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ABSTRACT 

Thorough analysis of pipe distribution systems is usually not 

accomplished because of the excessive number of computations involved. 

With the electronic digital computer, however, a means is available 

which promises to make thorough pipe-network analysis a simple, routine 

matter. The purpose of this study was to develop, with the aid of the 

electronic digital computer, a new method, readily applicable to all 

systems which may be encountered. 

Essentially, the method consists of solving simultaneously the 

continuity and energy-loss equations which, may be written for any pipe 

system. This is accomplished by linearizing the energy-loss equations 

by an approximation scheme and placing in matrix form the coefficients 

from both equations. Solution of the linear simultaneous equations is 

accomplished by inverting the matrix with the aid of an electronic 

digital computer. Repetitive solution of these equations necessitated 

by the linearization process is carried out until convergence of the 

correct flow values for the system is accomplished. 

The method is particularly adaptable since it required only that 

the continuity and energy-loss equations of the system be written. To 

illustrate the adaptability of the method various types of systems were 

analyzed. These included a rather large system having 3 1 unknown flows; 

systems with elevated storage reservoirs which are being allowed to 

empty by either constant or free flov from the networks; and a system 

containing a pump, in which the head on the pump varies with flow. 
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The method proved to he simple and accurate„ The excessive com­

puter time required for analyzing large systems is the biggest deficiency 

of the method. A special computer program is not necessary because exist­

ing computer subroutines may be used in solving the simultaneous equations 

involved. 



NOMENCLATURE 

Hazen-Williams resistance coefficient; 

inside diameter of a pipe; 

Darcy-Weisbach resistance coefficient; 

acceleration caused by gravity; 

head loss in a pipe; 

head loss in a series of pipes; 

total head at a point; 

measure of resistance to flow in a pipe; 

kQ; 

length of pipe; 

flow or discharge in cubic feet per second; 

initially assumed discharge in a pipe; 

average of the flow value obtained for an iteration with the 

value used in the iteration; 

friction slope b T/L; 

mean velocity and 

cripts: f number of primes indicates the iteration involved. 



CHAPTER I 

INTRODUCTION 

Thorough analyses of pipe distribution systems are usually not 

carried out because of the excessive computations required. This was 

remedied partially by the development of the electric analyzer (l). 

The event of the electronic digital computer naturally led to the pro­

gramming of the Hardy Cross Method for pipe-network analysis ( 2 , 3 )» 

The purpose of this study was to develop, with the aid of the 

electronic digital computer, a new method of analyzing pipe distribu­

tion systems readily applicable to all. cases which may be encountered. 

Essentially, the method consists of solving simultaneously the 

continuity and energy-loss equations which may be written for any pipe 

system. This is accomplished by linearizing the energy-loss equations 

by an approximation scheme and. placing in matrix form the coefficients 

of both types of equations. Solution of the linear simultaneous equa­

tions is accomplished, by inverting the matrix with, the aid of an elec­

tronic digital computer. Repetitive solution of these equations, 

necessitated by the linearization process, is carried out until con­

vergence of the correct flow values for the system is accomplished. 

This method is particularly adaptable since it requires only 

that one write the continuity and energy-loss equations descriptive of 

flow in a system. To illustrate the adaptability of the method various 

types of systems are analyzed. 'These include a rather large system 
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having 3 1 unknown flows; systems with elevated storage reservoirs for 

cases of constant and free flow from their networks; and a system con 

taining a pump in which the head on the pump varies with flow. 



CHAPTER II 

DEVELOPMENT OF THE METHOD 

General.—With the development of the electronic computer, a vast number 

of mathematical methods previously impractical to use due to time and 

labor required have now become useable. This is particularly true when 

it comes to the solution of systems of linear algebraic equations. Com­

puters now made are capable of inverting in a matter of minutes matrices 

which by hand would be virtually impossible. 

The matrices of the following problems were solved using matrix-

inversion subroutine ML 05 which was prepared by the International Business 

Machine Corporation. This subroutine is capable of inverting a matrix 

with a maximum of ^3 unknowns. It was used on the IBM 65O digital com­

puter located at the Rich Computer Center, Georgia Institute of Tech­

nology. It should be pointed out here that the writer did not have and, 

in fact, had no need to develop a program but merely used an existing 

subroutine as a tool in solving sets of simultaneous equations. 

Laws governing flow distribution in a pipe network.--There are three basic 

laws which govern the distribution of flow in a pipe network. The flow of 

water into a pipe junction must equal the flow out, or the algebraic sum 

of the flows toward a junction must equal zero. Second, the algebraic 

sum of the head losses around any closed circuit of a pipe network must 

equal zero. The third law relates the head loss in a pipe to some power 



of the discharge. In the Darcy-Weisbach equation, the head-loss varies 

with the second power of the discharge, and in the Hazen-Williams equation 

the head loss varies with the I.85 power of the discharge. 

Basic principle.—The fact that linear simultaneous equations can now "be 

solved on an electronic computer does not mean that the simultaneous equa­

tions for a pipe network are solvable. The same difficulty is encountered 

as that which hindered earlier efforts to use an electrical network as 

analogous to a pipe network (4). In an electrical network the voltage 

drop in a line is directly proportional to the first power of the current 

times the resistance rather than some higher power. This inexactness in 

the analogy was avoided by using a linear electrical circuit and by a 

process of successive approximations which involved changing the resis­

tance of the circuit elements several times until the current and voltage 

were analogous to the head loss and flow of the pipe network. A somewhat 

similar approach is used here with the exception that the method is numer­

ical. 

Using the Darcy-Weisbach equation, the head loss in a straight 

pipe is 

h. « k Q 2 

in which k is a function of the pipe properties and a measure of the resis­

tance of the pipe to fluid flow. The continuity equations written for the 

pipe junctions of a network are linear algebraic equations and the head-

loss equations are quadratic equations. It was reasoned that the head-loss 
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equations might be linearized by letting 

where 

K = k Q. 

The resulting linear simultaneous equations could then be solved. This 

would serve as a first approximation. The new values found in this first 

iteration on the computer would be used in a second approximation and the 

process repeated until convergence to the correct flow values was accom­

plished. 

Theoretical exarrrination of the method.—The examination of a single loop 

network using the principle outlined above will reveal the need for an 

additional step in order to bring about convergence. 

Q 

Fig. 1. A Simple Pipe Network 

The simple loop shown is chosen for theoretical examination because 

the exact solution is readily obtainable. The respective continuity and 

head-loss equations for this simple loop are; 
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+ a. = Q (1) 

( 2 ) 

from equation (2) 

in which 

From equation (l) 

k 

and the exact solution for Q_ becomes 

i + / T " 

and the exact solution for "becomes 

= Q - Q a = Q 

The next step is to obtain solutions for Q & and by the iterative 

procedure in which the head->loss equations are linearized. The respective 

continuity a:ad linearized head-loss equations for the simple loop are: 
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St + % - « 

in which 

and the primes are added to indicate the number of the iteration. For a 

first approximation let 

K. 1 = k.Q. 
x 1 

The continuity and energy loss equations become 

Si' + V - <» 

k a Q V " *b Q V " ° 
or 

V + V Q 

*v - V = 0 

Solving for 0^f and Q^ 1, 

V = [ r r r > 
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For a second approximation let 

K " = k Q 1 - k a a a a 1 + \|r Q 

and 

1 + \|r 

The continuity and head-loss equations for the second iteration are 

Q Q a" - k^ | r 4 r r 1 Q Qu" - o 1 + i|r 

Equation (2) then reduces to 

1 + if 

o 11 - * 
1 + ijr 1 + i|r = 0 

Here the iteration must stop with the obviously incorrect result that 

In order to obtain convergence, it becomes necessary to average the 

flow values obtained as a result of the first iteration with the originally 

assumed values. Thus for the second iteration, 

K " - k a a 
k _ a 

2 ~ 2 1 + 1 + \|r Q 



and 

V-S 2 2 1 + 1 
1 + t 

The continuity and head-loss equations are 

and 

Simplifying, 

and 

+(2 + *) O." - (1 + »|r) Q " r= 0 

Adding these two equations and solving, 

1 + 2f 

1 + H + IJF' Q 
and 

1 + 4IJF + ̂  Q 



1 0 

The flow values to he used in the third iteration would he the average of 

these new values and the values used in the second iteration. 

Figure 2 is a plot of Qa/Q versus k^/k^ for the exact and the first 

and second approximate solutions obtained by averaging the flows. This 

reveals graphically how convergence occurs. 
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Test case.--A three loop, ten-pipe network as shown in Figure 3 was selected 

for a test case. This figure shows the network with k values in parenthesis 

as computed for the Darcy-Weisbach equation. Appendix B contains the equa­

tion for the computation of k. Inflows and outflows from the system are 

considered to occur at junctions. As is the case in most methods of analy­

sis, the direction and magnitudes of the initial flows, Q q, are assumed 

and are shown in Figure 3» As may he seen, these flows are had estimates 

in order to test the method thoroughly. 

Fig. 3' Diagram of Network for the Initial Test Case. 
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The continuity and head-loss equations for this network are written 

assuming flows into a junction as positive and flows out as negative. Head 

loss is considered positive in the clockwise direction and negative if 

counterclockwise. The resulting continuity equations are 

Joint 

(1) -

(2) + \ - % - S • 06 - 0.50 

(3) +% + - 0.50 = 0 

w + S 
- \o - 1.00 = 0 

(5) - V 0.50 =0 

(6) + % + V 0q - 0.50 = 0 

(7) + s + ^ - 0.50 =•• 0 

(8) + Q 2 - v 1.00 « 0 

and the three head-loss equations are 

Loop 

I + k A 2 ' k

2 % 2 " + *k%2 ~ 0 

II - k ^ 2 + k 6Qg 2 - k ^ 2 - 0 

III + k 5 % 2 " k 6 % 2 " k 8 % 2 - *9%2 " ^loS.O2 = 0 

The head-loss equations may now he linearized by substituting in 

their respective K values. The head-loss equations now may be written as 
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Loop 

I +K]_'Q1 - K,/^ - 4 K^'Q^ = 0 

II - K ^ + K6»(fc - « 0 

III - K '̂Qg - KQ'QQ - - K ^ ' C ^ - 0 

where the single prime indicates the values for the first iteration and 

is used only in this test case to clarify procedures. 

The coefficients of the flows for the continuity and head-loss equa­

tions are now set up in matrix form as shown in Table 1 which contains 

Table 1. Matrix for the Test Case 

Junction 
or 

Loop 
Flows Junction 

or 
Loop \ % s \ Constants 

1 -1 -1 +1 0 

2 +1 -i -l -l 40.50 
3 +i +1 -HO.50 
k +1 -1 +1.00 

5 +i -1 +0.50 
6 +i +1 -i 40.50 
7 +i +i -I 40.50 CO +1 -l 41.00 

I -y *y + v 0 

II -v -y 0 

III -v -v -y 'ho 0 
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eleven unknown flows and eleven equations. This matrix as shown may he 

inverted on the computer. However, it is obvious that the value of the 

incoming flow, Q , may be found by merely summing up the outflows from 

the network. This operation results in a reduction of the matrix to ten 

unknown flows and ten equations. Since the continuity principle is 

used to determine the flow Q , one of the junction continuity equations 

may be dropped. This matrix shown in Table 2 results from dropping the 

continuity equation for junction 2 and from inserting the computed value 

Table 2. Reduced Matrix for the Test Case 

Junction 
or 

Loop 
Flows 

Constants 

Junction 
or 

Loop 1 2 3 k 5 6 7 8 9 10 Constants 

1 -1 -1 -li-. 50 
3 +1 +i +0.50 
k +1 -l +1.00 

5 +1 -1 +0.50 
6 +1 +1 -1 +0.50 
7 +1 +1 -1 +0.50 

+1 -1 +1.00 
I + V -v + v 0 

II -v -y 0 

III -v -y - K L 0 ' 

of Q . This matrix was inverted on the computer for the completion of the 

first iterationo The numerical values of the K f terms in the matrices 
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were omitted only for clarity. The unfilled elements of the matrices are 

all zeroes. 

Table 3 contains the complete tabular solution of the iterative 

process as well as the final results. The results of the third iteration 

are compared with an 11-iteration analysis of the network by the Hardy 

Cross method. The algebraic summation of the head losses around each loop 

at the end of the third iteration reveals the degree of exactness obtained. 

Each iteration required approximately 3 minutes of computer time. 

As might be expected and as can be seen from Table 3> the flow in 

pipe 10 is reversed on the first iteration as is indicated by the nega­

tive sign. There is no need to alter the signs in the matrix for the next 

iteration in either the continuity or head-loss equations as a result of 

this flow reversal. The new K value for pipe 10 may be entered without 

altering the initially selected signs of any part of the matrix. The 

final flow value for pipe 10 retains the negative sign, indicating a flow 

in pipe 10 which is opposite in direction to the initially assumed direc­

tion. 

In the example shown, the averaging of the flows and the computa­

tion of new trial K values was done manually although the whole problem 

could be programmed to carry out the entire series of iterations. How­

ever, a complete program would occupy space in the computer with the 

result that the maximum number of equations would be reduced. Since each 

successive iteration involves changing only the coefficients of the head-

loss equations while the other seven continuity equations remain unaltered, 

the complete program is quite unnecessary. As mentioned above, even the 

initial sign designations may be retained for all iterations. 
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Table 3 . Tabulation Showing Method and Results of Initial Test Case 

Initial First Iteration 
Flow Computed V = 
(assumed) KQ Flow, Q + Q' 

Item k u 2 

1 0 . 5 3 2 . 5 0 1 . 3 2 2 . 3 8 2 . 4 4 
2 0 . 7 9 2 .00 1 . 5 8 2 . 1 2 2 . 0 6 
3 1 . 3 1 1 .00 1 . 3 1 1 . 1 2 1 . 0 6 
4 20.00 0 .50 1 0 . 0 0 0 . 1 7 0 .33 
5 4 . 3 7 0 .30 1 . 3 1 1 . 5 7 O .93 
6 20.00 1 . 2 0 24 .00 0.1k O .67 
7 2 . 1 8 l o 0 0 2 . 1 8 0 . 7 9 0 .90 C

O
 2 . 1 8 1 . 7 0 3 . 7 1 0 .43 1 . 0 7 

9 1 0 , 0 0 1 . 2 0 1 2 . 0 0 ( - ) 0 .07 0 . 5 7 
10 1 0 . 0 0 0 .20 2 .00 ( - ) 1 -07 ( - ) 0 .43 

Second Iteration 

kQ' 
Computed 
Flow, 

5" = 
Q' + Q" 

Third Iteration 
K^" = 
KQ" 

Computed 
Flow, 
Q + Q 

1 . 2 9 
1 . 6 3 
1 . 3 9 
6 .68 
4 . 0 8 

1 3 . ^ 2 
1 . 9 5 
2 . 3 2 
5 . 6 6 
4 , 3 ^ 

2 . 3 2 
2 . 1 8 
1 . 1 8 
0 .33 
1 . 1 9 
0 . 3 1 
1 . 00 
0 . 8 1 
0 . 3 1 

( - ) 0 .69 

2 . 3 8 
2 . 1 2 
1 . 1 2 
0 .33 
1 . 0 6 
0 .49 
0 .95 
0 .94 
0 .44 

( - ) 0 . 5 6 

1 . 2 6 
1 . 6 8 
1 . 4 7 
6 . 6 2 
4 . 6 3 
9 .80 
2 . 0 7 
2 . 0 5 
4.40 
5 .60 

2 . 3 7 
2 . 1 3 
1 . 1 3 
0 . 3 5 
1 . 0 7 
0 .44 
0 .98 
0 .93 
0 .43 

( - ) 0 -57 

2 . 3 7 
2 . 1 3 
1 . 1 3 
0 . 3 4 
1 . 0 6 
0 . 4 7 
0 . 9 7 
0 . 9 ^ 
0 .44 

(-) O . 5 6 

2 . 3 7 
2 . 1 3 
1 . 1 3 
0 .34 
1 . 0 6 
0 . 4 7 
0 . 9 7 
0 .94 
0 .44 

( - ) 0 . 5 6 

Final Values 

Z for Loop I 
Z fi£ for Loop II 
Z IL™ for Loop III 

+0.04 ft. 
-0 .03 ft. 
+0.03 ft. 



CHAPTER III 

ILLUSTRATIVE EXAMPLES 

Analysis of the Warwick, Rhode Island distribution system.--The test case 

just analyzed was a comparatively small system and required only three 

iterations for convergence. To ascertain if a larger system might result 

in increased iterations to obtain convergence, the Warwick, Rhode Island 

System, as is found in the Handbook of Hydraulics by Davis (5)> was selec­

ted for analysis. 

Figure k is a diagram of this system. The initial flows in the 

lines are the same as assumed by Camp (5) in his analysis of the system 

by the Hardy Cross method, except that the flows are expressed in cubic 

feet per second. The initial flows are shown by their respective direc­

tional arrows. A Hazen-Williams C of 110 was used by Camp. Appendix B 

illustrates how the Hazen-Williams formula was converted into the form, 
2 h = KQ . The k values for the system are omitted from Figure k for the L 

sake of clarity but are shown in Table 10 in Appendix A. 

Table k Is the matrix for the Warwick System. This system is seen 

to have 31 unknown flows and 7 loops with one loop containing 14 unknown 

flows. The continuity equation for junction 1. is arbitrarily dropped for 

reasons previously discussed. 

Table 10 in Appendix A shows the iterative procedure as well as 

the final results. Again, only three iterations were necessary for con­

vergence of the entire system. As may be seen from the small differences 
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Fig. h. Diagram of the Warwick, Rhode Island Distribution System Showing 
Initial Flow Conditions. 



Table 4. Matrix for the Warwick System 

Junc­
tion 
or 
Loop 

Flows tion 
or 
Loop 1 2 3 4 5 O

N
 

7 8 9 , 1 0 11 12 13 14 15 16 17 18 19 20 21 22 23 2k 25 26 27 28 29 30 31 C 
2b -1 -1 -4-. 004 
24 41 -1 -0.323 
23 +1 «1 -0.188 C

O
 +1 -1 -1 -1 0 

18 +1 -1 +1 0 
1Tb +1 -1 -0.067 
7 +1 -1 -1 -0.133 
15 +1 +1 +1 -0.4-77 
14 -1 +1 +1 -1 0 
5 -1 +1 -1 0 
4 -1 +1 -1 0 
3 -1 +1 -O.O78 
17c -1 +1 -0.111 
22 +1 -1 -O.434 
9 +1 +1 -1 0 
21 -1 +1 -0.122 
20 +1 -1 -O.O56 
1? +1 -1 -0.122 

+1 -1 -1 0 
16 +1 -1 -0.111 
13 +1 +1 -0.234 
12 -1 +1 -0.512 
11 +1 +1 -0.668 
10 -1 +1 -0.101 
I +K +K +K +K -K -K -K -K -K -K -K 0 

II -K +KJ +K +K +K 0 
III +K +K -K -K 0 
IV -K +K +K 0 
V +K -K +K +K 0 

VI +K -K -K 0 
VII +K +K -K -K 0 
Note: Superscripts and subscripts have been omitted in this matrix. 
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in the summation of the head losses around each loop, a high degree of 

accuracy was obtained. Computer time for each iteration was approximately 

37 minuteso In Figure 5 the final flow values are compared with Camp's 

solution obtained "by the Hardy Cross method. The small discrepancies may 

be accounted for by the method of converting the Hazen-Williams resis­

tance coefficient. 

Analysis of system containing elevated reservoirs for case of constant 

flow from the networks --A system containing elevated reservoirs is as 

readily analyzed as any other system. Essentially, the additional equa­

tions are those relating the total head (total energy) "between reservoirs 

or reservoirs and points in the network. The ease and rapidity with 

which analyses may be made now makes it feasible to make more thorough 

investigations; in particular, where the elevated reservoirs are "being 

allowed to empty. 

A system containing two reservoirs with known areas and initial 

total heads is shown in Figure 6. As in previous problems, the k values 

are shown in parentheses and the flows for the lines are those initially 

assumed. 

Table 5 is the matrix for this system. The equation relating the 

total head between reservoirs of Figure 6 is simply, 

Rearranging, 

'A 

which is the form shown in the matrix. 
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Note; The values obtained in this study are underlined. 

Fig. 5« Final Values for the Warwick System Compared with Those Obtained by 
a Hardy Cross Analysisu 



Area r-. 500 ft. _ . 
! Reservoir A; H. s 100 ft; t = 0 sec. 

Fig. 6. Diagram of System Containing Elevated Reservoirs with Constant Flow from the Network, 
is 
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Table 5- Matrix for the System Containing Elevated Reservoirs with 
Constant Flow from the Network 

Junc­
tion 
or 
Loop 

Flows Con­
stants 

Junc­
tion 
or 
Loop 1 2 3 k 5 6 7 8 9 10 ii 12 

Con­
stants 

1 -1 -1 +i 0 

2 +1 -l -1 -1 +0..50 

3 +1 -l +1 0 

-l +i +1,00 

5 +1 +1 +0.50 

6 +1. -1 +0.50 

7 +l +i +0.50 

CO +1 -l +1.00 

I + v -v -y 0 

II -v -Y 0 

III +K ' 
5 

-v -v + y •fKi6 0 

A-B -v -y -Y + K L 2 

As may be seen in Table 11 (Appendix A) three iterations were re­

quired to bring the system to convergence for the initial, condition. Each 

iteration required approximately 3 minutes. It is interesting to note 

that there is an inflow into reservoir B instead of an outflow as ini­

tially assumed. 

The next step is to analyze the system while the reservoirs are 

being allowed to empty. This is accomplished by computing new water 
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levels In the reservoirs at specified times. On the "basis of these new 

values of the total head, the distribution of flow in the system is again 

determined. Table 12 (Appendix A) contains the analysis of the system for 

the condition of constant flow from the network for a period of kOOO 

seconds. Succeeding K values were calculated using the final flow values 

obtained for the previous time increment. 

Two iterations were required for complete convergence for the 

first two time increments. Succeeding time increments were shortened to 

make only one iteration for each time increment necessary. Time incre­

ments were lengthened as the rate of change of the total heads of the 

reservoirs decreased. 

Figure 7 illustrates the typical characteristics of a system sub­

ject to constant flow from the network and emptying reservoirs. The flows 

in the systems and the difference in the total heads of the reservoirs 

eventually reach a steady state. The steady state is possible only be­

cause the outflows at the junctions 2, 4, 5> 7? and 8 were assumed to 

be constant. 

Analysis of system containing elevated reservoirs for the case of free 

flow from a point in the ne twork. - - Thi. s example is similar to the pre­

vious one except that free flow is allowed to occur at a point in the net­

work while the reservoirs are allowed to empty. 

Figure 8 is a diagram of a system with free flow occurring at 

point C. The matrix for this system, Table 6, is composed of 13 unknown 

flows and the coefficients of 13 equations. The free flow, Q , is the 
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+5.00 r 

-1.00 S 1 ! « ' 
0 .1000 2000 3000 4000 

Time in Seconds 

Fig. 7« Results of Analysis of System Subject to Constant Flow from the 
Network and Emptying Reservoirs. 



Area - 500 ft. Reservoir A; H A - 120 ftj t - 0 sec. 

Fig. 8. Diagram of System Containing Elevated Reservoirs with Free Flow Occurring at a Point in the 
Network. 
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Table 6. Matrix for System Containing Elevated Reservoirs with Free 

Flow Occurring at a Point in the Network 

Junc­
tion 
or 
Loop 

Flows Con­
stants 

Junc­
tion 
or 
Loop 1 2 3 k 5 6 7 8 9 10 ii 12 C 

Con­
stants 

1 -1 -1 +i 0 
2 +1 -1 +1 -1 +0.50 

3 -1 -1 +1 0 
k -1 +1 +1.00 

5 -1 +1 +0.50 
6 +1 -1 +1 +0.50 

7 +1 +1 +1 -1 0 

CO
 +1 -1 +1.00 

I + y -Y - v -v 0 

II -v + v 0 

III - v 
+ v + y +Ki6 0 

A-C Y i -HA 
A-B - y +K ' -Y + KL2 - HA + HB 

additional unknown. The additional equation is that relating the head-loss 

from one of the reservoirs to the point of zero total head. The matrix was 

inverted on the computer to complete the first Iteration. 

As can be seen in Table 13 (Appendix A) again only three iterations 

were necessary to bring about convergence for the starting condition. 
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Time in Seconds 

Fig. 9° Results of Analysis of System with Free Flow Occurring at a 
Point in the Network and Emptying Reservoirs. 
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Table l4 (Appendix A) contains the iterative procedure and results for 

analyzing the system for a period up to 5300 seconds while the reser­

voirs were being allowed to empty. Figure 9 shows the results of this 

analysis graphically. 

Analysis of a system containing a reservoir and a variable head pump.— 

Networks fed by pumps are quite common. In the case of centrifugal 

pumps the head on the pump (total-head change at the pump) is a function 

of the pump discharge. Pump characteristic curves define this relation­

ship. This type of system containing a variable-head source may be 

readily analyzed by the method developed. 

Figure 11 is a diagram of a system containing a reservoir and a 

centrifugal pump. The characteristic curve relating head (total-energy 

change) and. discharge for this pump is shown in Figure 10. Table 7 is 

300 

6 

^ 150 I 1 1 1 1 1 J- 1 1 1 
O I 2 3 4 5 

Fig. 10. Ordinary Pump-Characteristic Curve. 



Reservoir A 

1»50 cfs 

loOO cfs 

l o00 cfs 

I .00 cfs 
Mote; Final values are underlined. 

Fig, 1 1 o System Containing an Elevated Reservoir and a Variable Head Pump, o 
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Table 7» Matrix for System Containing an Elevated Reservoir and 
Variable Head Pump 

Unknowns Con-
stants Equa­

tion \ % % S S_0 
Con-
stants 

1 -1 -l +1 0 
2 +1 -1 -1 -i +1.50 

3 +1. +1 +1.50 
k +1 -1 4-1.00 

5 -1 -1 +1 0 
6 +i -I +1 4-1.00 

7 +1 +1 +1 4-10 00 

CO
 + i -1 4-1,00 

I 4-K^ -Y -y +V 0 

I I "V + Y 0 

I I I +K* + v - y + K L 0 0 

A-P -y -y + y -Y -1 

Pump Equ? it ion relaJ bing ] pump 1 lead i and p amp d: Lscha] rge 

the matrix for this system and contains not only twelve unknown flows, one 

of which is the pump discharge, but the head on the pump is an unknown also. 

As may be seen the equation for the characteristic curve relating pump 

head and pump discharge is not linear. This precludes placing the coef­

ficients of such an equation into the matrix of Table 7« 
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There are two approaches to such a problem. First is to make the 

characteristic curve linear by making It a straight line with a constant 

slope m. Figure 12 is the linear pump characteristic curve. We see that 

the equation relating pump discharge and head on the pump may be expressed 

ass 

Hp = h p - mQp 

or 

H p + = h p 

This may now be placed in the matrix form shown in Table 8. 

Fig. 12. Linear Pump, Characteristic Curve. 

The second approach, and the method of solution used, is not to 

enter the head on the pump as an unknown in the matrix but as a constant 

for a given iteration. A trial value of Hp may be selected from the pump 

characteristic curve of Figure 10 by assuming an initial pump discharge. 

Computed pump discharges are then used to pick the pump heads for suc­

ceeding iterations. 
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Table 8. Matrix for System Containing an Elevated Reservoir and Pump 

with a Linear Characteristic Curve 

Equa­
tion 

Unknowns -Con­
stants 

Equa­
tion \ % ** -Con­stants 

1 -1 -1 41 0 
2 •fl -i -l 41.50 

3 41 41 41.50 
k 4-1 -1 41.00 

5 -i -1 41 0 
6 +i -l 41 41.00 

7 4.1 +i 41 41.00 
8 41 -1 41.00 

I -Y -Y +V 0 

II -V +Y 4iy 0 

III 4K ' 
5 

4Kg' "V 0 

A-P -V -Y + K10 -1 - HA 

Pump -m -1 h P 

To solve the system shown in Figure 11 an initial, pump discharge of 

3.00 cubic feet per second is assumed and corresponds to a head on the 

pump of 235 feet. Table 9 contains the matrix of twelve unknown flows 

the coefficients of twelve equations. 

Table ik (Appendix A) contains the iterative procedure and results 

for analyzing this system. This time four iterations were necessary to 
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Table 9» Matrix for System Containing an Elevated Reservoir and a 

Pump with a Non-linear Characteristic Curve 

Junc­
tions 
or 
Loop 

Flows Con­
stants 

Junc­
tions 
or 
Loop 1 2 3 4 5 6 7 b 9 10 p 

Con­
stants 

1 -1 -1 +i 0 
2 +1 -1 -1 -1 +1.50 

3 +1 +1 • +1.50 
4 +1 "1 +1.00 

5 -i -1 +i 0 
6 +1 „i +i +1.00 

7 +1 +1 +i +1.00 

CO
 +1 -1 +1.00 

I + y -v -y + v 0 

II -v + v +y 0 

III + K 8 J _ Ki6 0 

A-P -Y -y +y +Kic5 _ Kii " H A + H P 

obtain a solution. This undoubtedly resulted from the presence of the 

variable head of the pump. The final flow values are underlined in Figure 

11. 
As was the case for the example with free flow occurring at a point 

in the network; at the end of an iteration the flow from the pump could be 

evaluated by using the continuity equation at junction 5 and summing 
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algebraically the flows at this point. This would allow us to reduce 

the matrix to eleven unknowns. If it is desired to reduce the size of 

the matrix by dropping a continuity equation, only that for junction 5 

may be dropped for all the constant outflows must appear in the matrix. 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions.--With the aid of the electronic digital computer pipe dis­

tribution systems may be analyzed, by solving simultaneously the head-

loss and continuity equations descriptive of such systems. More thorough 

analysis of pipe distribution systems is now feasible. 

Existing computer subroutines for inverting matrices may be used 

in solving the simultaneous equations. Computer time is excessive for 

large systems solved with existing subroutines. The number of repeti­

tive calculations involved in analyzing systems containing elevated 

reservoirs which are emptying indicates the need for a complete computer 

program for such cases. 

Recommendati.ons.—It is suggested that efforts be taken to reduce the 

computer time required for the inversion of large matrices resulting from 

large systems. It Is believed that advantage could be taken of the large 

number of zero terms which are seen to exist. 
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Table 1 0 . Tabulation Showing Iterative Procedure and Results for the Warwick System 

Item 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 
11 
12 
•13 
14 
15 
1 6 
17 
18 
19 
20 
21 
22 
23 
24 

k 

3° 34 
4.07 
1 . 2 2 
2,77 
1 . 6 3 
1.79 

4 0 . 8 3 
1 , 6 . 5 2 
3 . 6 7 
3 . 2 6 
7 . 5 8 
1 , 1 6 
0 . 8 0 
0 . l 4 

1 7 . 0 6 
5 . 2 2 

5 8 . 2 0 
2 9 . 1 0 
IO .58 
1 2 . 6 3 
4 . 6 o 
1 048 
7.94 
0.64 
O e l l 

2.002 
1.679 
1.491. 
0.667 
C.757 
0.690 
0.112 
0.042 
0.109 
0.777 
0.845 
1.813 
1.891 
2.002 
0.446 
0.012 
0.256 
0.378 
0.268 
0.212 
0.090 
0.445 
0.323 
0 .122 
0 . 0 1 1 

JFirst Iteration 

K Q Q 

6 . 6 9 O 
,830 
,820 
,847 
.232 

1.235 
4.570 
0.694 
,400 
• 530 
,400 
,102 
,522 

0.282 
7.610 
0.063 
14.900 
11,000 

2 o835 
2.680 
0.4i4 
0.657 
2.560 
0.079 
0,002 

1 . 4 4 9 
1 . 1 2 6 
0.938 
0.523 
0,204 
0.137 
0.045 
0.340 
0,860 
1.330 
145 
364 
442 
553 

0,266 
O . 1 6 8 

0,026 
0 . 1 4 8 
o . i 4 i 

=197 
=0.319 
-0o042 
0.092 

• 0 . 1 3 3 

=0.244 

1,726 
1.402 
1.21.4 
0.595 
0,480 
0.4i4 
0.078 
0.191 
0.484 
1.054 
0.995 
2.088 
2.166 
2.278 
O.356 
-0.078 
0.i4i 
0,263 
o , c 64 
0,008 

-0.114 
0,202 
0,208 
0,006 
=0,116 

_Second Iteration 

K Q Q 

5.760 1 . 7 1 9 1.722 
5.705 1.396 1.399 
l.48o 1.208 1.211 
1.648 0.780 0.688 
0,782 0.474 0.477 
0.741 0.407 0.410 
3.180 o , i4 i 0.105 
3.160 0.119 0.155 
1.775 0.501 0.492 
3.440 l.CoO 1.057 
7 . 5 5 0 0.998 0,996 
2.420 2.094 2.091 
1.740 2.172 2.169 
0,321 2.283 2.281 
6,075 0.267 0.312 
0 . 4 0 8 -O.167 -0,122 
8,200 0.039 0.090 
7,650 0 . l 6 l 0.212 
0.676 -0.128 °0.032 
0,101 -0,1,84 -0.088 
0,524 -0.306 "0,2.1.0 
0,298 O.143 0.172 
1.650 0,227 0.21.8 
o . o b 4 "0.084 -O.045 
0.013 -0 .195 -O.I56 

'Third Iteration 

K Q Q 

5.750 
5.690 
I.478 
1.905 
O.778 
0.734 
4.24o 
2,560 
i .8o4 
3.443 
7.551 
2*425 
1.742 
O.322 
5.320 
O.637 
5.230 
6.160 
0.338 
1 . 1 1 3 . 
O.965 
O.254 
I.73O 
0.029 
0.017 

1.721 
1.398 
1.210 
O.69O 
0.476 
0.409 
0.103 
0.152 
0.494 
1.058 
0.998 

094 
171 
283 
321 

0.113 
0.077 
0.199 
0,036 
0.092 
0.214 
0.174 
0.223 
0.049 
0.160 

1.722 
1.399 
1 . 2 1 1 
O.689 
0.477 
o.4io 
o.io4 
0.153 
0.493 
1.057 
0.997 
2.093 
2.171 
2.282 
0.316 

-0.118 
0.084 
0.206 

-0.034 
-0.090 
-0.212 
0.173 
0.220 

"0.047 
-O.158 25 



Table 10. Continued 

Item k % 
First Iteration Second Iteration Third Iteration 

Item k % K Q Q K Q Q K Q Q * 

26 1.46 0.078 0. 114 0.276 0.177 0. 258 0.187 0.182 0.265 0.182 0.182 
27 60.45 0.156 9. 420 -0.042 0.057 3. 440 0.047 0.052 3.140 0.052 0.052 
28 2.44 0.668 1. 635 0.470 0.569 1. 390 0.559 0.564 1.380 0.564 0.564 
29 2.68 0.068 0. 183 -0.185 -0.058 0. 156 -0.062 -0.060 0.161 -0.060 -0.060 
30 4.89 0.600 CM

 930 0.853 0.726 3. 550 0.730 0.728 3.560 0.728 0.728 
31 7.18 0.701 5. 027 0.954 0.828 5. 940 0.831 0.830 5.950 0.829 0.829 

* Final Values 

E H L i = + 0.01 ft. 

£HT - + 0.02 ft, 
LII 

Z HLlII " " 0 , 0 2 f t ' 

EHT = - 0.02 ft, 
LIV 

V 

VI 

= + 0.01 ft, 

EIL « 0 ft. 

ZIL = 0 ft, 
^VII 



Table 11. Tabulation Showing Iterative Procedure and Results for the System Containing Elevated 
Reservoirs with Constant Flow from the Network for t - 0 seconds and H A B « 20.00 feet. 

Item k Qo 
First Iteration Second Iteration Third Iteration Item k Qo K Q ft K Q Q K Q 

1 0.53 2.00 1.06 3.39 2.69 1.42 2.62 2.66 1.41 2.62 2.64 2 0.79 1.50 1.18 3.06 2.28 1.80 2.16 2.22 1.75 2.23 2.23 3 1.31 0.50 0.66 2.06 1.28 1.68 1.16 1.22 1.60 1.23 1.23 
4 20.00 0.40 8.00 0.17 0.28 5.60 0.38 0.33 6.60 0.33 0.33 
5 4.37 0.70 3.06 2.35 1.52 6.65 1.15 1.33 5.81 1.32 1.33 
6 20.00 0.40 8.00 0.36 0.38 7.60 0.60 0.49 9.80 0.47 0.48 
7 2.18 0.40 0.87 1.73 1.06 2.31 1.04 1.05 2.29 1.06 1.06 
8 2.18 0.30 0.65 1.59 0.94 2.05 1.14 1.04 2.27 1.03 1.04 
9 10.00 0.20 2.00 -1.09 -0.44 4.40 -0.64 -0.54 5.40 • -0.53 -0.54 
10 10.00 1.20 12.00 -0.09 0.56 5.60 0.36 0.46 4.60 0.47 0.46 
11 0.30 3.50 1.05 6.44 4.97 1,49 4.78 4.88 1.46 4.86 4.87 
12 2.00 0.50 1.00 -2.44 -0.97 1.94 -0.78 -0.88 1.76 • -0.86 -0.87 

L H L l
 s -0.04 ft, 

III 
« -0.04 ft. 

2 H L l I
 s "0.02 ft. 

LA-B 
- -0.04 ft, 



Table 12. Tabulation Showing Iterative Procedure and Results for the System Containing Elevated 
Reservoirs with Constant Flow from the Network and with Reservoirs Being Allowed to 
Empty. 

Item t = 250 seconds AHAB = 15 .38 feet t = 500 seconds ^ A B = 11. 70 feet Item 
K Q Q K Q Q K Q Q K Q Q 

1 1.40 2.23 2.44 1.29 2.40 2.42 1.28 2.01 2.22 1.18 2.17 2.19 
2 1.76 2.07 2.15 1.70 2.14 2.14 1.69 2.02 2.08 1.64 2.07 2.08 
3 1.61 1.07 1.15 1.51 1.14 1.14 1.49 1.02 1.08 1.41 1.07 1.08 
4 6.60 0.34 0.34 6.80 0.33 0.34 6.80 0.35 0.34 6.86 0.34 0.34 
5 5.81 0.94 1.14 4.98 1.08 1.12 4.85 0.72 0.92 3,99 0.86 0.89 
6 9.60 0.45 0.46 9.20 0.48 0.47 9.40 0.45 0.46 9.16 0.46 0.46 
7 2.31 0.91 0.99 2.16 0.98 0.98 2.14 0.86 0.92 2.01 0.92 0.92 
8 2.27 0.87 0.95 2.07 0.95 0.95 2.07 0.81 0.88 1.92 0.88 0.88 
9 5.40 -0.37 -0.45 4.50 -0.45 -0.45 4.50 -0.31 -0.38 3.80 -0.38 -0.38 
10 4.60 0.63 0.55 5.50 0.55 0.55 5.50 0.69 0.62 6.20 0.62 0.62 
11 1.46 4.31 4.59 1.38 4.54 4.56 1.37 4.03 4.30 1.2$ 4.24 4.27 
12 1.74 -0.31 -0.59 1.18 -0.54 -0.56 1.13 -0.03 -0.30 0.59 -0.24 -0.27 

Item t= 650 sec =10.Q2ft -t=.800sec,A^Bs 8.59ft t«1000sec ,AHAB =7.07ft ts1200sec jAHAB^S-95ft Item 
K - Q Q K Q Q K Q Q K Q Q 

1 1.16 1.98 2.09 1.13, 1.83 1.96 1.04 1.68 1.32 0.96 1.60 1.71 
2 1.64 2.01 2.04 1.62 1.97 2.01 1.59 1.94 1.97 • 1.56 1.93 1.95 
3 1.41 1,01 1,04 1.39 0.97 1.01 1.32 0.94 0.97 1.27 0.93 0.95 
4 6.88 ' 0.35 0.35 6.92 0.36 0.35 7.04 0.36 0.36 7.18 0.37 0.36 
5 3.88 0.67 0.78 3.65 0.52 0.65 2.86 0.36 0.51 2.23 0.28 0.39 
6 9.18 0.45 0:46 9.14 0.45 0.45 9.06 0.45 0.45 9.02 0.45 0.45 
7 2.00 0.86 0.89 1.97 0.83 0.86 1.88 0.80 0.83 1.81 0.79 0.81 

CO
 1.92 0.81 0185 1.88' 0.7a 0.81 1.77 0.75 0.78 1.70 0.74 0.76 

9 3.78 -0.31 -0.35 3.62 -0.28 -•0.31 3,13 -0.2,5 -0.28 2.82 -0.24 -0.26 
10 6.22 0.69 0.65 6.38 0, 72 0.69 6.87 0.75 0.72 7.18 0.76 0.74 
11 1.28 3.99 4.13 1.26 3.80, 3.97 1.19 3. 62 3.79 1.14 3.52 3.66 
12 0.53 0.01 0.13 0.40 0.20 0.03 0.07 0.38 0.21 0.42 0.48 0.43 



Table 12. Continued 

Item 
t^i400sec, £ H A B ̂ 5.19ft tsl700sec, £ H A B » 4.38ft t=2000sec, AH A B=3 .96ft t~2400sec, =3.69ft 

Item 
Q K Q Q K Q Q K Q Q . K q Q 

1 0.90 1.54 1.62 0.86 1.44 1.53 0.81 1.43 1.48 0.78 1.41 1.45 
2 1.54 1.92 1.93 1.53 1.90 1.92 1.51 1.90 1.91 1.51 1.90 1.90 
3 1,24 0.92 0,93 1.22 0.90 0.92 1.20 0.90 0.91 • 1 : 1 9 0.90 0.90 
4 7.26 0.37 0.37 7.34 0.38 0.37 7.45 0.38 0.37 7.48 0.38 0.38 
5 1.72 0.22 0.31 1.34 0.11 0.21 0.91 0.10 0.15 0.66 0.08 0.12 
6 9.04 0.45 0.45 9.04 0.46 0.45 9.06 0.46 0.46 9.10 0.46 0.46 
7 1.77 0.79 0.80 1.74 0.78 0.79 1.72 0.78 0.78 1.71 0.78 0. 78 
8 1.66 0.74 0.75 1.64 0.73 0.74 1.62 0.73 0.74 1.61 0.73 0.74 
9 2,64 -0.24 -0.25 2.52 -0.23 -0.24 2.42 -0.23 -0.24 2.38 -0.23 -0.24 
10 7.36 -.76 0.75 7.48 0.77 0.76 7.58 0.77 0.76 7.62 0.77 0.76 
11 1.10 3.46 3.56 1.07 3.34 3.45 1.04 3.33 3.39 1.02 3.31 3.35 
12 0.69 0.54 0.44 0.88 0.66 0.55 1.10 0.67 0.61 1.22 0.69 0.65 

t<3000sec, H A Bs3.56ft t^4000sec, H A B ~ 3.58ft 
Item 

K Q K Q 
1 0.77 1.41 1.43 0.76 1.43 1.43 
2 1.50 1.90 1.90 1.50 1.90 1.90 
3 1>.18 0.90 0.90 1.18 0.90 0.90 
4 7.52 0.38 0.38 7.54 0.38 0.38 
5 0.50 0.08 O.LQ 0.42 0.10 0.10 
6 9.12 0.46 0.46 9.12 0.46 0.46 
7 1.70 0.78 0.78 1.70 0.78 0.78 
8 1.60 0.73 0.74 1.60 0.74 0.74 
9 2.36 -0.23 -0.24 2.35 -0.24 -0.24 

10 7.64 0.77 0.76 7.65 0.76 0.76 
11 1.00 3.31 3.33 1.00 3.34 3.33 
12 1.30 0.69 0.67 1.34 0.66 0.67 

HL j » 0 ft. 

H L L I - -0.01 ft, 

H T
 s 4-0.01 ft, 

LIII 

H T
 s 4-0.01 ft, 
A-B 



Table 13. Tabulation Showing Iterative Procedure and Results for the System Containing Elevated 
Reservoirs with Free Flow Occurring at a Point in the Newtork for t = 0 seconds and 
AHAB = 20.00 feet. 

First Iteration Second Iteration Third Iteration 
Item k Qo K Q Q K Q Q K Q 

1 0.53 3.00 1.59 4.28 3.64 1.93 3.59 3.62 1.92 3.61 3.61 
2 0.79 7.00 5.53 7.02 7.01 5.54 7.01 7.01 5.53 7.02 7.01 
3 1.31 6.00 7.86 6.02 6.01 7.88 6.01 6.01 7.86 6.02 6.01 
4 20.00 2.00 40.00 1.98 1.99 39.85 1.99 1.99 39.80 1.99 1.99 
5 4.37 1.00 4.37 0.50 0.75 3.28 0.72 0.73 3.21 0.74 0.73 
6 20.00 1.50 30.00 2.30 1.90 38,00 1.82 1.86 37.18 1.86 1.86 
7 2,18 1.80 3.92 2.60 2.20 4.80 2.12 2.16 4.72 2.16 2.16 
8 2.18 0.80 1.74 0.80 0.80 1.74 0.80 0.80 1.75 0.80 0.80 
9 10.00 1.30 13.00 1.30 1.30 13.01 1.30 1.30 13.03 1.30 1.30 
10 10.00 2.30 23.00 2.30 2.30 23.01 2.30 2.30 23.03 2.30 2.30 
11 0.30 10.00 3.00 11.30 10.65 3.20 10.59 10.62 3.18 10.63 10.63 
12 2.00 3.30 6.60 2.80 3.05 6.10 3.02 3.04 6.06 3.04 3.04 
C 9.80 10.60 10.20 10.12 10.16 10.17 10.16 

H L ]. ~ -0.02 ft. HLA-B » +0.04 ft? 

D.07 ft. HLA-C 
= . -0.10 ft? 

HT = +0.09 ft, Q c
 s 10.16 cfs 



Table 14. Tabulation Showing Iterative Procedure and Results for System Containing Elevated Reservoirs 
with Free Flow Occurring at a Point in the Network While the Reservoirs are Allowed to Empty. 

t^250sec, £HABs=22.27ft t=500sec, £ffAB=24.16ft t=800sec, AH A B^25.59ft t^llOOsec, £ H A B s 2 7 ° 1 8 f t 

K K K 
1.92 
5.54 
7.88 

39 80 
3.21 

37.15 
4.71 
1.75 

13.02 
23.02 
3.19 
6.08 

3.66 
6.68 
5.68 
1.88 
0.48 
1.76 
1.95 
0.69 
1.19 
2.19 
10.34 
2.66 
9.51 

3.64 
6.84 
5.84 
1.93 
0.61 
1.81 
2.06 
0.74 
1.24 
2.24 

10.48 
2.85 
9.83 

1.93 
5.40 
7.65 

38.65 
2.65 
36.20 
4.48 
1.62 
12.45 
22.45 
3.14 
5.70 

3.69 
6.52 
5.52 
1.82 
0.34 
1.71 
1.84 
0.63 
1.13 
2.13 
10.21 
2.47 
9.18 

3.66 
6.68 
5.68 
1.88 
0.47 
1.76 
1.95 
0.69 
1.19 
2.19 

10.34 
2.66 
9.51 

1.94 
5.28 
7.44 

37.55 
2.07 

35.25 
4.25 
1.50 

11,88 
21.88 
3.10 
5.33 

3.71 
6.27 
5.27 
1.73 
0.17 
1.64 
1.70 
0.55 
1.05 
2.05 
9.98 
2.22 
8.70 

3.68 
6.48 
5.48 
1.80 
0.32 
1.70 
1.82 
0.62 
1.12 
2.12 

10.16 
2.44 
9.10 

1.95 
5.11 
7.18 

36.15 
1.41 

34.07 
3.98 
1.35 

11.20 
21.20 
3.05 
4.89 

3.71 
6.06 
7.06 
1.66 
0.03 
1.58 
1.57 
0.49 
0.99 
1.99 
9.78 
2.02 
8.29 

3.70 
6.27 
5.27 
1.73 
0.18 
1.64 
1.70 
0.55 
1.05 
2.05 
9.97 
2.23 
8.70 

Item t~1400sec, AHAB ̂27.90ft t~1700sec, EHAB^.llft t=2000sec, £H A B= 27.85ft t«2300sec, AHAB^27.26ft Item 
K Q Q K Q Q K Q Q K Q Q 

1 1.96 3.72 3.71 1.96 3.71 3.71 1.97 3.64 3.68 1.95 3.57 3.62 
2 4.95 5.86 6.06 4.80 5.64 5.85 4.62 5.45 5.65 4.46 5.25 5.45 
3 6.90 4.86 5.06 6.64 4.64 4.85 6.36 4.45 4.65 6.09 4.25 4.45 
4 34.66 1.59 1.66 33.25 1.52 1,59 31.87 1.45 1.52 30.48 1.39 1.46 
5 0.76 -0.11 0.03 0.15 -0.23 -0.10 0.43 -0.29 -0.20 0.85 -0.34 -0.27 
6 32.82 1,52 1.58 31.60 1.46 1.52 30.40 1.40 1.46 29.20 1.34 1.40 
7 3.70 1.44 1.57 3.42 1.32 1.45 3.15 1.20 1.32 2.89 1.08 1.20 
8 1,21 0.42 0.49 1.07 0.36 0.43 0.93 0.30 0.36 0.79 0.24 0.30 
9 10.54 0,92 0,99 9.90 0.86 0.93 9.27 0.80 0.86 8.64 0.74 0.80 

10 20.54 1.92 1.99 19 90 1.86 1.93 19.27 1.80 1.86 18.64 1.74 1.80 
11 2.99 9.58 9,77 2.93 9.36 9.56 2.87 9.09 9.33 2.80 8.82 9.07 
12 4.46 1.82 2.02 4.05 1.64 1.83 3.66 1.51 1.67 3.34 1.40 1.53 
Qc 7.89 8.30 7.48 7.89 7.10 7.50 6.72 • 7.11 



Table 14. Continued 

Item t-2600sec, mAB 

^26.42ft t=2900sec, H A B =2.5,37ft t=3200sec, A H A B =24.17ft t~3500sec^AH A B-22.86ft Item 
K Q Q K Q Q K Q Q K Q Q 

1 1.92 3.49 3.56 1.88 3.40 3.48 1.84 3.30 3.39 1.80 3.19 3.29 
2 4.30 5.05 5.25 4.15 4.84 5.05 3.98 4.65 4.85 3.82 4.44 4.64 
3 5.82 4.05 4.25 5.56 3.84 4.05 5.30 3.65 3.85 5,04 3.44 3.64 
4 29.15 1.32 1.39 27.80 1.26 1.33 26.52 1.20 1.26 25.22 1.13 1.20 
5 1.17 -0.38 -0.32 1.42 -0.41 -0.37 1.60 -0.43 -0.40 1.74 -0.44 -0.42 
6 28.05 1.29 1.34 26.87 1.23 1.29 25.75 1.17 1.23 24.60 1.12 1.17 
7 2.62 0.96 U08 2.36 0.84 0.96 2.09 0.72 0.84 1.83 0.60 0.72 

CO
 0.65 0.17 0.24 0.52 0.11 0.17 0.38 0.04 0.11 0.24 -0.02 0.04 

9 8.00 0.67 0.74 7.37 0.61 0.67 6.73 0.54 0.61 6.09 0.48 0.54 
10 18.00 1.67 1.74 17.37 1.61 1.67 16.73 1.54 1.61 16.09 1.48 1.54 
11 2.72 8.54 8.81 2.64 8.24 8.53 2.56 7.94 8.24 2.47 7.64 7.94 
12 3.07 1.29 1.41 2.82 1.20 1.31 2.61 1.12 1.21 2.42 1.04 1.12 
% 6.33 6.72 5.94 6.33 5.57 5.95 5.17 5.56 

Item 
t^3800sec, £H A B=21.47ft ts4100sec, £H A B-=20. 02ft t^4400sec, £H A B=18 .54ft t=4700sec, AH A B-17.03ft Item 
K Q Q K Q Q K Q Q K Q Q 

1 1.74 3.08 3.19 1.69 2.96 3.08 1.63 2.84 2.96 1,56 2.71 2.83 
2 3.66 4.24 4.44 3.57 4.03 4.24 3.35 3.83 4.03 3.18 3.63 3.83 
3 4.77 3.24 3.44 4.51 3.03 3.24 4.24 2.83 3.03 3.97 2.63 2.83 
4 23.94 1.07 1.13 22.66 1.01 1.07 21.40 0.94 1.01 20.14 0.88 0.94 
5 1.84 -0.45 -0.44 1.90 -0.46 -0.45 1.95 -0.45 0.45 1.96 -0.44 -0.45 
6 23.48 1.06 1.12 22.34 1.00 1.06 21.18 0.94 1.00 20.02 0.88 0.94 
7 1.56 0.47 0.60 1.30 0.35 0.47 1.03 0.22 0.34 0.75 0.09 0.22 

CO
 0.10 -0.09 -0.02 0.05 -0.15 -0.09 0.19 -0.22 -0.16 0.34 -0.30 -0.22 

9 5.44 0.41 0.48 4.78 0,35 0.41 4.13 0.28 0.34 3.44 0.20 0.28 
10 15.44 1.41 1.48 14.78 1.35 1.41 14.13 1.28 1.34 13.44 1.20 1.28 
11 2.38 7.32 7.63 2.29 7.00 7.31 2.19 6.67 7.00 2.10 6.34 6.66 
12 2.25 0.96 1.04 2.08 0.89 0.97 1.93 0.82 0.90 1.79 0.76 0.83 
% 4.78 5.17 4.39 4.78 3.99 4.39 3.60 3.99 



Table l4. Continued 

Item t=5000sec, A H ^ =15.52ft t=5300sec, AĤ -g-=14.01 ft Item 
K Q K Q 

1 1.50 2.57 2.70 1.43 2.43 2.57 
2 3.02 3.42 3.62 2.86 3.21 3.42 
3 3.71 2.42 2.62 3.44 2.21 2.42 
4 18.88 0.82 0.88 17.62 O.76 0.82 
5 1.95 -0.43 -0.44 1.92 -0.42 -O.43 
6 18. 84 0.82 0.88 17.62 O.76 0.82 
7 0A7 -0.05 0.08 0.18 -0.19 -0.05 

CO
 0.49 -0.37 -0.30 0.64 -0.44 -O.37 

9 2.75 0.13 0.20 2.04 0.06 0.13 
10 12.75 1.13 1.20 12.04 1.06 1.13 
11 2.00 5.99 6.33 1.90 5.64 5.98 
12 1.66 0.70 0.76 1.53 0.64 0.70 
QC 3.19 3.58 2.78 3.19 

^ur +0-07ft 

^ A B " 40-06ft 

Z H L A C = -*° -10ft 



Table 15. Tabulation Showing Iterative Procedure and Results for the System Containing a Reservoir 

and a Variable Head Pump. 

Item k % 
First Iteration 

QT=3.00cfs Hp = 235 ft 
Second Iteration 

Op - 1.60cfs Hp = 240 ft 
Item k % K Q Q K Q Q 
1 0.53 2.70 1.̂ 3 3.̂ 3 3.07 1.63 2.82 2.94 
2 0.79 1.30 1.03 3.36 2.33 1.8k 1.7k 2.03 
3 1.31 0.30 0.39 2.36 1.33 1.74 O.jk 1.03 
k 20.00 0.10 2.00 -0.26 -0.08 1.62 -0.07 =0.08 
5 4.37 0.90 3.93 1.96 1.̂ 3 6.26 1.46 1.45 
6 20.00 0.20 4.00 0.23 0.22 4.30 -0.07 0.07 
7 2.18 0.60 1.31 -1.10 -0.25 0.54 0.3k o.o4 

CO
 2.18 i . 4 o 3.05 -0.33 0.53 1.16 1.40 0.97 

9 10.00 1.60 16.00 0.54 1.07 10.68 1.04 1.05 
10 10.00 0.60 6.00 -0.46 0.07 0.68 o.o4 0.05 
11 0.30 4.00 1.20 6.80 5.40 1.61 4.56 4.98 

Third Iteration Fourth Iteration 
= 2.02 cfs H p r., 24l ft Qp = 2.13 cfs Hp = 24l ft 

K Q . Q K Q Q 
1.56 2.83 2.89 1.53 2.87 2.88 
1.6l 1.93 1.98 1.57 1.99 1.98 
1.35 0.93 O.98 1.28 0.99 0.98 
1.52 -0.04 -0.06 1.16 -0.01 -0.03 
6.3k 1.4l 1.43 6.25 1,43 1.̂ 3 
1.46 =0.05 0.01 0.26 -0.05 -0.02 
0.09 0.11 0.08 0.17 0.02 0.05 
2.11 1.16 1.06 2.32 1.07 1.07 
10.52 1.09 1.07 IO.69 1.07 1.07 
0.52 0.09 0.07 O.69 0.07 0.07 
1.49 k.76 4.87 1.46 4 .86 4.86 

II 

III 

=-. -0.01 ft 

= +0.02 ft 

= -0.01 ft 

-0.01 ft 
AP 
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Computation of k using the Parcy-Weisbach formula,--The Darcy-Weisbach 

formula for flow in pipes may be written as 

h f L v 2 

h L = f D ^ i 

in which, 

f = Darcy-Weisbach resistance coefficient 

L = length of the pipe 

g = magnitude of the gravitational attraction 

D = inside diameter of the pipe 

When the equation is written in terms of the discharge, Q in cubic feet 

per second, it takes the form 

\ 58 —2-3 Q 

gF D y 

or 

in which, 

k 8 f L 

SIT D 

In most pipe systems the resistance coefficient, f, for a given pipe may 

be considered constant. 'Thus, k values as computed from the above equa­

tion may be treated as constant also. The values for k in the text are 
2 5 in units of sec. per ft. 



5 1 

Computation of k using the Hazen -William s formula, —The Hazen-Williams 

formula is 

V = 0.115 C D ° - 6 3 S°-3K 

in which 

C s= Hazen-Williams resistance coefficient 

D s= inside diameter of the pipe 

S « friction slope = 

or 

S = 5^ .3 v 2 

c 1 . 8 5 D 1 . 1 6 7 y 0 . 1 5 

Substituting in h^/L for S and solving for h^ gives 

^ ~ ^ . 8 5 D 1 . 1 6 7 y 0 . 1 5 ' 

If written in terms of the discharge, Q in cubic feet per second, with 

the exception of the velocity term in the denominator and with D in inches 

we obtain 

- 1 . 8 2 x L(F L Q 2 

*L ~ Q 1 . 8 5 D 5 - 1 6 7 y 0 . 1 5 * 

This equation is in the desired form 



in which. 

c 

The velocity may vary from 3 to 8 feet per second without having any 

large influence on k. Thus, it is usually sufficient to assume an aver 

age value for the velocity and compute k as a constant for a given pipe 

1.82 x 10 L 
c1.85 D5.167 y0.15 


