation1”.

The relationships between classes may be one of association, aggregation,

composition, generalization, or dependence. An association relationship is a navigable

relationship and is represented as a line linking two related classes. An aggregation

relationship is known as a “has-a” relationship which means that a class can have another

class as its sub-components, but the sub-components won’t be destroyed if the class is

destroyed. One example is the relationship between human and their bicycles. People can

own bicycles but their life cycles are not the same. Aggregation relationships are

represented as a hollow diamond shape on the parent class and a link between two

classes. A composition relationship is a “part of” relationship, which indicated that two

classes have a strong life cycle dependency. A composition relationship is represented

with a filled diamond shape. A generalization relationship is known as an “is-a”

relationship, which means that a class is specialized from another class. Figure 8 shows

an example of the generalization relationship. Class2 is the subclass which contains all of

the attributes and operations in Class1. A dependency relationship, which means a class

uses another class in its detailed description, is usually represented by the dashed line and

arrow.

 31

Figure 8: Example of UML class diagram

A sequence diagram is used to show interactions between structural model

elements such as actors, i.e. people, classes or instances. The arrows between two classes

represent message exchanges. A message can be a synchronous message which is

represented by solid arrows with full heads, an asynchronous message represented by

solid arrows with stick heads or a reply messages represented by dashed arrows. A

synchronous message is the message for which the source class waits until the destination

class returns a reply message. On the other hand, the source class of an asynchronous

message does not wait for a reply.

The rectangle on a dashed line is an activation box which is the execution of the

message. The structural model element is activated and executes the message when its

life line has the activation box on it. Complex interactions are often modeled using

combined fragments represented as rectangles. Each combined fragment has an

interaction operator and operands. Interaction operator shows the logic of the fragment.

An operand is one region in the combined fragment. The guard condition is the constraint

of the operand. For example, the interaction operator “opt” means that this operand will

be executed one time only if the condition is true. The interaction operator “loop” will

execute the operand repeatedly as long as the guard condition is true.

 32

Figure 9: Example of UML sequence diagram

UML state machine diagrams are a variant of the original state diagram which

includes the states, events and transitions. The state is represented using a rounded

rectangle while the transition is represented as an arrow linking two states. UML state

diagrams include some extensions to model super-states, concurrent states and activities.

The state may have sub-states. The super-state is also called a composition state. The

UML state machine also may have pseudo-states such as join or fork to model concurrent

states.

Figure 10 shows an example of a UML state machine diagram. Activity1 is

executed when the system is in state1. During the transition, it executes Activity2. An

event is the trigger for a state change, and a guard condition will constrain the execution

of the transition. When the event happens, the guard condition is checked. If the

condition is not satisfied, the system remains in state1. Otherwise, it executes Activity2

and then moves to State2.

 33

Figure 10: Example of UML state machine diagram

UML activity diagrams are used to describe both object flows and control of

flows, e.g. business workflows or the workflow among a set of operations. An activity

diagram includes actions (rounded rectangles), initial nodes (solid filled circles), activity

final nodes (a circle with a solid filled circle inside), decision nodes (a diamond),

partitions (a frame), join and fork nodes (a bar). UML activity diagrams represent

behavior as a flow of tokens. The flow is started from the initial node. It generates a

token and this token passes to the next node. A fork node generates tokens to all of its

child nodes. Join nodes generate a token to the next node when all previous nodes have at

least one token.

Figure 11: Example of UML activity diagram

 34

UML is very popular in industry. It is an object-oriented language and has an

easily understood graphical representation. However, the main purpose of UML is for

software engineering and not for system design.

2.3.7.2 Comparison Factors

 UML has the following attributes:

1. Model type: UML has a descriptive specification but not a mathematical

formulation. Based on Heavy and Ryan’s work, UML is a formal language

with a descriptive method.

2. Modeling technique: UML captures the target system from different views by

using different diagrams. UML state machine diagrams describe the target

system from the state-oriented perspective while UML activity diagrams

describe from the event-oriented perspective. UML is both state-oriented and

event-oriented modeling language.

3. Supporting Object-Oriented concepts: UML supports Object-Oriented

concepts.

4. Hierarchical, layering, and purpose-driven view: UML supports hierarchical

modeling. Each model element can be described in detail. UML diagrams also

support layering. A system can be captured in an abstract level and then

elaborated to a detail level. The purpose-driven view is supported by using

views in UML [48].

5. Graphical representation: All of the diagrams in UML are graphical.

6. Model understandability: Each diagram in UML is graphical. Instead of

capturing a complicated system in a single diagram, the target system is

captured from different views and diagrams. Thus, Ryu and Yucesan [82]

assess that UML is good on model understandability.

7. Standardization: UML has a standard specification [82].

 35

8. Model verification: UML is a descriptive model which cannot be verified

directly [82].

9. Model simulation: The diagrams in UML can’t be simulated directly [82].

2.3.8 System Modeling Language (SysML)

2.3.8.1 Description

System modeling language (SysML) is designed to support systems engineering using

object-oriented concepts. SysML re-uses a subset of UML and adds some new diagrams.

The basic organization of SysML diagrams is summarized in Figure 12.

Figure 12: SysML Diagram Taxonomy [4]

 There are three groups of diagrams: structure, behavior, and requirements. Some

diagram such as sequence diagrams, state machine diagrams and package diagrams are

the same as UML 2.0. An activity diagram is modified from UML 2.0 and adds more

elements for modeling object flows.

 “Block” is a basic concept in SysML. Friedenthal et. al. [34] define a “block” as:

”the modular unit of structure in SysML that is used to define a type of system, system

 36

component, or item that flows through the system.” The block not only has structure

features like sub-blocks or attributes but also has behavior features including states,

activities and operations.

 Three diagram types express structure. The Block Definition Diagram is like the

UML class diagram, showing blocks and relationships between blocks. The Internal

Block Diagram gives the detail of one specific block. It shows the internal structure of a

block and focuses on the relationships among the block’s internal structure elements. The

Parametric Diagram is used to capture the equations involved in the calculation of one or

more parameters/attributes of the block.

Figure 13: Example of Block Definition Diagram

 The Block Definition Diagram (BDD) is similar to the class diagram, but the

basic unit is a block instead of a class. Each block owns its attributes, operations, and

ports. There are two types of attributes. Part attributes are other blocks with a “part of”

relationship; value attributes are the value properties. Ports enable input to or output from

the block. There are two kinds of ports in SysML. Flow ports describe the information

flow or physical flow in or out the block. Service ports represent the services the block

provides or requires. Operations are the behaviors which a class contains. The

 37

relationships between blocks in SysML are the same as the relationships in UML class

diagrams: inheritance, composition, and aggregation relationships.

 The Internal Block Diagram shows the internal structure of the given block. Every

element represented in internal block diagram is described for single usage only. Each

rectangle in the Internal Block Diagram represents the attributes of the parent blocks. The

part attribute is a usage of its own block and is shown with the tag,”<<Block>>”. The

linkage is the flow between the internal elements. In Figure 14, part1 and part2 are the

part attributes of Block1.

Figure 14: Example of Internal Block Diagram

2.3.8.2 Comparison Factors

 SysML is analyzed by using the following factors:

1. Model type: SysML has a descriptive specification, so SysML is a formal

language with a descriptive method.

2. Modeling technique: SysML captures different views of the target system by

using different diagrams. SysML state machine diagrams describe the target

system from the state-oriented perspective while SysML activity diagrams

describe from the event-oriented perspective. SysML is both state-oriented

and event-oriented modeling language.

 38

3. Supporting Object-Oriented concepts: SysML supports Object-Oriented

concepts.

4. Hierarchical, layering, and purpose-driven view: Each class or action can be

described the detail in the diagram. SysML diagrams also support layering. A

system can be captured in an abstract level and then is elaborated to a detail

level. The purpose-driven view is supported by using views in SysML.

5. Graphical representation: All of the diagrams in SysML are graphical.

6. Model understandability: Each diagram in SysML is graphical representation.

Instead of capturing in a single diagram, a system is captured from different

views and diagrams so SysML is good on model understandability.

7. Standardization: SysML has a standard language specification.

8. Model verification: SysML is a descriptive model which cannot be verified

directly.

9. Model simulation: The diagrams in SysML can’t be simulated directly.

2.4 Comparison between Conceptual Modeling Languages

The language comparison summary table is shown in Table 2.

 39

Table 2: The summarized table for the conceptual modeling languages

 Legend: ‘+’ can support full capability, ‘O’ partial support, and ‘-‘ no support.

Conceptual
modeling
language

Logical
language

Moore
machine

Mealy
Machine

Petri net IDEF DEVS UML SysML

Model type Formal
Formal

[41]
Formal

[41]
Formal

[41]
Descriptive

[41]
Formal

[41]
Descriptive

[41]
Descriptive

[41]

Modeling
techniques

Event-
oriented

State-
oriented

[48]

State-
oriented

[48]

Petri net
[48]

Event-
oriented

[48]

State-
oriented

Both
state-

based and
event-
based

Both
state-

based and
event-
based

Separate
Structure

and
behavior

view

- - - - + + + +

Object-
oriented
language

- - - O O O + +

Hierarchica
l, nesting,
layering,
purpose-
driven
view

- - -
O

[48]
O

[48]
O

+
[48]

+

Graphical
Representat

ion
- O O + O

-
[41]

+ +

Model
understand

ability
- - -

-
[82]

+
[82]

-
+

[82]
+

Standardiza
tion

+ + +
O

[82]
+

[82]
+

+
[82]

+

Model
verification

+ + +
+

[82]
-

[82]
+

-
[82]

-

Model
Simulation

- - - +
-

[82]
+

-
[82]

-

 40

 Since one focus of this research is the conceptual modeling of the large-scale

DESs, formal languages with graphical representation, object-oriented concept and model

understandability are preferred. Some of these languages can separate the structure and

behavior into different diagrams, such as SysML, UML, and IDEF. The detail of these

languages needs to be addressed. We compare the structure diagrams of these conceptual

modeling languages in Table 3, specifically UML class diagram, IDEF4, SysML BDD

and SysML IBD.

 One difference between UML and SysML is the structure diagram. SysML IBDs

can model the internal structure of a block and the internal flow which is not possible in

UML class diagrams. This capability also helps SysML to support hierarchical modeling

from a system modeling perspective. In SysML IBD, the sub-components of a block, and

their relationships, such as material flows or information flows, can be described, but this

is not possible with the other diagrams summarized in the table.

Table 3: The comparison of the structure diagrams in the conceptual modeling languages

 UML Class
Diagram IDEF4 SysML BDD SysML IBD

Object-oriented
language + + + +

Support
Hierarchical

modeling
O O O +

Usage
modeling O O O +

 Table 4 shows the comparison of the behavior diagrams. In UML/SysML, all

elements such as actions in Activity diagrams or states in a state machine diagram can be

 41

reused, an option which is not available in Petri nets or IDEF. UML and SysML also

support both state-based and event-based modeling techniques by using different diagram

types: state machine diagrams to describe a state-based behavior and sequence diagrams

and activities to describe behavior from an event-based perspective.

Table 4: The comparison of the behavior diagrams in the conceptual modeling languages

UML/SysML

State
machine

UML/SysML
Activity
Diagram

UML/SysML
Sequence
Diagram

IDEF0 IDEF3 Petri net

Object-
oriented
support

+ + + - - O

Modeling
techniques State-based Event-based Event-based Event-

based
Event-
based Petri net

Basic
elements

State,
transition

Action,
activity

Actor,
lifeline,
message

Function,
function

flow

Process
and

process
flow

Place,
transition,

and arc

Concurrent O + O - - +

2.5 Summary

Based on the comparison of different conceptual modeling languages, SysML is chosen

for use in this research to develop conceptual models. SysML is an object-oriented

modeling language for system modeling, one which also has rich elements to describe the

systems. SysML also supports graphical representation, hierarchical modeling, and

separating structure and behavior views.

 The comparison tables also highlight some potential issues for using SysML.

UML and SysML lack a model simulation capability. UML and SysML models are

viewed as descriptive models without a formal basis. In this research, we will propose a

methodology to resolve these issues. A formal definition of SysML for DES is proposed

 42

in Chapter 4. For model simulation capability, a transformation process from a

conceptual model to a simulation model is developed in Chapters 7 and 8.

 43

CHAPTER 3

DISCRETE EVENT SYSTEM MODELING PROCESS USING

SYSML

3.1 Background and Motivation

SysML is a formal language to describe a conceptual model. For a complicated DES, it

has the following advantages: First, SysML is a formal language with a standard

specification. Second, SysML supports graphical representation which is more expressive

than text representations [88]. Finally, SysML also supports object-oriented concepts.

 However, there are few modeling processes using SysML as a formal language

for DES. One reason is that SysML is a new language. The formal specification of

SysML was adopted by OMG in 2006, while other formal languages such as Moore

machines or Mealy machines have been used for more than three decades. Moreover,

although there are some modeling processes that apply object-oriented concepts using

SysML, most modeling processes focus on software design. The modeling processes for

DES should be addressed.

 In order to propose a SysML-based modeling process, there are two issues that

will be addressed in this chapter. The first issue is the analysis of the required SysML

modeling elements for DES. SysML contains nine diagrams and each includes its own

model elements. For example, the definition of BDD includes the model elements such as

blocks, instance, and block relationships. We will identify a required subset of SysML

elements which can represent DES.

 The second issue is the SysML-based modeling process. We will propose a

modeling process in which a target DES is described in a conceptual model represented

by the proposed SysML subset.

 44

 This chapter is organized as follows: In Section 3.2, we introduce a general DES.

In Section 3.3, the existing object-oriented modeling processes are reviewed. In Section

3.4, we will discuss the state explosion problem which is crucial in modeling DES. The

existing approaches for this problem are also discussed in this section. In Section 3.5, we

will propose an approach using SysML, the required subset of model elements of SysML,

and the proposed modeling process.

3.2 Definition of Discrete Event Systems

In order to describe discrete event systems, the related concepts are introduced: state,

state space, events and state transitions. A state is a unique status of a system at a

particular time, i.e. consider a variable represented the status of a system and a state is a

unique value of this variable. A state space is the collection of these states. An event is

the trigger for state transitions, defined as changing from one state to another state.

 Ramadge [77] defines discrete event systems as follows:

“A DES is a dynamic system with a discrete state space and piecewise

constant state trajectories; the time instants at which state transitions

occur, as well as the actual transitions, will in general be unpredictable.”

 A DES is a system in which the state does not change between consecutive

events. A typical state trajectory for such a system is shown in Figure 15. The states in

this example are x1, x2, and x3. The events are labeled with Greek letters. The state of this

system is x1 at time 0. When the event μ happens at time t1, the state changes to x2. The

state of this system only changes when events happen.

 45

Figure 15: A discrete event system [77]

3.3 Object-Oriented Modeling Process for Discrete Event Systems

We will review related object-oriented modeling processes in the manufacturing domain

or simulation domain in this section. Specifically, the modeling processes are also applied

to the conceptual models of DELS.

 Yun and Choi [99] propose an object-oriented approach for modeling a container

terminal system. The modeling process is based on the concept to develop the system

hierarchy and the operations in each class. The class diagram is implemented in the

simulation model. One limitation of the approach is the incomplete conceptual model.

The behavior of the container terminal system is not considered in their approach.

 Kim et. al. [49] propose an object-oriented modeling process for the

manufacturing information system shown in Figure 16. There are two phase in this

proposed modeling process: analysis and design phases. In the analysis phase, target

manufacturing systems are decomposed into functions. These functions are represented in

functional diagrams, which are similar to IDEF0. Each element in the functional diagram

is a function, an operation or a data flow. In the design phase, the classes are defined and

each function is mapped to operations of classes in order to provide the functionality. The

system is decomposed by the function flow not by the physical system. Object-oriented

 46

concepts are only used for the object definition but not for system modeling which

include the system structure and behavior.

Manufacturing system

Functional diagram

Decomposition of function

Function
table

Operation
table

Data
table

Function
class

Entity
class

Relationship
diagrams

Semantic design

Analysis

DesignAggregation & Integration
<<Information model>>

Figure 16: Object-oriented modeling methodology for manufacturing information systems

modified from [49]

 In summary, the object-oriented modeling processes that have been reviewed are

not appropriate for modeling DESs explicitly, so new processes must be developed. Most

approaches in the literature review only use object-oriented concepts as a guide to the

implementation but do not provide a concrete modeling process.

3.4 State Explosion Problem

This section discusses a critical issue for modeling a large-scale DES—the state

explosion problem. Based on the definition of DES, one way to describe a DES is to

 47

describe all of its states, events, and state transitions. However, for a complicated DES, it

is hard to enumerate all possible states and state transitions. We introduce three

approaches to alleviate this problem in this section. This section is organized as follows.

In Section 3.4.1, we introduce the state explosion problem. Three approaches in the

literature (top-down, bottom-up, and parametric approaches) to alleviate this problem are

discussed in Section 3.4.2 to Section 3.4.4, respectively.

3.4.1 Description

For a complicated system, the number of states in the system will be quite large. Qiu and

Joshi [75] show an example as follows. For modeling a two-machine, two-robot, two-

buffer, and two-part-type system, the size of the potential state space is in excess of 1028

states. It is not possible to model all of these states in a single diagram.

 The number of system states grows exponentially when the number of

components increases. Consider a DES containing n components. Each component i

has iL states. The number of states in this system is . For a DES with only 10

components and three states in each component, the number of states is more than fifty

thousand. Table 5 illustrates the growth of the state space with the number of

components.

 The number of transitions also grows exponentially if the number of components

increases. We can analyze the lower bound and upper bound of the number of transitions.

A lower bound on the number of transitions can be derived from the number of states.

Since each state must be reachable from the initial state, each state must have at least one

transition into the state. A lower bound on the number of transitions is equal to the

number of states which is ∏
=

n

i
iL

1

.Denote t as the maximum number of transitions into a

single state. One upper bound of the number of transitions simply the product of t and

∏
=

n

i
iL

1

 48

the number of states, i.e., ∏
=

n

i
iLt

1

. Since the number of transitions must be more than the

proposed lower bound, the number of transitions also grows exponentially.

Table 5: The number of system states

Number of components 1 5 10 50 100

Numbers of states
∏
=

n

i
iL

1

3 243 59049 7.18*1023 5.15*1047

Lower bound of the

numbers of transitions
1*

1
∏
=

n

i
iL

3 243 59049 7.18*1023 5.15*1047

Upper bound of the

numbers of transitions
∏
=

n

i
iLt

1

3t 243t 59049t 7.18t*1023 5.15t*1047

3.4.2 Top-down Approach

One way of reducing the number of transitions is to use a top-down approach [36]. This

approach usually employs a hierarchical state machine, which is defined by Brave and

Heymann [16] as follows:

1. States are organized in a hierarchy of superstates and substates thereby

achieving depth.

2. States are composed orthogonally, thereby achieving concurrency.

3. Transitions are allowed to take place at all levels of the hierarchical

structure, thereby achieving descriptive economy.

 Figure 17 is an example of a hierarchical state machine. There are six states and

six transitions. Three states (S1, S3, and S5) are superstates, which can contain other

 49

states. The initial substate is represented as a circle. The other states (S2, S4, S6) are

substates, which are the states contained in another state.

 Four types of transitions in hierarchical state machines are superstate-to-

superstate transitions, superstate-to-substate transitions, substate-to-superstate transitions,

and substate-to-substate transitions. Superstate-to-superstate transitions are the transition

which all substates in the original superstate can be triggered to the initial substate of the

target superstate, i.e. each substate in the original superstate has a transition to the target

state. One example of superstate-to-superstate shown in Figure 17 is the transition from

S5 to S1. This transition implies that both S5 and S6 can be changed to S1. Superstate-

to-substate transitions imply that all states in the original state can be triggered to its

target substate. Substate-to-superstate transitions are transitions that a substate can be

changed to the initial substate of the target state. The transition from S2 to S4 is a

substate-to-superstate transition. Substate-to-substate transitions specify a transition

between two substates. Figure 18 shows the corresponding state machine diagram. It

includes six states and eight transitions.

 Figure 17: Example of a hierarchical state machine

 50

Figure 18: The corresponding state machine

 Comparing the example shown in Figure 17 and the equivalent diagram in Figure

18, both cases have six states. The number of transitions in this hierarchical state machine

shown in Figure 17 is less than the number of transitions in Figure 18 because states are

organized in a hierarchy. A transition starting from a superstate to a target state will be

equal to multiple transitions starting from all of its substates to the same target state.

These repeating transitions of all substates in a superstate can be reduced.

 The top-down approach provides a way to reduce the number of transitions by

using the hierarchy of states. However, the number of transition reduced is based on the

hierarchy of the states. In this approach, the number of system state may still grow

exponentially.

3.4.3 Bottom-up Approach

Another approach to reduce the number of system states is to describe states of

components instead of all states of a system. Although the number of the system states

 51

grows exponentially in the number of components, the number of states of components

grows linearly in the number of component.

 Figure 19 shows a simple example of an assembly line. There are two machines,

M1 and M2. Each machine has unit capacity and also has a preceding buffer with

capacity of three.

Figure 19: Example of an assembly line

 The states in this system can be captured in a 4-tuple which is the combined states

of four components (B1, M1, B2, and M2). The set of all possible state values of B1 is (0,

1, 2, or 3). Since M1 could be blocked by the succeeding buffer, there are three possible

state values, (idle, busy, or blocked). M2 has two possible state values, (idle, or busy).

We can denote the four-tuple [B1, M1, B2, and M2] as the system state. The number of

all possible system states is 96.

 If we focus on B1, there are only four states as shown in Figure 20. Considering

all the components, the number of component states will be reduced to ∑
=

n

i
iL

1
, compared

to the number of system states which is ∏
=

n

i
iL

1

.

 52

Figure 20: The state diagram of B1

 We can compare the upper-bound and lower-bound of number of transitions using

the bottom-up approach. Since each state has at least one in transition, the lower bound of

the total numbers of transitions is equal to the number of component states. Denote that

each component i has iL states. The upper bound of transitions involving a single

component is 2
iL . In this case, any two states will have a directed transition. The upper

bound of transitions is ∑
=

n

i
iLn

1

2 .

 The comparison between the number of system states and the number of

component states using bottom-up approach is shown in Table 6. The table shows that the

bottom-up approach can reduce the modeling complexity. When the number of

components increases, the system states and their transitions grow exponentially. The

bottom-up approach can still be linear and the upper bound of the transition in the

bottom-up approach can be less then the lower bound of the numbers of the transition of

the system state when the number of the components is greater than or equal to 3.

 53

Table 6: The comparison between system states and decomposed states

Number of components 1 5 10 50 100

System

states
∏
=

n

i
iL

1

3 243 59049 7.18*1023 5.15*1047 Numbers

of states

Bottom-up

approach
∑
=

n

i
iL

1

3 15 30 150 300

System

states
1*

1
∏
=

n

i
iL

3 243 59049 7.18*1023 5.15*1047 Lower

bound of

the

numbers

of

transitions

Bottom-up

approach
1*

1
∑
=

n

i
iL

3 15 30 150 300

System

states
∏
=

n

i
iLt

1

3t 243t 59049t 7.18t*1023 5.15t*1047 Upper

bound of

the

numbers

of

transitions

Bottom-up

approach
∑
=

n

i
iLn

1

2
9 45 90 450 900

 However, the interactions between components are not included if we model each

component instead of the system state. Using the assembly line as an example, the system

state [0, blocked, 3 , busy] implies that Machine1 is blocked because there is no more

space in Buffer2. If Machine2 finishes its job, the system state becomes [0, empty, 3,

busy]. Machine 2 events affect the state of Machine 1.When we model only the states of

each component, the interactions between components is not considered.

 54

3.4.4 Parametric Approach

Another way to reduce the number of system states is to use parameters in the state

machine diagram. Chen and Lin [22] show that by using parameters, discrete event

applications can be represented efficiently and the state explosion problem can been

mitigated. The idea is to use parameter values in the condition of transitions. Figure 21

shows an example that has the same meaning as the example in Figure 20. For modeling

a buffer, we can use only two states, the empty state and the occupied state and one

parameter, the number of jobs in the buffer. When a job arrives, the state of this buffer

stays in or moves to the occupied state, depending on its current state. The number of

jobs in the buffer increases 1 unit. When a job departs, the state of this buffer may move

to the empty state or stay in the occupied state depending on the number of jobs in the

buffer. If the number of the jobs in the buffer is 1 and job departs, the buffer is empty.

Otherwise, this buffer is still occupied by other jobs. By using this parameter, we need

only two states and four transitions to capture the same buffer shown in Figure 20.

Figure 21: The state diagram of B1 using parameter approach

 55

3.5 Discrete Event Modeling Process

We will analyze the model elements in SysML required to apply three approaches

discussed in Section 3.4 and also propose the discrete event modeling process (DEMP) in

this section. This section is organized as follows. Sections 3.5.1 to 3.5.3 contain how to

use SysML to apply three mentioned approaches: Top-down approach, bottom-up

approach, and parametric approach, respectively. In Section 3.5.4, we summarize the

required model elements in SysML and propose the discrete modeling process in Section

3.5.5.

3.5.1 Top-down Approach Using SysML

The top-down approach describes a DES by constructing the hierarchy of the states. In

order to apply this approach, there are two requirements. One requirement is that a state

can be a superstate or substate. The other is that transitions can be superstate-to-

superstate transitions, superstate-to-substate transitions, substate-to-superstate transitions,

or substate-to-substate transitions.

 The required diagrams in SysML are state machine diagrams. State machine

diagrams capture states, events, and transitions. Moreover, the states in SysML can be a

composite state or a single state. A composite state is equivalent to a superstate and a

state is equivalent to a substate. In SysML, the transitions can be defined for any two

states whether they are a composite state or a single state. State machine diagrams can

fully support the top-down approach.

3.5.2 Bottom-up Approach in SysML

The bottom-up approach captures the states of each component. In SysML, a state

machine diagram is used to describe states, transitions and events in a single component.

It is easy to describe the states of components in SysML. However, the interactions

 56

between components are not included in state machine diagrams and need to be

addressed.

 We model these interactions using actions. Zimmermann [104] defines actions as

possible behaviors that might become enabled, start, take some time to complete, or be

executed, resulting in an event with its corresponding state change. Actions can occur in a

state. For example, the machine executes processing in the busy state. Actions can also be

executed when the event occurs. In this case, the action is associated to the transition. An

action can create an event in other components (state machine diagrams). We can

illustrate using the previous assembly line example. When a machine finish event takes

place, the action of the transition from machine busy state to idle state executes and this

action can send an arrival event to the next machine.

 In SysML, an action can be associated with a transition in the state machine

diagram. An action is executed when its associated transition is triggered. The detail of an

action can be captured in a SysML activity diagram or sequence diagram.

3.5.3 Parametric Approach in SysML

The parametric approach describes a DES by using the parameter in the condition of the

transition. The state transition requires a condition which can includes a parameter.

 The required diagrams in SysML are state machine diagrams. State machine

diagrams represent these conditions using guard conditions which can have a parameter

in its condition. The parameter approach can be supported in SysML.

3.5.4 Subset of SysML for DES

The previous sections indentify the required modeling elements of SysML. In summary,

state machine diagrams are required for the top-down approach. The model elements

including superstates, substates, events, and transitions are required in order to support

this approach.

 57

 The bottom-up approach requires the system structure and the states of each

component. In SysML, the system structure is described in BDD and IBD. BDD captures

the reusable components, and IBD captures the internal structure of these components.

The states of each component are defined in state machine diagrams. The interactions

between components can be captured in Sequence diagrams or Activity diagrams.

 The parameter approach can be supported in state machine diagrams. The

required model elements are the guard conditions.

 Based on this analysis, BDD, IBD, Sequence diagrams, state machine diagrams

and Activity diagrams are the minimal subset of SysML which can alleviate the state

explosion problem by applying all three approaches.

3.5.5 Proposed Modeling Process in SysML

We will discuss the proposed modeling process by using the proposed SysML subset.

There are two views of the system in DESs, static and dynamic. The static view is the

structure of the system. Usually, it corresponds to the physical elements in the system,

perhaps along with their logical organization (e.g., into departments). The dynamic view

is the behavior of the system. The physical components may interact with each other or a

control unit. The behavior of the system may be complex. The modeling process will

focus on the physical view of the system first and then consider the interactions between

the components.

 The static view is the baseline for the proposed modeling process. After the

system structure is captured, the top-down approach and parameter approach can be

applied to reduce the number of states inside a block. This total modeling process also

follows the concept of the bottom-up approach which models the state of each component

instead of all system states.

 The main concepts of the modeling process are the structure breakdown,

componentization and then interaction analysis. In the first step, the basic building blocks

 58

and their relationships are modeled. The purpose of the structure breakdown is not only

for the description of the structure view but also for reusability. In the componentization

step, a particular block may be reused many times. After the reusable building blocks are

identified, the states in the building block and its internal transitions will be analyzed.

The last step will be focused on the dynamic view of the system. The interactions in the

system define the behavior of the system including the actions associated with the

transitions and corresponding events.

 Block definition diagrams and internal block definition diagrams are used to

model the structure of the system. Block definition diagrams show the block definition

and the re-usable information such as the value attributes parts, ports, and operations.

The internal block definition diagrams model the usage and internal structure of a single

block. The internal flows between the parts are described. IBD must belong to one

specific block which is its parent. Figure 22 and Figure 23 are the structure breakdown

example of an assembly line. The assembly system is a building block in the BDD. When

it is broken down in the IBD in Figure 23, all of the sub-components are also blocks in

Figure 22. The buffers and machines can be usages of other blocks. In this example, B1

and B2 both are the usages of the block “Buffer”.

Figure 22: BDD of the assembly line example

 59

Figure 23: IBD of the assembly line system

 The second step is to model the states and the transitions of each building block

using State machine diagrams. The state machine diagram is owned by the block it

describes. Since state machine diagrams support hierarchical states and parameters, the

numbers of states explicitly represented and number of transitions in a given diagram can

be managed.

Figure 24: State machine diagrams of the buffer and machine

 The last step of the process models the interactions. The concept of behavior

modeling is shown in Figure 25. When an event occurs, the behavior that is triggered is

based on the event. The upper part, Block A, represents the active block which triggers

 60

the behavior. The block contains multiple states and transitions. The interaction will be

associated to the state action or transitions. When an event happens, a transition will be

triggered and the transition effect will be executed. The transition effect is modeled using

the interaction represented by a sequence diagram or an activity represented by an

activity diagram. For example, when a machine finishes processing a part, the state of

the machine will change from busy to idle. The transition will execute the associated

activity which will send the departure event to the previous buffer and the arrival event to

the next machine.

Figure 25: The concept of the behavior modeling using SysML

3.6 Conclusion

Using SysML to model a complicated DES is a challenge. SysML is a formal language

and also supports graphical representation and object-oriented concepts. However, there

are few SysML modeling processes for DES in the literature.

 A crucial challenge is identified when modeling DES: the state explosion

problem. The number of system states grows exponentially when the number of the

 61

components increases. Although there are three approaches (the top-down approach, the

bottom-up approach, and the parametric approach) discussed in the literature, the number

of system states grows exponentially. Moreover, these approaches do not consider the

interactions between components. A new SysML modeling process, the discrete event

modeling process (DEMP), is proposed to solve this problem. The concept of DEMP is

modeling the physical system by applying object-oriented concepts, the internal behavior

of the block, and then the interaction behavior between blocks. The required SysML

modeling elements for DELS is analyzed. The number of system states will grow linearly

with the number of components. For a DELS, our approach can avoid explicitly

describing an exponentially increasing number of system states by modeling the state of

components and their interactions.

 62

CHAPTER 4

THE GENERIC SYSML SUBSET

4.1 Introduction

Finite-state machines (FSM) are widely used as a modeling language for DES [100].

FSM provide a formal representation of states, events and state transitions. FSM can also

be represented as a mathematical model, which is a deterministic finite-state automaton

in automata theory. As a result, automata theory also provides a formal basis for FSM.

 However, it is difficult to describe a complex DES using FSM. Cassandras [21]

pointed out the limitations, and one of them is that the FSM does not support modular

model-building. A FSM model needs to model all system states explicitly. The number of

these system states increases exponentially with the number of system components. It is

an issue to avoid explicitly describing an exponentially increasing number of system

states.

 The object-oriented modeling process for DES, DEMP, is proposed for discrete

event systems. DEMP uses a subset of SysML (block definition diagrams, internal block

diagrams, state machine diagrams, activity diagrams and sequence diagrams) to model

the target system. Instead of explicitly modeling all the system states, DEMP explicitly

models the states of each component and explicitly models the interactions between the

components. The system structure is modeled using block definition diagrams and

internal block diagrams. The internal behaviors of a component are modeled in state

machine diagrams whereas the interactions between components are captured in either

activity diagrams or sequence diagrams.

 In this chapter, the capability of the proposed SysML subset is addressed. Any

given finite-state discrete event system can be modeled as a finite state machine; this

 63

chapter shows that it also can be modeled using the subset of SysML. The transformation

relationships between these two models are discussed. In this research, the “system

model” is defined as the model representing the target system in FSM and the

“decomposed model” as the model represented by the proposed SysML subset.

 Considering the relationship between system models and their corresponding

decomposed models, two issues are addressed in the chapter. The first issue is the formal

definition of the proposed subset of SysML. The SysML specification [4] is a narrative

description with graphical references but it does not provide a formal mathematical

specification as a basis for a formal mapping between a system model and its

corresponding decomposed model.

 The second issue is the formal mapping relationship between system models and

decomposed models. For a system modeled as a FSM, transformation algorithms are

defined that create an equivalent model using the SysML subset of DEMP. The

equivalent model using the SysML subset also implies that this model can represent the

equivalent FSM which has the same sets of states, events and transitions as the original

one.

 This chapter is structured as follows. The related research on the formal

definitions of an object-oriented language and the deterministic automata theory are

reviewed in Section 4.2. The formal definition of the subset of SysML used in DEMP is

proposed in Section 4.3. The relationship of system models and decomposed models is

explored in Section 4.4. In Section 4.5, we summarize the findings.

4.2 Literature Review

There are two categories of research related to the formal definitions of the system

models and decomposed models. The first category is the formal definition of object-

oriented models shown in section 4.2.1. Since a model using the proposed SysML subset

 64

must be an object-oriented model, the related formal definition of object-oriented models

is used to propose the formal definition of the proposed SysML subset. The second

category addresses deterministic finite-state automata theory, which is widely used for

describing deterministic DES. The deterministic finite-state automata theory provides a

theoretical basis for composing multiple automata into a single automaton. Since each

FSM can be represented as a single automaton, this theory may be used to construct a

formal relationship between the system models and the decomposed models. The basic

definitions, operations and research related to automata theory are presented in Section

4.2.2.

4.2.1 Formal Definition of Object-oriented Models.

An object-oriented model is a model representing a system by applying an object-

oriented language. A formal definition of object-oriented models avoids ambiguity. A

“formal” definition is usually stated in terms of the mathematical formulations such as

sets or pairs in the literature. This section evaluates the research related to the definition

of object-oriented models using these mathematical formulations.

 Chidamber and Kemerer [24] define an object-oriented model as follows:

)...,...,(11 mn OORRAD ≡

 where

 A is a set of classes and instances

 nRR ...1 are the relations defined on pairs of classes and instances.

 mOO ...1 are the operations on elements of A .

 Each instance can have zero to many attributes. Denote the set of all attributes in

an instance d as dX and as)(xp the finite collection of the properties of an attribute x

where dXx∈ . An instance d with an attribute x is shown in the following manner.

 }))(,{(dXxxpxd ∈∀≡

 65

 By applying this notation, the system with a buffer and a machine is defined as

follows: A is the set with the buffer class, the buffer instance, the machine class and the

machine instance. R includes two relationships. One is the relationship that the buffer can

have multiple attributes such as buffer capacity. The other is the relationship of the

machine and its attributes. The behavior of the buffer or machine is captured as the

operations in the set O.

 In Chidamber and Kemerer’s work, the specification of an object-oriented model

is used to evaluate a measure of the complexity of the model. For example, the

inheritance relationship in the object-oriented model means that the specified class is a

sub-type of the general classes. By using Childamber and Kemerer’s specification, we

can evaluate the complexity of the model by using the depth of all inheritance

relationships.

 Purao and Vaishnavi [73] also proposed an ordered set with three elements (E, A,

M) to represent an object-oriented model. E denotes the set of entities in the system. An

entity can be a class, instance, attribute, or relationship. Each entity may own its

attributes, denoted as A. M is a matrix showing the operations. Vaishnavi et al. [92]

extended this approach, representing the system using a mathematical definition, and also

re-defined this set for analyzing the aggregation hierarchy of an object-oriented model.

By applying this approach to the previous example which is the system with a buffer and

a machine and the buffer has an attribute, “buffer capacity”, this system is modeled as

follows: E is the set containing the buffer class, the machine class, the buffer instance,

machine instance, and the attribute, “buffer capacity”. A is the set showing that the buffer

class has an attribute, “buffer capacity”, the buffer instance is an instance of the buffer

class, or the detail attributes of the attribute, “buffer capacity”. M is the set of the

operations.

 One difference between Chidamber’s and Purao’s formulations is the focus of the

object-oriented model. In Chidamber and Kemerer’s formulation, the focus is the set of

 66

objects, relationships and operations, while in Purao and Vaishnavi’s formulation, the

focus is the relationships between entities, attributes and operations. Since Chidamber

and Kemerer’s approach separates the structure elements in the different sets, it is easier

to understand the system structure. The research proposed in this dissertation extends

their work to expand the formal definition of the proposed SysML subset, i.e., the class

relationships and the classes are the different sets defining the model.

4.2.2 Automata Theory

An automaton is a mathematical model for a FSM. Depending on the level of the

abstractions, there are three types of automata. One is the deterministic automata which is

a logical model without any time information. The second is the timed automata. A clock

structure is included in the timed automata to advance to the next active event. The third

is the stochastic timed automata in which a probability distribution serves as an input to

the clock structure. In this research, we focus on logical languages which are the

deterministic automata of the first type.

4.2.2.1 Deterministic Automata Definition

 A deterministic automaton, denoted by G , is a set [21]

),,,,,(0 mXxfEXG Γ=

 where

 X is a finite set of states

 E is a finite set of events

 XEXf →×: is a finite set of transition functions. yexf =),(denotes a

transition labeled by event e from state x to state y

 EX 2: →Γ is a set of active event functions;)(xΓ is a set of all event e for

which),(exf is defined and it is called the active event set of G at x .

 67

(Given a set E , the notation E2 means the power set of E which is the set of

all subsets of E)

 0x is an initial state and Xx ∈0

 XX m ⊆ is a finite set of marked states

 Γ can be derived from f . When a pair),(ex exists such that),(exf is not

defined, the event e will not be an active event at state x . The event e will not be

included in)(xΓ .

 mX is a finite set of marked states which are the states of interest for a problem.

For example, a machine may have four different states (in process, empty, broken, and

repairing). When we consider a single queue problem, we may only be interested in two

of them (in process, and empty). These two interesting states are the marked states. The

selection of the marked states is a modeling issue depending on the problem. Since our

research is to model discrete event systems, we model the states only if we are interested

in these states so all of the states are assumed marked.

4.2.2.2 Operations on Automata

The operations of automata are the operations used to combine two automata into one

automaton or eliminate the unneeded states. This section will show the related operations:

accessible part, product, and parallel composition.

 The operation “Accessible Part” or “Ac” is the operation that removes all of the

unreachable states, and the associated events and transition functions. For a given

automaton G , the automaton after the accessible part operation is denoted as)(GAc .

The definition of)(GAc is:

),,,,(:)(,0 macacac XxfEXGAC =

 where

 68

)}),((:{ 0
* xsxfEsXxX ac =∈∃∈= where *E is a set of all sequence of events

 acmmac XXX ∩=,

 acacac XEXff →×= |

 acX is a finite set of states. Since each state must be reachable from the initial

state, state x can be in acX only if there is at least one string of events, s , such that x is

reached from the initial state. Any state in the set of accessible marked states (macX ,)

must be in the set of the accessible states (acX) and also the marked states (mX) so macX ,

is the intersection of acX and mX . The transition functions (acf) in)(GAc must have

both the source and the target states in acX .

 All of the automata states are assumed to accessible, i.e. GGAc =)(. If the state is

not reachable, the state is never used and becomes superfluous.

 The product and parallel composition are defined as composition operations. For

two automata denoted as 1G and 2G , the product of these automata is a third automaton

3G , and 213 GGG ×= . Likewise, the parallel composition of two automata, 1G and 2G , is

a third automaton 3G and 213 GGG = .

 To make the composition operation more precise, consider two automata, 1G

and 2G , which are represented as:

),,,,,(10111111 mXxfEXG Γ= and

),,,,,(20222222 mXxfEXG Γ=

Then, the product of 1G and 2G is the automaton:

)),,(,,,,(: 21020121212121 mm XXxxfEEXXAcGG ×Γ∩×=× ×

where

 69

otherwise

)()(if)),(),,((
:)),2,1((22112211{

undefined
xxeexfexf

exxf
Γ∩Γ∈

=

)()(),(22112121 xxxx Γ∩Γ=Γ ×

In product operations, the events and transition functions of two automata are restricted to

the events occurring in both automata.

 The parallel composition of 1G and 2G is the automaton:

)),,(,,,,(: 21020121212121 mm XXxxfEEXXAcGG ×Γ∪×=

 where

otherwise
\)(if)),(,(
\)(if)),,((

)()(if)),(),,((

:)),2,1((
122111

211211

22112211{
undefined

Exeexfx
Exexexf

xxeexfexf

exxf
Γ∈
Γ∈

Γ∩Γ∈

=

]/)([]/)([)]()([),(12221122112121 ExExxxxx Γ∪Γ∪Γ∩Γ=Γ

The parallel composition considers all of the events in both components. When the events

are active events of the current states in both components, the transition function of the

operation updates both components. If an event is an active event in only one component,

this component will move to the next state while the other component remains in its

current state.

 The product operation and parallel composition operation consider the events but

not the interactions between components. The system model constructed by using the

parallel composition operation may generate states which are not assessable. For

example, considering a single-server queue system, the states of a job are the state

“waiting in the queue” or the state “processing in a machine”. If there are two jobs in this

system, the automata resulting from applying the parallel composition operation has a

state with two jobs “processing in a machine”. However, this state is not reachable

 70

because there is only one server in this system. As a consequence, some of the states may

not be reachable and become superfluous. The product operation may lose some states if

some events happen only in one component. In the previous single-server queue system,

the server generates a job finished event when the server completes a job. This event also

changes the state of this job from the state “in processing” to “after processed”. We

cannot apply the product operation in this example because this event only happens for

the server but not for the job. This event is ignored in the composed automaton after

applying the product operation.

4.2.2.3 Applying Automata Theory to DES

Sampath and Sinnamohidden [83] used an example of heating, ventilation, and air

conditioning (HVAC) systems to demonstrate their methodology for modeling a DES.

The methodology is a process of composing the individual components to the whole

system model using the parallel composition operations and sensor maps which describe

the input signals and the output events of the sensors. The component automata models

are denoted as niGi ...1, = .The authors proposed the following process:

1. Execute the parallel operation of all n components and denote the integrated

model as G~ .

 nGGGXxfEXG ...)~,~,~,~,~,~(~
210 =Γ=

2. Given the set of M sensors of the system, assume the sensor maps jh as

 MjYXh jj ...1,~: =→ where jY is the output event of the sensor map

3. Transform G~ to G . For each transition function xexf ′→),(: , refine the

transition function as follows:

a. If the event e is observable (typically a command event), the new

transition function in G contains the same transition.

 71

b. If the event e is unobservable and)()(xhxh ′= , keep the same

transition and event in G

c. If the event e is unobservable and)()(xhxh ′≠ ,

i. Generate new state newx , and new event newe

ii. newxexf →),(

iii. xexf newnew ′→),(

 Based on this systematic procedure, a complete system model can be obtained

from the simpler models of individual components and from the information provided by

the sensors. However, the parallel composition operation still may generate inaccessible

states. Furthermore, the sensor map has impact on the result of the system state, and there

is no formal definition of the sensor map in automata theory.

 Cao and Ho [19] analyzed a simple manufacturing system with two machines and

one buffer using automata. The system state is generated by enumeration of all possible

states considering the interaction or operating rules. The authors proposed to analyze all

the sensor variables to reduce the superfluous states. However, there is no a formal rule in

this paper to enumerate all system states.

4.3 Formal Definition of the Proposed SysML Subset

The proposed SysML subset involves the structure and the behavior views of the system.

In the structure view, a basic unit, “instance”, is a component of the target system. A

“block” is a description of similar components or instances. The behavior view of the

system includes the activities and the interactions. In this section, the formal definition of

the proposed SysML subset is introduced and is structured as follows. In Section 4.3.1,

we define the structure view of the proposed SysML subset. The structure view of the

proposed SysML subset includes the definitions of blocks, instances, the relationship

 72

between blocks, and the modeling elements of a block. In Section 4.3.2, we define the

behavior view of the proposed SysML subset. The behavior view includes the internal

states of a block and the interactions between blocks. The formal definitions of these

modeling elements are defined using set notation.

 73

4.3.1 System Structure of the Proposed SysML Subset.

 The object-oriented model, D , of the target system can be represented using the

following 4-tuple:

);;;(IRBRIBD ≡

 where

 B is a set of blocks

 I is a set of instances

 BR is a set of block relationships

 IR is a set of instance relationships

 B is a set of blocks, which are basic reusable units of an object-oriented design in

SysML. Blocks can be partitioned into sets of application blocks (AB), when the blocks

are all related to one specific domain; library blocks (LB) that are the reusable blocks

across multiple domains; and framework blocks (FB) supporting a pre-defined tool

specific block, e.g., the libraries of a specific simulation tool. Some of these sets can be

empty, and FBLBABB ∪∪= .

 I is a set of the instances. A system is a collection of instances. Each instance has

its own type. The type of an instance is a block in B and can be described as

BitypeIi ∈∈∀)(, . Each instance i contains the same attributes, parts, and operations as

its type block.

 BR is a set of block relationships. Each block relationship br consists of a

relationship type, a source block and a target block, denoted as

BbbbbtypebrBRbr ettsourceettsource ∈=∈∀ argarg , and),,(: . . There are various types of

relationships such as aggregation relationships, composition relationships, and

inheritance relationships.

 74

 IR is the set of instance relationships. Each instance relationship ir is an

instance of one specific block relationship in BR . It also consists of a relationship type,

its source instance, and its target instance. An instance relationship has the same type as

its corresponding block relationship. As a consequence, we can write them as follows:

typeirtypetypeiranditypebirtypeitypebirtype

IiiandiitypeirBRirtypeIRir

ettettsourcesource

ettsourceettsource

).(.)().(,)().(

,),,(,)(.

argarg

argarg

===

∈=∈∈∀

 Each block owns its attributes, operations, parts, part relationships and ports. Parts

are other blocks with a “part of” relationship; attributes are the value properties. Ports

enable input to or output from the block. Operations are the behaviors which a block

contains. Part relationships are the relationship of the material flow or information flow

between the ports of parts. From the structure perspective, this is denoted as:

);;;;(iiiiii PRPTPOAb ≡

 where

 iA is a set of attributes in block i

 iO is a set of operations in block i

 iP is a set of parts in block i

 iPT is a set of ports in block i

 iPR is a set of part relationships in block i

 iP is a set of parts in block i. Each part is a subcomponent of a block and is a

usage of another block, BptypePp i ∈∈∀)(, .

 iPT is a set of ports in block i. A port is the input or output accessing points of its

owning block. The type of a port is also a block. A port could be an information port or a

flow port.

 75

 iPR is a set of part relationships in block i. Each part relationship, iPRpr ∈

contains a port jpt for the source parts sourceip , and a port kpt for the target parts

targetip , . Any port pt must be a port of the block ib , the parts iP , or the subparts

).(nP
n iP∪ so that

).(ib,,, ,).,,.,(, nP
n iPiPtargetipsourceipkpttargetipjptsourceippriPRpr ∪∪∪∈=∈∀

 , sourcePTjptsourceip ∈., and targetPTkpttargetip ∈., .

 The inheritance relationships in the object-oriented concept are used to imply that

a child block has an “is a” relationship to its parent block. It can be modeled as follows:

einheritanctypebrbr =∀ .|

implies that sourcetarget bbrbbr .. ⊆ and

sourcetargetsourcetargetsourcetargetsourcetargetsourcetarget PRPRPTPTPPOOAA ⊆⊆⊆⊆⊆ ,,,,

 In an “is-a” relationship, any elements including attributes, operations, parts, ports

and the part relationships in the source block are also in the target block. Additional

elements can be defined for the target block.

 The compositions and aggregation relationships describe “has a” relationships and

can be shown in this way:

ncompositioornaggregatiotypebrbr .| =∀ , sourcesource PBbrp ..∈∃ such that

targetBbrptype .)(= .

 If the source block has an aggregation or a composition relationship to the target

block, the source block has at least one part which is a type of the target block.

 SysML diagrams are graphical representation of these set relationships. Each

diagram is a view of the target system from a particular perspective. For example, BDD

 76

are used to define a set of blocks and their block relationships. We can also use multiple

BDDs to model all of the blocks in the target system. The corresponding object-oriented

tuple will include all of the blocks in the target system, i.e., the set of blocks in the

corresponding object-oriented model is the union of all set of blocks in all BDDs.

 In a BDD, the blocks (B) and the instances (I) are described using the instance

specifications, the block relationships (BR), and the instance relationships (IR). The

blocks and the instances are two different kinds of building blocks in BDD whereas the

block relationships are arrows between the blocks. BDD also shows the properties inside

the blocks. Attributes (A), operations (O), parts (P) and ports (PT) can be defined in

the properties of the blocks.

 The IBD shows the internal structure of a block such as its attributes (A), parts

(P), ports (PT) and part relationships (PR). The IBD is useful especially for

hierarchical modeling.

 Figure 26 and Figure 27 illustrate SysML diagrams. B1 is a block and has an

aggregation relationship to B2. IBD shows the internal object flow between the parts in

B1. Figure 27 shows that B3 has an inheritance relationship to B1 and it also contains its

own attribute, named “attribute3”. I1, I2, and I3 are the instances: I1 is the instance of B1

while I2 and I3 are the instances of B2.

Figure 26: SysML example (B1 and B2)

 77

Figure 27: SysML example (B1 and B3)

 These diagrams describe an object-oriented model, which also can be represented

using the set notation:

);;;(IRBRIBD ≡

 }3,2,1{ BBBB =

 2)3(,2)2(,1)1(},3,2,1{ BItypeBItypeBItypeIIII ====

)}1,3,(2),2,1,(1{ BBeinheritancbrBBnaggregatiobrBR ==≡

)}2,1,1{(IIbrIR =

 For each block, it is summarized in Table 7.

Table 7: The structure tuple of the blocks

 B1 B2 B3

Attributes (iA) {attribute1} {attribute2} {attribute1,attribute3}

Operations (iO) {operation1} {operation2} {operation1}

Parts (iP) {Part1,Part2} {} {Part1,Part2}

Ports (iPT) {} {port} {}

Parts

Relationship(iPR)

{Part1.port,Part2.port} {} {Part1.port,Part2.port}

 78

4.3.2 System Behavior of the Proposed SysML Subset.

 The system behavior of a DES represented by the proposed SysML subset is

described by states, operations of components, and the interactions between components.

In SysML, each component is an instance of one specific block so its states, operations

and interactions will be defined at the block level.

 Each block includes its states, events, transition functions, active functions and

actions. The active functions are the functions which respond to all possible events

occurring in some state of the block. Actions are possible behaviors that might become

enabled, start, take some time to complete, or be executed, resulting in one or more

events with their corresponding state changes [104]. Each block ib is defined as follows:

);;;;;(ioiiiiii AxFEXb Γ≡

 where

 iX is a set of states in block i

 iE is a set of events in block i

 iF is a set of transition functions in block i

 iΓ is a set of active event functions in block i

 oix is an initial state in block i

 iA is a set of actions in block i

 Transitions functions are the functions that define the state transitions of a block.

The transition functions are formally defined as: iiii XEXF >−×: .),,(21 xexf denotes

the transition from the state (1x), caused by event (e), to the state (2x). Active functions

are the functions that return all possible events of the given current states, i.e.

} ,),,(|{)(ii Xzvanddefinediszyvfyv ∈=Γ .

 79

 iA is a set of activities for the block i. The activity that occurs when entering a

state is in the set, named the entry activity (iEntrySA). The do activity (iDoSA) is a

collection of the activities that occurs during a state. For example, a machine executes a

processing activity when it is in the busy state. Since this activity occurs during the busy

state, the processing activity is a do activity (iDoSA). The exit activity (iExitSA) is a set

of activities which are executed when exiting the state. The last set of activities is the

transition effect (iEffectTransition) which contains activities occurring during the

transition. iiiii EffectTransitionExitSADoSAEntrySAA ∪∪∪= .

 In this research, we define the transition effects as the interactions between the

components, modeled as E
ii XFEffectTransition)1,0(: >−× . Since the interaction may

only happen under some conditions, these conditions are denoted as X .Furthermore, the

interactions may send one or more events to other components in order to change the

state of other components. These output events are modeled as E)1,0(.

4.4 The Transformation Relationship between System Models and Decomposed

Models

This section uses the formal definition of the proposed SysML subset to analyze the

transformation relationship between the FSM system models and the decomposed models

using the proposed SysML subset.

 In order to analyze the transformation relationship between the system model and

the decomposed model, some issues needs to be addressed. One issue is the mapping

relationship between a system model and its decomposed model, i.e., for a given system

model, can we transform it to one or more corresponding decomposed models and vice

versa? The second issue is the transformation algorithm from a system model to the

corresponding decomposed model. The third issue is the transformation algorithm from a

decomposed model to the corresponding system model. The last issue is the proof of

 80

equivalence between the system model and decomposed model. Based on these issues,

the section is organized as follows. The mapping between the system and decomposed

models is discussed in Section 4.4.1. In Section 4.4.2, a transformation algorithm from

the decomposed model to the system model is proposed. Since one system model may

transform to one or more decomposed model, instead of finding all possible decomposed

models, we propose an algorithm to generate one of them in Section 4.4.3, and show an

example in Section 4.4.4. In Section 4.4.5, we prove that any system model can have at

least one equivalent decomposed model.

4.4.1 The Relationship between System Models and Decomposed Models.

For any finite-state discrete event system modeled as a finite-state machine, the system

model may have one or more corresponding decomposed models. Since decomposed

models are based on object-oriented concepts, a basic unit “block” is a blueprint for

similar instances. The different scope of the basic unit “block” results in different

decomposed models. The methods to model the transitions and the transition effects also

result in different decomposed models. For example, the transition from the system state

(1, 1) to the system state (2, 3) may be represented by either of two different decomposed

models. One decomposed model includes the interaction which is triggered by the first

component and changes the state of the second component. The other decomposed model

may include an interaction which is triggered by the second component, and then change

the state of the first component. The method of modeling the transitions of the

decomposed induces different decomposed models.

 One system model has at least one corresponding decomposed model because a

finite-state machine is a subset of the state-machine diagram. Each finite-state machine

can be represented as a deterministic finite-state automata),,,,,(0 mXxfEXG Γ= .

When there is only one block and one instance in the object-oriented design, the

decomposed model can be represented as);;;;;(AxFEXbi Γ≡ . Since there is only one

 81

component in the system, there is no action, i.e., φ=A . When the set of states, events,

transitions, and the initial states are the same, the system model and decomposed model

are the same.

 Based on the previous analysis, the transformation relationship between a system

model and the associated decomposed model is a one-to-many relationship—one system

model may be associated with one or more corresponding decomposed models.

4.4.2 Transformation Algorithm from Decomposed Models to System Models.

This section focuses on the transformation algorithm from a decomposed model to its

corresponding system model. In automata theory, there are two types of composition

operations: the product and parallel composition. However, the interactions are not

considered in these operations. The decomposed model using the proposed SysML subset

contains not only object-oriented models but also interactions among components. In this

research, we proposed a new operation which considers these interactions.

 All of the interaction events are assumed known. The number of the events in a

model depends on the model boundary. For example, a single-queue system can have job

arrival or departure events, but not detailed events such as loading event which

corresponds to the load port of the machine receiving a job. If we model the detail of this

machine, we may capture this loading event. This event is captured in the decomposed

model but is not in the system model. In this research, we define these events as the

interaction events which are the events caused by an activity belonging to one component

which affect other components denoted as n eventinteractioE . The assumption of the

transformation algorithm is that n eventinteractioE is known

and n eventinteractioN EEEEE −= ∪∪∪ ...21 .

 We propose to re-define parallel operations as follows:

 Denote the two blocks, 1b and 2b , and);;;;;(ioiiiiii AxFEXb Γ≡ .

 82

),),,(,,,,(: 2121020121212121 AAXXxxFEEEXXAcbb mmn eventinteractio ××Γ−∪×=

 where

otherwise
\)(if))),(,(),,((
\)(if))),(,(),,((

)()(if)),(),,((

:)),,((
21121112211

21121112211

22112211

21 {
undefined

ExexxFAxFexF
ExexxFAxFexF
xxeexFexF

exxF
Γ∈
Γ∈

Γ∩Γ∈

=

 The key idea of the re-defined parallel operations is to represent the interactions

using the action functions which are the transition effects in SysML. The new state space

is captured by 21 XX × . This implies that the state space of 21 bb is a subset of all

possible combinations of two component states. The event set is n eventinteractioEEE /21 ∪ is

assumed to be known. Comparing to the original parallel operation, the re-defined

parallel operation considers the interactions between components. If an event is an active

event of current states in both components, the states of both components change to other

states when this event occurs. If an event is an active event in only one component, there

may only be interaction events affecting the other component and the interactions are

captured by the action function. The accessible part operation eliminates all unreachable

states and transition functions to avoid redundant elements in the composed model.

 Since the operations are symmetric, 21 bb is equal to 12 bb . The system model is

constructed using the parallel operations to sequential add all of the components and is

shown as No bbbxFEXDES ...);;;;(21=Γ= .

4.4.3 Transformation Algorithm from System Models to Decomposed Models

One system model can have more than one corresponding decomposed models depending

on the object-oriented design as well as the rules used for creating transition functions.

We discussed their relationships in Section 4.4.1. In order to show that a system model

can be transformed into a corresponding decomposed model, we propose an algorithm to

 83

demonstrate such transformation. The assumptions of the proposed transformation

algorithm are as follows:

Assumption A.1. The structure of an object-oriented design is known, including the

blocks and instances, which are the components of the system.

Assumption A.2. Denote the number of the components as N . Assume that any system

state Xx∈ can be represented as the combinations of all instance state variables

),...,,(21 Nxxxx = . Without loss of generality, the system state is represented by all

instance state variables.

Assumption A.3. Assume that the components related to the event Ee∈ are known, i.e.,

eventsiN EEEEE nteraction21 ... −= ∪∪∪ where eventsii EE nteraction− are known for Ni ...1= .

 The implication of Assumption A.1 is that the algorithm works when the structure

is known. A system model contains only the states, events, or transition functions but not

the structure information like blocks or instances. A decomposed model requires not only

the states but also the structure information. Therefore, the proposed transformation

requires the structure information to be known. It is valid to state Assumption 2 that any

system state can be represented as the combinations of all instance state variables. If the

structure information of the system and all of the system states are known, each

component must be in its own state for any system state. As a consequence, we assume

that the system state can be represented as the combinations of these component states.

Assumption 3 requires that the events in each component are known. An event is

associated with a state change, and that state is also related to a component. Thus, the

events in each component can be indentified.

 Denote the system model as);;;;;(mo XxFEXDES Γ= . The transformation

algorithm from a system model to the corresponding decomposed model is as follows:

Step 1: Find iX . The set of the states of the component i is

})...,,,,...,(|{ 111 XxxyxxyX Niii ∈∃= +− .

 84

Step 2: Find ix0 . The initial state of the component i, ix0 ,is the i-th state of 0x .

),...,,...,(00010 Ni xxxx = .

Step 3: Define the transition functions. The set of the transition functions of the

component i is

i{(, ,) | , ,v Ei iF u v y u y X= ∈ ∈

11 (1 1)1 (1 1)1 1 12 (1 1)2 (1 1)2 2and {(,..., , , ,...,), , (,..., , , , ,...,)} }i i N i i Nx x u x x v x x y x x F− + − +∃ ∈ .

Step 4: Define the guard condition of each transition function.

A transition function),,(21 iiii xexF has a guard condition when

1),,(and such that X 21222 ≥≠∈∃ iiiiiii vexFxvv and the guard condition is

}),...,,...,(),...,,...,(|),...,,...,({ 221211111111 Fxxxexxxxxx NiiNiNi ∈>−×∪ . The guard

condition is used when there are two or more possible destination states from the

same starting state and event.

Step 5: Define the action of each transition function.

Step 5.1: Denote Z as a subset of F and

}),...,,...,(),...,,...,(|{),,(2212111121 FxxxexxxFxexZ NjiNjjij ∈>−×= .

Step 5.2: Create an action function on transition),,(21 iiii xexF if this transition

changes the states of other component, i.e.,

1),,(and such that ,, | 2121j21 ≥≠∈≠∃ jijjjjj xexZxxXxxijj .

Step 5.3: Create new interaction event ke , and the action function created in Step

5.2 is kiiiiii exxexFA >−)),,,((: 121 .

Step 5.4: Create a transition function to other component ijj ≠| such that the

interaction ke will change the state of component j , i.e.,

),,(21 jkjjjj xexFFF ∪= .

 85

 Step 1 shows that the set of states of component i is the set of all possible values

for the i -th component of the system state. Since each system state can be shown as the

composed state of all component states, all of the component states can be easily

enumerated. Step 3 defines the transition functions of each component. If we only

consider the i-th component of the system state and all of the transition functions in the

system states do not change the state ix , the component i does not have any transitions

from ix . As a consequence, if the component i has a transition function from ix , there

must exist a transition function in the system states such that the i -th dimension of the

system state changes from ix . Step 4 defines the guard constraints. Because the

transition functions created in Step 3 imply that all state change of the i -th component

the guard constraints prevents some state change if some transitions of the system model

does not change the i-th component . Step 5 defines the action functions to complete the

interactions.

 86

4.4.4 Example of the Proposed Transformation Algorithm

This section shows an example transformed from a system model to its corresponding

decomposed model and vice versa. The example is a system with one buffer and one

machine. Assuming that the buffer has the capacity of three and the machine can be idle

or busy, there are two types of events in the system model. One is the job arrival event

denoted as “e1,” and the other is the job finish event denoted as “e2”. When one job

arrives, the job moves from the buffer to the machine if the buffer is empty and machine

is idle. It is queued if the machine is busy and there are some empty spots in the buffer.

When the job is finished, the machine remains busy when there are other jobs in the

buffer. Otherwise, it becomes idle.

 All of the system states can be enumerated and modeled using a finite-state

machine as shown in Figure 28. The first element is the number of jobs in the buffer and

the second one is the state of the machine. The idle state is represented as “0” and the

busy state as “1”.

Figure 28: The system model of the example with one buffer and one machine

 The system model shown in Figure 28 can be represented using automata. The

system model is:

);;;;;(mo XxFEXDES Γ=

 87

 where

)}1,2(),1,1(),1,0(),0,0{(=X

 }2,1{ eeE =

)}0,0(2)1,0(),1,0(2)1,1(,

),1,1(2)1,2(),1,2(1)1,1(,
),1,1(1)1,0(),1,0(1)0,0{(

>−×>−×
>−×>−×
>−×>−×=

ee
ee
eeF

)0,0(0 =x

)}1,2(),1,1(),1,0(),0,0{(=mX

 Assuming an object oriented design D ,);;;(IRBRIBD ≡ ,

},{ machinebufferB = , },{ 21 iiI = , bufferitype =)(1 and machineitype =)(2 . Since each

system state is the combination of the component states, the applied transformation

algorithm generates the corresponding decomposed model.

Step 1: The set of the states of the component i is

})...,,,,...,(|{ 111 XxxyxxyX Niii ∈∃= +− .

}1,0{},2,1,0{ 21 == XX .

Step 2: The initial state of the component i, ix0 , is the i-th state of 0x .

 001 =x and 002 =x .

Step 3: The set of transition functions of component i is

})},...,,,,,...,(,),,...,,,,...,{(and
Ev,,|),,{(

22)11(2)11(1211)11(1)11(11

i

Fxxyxxvxxuxx
XyuyvuF

NiiNii

ii

∈∃
∈∈=

+−+−

.

 }211 , 110 , 010{1 >−×>−×>−×= eeeF

 }011 , 111{2 >−×>−×= eeF

Step 4: Define the guard condition of each transition function and the result is

shown in Figure 29. Table 6 shows the automata of each component.

 88

Figure 29: The decomposed model of the example without actions

Step 5: Define the action function of each transition function. The result is shown

in Figure 30 and Table 8.

Figure 30: The decomposed model of the example

 The second part of the example shows that the decomposed model can be also

transformed into a corresponding system model by applying the proposed parallel

operation,),),,(,,,/,(: 2121020121 int212121 AAXXxxFEEEXXAcbb mmeventeraction ××Γ∪×= .

otherwise
\)(if))),(,(),,((
\)(if))),(,(),,((

)()(if)),(),,((

:)),,((
21121112211

21121112211

22112211

21 {
undefined

ExexxFAxFexF
ExexxFAxFexF
xxeexFexF

exxF
Γ∈
Γ∈

Γ∩Γ∈

=

 89

Table 8: The automata of a decomposed model

);;;;;(ioiiiiii AxFEXb Γ≡ 1=i 2=i

iX {0,1,2} {0,1}

iE {e1,e4} {e2,e3}

iF

{ 0]02[10 →=× Xe ,

1]12[10 →=× Xe ,

211 →× e ,

142 →× e ,

041 →× e }

{ 0]01[21 →=× Xe ,

1]11[21 →>× Xe ,

130 →× e }

oix 0 0

iA { 3,21),0],02[1,0(1 EXXXeF = }{ 4,21),1],11[2,1(2 EXXXeF > }

 The state of the system model is the subset of all possible combinations of the

component states which are {(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)}. The event set E contains

1e and 2e . The result of this finite-state machine is shown in Figure 31:

Figure 31: The finite state machine of the example

 90

 Since the states (1,0), (2,0) and the transition between the states are not accessible

from the initial state, these states and transitions are eliminated by the accessible part

operation and the results are the same as the original finite-state machine shown in Figure

28.

4.4.5 The Interchangeability between System Models and Decomposed Models

This section shows that a discrete event system can be modeled using the proposed

SysML subset. The discrete event system consisting of states, events and transitions is

described as a FSM or a system model. The decomposed model is the mathematical

formulation of DEMP and can be described using the set notation or represented in

SysML language. This section shows that for any given finite state machine there exists

at least one corresponding decomposed model, which can be transformed bi-directionally.

 Any given discrete event system, 1S , can be represented as an automata

);;;;;(1 1,1111 msoSSSS XxFEXS Γ= . Suppose the object-oriented design is known and we

construct the decomposed model NiAxFEXb ioiiiiii ...1),;;;;;(=Γ≡ . The decomposed

model can represent a system model);;;;;(2 2,2222 msoSSSS XxFEXS Γ= . If 1S and 2S

are equal, the decomposed model will represent the original system model.

Theorem 1: 21 SS XX ⊆

Proof: For any i-th element isx ,1 in any system state 11 Ss Xx ∈ , there must be iis Xx ∈,1 .

Since NS XXX ××= ...12 , 21 Ss Xx ∈ , any state in 1SX also exists in 2SX so 21 SS XX ⊆ .

Theorem 2: 21 SS EE =

Proof: From definitions,

φ=∩−∪∪∪= eventsiSeventsiNS EEEEEEE nteraction1 nteraction211 and ...

 91

eventseractionNS EEEEE int212 ... −∪∪∪=

As a consequence, 21 SS EE = .

Theorem 3: 2,01,0 SS xx =

Proof: 2,0,02,01,01,0),...,(SNS xxxxx ==

Theorem 4: 21 SS FF ⊆

Proof:

For any transition function t in 1SF ,),...,,...,(),...,,...,(: 22121111 NiiNi xxxexxxt >−× .

In the decomposed model, since iEv,,|),,{(∈∈= ii XyuyvuF and

})},...,,,,,...,(,),,...,,,,...,{(22)11(2)11(1211)11(1)11(11 Fxxyxxvxxuxx NiiNii ∈∃ +−+− , there exists one

transition),,(21 iiii xexF in component i and the action function such that

)),,..,...,((11112 iNiS exxxF

)))..,((),...,,()),...,..,(((1,111,111 niiNNiiinii xxFAxFexFxxFAxF=

)))..,((,...,)),...,..,(((1,121,111 niiNNinii xxFAxFxxxFAxF=

),...,,...,(2221 Ni xxx= .

 Since every transition function t in 1SF will be also in 2SF , 21 SS FF ⊆ .

Theorem 5: For any state 21 SS XXx ∩∈ ,)()(21 xx SS Γ=Γ

Proof:

In Theorem 3, any transition function in 1S is also in 2S so that)()(21 xx SS Γ⊆Γ . If

there is a pair of any active event y and the state 21 SS XXx ∩∈ in the active function

 92

)(2 xSΓ but not in)(1 xSΓ , there must be a transition),,(zyxF ii in the decomposed model

and imply existing some transition in)(1 xSΓ which it contradicts to)(1 xy SΓ∉ .

Theorem 6: 21 SS XX =

Proof: For any state 12 SS XXx −∈ , it is accessible from the initial state 2,0 Sx . If there are

any transitions from the state 1SXy∈ , it will contradict to Theorem 4. It is only

accessible from the state in the set of 12 SS XX − and x is eliminated from the accessible

part operation and 21 SS XX = .

Theorem 7: 21 SS FF =

Proof: From Theorem 4 and 6, 1SF will be equal to 2SF .

 From Theorem 2 to Theorem 6, 1S will be equal to 2S . Any discrete event

system can be modeled using the proposed modeling methodology and the modeling

artifact can also show the original system. The modeling elements of the proposed

modeling methodology will be less than the system model and also show the system

behavior.

4.5 Conclusion

The theory and capability of the proposed SysML subset is discussed in this chapter.

Since this is a new language, the capability of capturing DES is important. The analyze

models are compared based on the proposed SysML subset and on finite-state machines

and conclude two following key aspects of the research in this chapter.

 One is the formal definition of the proposed SysML subset. Any SysML graphical

representation using the proposed subset can be represented in this formal definition.

 93

Comparing to the original descriptive standard, our formal definition provides a concise

description.

 Another key is the interchangeability between a FSM model and a model created

using the proposed SysML subset. Two algorithms are specified to show that any model

represented by a FSM can be transformed into its corresponding model by the proposed

SysML subset and vice versa. An example is created for a single queue system to

demonstrate the algorithms. Any model represented by FSM can be captured by the

proposed SysML subset which also represents the original system. The proposed SysML

subset has the capability to model any DES if this DES can be modeled by FMS.

 94

CHAPTER 5

RELATIONSHIP BETWEEN CONCEPTUAL MODELING

LANGUAGES

5.1 Introduction

The SysML-based object-oriented modeling process, DEMP, is proposed for discrete

event systems. DEMP uses a subset of SysML (block definition diagrams, internal block

diagrams, state machine diagrams, activity diagrams and sequence diagrams) to describe

the target DES. In order to avoid explicitly describing an exponentially increasing

number of system states when the number of component increases, DEMP provides a

framework to model each system component and the interactions between components.

By applying DEMP, when the interactions between components are modeled, the number

of states that must be explicitly described only increases linearly in the number of

components.

 In the literature, one widely used approach for describing a DES is to use finite-

state automata or FSM [100]. The relationships between these two languages and the

proposed SysML subset are shown in Chapter 4. If a DES can be described as a FSM,

then an equivalent model can be developed using the proposed SysML subset and this

model represents the original FSM.

 This chapter will address the relationship between the proposed SysML subset

and other state-based modeling languages including Moore machines, Mealy machines,

logical languages and Harel statecharts. Since all of these languages describe a system by

capturing the states of the system, for a model using one language there may be an

equivalent model using another language. Some, but not all the possible equivalence

relationships among these languages have been discussed in the literature. In order to

 95

better understand the capability of the proposed SysML subset, we will establish formally

the equivalence relationships among all these languages.

 This chapter is organized as follows. In Section 5.2, we review the transformation

processes or algorithms between two state-based conceptual modeling languages. Some

of the relationships are not found in the contemporary literature and are proposed in

Section 5.3. In Section 5.4, we show an overall picture of the relationship between these

conceptual modeling languages and ends up the conclusion.

5.2 Transformations between State-based Modeling Languages.

This section reviews the relationship between state-based conceptual modeling languages

in the literature. Some pairs of conceptual modeling languages can be shown to be

equivalent (i.e., any model in one of the languages can be transformed to an equivalent

model in the other language), such as finite-state automata and finite-state state machine.

However, not all pairs of conceptual modeling languages are equivalent. The

transformation relationship between logical languages and automata is discussion in

Section 5.2.1. The relationship between UML/SysML state machine diagrams and Harel

Statecharts is shown in Section 5.2.2. In Section 5.2.3, we review the transformation

between Moore and Mealy machines.

5.2.1 Logical Language and Automata

Logical languages model event types and all sequences of events but do not model states,

while automata model both events and states. As a consequence, the transformation from

a logical language to its corresponding automaton must generate a set of states but not the

transformation from an automaton to the corresponding logical language. Since the

transformation from an automaton to the corresponding logical language always exists,

 96

we will discuss this transformation first, and then the transformation from a logical

language to the automaton.

 An automaton),,,,,(0 mXxfEXG Γ= , can be defined as the following logical

language: [21]

}defined is),(:{:)(0
* sxfEsGL ∈= where *E is a set of all sequences of input

events in E

 The generated logical language shows all sequences of events corresponding to a

path s generated by the transition function),(0 sxf , i.e., the path is feasible in its

original automaton.

 The logical language generated from an automaton may have infinite length

sequences. For example, an automaton with two states (a, b), events (1e , 2e), and

transitions (a× 1e → a, and a× 2e →b) generates the language,

}10 and 0|{:)(21 ≤≤≥= jieeGL ji . Since i is not bounded, the length of sequences may

be infinite.

 The transformation from a logical language to a corresponding automaton does

not always exist. If the length of all sequences of a logical language is finite, its

corresponding automaton can be derived directly. Cassandras and Lafortune [21] show an

algorithm for this transformation. Each sequence s in the language is generated as a

directed path from the initial state, i.e.,

),,,,,(0 mXxfEXG Γ= and Xsxf ∈),(0 .

For example, the sequence (12221 eeeee) of a logical language is generated as a

path from its initial state to its final state following the event sequences. If another

sequence (21221 eeeee) is also in the language, the event path (221 eee) from the initial state

is re-used and generates the new states of the new events in the graph. The generated

automaton of language },{ 2122112221 eeeeeeeeeeL = is shown in Figure 32.

 97

Figure 32: A finite-state machine example

 However, not all logical languages can be represented by using finite-state

automata. If a logical language has some sequences with an infinite length, its

corresponding state machine may have an infinite number of states, i.e., it is not a finite

state machine. In the case of a logical language with infinite length sequences, a

corresponding finite-state machine exists if and only if this logical language is a prefix

closure language, i.e. all the sub-strings of the infinite length strings are also in this

language itself. This type of logical language is defined as “regular language” [21]. For

example, the logical language, }0,0,{ 21 ≥≥= baeeL ba which 1e and 2e are two kinds of

events, is a regular language and will have a corresponding finite state automaton.

Although a and b are not bounded, any substring is still included in this language

which implies that it is a regular language and has its corresponding automaton. One

example of a logical language that is not a regular language is the logical language,

}0,{ 21 ≥= aeeL aa . For any prefix, the substring is not included in this language so no

corresponding automaton exists.

5.2.2 Harel Statechart and UML/SysML State Machine Diagram

Harel [38] defined a state chart which is a broad extension of the conventional formalism

of state machines and state diagrams. In this research, we refer to it as a “Harel

Statechart”. The Harel Statechart is essentially a state transition diagram with the

capability of hierarchy (known as the hierarchical states), orthogonality for representing

 98

concurrency, and other features such as conditions, selection entrances, delays, timeouts,

and actions. Harel [39] also described the semantics of statecharts, which is referenced as

the classical statechart in [26].

 The UML/SysML state machine diagrams are standardized notations for

modeling the intra-object behavior. Each UML/SysML state machine diagram is used to

model how a model element behaves. In the OMG UML specification [5], the state

machine formalism is an object-based variant of Harel Statecharts.

 The basic semantics in Harel Statecharts and the UML/SysML state machines are

the same. Both include composition states, triggers, guard conditions, actions and

orthogonal states. However, some notations and execution sequences are different. Crane

[25] gives an example of the differences, which is shown in Figure 33. The junction node

in the SysML/UML state machines is shown as a small filled circle, but it is shown as a

circled ‘C’ in Harel Statecharts. The execution sequences are also different. The sub-state

is executed first in the SysML/UML state machine while the top level of the state is

executed first in Harel Statecharts. In this example, when the system is in state A and

event e happens, the state of the SysML/UML state machine moves from state A to the

parent of state B because the sub-state is executed first. The transition effect (x:=1) is

associated with this state change. Since the transition effect is executed last, the state of

the system moves to state B. In Harel Statecharts, the top level of the state has higher

execution priority so the transition is from state A to state D.

Figure 33: Example of SysML/UML state machine and Harel Statechart

 99

 5.2.3 Mealy Machine and Moore Machine

We will review the transformation between Mealy machines and Moore machines in this

section. The definition of Moore machines and Mealy machines are introduced and then

the transformation relationship between Moore machines and Mealy machines are

reviewed.

 A Moore machine M can be defined as a 6-tuple,

 },,,,,{ 0 MMMMMM GOxFIXM =

where

 MX is a finite set of states

 MI is a finite set of input events

 MF is a finite set of transition functions and MMMM XIXF →×:

 Mx0 is an initial state and MM Xx ∈0

 MO is a finite set of output events

 MG is a finite set of output functions and MMM OXG →:

 A Mealy machine E can be represented in a six-tuple.

 },,,,,{ 0 EEEEEE GOxFIXE =

where

 EX is a finite set of states

 EI is a finite set of input events

 EF is a finite set of transition functions and EEEE XIXF →×:

 Ex0 is an initial state and EE Xx ∈0

 EO is a finite set of output events

 EG is a finite set of output functions and EEEE OIXG →×:

 100

Any Moore machine M can be transformed to its corresponding Mealy machine E and

is given by [40]:

 },,,,,{ 0 EEEEEE GOxFIXE =

 where ME XX = ,

 ME II = ,

 ME FF = ,

 ME XX 00 = ,

 ME OO = , and

)(),(xGixG ME = for all EXx∈ and EIi∈

In Moore machines, each action is associated with a state rather than a transition. If any

action associated with some state is the same as the action associated with all transitions

that start from the same state, the Moore machine and the constructed Mealy machine are

equivalent.

 Figure 34 shows a transformation example from a Moore machine to the

corresponding Mealy machine. There are three states (S1, S2, and S3). Since two

transitions start from State S1 in the Moore machine, their corresponding transitions in

the Mealy machine also associate with the same output events as the original output event

of State 1 which is O1 in this case. By applying this rule to all transitions, Moore

machines can be transformed into Mealy machines without adding any dummy states or

transitions.

 101

Figure 34: Transformation example from Moore machine to Mealy machine

 The reverse transformation, from a Mealy machine E to its corresponding Moore

machine M , may require creating dummy states. An output action is associated with the

transition functions in Mealy machines, while an output action is associated with the

states in Moore machines. If two or more transitions from the same state have more than

one different output actions in a Mealy Machine, then dummy nodes are required in the

corresponding Moore machine. Denote EE IiixG ∈|),(as the number of output events

of output function EG starting from state x for all input events. The transformation

algorithm is as follows:

 102

 Figure 35 shows an example of transformation from a Mealy machine to its

corresponding Moore machine. There are three states (S1, S2, and S3) in this case. Since

all of the transitions starting from State S1 have two different output actions (O1 and O4),

two states with different output events are constructed and require adding the

corresponding transition functions in the target Moore machine. There are also two

transitions starting from State 3. In this case, dummy states are not created because these

two transitions have the same output event (O3). Figure 35(b) is generated from Figure

35(a) by applying this rule.

Step 1: Initial step.

Define },,,,,{ 0 MMMMMM GOxFIXM = where EM XX = , EM II = ,

EM FF = , EM XX 00 = , EM OO = , and ϕ=MG

Step 2: For each state MXx∈

 {

 If 1|),(>∈ EE IiixG , for each output event),(ixGo E∈

 {

 Create a dummy node dx , and dMM xXX ∪=

))(|(MdMM FjkxjkxFF ∈→×→×∪= where MIk ∈ and MXj∈

)(oixGG dMM →×∪=

 }

}

 103

Figure 35: Transformation example from Mealy machine to Moore machine

5.3 Relationship between State Machine Diagrams, Moore and Mealy Machines

In this section, we will show the relationship between the SysML/UML state machine

diagrams, Moore machines and Mealy machines. A Moore machine or a Mealy machine

can be transformed to a SysML/UML state machine diagram, but not vice versa. This is

because that SysML/UML state machine diagrams may include state actions such as

“entry actions” or “exit actions” that are not possible in Moore or Mealy machines.

Furthermore, SysML/UML state machine diagram can contain composition states

(hierarchical states), orthogonal states (concurrent states), junction nodes, join or fork

nodes that are not included in Moore or Mealy machines.

 Any Moore machine model can be represented by the SysML/UML state machine

diagram. The states, input events, initial state, transition functions in a Moore machine

can be mapped directly to the corresponding syntax of a SysML/UML state machine. The

output action of a state in a Moore machine is the same as the state action “do action” in

the SysML/UML state machine. Since each element of Moore machines has the

corresponding components in the SysML/UML state machine, the Moore machine model

can also be represented in the SysML/UML state machine diagram. Mathematically, a

corresponding SysML state machine S from a Moore machine M can be represented as

follows:

 104

);;;;;(sosssss AxFEXS Γ≡

 where

 Ms XX = ,

 Ms IE = ,

 Ms FF = ,

 sΓ is derived from sF , i.e., } ,),,(|{)(iss XzvanddefinediszyvFyv ∈=Γ

 oMos xx =

)(),(xGixA Ms = for all MXx∈ and MIi∈

 A Mealy machine also can be transformed directly to a SysML/UML state

machine diagram. The states, input events, initial state, and transition functions can be

mapped directly to the corresponding elements of a SysML/UML state machine. The

output action of a transition in a Mealy machine is the same as the “transition effect” in

the SysML/UML state machine diagrams so that the Mealy machine E model can also

be represented in the SysML/UML state machine S as follows

);;;;;(sosssss AxFEXS Γ≡

 where

 Es XX = ,

 Es IE = ,

 Es FF = ,

 sΓ is derived from EF , i.e., } ,),,(|{)(iEs XzvanddefinediszyvFyv ∈=Γ

 oEos xx =

),(),(ixGixA Es = for all EXx∈ and EIi∈

 105

5.4 State-based Modeling Language Relationships

This section summarizes the transformation relationships among state-based conceptual

modeling languages. We consider these relationships from two perspectives. One is the

perspective of conceptual modeling languages used to describe systems, which includes

logical languages, automata, or finite state machines. The other perspective is the

conceptual modeling languages for system component models, e.g. Moore machines,

Mealy machines, Harel Statecharts, or the proposed SysML subset.

 The state-based modeling language relationships are shown in Figure 36 where an

arrow indicates that the source model type can be transformed into the target model time.

The upper part of this figure shows the conceptual modeling language for system models

and their relationships. FSM models can be transformed to finite-state automata and vice

versa. A model expressed in a logical language can be transformed to a model expressed

as a finite-state machine only if this logical language is a regular language. The lower

part of the figure displays the relationships between the conceptual modeling languages

used for the component models. Detailed discussions of each transformation are given as

follows:

1. A finite-state automaton is a mathematic formulation of a FSM, as discussed in

section 4.2.2.

2. The relationship between Finite-State automata and logic language is discussed in

Section 5.2.1.

3. The relationship between the Harel Statecharts and the UML/SysML state

machines is discussed in Section 5.2.2.

4. The relationship between FSM and the proposed SysML subset is discussed in

Section 4.4.

5. The relationship between the Moore and the Mealy machines is discussed in

Section 5.2.3.

 106

6. The relationship between the Moore machine, the Mealy machine and the

proposed SysML subset is discussed in Section 5.3.

Figure 36: The overall picture of the conceptual modeling language relationship

5.5 Conclusion

The relationships between state-based conceptual modeling languages are shown in this

chapter. If a DELS can be captured as a system model represented by FSM, finite-state

automata, or regular languages, this DELS also can be captured as a component model

represented by the proposed SysML subset. Moreover, this component model represented

by the proposed SysML subset can not only represent its original system model but does

so in a way that avoids the state explosion problem.

 The existing component model using Moore or Mealy machines or Harel

statecharts can be directly transformed into the proposed SysML subset. Although these

languages do not consider the interactions between components, these interactions using

the proposed SysML subset can be modeled. The system model can be represented by the

 107

component states and these interactions.

 108

CHAPTER 6

USING PETRI NETS TO VERIFY CONTROL MODELS SPECIFIED

AS ACTIVITY DIAGRAMS

6.1 Introduction

The domain of discrete event logistics systems (DELS) spans from a robot or a single

machine, to a warehouse or factory, to a global supply chain. One way to describe these

systems is in terms of their state variables and events, where events trigger state variable

changes. As the number of components and component interactions increases, designing

the control system becomes very challenging. In fact, according to Qiu and Joshi [75], a

large portion of the cost of establishing a discrete event logistic system is consumed by

its control system. A fundamental issue is control system verification, i.e., assuring that

the control system accurately represents the designers’ concepts and intents. One example

of the verification requirement is insuring deadlocks do not occur, i.e., two or more jobs

wait indefinitely for other active jobs to release resources [94].

 Formal modeling is an important part of verification. In the last three decades, a

number of formal modeling languages have come into use for control system modeling,

including automata [77], finite state machines [17], Petri nets (PN) [72], and statecharts

[38]. These languages provide a formal syntax and semantics for control modeling, thus

facilitating communication among stakeholders, and also supporting formal analysis of

the control model [103].

 An alternative approach to modeling discrete event systems employs object-

oriented modeling languages (o-o languages) such as UML (Unified Modeling Language)

[5] or its new variant, SysML (System Modeling Language) [4]. UML has long been a

 109

standard for developing software systems [50], and SysML is a recent elaboration

developed to support systems engineering. These o-o languages offer the potential for

reusability and maintainability of control models [18]. Because of these advantages,

applying UML or SysML for control modeling has attracted considerable attention in

recent years [96].

 While activity diagrams provide a relatively easy-to-understand specification of a

control system, they do not, at this time, support the kind of formal correctness analysis

that is possible with, e.g., PN [103]. Without a formal verification capability, the control

system may only be verified in the implementation stage where design errors are much

more expensive to correct [54]. For example, if some control logic may never be

executed or the control system can deadlock in a particular situation, without formal

verification the only way to identify these problems is through code testing or in the field.

Avoiding this time consuming and expensive process requires a method to verify activity

diagram models of control systems.

 In this paper, we propose just such a method, based on transforming an activity

diagram model of a control system to an equivalent PN model, giving access to the

conventional verification analyses available with PN models. Figure 37(a) shows an

example of an activity diagram, and the corresponding PN is shown in Figure 37 (b). Our

goal is to analyze the corresponding PN and use the result to verify the properties of the

original activity diagram. The paper is organized as follows. In Section 6.2, we review

the current research on control modeling using Petri nets and activity diagrams. In

Section 6.3, we analyze the syntax and execution semantics of PN and activity diagrams.

In Section 6.4, we identify the mapping rules between these two representations. In

Section 6.5, we present the proposed transformation algorithm for an activity diagram

control model. In Section 6.6, we show the equivalence property between an activity

diagram and the transformed PN. In Section 6.7, we show an implementation example

and end with the conclusion in Section 6.8.

 110

Figure 37: (a) An example of the activity diagram. (b) The corresponding PN of the

example.

6.2 Control Modeling in Petri Nets and UML/SysML

6.2.1 Petri Nets

PN are widely used in control modeling. For example, Zhou [103] proposes to use PN to

model semiconductor manufacturing automation. The events, operations, and processes

are modeled as places or transitions. The control logic is modeled as the conditions of the

places or captured as a PN module. Zhou also provides some PN module examples such

as the priority queue module, the rework module, or the periodically-maintained

operation model. However, in this approach, the PN model represents both the plant itself

and the controller functions. As a result, it is not easy to isolate only the control model in

order to create a specification for implementation. Furthermore, since each control rule is

modeled as a PN module, the system PN could grow quite large for complicated systems.

The development of a PN control model requires deep knowledge of PN, and the

 111

resulting control model may be difficult to communicate and understand among the

application domain experts, the PN modelers, and the controller software implementers.

 On the other hand, a PN control model provides some important properties which

can be used for verification in the design stage. Zhou [103] lists the following properties:

(1) reachability (can a PN state be reached); (2) boundedness and safeness (is the number

of tokens in a place less than a pre-specified number in all situations); (3)

conservativeness (is the weighted sum of tokens the same in all situations); and (4)

liveness (can a transition ever be fired). The detailed verification methods for these PN

properties can be found in [67]. These properties can be used to identify errors in a

control model design.

6.2.2 UML/SysML

UML/SysML is a standard object-oriented modeling language which has been widely

accepted by practitioners to describe static and dynamic parts of a complex system [96].

UML provides industry standard mechanisms for visualizing, specifying, analyzing,

designing, constructing, and documenting software systems [30] as well as for modeling

business process and similar workflows [5]. SysML extends UML to support systems

engineering, by re-using a subset of UML, and adding new diagrams such as Block

Definition Diagrams (BDD), Internal Block Diagrams (IBD), and Parametric Diagrams

[4].

 Control modeling using UML/SysML is an active area of research. Yang et. al.

[96] propose a UML-based approach for the design and development of shop floor

control systems in which each controller is modeled as a reusable class. The messages

between the controllers are modeled in sequence diagrams and the internal behavior is

captured using state machine diagrams. Bruccoleri et. al. [18] use UML to model and

design flexible manufacturing control systems. In their approach, the control logic is

described in activity diagrams. Huang et. al. [44] propose a state machine paradigm to

 112

describe a control system. Other related work using UML/SysML for control modeling

includes [70], [97], and [13].

 While there is prior work on control modeling using UML/SysML , there is much

less attention on the verification of UML/SysML control models. Eshuis and Wieringa

[31] propose a tool that translates an activity diagram into a mathematical form and

describe techniques to verify the mathematical model. However, the execution semantics

considered in their work is based on UML 1.X , where activity diagrams are state-based;

activity diagrams in contemporary UML 2.X (and thus in SysML) are token-based. In the

present paper, we will analyze UML 2.X activity diagram models of control models and

show how to derive PN properties for verification.

6.3 Syntax and Execution Semantics of Petri Nets and Activity Diagrams

Before defining a formal mapping between PN and activity diagrams, we give a brief

review of the syntax of PN and activity diagrams using the notation defined in this

section.

6.3.1 Syntax of Petri Nets

A classical Petri net graph, PN , be represented by a four-tuple [102].

 0{ , , , }PN P T A m=

 where

 P is a finite set of places

 T is a finite set of transitions

 A is a finite set of arcs and () ()A P T T P⊆ × ∪ ×

 0m is the initial marking

 There are variations of classical PN. Moore and Gupta [66] classify temporal PN

in two major categories: timed Petri nets and stochastic Petri nets. These two sub-types of

PN have a time attribute (time) for a transition t T∈ . Timed Petri nets are PN with

 113

.t time R∈ and . 0t time ≥ t T∀ ∈ . Stochastic Petri nets are PN with .t time as a random

variable. Another variation is colored Petri nets (CPNs). CPNs provide a method for

distinguishing between token types by allowing a token type to have its own attributes or

data structure [66].

6.3.2 Syntax of UML/SysML Activity Diagrams

The current specifications of UML/SysML only provide the syntax and semantics of the

diagrams themselves, but not a formal mathematical definition. In the following, we give

a brief review of the UML activity diagram and then define an appropriate notation.

UML activity diagrams are used to describe both object flows and control flows. A UML

activity diagram includes actions (rounded rectangles), central buffer nodes and pins

(rectangles), initial nodes (solid filled circles), activity final nodes (a circle with a solid

filled circle inside), merge nodes (a diamond), decision nodes (a diamond), partitions (a

frame), join nodes (a bar) and fork nodes (a bar). Arrows connect nodes and indicate the

direction of token flows. An action represents a single step of behavior which converts a

set of inputs to a set of outputs. Both inputs and outputs are specified as pins. Behavior is

represented as a flow of tokens. The flow is started from the initial node which generates

and passes a token to each node to which it is connected. A fork node generates tokens on

all of its leaving arcs. Join nodes generate a token on the leaving arc when all entering

arcs have at least one token. Object flow is represented using a dashed line and control

flow is represented using a solid line. Central buffer nodes are buffers of object tokens. A

behavior stops when the activity final node has a token. The detailed specification can be

found in [5].

 For an activity diagram, we denote by ()contain n the action containing pin n , the

set of input edges of node n as ()inedge n , the set of output edges of n as ()outedge n ,

and S as the number of elements in set S . An activity diagram ACT can be

represented by an eleven-tuple.

 114

 { , , , , , , , , , , }ACT A IN FN JN RN MN DN PIN CEN OE CE=

 where

 A is a finite set of actions.

 IN is a finite set of initial nodes.

 n IN∀ ∈ , () 0inedge n = and () 0outedge n > .

 FN is a finite set of final nodes.

 n FN∀ ∈ , () 0inedge n > and () 0outedge n = .

 JN is a finite set of join nodes.

 n JN∀ ∈ , () 2inedge n ≥ and () 1outedge n = .

 RN is a finite set of fork nodes.

 n RN∀ ∈ , () 1inedge n = and () 2outedge n ≥ .

 MN is a finite set of merge nodes.

 n MN∀ ∈ , () 2inedge n ≥ and () 1outedge n = .

 DN is a finite set of decision nodes.

 n DN∀ ∈ , () 1inedge n = and () 2outedge n ≥ .

 PIN is a finite set of pins.

 n PIN∀ ∈ , ()contain n A∈ .

 CEN is a finite set of central buffer nodes.

 n CEN∀ ∈ , ()contain n φ∈ .

 ON is a finite set of object nodes and ON PIN CEN= ∪ .

 CN is a finite set of control nodes and

 CN IN FN JN RN MN DN= ∪ ∪ ∪ ∪ ∪ .

 OE is a finite set of object edges and { }OE ON ON⊆ × .

 CE is a finite set of control edges and {() ()}CE CN A CN A⊆ ∪ × ∪ .

 115

 In the next section we will analyze the execution semantics of Petri nets and

activity diagrams and identify the mapping rules from activity diagrams to Petri nets.

6.3.3 Execution Semantics of Petri Nets and Activity Diagrams

Both PN and activity diagrams are token-based and both have two types of execution

semantics. One type of execution semantics we call “load-and-send”. Examples of “load-

and-send” nodes in PN are transitions. A transition t is fired when all input places to t

have at least one token. When t fires, one token is consumed from each of its input

places and one token is added to each of its output places. A special case is the weighted

PN, where an arc has a weight value and a transition is fired when the number of tokens

in each input place is equal to or larger than the associated arc weight. Then the transition

generates tokens, as many as the value of the arc weight, to all output edges. In

UML/SysML activity diagrams, the execution semantics of fork nodes, join nodes and

actions also are “load-and-send” because these nodes are fired when all input nodes have

at least one token.

 The other type of execution semantics we call “immediate-repeat”. For a PN, as

soon as a place receives a token from any input transitions, without waiting it

immediately adds a token to its output transitions. For UML/SysML activity diagrams,

activity final nodes, merge nodes, decision nodes, pin nodes, and central buffer nodes are

“immediate-repeat” nodes because they are fired immediately when any token is

received.

 The execution semantics of the nodes in both PN and activity diagrams are either

“load-and-send” or “immediate-repeat.” As a consequence, we can define mapping from

activity diagram elements to PN elements, which we identify in the next section.

 116

6.4 Mapping Rules

Prior work has provided mapping rules from activity diagrams to PN, e.g., Li et. al. [54],

Staines [89], and López-Grao et. al. [55], although these mapping rules are either

intuitive or only apply to UML 1.X. The formal mapping rules we identify are

appropriate for UML 2.X, and specify relationships between sets of modeling elements in

the two languages. We consider modeling elements in PN and activity diagrams to be

equivalent if their execution semantics are the same. In addition, if a modeling element in

one language has an execution duration or has a set of input edges and output edges, the

corresponding modeling element in the other language must have equivalent features.

Therefore, we analyze all possible cases of the execution semantics for modeling

elements with and without an execution duration, and for all possible situations regarding

the numbers of input and output edges.

 Observation 4.1: Activity diagram actions, fork nodes, and join nodes are mapped

to a transition in PN, because they have equivalent “load-and-send” execution semantics.

In activity diagrams, only actions can have an execution duration. Thus, we analyze two

cases: “load-and-send” nodes with and without execution durations.

 All possible situations for “Load-and-Send Nodes Without Execution Duration”

are summarized in Table 9. The object flow and control flow are represented by solid line

and dashed line, respectively.

 117

Table 9: Mapping rules for “load-and-send” nodes without execution durations

Node type Time In-edges Out-edges UML/SysML activity
 representation Corresponding Petri nets

Actions No 0 >=1

Actions No >=1 0

Actions No >=1 >=1

Fork No 1 >=1

Join No >=1 1

 All possible situations for “Action Nodes with the Execution Durations” are

summarized in Table 10.

Table 10: Mapping rules for “action nodes” with execution durations

Node type Time In-edges Out-edges UML/SysML activity
 representation Corresponding Petri nets

Actions Yes 0 >=1

Actions Yes >=1 0

Actions Yes >=1 >=1

 As shown in Tables 9 and 10, activity diagram actions, fork nodes, and join nodes

can be mapped to a unique transition in PN. We also analyze the mapping rules of

“immediate-repeat” nodes as follows.

 118

 Observation 4.2: Activity final nodes, merge nodes, decision nodes, pins and

central buffer nodes in an activity diagram can be mapped to places in a PN.

 These nodes in both activity diagrams and PN cannot specify an execution

duration. The correspondence between activity diagrams and PN is summarized in Table

11.

Table 11: Mapping rules for “immediate-repeat” nodes

Node type Time In-edges Out-edges UML/SysML activity
 representation Corresponding Petri nets

Activity final node No >=1 0

Merge node No >=1 1

Decision node No 1 >=1

Pin No >=0 >=0

Central buffer node No >=0 >=0

 As shown in Table 11, each “immediate-repeat” node in an activity diagram can

be mapped to a unique place in a corresponding PN. Observations 4.1 and 4.2 show the

basic mapping rules between activity diagrams and PN. The next section shows how

these mapping rules can be used in a transformation algorithm.

6.5 Act-to-PN Transformation Algorithm

A PN is valid if all of the input nodes and output nodes of a place are transitions and vice

versa. However, if we transform all activity diagram “load-and-send” nodes to PN

transitions and all activity diagram “immediate-repeat” nodes to PN places, the

constructed PN may violate this rule. For example, in the case of an activity diagram with

two actions executed consecutively, the corresponding PN will have two connected

 119

transitions, which is invalid. In this section, we will present a method to transform any

activity diagram into a valid PN model and also propose a transformation algorithm.

6.5.1 Valid PN

A PN is invalid if it has two connected transitions or places. Assume that an edge e is

directed from the head node, denoted as ()headnode e , to the tail node, denoted

as ()tailnode e . Naively applying the observations might lead to one of the five possible

invalid cases identified below.

 1) An Edge e Connecting Two “Load-and-Send” Nodes, i.e.,

()headnode e A RN JN∈ ∪ ∪ and ()tailnode e A RN JN∈ ∪ ∪ : When an edge connects

two “load-and-send” nodes in the activity diagram, a virtual place between these two

nodes is required in the corresponding PN. After executing the first “load-and-send”

node, a token is generated and sent to the second “load-and-send” node. This token waits

until the second “load-and-send” node is fired which has the same execution semantics of

a virtual place in between two “load-and-send” nodes.

2) An Edge e Connecting Two”Immediate-Repeat” nodes, i.e.,

()headnode e MN DN PIN CEN∈ ∪ ∪ ∪ and

()tailnode e FN MN DN PIN CEN∈ ∪ ∪ ∪ ∪ : The execution semantics of two connected

“immediate-repeat” nodes in an activity diagram are equivalent to the execution

semantics for one place in PN. Figure 38(a) shows a two-action example of the activity

diagram. According to the UML/SysML specification [5], [4], it is equivalent to the

model in which we add pins on both actions shown in Figure 38 (b). When transforming

the model shown in Figure 38 (b), both edges connect two “load-and-send” nodes. By

applying the proposed rule, it is replaced by a single place. Then, Figure 38 (c) is the PN

corresponding to the models shown in Figure 38 (a) and Figure 38 (b).

 120

Figure 38: (a) A two-action example of the activity diagram; (b) A two-action example

with pins; (c) The corresponding PN diagram.

 However, the proposed rule cannot apply to all cases. One exception happens

when an edge in the activity diagram is from an “immediate-repeat” node to an activity

final node and this ”immediate-repeat” node has more than one output edge. By the

definition of activity final nodes, a token is disposed when it is on the activity final node.

If the “immediate-repeat” node has more than one output node, the token is disposed

under a situation which cannot be represented by only one place in a PN. The other

exception happens when an “immediate-repeat” node has multiple output nodes and one

of its output nodes also has multiple input nodes. Since the output nodes of the first

”immediate-repeat” node cannot be accessed from the second ”immediate-repeat” node,

these two nodes are not equivalent to a single place. In these two exceptions, a virtual

transition between two places is required.

 3) An Edge e Connecting an Initial Node to an “Immediate-Repeat” Node, i.e.,

()headnode e IN∈ and ()tailnode e FN MN DN PIN CEN∈ ∪ ∪ ∪ ∪ : Initial nodes in

activity diagrams assign the initial marking of PN. When an edge is from an initial node

to an “immediate-repeat” node, the “immediate-repeat” node has a token in the initial

state, which is the initial making of PN.

 121

 4) An Edge e Connecting an Initial Node to a “Load-and-Send” Node, i.e.,

()headnode e IN∈ and ()tailnode e A RN JN∈ ∪ ∪ : Since a “load-and-send” node is

represented as a transition in PN and transitions do not have an initial token, a virtual

place is required in the corresponding PN.

 5) Any pin PIN∈ : Based on the definition of activity diagrams [5], a pin is an input to

an action or an output from an action. Since pins and actions are represented as places

and transitions in PN, respectively, the corresponding place of a pin must be the input

place or the output place of the transition in PN.

6.5.2 ACT-to-PN Transformation Algorithm

We exploit the properties shown above to propose a transformation from activity

diagrams to the corresponding PN in this section.

 Denote the activity diagram as

{ , , , , , , , , , , }ACT A IN FN JN RN MN DN PIN CEN OE CE= , the corresponding PN as

0{ , , , }PN P T AR M= , and the initial number of tokens on place p as 0 ()M p . The

proposed ACT-to-PN transformation algorithm is shown as follows:

Initialization phase:
1. for all ()n A JN RN∈ ∪ ∪
2. Create a corresponding transition nt and nT T t= ∪ ;
3. for all ()n PIN MN DN CEN FN∈ ∪ ∪ ∪ ∪
4. Create a corresponding place np and nP P p= ∪
5. for all 1 2 1 2({(,) | , ,e n n n n A JN RN PIN MN DN CEN FN= ∈ ∪ ∪ ∪ ∪ ∪ ∪ ∪

1 2(,) })n n OE CE∈ ∪
6. Create a corresponding arc 1 2 1 2{(,) | , }ear n n n n P T= ∈ ∪ and eAR AR ar= ∪
7. for all ()n PIN∈
8. Create a corresponding arc { , ()}nar n contain p= and nAR AR ar= ∪

 122

Formalization phase:
1. for all (1 2 1 2 1 2(,) | (,) , ,ar n n n n AR n n T= ∈ ∈)
2. {
3. AR AR ar= − ;
4. Create a virtual place vp and vP P p= ∪ ;
5. Create an arc 1{ , }in var n p= and inAR AR ar= ∪ ;
6. Create an arc 2{ , }out var p n= and outAR AR ar= ∪ ;
7. }
8. for all (1 2 1 2| , ,ar n n ar AR n n P= × ∈ ∈)
9. {
10. AR AR ar= − ;
11. if ((1() 1outedge n > and 2() 0outedge n =) or (1() 1outedge n > and

2() 1inedge n >))
12. {
13. Create a virtual transition vt and vT T t= ∪ ;
14. Create an arc 1{ , }in var n t= and inAR AR ar= ∪ ;
15. Create an arc 2{ , }out var t n= and outAR AR ar= ∪ ;
16. }
17. else
18. {
19. for all (1 3 1(,) | (),arout n n arout outedge n arout ar= ∈ ≠)
20. {
21. AR AR arout= − ;
22. Create an arc 2 3{ , }varout n n= and vAR AR arout= ∪ ;
23. }
24. for all (4 1 4 1 1(,) | (,) () |arin n n n n inedge n= ∈)
25. {
26. AR AR arin= − ;
27. Create an arc 4 2{ , }varin n n= and vAR AR arin= ∪ ;
28. }
29. 1P P n= − ;
30. }
31. }

 123

 There are three phases in the proposed transformation algorithm. In the first

phase, a PN is generated according to Observations 4.1 and 4.2. The second phase of the

algorithm identifies the invalid situations, i.e., two connecting transitions (Line 1-7) or

two connecting places (Line 8-31), and resolves these situations. When two transitions

are connected, a virtual place is added. For two connected places, if the first node is a

final node or the second node has multiple input nodes, a virtual transition is created and

shown in Line 11-16. Otherwise, two places are replaced by one place shown in Line 19-

30. The third phase of the algorithm assigns the tokens for the initial marking. If an initial

node is connected to actions, fork nodes, or join nodes, a virtual place is created and a

token is assigned on the virtual place (Line 3-8). In other cases, a token is assigned to the

corresponding place (Line 1-2).

 To generate the corresponding PN, the transformation algorithm must not contain

any infinite loops. The number of steps in the first phase and the token assignment phase

is finite since the numbers of the modeling elements and initial nodes is finite. The

second phase has three parts. The first part (Line 1-7) identifies two connected

transitions. A pair of connected transitions is resolved in a loop. The number of pairs

must be equal to or less than the number of arcs. The second part (Line 11-16) identifies

two connected places. If one place is a final node or has multiple input nodes, a virtual

transition is added. The number of iterations must be equal to or less than the number of

arcs. In the last part (Line 19-30), two places are replaced by one place which must be

Token assignment phase:
1. for all (1 2 1 2{(,) | , , }a n n n IN n PIN MN DN CEN FN a OE CE= ∈ ∈ ∪ ∪ ∪ ∪ ∈ ∪)

2. 0 2 0 2() () 1M n M n= + ;

3. for all (1 2 1 2{(,) | , , }a n n n IN n A JN RN a OE CE= ∈ ∈ ∪ ∪ ∈ ∪)
4. {
5. Create a virtual place vp and vP P p= ∪ ;
6. Create an arc 2{ , }v varp p n= and vAR AR arp= ∪ ;
7. 0 0() () 1v vM p M p= + ;
8. }

 124

equal to or less than the number of places. As a consequence, the complexity of the

formalization phase is ()2O A P+ which is finite.

6.6 Equivalence Properties

To apply the analysis capability of the PN to an activity diagram model, the properties of

transformed PN must be equivalent to the properties of the original activity diagram. In

Section 6.6.1, we discuss the equivalence properties for activity diagrams without two

connected “load-and-send” or “immediate-repeat” nodes. The equivalence properties for

activity diagrams with two connected “load-and-send” or “immediate-repeat” nodes are

discussed in Section 6.6.2.

6.6.1 Equivalence Properties for Valid PN

For an activity diagram without two connected “load-and-send” or “immediate-repeat”

nodes, the transformation to the PN implies the following properties.

 Mapping Property: Elements of an activity diagram have unique corresponding

elements in the constructed PN, but elements in the constructed PN do not necessarily

have unique corresponding elements in the activity diagram.

 The rules in Tables 9 to 11 map each modeling element in an activity diagram to a

unique modeling element in PN but not vice versa. For example, both fork nodes and

actions are mapped to transitions in PN. However, a PN transition may be the result of a

transformation from a fork or an action. To know which requires additional information.

 Trace Back Property: When constructing a PN from an activity diagram, the

source activity diagram element can be associated with the target PN element (e.g.,

through a naming convention), allowing a “trace back” from the PN element to the

corresponding activity diagram element.

 Using these two properties, we can establish the following:

 125

 Equivalence Relationship: If a transition or a place node in the constructed PN

has the liveness or boundedness property, its corresponding trace back node in the

original activity diagram also has the same property.

 Given a constructed PN, PN , and its corresponding activity diagram, ACT , the

mapping from ACT to PN can be formulated as the function g ,

()g n m= where n ACT∈ , and m PN∈ .

Then, the trace back property can be defined as its inverse function g ,

()g m n= where m PN∈ , and n ACT∈ .

 Since a state is the number of tokens in all nodes of the PN or the activity

diagram, we can denote the number of tokens in a node m under a state s as ms , and the

set of all reachable states in ACT and PN as ACTS and PNS , respectively. Construct a

function f from an activity diagram state σ to a PN state s such that

()f sσ = where m ns σ= for all n ACT∈ and ()m g n PN= ∈

 and its inverse function f , defined by

()f s σ= where n msσ = for all m PN∈ and ()n g m ACT= ∈ .

Since both g and g exist, by construction, f and f also exist.

 Using f , we can construct a set of states for ACT, which we denote ACTS . It is

straightforward to show that the properties of PNS also apply in ACTS . In order to

establish the equivalence relationship, we also need to show that ACTS = ACTS .

 If a PN node m in PN has the boundedness or liveness property, we show that

the node ()g m of the activity diagram, has the same property, under the assumption that

{ () | }ACT PNS f s s S= ∈ is the set of all reachable states of ACT.

 126

1) Liveness Property. Denote the set of input nodes and output nodes of a node m as

()innode m and ()outnode m , respectively. If m has the liveness property, ∃ ˆ PNs S∈

such that ˆ 0is > ()i innode m∀ ∈ . According to the definition of f ,

∃ ˆ ˆ()f sσ = where ˆ 0iσ > (())i innode g m∀ ∈ .

As a result, ()g m has the liveness property.

2) Boundedness Property. If a PN place node m has the boundedness property for a pre-

specified number k , ms k≤ PNs S∀ ∈ . By the definition of f ,

()g m kσ ≤ ACTSσ∀ ∈ .

Consequently, ()g m is also bounded.

 In order to show that PN and ACT share the same property, we must show that.

We will prove that the initial node, 0 ACTSσ ∈ , is in ACTS , and then use an argument on

the sequence of state changes to show that ACT ACTS S= .

 In Section V, we have shown the algorithm to construct PN such that

0 0()m f σ= .

0 0 0(()) () ACTf f f m Sσ σ= = ∈ .

The initial node 0σ is in ACTS .

 For any reachable state *σ in ACTS , there exists a path from 0σ to *σ , defined by

{ 0σ , 1σ ,…, *σ }. A state change in this sequence results from the execution of a single

node. Consider the state kσ to 1kσ + and suppose it corresponds to the execution of node

j in ACT. First, we show that both ()k PNf Sσ ∈ , and 1()k PNf Sσ + ∈ as follows.

1) If j is a “load-and-send” node and j can execute,

0i
kσ > , 1 1i i

k kσ σ+ = − ()i innode j∀ ∈ , and 1 1i i
k kσ σ+ = + ()i outnode j∀ ∈ .

Since ()k PNf Sσ ∈ ,

 127

()
1 () 1i g i

k kfσ σ+ = − ()i innode j∀ ∈ and ()
1 () 1i g i

k kfσ σ+ = + ()i outnode j∀ ∈ .

This implied that ()kf σ changes to 1()kf σ + after the node ()g j executes. Then,

1()kf σ + is reachable and 1()k PNf Sσ + ∈ .

2) If j is an “immediate-repeat” node,

∃ ()i innode j∈ such that 0i
kσ > .

Since ()k PNf Sσ ∈ ,

()
1 1 () 1i i g i

k k kfσ σ σ+ = − = − and ∃ ()l outnode j∈ ()
1 1 () 1l l g l

k k kfσ σ σ+ = + = + .

 This implied that ()kf σ can change to 1()kf σ + after the node ()g j executes. As

a result, if ()k PNf Sσ ∈ , 1()k PNf Sσ + ∈ .

 Consider any *
ACTSσ ∈ . by definition, we have:

*() PNf Sσ ∈ .

 * *(()) ACTf f Sσ σ= ∈ . (1)

Therefore,clearly:

 ACT ACTS S⊆ . (2)

 Now suppose there exists a state σ such that ACTSσ ∉ and ACTSσ ∈ ,

 However, we have () PNf Sσ ∈ , and thus

 (()) ACTf f Sσ σ= ∈ . (3)

 Since (3) contradicts the assumption, we have:

 ACT ACTS S⊇ . (4)

 By (2) and (4), ACT ACTS S= . As a consequence, the analysis properties of the

constructed PN can be applied to its original activity diagram.

 128

6.6.2 Equivalence Properties for Invalid PN

When an activity diagram has two connected “load-and-send” or “immediate-repeat”

nodes, the corresponding PN requires adding virtual places and transitions or removing

places. In this section, we will discuss the equivalence and trace back properties for these

activity diagrams.

1) Corresponding PN Having Virtual Places, i.e., the original activity diagram has two

connected “load-and-send” nodes: Since the token passed the first “load-and-send” node

still waits until the second “load-and-send” node is fired, the activity diagram has the

same execution semantics as the activity diagram with virtual central buffers in between

two “load-and-send” nodes. By applying the equivalence property and the trace back

property shown in Section 6.6.1, the activity diagram with virtual central buffers is also

equivalent to the constructed PN. As a result, any analysis properties on virtual places can

be traced back to the corresponding virtual central buffers and the activity diagrams with

two consecutive “load-and-send” nodes are equivalent to the transformed PN.

2) Corresponding PN Having Virtual Transitions, i.e., the original activity diagram has

two connected “immediate-repeat” nodes, one node has multiple output nodes, and one

of its output nodes has multiple input nodes: Since the output nodes of the first

”immediate-repeat” node cannot be accessed from the second ”immediate-repeat” node,

the execution semantics of the activity diagram is equivalent to the activity diagram with

a virtual action between two “immediate-repeat” nodes. The analysis properties on a

virtual transition can be traced back to the corresponding virtual action and the original

activity diagrams and the transformed PN are equivalent.

3) Corresponding PN Removing Places, i.e., the original activity diagram has two

connected “immediate-repeat” nodes and all output nodes of these nodes has at most one

input node: Since the first “immediate-repeat” node in the activity diagram passes tokens

to the next node immediately, the semantics of the activity diagram is equivalent to the

activity diagram without the first “immediate-repeat” node. As a consequence, any

 129

analysis properties on a virtual place can be traced back to the second “immediate-repeat”

node and the activity diagrams are equivalent to the transformed PN.

6.7 Implementation Example

We apply the proposed algorithm to two control models specified by activity diagrams.

The first model is a simple example. The computational procedure of the transformation

is described step by step in Section 6.7.1. The second model is the fractal manufacturing

control system presented in [81]. We describe its control model and its corresponding

PN in Section 6.7.2.

6.7.1 Tutorial Model

A tutorial control model is shown in Figure 39. There are eleven activity nodes and

twelve activity edges. After the initialization, the action A1 is fired, and a token is

generated to the central buffer CB1. The token in CB1 fires the action A2. Then, the

output token fires the action A3 or both the actions A4 and A5. The output token of the

actions A3 to A5 is generated and stored in CB1. In order to determine if there is a logic

error in this diagram, we transform this model to the corresponding PN model in the

following steps.

 130

Figure 39: A tutorial case of control modeling using activity diagrams.

The first step of the transformation algorithm is to represent the diagram by using the

proposed eleven-tuple as shown in Table 12. Each element in the table corresponds to a

modeling element in the diagram.

Table 12: Activity tuple of the tutorial example

Set Element
A {A1,A2,A3,A4,A5}
IN {IN1}
FN {}
JN {}
RN {RN1}
MN {MN1}
DN {DN1}
PIN {Pin1}
CEN {CB1}

OE
{(A1,CB1),(CB1,Pin1),(A3,MN1),(A4,RN1),(RN1,MN1),(RN1,A5),
(MN1,CB1),(A5,CB1)}

CE {(IN1,A1),(A2,DN1),(DN1,A3),(DN1,A4)}

 131

 The second step of the transformation algorithm is the initialization phase of the

transformation algorithm. In this phase, we transform the ACT-tuple into the PN-tuple by

transforming “load-and-send” nodes to transitions, ‘”immediate-repeat” nodes to places,

and object/control flows to arcs. The results of this step are shown in the next table.

Table 13: Petri net tuple of the tutorial example in the second step

Set Element
P {Pin1,MN1,DN1,CB1}
T {A1,A2,A3,A4,A5,RN1}

A
{(A1,CB1),(CB1,Pin1),(A3,MN1),(A4,RN1),(RN1,MN1), (Pin1,A2),
(RN1,A5),(MN1,CB1),(A5,CB1),(A2,DN1),(DN1,A3),(DN1,A4)}

 The third step of the transformation algorithm is the second phase of the

transformation algorithm. In this phase, all of the invalid arcs are identified and resolved.

Denote the virtual places as VP. The results of this step are shown in Table 14. Two

virtual places are added due to the arcs (A4, RN1) and (RN1, A5) and two places (MN1

and CB1) are removed.

Table 14: Petri net tuple of the tutorial example in the third step

Set Element
P {Pin1,DN1,VP1,VP2}
T {A1,A2,A3,A4,A5,RN1}

A
{(A1,Pin1),(A3,Pin1),(A4,VP1),(VP1,RN1),(RN1,Pin1),(Pin1,A2),
(RN1,VP2),(VP2,A5),(A5,Pin1),(A2,DN1),(DN1,A3),(DN1,A4)}

The last step of the transformation algorithm is the token assignment phase of the

transformation algorithm. The initial marking of the PN is added. Since the initial node

(IN1) connects to an action, a virtual place (VP3) is required. The final tuple and the

corresponding PN are shown in Table 15 and Fig. 7, respectively.

 132

Table 15: Corresponding Petri net tuple of the tutorial example

Set Element
P {Pin1,DN1,VP1,VP2,VP3}
T {A1,A2,A3,A4,A5,RN1}

A

{(A1,Pin1),(A3,Pin1),(A4,VP1),(VP1,RN1),(RN1,Pin1),(Pin1,A2),
(RN1,VP2),(VP2,A5),(A5,Pin1),(A2,DN1),(DN1,A3),(DN1,A4),
(VP3,A1)}

Mo Mo(Pin1)=0, Mo(DN1)=0, Mo(VP1)=0, Mo(VP2)=0, Mo(VP3)=1

Figure 40: PN constructed from the tutorial activity diagram.

 Upon completion, the corresponding PN is generated. By analyzing the liveness

property of this PN, all transitions are required and will be fired at least once. This also

implies the actions in the activity diagram will be executed at least once. However, since

Pin1 in the corresponding PN does not have the boundedness property, the original

UML/SysML activity diagram may have an infinite accumulation of tokens at Pin1.

 133

6.7.2 Control Model of Fractal Manufacturing Systems

The control model of a fractal manufacturing system from [81] is presented in this

section. Each component of the fractal manufacturing system contains five modules: 1)

an observer, 2) an analyzer, 3) an organizer, 4) a resolver, and 5) a reporter. One way to

model this system is to capture each component as an individual agent. These agents

cooperate and negotiate autonomously. The resolver agent is a decision-marking agent

(DMA). Its decision-making process is shown in Figure 41. Further information on the

process of this fractal manufacturing systems can be found in [81].

Figure 41: An activity diagram of DMA.

 There are thirty activity nodes and forty-five activity edges in this activity

diagrams. It is not obvious how to verify this model directly. However, by applying the

 134

proposed transformation algorithm, this model can be transformed into a corresponding

Petri net as shown in Figure 42, and the verification methods of PN can be applied.

Figure 42: The corresponding PN diagram of DMA.

6.8 Conclusion

Control modeling using UML/SysML has attracted much attention during recent decades.

The current research on UML/SysML does not provide the analysis capability to verify

the control model so design errors may not be identified until the implementation stage,

when they are very expensive to correct. In this research, a method to transform an

activity diagram to its corresponding PN is proposed. Our work enables control modelers

to reduce the verification cost by identifying potential design errors of the control models

specified as activity diagrams before implementation.

 The research here only considers the verification of control models specified by

activity diagrams. One direction for future research is the transformation of these control

 135

models to discrete event simulation models. Discrete event simulations have been used

extensively for comparing different control models. However, activity diagrams are not

executable in the current commercial-off-the-shelf (COTS) simulation tools so comparing

different control models can be expensive. The method to transform activity diagrams to

the COTS simulation tools is also a challenge.

 136

CHAPTER 7

AUTOMATING SIMULATION OF CONTROL MODELS

EXPRESSED AS UML/SYSML ACTIVITY DIAGRAMS

7.1 Introduction

Designing the control systems for DELS is a challenge. Since DELS are often large in

scale, e.g., thousands of relevant entities, the controls of these systems are also complex.

Another challenge in the design of the control systems is the necessity for error-free

operation. Any design errors in the control system may result system instability. Even if a

reliable control design can be created, comparing alternative control designs is also a

challenge.

 A formal control model is often created during the design stage and used to verify

and validate the control model before the implementation stage. A number formal

languages have been used for this propose in the last three decades, including Petri nets

[72], automata [77], finite state machines [17], statecharts [38] and UML/SysML [5, 4].

 The use of UML/SysML for control modeling [18, 54, 56, 70, 96] is expanding

[96]. UML/SysML are industry-standard languages for object-oriented modeling, and

they provide the potential for reusability and maintainability of control models. In

addition, a control model specified using UML/SysML can be represented graphically. In

particular, UML/SysML activity diagrams can be used to model the control intent, e.g.,

the dispatching rules, the release rules, and the routing rules.

 A UML activity diagram consists of nodes and arcs and has both object and token

flows. Nodes represent actions (a rounded rectangle), central buffer nodes (a rectangle),

initial nodes (a solid filled circle), final nodes (a circle with a cross), activity final nodes

 137

(a circle with a solid filled circle inside), merge and decision nodes (a diamond), and join

and fork nodes (a bar). Actions represent a single step of behavior. The inputs and

outputs are specified as pins (a rectangle). Central buffer nodes are buffers for objects. A

partition or frame can be used to group actions and to assign them to a particular

resource. A behavior starts from initial nodes and ends with final nodes. Decision nodes

choose between the outgoing flow. Merge nodes bring together multiple entering flows.

Fork nodes split a flow into multiple concurrent flows and join nodes synchronize

multiple flows. The detailed specification can be found in [5].

 Figure 43 shows a simple example of a dispatching rule described using an

activity diagram. The controller checks the status of the next machine and the number of

available vehicles to determine the next actions. In an activity diagram, different

alternative actions can be represented using decision nodes. The steps of the control rules

are described as actions which can be reused in other similar control rules.

Figure 43: Example of control modeling using activity diagrams.

 Discrete event simulation is widely used to analyze system performance because

there are no other high-fidelity analysis approaches that can cope with these systems in

 138

their full complexity. However, the state-of-the-art development of activity diagrams

lacks direct support for discrete event simulation. Without this capability, validating a

control model specified using activity diagrams is difficult.

 The goal of this paper is to propose a method transforming for a control model

represented using activity diagrams to a corresponding simulation model. To provide a

foundation for the concepts we propose, we first review the literature on control model

transformation in section 7.2. We then show the proposed transformation approach in

section 7.3. In section 7.4, an implementation example illustrates the transformation.

Section 7.5 concludes with suggestions for future research.

7.2 Literature Review

We briefly review two related topics: the state-of-the-art research on control model

transformations; and executable UML, a standard for executable activity diagrams

proposed by OMG [3].

7.2.1 Control Model Transformation

Yuan et. al. [98] develop a flexible simulation model generator written in FORTRAN.

Discrete event systems are specified by a set of expressions called “operation equations.”

To generate a simulation model, a batch file of operation equations is input to the

generator, which creates a SIMAN simulation model. Module libraries are used to model

different domains in the generator. A library for manufacturing systems is illustrated.

 Flordal et. al. [32] propose control model transformation to programmable logic

controller code. They model the policies of industrial robot cells using automata,

specified as an XML file. The model generator transforms the XML file to a

corresponding application-specific PLC-code. All events and states in automata are

encoded as boolean variables. The connection between the events and the PLC execution

 139

environment is application-specific so the model generator is customized for different

PLC execution environments.

 Son and Wysk [86] present a structure for automatic simulation model generation.

A shop floor resource model and a shop floor control model are considered. The control

model is described using the message-based part state graph (MPSG), which specifies the

behavior of the controllers from the part perspective. The MPSG text file is the input to

the transformation for generating the ARENA simulation model. The detailed

transformation algorithm is discussed in [87].

 In order to improve the reusability and reduce the production time for developing

transformation generation, Milicev [63] proposes a domain mapping concept. When a

domain model follows the syntax of a formal language, the specification of the language

is called the meta-model. The proposed concepts are based on the mapping between

source and target meta-models, so the generator can be reused for any source model and

corresponding target analysis, provided the same source and target meta-models apply.

He also introduces the concept of an intermediate meta-model which can eliminate some

drawbacks of a direct mapping between source and target meta-models, i.e., direct

mappings are hard to modify and reuse [64]. By using an intermediate meta-model, two

mappings are required. The first mapping is from a source meta-model to an intermediate

meta-model designed so that it is easy to map from the intermediate model meta-model to

the target analysis meta-model. The intermediate meta-model plays an important role. It

decouples the source and target meta-models, replacing one mapping that is specific to

both with two mappings, each of which is specific only to one, either the source or the

target. Thus, significant reuse of these mappings is possible when either the source

changes or the target analysis changes.

 140

7.2.2 Executable UML

In this section, we briefly introduce the concept of executable UML and its capability for

control model transformation.

 The UML/SysML model itself is not an executable model because it does not

provide precise execution semantics for all modeling elements. The concept of executable

UML is similar to the intermediate meta-model concept [63], i.e., an intermediate meta-

model is used for transformation from a UML/SysML model to a programming language.

The intermediate meta-model, which is called “Foundational UML subset for Executable

UML” [3], is designed to be compact so each modeling element in the meta-model has

precise execution semantics. The concept of the foundational UML subset is shown in

Figure 44. It uses a subset of UML in which modeling elements have unique execution

semantics. Because of the executable semantics, some of the modeling elements, central

buffer nodes and activity partitions, are excluded because they do not have precise

execution semantics. Flow final nodes are excluded because they can be replaced by

activity final nodes.

Figure 44: Concept of foundational UML based on [3].

 141

 In order to execute an Executable UML model, the target platform language must

support the execution semantics of Executable UML which are described in [3].

However, most simulation languages do not support these capabilities. Thus, in order to

simulate a control model specified using activity diagrams, what is needed is a generic

transformation to the types of scripting languages used in contemporary simulation tools.

7.3 The Proposed Transformation—the Tree Structure

In the literature, several intermediate meta-models are proposed to enable transformation

of a control model to some other platform languages. However, the prior approaches

either do not support control modeling using UML/SysML or only consider target

languages supporting the executable UML semantics. In order to enable the

transformation from UML/SysML control models to contemporary simulation languages,

we propose a different intermediate meta-model. The concept for the proposed

intermediate meta-model is introduced in Section 7.3.1. The formal definition of the

activity diagram is shown in Section 7.3.2. The transformation from an activity diagram

to the proposed intermediate meta-model is discussed in Section 7.3.3. In Section 7.3.4,

we show the transformation from the proposed intermediate meta-model to a simulation

model.

7.3.1 Proposed Intermediate Meta-model

To transform an activity diagram to the scripting language of a simulation tool, we

introduce the generic structure of all scripting languages. In compiler theory, a scripting

language is represented as a parse-tree. One example of the parse-tree is shown in Figure

45, which represents the string “4+5*9.” Each node of the tree represents a number, an

expression or a term. The tree structure captures the execution sequence of the program

code. Therefore, the tree structure and the string are equivalent.

 142

 By using the parse-tree structure as the intermediate meta-model, we gain the

following advantages.

1) The model represented as a parse-tree can be mapped with the parse-tree inside

the compiler of the simulation language. As a consequence, if an activity diagram

can be transformed to the parse-tree, then the compiler of the simulation engine

can generate the script equivalent of the tree structure, and thus, the simulation

language equivalent of the activity diagram.

2) The parse-tree is an abstract representation of programming languages and is

independent of the syntax of the programming language. Therefore, the same

source parse-tree can be transformed into different programming languages.

Figure 45: Example of parse-tree based on [74].

We extend the concept of the parse-tree to support the transformation of control

models expressed as UML/SysML activity diagrams. Denote t as a tree structure, E as

 143

the set of the edges, N as the set of nodes, R as the set of root nodes, and ()inedge n as

the number of input edges of the node n . The parse-tree structure t is defined as follows.

 (,)t E N≡ (7.3.1)

 s.t.

 () 1inedge n = n N R∀ ∈ − (7.3.2)

 () 0inedge n = n R∀ ∈ (7.3.3)

 1R = (7.3.4)

A tree consists of a set of edges and nodes defined in (7.3.1). Constraint (7.3.2)

assures that each node has exactly one input edge for all non-root nodes. Constraint

(7.3.3) enforces that the root node has no input edges. Constraint (7.3.4) defines the

single root node. Constraints (7.3.2) to (7.3.4) also imply that 1E N= − .

The execution order of the proposed tree structure is depth-first, i.e., the next

visited node is the farthest candidate node from the root node where the candidate nodes

are the non-visited nodes whose parent node has been visited. An example is shown in

Figure 46. Assume that a left child node is chosen before a right child node. The

execution order of the example is: A, B, D, E, C.

Figure 46: Example of the proposed tree structure.

 144

The next section presents the formal definition of the activity diagrams used to

define the formal transformation in section 7.3.3.

7.3.2 Formal Definition of Activity Diagrams

To simplify the transformation, expansion regions, expansion nodes, structural activity

nodes and activity parameter nodes are not considered in this research. Expansion regions

are the nested regions of an activity diagram, i.e., a node with an expansion region can

contain other nodes. Expansion nodes are inputs or outputs of an expansion region.

Structural activity nodes are nodes with at least one expansion region. Since the same

transformation algorithm can apply to an activity diagram without any expansion region

or an expansion region, without losing any generality, we will only consider activity

diagrams without any expansion region. In this research, we also do not consider activity

parameter nodes, which are inputs or outputs of an activity diagram. Since a control

model is assumed to be specified as an activity diagram, activity parameter nodes are not

considered in this research.

An activity diagram consists of sets of activity nodes (N) and activity edges (E).

Denote ()inedge n as a finite set of input edges of node n and ()outedge n as a finite set

of output edges of node n . An activity diagram ACT can be represented by a nine-tuple

as follows:

{ , , , , , , , , }ACT A IN FN JN RN MN DN PIN E=

 where

A is a finite set of actions.

 For any n A∈ , () 0inedge n ≥ and () 0outedge n ≥ .

IN is a finite set of initial nodes.

 For any n IN∈ , () 0inedge n = and () 0outedge n > .

 145

FN is a finite set of activity final nodes.

 For any n FN∈ , () 0inedge n > and () 0outedge n = .

JN is a finite set of join nodes.

 For any n JN∈ , () 2inedge n ≥ and () 1outedge n = .

RN is a finite set of fork nodes.

 For any n FN∈ , () 1inedge n = and () 2outedge n ≥ .

MN is a finite set of merge nodes.

 For any n MN∈ , () 2inedge n ≥ and () 1outedge n = .

DN is a finite set of decision nodes.

 For any n DN∈ , () 1inedge n = and () 2outedge n ≥ .

 PIN is a finite set of pins.

N is a finite set of activity nodes and

 N A IN FN JN RN MN DN= ∪ ∪ ∪ ∪ ∪ ∪ .

E is a finite set of edges and { }E N N⊆ × .

In the following two sections, we will propose the transformation from activity

diagrams to the proposed tree structure and from the proposed tree structure to a

programming language.

7.3.3 Transformation from an Activity Diagram to a Parse-tree

In this section, the transformation of an activity diagrams to the proposed tree structure is

discussed. Most of the transformation rules are one-to-one, i.e., an activity node in an

activity diagram is mapped to a single node of the corresponding parse-tree. However,

the transformation must deal with two key issues: (1) some nodes in the activity

diagram—merge and join—may have multiple input edges; and (2) it is possible for an

activity diagram to contain a directed cycle. Our approach is to scan the activity diagram

 146

and create elements in the parse tree, employing special rules to deal with the two key

issues.

We begin by noting that an activity diagram with multiple initial nodes has the

same execution semantics as one with only a single initial node. An activity diagram with

no initial node is equivalent to one having one initial node identifying the entry point of

the activity diagram. Thus, the first step of the transformation is to insure that the activity

diagram has a single initial node, and that the parse tree has a corresponding root node,

satisfying constraints (3.3) and (3.4).

The non-root nodes of the parse-tree must have exactly one input edge. According

to the definition of an activity diagram, actions, activity final nodes, join nodes and

merge nodes may have more than one input edge. Furthermore, an activity diagram may

contain cycles, i.e., a directed path from a node to other nodes, and eventually back to

itself. In order to transform an activity diagram to a parse tree, two algorithms are

presented. One algorithm is used to transform a cyclic activity diagram to an equivalent

acyclic activity diagram. The other algorithm is used to transform an acyclic activity

diagram to the proposed tree structure.

7.3.3.1 Eliminate Activity Diagram Cycles

If an activity diagram has a cycle, a node called “goto” is used to break the cycle. The

node “goto” causes the control token to be placed in the “jump-to” node. Figure 47(a)

shows an example of an activity diagram with a cycle. When the variable i is less than

three, “Action 1” will execute again. The equivalent activity diagram using the “goto”

node is shown in Figure 47 (b).

Cycles in an activity diagram can be identified by Tarjan’s algorithm [91], which

finds a strongly connected sub-graph, i.e., any node in the sub-graph has a directed path

to all nodes in the sub-graph. This implies that each strongly connected sub-graph has at

least one cycle. If no strongly connected sub-graph is found, the activity diagram must be

 147

acyclic. We can replace an edge in a strongly connected component by using a “goto”

node which breaks at least one cycle in the sub-graph. We can repeat the process until no

strongly connected sub-graph is found, and the resulting graph will be acyclic. Since the

complexity of Tarjan’s algorithm is (,)O N E and the number of “goto” nodes is equal to

or less than E , the complexity of the transformation is 2(,)O NE E .

Figure 47: (a) Example of a cyclic activity diagram. (b) The equivalent acyclic activity

diagram.

7.3.3.2 Transform to a Parse-tree

Nodes such as actions, activity final nodes, join nodes and merge nodes in an acyclic

activity diagram can have more than one input edge which violates Constraint (7.3.2) of

the tree structure. An algorithm is needed to transform the cycle free activity diagram to

the tree structure.

Denote the node with multiple input edges as n , the set of all input edges of node

n as ()inedge n .

 148

The equivalent tree structure can be constructed if we duplicate n and the entire

sub-graph rooted at n to each edge in ()inedge n . Since the acyclic graph has no cycle,

the number of sub-nodes of a node must be finite. Depending on the node type, e.g.,

actions, activity final nodes, join nodes and merge nodes, the transformation rules are

different and described as follows:

1) Action Node: If n is an action node, n and the entire sub-graph rooted at n are

duplicated to each edge in ()inedge n . Figure 48(a) provides an example. The activity

diagram has five actions. Action 3 has more than one input edge. To create the equivalent

tree structure, Action 3 and the entire sub-graph rooted at Action 3, Actions 4 and 5, are

duplicated to each input edge of Action 3. The result is shown in Figure 48 (b).

2) Merge Node: If n is a merge node, only the entire sub-graph rooted at n are

duplicated to each edge in ()inedge n . The merge node itself is not duplicated since it

only has one input edge.

3) Join Node: If n is a join node, only the entire sub-graph rooted at n are

duplicated to the last edge in ()inedge n . Since the nodes in the entire sub-graph rooted at

n are executed only once, the entire sub-graph rooted at n is duplicated to one edge.

4) Activity Final Node: If n is an activity final node, only n is duplicated to each

edge in ()inedge n , since the entire sub-graph rooted at n is empty.

 149

Figure 48: (a) Example of the activity nodes with multiple input edges. (b) The

equivalent tree structure.

By the proposed approach, we can transform an activity diagram to a

corresponding tree structure. In the next section, we demonstrate the transformation from

the tree structure to a corresponding simulation code.

7.3.4 Transformation from the Proposed Tree Structure to the Simulation Code

The transformation from the proposed tree structure to the simulation code is based on

the execution sequence of the tree structure, the depth-first order. The transformation

algorithm does a depth-first search to generate the corresponding program code. When a

tree node is visited, the corresponding piece of the program code is generated. This

process ceases when all tree nodes are visited. By the transformation, the execution

sequence of the tree structure is equivalent to the sequence of the parse-tree so the control

script in the simulation software is equivalent to the control model in activity diagrams.

In the tree structure, each tree node is an abstraction of the target simulation

language so the transformation to a specified simulation language must be defined. For

example, a tree node “decision” is generated as “if (conditions) { }” in java. We

summarize the mapping rules of initial nodes, decision nodes, and activity final nodes

shown in Table 16. We choose two languages, “Java” and “SimTalk,” as examples of the

target simulations. Java is widely used as a programming language, and one example of

using java in simulation is the AnyLogic™ simulation software [8]. The other selected

language is “SimTalk,” the simulation language used in Siemens Plant Simulation™

[12]. To support other simulation languages, only the mapping rule from the parse-tree

nodes to the specific simulation languages is required.

The detailed implementation of action nodes can be specified in the

transformation or in an attribute of the action node itself. If the implementation of action

nodes is specified in the transformation, the supported action nodes need to be pre-

 150

defined before creating a control model. On the other hand, if the implementation is

specified in the body attribute, action nodes can be customized during the modeling stage

but the node itself has to incorporate a script of the target simulation language.

Table 16: Mapping rules between the tree node and simulation language.

Symbols NodeType Corresponding Java Language Corresponding SimTalk Language

Initial node
{

}

do

end;

Activity final node return; return;

Decision node

if (conditions)
{

}

if conditions then

end;

The node “goto” may not have a directed mapping rule to a programming language. The

node “goto” is used to break cycles in an activity diagram. However, most languages do

not support the “goto” statement. The “goto” statements make a program unstructured so

analyzing its correctness can be complicated [27]. In order to transform the tree structure

to the scripting languages without supporting the “goto” statements, we propose a

recursive transformation algorithm. Since the execution semantic of the “goto” node is

equivalent to execute a sub-function starting from the “jump-to” node, we can generate a

sub-function based on all sub-nodes of the “jump-to” node, which is also a tree structure.

Figure 49 shows the generated Pseudo code of the cyclic activity example shown in

Figure 47 (a). The main function is generated based on the whole tree shown in Figure 47

(b). A “goto” node in a tree structure is transformed to the statement “call sub-function”.

Then, the sub-function can be generated based on the sub-tree where the root node is the

reference node of the “goto” node.

 151

Figure 49: Generated Pseudo code of the example in Figure 47(a).

7.3.5 Transformation Example and Implementation Detail

In this section, we use the following activity diagram as a tutorial example for the control

transformation.

The activity ACT diagram shown in Figure 50 can be represented as:

{ , , , , , , , }ACT A IN FN JN RN MN DN E= , where A ={Actions 1 to 4.}, IN ={Initial 1},

FN ={}, JN ={}, RN ={}, MN ={}, DN ={Decisions 1 and 2}, and E ={Edges 1 to 7}.

Figure 50: Example of a control model using UML/SysML activity diagrams.

 152

Since Action 3 has more than one input edge, the action and its sub-nodes are

duplicated into two branches. Denote the two actions as Action 3_1 and Action 3_2.

Then, the corresponding tree structure t can be represented as follows:

 (,)t E N= where E ={Edges 1 to 8} and N ={Initial 1, Decisions 1 and 2, Actions 1

and 2, Action 3_1, Action 3_2, and Action 4}.

The last step of the transformation is the transformation from the tree structure to

the program code. In this example, we use SimTalk™ as the simulation language. The

transformation algorithm executes the depth-first search. When the algorithm visits a

node, it outputs a piece of code according to the mapping rules shown in section 3.4. The

execution sequence of the tree structure is in the following order: Initial 1, Action 1,

Decision 1, Action 3_1, Action 2, Decision 2, Action 3_2, and then Action 4. As a result,

the corresponding simulation language can be generated and is shown in Figure 51.

Figure 51: Corresponding Pseudo code in SimTalk.

The transformation algorithm was implemented in C# and uses MagicDraw™

[11] as the authoring tool for activity diagrams. The control model in MagicDraw™ is

exported using XML Metadata Interchange (XMI) [6]. The transformation engine uses

the XML path language (Xpath) [7] as the query language; Xpath queries can list all

modeling elements satisfying a specific search criterion, e.g., a list of all decision nodes

 153

in an activity diagram. Then, the program creates the corresponding tree structure shown

in Figure 52 and generates its corresponding simulation script.

Figure 52: Tree structure of the control model.

7.4 Example of Control Transformation

To demonstrate the proposed control transformation, a simple manufacturing process is

employed. The bucket is a part of an excavator. The bucket manufacturing process,

illustrated in Figure 53, consists of three sub-processes: cutting, bending and welding. In

the cutting process, the laser cutters form the individual parts out of steel plates. Four

types of parts are produced including bucket backs, bucket side thick plates, bucket

bottom knives, and bucket side thins. The laser cutters can use one of three patterns to cut

the steel plates. By applying the first pattern, two bucket backs and one bucket side thick

plate are produced. The first pattern can be performed only by Laser_cutter 1. Three

bucket side thick plates can be formed by applying the second pattern which can be

performed by both laser cutters. The third pattern produces two bucket bottom knives and

four bucket side thins which can be performed only by Laser_cutter 2. In the bending

process, the bucket back is shaped into the desired curve. Then in the welding processes,

the buckets are assembled.

 154

There are two candidate release rules for the bucket manufacturing processes. One

is a push-type release rule. The steel plates are released to the shop floor triggered by a

customer order. The other is called the pull-type release rule. The plates are released

when a component inventory is below a specified re-order point. For example, if the re-

order point is eight for the number of bucket side thick plates, a plate for the second

pattern is released when the number of bucket side thick plates is less than eight.

Figure 53: Bucket manufacturing process.

Figure 54 shows the pull-based release rule specified as an activity diagram for

the bucket side thick plates. The controller queries the on-hand inventory of the bucket

side thick plate, denoted as nummu, and the number of steel plates for the second pattern,

denoted as numpattern2, on the shop floor. In this case, the predefined re-order point is

fifteen. Since one of the second pattern can be transformed into three units of bucket side

thick plate, a new steel plate for the pattern 2 is released to the shop floor when

nummu+numpattern2<15.

 155

Figure 54: Pull-based release rule.

The control model represented as activity diagrams can be transformed as a tree

structure, shown in Figure 55, and the corresponding SimTalk script shown in Figure 56.

Figure 55: Tree structure of the pull-based release rule.

 156

Figure 56: Generated simulation script of the pull-based release rule.

Since this research focuses on the control modeling, we manually create a

corresponding plant model shown in Figure 57 using Siemens Plant Simulation™ . The

generated control script will be executed when a release event happens. As a

consequence, the control logic of the simulation can be represented using activity

diagrams, and the simulation model behaves according to the activity diagram.

 157

Figure 57: Bucket manufacturing process in Plant Simulation™.

The results of the bucket manufacturing process are shown in Table 17. We model

three control options using activity diagrams. By this approach, the simulation model

could be used to evaluate these control options.

Table 17: Computational results for the bucket manufacturing process.

Result Unit Machine Push
Control

Pull Control for
BucketSideThickPlate(8)

Pull Control for
BucketSideThickPlate(12)

Throughput
rate

units/per
day 25.26 25.26 25.26

Cycle Time hours/per
unit 5.00 7.49 5.38

Laser_Cutter1 93.72% 93.68% 94.24%
Laser_Cutter2 89.79% 89.63% 89.35%

Bending Machine 67.17% 67.19% 67.30%
Welding Machine 73.04% 73.14% 73.09%

BucketBack1 0.65 0.68 0.7
BucketBack2 0.47 2.72 0.66

BucketBottomKnife 5.85 3.8 4.17
BucketSideThickPlate 6.29 4.5 8.66

BucketSideThin 11.69 7.6 8.33
BucketBack1 12 8 8
BucketBack2 9 12 8

BucketBottomKnife 21 15 16
BucketSideThickPlate 31 11 15

BucketSideThin 42 30 32

MAXWIP units

Utilization %

AverageWIP units

 158

7.5 Conclusion

The results presented here resolve the problem of translating a control model represented

by a UML/SysML activity diagram into a simulation code. The parse-tree provides an

intermediate meta-model. Two transformations, from activity diagrams to the parse-tree

and from the parse-tree to the simulation code, are discussed and illustrated. The

evaluation of control models in their native form is usually time-consuming and

expensive; our approach shows that control models represented as activity diagrams can

be transformed algorithmically and executed in commercial-off-the-shelf simulation

tools.

 One future direction for research is the use of model transformation technology

to transform SysML conceptual models, including both the plant models and control

models, to simulation models. SysML provides multiple diagrams (block definition

diagrams, internal definition diagrams, and state machine diagrams) that can be used to

describe the plant and control models. The transformation of the SysML conceptual

model to a simulation code in a formal and reusable way is a major challenge.

 159

CHAPTER 8

MODEL TRANSFORMATION USING LIBRARIES AS DOMAIN

SPECIFIC LANGUAGES

8.1 Introduction

Discrete event simulation models are widely used to analyze manufacturing or logistic

system performance. These systems often involve thousands of entities with complex

interactions. Compared to other analysis models, discrete event simulation models can

cope with the full complexity of these systems.

 However, modeling large-scale discrete event systems and creating their

simulation model is not without challenges. Although there are many commercial off-the-

shelf (COTS) tools which provide drag-and-drop functionality to author simulation

models, it is still difficult to reliably create a valid high fidelity model for a large complex

system. For the domain expert, the simulation model is a black box so validating that the

simulation model accurately reproduces the behavior of the target system is a difficult

task. One consequence is that, in contemporary practice, large scale simulation is time-

consuming and expensive.

 One possible approach to alleviate this issue is to apply model transformation

technology. In software development, model transformation technologies translate

conceptual models represented in a formal language to program codes. The software

analyst can describe the target system using a formal language instead of developing the

code directly.

 The goal of this paper is to show that the concept of model transformation also

can be applied to discrete event simulations. We choose OMG SysML™ [4] as the formal

 160

language for conceptual modeling because it has the following advantages. (1) SysML is

a standard formal language for system engineering. The language specification can be

found in [4]. (2) SysML provides graphical representations so the model can be

visualized and understood easily. (3) SysML supports object-oriented concepts so the

description of the system can be reused.

 SysML is a general modeling language for system modeling. This implies that it

does not provide specific domain semantics in the language specification. Thus, SysML

may not be easy to use for domain experts who may prefer a domain specific language to

describe a particular system. In this paper, we will show that a conceptual model in

SysML can be translated into a target executable simulation model via model

transformation technology. Furthermore, if the domain specific language is implemented

in SysML as a domain library, both the domain library and the system model can be

translated into a simulation model. In this approach, since the transformation rules only

depend on SysML and the target simulation language, the transformation rules can be

applied to different domains without modification.

To enable the transformation independent to the domain specific language, we

first review the literature on model transformation in section 8.2. We then introduce the

OMG four-layer meta-modeling architecture in section 8.3. In section 8.4, we show the

proposed transformation approach from SysML to the target simulation language,

AnyLogic™. In section 8.5, we demonstrate a tandem queue example by applying the

proposed transformation approach. Section 8.6 concludes with suggestions for future

research.

8.2 Literature Review

There are two categories of published papers related to model transformation from

SysML to a simulation language: those addressing the transformation procedure, and

those focused on the transformation examples.

 161

8.2.1 Transformation Procedure

Ehm et. al. [29] give an overview of the state-of-the-art development of discrete event

simulation in the context of semiconductor manufacturing. They suggest defining a

domain-specific modeling language to describe the system. They discuss the challenges

of implementing model transformation technology and possible future research. They

also point out the requirements to develop a variety of model transformation solutions to

convert SysML models to corresponding simulation models.

Schönherr and Rose [84] develop a simulation-tool-independent description of

production systems using SysML. They identify the basic modeling elements of

simulation models. Their transformation procedure is as follows: (1) Create a SysML

model. (2) Export the model to the exchange format, XMI [6]. (3) Filter the required

information using a custom parser and write the simulation-tool-independent description.

(4) Translate the simulation-tool-independent description into a specific simulation

model. The detail procedure is discussed in [85].

8.2.2 Model Transformation Technology

This section reviews the examples of transforming from SysML to different analysis

models such as Petri nets [72], DEVS [101], or other COTS simulation tools.

Hansen [37] shows that the UML [5] conceptual model can be translated into

Colored Petri nets (CPNs) [66] which can be simulated directly. They define the CPNs

profiles for UML and assume the modeler can describe the system using this profile.

Then, the transformation script identifies all UML modeling elements with the proposed

profiles and generates a corresponding CPN.

Viehl et.al. [93] demonstrate that the UML/SysML description of the control flow

can be translated into the communication dependency graph (CDG) which can be

simulated in the tool, SystemC. Only the control flow is considered.

 162

Nikolaidou et. al. [69] explore model transformation from SysML to create a

DEVS simulation code. They define a DEVS profile for SysML. If the modeler uses this

DEVS profile to create a SysML model, this model can be translated into a corresponding

DEVS model.

Johnson et. al. [46] present a formal approach to modeling continuous system in

SysML and translating into the simulation tool, Modelica, which is an equation-based,

object-oriented behavioral simulation language. They also provide an example of the

transformation using a SysML model of a hydraulic pump.

Huang, et al. [44] use SysML to create a partial domain specific language for the

tandem queue domain and translate the SysML model into two types of analysis—

simulation and queuing analysis through model transformation methods. They choose the

object-oriented simulation tool, Plant Simulation™ as the testbed.

Huang, et al. [45] create both the domain libraries and analysis libraries in SysML

and show that the mapping between these two libraries in SysML also can be the input

information to the model trans-formation script. When the mapping rules change in

SysML, the generated model will also change accordingly.

These transformation examples illustrate the possibility to translate a SysML

model to a simulation model. However, most of the transformation approaches depend on

a domain specific language. This is a potential limitation because extending the domain

specific language may require revising transformation script which is usually expensive

to modify.

8.3 OMG Four-layer Meta-modeling Architecture

In order to specify the differences between the different model transformations, we

introduce OMG’s four-layer meta-modeling architecture in this section. The four-layer

meta-modeling architecture includes the following models [3]:

•M0- The domain under study

 163

•M1- The user specification (the model)

•M2- The modeling language specification (the meta-model)

•M3- The reflexive meta-modeling language specification (the meta-meta-model)

M0 is the domain containing the objects in the real world or the runtime objects in

a simulation. M1 is the model, which in our case is the SysML model. M1 can contain

classes and instance specifications. Classes are the types of the individual objects;

instance specifications are the specification of an object in the real world. M2 is a model

of a modeling language, i.e., the model to specify a modeling language. M3 defines the

language for defining a meta-model. One example of M3 is the Meta-Object Facility

(MOF) [2].

Different layers of the four-layer meta-modeling architecture capture different

semantics, e.g., M0 corresponds to the real world and M1 corresponds to the SysML

model. The relationships between associated objects in two adjacent layers are either

interpretations or representations. “An interpretation of a statement is a mapping of

syntactic elements of the language to elements of the semantic domain.” [3] For example,

M1 is the model using SysML as the syntactic elements. When we model an instance

specification in M1, this description denotes the real object which has a unique semantic

in M0.

The representation relationship has the opposite orientation in the hierarchy, i.e.,

it is a mapping of a semantic domain to syntactic elements. For example, a M0 object is

said to be represented as an instance specification in M1. Figure 58 shows the

interpretations across the four layers. In this case, M0 means java software. Any class or

instance specification in M1 is denoted as a java file or a runtime object in M0,

respectively.

Currently, most of the implementations of the OMG four-layer meta-model

architecture focus on software development. In this paper, we aim to model the system in

M1 including the domain specific language (like ‘X’ in the figure) and a specific instance

 164

model (like ‘anX’ in the figure) and transform both the M1 model and its M0

interpretation to a target simulation language.

Figure 58: Interpretation across meta-layers [3].

8.4 Model Transformation Framework- Using Libraries as Domain Specific

Language

In this section, we will discuss the proposed transformation framework from SysML to

AnyLogic™. We will show the concept in section 8.4.1. Since the transformation rules

only depend on the meta-models of SysML and AnyLogic, we define these meta-models

in section 8.4.2 and 8.4.3, respectively. We create the mapping rules between these meta-

models in section 8.4.4 and explain the detailed transformation procedure in section

8.4.5.

8.4.1 Concept of Model Transformation

Since SysML is a general modeling language, we use SysML to describe the domain

semantics as a domain library. The domain library can be used to model a specific

system. For example, we can use SysML to describe the “machine” in the manufacturing

system and model it as a domain library object. Then we can use this library object to

create a flow shop system or a tandem queue system.

 165

Based on this modeling concept, we need to define the mapping rules between the

SysML meta-model and the AnyLogic™ meta-model. In this case, different domains can

use the same mapping rules if the domains can be described in SysML. If we extend the

domain specific language, e.g., add a specific action of a machine, the mapping rules can

be used without modification. When the domain description in SysML is changed, the

output simulation model will change accordingly. Since the transformation scripts are

usually complex and expensive to modify, this approach can alleviate the cost of

extending the domain specific language.

To realize the proposed concept, we need to define the SysML meta-model and

the simulation meta-model. Then we can create the mapping rules between these two

meta-models. Next, we can use SysML to describe the domain specific language as

domain libraries. Then, the domain experts can describe their own system using these

libraries without any knowledge of the simulation language or model transformation.

Finally, the mapping rules are applied to transform both the source library and the source

system model to the target simulation language.

8.4.2 SysML Meta-model

We specify the SysML meta-model in this section. Currently, OMG provides the

language specification of SysML but not the meta-model. We show a partial mata-model

in Figure 59. The model elements of the block definition diagrams (BDD) are included in

this figure. We capture blocks, their operations, properties, ports and parts of BDD in this

figure. The detail definitions of the modeling elements of BDD can be found in [4]. We

also define other diagrams such as the internal block diagrams (IBD), state machine

diagrams (SM) and activity diagrams (ACT) in Figure 60 to 62, respectively, so we can

describe the domain library explicitly.

 166

Figure 59: SysML meta-model for BDD.

Figure 60: SysML meta-model for IBD.

 167

Figure 61: SysML meta-model for SM.

Figure 62: SysML meta-model for ACT.

8.4.3 AnyLogic™ Meta-model

In this section, we will define an AnyLogic™ meta-model. In AnyLogic™, there are two

main structure elements: “ActiveObjectClasses” and “JavaClasses”.

“ActiveObjectClasses” represent physical objects with input/output ports such as

 168

machines or buffers. Non-physical objects or physical objects without ports are a type of

“Javaclasses”. We show a AnyLogic™ meta-model in Figure 63 to 66. We model its

variables, parameter, operations or data types.

Figure 63: AnyLogic™ meta-model.

Figure 64: AnyLogic™ meta-model.

 169

Figure 65: AnyLogic™ meta-model.

Figure 66: AnyLogic™ meta-model.

8.4.4 Mapping Rules of the Transformation

To implement the transformation, we also define mapping rules between our subset of the

SysML meta-model and our subset of the AnyLogic meta-model. The mapping details

are shown in Figure 67 to 70. In Figure 67, the SysML meta-model for BDD is shown on

the left and the partial AnyLogic™ meta-model is shown on the right. Each arrow

 170

represents a mapping rule from a modeling element in the SysML meta-model to a

modeling element in the AnyLogic™ meta-model. In general, the mapping rules can be

one-to-one mapping functions or one-to-many mapping functions. For example, blocks in

the SysML model can map to one of two possible meanings, either a structural

component which is “ActiveObjectClass” or a flow object which is “JavaClass”. We

extend the mapping rules so any model element in the subset of the SysML meta-model

can be mapped into the corresponding AnyLogic™ elements. These mapping rules define

the relationship between two meta-models which can be used in the following

transformation procedure.

Figure 67: Partial mapping rules.

 171

Figure 68: Partial mapping rules.

Figure 69: Partial mapping rules.

Figure 70: Partial mapping rules.

 172

8.4.5 Transformation Procedure

For any model element in the domain library denoted as mM1-SysML, the transformation

procedure is specified as follows:

Step 1. Identify the conforming model element mM2-SysML in the SysML meta-model.

For example, if the domain library is a structural element, it may conform to a

“block”. If it is a behavior library, it may conform to an “action”.

Step 2. Check the mapping rules defined in section 8.4.4 for mM2-SysML. Since the

mapping rules are one-to-one or one-to-many functions, we can find the

corresponding model element of the AnyLogic™ meta-model, denoted as mM2-

AnyLogic.

Step 3. Create the corresponding simulation library (mM1-AnyLogic) in the AnyLogic™

which mM1-AnyLogic is a type of mM2-AnyLogic.

Step 4. If mM1-SysML has any property, value or relationship, each of them also is

transformed to the AnyLogic™ language by repeating Steps 1 to 3.

We can apply this transformation procedure for the domain library as well as the

system model. If the system model is created using the domain library, the system model

has relationships, e.g., instanceof relationships or inheritance relationships, to the domain

library. By applying the transformation procedure, the elements of the system model will

be created in Steps 1 to 3 and their properties, values and relationships are transformed in

Step 4.

The proposed transformation procedure assumes that the mapping rules between

the SysML meta-model and AnyLogic™ meta-model exists, i.e., each modeling element

in the SysML meta-model has at least one related mapping rule. If a specific modeling

element in the SysML meta-model does not have any related mapping rule, the

transformation procedure will stop at Step 2. As a result, all modeling elements in the

system model conforming to this SysML meta-model element will not be transformed to

the simulation model.

The transformation procedure is developed using Java language. The SysML

model is exported as an XMI file [6] which is a type of xml file. The model data is

extracted from the xmi file using Xpath [7] which enables filtering the model data to

 173

identify the relevant SysML model elements, which are then translated to their

corresponding AnyLogic implement using Java code.

8.5 Demonstration

We create a SysML model of the tandem queue example. There are two parts of this

example: creating the domain library and using this library to model a specific system.

The domain library can be created once and used for different applications. We define the

libraries of machines, buffers, arrival processes, and dispose processes. Each one includes

its own parts, properties, ports and operations. Figure 71 shows a partial structure of a

machine. The attribute “processjob” represents the entity processing in the machine. The

“inputport” and “outputport” are the entry point and exit point of the machine,

respectively. The operation “checkCapacity” will return true if the machine is occupied.

The detail of this operation is captured in an activity diagram. Figure 72 shows a partial

behavior of the machine as a state machine model. When “processjob” is empty, the

machine is in the idle state. Otherwise, the machine is in the busy state.

These domain libraries can be modified without changing the transformation

script. This enables to reuse a domain specific language, i.e., we can create domain

specific languages by extending other domain specific language without changing the

transformation script. For example, we can create a new library called “CuttingMachine”

by extending the “machine” library and adding new attribute “speed” or operation “cut”.

Since both two libraries are described using SysML, the same transformation script can

be used to transform both models into the simulation models.

Figure 71: Partial structure of the machine library.

 174

Figure 72: Partial behavior of the machine library.

After defining the library, we can use it to create a specific tandem queue example

and assign the attribute values such as the process time. All of the libraries and the

specific systems can be exported to an XMI file and transformed into the AnyLogic™

project file. This generated file can be opened in AnyLogic shown in Figure 73. We show

the generated machine description of the AnyLogic project file in Figure 74. If the

structure and behavior are both captured in the SysML model, the generated model can

be simulated.

Figure 73: Generated AnyLogic™ project.

 175

Figure 74: Partial generated AnyLogic™ project file.

8.6 Conclusion and Future Research

This paper introduced a model transformation approach which can transform a SysML

model to a corresponding AnyLogic™ simulation model. The transformation script

depends on only a subset of the SysML meta-model, a subset of the AnyLogic™ meta-

model and the meta-model mapping, so extending the domain library does not require

 176

revising the transformation script. A proof-of-concept demonstration that both the

domain library and an example of a tandem queue can be transformed into the simulation

tools is given.

 One future direction is the extension of the proposed model transformation to

large-scale systems which may involve thousands of entities. The SysML model of this

system may be large and hard to create. One possible approach is to separate the domain

model and the instance model. Another possible approach is to provide the reusable

structural/behavioral libraries. These approaches may have impact on the transformation

script. The capability and modeling complexity of the proposed model transformation

needs to be analyzed.

 177

CHAPTER 9

CONCLUSIONS

 Due to the complexity of practical discrete event logistics systems (DELS),

modeling and simulating these systems can be complicated and expensive. One approach

to alleviating this issue is by describing a system using a formal language and then

translating this descriptive model into a simulation model. This dissertation builds a

formal foundation for this approach by (1) comparing different formal languages for

conceptual modeling; (2) proposing a unified framework for describing DELS using

OMG SysML; (3) presenting a method for verifying a control model specified as an

activity diagram; and (4) establishing the feasibility of automatically translating a DELS

conceptual model into a corresponding simulation model. In this chapter, we conclude the

thesis by highlighting the contributions in Section 9.1 and discussing some possible

future research in Section 9.2.

9.1 Summary and Conclusions

 In the last three decades, a number of formal modeling languages have come into

use for modeling DELS. In Chapter 2, the state-of-the-art formal modeling languages are

compared. Based on the comparison, SysML is identified as the best currently available

formal language for modeling DELS. SysML is an object-oriented modeling language for

system modeling with rich elements to describe systems, graphical model representation,

hierarchical modeling, and separate structure and behavior views.

 Chapter 3 develops a process for modeling DELS using SysML. Previously, the

most widely used modeling languages for DELS were finite state machines and automata.

However, using these modeling languages often leads to the state explosion problem. The

proposed process models the physical system components as blocks, then models the

internal behavior of each block, and the interaction behavior between blocks and is

 178

enabled by a carefully defined subset of SysML. With this new approach, the number of

system states of the model will grow linearly with the number of system components,

thereby avoiding explicitly describing an exponentially increasing number of system

states, as would be required using previous approaches.

 The theory supporting the SysML subset used in the proposed modeling process is

developed in Chapter 4. It is shown that if a DELS can be modeled as a finite state

machine, then it also can also be modeled using the proposed SysML subset with no loss

of modeling fidelity. Furthermore, the model using the SysML subset is not only

equivalent to the model using finite state machine or finite state automata, but it also

avoids the state explosion problem. The proposed subset can also represent any Moore or

Mealy machine or Harel statechart, which is shown in Chapter 5.

 Chapter 6 focuses on control modeling using SysML. A method is proposed

which transforms a control model expressed as an activity diagram to an equivalent PN,

for which there are methods for detecting certain kinds of modeling errors. This approach

enables control modelers to exploit the modeling benefits of SysML while at the same

time enjoying the analysis capabilities of PN.

 Automated simulation generation is shown in Chapters 7 and 8. As noted in

Chapter 7, two transformations, from activity diagrams to the proposed tree structure and

from the proposed tree structure to the simulation language, are proposed and shown.

Creating a control program from a control model is usually time-consuming. The

proposed transformation approach enables transformation of a control model specified

using activity diagrams to a simulation language. Translating a system conceptual model,

including both plant models and control models, to a simulation model is shown in

Chapter 8.

 In summary, the main contribution of this thesis is to show several significant

contributions to the modeling and analysis of DELS:

 179

• A unified, generic and formal framework for modeling DELS by applying object-

oriented concepts.

• An approach to verifying control models specified as activity diagrams.

• An approach and methods for transforming a control model specified as activity

diagrams to a corresponding simulation model.

• A demonstration that a DELS simulation model can be generated from its

conceptual model, expressed using these modeling methods.

9.2 Future Research

 In this area of research, there are still significant challenges and questions to

answer. This dissertation proposes developing a domain specific language implemented

as SysML libraries. An alternative approach [61] develops a domain specific language by

using stereotypes. What is not known yet is whether one of these approaches, or perhaps

a hybrid is best, or in what situation a particular approach may be preferred.

 Chapter 6 discusses the verification of control models specified by activity

diagrams. The equivalence property established there depends upon the assumption that

the execution semantics of the source and target models are equivalent. This is a valid

assumption for the transformation from activity diagrams to PN, but it is not necessarily

true for other model transformations. Establishing an equivalence property for two meta-

models which have different execution semantics is an open problem.

 Finally, the model transformation approach presented in Chapter 8 is limited to

target simulation languages that are object-oriented. It would not work for simulation

languages which do not support object-oriented concepts. In this case, the mapping rules

between SysML and simulation meta-models may not exist. For example, the inheritance

relationship in SysML may not have a corresponding meta-class in the simulation meta-

model. This will also be a subject for future research.

 180

REFERENCES

[1] IDEF Overview. http://www.idef.com/ (Date accessed: May 7, 2009).

[2] OMG Meta Object Facility (MOF™) Version 2.0.
http://www.omg.org/spec/MOF/2.0/ (Date accessed: May 7, 2009).

[3] OMG Semantics of a Foundational Subset for Executable UML Models (FUML),
http://www.omg.org/spec/FUML/1.0/Beta3/ (Date accessed: Jun 15, 2010).

[4] OMG Systems Modeling Language Version 1.1,
http://www.omg.org/spec/SysML/1.1 (Date accessed: May 21, 2009).

[5] OMG UML 2.0 Superstructure Specification Version 2.1.2,
http://www.omg.org/UML (Date accessed: May 21, 2009).

[6] OMG XML Metadata Interchange(XMI) Version 2.1.1, 2007

[7] W3C XML Path Language (XPath) Version 2.0., http://www.w3.org/TR/xpath20/,
W3C, 2007.

[8] AnyLogic™, http://www.xjtek.com/anylogic.

[9] HPSim tool, http://www.winpesim.de/.

[10] JARP tool, http://jarp.sourceforge.net/us/index.html.

[11] MagicDraw - Version 16.8, http://www.magicdraw.com/.

[12] Siemens Plant Simulation™,
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/p
lant_simulation.shtml.

[13] Anglani, A., Griece, A., Pacella, M. and Tolio, T., “Object-oriented modeling and
simulation of flexible manufacturing systems: a rule-based procedure,” Simulation
Modelling Practice and Theory, vol 10, pp. 209-234, 2002.

 181

[14] Armstrong, D. J., “The quarks of object-oriented development,” Communications of
the ACM, vol. 49, no. 2, pp. 123-128, 2006.

[15] Balci, O., “Verification, validation, and accreditation,” in Proceedings of the Winter
Simulation Conference, 1998.

[16] Brave, Y. and Heymann, M., “Control of discrete event systems modeled as
hierarchical state machines,” IEEE Transactions on Automatic Control, vol. 38, no.
12, pp 1803-1819, 1993.

[17] Brooks, R., “A robust layered control system for a mobile robot,” IEEE journal of
robotics and automation, vol. 2, no. 1, pp. 14–23, 1985.

[18] Bruccoleri, M., Diega, S. N. L., and Perrone, G., “An object-oriented approach for
flexible manufacturing control systems analysis and design using the unified
modeling language,” International Journal of Flexible Manufacturing Systems, vol.
15, pp. 195-216, 2003.

[19] Cao, X.-R. and Ho, Y.-C., “Models of discrete event dynamic systems,” IEEE
Control Systems Magazine, vol. 10, no. 4, pp.69-76, 2002.

[20] Cardelli, L., A theory of objects, Springer, 1996.

[21] Cassandras, C. G. and Lafortune, S., Introduction to Discrete Event Systems,
Springer, 1999.

[22] Chen, Y.-L. and Lin, F., “Modeling of discrete event systems using finite state
machines with parameters,” in Proceedings of the 2000 IEEE International
Conference on Control Applications, 2000.

[23] Cheng-Leong, A., Pheng, K. L. and Leng, G. R. K., “IDEF*: a comprehensive
modelling methodology for the development of manufacturing enterprise systems,”
International Journal of Production Research, vol. 37, no. 17, pp. 3839-3858, 1999.

[24] Chidamber, S. R. and Kemerer, C. F., “A metrics for object oriented design,” IEEE
transactions on software engineering, vol. 20, no. 6, pp.476-493, 1994.

 182

[25] Crane, M. L., On the Syntax and Semantics of State Machines, PhD dissertation,
Queen’s University, 2006.

[26] Crane, M. L. and Dingel, J., “UML vs. classical vs. Rhapsody statecharts: not all
models are created equal,” Software and Systems Modeling, vol. 6, no. 4, pp. 415-
435, 2006.

[27] Dijkstra, E., “Go to statement considered harmful,” Communications of the ACM,
vol. 11, no. 3, pp. 147-148, 1968.

[28] Dong, M. and Chen, F. F., “Process modeling and analysis of manufacturing supply
chain networks using object-oriented Petri nets,” Robotics and Computer Integrated
Manufacturing, vol. 17, pp. 121-129, 2001.

[29] Ehm, H., McGinnis, L. and Rose, O., “Are simulation standards in our future?” in
Proceedings of the 2009 Winter Simulation Conference, edited by. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc, 2009.

[30] Eriksson, H.-E., Penker, M., Lyons, B. and Fado, D., UML 2 Toolkit, Wiley
publisher Inc., 2004.

[31] Eshuis, R. and Wieringa, R., “Tool support for verifying UML activity diagrams,”
IEEE transactions on software engineering, vol. 30, no. 7, pp. 437-447, 2004.

[32] Flordal, H., Fabian, M., Akesson, K. and Spensieri, D., “Automatic model
generation and PLC-code implementation for interlocking policies in industrial
robot cells,” Control Engineering Practice, vol. 15, pp. 1416-1426, 2007.

[33] Floridi, L., The blackwell guide to the philosophy of computing and information,
published by Wiley-Blackwell, 2004.

[34] Friedenthal, S., Moore, A. and Steiner, R., A practical guide to SysML: the systems
modeling language, Elsevier, 2008.

[35] Garrido, J. M., Object-oriented discrete-event simulation with Java, Springer, 2001.

[36] Grigorov, L., Hierarchical control of discrete-event system, Depth report (survey),
School of Computing, Queen's University, Canada, 2005.

 183

[37] Hansen, K. M., Towards a coloured Petri net profile for the unified modeling:
issues, definition, and implementation, Research Report COT/2-52-V0. Center for
Object Technology, Aarhus, Denmark, 2001.

[38] Harel, D., “Statecharts: a visual formalism for complex systems,” Science of
Computer Programming, vol. 8, pp.231-274, 1987.

[39] Harel, D., “The STATEMATE Semantics of Statecharts,” ACM Transactions on
Software Engineering and Methodology, vol. 5, no. 4, pp 293-333, 1994.

[40] Hartmanis, J. and Stearns, R. E., Algebraic structure theory of sequential machines,
Prentice-Hall, 1966.

[41] Heavey, C. and Ryan, J., “Process modelling support for the conceptual modelling
phase of a simulation project,” in Proceedings of the Winter Simulation Conference,
2006.

[42] Hernandex-Matias, J. C., Vizan, A., Perez-Garcia, J. and Rios, J., “An integrated
modeling framework to support manufacturing system diagnosis for continuous
improvement,” Robotics and Computer-Integrated Manufacturing, vol. 24, pp. 187-
199, 2004.

[43] Herre, H. and Heister, S., Formal languages and systems, Draft (1995) of a paper
which appeared 1998 in the Routledge Encyclopedia of Philosophy.

[44] Huang, E., Kwon, K. S. and McGinnis, L., “Toward on-demand wafer fab
simulation using formal structure & behavior models,” in Proceedings of the 40th
Conference on Winter Simulation, Miami, Florida, 2008, pp. 2341-2349.

[45] Huang E., Ramamurthy, R. and McGinnis, L., “System and simulation modeling
using SysML,” in Proceedings of the 2007 Winter Simulation Conference, 2007.

[46] Johnson, T. A., Paredis, C. J. J. and Burkhart, R., “Integrating models and
simulation of continuous dynamics into SysML,” in Proceedings of. 6th
International Modelica Conference, Bielefeld, Germany, March 2008.

[47] Kellery, P., Tchernev, N. and Force, C., “Object-oriented methodology for FSM
modeling and simulation,” International Journal of Computer Integrated
Manufacturing, vol. 10, no. 6, pp. 405-434, 1997.

 184

[48] Killich, S., Luczak, H., Schlick, C., Weissenbach, M., Wiedenmaier, S. and Ziegler,
J., “Task modeling for cooperative work,” Bejaviour & Information Yechnologu,
vol. 18, no. 5, pp. 325-338, 1999.

[49] Kim, C., Kim, K. and Choi, I., “An object-oriented information modeling
methodology for manufacturing information systems,” Computers industrial
Engineering, vol. 24, no. 3, pp. 337-353, 1993.

[50] Kobryn, C., “UML 2001: A standardization odyssey,” Communications of the ACM,
vol. 42, no. 10, pp. 29–37, 1999.

[51] Koschke, R., “Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey,” Journal of Software Maintenance and
Evolution: Research and Practice, vol 15, pp. 87-109, 2003.

[52] Kruchten, P., The rational unified process-an introduction, Addison-Weasly, 2000.

[53] Lee, Y. K. and Park, S. J., “OPNets: an object-oriented high-level Petri net model
for real-time system modeling,” Journal of Systems and Software, vol. 20, no. 1, pp.
69-86, 1993.

[54] Li, J., Dia, X., Meng, Z., Dou, J. and Guan X., “Rapid design and reconfiguration of
Petri net models for reconfigurable manufacturing cells with improved net rewriting
systems and activity diagrams,” Computers & Industrial Engineering, vol. 57, pp.
1431–1451, 2009.

[55] López-Grao, J. P., Merseguer, J. and Campos, J., “From UML activity diagrams to
Stochastic Petri nets: application to software performance engineering,” in
Proceedings of the 4th international workshop on Software and performance, 2004.

[56] Lu, M. and Tseng, L., “An integrated object-oriented approach for design and
analysis of an agile manufacturing control system,” International Journal of
Advanced Manufacturing Technology, vol. 48, pp. 1107-1122, 2010.

[57] Lykins, H., Friedenthal, S. and Meilich, A., “Adapting UML for an Object Oriented
Systems Engineering Method (OOSEM),” in Proceedings of the 10th International
INCOSE Symposium, 2000.

 185

[58] Manzoni, L. V. and Price, R. T., “Identifying extensions required by RUP (Rational
Unified Process) to comply with CMM (Capability Maturity Model) levels 2 and 3,”
IEEE Transactions on Software Engineering, vol. 29, no. 2, pp. 181-192, 2003.

[59] Mateescu, A. and Salomaa, A., Handbook of Formal Languages: Beyond words,
Springer, 1997.

[60] Mayer, R. J. and Painter. M. K., “IDEF family of methods for concurrent
engineering and business re-engineering applications,” Knowledge Based Systems,
1992.

[61] McGinnis, L. and Ustun, V., “A simple example of SysML-driven simulation,” in
Proceedings of the Winter Simulation Conference, 2009.

[62] Mealy, G. H., “A method to synthesizing sequential circuits,” Bell Systems
Technical Journal, pp. 1045–1079, 1955.

[63] Milicev, D., “Automatic model transformations using extended UML object
diagrams in modeling environments,” IEEE Transactions on software engineering,
vol. 28, no. 4, pp. 413-431, 2002.

[64] Milicev, D., “Domain mapping using extended UML object diagrams,” IEEE
Software, vol. 19, no. 2, pp. 90-97, 2002.

[65] Moore, E. F., “Gedanken-experiments on Sequential Machines,” in Automata
Studies, Annals of Mathematical Studies, Princeton, N.J.: Princeton University
Press, vol. 34, pp. 129–153, 1956.

[66] Moore, K. E. and Gupta, S.M., “Petri net models of flexible and automated
manufacturing systems: a survey,” International Journal of Production Research,
vol. 34, no. 11, pp. 3001-3035, 1996.

[67] Murata, T., “Petri nets: properties, analysis and applications,” Proceedings of the
IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[68] Nalepa, G. J. and Wojnicki, I., “Using UML for knowledge engineering–a critical
overview,” in KESE'07 3rd Workshop on Knowledge Engineering and Software
Engineering, 2007.

 186

[69] Nikolaidou, M., Dalakas, V. and Anagnostopoulos, D., “Integrating simulation
capabilities in SysML using DEVS,” in Proceedings of IEEE Systems Conference
2010, San Diego, California, USA, 2010.

[70] Ou-Yang, C., Guan, T. Y., and Lin, J. S., “Developing a computer shop floor control
model for a CIM system-using object modeling technique,” Computers in Industry,
vol. 41, pp. 213-238, 2000.

[71] Pandikov, A. and Torne, A., “Software engineering at system level,” in First
Swedish Conference on Software Engineering Research and Practise, Ronneby,
2001.

[72] Petri, C. A., Kommunikation mit Automaten, PhD thesis, Technische Hochschule
Darmstadt, 1962.

[73] Purao, S. and Vaishnavi, V., “Product metrics for object-oriented systems,” ACM
Computing Surveys, vol. 35, no. 2, pp. 191-221, 2003.

[74] Purtilo, J. J. and Callahan, J. R., “Parse-tree annotations,” Communications of the
ACM, vol. 32, no. 12, pp. 1467-1477, 1989.

[75] Qiu, R. G. and Joshi, S. B., “A structured adaptive supervisory control methodology
for modeling the control of a discrete event manufacturing system,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: System and Humans, vol.
29, no. 6, pp. 573-586, 1999.

[76] Quatrani, T. and Palistrant, J., Visual modeling with IBM rational software architect
and UML, IBM Press, 2006.

[77] Ramadgem, P. J. G. and Wonham, W. M., “The control of Discrete Event Systems,”
Proceeding of the IEEE, vol. 77, no. 1, pp. 81-98, 1989.

[78] Robinson, S., “Simulation model verification and validation: increasing the users’
confidence,” in Proceedings of the 1997 Winter Simulation Conference, 1997.

[79] Robinson, S., “Verification and validation of simulation models,” in Proceedings of
the 2005 Winter Simulation Conference, 2005.

 187

[80] Robinson, S., “Discrete-event simulation: from the pioneers to the present, what
next?” Journal of the Operational Research Society, vol. 56, pp. 619-629, 2005.

[81] Ryu, K., Son, Y. and Jung, M., “Modeling and specifications of dynamic agents in
fractal manufacturing systems,” Computers in Industry, vol. 52, no. 2, pp. 161-182,
2003.

[82] Ryu, K. and Yücesan, E., “CPM: a collaborative process modeling for cooperative
manufacturers,” Advanced Engineering Informatics, vol. 21, pp. 231-239, 2007.

[83] Sampath, M. and Sinnamohideen, K., “Failure diagnosis using discrete-event
models,” IEEE transactions on Control Systems Technology, vol. 4, no. 2, pp.105-
124, 1996.

[84] Schönherr, O. and Rose, O., “A general SysML model for discrete processes in
production systems,” in Proceedings of the 2009 Winter Simulation Conference,
2009.

[85] Schönherr, O. and Rose, O., “First steps towards a general SysML model for
discrete processes in production systems,” in Proceedings of the 2009 Winter
Simulation Conference, 2009.

[86] Son, Y. J. and Wysk, R. A., “Automatic simulation model generation for simulation-
based, real-time shop floor control,” Computers & Industrial Engineering, vol. 45,
pp. 291-308, 2001.

[87] Son, Y. J., Wysk, R. A. and Jones, A. T., “Simulation-based shop floor control:
formal model, model generation and control interface,” IIE Transactions, vol. 35,
pp. 29-48, 2003.

[88] Spinellis, D., “On the declarative specification of models,” IEEE Software, vol. 20,
no. 2, pp. 94-95, 2003.

[89] Staines, T. S., “Intuitive mapping of UML 2 activity diagrams into fundamental
modeling concept Petri net diagrams and colored Petri nets,” in Proceedings of the
15th Annual IEEE International Conference on and Workshop on the Engineering of
Computer Based Systems, pp. 191-200, 2008.

 188

[90] Sunyé, G., Guennec, A. L. and Jézéquel, J.-M., “Using UML action semantics for
model execution and transformation,” Information Systems, vol. 27, no. 6, pp. 445-
457, 2002.

[91] Tarjan, R. E., “Depth-first search and linear graph algorithms,” SIAM Journal on
Computing, vol. 1, no. 2, pp. 146-160, 1972.

[92] Vaishnavi, V. K., Purao, S. and Liegle, J., “Object-oriented product metrics: a
generic framework,” Information Sciences, vol. 177, pp. 587-606, 2007.

[93] Viehl, A., Schonwald, T., Bringmann, O. and Rosenstiel, W., “Formal performance
analysis and simulation of UML/SysML models for ESL design,” in Proceedings of
Design, Automation and Test in Europe, 2006.

[94] Viswanadham, N., Narahari, Y. and Johnson, T. L., “Deadlock prevention and
deadlock avoidance in flexible manufacturing systems using Petri net models,”
IEEE Transactions on Robotics and Automation, vol. 6, no. 6, pp. 713-723, 1990.

[95] Wang, L.-C. ,”Object-oriented Petri nets for modeling and analysis of automated
manufacturing systems,” Computer Integrated Manufacturing Systems, vol. 9, no. 2,
pp. 111-125, 1996.

[96] Yang, D., Wu, H. and Tong, L., “A UML-based approach for the development of
shop floor control system,” International Journal of Production Research, vol. 47,
no.6, pp. 1601-1633, 2009.

[97] Young, K. W., Piggin, R. and Ricjitrangsan, P., “An object-oriented approach to an
agile manufacturing control system design,” International Journal of Advanced
Manufacturing Technology, vol. 17, pp. 850-859, 2001.

[98] Yuan, Y., Dogan, C. A. and Viegelahn, G. L., “A flexible simulation model
generator,” Computers & Industrial Engineering, vol. 24, no. 2, pp. 165-175, 1993.

[99] Yun, W. Y. and Choi, Y. S., “A simulation model for container-terminal operation
analysis using an object-oriented approach,” International Journal of Production
Economics, vol. 59, pp. 221-230, 1999.

 189

[100] Zave, P., “A distributed alternative to finite-state-machine specification,” ACM
Transactions on Programming Languages and Systems, vol. 7, no. 1, pp. 10-36,
1985.

[101] Zeigler, B. P., “DEVS representation of dynamical systems: event-based
intelligent control”, Proceeding of the IEEE, vol. 77, no. 1, pp. 72-80, 1989.

[102] Zhou, M., “A hybrid methodology for synthesis of Petri net models for
manufacturing systems,” IEEE transactions of robotics and automation, vol. 8, no.
3, pp. 350–361, 1992.

[103] Zhou, M., “Modeling, analysis, simulation, scheduling, and control of
semiconductor manufacturing systems: a Petri net approach,” IEEE transactions of
semiconductor manufacturing, vol. 11, no. 3, pp. 333–357, 1998.

[104] Zimmermann, A., Stochastic Discrete Event System: Modeling, Evaluation,
Applications, Springer Press, 2008.

 190

VITA

CHIEN-CHUNG HUANG

Chien-Chung was born in Miaoli, Taiwan. He attended public school in Hsinchu,

Taiwan and received a B. S. in industrial engineering and engineering management from

National Tsing Hua University, Taiwan in 2001, and a M. S. from School of Industrial &

Systems engineering in Georgia Tech in 2008. In 2005, he joined the Ph.D. program in

Industrial and Systems Engineering at Georgia Tech, and he earned his Ph.D. in 2011. He

is married to Yen-Chun (Emily) Lin. When he is not working on his research, he enjoys

traveling and playing basketball.

