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ABSTRACT

Thorough anglysis of plpe distribution systems is usually not
sccomplished because of the excessive number of computations involved,
With the electronic digital computer, however, a means 1s gvallable
which promises to mske thorough pipe-network analysis a simple, routine
matter. The purpose of this study was to develop, with the aid of the
electronic digital computer, a new method, readily applicaeble to all
systems which may be encountered.

Essentially, the method censists of solving simul taneously the
continuity and energy~loss eqguations which may be written for any pipe
system, This is accomplished by linearizing the energy-loss equations
by an approximation scheme and placing in matrix form the coefficients
from both equations. Solution of the linear simultaneous equations is
accomplished by lnverting the matrix with the aid of an electronic
digital computer. Repetitive solution of these eguations necessitated
by the linearization process is carried out until convergence of the
correct flow values for the system is accomplished.

The method is particularly adaptable since 1t redquired only that
the continuity and energy-.oss equations of the system be written. To
illustrate the adaptability of the method various types éf systems were
analyzed. These included a rather large system having 31 unknown flows;
systems with elevated storage reservoirs which are being sllowed to
emplty by either constant or free flow from the networks; and a system

containing a pump, in which the head on the pump varies with flow.
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The method proved to be simple and accurate. The excessive com-
puter time required for analyzing large systems 1s the blggest deficlency
of the method. A speclal computer program 1s not necessary because exlst-

ing computer subroutines may be used in solving the simultaneocus equations

involved.



NOMENCLATURE
C = Hazen-Williamse resistance coefficient;
D = 1inside diameter of a pipe;
f = Darcy-Weisbach resistance coefficlent;
g = acceleration caused by gravity;

= head loss in a pipe;

= head loss in a series of pipes;

G

H =  total head at a point;

k = measure of resistance to flow in a plpe;

K = k@

L = length of pipe;

Q = flow or discharge in cubie feet per second;

Qb = 1Ipitially assumed discharge in a pipe;

Q = average of the flcocw wvalus obtained for an iteration with the
value used ir the iteration;

S = friction slope = hL/L;

v = mean velocity ard

vo= K /x .

Superseripts: ' number of primes indicates the iteration involved.

ix



CHAPTER T
INTRODUCTTON

Thorough analyses of pipe distribution systems are usually not
carried out because of the excessive computations required. This was
remedled partially by the development of the electric analyzer (1).
The event of the electronic digital computer rnaturally led to the pro-
gramming of the Hardy Cross Method for pipe-network analysis (2, 3).

The purpose of this study was to develop, with the aid of the
electronic digital computer, a new method of analyzing pipe distiribu-
tlon systems readily applicable to all cases which may be encountered.

Esgentlally, the method consists of solving simultaneously the
continuity and energy-lcss equations which may be written for any pipe
system. This is accomplished by linearizing the energy-loss egquations
by an approximation scheme and placing in matrix form the coefficlents
of both types of equations. Solution of the linear simultaneous equa-
tions 1s accomplighed by inverting the mabtrix with the aid of an elec-
tronic digital computer. Repetiiive solution of these equations,
necessitated by the linearization process, is carried out until con-
vergence of the correct Tlow valueg for the system ig accomplished.

This method is particularly adaptable since it requires only
that one write the continuity and energy-losg equations desceriptive of
flow in a system. To illustrate the adaptsbility of the method varlious

types of systems are analyzed. These include a rather large system



having 31 unknown flows; systems with elevated storage reservoirs for
cases of constant and free flow from their networks; and a system con-

talning a pump in which the head on the pump varles witin flow.



CHAPTER II
DEVELOPMENT OF THE METHOD

General.--With the development of the electronic computer, a vast number
of mathematical methods previously impractical to use due to time and
labor required have now become useable. This is particularly true when
it comes to the solution of systems of linear algebralc equations. Com-
puters now made are capable of inverting in a matter of minutes matrices
which by hand would he virtually impossible.

The matrices of the following problems were solved using matrix-
inversion subroutine ML 05 which was prepared by the International Business
Machine Corporation. This subroutine is capable of inverting a matrix
with a maximum of 43 unknowns. It was used on the IEM 650 digital com-
puter located at the Rich Computer Center, Georgia Instltute of Tech-
nology. It should be pointed out here that the writer did not have and,
in faect, had no need to develop a program but merely used an exlsting

subroutine as a tool 1in solving sets of simul taneous equations.

Laws governing flow distribution in a pipe network.--There are three bhasic

laws which govern the distribution of flow in a plpe network. The flow of
water into a pipe Jjunction must equal the flow out, or the algebraic sum
of the flows toward a‘junction must equal zero. Second, the algebralce

su of the head losses around any closed circuit of a pipe network must

equal zero. The third law relates the head loss in a pipe to some power



of the discharge. In the Darcy-Weisbach equation, the head-loss varies
with the second power of the discharge, and in the Hazen-Williams equation

the head loss varies with the 1.85 power of the discharge.

Basic principle.--The fact that linear simultaneous equations can now be

solved on an electronic computer does not mean that the simultanecus equa-
tions for a plpe network are solvable. The same difficulty 1s encountered
as that which hindered earlier efforts to use an electrical network as
analogous to a pipe network (k). In an eleetrical network the voltage
drop in & line is directly proportional to the first power of the current
times the resistance rather than some higher power. This inexaciness in
the analogy was avolded by using a linear electrieal circuit and by a
process of successive approximations which involved changing the resis-
tance of the circult elements several times until the current and voltage
were analogous to the head loss and flow of the plpe network. A somewhat

similar approach is used here with the excepticn that the method is numer-

ieal.
Using the Darcy-Weisbach equation, the head loss in a straight
pipe 1s
2
hL =k Q

in which k is a functlon of the pipe properties and a measure of the resis-
tance of the pipe to fluid flow. The continuity equations written for the
pipe junctions of a network are linear algebraic equations and the head-

loss eguations are guadratic equations. It was reasoned that the head-loss



equations might be linearized by letting

b, =K Q

where
K=k Q.

The resulting linear simul taneous equations could then be solved. This

would serve as & first epproximation. The new values found in this first
iteration on the computer would be used in a second approximation and the
process repeated until convergence to the correct flow values was accom-

plished.

Theoretical examination of the method.--The examination of a single loop

network using the principle ocutlined above wlll reveal the need for an

additional step in order to bring about convergence.

5 \QA.

Fig. 1. A Simple Pipe Network

The simple loop shown is chosen for theoretical examination because
the exact solution is readily obtainable. The respective continulty and

head-loss equations for this simple loop are:



from equation {2)

in which

TFron equation (1)

Q% [V =0
and the exaect sclution for qa becomes

1
= Q —————n
% 1+ v

and the exact solutlon for Qb becomes

Q = Q-Q =Q _Jl:i:___

a 1 T

The next step is vo obtaln solutions for Qa and Qb by the iterative
procedure in wilch the head-loss equavicas are linearized, The respective

continuity as linearized hesd-loss eyuations for the simple loop are:



Q + 9 =4
K,'% = K,'4 = 0
n wiich
K'eG, md KRG

and the primes are added to indicate the number of the iteration. For a

Tirst approximation let

| -

The continulty and energy loss equations become
%' e =a

549, -k 8 =0

Q'+ 4, = a
¥, - G, =0

Solving for Qa' and Qb',

Qa'=|:111|;:|Q

%=[ﬁﬁlq



For a second approximation let

1
=

"wo_ f
L "kaqa al 1+ ¥ 4

il

—k, Q)

Uﬁ:

| iy | 9
1+
The contimuity and head-loss equations for the second iteration are

AR

Qe -k | =L |ag =0

1+ v

Equation (2) then reduces to

¥ " * " o_
T+ v % " | TV |% =°

Eere the lteration must stop with the obviously lncorrect result that

Q" ="

In order to obtain convergence, 1t becomes necessary to average the
flow values obtained as a result of the first iteration with the origlnally

assumed values. Thus for The second iteration,

n Q+QB.' ka 1
Ky :ka[E =§“l:l+1+¢r @




Q+ Q'
Ky =k ["??:il]z’gb'[:l 1 i ¥ } Q

The continuity and head-loss equations are

Q" +q," = Q
and
Simplifying,

Q"+ 4" - @
and

{2 + ¥) Qa" - {1 + 2¢) Qb" = 0

Adding these two egquations and solving,

" l+2\lf
o —=tE_ g
% [:l + by o+ ¢2 }

+,
i
}_J
+
n
-
| I
O
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The flow values to be used in the third iteration would be the average of
these new values and the values used in the second iteration.

Figure 2 is a plot of Qa/Q versus ka/kb for the exact and the first

and second approximate solutions obtalned by averaging the flows. This

reveals graphically how convergence occurs,

\\\\~ "“-.\__‘ 2nd approx.

— —

I- \ \lst approx. T — —

0-2 ‘-—“-—_________‘

| 1 [l

3
kK =¥
Fig. 2. Comparison of Exact and Successlve Approximate Solutions for a

Simple Loop Network.

FI 1
° 9 1 2
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Test case.--A three loop, ten-pipe network as shown in Figure 3 was selected

for a test case. This figure shows the network with k values in parenthesis
as computed for the Darcy-Weisbach equation. Appendix B contalns the equa-
tion for the computation of k. Inflows and outflows from the system are
considered to occur at junctions. As is the case in most methods of analy-
sis, the direction and magnitudes of the inltial flows, Qb, are assumed

and are shown in Figure 3. As may be seen, these flows ;;é bad estimates

in order to test the method thoroughly.

0.50 efs
o (4.37)
5
(10.00)

0.20

IIT
1.00 cfs
(10.00)

0.50 ecfe

Fig. 3. Diagram of Network for the Initial Test Case.
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The continuity and head-loss equations for this network are written
assuming flows into a Jjunction as positive and flows out as negative. Head
loss is considered positive in the clockwise direction and negative 1if

counterclockwise. The resulting continuity equatlions are

Joint

(1) 9 T+ Q=0

(2) +Q - @ -G - Q -0.50=0
(3) +Q + Qo - 0.50 =0

(%) +Q - Qg - 1.00 =0

(5) +Q8-Q9—-O.50=-O

(6) +Qg + QT - @ - 0.50 =0

(7) *Q 4§ - Q -0.50=0
(8) 4y = @ - 1.00 = 0

and the three head-loss equations are
Loop
2 2 2 2
L Q- kG - RyQe + KRG =0

2 2 2
IT -kl},% + k6Q6 = k7Q7 = 0

2 2 2 2 2
IIT +st5 e k6Q6 - k8Q8 - 9Q9 - klOQlO = 0

The head-loss equations may now be linearized by substituting in

their respective K values. The head-loss equations now may be written as
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Loop
g K - K6y - KTy K G, =0

T K,'Q, + Kg'G - K,'Q, = 0

11 K, 'Q - Kg'Qg - Kg'Qg - K'Qy - Ky 'Q) 5 = O

where the single prime indicates the values for the first lteration and
is used only in this test case to clarify procedures.
The coefficients of the flows for the continulty and head-loss equa-

tions are now set up in matrix form as shown in Table 1 which contains

Table 1. Matrix for the Test Case

Jung;ion Flows

Loop Y % Q3 o QS % Q’T % Q9 %Yo QA Constants
1 ~1 -1 +1 O

2 +1 -1 -1 -1 +0.50

3 +1 +1 +0.50

L +1 -1 +1.00

5 +1 -1 +3.50

6 +1 |+1 |-1 +0.50

7 +1 +1 -1 +0.50

8 +1 | -1 +1..00
I +Kl' _KE' ¢K3' +K1+' 0
II -K,’ g ' «1{7' 0
= el %' Mo 0
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eleven unknown flows and eleven equations. This matrix as shown may be
inverted on the computer. However, it is obvious that the wvalue of the
incoming flow, QA, may be found by merely summing up the outflows from
the network. ngs operation results in a reduction of the matrix to ten
unknown flows and ten equatlons. Since the continuity principle is
used to determine the flow QA’ one of the junction continuity equations

may be dropped. This matrix shown in Table 2 results from dropping the

continuity equation for junction 2 and from inserting the computed value

Table 2. Reduced Matrix for the Test Case

Junction
or Flows
Loop 1 2 3 4 5 & 7 3] 9 10 Constants
1 -1 | -1 -4.50
+1 +1 +2.50
i +1 -1 +1 .00
5 +1 -1 +0.50
6 +1 [+l | -1 +0.50
T +1 |+l _ -1 +0.50
8 sl | -1 ' +1.00
L] . LI t t
I +Kl K2 K3 +K£ ¢
- ' L1 i
Ii Kﬁ +K6 K? 0]
Ll L - . H. |
11T +K5 K6 K8 Ké Kio

of QA. This matrix was inverted on the computer for the completion of the

first iteration. The numerical wvalues of the E’ terms in the matrices
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were omitted only for clarity. The unfilled elements of the matrices are
all zeroes.

Table 3 contains the complete tabular solution of the lterative
process as well ag the final results. The results of the third iteration
are compared with an ll-iteration analysis of the network by the Hardy
Cross method. The algebraic surmmation of the head losses around each loop
at the end of the third iteration reveals the degree of exactness obtained.
Each iteration required approximately 3 minutes of computer time.

As might be expected and as can be seen from Table 3, the flow in
pipe 10 is reversed on the first iteration as is indicated by the nega-
tive sign. There is no need to alter the signs 1n the matrix for the next
iteration in either the continuity or head-loss equations as a result of
this flow reversal. The new K value for pipe 10 may be entered without
altering the initially selected signs of any part of the matrix. The
final flow value for pipe 10 retains the negative sign, indicating a flow
in pipe 10 which is opposite in direction to the initislly assumed direc-
tion.

In the example shown, the averaging of the flows and the computa-
tion of new trial K values was done manually although the whole problem
could be programmed to carry out the entire series of iterations. How-
ever, a complete program would occupy space In the computer with the
result that the maximum number of equations would be reduced. Since each
successive iteration involves changing only the coefficients of the head-
loss equations while the other seven continuity equations remain unaltered,
the complete program is quite unnecessary. As mentloned above, even the

initial sign designations may be retained for all iterations.
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Table 3. Tabulation Showlng Method and Results of Initial Test Case
Initial First Iteration
Flow K'= Computed Q' =
(assumed) KQ Flow, Q + Q'
Ttem k Q © Q' 5
1 0.53 2,50 1.32 2.38 2.44
2 0.79 2.00 1.58 2.12 2.06
3 1.31 1.00 1.31 1.12 1.06
b 20.00 0.50 10.00 0.17 0.33
5 4. 37 0.30 1.31 1.57 0.93
6 20.00 1.20 2k, 00 0.1h 0.67
7 2.18 1.00 2.18 0.79 0.90
8 2.18 1.70 3.71 0.43 1.07
9 10.00 1.20 12.00 {-) 0.07 0.57
10 10.00 0.20 2.00 (-} 1.07 (-} 0.43
Second Iteration Third Iteration
K' = Computed @& = K7 = Computed q = * QHC
=1 Flow, -t 1t by 7} ¥Flow, =
1.29 2.32 2.38 1.26 2.37 2.37 2.37
1.63 2.18 2.12 1.68 2,13 2.13 2.13
1.39 1.18 1.12 1.47 1.13 1.13 1.13
6.68 0.33 0.33 6.62 0.35 0.34 0.34
L.o8 1.19 1.06 4,63 1.07 1.06 1.06
13.42 0.31 0.49 9.80 O.h4 0.47 0.47
1.95 1.00 0.95 2.07 0.98 0.97 0.97
2.32 0.81 0.0h 2.05 0.93 0.9% 0.94
5.66 0.31 0.h4h 4.L4o 0.43 0.4k 0.44
4,34 {(-) 0.69 {(-) 0.56 5.60 (=) 0.57 (-) 0.56 (-) 0.56
Final Values
by HE’ for Loop I = +0.04 ft.
z HL'” for Ioop IT = -0.03 ft.
b Hﬁ’ for Loop III = +0.03 ft.



CBAPTER ITI

TLLUSTRATIVE EXAMPLES

Analysis of the Warwick, Rhode Island distribution system.--The test case
Just analyzed was a comparatively small system and required only three

iterations for convergence. To ascertain if a larger system might result
in increased iterations to obtalin convergence, the Warwick; Rhode Island

System, as is found in the Handbook of Hydraulics by Davis (5), was selec-

ted for analysis.

Figure 4 is a diagram of this system. The initial flows in the
lines are the same as assumed by Camp (5) in his analysis of the system
by the Hardy Cross method, except that the flows are expressed in cubic
feet per second. The initial flows are shown by thelr respective direc-
tional arrows. A Hazen-Williams C of 110 was used by Camp. Appendix B
illustrates how the Hazen-Williams formula was converted into the form,
hL = KQ2. The k values for the system are omitted from Flgure 4 for the
sake of clarity but are shown in Table 10 in Appendix A.

Table 4 1s the matrix for the Warwick System. This system 1s seen
to have 31 unknown flows and 7 loops with one loop containing 14 unknown
flows. The continulty equation for Jjunction 1 is arbitrarily draopped for
reasons previously discussed.

Table 10 in Appendix A shows the iterative procedure as well as
the final results. Again, only three iterations wers necessary for con-

vergence of the entire system. As may be seen from the small differences



18

. . 0.434
() ' -
L.082 . 0.012
16
c.078 9
0.268
19
0.111 @
0.56

0.078

16

0.101 Clo\o.cSoo_: @ 0,568 O°15'§ 2 9 0.234

0.512
30

Fig. 4. Diagram of the Warwick, Rhode Island Distribution System Showing

Initial Flow Conditions.



Table 4. Matrix for the Warwick System

June-
zion Flows
Loop |1} 2| 3| 45| 6{T7[{8] 9|10 11112 13|14115)16{17|18|19 |20 |21 |22 |23 |2k |25 (26|27 |28 |29 |30{31| ¢
26 11 -1 ' IOk
24 41 (-1 | | R -0.323
23 +1|-1 ] -0.188
8 41 [-1 -1 -1 10
18 +1 -1 1 il 1 0
17b | L -1 B -0.067
7 | +1 1 -1 -0.133
15 ] |41 +1 -0. 477
14 -1]4a 41 |-1 0
5 -1 [+1 -1 0
4 -1 1 -1 0
3 -1 41 -0.078
17c =141 -0,111
22 +1| -1 -0.43k
9 +1[ +1 -1 0
21 -1 +1 -0.122
20 - +1{-1 ] -0.056
19 4111 -0.122
6 S +1{-1]-1] | 0
16 +1 (-1 -0.111
13 SRS -0.234
12 -1+ -0.512
11 41 [+1 -0,668
10 -1{+1]-0.101
T BE| K[|+ |+K [+K [+ [+ |-K]-K] -X]| -K] -K -K] -K 0
1T -K +X| +K | +K|+K [ +K 0
ITT +K| +X| -K| -K 0
IV -K +K|+K N )
v + K[+K[+K]| | C
VI + +K|-K|-K %)
VII +¥] +K|[-K|-K| ©

Note: Superscripts and subscripts have been omitted in this matrix.

61
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in the summation of the head losses around each loop, a high degree of
accuracy was obtained. Computer time for each ilteration was approximately
37 minutes. In Figure 5 the final flow values are compared with Camp's
soclution obtained by the Hardy Cross method. The small discrepancies may
be accounted for by the method of converting the Hazen-Willlams resis-

tance coefficient.

Analysis of system containing elevated reservoirs for case of constant

flow from the network.--A system containing elevated reservoirs is as

readily analyrzed as any other system. Essentially, the additional equa-
tions are those relating the total head (total energy) between reservoirs
or reservoirs and points in the network. The ease and rapidity with
which analyses may be made now makes it feasible to make more thorough
investigations; in particular, where the elevated reservoirs are being
allowed to empty.

A system containing two reservoirs with known areas and initial
total heads is shown in Figure 6. As in previous problems, the k values
are shown in parentheses and the flows for the lines are those initially
assumed.

Table 5 is the matrix for this system. The equation relating the

total head between reservoirs of Figure 6 is simply,
H -h - - +h  =§
A Lll hLl hL5 ng B
Rearranging,

-h - h - + h =
L L hLll le B A

which 1s the form shown in the matrix.
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Note: The values obtaired in this study are underiined.

Fig. 5. Final Values for the Warwick System Compared wiih Those CObiained by
8 Hardy Cross Analysis.
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Area = 500 ft. Reservoir A; H, = 100 ft; t = 0 sec.
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Reservoir B; 337= 80 ft; t = O sec. Area = 100 ft.
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Fig. 6. Diagram of System Containing Elevated Reservoirs with Constant Flow from the Network.
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Table 5. Matrix for the System Contalning Elevated Reservoirs with
Constant Flow from the Network
Junec-
tion Flows
or Con-
Loop 1] 2 3 b 5 6 7 |5 9 10 ] 11 | 12 |stants
1 -1 -1 +1 0
2 +1 -1 -1 -1 +0.50
3 +1 -1 +1 0
4 -1 |+ +1.,00
5 +1 ]+l +0,50
6 +1 | -1 +0.50
T +1 +1 -1 +0.50
8 +1 | -1 +1.00
L . 1l _ '
I +Ki Ké Ké wxﬂ 0
- LI 1
1T Kh +K6 K7 0
. - ' - LN N
ITT TKS K6 Kg +K9 +ch o]
- - ] - - 1 1 =
A-B | -K, g R e

As may be seen in Table 11 (Appendix A) three iterations were re-

quired to bring the system to convergence for the initial condition. Each

ltersation required approximately 3 minutes.

It 1s interesting to note

that there 1s an inflow 1lnto reservoir B lnstead of an outflow as ini-

tislly assumed.

The next step 1s to analyze the system while the reservolrs are

being allowed to empty.

This is accomplished by computing new water
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levels in the reservoirs at specified times. On the basis of these new
values of the total head, the distribution of flow In the system 1s agaln
determined. Table 12 {Appendix A) contains the analysis of the system for
the condition of constant flow from the network for a period of L0OO
seconds. Succeeding X values were calculated using the final flow values
obtained for the previous time increment.

Two lterations were requlred for complete convergence for the
flrst two time increments. Succeeding time increments were shortened to
meke only one iteration for each time increment necessary. Time incre-
ments were lengthened as the rate of change of the total heads of the
reservolrs decreased.

Figure 7 illustrates the typical characteristics of a system sub-
Jeet to constant flow from the network and emptylng reservolrs. The flows
in the systems and the difference In the total heads of the reservoirs
eventually reach a steady state. The steady state 1s possible only be-
cause the outflows at the junctions 2, &, 5, 6, 7, and 8 were assumed to

be constant.

Analysis of system contalning elevated reservoirs for the case of free

flow from & point 1n the network.--This example 1s slmilar to the pre-

vious one except that free flow 1s allowed to ocecur at & point in the net-
work while the reservoirs are allowed to empty.

Figure 8 1s a diagram of a system with free flow occurring at
point C. The matrix for this system, Table 6, is composed of 13 unknown

flows and the coefflcients of 13 equations. The free flow, QC, is the
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Fig. 8. Diagram of System Containing Elevated Reservoirs with Free Flow Occurring at a Point in the

Network.
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Table 6. Matrix for System Containing Elevated Reservoirs with Free

Flow Occurring at a Point in the Network

Junc-
tion
or Flows Con-
Iocop| 1 2 3 L 5 6 7 8 9 10| 11| 12| ¢ [ stants
1 |-1 -1 +1 0
2 |+ -1 |+l [ -1 +0.50
3 -1 -1 +1 O
L I A +1.00
5 R +0.50
6 41 (-1 |+ +0.50
T +1 +1 +1 -1 0
8 +1 -1 +1.00
t| _ t| e v o t
I 1Ki Ké Ké Kh O
IT -Kli- ' +K6 ! +K.( ' 0
IIT —K5 ~K6 +K8 +K§ +Kio 0
- - t ] - t -
A-C Ké K3 Kll HA
- - ' t N t -
A-B K K | K )| K4 H,+Hy

edditlional unknown. The additional equation is that relating the head-loss
from one of the reservolrs to the point of zero total head. The matrix was
inverted on the compufer to compiete the flrst ilteration.

As can be seen in Table 13 (Appendix A) again only three iterations

were necessary to bring about convergence for the starting condition.
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Table 14 (Appendix A) contains the lterative procedure and results for
analyzing the system for a perlod up to 530C seconds while the reser-
voirs were being allowed to empty. Flgure 9 shows the results of this

analysis graphically.

Analysis of g system containing a reservolr and a variable head pump.--

Networks fed by pumps are qulte common. In the case of centrifugal
pumps the head on the pump (total-head change at the pump) is a function
of the pump discharge. Pump characteristic curves define this relation-
ship., This type of system contalning a variasble-head source may be
readily analyzed by the method developed.

Figure 11 18 a dlagram of a system containling a reservolr and s
centrifugal pump. The characteristic curve relating head (total-energy

change) and discharge for this pump is shown in Figure 10. Teble 7 is

300
@O
& 250
3
: =
3 200 S
3
?
&
- !
A1 150 0 1 2 3 4 5

Fig. 10. Ordinary Pump-Characteristic Curve.
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11 4 .86 cfs 1.50 efs 1.50 cfs
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Fig. ll. System Containing aun Elevated Reservolr and a Variable Head Pump.
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Table 7. Matrix for System Containing an Elevated Reservolr and
Variable Head Pump
Equa Unknowns cgn544
tion Ql QE 93 Qﬁ Q5 Q6 QT Q8 Q9 Q10 Qll QP HP stants
1 (-1 -1 +1 0
2 1 -1 -1 -1l +1.50
3 +1 +1 +1.50
L +1 | -1 +1.00
5 ~1 -1 +1 0
6 +1 -1 |41 +1.00
T +L |+l +L +1 .00
8 + (-1 41,00
v v . [ t
I +Kl Ké K3 +Kﬁ 0
T | 1 1
1T Kﬁ +K6 +K7 0
: LA 1 LI . t T
Irr +K5 K6 +K8 Ké +Ki0 0
- _ 1 = 1 t L3 . t - -
Sl “s s [ H0l F LRy
Punmp Equation relating pump head and pump discharge

the matrix for this system and contains not only twelve unknown flows, cne

of which is the pump discharge, but the head on the pump is an unknown also.

As may be seen the equation for the characteristic curve relating pump

head and pump discharge is not linear.

ficients of such an eguation into the matrix of Table 7.

This precludes placing the coef-
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There are two approaches to such a problem. First is to make the
characteristic curve linear by making it a straight line with a constant
slope m. Figure 12 is the linear pump characteristic curve. We see that
the equation relating pump discharge and head on the pump may be expressed

as:

Hp = hy - mQ
or

HBp + mQp = hp

This may now be placed in the matrix form shown in Table 8,

p

!
[

%

Fig. 12, Linear Pump Characteristic Curve.

The second appreach, and the method of solution used, is not to
enter the head on the pump as an unknown in the matrix but as a constant
for a given {iteration. A trial wvelue of HP may be selected from the pump
characteristic curve of Figure 10 by assuming an initisl pump discharge.
Computed pump discharges are then used to plck the pump heads for suc-

ceeding iterations.



Table 8, Matrix for System Containing an Elevated Reservoir and Pump

with a Linear Characterlistic Curve
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Equa Unknowns Con-
tion [ | | B %] S| Y| Y B| B Yol U % | | stants
1l {-1 -1 +1 ¢
2 J41 -1 -1 | -1 +1.50
+1 +1 +1.50
4 +1 | -1 +1.00
> -1 |-1 +1 0
6 + -1 |+l +1.00
T +1 +1 +1 +1 .00
8 41 |1 +1.00
I +Kl' -Ké' -K3 +Kh' 0
IT -Kh' +K6' 4-1(7' 0
11 +K5 _K6f +K8r -"K9' -K]_(S 0
AP [-K, 7 X5 ' K o) Ky L |y
Pump ~m ~1 hp

To solve the system shown in Flgure 11 an Initial pump discharge of

3.00 cubic feet per second is asgumed and corresponds to a head on the

pump of 235 feet.

Table 9 contains the matrix of twelve unknown flows

the coefficients of twelve equations.

Table 1L (Appendix A) contains the iterative procedure and results

for analyzing this system. 7This time four lterations were necessary to
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Table 9. Matrlix for System Contalning an Elevated Reservolr and a

Pump with a Non-linear Characteristic Curve

Junc-

tions

or Flows Con~

Loop I [ 2 [ 31T T 5767 7T B8] 9 [ IWO]ITTP |stants
1 -1 | -1 +1 0
2 +1 -1 | -1 | -1 +1.50
3 +1 +1 +1.50
b 41 | -1 +1.00
2 -1 | -1 1 | o
6 + [ -1 |+ +1.00
[ +1 +1 +1 +1.00
8 | -1 +1.00
I +K K -K3' +K;, ! 0
1r -Ky, ' +K' +K7' 0

ITT +K5’ —K6' +K8' -Kg' _Kié 0

i A 3 e O B

obtain a solution. This undoubtediy resulted from the presgence of the
variable head of the pump. The final flow values are underlined in Flgure
1.

As was the case for the example with free flow oeccurring at a point
in the network; at the end of an iteration the flow from the pump could be

evaluated by using the continulity equation at junction 5 and summing
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algebraically the flows at this point. This would allow us to reduce
the matrix to eleven unknowns. If it is desired to reduce the size of
the matrix by dropping a continuity equation, only that for Junctlon 5

may be dropped for all the constant cutflows must appear in the matrix.



CHAPTER IV
CONCLUSIONS AND RECOMMENDATTONS

Conclugions.--With the ald of the electronlc dlgital computer pipe dis-
tribution systems may be analyzed by solving simultaneously the head-
loss and continulty equations descriptive of such systems. More thorough
analysis of pipe distribution systems 1s now feasible.

Existing computer subroutines for inverting matrices may be used
in solving the simul taneous equations. Compubter time is excessive for
large systems solved with existing subroutines. The number of repeti-
tive calculatione involved 1n analyzing systems containlng elevated
regervelrs which are emptylng indicates the need for a complete computer

program for such cases.

Recommendations.~-It 1s suggested that efforts be tsken to reduce the

computer time required for the inversion of large matrices resulting from
large systems. It is believed that advantage could be taken of the large

number of zero terms which are seen to exist.
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Table 10.

Tabulation Showing Iterative Procedure and Results for the Warwick System

First Iteration

Second Iteration

Third Iteration

Item  k q, K Q Q K Q Q K Q Q
1 3.3%  2.002 6.690 1.9 1,726 5.760 1.719  1.722 5.750 L.721 1.722
2 4,07  i.679 6.830 1.126  1.ko2 5,705 1.396 1.399 5.690 1.398 1.399
3 1.22  1.491 1,820 0.938 1.214 1.48 1,208 1.211 L4718  1.210 1l.211
i 2,77 C.667 1,847 0.523  0.595 1.648 0.780 0.688 1.905 0. 690 0.689
5 1L.63  C.757 i.232 0.20k 0,480 0.782 0.b7h o477 C.778 0.476 0.477
6 1.79  0.690 1.235 0,137  C.hih 0.7kl 0.407 0.4 0. 734 0.409 0.%10
7  40.83 0.112 L.570 0.0k5 0,278 3.1.8 0.1kl 0.105 i 240 0.103 0.104
8§ 16.52 0.Dk2 0.60h 0.34C 0.1910 3.160 oc119 0.155 25560 0,152 0.153
9 3.67  0.109 0. 100 C.860 0.484 1.775 0.50L  0.492 L. 804 C.4ok 0.493
10 3.26  0.777 2.530 1,330 L.05h 3.440 L.060 L.057 3,4h3 1.058 1,057
1l 7.58  0.845 6.400 1.145  0.995 7550 0.998 0.996 7.55L 0.998 0.997
12 i.16  1.813 2.102 2.36h 2.088 2,420 2,094 2.001 2.425 2.06h 2.093
i3 o, 1.801 1.522 2442 2.166 L.THC 2.172  2.169 1.7h2 2,171 2.17L
1k .tk 2,002 0,282 2.553 2,278 0.321 2.283  2.28L C.322 2,283 2,282
i5 17.06 0.ul6 T.610 0.266  .356 6£.075 0.267 0.312 5.320 0.321 0.316
16 5.22 0.C12 0.063  -C.L68 -C.078 C.L08 L0.167 -0.122 0.637 -0.113 -0.118
17 58.20  0.25%6 14,900 3,026 0.1bL 8.200 0.039 C.090 5.230 0.077 0.08k
i8 29,10  0.378 L1000 . 1k8  0.263 7.65C 0.161  ¢.212 6.160 0.199 0.206
t9  10.58 0.268 2,835 oLkl 0,06 C.676 -0.128 ..0.032 C.338 ~0.036 =0.03%
20 12.63  0.212 2.680 -0.197 0.008 0.101L 0.8k -0.088 1,111 -0.092  -0.090
21 L6z 0,090 O.L14% -0.319 -C.11h 0.524%  =0.306 -0.2i0 0.965 .21k  -0.212
22 LA48 ¢ uhs 0.657 0042 0.2C2 .298 0.1h3 L172 C.25k 0.L7h 0.173
23 7.0%  0.323 2,560 0.092 0.208 1.650 0.227  0.218 1.730 0.223 0.220
2k C.6L  0.122 0.079  -0.133 -0.006 .00k -D.08%  -0.,0Ls5 0.029 -0.049  -0.0k7
0,011 0.002 0.2k -0.116 0.013 ~0.195 -~0.156 0.017 -0.160 0,158

——

6¢



Table 10. Continued
First Iteration Second Iteratigg Third Iteration
Item k Q, K Q Q K Q Q K Q qQ %
26 1.46 0.078 0.114 0.276 0.177 0.258 0.187 0.182 0.265 0.182 0.182
27 60.45 0.156 9.420 -0,042 0.057 3.440 0.047 0.052 3.140 0.052 0.052
28 2.44 0.668 1.635 0.470 0.569 1.390 0.559 0.564 1.380 0.564 0.564
29 2.68 0.068 0.183 -0.185 -0.058 0.156 0.062 -0.060 0.161 -0.060 =-0.060
30 4,89 0.600 2.930 0.853 0.726 3.550 0.730 0.728 3.560 0.728 0.728
31 7.18 0.701 5.027 0.954 0.828 5.940 0.831 0.830 5.950 0.829 0.829
* Final Values
= = - 0.02 ft. =+ 0.01 ft.
ZHLI + 0.01 ft,. ZHLIII EHLV .
= . = - 0, R b2 = 0 ft.
ZHLII + 0.02 ft EHLIV 0,02 ft‘ HLVI

- = 0 ft.
2ELVII

on



Table.1l, Tabulation Showing Iterative Procedure and Results for the System Containing Elevated
Reservoirs with Constant Flow from the Network for t = 0 seconds and Hap = 20.00 feet.

First Iteration Second Iteration Third Iteration
Item k Qo K Q Q K Q Q K Q Q
1 0.53 2.00 1.06 3.39 2.69 1.42 2,62 2.66 1.41 2.62 2,64
2 0.79 l.SQ 1.18 3.06 2.28 1.80 2.186 2.22 1.75 2.23 2.23
3 1.31 0.50 0.66 2.06 1.28 1.68 1.16 1.22 1.60 1.23 1.23
4 20.00 0.40 8.00 0.17 0,28 5.60 0.38 0.33 6.60 0.33 0.33
5 4.37 0.70 3.06 2.35 1.52 6.65 1.15 1.33 5.81 1.32 1.33
6 20.00 0.40 8.00 0.36 0.38 7.60 0.60 0.49 - 9.80 0.47 0.48
7 2.18 0.40 0.87 1.73 1.06 2.31 1.04 1.05 2.29 1.06 1.06
8 2.18 0.30 0.65 1.59 0.94 2.05 1.14 1.04 2,27 1.03 1.04
9 10.00 0.20 2.00 -1.09 -0.44 4.40 -0.64 -0.54 5.40 -0.53 -0.54
10 10.00 1.20 12.00 -0.09 0.56 5.60 0.36 0.46 4,60 0.47 0.46
11 0.30 3.50 1.05 6.44 4.97 1.49 4.78 4,88 1.46 4,86 4.87
12 2.00 0.50 1.00 -2.44 -0,97 1.94 -0.78 -0.88 1.76 ~0.86 -0.87
ZH, . = -0.04 ft b = ~0.04 ft,
Ly ’ HLIII
= -0.02 ft. ZH = -0.04 ft.
z:HI-II 0 £ La-B

Ly



Table 12, Tabulation Showing Iterative Procedure and Results for the System Containing Elevated
Reservoirs with Constant Flow from the Network and with Reserveoirs Being Allowed to

Empty.
Ctem t = 250 seconds AHAB = 15,38 feet t = 500 seconds MHpp = 11.70 feet
K Q Q K Q Q K Q "] K Q Q
1 1.40  2.23 2.4k 1.29  2.40 2.42 1.28  2.01 2.22 1.18 2.17 2.19
2 1.76 2,07 2.15 1.70 2.14  2.14 1.69 2.02 2.08 1.64 2.07 2.08
3 1.61 1.07 1.15 1.51 1l.14& 1.14 1.49 1.02 1.08 1.41 1.07 1.08
4 6.60 0.34 0.34 6.80 0.33 0.34 6.80 0.35 0.34 6.86 0.34 0.34
5 5.81  0.94 1.14 4,98 1.08 1.12 4.85 0.72  0.92 3.99 0.86 0.89
6 9.60 0.45 0.46 9.20 0.48 0.47 9.40 0.45 0.46 9.16 0.46 0.46
7 2.3l 0.91 0.99 2,16 0.98 0,98 2,14 0.86 0.92 2.0l 0.92 0.92
8 2.27 0.87 0.95 2.07 0.95 0.95 2,07 0.81 0.88 1.92 0.88 0.88
9 5.40 ~0.37 -0.45 4.50 -0.45 -0.45 4.50 -0.31 -0.38 3.80 -0.38 -0.38
10 4.60 0.63  0.55 5.50 0.55 0.55 5.50  0.69 0.62 6.20 0.62 0.62
11 1.6  4.31  4.59 1.38  4.54  4.56 1.37  4.03  4.30 1.26  4.24  4.27
12 1.74 -0.31 -0.59 1.18 -0.54 -0.56 1.13 -0.03 -0.30 0.59 =0.24 =-0.27

Item1 = 650 SECMB"]-O_-_OZ,ft‘ _t=800333?&IAB-_f 8.59ft] t=1000sec,AHpp=7.07ft] t=1200sec LAHAR=S.95ft

K - Q Q K Q Q K Q Q K q Q
1 1.16 1.98 2.09 1.13, 1.83 1.96 1.06 1.68 1.82 0.96 1.60 1.71
¥ 1.64 2.0 2.04 1.62 1.97 2.01 1.59 1.94 1.97 1.56 1.93 1.95
3 1.41 1.01 1,04 1,39 0.97 1,01 1.32  0.94 0.97 1.27 0.93 0.95
4 6.88' 0.35 0.35 6.92 0.36 0.35 7.06  0.36 0.36 7.18  0.37 0.36
5 3.88 0.67 0.78 3.65 0.52 0.65 2.86 0.36 0.51 2,23  0.28 0.39
6 9.18  0.45 0.46 9.14  0.45. 0.45 9.06 0.45 0.45 9.02 0.45 0.45
7 2,00 0.86 0.89 | '1.97 0:83 0.86 1.88 0.80 0.83 1.81 0.79 0.81
8 1.92  0.81 0.85 1.88° 0.78 0.8l 1.77  0.75 .0.78 1.70  0.74 0.76
9 3.78 -0.31 -0.35 3.62 -0.28 -0.31 3,13 -0.25 -0.28 | 2.82 -0.24 -0.26
10 6.22 0.69 0.65 6.38 0.72 0.69 6.87 0.75 0.72 7.18 0.76 0.74
11 1.28 3.99 4.13° | 1.26 3.80 3.97 1.19  3:62 3.79 1.14 3.52 3.66
12 0.53 0.01 0.13 0.40 0.20 0.03 | 0.07 0.38 0.21 0.42 0.48 0.43

ah




Table 12. Continued

t=1400sec, AHpp=5.19ft

t=1700sec, AHAB=4.38ft

t=2000sec, AH,p=3.96ft

t=2400sec, AHAB=3.69ft

0.66

Item _ _ _
K Q Q K Q Q K Q Q. K Q Q
1 0.90  1.54 1.62 0.86 1.44 1.53 0.81 1.43 1.48 0.78 1.41  1.45
2 1.54  1.92 1.93 1.53 1.90 1.92 1.51 1.90 1.91 1.51 1.90 1.90
3 1.2 0.92 0.93 1.22 0.90  0.92 1.20 0.90  0.91- 119 0.90 0.90
4 7.26 0.37 0.37 7.34 0.38 0.37 7.45 0.38 0.37 7.48 0.38 0.38
5 1.72 0.22  0.31 1.3  0.11 0.21 0.91 0.10 0.15 0.66 0.08 0.12
6 9.04  0.45 0.45 9.06  0.46  0.45 9.06 0.45 0.46 9.10 0.46 0.46
7 1.77 0.79  0.80 1.74  0.78 0.79 1.72 0.78 0.78 1.71 0.78 0.78
8 1.66  0.74 0.75 1.64  0.73 0.74 1.62 0.73 0.74 1.61 0.73 0.74
9 2.64 -0.24  -0.25 2.52 -0,23 -0.24 2.42  -0.23 -0.24 2.38 -0.23 -0.24
10 7.36 -.76 0.75 7.48  0.77 0.76 7.58 0.77 0.76 7.62  0.77 0.76
11 1.10  3.46 3.56 1.07  3.34  3.45 1.04 3.33 3.39 1.02  3.31 3.35
12 0.69 0.5 - 0.44 0.88  0.66 0.55 1.10 0.67 0.61 1.22  0.69 0.65
t=3000sec, Hpp=3.56ft| t=4000sec, H,p=3.58ft
Item
K Q Q K Q Q
1 0.77 1.41 1.43 0.76  1.43 1.43 HL, = 0 ft.
2 1.50 1.90  1.90 1.50 1.90  1.90
3 1.18 0.90  0.90 118  0.90  0.90 B = -0.01 ft.
4 7.52 0.38 0.38 7.54  0.38 0.38 LI
5 0.50 0.08 0.1Q 0.42  0.10  0.10 ~
6 9.12  0.46 0.46 9.12  0.46  0.46 Mg +0.01 ft.
7 1.70  0.78 0.78 1.70 0.78 0.78
8 1.60 0.73 0.74 1.60 0.74 0.74 - = 0.0l ft.
9 2.36 -0.23 -0.24 2.35 -0.24 -0.24 Ly p
10 7.64  0.77 0.76 7.65 0.76  0.76
11 1.00  3.31 3.33 1.00  3.34  3.33
12 1.30 0.69 0.67 1.34 0.67

e



Table 13. Tabulation Showing Iterative Procedure and Results for the System Containing Elevated
Reservoirs with Free Flow Occurring at a Point in the Newtork for t = 0 seconds and
OHpp = 20.00 feet. )

First Iteration Second Iteration Third Iteration
Item k QW K Q Q K Q Q 4 Q g
1 0.53 3.00 1.59 4,28 3.64 1.93 3.59 3.62 1.92 3.61 3.61
2 0.79 7.00 5.53 7.02 7.01 5.54 7.01 7.01 5.53 7.02 7.01
3 1.31 6.00 7.86 6.02 6.01 7.88 6.01 6.01 7.86 6.02 6.01
4 20.00 2.00 40,00 1.98 1.99 39.85 1.99 1.99 39.80 1.99 1.99
5 4,37 1.00 4.37 0.50 0.75 3.28 0.72 0.73 3.21 0.74 0.73
6 20.00 1.50 30.00 2.30 1.90 38.00 1.82 1.86 37.18 1.86 1.86
7 2.18 1.80 3.92 2.60 2.20 4.80 2,12 2.16 4,72 2.16 2.16
8 2.18 0.80 1.74 0.80 0.80 1.74 0.80 0.80 1.75 0.80 0.80
9 10.00 1.30 13.00 1.30 1.30 13.01 1.30 1.30 13.03 1.30 1.30
10 10.00 2.30 23.00 2.30 2.30 23.01 2.30 2.30 23.03 2.30 2.30
11 0.30 10.00 3.00 11.30 10.65 3.20 10.59 10.62 3,18 10.63 10.63
12 2.00 3.30 6.60 2.80 3.05 6.10 3.02 3.04 6.06 3.04 3.04
C 9.80 10.60 10.20 10.12 10.16 10.17 10.16
HLI = =-0.02 ft, HLA*B = +0.04 £t
= - = -0.10 £ft:
HL}:I 0.07 ft, HLA—C
= .09 ft, Q. = 10,16 cfs
HLIII +0.09 c



Table 14,

Tabulation Showing Iterative Procedure and. Results for System Containing Elevated Reservoirs

with Free Flow Qccurring at a Point in the Network While the Reservoirs are Allowed to Empty.

t=250sec, Allyp=22.27ft

t=500sec, AHpp=24.161it

t=800sec, AHyp=25.59ft

t=1100sec, AHpgp=27.18ft

Item i s — o
K Q Q K Q Q K Q Q K Q Q
1 1.92  3.66  3.64 1.93  3.69  3.66 1.94  3.71  3.68 1.95 3.71  3.70
2 5.5  6.68  6.84 5.40  6.52  6.68 5.28  6.27  6.48 5.11  6.06  6.27
3 7.88  5.68  5.84 7.65  5.52  5.68 7.44  5.27  5.48 7.18  7.06  5.27
4 (3980 1.8  1.93 38.65 1.82  1.88 37.55  1.73  1.80 | 36.15 1.66  1.73
5 3.21  0.48  0.61 2.65  0.34  0.47 2.07 0.17  0.32 1.41 0.03  0.18
6 | 37.15 1.76 1.8l 36.20 1.71 1.76 35.25  1.64  1.70 | 34.07 1.58  1.64
7 4.71 1.95 2,06 4.48  1.84  1.95 4,25 1.70  1.82 3.98 1.57 1.70
8 1.75  0.69  0.74 1.62  0.63  0.69 1.5¢  0.55  0.62 1.35 0.49  0.55
9 |13.02 1.19  1.24 12.45 1,13 1,19 11,88  1.05  1.12 | 11.20 0.99 1.05
10 }23.02 2.19 2.24 22.45 2,13 2.19 21.88  2.05  2.12 | 21.20 1.99  2.05
11 3.19 10.34 10.48 3.14  10.21  10.34. 3.10 9.98 10.16 3.05 9.78° 9.97
12 6.08  2.66  2.85 5.70 2.47  2.66 5.33  2.22 2.44 4.89 2,02 2.23
Q¢ 9.51  9.83 9.18  9.51 8.70  9.10 8.29  8.70
Ttem | £=1400sec, AHap=27.90ft| t=1700sec, AHApR=28.11ft | £=2000sec, AH,p=27.85ft | t=2300sec, A4;=27.26ft
K Q q K Q Q K Q Q K Q Q
1 1.96 3.72 3.7 1.96 3.71 371 1.97  3.64  3.68 1.95 3.57  3.62
2 4,95  5.86  6.06 4.80  5.64  5.85 4,62 5.45  5.65 4.46  5.25 5,45
3 6.90  4.86  5.06 6.64  4.64  4.85 6.36  4.45  4.65 6.09 4.25  4.45
4 | 34.66 1.59  1.66 33.25  1.52  1.59 31.87  1.45  1.52 | 30.48 1.39  1.46
5 0.76 -0.11  0.03 0.15 -0.23 -0.10 0.43 -0.29 -0.20 | '0.85 -0.34 -0.27
6 |32.82 1.52  1.58 31.60  1.46  1.52 30.40  1.40  1.46 | 29.20 1.34  1.40
7 3.70 1.44  1.57 3.42  1.32  1.45 3.15 1.20  1.32 2.89 1.08  1.20
8 1,21 0.42  0.49 1.07 0.36  0.43 0.93  0.30  0.36 0.79 0.24  0.30
9 |10.54  0.92  0.99 9.90 0.86  0.93 9.27 0.80  0.86 8.64 0.74  0.80
10 ]20.54 1.92  1.99 19.90  1.86  1.93 19.27 1.80  1.86 | 18.64 1.74  1.80
11 2.99 9.58  9.77 2.93  9.36  9.56 2.87 9.09  9.33 2.80 8.82  9.07
12 4.46  1.82 2,02 4.05  1.64  1.83 3.66  1.51  1.67 3.34  1.40  1.53
Qc 7.89  8.30 7.48  7.89 7.10  7.50 6.72 + 7.11

GH



Table 14.

Continued

Ltem t=2600zec, AHAB=26=ﬁ2f; t=2900sec, H,p=25.37ft| t=3200sec, AHAB=24;17f£ t=3500séc, OHpp=22.86ft
K Q q R Q o} K - Q ] K Q q
1 1.92 3.49 3.56 1.88 3.40 3.48 1.84 3.30 3.39 1.80 3.19 3.29
2 4.30 5.05 5.25 4.15 4.84 5.05 3.98 4.65 4.85 3.82 4.44 4,64
3 5.82 4,05 4.25 5.56 3.84 4.05 5.30 3.65 3.85 5,04 3.44 3.64
4 129,15 1.32 1.39 27.80 1.26 1.33 26.52 1.20 1.26 | 25.22 1.13 1.20
5 1.17 -0.38 -0.32 1.42 -0.41 -0.37 1.60 -0.43  -0.40 1.74 -0.44 -0.42
6 |28.05 1.29 1.34 26.87 1.23 1.29 25.75 1.17 1.23 | 24.60 1.12 1.17
7 2,62 0.96 1.08 2.36 0.84 0.96 2.09 0.72 0.84 1.83 0.60 0.72
8 0.65 0.17 0.24 0.52 0.11 0.17 0.38 0.04 0.11 0.24 -0.02 0.04
9 8.00 0.67 0.74 7.37 0.61 0.67 6.73 0.54 0.61 6.09 0.48 0.54
10 |18.00 1.67 1.74 17.37 1.61 1.67 16.73 1.54 1.61 | 16.09 1.48 1.54
11 2.72 8.54 8.81 2.64 8.24 8.53 2.56 7.9 8.24 2.47 7.64 71.94
12 3.07 1.29 1.41 2.82 1.20 1.31 2.61 1.12 1.21 2.42 1.04 1.12
Qe 6.33 6.72 5.94 . 6.33 5.57 5.95 5.17 5.56
Item t=3800sec, AHpg=21.47ft| t=4100sec, AHap=20.02ft |t=4400sec, AHpg=18.54ft (t=4700sec, AHpp=17.03ft
K . Q Q K Q Q K Q Q K Q Q
1 1.74 3.08 3.19 1.69 2.96 3.08 1.63 2.84 2.96 1.56 2.71 2.83
2 3.66 4,24 4.44 3.57 4.03 4.24 3.35 3.83 4.03 3.18 3.63 3.83
3 4.77 3.24 3.44 4,51 3.03 3.24 4.24 2.83 3.03 3.97 2.63 2.83
4 [23.94 1.07 1.13 22.66 1.01 1.07 21.40 0.94 1.01 | 20.14 0.88 0.94
5 1.84 -0.45 =0.44 1.90 -0.46 -0.45 1.95 -0.45 0.45 1.96 -0.44 -0.45
6 |23.48 1.06 L.12 22.34 1.00 1.06 21.18 0.94 1.00 | 20.02 0.88 0.94
7 1.56 0.47 0.60 1.30 0.35 0.47 1.03 0.22 0.34 0.75 0.09 0.22
8 0.10 -0.09 =-0.02 0.05 -0.15 -0.09 0.19 -0.22 -0.16 ¢.34 -0.30 -0.22
9 5.44 0.41 0.48 4.78 0.35 0.41 4.13 0.28 0.34 3.44 0.20 0.28
10 |15.44 1.41 1.48 14.78 1.35 1.4l 14.13 1.28 1.34 | 13.44 1.20 1.28
11 2,38 7.32 7.63 2.29 7.00 7.31 2.19 6.67 7.00 2.10 6.34 6.66
12 2.25 0.96 1.04 2.08 0.89 0.97 1.93 0.82 0.90 1.79 0.76 0.83
Qc 4,78 5.17 4,39 4,78 3.99 4,39 3.60 3.99

ot



Table 1k4. Continued

ZHy, = -0.26ft

-0.01ft
+0.06f%

AL, = +0.10ft

Ty~ 40.075¢

ZHy 1y

t=5300sec, AHpp=14%.01ft

-------------
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Table 15. Tabulation Showing Iterative Procedure and Results for the System Containing a Reservoir

and a Varisble Head Pump.
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APPENDIX B
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Computation of k using the Darcy-Weisbach formula.--The Darcy-Weisbach

formula for flow in pipes may be writiten as

L vV

hL D 2g

in which,
f = Darcy-Welsbach resistance coefficient
L = length of the pipe

g = magnitude of the gravitational attraction

lw)
"

inglde diameter of the pipe

When the equation is written in terms of the discharge, Q in cubic feet

per second, 1t takes the form

8rLn 2
b=~ 5@

gr D

or

in which,

8 fL
gw2 D’

k =

In most pipe systems the resistance coefficient, f, for a given plpe may
be considered constant. Thus, k values as computed from the above equa-
tion may be treated as constant also. The values for k in the text are

p

in units of sec.2 per ft.



Computation of k using the Hazen-Williams formula.--The Hazen-Williams

formula is

V = 0.115 ¢ DO‘63 so‘51L
in which
C = Hazen-Williams resistance coefficient
D = inside diameter of the pipe
S = friction elope = T
or

54,3 V7

S = —_—
Cl.85 Dl.l67 V_0.15

Substituting in hL/L for S and solving for hL glves

n = 5h.3 L V- .
&8 L1687 [0.15

If written in terms of the discharge, Q in cubic feet per second, with

51

the exception of the velocity term in the denominator and with D in inches

we obtain

b, = 1.82 x 106 L Q?
oL-85 5167 0.15

This equation is in the desired form

by, =k



in which,

1.82 x 106 L

k = .
-85 5167 (0.15

The velocity may vary from 3 to 8 feet per second wlthout having any
large Influence on k. Thus, 1t is usually sufficient to assume an aver-

age value for the velocity and compute k as a constant for a given pipe.
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