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SUMMARY

Simulation and optimization have been widely used in air transportation, particularly

when it comes to determining how flight operations might evolve. However, with regards to

passengers and the services provided to them, this is not the case in large part because the

data required for such analysis is harder to collect, requiring the timely use of surveys and

significant human labor. The ubiquity of always–connected smart devices and the rise of in-

expensive smart devices has made it possible to continuously collect passenger information

for passenger-centric solutions such as the automatic mitigation of passenger traffic. Using

these devices, it is possible to capture dwell times, transit times, and delays directly from

the customers. The data; however, is often sparse and heterogeneous, both spatially and

temporally. For instance, the observations come at different times and have different levels

of accuracy depending on the location, making it challenging to develop a precise network

model of airport operations. The objective of this research is to provide online methods

to sequentially correct the estimates of the dynamics of a system of queues despite noisy,

quickly changing, and incomplete information. First, a sequential change point detection

scheme based on a generalized likelihood ratio test is developed to detect a change in the

dynamics of a single queue by using a combination of waiting times, time spent in queue,

and queue-length measurements. A trade-off is made between the accuracy of the tests, the

speed of the tests, the costs of the tests, and the value of utilizing the observations jointly

or separately. The contribution is a robust detection methodology that quickly detects a

change in queue dynamics from correlated measurements. In the second part of the work, a

model-based estimation tool is developed to update the service rate distribution for a single

queue from sparse and noisy airport operations data. Model Reference Adaptive Sampling

is used in-the-loop to update a generalized gamma distribution for the service rates within

a simulation of the queue at an airport’s immigration center. The contribution is a model

predictive tool to optimize the service rates based on waiting time information. The two

xvi



frameworks allow for the analysis of heterogeneous passenger data sources to enable the

tactical mitigation of airport passenger traffic delays.

xvii



CHAPTER 1

MOTIVATION AND PRIOR WORK

1.1 On the need of simulations for Queuing Systems

Queues occur whenever a single or a group of entities have to wait their turn for service.

The accumulation of entities at one resource leads to delays, the loss or cancellation of

some jobs and in some extreme cases to the complete breakdown of a system such as a

theme park, cash registers at a supermarket, a group of cloud servers handling disparate

jobs or a call center. Ultimately, the user is the one who gets penalized by failures of

these systems. It is desired to understand the dynamics of queues in order to mitigate

the adverse effects of delays and provide adequate levels of service to a user. Several

techniques exist to model, analyze, design and control all types of queuing system. At

the source of the tools to understand queues is Queuing Theory. Queuing Theory [1] is

a branch of stochastic processes [2],[3], [4] dedicated to the analysis of stochastic flow

systems encompassing discrete and continuous Markov Chains, Phase-type distribution[5],

ladder processes and queuing networks such as the closed Jackson network. It is used

to explain the long-time and time averaged behaviors of queues. Most queuing systems;

however, experience sudden spikes in traffic or drops in demand that cannot be explained

by steady-state or asymptotic analysis. To account for these transient changes, one needs a

faithful simulation of the system under study.

Stochastic simulations of queues makes it possible to know what happens to the system

on average but also for rare long-tailed events by looking at the distributions of the output

metrics rather than a single number. Although they can be time intensive to create and cali-

brate, they are crucial in the analysis, design and control of queuing systems. By nature, air

transportation is very prone to disruptions that can spawn from seasonal events, inclement

1



weather, labor union strikes, breakdowns of the reservation centers or even in rare instances

of the planes themselves. Stochastic simulations are sometimes the only tools for tactical

decision making.

1.2 Queues and Air Transportation

The Bureau of Transportation Statistics [6] under the U.S. Department of Transportation

collects and makes available flight performance statistics such as flight delays, flight cancel-

lations and the number of passengers carried by flight. Not only is that data made publicly

available as monthly reports, it is also used to penalize airlines in case of excessive delays.

According to the FAA, passengers are entitled a compensation for excessive delays such

as large arrival delays (arrival delays exceeding 45 minutes) and tarmac delays. Tarmac

delays are not allowed to exceed 3 hours for domestic flights and 4 hours for international

flights. All of this monitoring and penalties are based off the air transportation system from

a flight perspective and not from a passenger perspective. Yet passengers are the ones dis-

proportionally affected by flight delays [7]. Before 2010, there hasn’t been many studies

that have focused on mitigating air transportation delays from a passenger perspective.

Passenger-centric research is recent. In its seminal book on airport planning, Odoni [8]

has looked at passenger terminals from an airport designers. He has looked at sizing the

terminal areas for the anticipated traffic and encouraged the use of queuing theory to model

airport flows. It is not until the Total Delay Impact study of 2010 [7] led by Barnhart et

al that a complete accounting of passenger experienced delays has been performed. The

study of passenger information has historically been difficult due to the cost of directly

capturing passenger information. Collecting information about transit times throughout an

airport or waiting times at specific choke points historically has required getting people on

the ground to perform costly punctual surveys. Even when available, passenger data can be

held in silos. Retailers hold passenger transactions for their personal tracking. Immigration

services often collect throughput information to monitor their services. Airlines only have
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access to their passenger information. The ubiquity of smart phones and smart devices in

the last twenty years has made it possible to directly obtain passenger information through

location sharing and voluntary information sharing. New information is collected thanks

to biometric sensors at airports, information sharing from third-party beacons, location

data from the bluetooth and wi-fi beaconss as well as passenger satisfaction through social

websites such as Twitter. This diverse and heterogeneous data is feature-rich and provide

direct information about the passengers. This rise has ushered the development of data-

based studies on passenger movement throughout the airspace. Marzuoli [9], [10] looked

at the aftermath of the Asiana Flight 214 crash at SFO and how passengers could have been

re-accommodated at nearby airports or on other modes of transportation to limit the impact

of the crash on the National Airspace System (NAS) and reduce the time it took to restore

regular operations at SFO and nearby airports. Social media was used to complement the

information officially released by airport authorities in order to find which airports were

active and what was their updated capacity. In 2019, the same author leveraged cellular

location data and social media data to show how cellular data can be used to monitor the

health of the national airspace [11]. In a recent paper, Monmousseau compared the times it

takes to clear immigration across multiple airports based off CBP data [12] and developed

regression models to predict wait times based on key characteristics such as the day of the

year, the day of the week or the number of passengers in the previous hour.

Now that the data is captured from the passenger, it is possible to make decisions that

affect the passenger directly. Typical landside air traffic decisions are flight based such

as departure metering and gate assignment. Departure metering is the process of limiting

takeoff and arrivals to limit congestion in the airspace. Gate assignment is the process of

assigning flights to different gates to make it easier for crew and passengers to make their

connections and thereby abasing potential time conflicts. Another way to limit disruptions

to passengers is to directly use the passenger information to match what is happening in the

air. Queues can be staffed to match big arrivals or big departures and mitigate passenger
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delays. Passengers can also be routed individually to limit the risks of missed connections.

This requires the use of complete airport passenger simulations. Passenger-centric infor-

mation is far from perfect, often having missing and incomplete data. Passenger location

sensors such as Blue-tooth or Wi-Fi beacons may leave wide gaps in their coverage of air-

port terminals making it difficult to pinpoint the location of every passengers. The quality

and quantity of the data can also vary in time by time of day or time of the year. Moreover,

even a well-calibrated model of airport operations may drift over time due to the changing

nature of passenger traffic. This can be the case at to the beginning or end of a busy con-

gestion period. Therefore, one must be able to accommodate for missing and incomplete

data as well as detect abrupt changes in the observations. The thesis addresses multiple

questions related to the processing of missing or incomplete data for the simulation of pas-

senger traffic and for the detection of change points in the data itself. Some of the questions

are:

• How can we use the available observations of the queue to compensate for missing

data?

• How can we use the simulation to correct for the inherent noise in the observations?

• Are some observations more valuable to detect drifts in the simulation model?

• Can we quickly detect the start or stop of a congestion period for highly correlated

queue observations?

• Can multiple observations be combined to better detect changes in the dynamics of a

queue?

• How many observations or combinations of observations are needed before a change

can be declared?

The contributions of this dissertation are
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1. A framework for the in-the-loop optimization of service rate distribution based on

cycle time observations

2. A robust method to detect change points in a time series of correlated M/M/1 obser-

vations using Non-Overlapping Batch Means (NOBMs) and a generalized likelihood

ratio test

3. A parallel test to detect change points in a queue traffic intensity based on any com-

bination of waiting times, time spent in queue and queue length observations

1.3 Sydney International Airport Simulation

The first model to be built is a simple model of queueing at immigration service desks at

Sydney International Airport. We focus on the segment of passengers’ walk from their

arrival at the gates to their departure from the immigration zone. It is assumed that the

immigration services act as a single server queue with a time-varying service rate.

1.3.1 Airport Description

Sydney Kingsford Smith International Airport (SYD) is Australia largest airport, and the

38th busiest airport in the world in 2015 with 36 million passengers per year [13]. SYD

Figure 1.1 has two piers, Pier B and Pier C which each hosts an immigration zone where

passport control occurs. SYD is physically isolated from Sydney domestic airport, located

2.3 miles away. All the flights scheduled are the airports are international flights, and

last more than 2 hours. Because of the long flight times, arrival time predictions can be

made with great certainty two or more hours in advance, as the knowledge of departure

times greatly reduces the arrival times uncertainty. Assuming arrival time is known two or

more hours in advance, the distributions of staff at the airport can be adapted tactically in

anticipation of future demand. This unique situation makes it possible to change staffing

levels in advance of a anticipated demand with great efficacy.
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Figure 1.1: Sydney International Airport - Arrivals

1.3.2 Data Sources

This section describes the three main sources of data in this study. The section also ad-

dresses the inconsistencies in some of the databases, potential applications, and the cali-

bration of the input to the simulation.

Data Description

In 2012, 12,369,193 revenue passengers flew from or to Sydney International Airport [14].

Data concerning passengers and flights was collected at Sydney International airport by the

Sociéte Internationale de Télècommunications Aéronautiques (SITA) and the airport au-

thorities from January 2012 to May 2013. The data included flight information in the form
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of Flight Information Display System (FIDS), Cell phone geo-locations from MAC device

time stamps, and immigration records from the Australian Department of Immigration and

Indigenous Affairs DIMIA. Table Table 1.1 describes the different databases, their content

and their size.

Table 1.1: Data sources available on Sydney Airport.

Label Description Date Range Size
DIMIA Passenger time stamps

at immigration for
each border crossing
(DIMIA)

Jan. 2012 - May 2013 15,461,430 passengers
(6,756,997 arrivals and
8,704,433 departures)

FIDS Arriving and depart-
ing flight information
including block, sched-
uled, estimated times
and flight number

Jan. 6th - Dec. 1st
2012

578,104 (287,447 arrivals
and 290,656 departures)

DWELL Wi-Fi enabled devices
tracking data for each lo-
cation (x,y) triangulated
zone time stamp

Jul. 1st - Dec. 12th 2,047,235 unique device
IDs (827,474 arrivals and
1,236,372 departures over-
lapping)

FIDS database

Flight Information Display System (FIDS) dataset contains information on gate, block, as

well as estimated and scheduled times for departing and arriving flights at Sydney Interna-

tional Airport. That data provides the simulation with the initial arrival time of incoming

passengers in the airport. The records do not specify at what time the Estimated Time of

Arrival (ETA) was recorded, nor how many times it was modified. Neither does it include

the number of passengers on the flight. From the DWELL dataset, seasonality of flight de-

lays, sources of airside flight delays, as well as taxi times distributions can be studied. The

DIMIA dataset was used to complement the dataset, and provides an estimated passenger

count for each flight.
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DIMIA database

Passenger time stamps at immigration were recorded by the Australian Department of Im-

migration and Multicultural and Indigeneous Affairs (DIMIA). The DIMIA dataset consists

of border crossing activities for 2012 at SYD. During these activities, passenger’s nation-

ality, time stamps at immigration services, origin or destination airports of passengers,

processing desk identifier number, and the flight number were recorded manually. DIMIA

served two purposes in the simulation. It provided a reliable estimate of service rate, and

it was also used to complement the flight information. By matching a single passenger

record in DIMIA to a flight, it was possible to compute the average number of passengers

per flight, and fill-in the missing load factor from FIDS. It allowed us to generate a distri-

bution of passenger occupancy per flight ID.

The dataset is also used to determine the service rate at each immigration desk at any hour

during any day of the week. Note that each day of the week has a specific service rate dis-

tribution. Since every DIMIA record contains the processing desk ID along with the time at

which a passenger was processed, the number of unique open desks could be retrieved for

any given time period. The service rate per desk is then obtained by dividing the number

of passengers processed by the number of open desks for a 15 minutes time period.

The limitation of the dataset is the inconsistency of the manual recordings. Some entries

are missing. In some cases, tail numbers are recorded in place of flight numbers, if that

information is present. Some individual days in October and December are also missing

from the data as shown on Figure Figure 1.2, which shows the number of datapoints in the

DIMIA datasets in 2012.

Device ID connection times in the airport (DWELL) database

The DWELL database consisted in the time stamp at which a Wi-Fi enabled device con-

tacted a Wi-Fi access point inside the airport. Any Wi-Fi enabled device continuously

probes its surrounding at discrete nonuniform intervals to find available signals, and eval-
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Figure 1.2: DIMIA counts of arriving passengers stamps at Immigration in 2012

Figure 1.3: DWELL counts of passengers recorded in Immigration zones in 2012

uate their strength. SITA created a network of more than 400 Wi-Fi access points, 130

people-counters and 50 Bluetooth sensors spread throughout Sydney International Airport’s

terminals [SITA:2012]. Using iflow tool, each device was given a unique device ID, and

each time stamp was assigned to a group of airport locations. A device was typically as-

signed to more than four zones of the airport. Furthermore, because devices do not connect

to internet periodically, only few of the MAC addresses were observed more than once.
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The devices which were observed more than once could have as much as an hour delay

between observations. A MAC address is a unique device ID that is being communicated

to an internet service transmitter over Wi-Fi every time the device proves its surrounding.

Wi-Fi positioning provided by SITA to locate passengers inside the airport. Wi-Fi position-

ing can achieve up to 15 meters in accuracy for conventional systems. It has the advantage

of only using the resources already set in place at most airports to provide internet services.

Position is computed by triangulation every time the cellular device probes its environment

to determine the availability and strengths of surrounding signals. The sampling rate is

infrequent varying from 2 seconds to several minutes depending on the particular device,

and battery life. From the provided DWELL tables, only devices with more than one ob-

servation, and observation time intervals smaller than 15 minutes were considered.

As with the DIMIA data, the quantity of available DWELL data was inconsistent

throughout the year, and between airport zones. It can be observed in Figure Figure 1.3,

that the DWELL data lacked information for most days in August, September and October.

Although all the days of those months are present in the database, only few data points

remained when only the paths between immigration zones and all the gates are kept. The

number of records varies widely between zone, and from one gate to the next. Gate 8 for

example has more than 180,000 single hits, while gate 50 has only 405 hits. These num-

bers just take into account the zones for the entire time period, without focusing on paths or

even on the repetition of the same device ID. If only full paths are considered, the number

of records are drastically reduced. In this context, a path is a sequence of device identifiers

associated to at least one time stamp at a gate and one at the closest immigration zone.
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1.3.3 Airport Model

Subsection subsubsection 1.3.3 outlines the general structure of the simulation model. Sub-

section ?? reviews the principles behind the discrete-event simulation used in the model.

Model Structure

We only model passenger walk from gates to immigration. Because of the unique charac-

teristics of SYD, we assume that the schedule of flight arrivals at gate is known exactly.

Figure 1.4: Structure of the arrival process model

Figure Figure 1.4 depicts the arrival process for passengers at the airport, with the data

sources below each subsystem. The arrival process starts with the arrival of flights at their

gates. Passengers then immediately leave the gates, and walk to the nearest immigration

zone, where they enter a queueing process. They leave the system after being served at an

immigration desk. The immigration zone is treated as a single queue with multiple servers

with independently identically distributed service rates. To calibrate the model, we then

need to define the distribution of walk times from gates to the immigration zones. The

service rate per server is estimated based on a historic database.
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Simulation process

Arrivals and departures of passengers in the system occur at discrete time steps. For this

reason, a discrete event-based simulation was chosen to simulate the dynamics [Leemis2004Discrete].

In a Discrete-Event Discrete-Time Simulation (DEDS), time progresses directly from one

scheduled event to the next scheduled event. An event for the simulation can be the arrival

of a flight, an arrival of a passenger at immigration, or a departure from the immigra-

tion zone. The simulation starts with the schedule of flights. Each scheduled events are

recorded in a time-ordered Future Event List (FEL)[15]. The FEL contains the start time

and duration of each event in the simulation. After each event, the state variables are up-

dated. Since the schedule of flight is known, the randomness in inter-arrival times at the

service node come from the walk-time distribution. The service node includes a queue and

a time-varying number of servers. The service discipline of servers is First-Come First-

Served (FCFS). When a new desk becomes active, the next customer in front of the queue

is served. A desk can only close after finishing serving a customer. Hence, the activation

or deactivation of a desk does not affect the order of the immigration queue.

1.4 Modeling Input Distribution

The simulation uses the data presented in section subsection 1.3.2 as input to the simulation

model. To describe the simulation, we explain how the different datasets were processed to

generate input for our model, and we analyze the output of the data for the validation set.

1.4.1 Input Analysis

The two input distributions to the simulation are arrival times and service rates at queu-

ing services. Walking speeds were computed from the input database by approximating

passenger walk times from DWELL data. Service rate estimates were first generated from

throughput then updated using the process highlighted in the next chapter. Each input
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was analyzed from a subset of one or multiple of our data-sets, and validated against the

remaining data.

Arrival Rates

Walk times are used to compute the inter-arrival times between two passengers at Pier

B and Pier C immigration zones. By computing the inter-arrival times, we can estimate

the arrival rates at the two immigration zones by time of day. As mentioned above, the

DWELL database corresponds to discrete time-stamps of device unique ids inside the air-

port together with a list of the most likely location the passenger would have been located

at the time of the recording. Walk times are formed by isolating device ids that had time

stamps at one of the immigration zones ( Pier B or Pier C) and another time stamp at one of

the gate, then computing the time difference. When analyzing the available DWELL data,

no data was observed at the immigration zone located in Pier-B. This implies that no walk-

times could be directly estimated from our data for gates in Pier-B North, East or South.

In other words, out of the 24 gates at the airport, only 8 gates could be used for walk time

estimation. The approach we decided to use, is to use the walk time distributions for the 8

available dates, and use a universal walk speed distribution for gates with no information.

To perform this estimation, we fitted the walk times individually for each gate in Pier C for

the months of July, August, September and October.

Fitting walk times After collecting the walk times, we converted these times to walk

speed depending on the shortest path distance to immigration C. The walk speed distribu-

tion for all gates during the month of July is illustrated in figure Figure 1.5. After plotting

these speeds, it became obvious that some of the speeds were unrealistic. They correspond

to measurements at gates situated near the immigration zone, and the error is due to the

original location uncertainty in our data-set. To filter for these high speeds, we discriminate

against unrealistic walk speeds. We used the widely accepted model of un-impended walk
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speed reported by Fruin [16] and Young [17] to discriminate against walk speeds that were

greater than two standard deviations from the mean. That model assumes un-impended

walk speed follows a Gaussian distribution with a mean of 265 ft/min and a standard devi-

ation of 50 ft/min. This average was first observed at the Port Authority of New-York by

Fruin, and later confirmed by Young at San Francisco International Airport (SFO).
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Figure 1.5: Parametric Fits of the Walk Speeds from Gates to Immigration for the Training
Set (6,638 records)

Table 1.2: table of number of data points per gate for the walk times to immigration service
C

Gates 50 51 53 54 55 56 57 58 59 60 61 63
number of elements 9 467 585 1145 2131 1112 30 973 1337 1602 2211 864

After filtering for reasonable walk speeds, we analyze the walk times by gate. We first look

at a box plot of all walk times in Pier C and then at the walk time distribution by gate.

We look at the walk times versus distance for the different gates in figure Figure 1.6 and

the overall distribution of walk times for each gate Figure 1.7. The walk times collected
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in this fashion represents a multitude of passengers. It represents individual passengers

who go directly from their gates to the immigration zone un-impended, as well as group

of passengers who tend to travel slower, and passenger who may stop by the restrooms

along their journey to the immigration area. From the plot of walk times vs distance (figure

Figure 1.6), the distance effect seems to be pronounced only for the lowest walk times

for each gate. It implies that the distance effect is a major factor only for un-impended

walk times. To verify the importance of walk speed, we would need to perform a linear

regression on distance, type of traveler and whether the traveler is transiting through Sydney

Kingsford Smith International Airport (SYD) or not.

Figure 1.6: Walk times to immigration zone by distance for pier C

After obtaining walk times, we fitted them to all 80 distributions in Python Scipy to

minimize the mean square error between the fit and the normalized frequency. As expected

the lognormal distribution and the unbounded Johnson distribution figured among the best

five fits for each gate. We evaluate the goodness of the fit by performing a Kolmogorov-

Smirnov on each fit. The results are summarized in table Table 1.3. Although those were

the best distributions for our data-set, the walk time distribution fits for all but 5 gates (56,

57, 58, 59 and 61) are rejected by the Kolmogorov-Smirnov test (p<0.05). This is likely

due to the walk time distribution representing different types of passengers and hence being

multimodal. We have decided to use the empirical CDF to generate the walk times in our
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Figure 1.7: Box plots for the walk times for all gates in pier C

simulation for the gates in Pier-C. We tested the empirical distribution against a validation

set formed of the months of November and December. It can be seen in table Table 1.3,

that the p-values are quite high, indicating that the empirical distribution of walk times

represents well the walk times from gates to immigration. To make the more general, a

mixture model of Gaussian or lognormal distributions could be envisioned. For the gates

with no data, we fit the walk speeds derived from the walk times for pier C in the next

section.

Table 1.3: table of Kolmogorov-Smirnov Goodness-of-fit test p-values

Distribution gate 51 gate 56 gate 57 gate 58 gate 59 gate 60 gate 61 gate 63
Lognormal 0.0457 0.2199 0.868 0.1113 0.0908 0.0134 0.0505 0.0365
JohnsonSU 0.0443 0.2138 0.8657 0.1115 0.0911 0.0134 0.0561 0.0358
Empirical(validation) 0.767 1 1 0.9875 1 0.9992 1 1

Fitting walk speeds For gates with no walk time information, we study the free flow

walk speeds of passengers. Having a distribution of walk speed makes the arrival rate more

general, and extensible to all the regions of the airports. One drawback of this approach,

is that it does not account for stops made along a passenger path, or even all the possible

paths of a passenger. This can be studied in a future model by extending the model. The

model could be transformed into a more complex Markov process, where each location in
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the airport is a node. Each node along the path would have a dwell time probability, and a

probability of transition to the next node. The walk speeds are obtained from the available

walk times by dividing shortest path distance by the walk times for each passenger. This

resulted in an empirical walk speed distribution The parameters of the walk speed distribu-

tion were then estimated for all the gates at once.

The month of July was selected as a training set for the walk speed. Statistics reported

in this section are only related to that month. Out of the 578,104 devices observed for the

whole year, only 6,638 paths were conserved for the month of July. We used Python and the

Fitter package[fitterPy], to find the best parametric distribution for the walk speed. Fitter

works by ranking the maximum likelihood best fit of all the 80 distributions in Scipy, and

returning the ones with the least mean square error. According to this metric, the best dis-

tributions for the walk speeds for all the gates are the Johnson distribution with unbounded

support (Johnson’s SU−), Wald, the inverse Gaussian, the power lognormal, the fatique life,

the log normal, the exponential Weibull and the inverse Gamma distributions. The best fits

for these 8 distributions are illustrated on Figure Figure 1.5. A t-test was performed to de-

velop a confidence that the distribution mean represent the population mean without prior

knowledge of the distribution variance. The 6 distributions provide similar levels of accu-

racy for the training set. Table Table 1.4 reports the p values of a t-test that was performed

on the means of the parametric distributions.

Table 1.4: table of p-values for student t-test analysis of means of the training set

Distribution Gate 8 Gate 24 Gate 53 Gate 54 Gate 58 Gate 59 Gate 60
johnsonsu 0.49511 0.94909 0.97936 0.97434 0.94443 0.98822 0.83714
wald 0.53310 0.89841 0.77131 0.91784 0.98284 0.94774 0.93039
invgauss 0.46680 0.45479 0.77131 0.98292 0.92882 0.97637 0.81265
powerlognorm 0.49511 0.94909 0.79007 0.97433 0.93963 0.98476 0.82915
fatiguelife 0.45459 0.95389 0.77660 0.98223 0.92708 0.97594 0.80778
exponnorm 0.45567 0.95420 0.77726 0.98248 0.92701 0.97577 0.80796
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From the results, it can be seen that the scores are overly higher for gates 50 through 60.

They represent a higher proportion of the data points used for the fit, which explains the

better results. Because there are relatively few data points for the other gates, the fit may

not be as accurate, and cause some underfitting.

The Johnson distribution was retained as the parametric distribution that represents our

data. After fitting for the month of July, the fit is tested against the walk speeds between

gates and immigration observed during the months of October, November and December

Figure 1.8.

Validation of Arrival Speeds To verify that the parametric fit is representative of the

other months, the mean walk speeds for the walk durations from every gate to immigration

is compared to the mean of the distribution with another t-test. The p-values for this test

are summarized in table Table 1.5. It shows that overall, the p-values for the gates 50-60

are lower, while the p-values for the other gates are higher. It indicates that there was a

slight over-fit in favor of the gates between 50 and 60. The parameters of the Johnson’s

SU− (a=-2.2, b=0.834,loc=0.1605,scale=0.134) were deemed to provide acceptable results,

and used for the simulation.

Table 1.5: table of p-values for student t-test analysis of means of the test set

Distribution Gate 8 Gate 24 Gate 53 Gate 54 Gate 58 Gate 59 Gate 60
johnsonsu 0.39183 0.48369 0.85477 0.97936 0.96660 0.92203 0.84182
wald 0.44522 0.52350 0.82275 0.92185 0.96506 0.99916 0.93420
invgauss 0.35947 0.95534 0.85290 0.98838 0.95289 0.90451 0.81780
powerlognorm 0.39182 0.48369 0.85477 0.97936 0.96247 0.91655 0.83397
fatiguelife 0.34650 0.44243 0.84867 0.98784 0.95180 0.90210 0.81296
exponnorm 0.34761 0.44352 0.84919 0.98809 0.95169 0.90209 0.81313
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Figure 1.8: Test set(14,554 records) against Johnson’s S−U fit

It can be seen that no distribution provides a high confidence, over 90th percentile, for

all the gates. If we picked a 90 percentile f-value, we will fail to reject the hypothesis

of different means for 3 gates in the dataset for both the Johnson’s SU− and the Wald

distributions. This can attributed to the variability of good data per gate. The Johnson’s SU

and the Wald distribution overall provides the best performance guarantee.

Estimation of throughput

Throughput is the number of passengers processed by a server or server system at a given

time period. As mentioned above, it has been recorded by the Department of Immigration

and Multicultural and Indigenous Affairs (DIMIA). It gives an idea of how busy the servers

were on a particular day. A throughput does not give any information on the utilization

of a server, the fraction of the time period for which a server is busy; nor does it gives

information on the length of the queue. In our simulation, we are interested in the capacity

of a server k to process passengers at a time interval j. This capability is the service rate of

the server, or the mean number of customers that can be served at 100 % utilization by each

individual server per unit time [Shmula]. It is denoted µk(tj). Throughput cannot directly

be used as an input to our simulation, but can be indirectly used to estimate the service rate
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for the server system. For this purpose, we consider 100 time periods of 15 minutes with

the longest average time spent in the immigration zone, and use them to estimate the initial

parameters of the service rate distribution.

Figure 1.9: Empirical Distribution of time spent at immigration

This procedure also produced two extreme values for which the time spent at immigration

exceeded an hour, as can be seen on Figure Figure 1.9. Those large values were removed

from the analysis. For each time period, we computed the corresponding throughput at

immigration, and the number of active desks. If we were simply to accept throughput

as service rates, we would obtain the empirical distribution of Figure Figure 1.10. After

filtering, the distribution of throughput for an individual desk in 15 minutes has a large

support ([3, 1210]) and even greater variance 8778.536. It likely does not represent well the

effectiveness of a single immigration worker working at a desk. To obtain more realistic

service rates, we wish to improve the service rate distribution using available information

on wait times, and arrival rates. This is a partially Bayesian approach, as the distribution

selection is fully guided by the parametric fit of the throughput. This is in contrast to a Fully

Bayesian Approach, for which the distribution selection and the parameter estimation are

performed based on likelihoods, as is performed for Bayesian Model Average [Chick2001].
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Figure 1.10: Initial Empirical Service rates per desk Per 15 minutes distribution from
throughput

The empirical throughput were fitted using Python’s Fitter library. This library fit the

empirical data to all distributions in Python Scipy package, and rank them by sum of square

errors. The Exponential Normal distribution, the fisk distribution, the non-central student t

distribution and the Johnson distribution with unbounded support (JohnsonSu) were found

to perform the best. The three parameters Gamma(α0, β0, ζ0) distribution was retained to

generate the service rate distribution required for the queueing process. This distribution

has shape α0 = 2.715983003, inverse scale β0 = 183.43, and location zeta0 = −37.5609.

Table 1.6: Parameters for Service Rates per 15 minutes per desk

Distribution Sumsquare error Shape1 Shape2 Location Scale
Exponnorm 0.000062 3.387588411 - 146.76293633 92.65
JohnsonSu 0.000065 -7.45162592 2.1135730122 -164.83525407 33.002
Gamma 0.000066 2.715983003 - -37.560950309 183.43

21



Service Rates

The service rate is the maximum number of passengers an individual server can process

during a 15 minutes time interval. Realized throughput, on the other hand, is the actual

number of passengers processed during the same period. It is a function of the service

rate and the demand during that period. Because the queue spends most of its time starved

when there is no or little demand, the throughput can vary considerably from the service

rate in practice. Service rate, on the other hand, does not depend on the demand, but rather

on the number of active desks. Throughput therefore underestimates the service rate. Yet,

it is a typical surrogate for service rates in practice, where throughput during periods with

high demand are taken as representatives of the service rates. In an effort to provide the

most suitable input to our simulation, we have decided to use a revised model of service

rates. This is motivated, in part, to the unreliability of the data-set available to us. The

Wi-Fi information which should be used to estimate queue length lacks spatial accuracy in

the immigration area, which makes it difficult to estimate which passengers are actually in

a queue. Similarly, the immigration records only accounts for a fraction of passengers. For

example on July 26th, one of the busiest day in the data-set, there was 183,718 passengers

in the airport according to flights data. Of these 183,718 passengers, only 15,647 were

recorded at immigration in our DIMIA database. This strongly suggest that some servers

were not accounted for, and that the recording is incomplete.

1.5 Estimation Framework

The service rate distribution is a key factor in determining the capacity of the immigration

services area. Because they are difficult to observe directly, service rates are often approx-

imated from throughput information at capacity. In this section, we present a sequential

sampling method to estimate the service rates from simulation and observed queue statis-

tics.
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1.5.1 Simulation of Passenger Traffic from Gates to Immigration

The goal of the simulation is to accurately emulate what happened inside the airport be-

tween the different international gates and their respective immigration zone. It is desired

to obtain an account of the performance of the system by estimating average waiting times

(W ), average queue throughput (NQ) and average time spent in the immigration zone or

cycle time W in a 15 minutes time period. The number of passengers in the queue LQ and

in the immigration zone L are recorded of a time period. The DEDS previously described

in subsubsection 1.3.3 is used to obtain granular queue statistics.

1.5.2 Updating Input Distribution

The typical output statistics of a discrete-event simulation are: the wait time (WQ(ti)), the

average time spent in the queue during a time interval ti, the cycle time (Wc(ti)),the average

time spent by passenger in the queue-server system during a time period ti, queue length

LQ(t), the system length (L(t)), the total number of passengers waiting in the system and

the number of passengers being served N(t) [15], [18]. Of all these variables, we use the

cycle times as the control variable to update the service rates of the immigration queue. This

choice is motivated by the robustness of wait times and cycle times to data inconsistency

and unavailability. Indeed two passengers who stand in the same queue observe the same

wait time on average. Only a few number of observed wait times are necessary to optimize

the service rate selection.

1.5.3 Model-Based Update of Service Rates

By estimating the service rates in the context of the simulation, we can leverage the simu-

lation model to train the samples of the service rates, creating a self-reinforcing feedback

system between simulation and optimization, see figure Figure 1.11. The objective of this

section is to present a method to update the marginal service rates distribution by minimiz-

ing the expected risk between observed and actual wait times. To optimize the stochas-

23



tic at each operation, and ensure convergence we use Model Reference Adaptive Search

(MRAS). In the following section, we describe the MRAS algorithm, we define our para-

metric simulation, the objective function and present an optimization approach chosen to

minimize the cost function.

Figure 1.11: Diagram of the Model-Based Simulation

Procedure

For each new service at the immigration queue, we draw a specific service rate and convert

it to a service time. All the service rates drawn during one run of the simulation form a

sample path. After all the simulation runs results are obtained, we compare, sort and rank

all the sample paths, retaining the best ρ-th quantile (0 < ρ < 1). Those samples are used to

build the expected loss function to optimization over for the parameter estimation problem

Equation 1.1. This process is illustrated in figure Figure 1.12. Once a desired confidence

on the quality of our service rates is obtained, the update is stopped and a service rate

distribution is returned.

min
µ(t)

R(µ(T )) =
∑
ti∈T

E[
∥∥W sim

c (ti, µ(ti))−W act
c (ti, µ(ti))

∥∥2
] (1.1)

This approach to updating the input distribution based on a simulation fits in the broader
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Figure 1.12: Diagram of the Sequential Update Methodology

category of model-based stochastic search methods. Model-based stochastic search meth-

ods [19] build a model of the world by continuously updating the sampling distribution

until the sequence of samples converges to the globally optimal and potentially degenerate

distribution. If the environment is non-stationary, new solutions are generated by updating

the probabilistic model from previous iterations. The process is repeated until the distribu-

tion converges to the distribution representing the solutions to global optimization problems

[20]. It is done in two phases: a sample generation phase that uses the current model to

serve as input to the simulation and generate new samples, and an update phase during

which the parameters of the probabilistic model are estimated from the best samples and

updated to create a new family of distribution. The simulation model has been described

in section ??. The estimation process and update methods consist of finding the best pa-

rameters for the distribution based on the current samples as well as the best dependency

structure for the best sample paths. This process will be described below as part of the

update method.

We motivate the use of a model-based algorithm, by our desire to construct a good stochas-

tic simulation of airport operations together with more reliable input distributions. Some

examples of model-based algorithms are sequential Bayesian methods, Importance Sam-

pling, Kalman Filters, the Cross-Entropy Method (CE) [DeBoer2005], Ant Colony Op-

timization (ACO) and Estimation of Distribution Algorithms (EDAs). Cross-Entropy

method is an adaptive algorithm for rare-event simulation, that was later adapted to solve
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combinatorial and multi-extremal optimization problems. The method successfully esti-

mate the parameters that minimize the Kullback-Leibler (KL) divergence between the cur-

rent best distribution family and the optimal distribution. Model Reference Adaptive Search

(MRAS) [20] [21] is a generalization of the Cross-Entropy method with better convergence

guarantees. The MRAS algorithm is described in the next section.

1.5.4 Model Reference Adaptive Search (MRAS)

In CE, we successively estimate the best parameters to minimize the KL divergence be-

tween the current parametric distribution and a target distribution. MRAS, on the other

hand, operates in steps. At each iteration, the candidate solutions minimizes the KL di-

vergence with respect to the current reference model. Because each iteration is based on

the best candidate solutions from the previous iteration, the objective is monotonic. The

MRAS method works with a family of distribution {f(·, θk), θk ∈ Θ} on the solution space

H, where Θ is the parameter space and a sequence of reference distributions gk. f(·, θk)

can be viewed as the sample distribution from which we generate candidate solutions at the

kth iteration of the algorithm. As an alternative f(·, θk) can be seen as the projection of

gk unto the current parameter space that minimizes the KL divergence between gk(·) and

f(·, θ).

D(gk, f(·, θ)) := Egk [ln
gk(x)

f(x, θ)
] (1.2)

To construct the sequence of reference distributions, we start with an initial distribution

g0(x) > 0∀x ∈ H. At each iteration k ≥ 1, we bias the estimation of the parameters

towards the best performing samples according to a performance function H(X).

gk(x) =
H(x)gk−1(x)∫
HH(x)gk−1(x)ν(dx)

(1.3)
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In practice, the new parameter of the reference distribution is obtained by sample average

over N i.i.d. samples X1, . . . , XN generated from {f(·, θk), θk}.

θ̃k+1 = argmaxθ∈Θ
1

N

N∑
i=1

[S(H(Xi))]
k

f̃(Xi, θ̃k)
I{H(Xi)≥ ¯γk+1}lnf(Xi, θ) (1.4)

For our model, X represents the parameters of the distribution and the performance func-

tion given by equation Equation 1.5 and a strictly increasing function S()̇ = exp(−rH()̇)

.

H(X) = −R(X) = −R(µ(t)) = exp
(
−

N∑
i=1

k[Wi − W̃ (Xi)]
)

(1.5)

f̃(Xk
i , θ̃k) = (1− λ)f(Xk

i , θ̃k) + λf(Xk
i , θ0) (1.6)

In both CE and MRAS, the threshold parameter γk depends on the desired percentile

0 ≤ ρ ≤ 1 of samples to accept. In MRAS , the sample size N increases adaptively

as a function of the growth parameter α. At the same time, the desired percentile ρ may

decrease to avoid premature convergence to low quality solutions.

Algorithm

The algorithm consists of two phases:

1. Generate candidate solutions according to the current distribution f(·, θk).

2. Compute a new parameter θk+1 by using the samples generated in the previous step,

focusing on the most promising region(s) of the decision space.

The steps of the MRAS algorithm are reviewed in Algorithm 1. Besides selecting the size

of the initial sample N , the mixing coefficient λ and a strictly increasing function S(·),

one of the major difficulty in using this method is the optimization performed to obtain the

updated parameter θk+1 in equation Equation 1.4.
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The optimization problem is considered in the implementation section ??. Similarly to

the Maximum Likelihood Estimation (MLE) process, the optimization model can be ill-

behave for a three-parameter distribution. We describe our optimization method in section

subsubsection 1.5.4.
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Algorithm 1 MRAS algorithm

1: Initialization :Specify ρ0 ∈ (0, 1] an initial sample sizeN0 > 1,ε ≥ 0, α > 1, a mixing

coefficient λ ∈ (0, 1], a strictly increasing function S(·) : R→ R+, and an initial p.d.f.

f(x, θ0) > 0, ∀x ∈ H. Set θ̃0 ← θ0, k ← 0.

2: repeat

3: Step 1: Generate Nk i.i.d. samples Xk
1 , · · · , Xk

Nk
according to f̃(·, θ̃k) := (1 −

λ)f(·, λ̃k) + λf(·, θ0).

4: Step 2: Compute the sample (1−ρk)-quantile ˜γk+1(ρk, Nk) := H(d(1−ρk)Nke), where

dae is the smallest integer greater than a, and H(i) is the ith order statistic of the se-

quence {H(Xk
i ), i = 1, · · · , Nk}.

5: Step 3:

6: if k = 0 or γ̃k+1(ρk, Nk) ≥ γ̄k + ε/2 then

7: Set γ̄k+1 ← γ̃k+1(ρk, Nk), ρk+1 ← ρk, Nk+1 ← Nk.

8: else

9: find the largest ρ̄ ∈ (0, ρk) such that γ̃k+1(ρ̄, Nk) ≥ γ̄k + ε/2

10: if Such a ρ̄ exists then

11: set γ̄k+1 ← γ̃k+1(ρ̄, Nk), ρk+1 ← ρ̄, Nk+1 ← Nk.

12: else(if no such ρ̄ exists )

13: Set γ̄k+1 ← γ̄k, ρk+1 ← ρk, Nk+1 ← dαNke.

14: end if

15: end if

16: Step 4:

17: Compute: θ̃k+1 = argmaxθ∈Θ
1
N

∑N
i=1

[S(H(Xi))]
k

f̃(Xi,θ̃k)
I{H(Xi)≥γ̄k+1}lnf(Xi, θ)

18: until a specified stopping rule is satisfied

The Generalized Gamma Distribution We select our service rates distribution family

to be a generalized three parameters Gamma distribution of the form Equation 1.7. The
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generalized Gamma distribution is characterized by a shape α > 0, an inverse scale β > 0

and a location ζ parameter This distribution matches the distribution of the throughput of

the immigration queue, which is used as the initial guess for the distribution in the MRAS

process. .

f(x, α, β, ζ) =
βα

Γ(α)
(x− ζ)α−1e−β(x−ζ) (1.7)

The exponential distribution of parameter λ can be represented as a Gamma distribution

with α = 1, β = λ and ζ = 0. Because of this property, the three parameters Gamma

distribution is seen as a good generalization of the exponential.

Interior point optimization of the MRAS function

In solving for a good service rates for our queueing problem, we are looking for a pro-

cess that possess both the desired marginal distribution obtained from MRAS, but also an

adequate dependency structure given by AutoRegressive to Anything (ARTA). In this sec-

tion, we describe the design approach and the implementation to obtain a correlated three

parameters Gamma input process.

The optimization problem As part of the estimation problem, we need to optimize the

MRAS objective function equation ??, while guaranteeing that the resulting parameters

result in a feasible distribution. Our optimization problem is:

minαk,βk,ζk −
1

N

N∑
i=1

[S(H(Xi))]
k

f̃(Xi, θ̃k)
I{H(Xi)≥ ¯γk+1}lnf(Xi, θ)

αk ≥ 0

βk ≥ 0

The constrained optimization problem becomes ill-defined at the boundary of the feasible

set when either 0 ≤ α < ε or 0 ≤ β < ε for small ε > 0. Traditional unconstrained op-

timization methods that rely only on the gradient of the objective function quickly lead to
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ill-behaved behaviors. For this reason, a method was sought that could keep the candidate

solution in the strict interior of the feasible set at all times, and return a solution close to the

optimal solution. A general class of methods with these two properties are interior point

methods [NoceWrig06], [Bertsekas1999] [22] such as log-barrier methods, Newton bar-

rier methods, primal-dual methods, subgradient approximation methods for large problems

and the ellipsoid method.

Let us define our problem generally as follows:

minf(x) (1.8)

subject to ci(x) = 0, i ∈ E (1.9)

ci(x) ≤ 0, i ∈ I (1.10)

Where ci(x) denotes a nonlinear constraint. E , I are the set of equalities and inequalities

respectively. Furthermore, we let g(x) = ∇f(x), the Jacobian J(x) = ∇c(x) and JA

the set of rows of the Jacobian corresponding to active constraints ci(x) = 0. It is to be

noted that our problem only contains inequality constraints. The sequence of solutions

{xk}∞k for barrier methods and Primal-dual methods follow a central path trajectory with

the following properties:

1. x∗ = limk→∞ xk satisfies the Karush-Kuhn Tucker conditions, see [NoceWrig06],

e.g. there exists a nonempty set Mλ of Lagrange multipliers λ satisfying

Mλ = {λ : g∗ − J∗Tλ, λ > 0, and c(x∗)λ = 0}

2. The Mangasarian Fromovitz Constraint Qualification (MFCQ) hold at x∗, e.g. there

exists p such that JA(x∗)Tp > 0

3. There exists w > 0 such that pTH(x∗, λ)p ≥ w||p||2 for all λ ∈Mλ and all nonzeros

p satisfying g∗Tp = 0 and J∗Ap ≥ 0, whereH(x∗, λ) is the Hessian of the Lagrangian.
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The conditions ensure that the problem is always strictly convex, and that the solution is

unique. Furthermore if we let µ > 0 such that the problem achieves perturbed complemen-

tary at every iteration c(xµ)λµ = µ we are guaranteed that the problem stays in the strict

interior at all times, and converge to the optimum as µ→ 0 [22].

Because of the nature of our problem, we found log-barrier and Newton barrier meth-

ods to quickly results in ill-conditioned gradients and Jacobian. The primal-dual algorithm

we used, was found to be more stable than our log-barrier implementations.

Solving the optimization problem - finding the search direction The optimization al-

gorithm iterate between two steps: the direction search, and the step size search.

Let θ = {α, β} be our vector of decision or primal variables. The direction step’s goal

is to simultaneously solve for the primal and dual search directions pk = (∆θk,∆λk) that

will be used to update the primal and dual variables at the next iteration. To simplify the

explanation we present our optimization problem Equation 1.8 in a more general equivalent

form:

minθk − f(θk)

subject to αk ≥ 0

βk ≥ 0

We set up the problem as a general Newton root finding problem given a nonlinear

equation F (x), we try to solve for the step size ∆xk+1 = xk+1− xk such that F (xk+1) = 0

in equation Equation 1.11.

∇F (xk)δ(xk+1) = −F (xk) (1.11)

In the primal-dual method, we solve for the step sizes that satisfy the first order necessary

32



conditions or stationary conditions Equation 1.12 and the relaxed complementary slackness

Equation 1.13 where µ > 0 is a small positive number and e is a vector of ones.

g(θ∗) = J(θ∗)Tλ∗ (1.12)

c(x∗) · λ = µe (1.13)

To find the search direction pk, we solve the Newton search in equation Equation 1.14.

H(θk, λk) −J(θk)
T

ΛJ(θk) C(X)


∆θk

∆λk

 = −

g(θk)− J(θk)
Tλ

c(x)(λ− Π(θ, µ)

 (1.14)

Where, we have:

H(θ, λ) = ∇2g(θk)−∇J(θk)
Tλk = −∇2f(θ)

J(θ) =

I2 0

0 0


Λ =

λ1 0 0

0 λ2 0


C(x) =

c1(x) 0

0 c2(x)

 =

1 0

0 1


Π(x, µ) = µ · /c(x)

Solving the optimization problem - choosing the step size sk We have:

θk+1 = θk + sk∆θk (1.15)

λk+1 = λk + sk∆λksk ∈ (0, 1]
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There exist many update rules for finding the step sizes for primal-dual methods [NoceWrig06],

[Bertsekas1999] and [22]. Choosing sk such that θk+1 is in the neighborhood (N∞) of the

central path, guarantees that all iterates stay in the interior of the Feasible set. F .

N∞(γ) = {(x, λ, s) ∈ F◦|xisi ≥ γµ, i = 1, 2, · · · , n}

Another popular method is to use the Armijo rule or the Wolfe-Powell conditions com-

monly used in unconstrained optimization. We have decided to use Predictor-corrector

step to find the next solution. We denote (∆θaff ,∆λaff ) = (∆θk,∆λk) to be the solutions

in equation Equation 1.14 to the linearized problem, and choose saff as the step size

sk,max = min(1,maxi:∆θaff,i<0 −
xi

∆xi
) (1.16)

In the correction step, we correct for any infeasible solutions generated in the affine search

direction step due to nonlinearities.

H(θ, λ) −J(θ)t

ΛJ(θ) C(θ)


∆θcorr

∆Λcorr

 =

 0

−∆c(θ)aff∆Λaff + µe− θλ

 (1.17)

Termination criterion We end the iteration when strict complementary slackness is sat-

isfied (e.g. λTk c(θk) ' 0) and the stationary conditions are satisfied (e.g. ||g(θk) −

J(θk)
Tλk|| ' 0||). To speed up the optimization, we relax those conditions by stopping

the algorithm as soon as no significant improvement in step size (e.g. ||∆xk|| < tol) is

observed.

1.5.5 AutoRegressive to Anything (ARTA) model

In operations, the service rates between two-time periods are not completely independent.

Our assumption that the service rates are i.i.d. variables is therefore misleading at best.

To capture the influence of the time of the day on our data, there is a need to treat the
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service rates as time series. The time-series process can be specified with a pre-specified

marginal distribution obtained from MRAS and an auto-correlation through lag p as a mea-

sure of dependence. One can use Autoregressive (AR) models for stationary models and

Autoregressive Moving Average (ARMA) or Autoregressive Intergrated Moving Average

(ARIMA) for non-stationary models. These common models limit the users to Gaussian

distributions. One can alternatively use a transformation oriented approach that transforms

a base correlated process to generated an input process with the selected marginal distribu-

tion and desired correlation.

AutoRegressive to Anything (ARTA) is a transformation oriented approach to model arbi-

trary time series. With ARTA, we can transform independently identically distributed vari-

ables X1, · · · , Xn from any well-formed marginal distribution into a time-series process

Y1, · · · , Yn with an auto-correlation structure specified by lag p [23], [24]. The transforma-

tion is performed by estimating the underlying time correlation from our variables {Xt},

generating a standardized Autoregressive Process {Zt} of lag p and finally transforming

that process into the target marginal distribution {Yt}.

The ARTA process results in a stationary time series {Yt} with the two properties:

1. Yt ∼ FY , t = 1, 2, · · · where FY is an arbitrary distribution

2. (ρ1, ρ2, · · · , ρp) = ρ = (Corr[Yt, Yt+1], Corr[Yt, Yt+2], · · · , Corr[Yt, Yt+p])

In other words our final variables have the desired marginal distribution and product-

moment correlation −1 ≤ ρ ≤ 1.

ρt,t+h =
Cov(Xt, Xt+h

σtσt+h
=

E[(Xi − µi)(Xi − µj)]
σiσj

(1.18)

ARTA process The ARTA process is defined by our target product-moment correlation

and the corresponding auto-correlation structure or rank correlation r = (r1, r2, · · · , rp) for

the Autoregressive (AR)(p) process {Zt}. The process can be summarized in the following

steps.
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1. Estimate the Pearson correlation vector ρ = (ρ1, ρ2, · · · , ρp) for our initial sample

2. Derive the base process, the corresponding stationary Gaussian AR(p) process

Zt = α1Zt−1 + α2Zt−2 + · · ·+ αpZt−p + εt

where {εt} is a series of independent N(0, σ2) random variables and σ2 is selected

such that {Zt} is N(0, 1).

3. Define the ARTA process

Yt = F−1
Y [Φ(Zt)], t = 1, 2, · · ·

where FY is probability integral transform of the target distribution, and Φ is the

standard normal cumulative distribution function (cdf).

The problem that is central in this estimation is the correlation matching problem c(rh) =

ρX of finding the stationary Gaussian AR(p) process that matches the input correlation. In

other words, we want to find the auto-correlation structure r that yields Corr[Yt, Yt+h] =

ρh. Here c is a nonlinear transformation that depends on a double integral as seen in equa-

tions Equation 1.20 and Equation 1.19.

Corr[Yt, Yt+h] = c[rZ(t, t+ h)] =
E[Yt, Yt+h]− E[Yt]

2

V ar[Yt]
(1.19)

SinceE[Yt], and V ar[Yt] are fixed from the choice of the distribution. The problem reduces

to finding the appropriate expectation E[Yt, Yt+h], where

E[Yt, Yt+h] = E{F−1
Y [Φ(Zt)]F

−1
Y [Φ(Zt+h)]}

=

∫ ∞
−∞

∫ ∞
−∞

F−1
Y [Φ(zt)]F

−1
Y [Φ(zt+h)]φrh(zt, zt+h)dztdzt+h (1.20)
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φrh(zt, zt+h) is the standard bivariate normal probability density function with correlation

rh. Because of the difficulty to analytically solve for the right ρh using Equation 1.20, we

will turn to a numerical procedure to find rh. There are a few properties derived by Cario

and Nelson [23] that make the problem tractable. The function c = ρ(rh) is nondecreasing

for −1 ≤ r ≤ 1, lies on the origin for r = 0, |c(rh)| ≤ |rh| and the function is continuous

when −1 ≤ r ≤ 1 and E[|Yt, Yt+h|1+ε]. In spite of these properties, the efficiency of the

numerical search method depends on the marginal distribution and the ρX values which

could cause a non-smooth integrand in Equation 1.20.

generating random variables from the ARTA process

Ψ =



1 r1 · · · rp−1

r1 1 · · · rp−2

...
... . . . ...

rp−1 rp−2 · · · 1


(1.21)

1. Obtain the time-series statistics: Average the desired statistic by time-period

2. Obtain the lag h and the correlation ρ of that time series using R

3. Generate p initial values {Zp−1, Zp−2, · · · , Z0} from a multivariate normal distribu-

tion with mean µ = 0 and covariance matrix Ψ see equation Equation 1.21

4. Set Zt ← α1Zt−1 + α2Zt−2 + · · · + αpZt−p + εt where εt ∼ N(0, σ2) and σ2 =

1− α1r1 − α2r2 − · · ·αprp

5. Return Yt ← F−1
Y [Φ(Zt)]

6. Set t← t+ 1 and go back to step item 3.
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1.5.6 Accounting for time-dependence

Obtaining the time-series parameters

The MRAS update provides us with new parameters for the marginal generalized gamma

distribution. This fit does not account for the time dependency of our time series. To

increase the fidelity of our model, we study the temporal correlation of the service rates

for one day. We combine the same samples used for the MRAS update, and average the

service rates over a 15 minutes interval. This time-averaged service rates is the input to the

ARTA process. The modeling of the ARTA process is performed in three steps:

1. Obtain the target product-moment correlation vector ρ and the lag h using R

2. For each product-moment correlation ρi, i = 1, 2, · · · , h.

• Guess a value of the cross correlation parameter rh

• Compute the corresponding cross expectation Equation 1.20

• Iterate until the cross-correlation matching problem is solved.

To solve the cross-correlation matching problem, we currently use a simple version of the

bisection algorithm. Once the cross-correlation matching problem is solved, we have a base

transform FY that can be used to generate an ARTA process from i.i.d. standard normal

variates.

Obtaining the base transform We first identify the lag or the number of terms in the AR

process using auto-correlation and partial auto-correlation plots, figure Figure 1.13a and

Figure 1.13b.

There is only one significant spike in the partial auto-correlation graph Figure 1.13b.

This indicates that the higher order auto-correlations are effectively explained by the lag-1

auto-correlation. Using the Burg’s method, we found the following auto-correlation for the
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Figure 1.13: Correlograms for the best service rates

initial time series.

ρ = [0.64781, 0.072632, 0.014063,−0.34534, 0.1704]

and

σ2 = 4.981e+14

Two methods have been implemented to integrate equation Equation 1.20. The first

method is a Monte Carlo integration with anti-variate sampling.
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EMC
Yt,Yt+h

=
1

2N
(
N∑
i=1

F−1
Y [Φ(Zi,r1)]F−1

Y [Φ(Zi,r2)] +
N∑
i=1

F−1
Y [Φ(Zi,t1)]F−1

Y [Φ(Zi,t2)

Zi,r1 = Zi,1, i = 1, · · · , N

Zi,r2 = ρtrial ∗ Zi,1 +
√

1− ρ2
trial ∗ Zi,2, i = 1, · · · , N

Zi,t1 = −Zi,r1

Zi,t2 = −Zi,r2

Zi,1, Zi,2 ∼ N (0, 1), i = 1, · · · , N

Despite the use of N = 80000 data points for the Monte Carlo integration, the standard

error obtained in the integration is still large at 8372, for a value of the integral value of

1.434e06. This is obviously an incorrect value.

The second method that was tried is an adaptive Newton-Cotes quadrature of degree 7.

In spite of achieving an error within our tolerance (tol=0.05), the integral value (1434059.7362)

is still far above the expected value for our marginal E(X) = ζ + α
β

= 693.743 with vari-

ance V ar(X) = α
β2 = 304772. The resulting auto-correlation is not-a-number for the

Newton-Cotes quadrature and 3.3 for the Monte Carlo method. Because the values of the

auto-correlation are nonsensical, the current search method is incapable of solving the cor-

relation matching problem.

1.6 Results of the Estimation

1.6.1 Simulating a day at the airport (Thursday July 26th 2012)

We simulate operations at SYD on Thursday July 26th 2012. On that day, the first flight

reached the gate at 5:55 a.m. , and the last flight arrived at the gate at 11:28 p.m. The actual

delays we are trying to match are shown on figure
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Figure 1.14: Cycle time by time of day on July 26th 2012

We let the algorithm run for 5 iterations, where each iteration consists initially of 30

runs. At each iteration, we simultaneously update all the parameters of the Gamma distri-

bution to maximize our MRAS objective. The results of the fit for iteration 1, 2, 3, 4 and

5 are depicted on figures ?? respectively. The primal-dual method exhibit good monotonic

convergence properties, but can still be unstable on some specific input data. This was the

case for us after the fourth iteration, where the objective function became ill-behaved. A

more detailed convergence analysis and stability analysis needs to be perform to make the

algorithm more robust to non desirable data sets.

The evolution of the sample scores and the service rates are illustrated on figures Fig-

ure 1.20 and Figure 1.21. The initial trajectory of the sample clouds for the first three

iterations is as expected. During the fourth iteration the top quantile stays at the same level,

which forces the next iteration to use more samples and increase the uncertainty. This

breaks the strict monotonicity of the score function, and also introduce an ill-behavior in

our objective. The problem is currently being explored in more depth.
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Figure 1.15: Fitted Service Rates after first iteration (July 26th 2012)
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Figure 1.16: Fitted Service Rates after second iteration (July 26th 2012)
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Figure 1.17: Fitted Service Rates after third iteration (July 26th 2012)
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Figure 1.18: Fitted Service Rates after fourth iteration (July 26th 2012)
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Figure 1.19: Fitted Service Rates after fifth iteration (July 26th 2012)
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Figure 1.20: Evolution of score distribution with number of iterations (July 26th 2012)
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Figure 1.21: Evolution of service rate distributions with the number of iterations (July 26th
2012)
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CHAPTER 2

DETECTION OF CHANGES TO THE DYNAMICS OF A M/M/1 QUEUE FROM

A SINGLE PERFORMANCE MEASURE

Queuing systems are service systems where, when the server is busy or not available, an

entity (e.g., a job, a customer, a packet or a phone call) may have to wait in a queue before

being processed. Queuing systems evolve constantly. Such changes can be attributed to a

change in the number of arrivals, a change in the number of servers, or a sudden breakdown

of one of the servers. To maintain a consistent level of service, service providers need to

adequately react to those sudden changes. The work done in the previous chapter focused

on using simulation to associate heteregeneous sources of information that were both en-

dogeneous and exogeneous to the queue. In many cases, it is possible to develop a well

calibrated simulation of complex system because the lack of validating data. It is often

not possible to collect transactional data such as start and end of service times. Similarly,

exogeneous data such as the arrivals of new entities or even the number of entities to enter

the system can not be ascertained. Endogeneous performance characteristics of the queue

such as the number of passengers in the system or the queue or the time spent in the queue

can often be approximated independently or jointly. In this chapter, we develop a strategy

to detect abrupt changes in the dynamics of a M/M/1 queue based based on the partial

observation of a single performance measure: number of passengers in queue, instanta-

neous time spent in queue and waiting time in queue. The next chapter looks at these three

measures of performance jointly to make the best decision from the available information.

2.1 Heterogeneous Performance Characteristics

Any system of queues may be characterized by five parameters: the arrival rate, the service

rate, the capacity of the queue, the number of parallel servers, and the queuing discipline.
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When those five components are provided for a Markovian queue, the performance of a

the system is fully determined. The service rate is the number of entities that a server

can process at full capacity. Due to the inherent transient nature of real queuing systems,

arrival and service rates are typically not directly observed in physical queues. Servers may

not take the time to always record all the surges in demand. The throughput of a queuing

system, defined as the number of entities that pass through the system for a given time

interval, is easy to obtain. The service rate, which is defined as the maximum number

of entities the servers is able to process, is only observable if all queues are operating at

capacity and all queues are growing. To determine whether a change has occurred in the

system, one must relies on other performance measures of the queues. Some common

performance measures ares throughput, queue length, the waiting times, the systems times

or the age of the customers in the process at a given time t. Those heterogeneous measures

of performance make it possible to quickly detect any abrupt change in dynamics even

when one of the measures fails to update.

The instantaneous queue length refers to the number of entities at a single point in

time that are waiting in the queue before being served. For a physical system, obtaining the

queue length requires dedicated employees or automated infrared/vision-based surveillance

systems to monitor where the queue ends at any given point in time. Waiting time or delay

is the time a customer wait in queue before being served. This data has historically been

collected through surveys. The system time is the waiting time plus the service time. It is

the total time spent in the queuing system before leaving the server. The age of the process

[25] represents how long an item waiting for service has been in the system. Because it

is an instantaneous property, it provides a more up-to-date representation of time spent in

queue at any given with the one drawback of a high variability. In designing our change

point detection strategy, we rely on the presence of observations based on waiting times,

queue length or the age of a process to decide when the dynamics of a queue changed.
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2.2 M/M/1 Queues

2.2.1 General Description of M/M/1 Queues

We study the simplest type of queuing system: a M/M/1 queue. Using Kendall’s notation,

a M/M/1 queuing system is a queuing system with the Markovian property for both the

arrivals and departures for a single server with infinite capacity. A Markov chain is a

random process in which the next state depends on the current state and not on the past.

An arrival or a service rate is Markovian, if it has the memoryless properties. Arrivals or

services are independent of each others and departures are independent of each other. In

particular, they are independent from the time elapsed since the last service or arrival. In a

M/M/1 queues inter-arrival times and service times follow an exponential distribution with

rates λ and µ respectively where we define rates as number of customers by time unit. The

fraction of arrival to service rate defines the load factor or utilization of the queue ρ. It is

the average fraction of time a server is busy. A queue with λ > µ (ρ > 1) is over-saturated

and fills up exponentially. In this work, we shall only be concerned with stable queues for

which λ < µ (rho < 1).

2.2.2 Steady-State Characteristics

Much work has been dedicated to the study of the steady state properties of M/M/1 queues.

A M/M/1 queue can be modeled as a birth and death process, a Markov Chain where each

state corresponds to the number of customers in the system [4]. It is then possible to look

at the time-average properties of the system such as the average number of people in queue

LQ(t) or the average number of people in the system LS(t). The expected time spent in the

queue WQ(t) and in the system WS(t) are then derived from the queue length. The time

spent in queue WQ(t) at time t is a property central to the analysis in the current situation

and will be denoted as Wt for convenience. The expected waiting time and the variance

of the waiting times are reproduced below without proofs in equations Equation 2.1 and
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Equation 2.2 respectively. The queue length LQ(t) can be obtained from the waiting time

using Little’s Law: (i.e.: L = λW ), see equation Equation 2.3.

E[Wt] =
1

µ− λ
− 1

µ
=

ρ

µ− λ
(2.1)

V ar[Wt] =
ρ(2− ρ)

(µ− λ)2
(2.2)

E[LQ(t)] =
E[Wt]

λ
=

1/µ

µ− λ
(2.3)

These properties of a M/M/1 are important when analyzing a queue performance and

developing a correlation between batches as shall be done further down.

2.3 Change-point Detection

Change point detection is the problem of finding abrupt changes in the distribution of a se-

quence of random variablesX1, X2, . . .. Two types of abrupt changes are possible: constant

and transient changes. Transient changes are changes that are similar to impulses. They

occur sporadically and leave the dynamics unchanged. Constant changes are sustained

changes representing the new state of the system. The test is designed to capture constant

changes that affects the underlying dynamics. The general framework of the Change-Point

Detection (CPD) problem is a binary hypothesis test to decide whether a change in the

underlying distribution of a process has happened or not, see equations Equation 2.4 and

Equation 2.5.

H0 = Pm = Pm+1 = . . . = Pk = . . . = Pm+n (2.4)

Ha = Pm = Pm+1 = . . . = Pk 6= Pk+1 = . . . = Pm+n (2.5)
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The statistical process control community uses the Cumulative Sum (CuSum) test [26]

in the form of control charts to detect changes. The CuSum algorithm [27], [28], [29] is

a two-step algorithm consisting in a recursive Likelihood Ratio Test (LRT) to decide if a

change has occurred and a maximum likelihood ratio test to ascertain when the change

happened. It is used to detect a change in mean or variance in a time series consisting of

independently normally distributed points. The test is widely accessible through standard

control charts and many statistical packages. The method assumes that the parameters

before and after the change are known. This is a major drawback. For most applications,

the distibutions are unknown. Furthermore, the performance statistics of a queue are highly

correlated and do not follow a Gaussian distribution. Several methods [30], [26], [31], [32]

exist that achieve similar asymptotic optimality without these restrictions. One of them

rely on a Generalized Likelihood Ratio Test (GLRT) [33], [34], [35] that shall be described

below.

2.3.1 Likelihood Ratio Tests

In this section, we present the general Likelihood Ratio Test (LRT) framework. The LRT

compares the ratio of the likelihood of the alternative hypothesis Ha to the null H0 against

a certain threshold η to make a decision on the change point location k. If the threshold

is equal to one, the classifier corresponds to the Maximum Likelihood Estimator (MLE).

When the threshold is a ratio of the priors, LRT is the optimal Bayes classifier [4] that can

be found given the data. In other words the classifier obtained from LRT is the classifier

that minimizes the risk of false detection under a given set of prior assumptions.

LRT techniques can be run sequentially when analyzing long sequences of data. This

feature alongside with the optimality properties of LRT methods make them a method of

choice for detection problems. Here we present the general LRT and multiple extensions

to LRT that will lead us to a tractable and efficient algorithm for change point detection.

Let `m(k) and Lm(k) denote respectively the likelihood ratio and the log-likelihood
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ratios where m is the start of the interval in consideration, m + n is the end of the interval

and k is the location of the change. Because the log function is a monotonically increasing

function, the likelihood ratio can be replaced by the log likelihood ratio for the test. We

have:

`m(k) =
PY,Ha

PY,Ha

=

∏m+k
i=m p(yi, θ0)

∏n
i=m+k+1 p(yi, θ1)∏n

i=0 p(yi, θ0)
(2.6)

Lm(k) = log(`m(k)) (2.7)

The likelihood ratio test to see if a change occurred is therefore:

`m(k)
p(y|Ha)≥p(y|H0)

≥ η (2.8)

Or equivalently:

Lm(k)
p(y|Ha)≥p(y|H0)

≥ log(η) (2.9)

We define k̂ = argmaxkLm(k) to be the estimator of the location of the change point. If

we replace k by k̂ in equations Equation 2.8 and Equation 2.9, and the inequality is satisfied

then we have found a change.

2.3.2 Generalized Likelihood Ratio Test

In many applications of interest, the type as well as the parameter of the distributions before

and after the change are unknown. The first option to handle those unknown distributions

is to assume the same family of distributions before and after the test. It is then possible

to replace the parameters of the distributions before and after the change by their MLE

equivalent resulting in the GLRT. This approach was used in [26] and [36] to define a para-

metric sequential test for the changes depending solely on the observations. The method is

performed in the following steps:

• Compute the test statistic Gk,n = −2log( p(x|H0)
p(x|Ha)

) for a possible change point k ≤ n
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at each time step n

• Take the maximum of the test statistic max1≤k≤nGk,n and test if it exceeds the de-

tection threshold h.

• Confirm the type of change by other hypothesis tests [26].

Both [26] and [36], use a finite sample correction factor for the estimator Gk,n. This

correction is necessary to account for values of k close to the boundaries of the interval

[1, n]. Although log-likelihood ratio tests converge asymptotically to the best estimators,

they tend to have slow convergence properties. In the case of detection tests for a Gaussian

distribution, the likelihood ratio statistic Gk,n converge asymptotically to a χ2 distribution.

For small samples; however, any large deviation of a single observation can have a large

impact on the statistic which can cause the required threshold to be artificially high. For

χ2 distributed test statistics, dividing the log likelihood ratio by its expectation under the

null hypothesis gives faster convergence. This is precisely what is done with the Bartlett

correction factor for Gaussian tests. The test statistic can generally be written as in equation

Equation 2.11 where C is the correction factor.

Gk,n = −2 log

∏N
i=1 f(X̂0,n)∏k−1

i=1 f(X̂0,k−1)
∏N

j=k f(X̂k,N)
(2.10)

GC
k,n =

Gk,n

C
(2.11)

GLRT for normally distributed random variables

We will use the Generalized Likelihood Ratio Test of [36] for this test. For Gaussian

random variables, the plug-in parameters are the mean µ̂n =
∑N

i=1
xi
N

and the variance

σ̂2 =
∑N

i=1
(xi−µ)2

N−1
. Note that σ̂2 is unbiased and is therefore not the MLE variance for a
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Gaussian distribution. The likelihood ratio statistic of equation Equation 2.8 becomes:

Gk,n = k log
S0,n

S0,k

+ (n− k) ∗ log
S0,n

Sk,n
(2.12)

In Ross’ formulation Sr,s is defined as follows:

Sr,s =
s∑

i=r+1

(xi − x̄r,s)2

s− r
(2.13)

xr,s =
s∑

i=r+1

x̄i
s− r

(2.14)

The correction factor for this case was obtained by Ross to speed up the convergence of the

statistic to a χ2 distributed random variable.

C = E[Gk,n] = n ∗ (log(2/n) + ψ((n− 1)/2))− k(log (2/k)

+ ψ((k − 1)/2)− (n− k)(log (2/(n− k)) + ψ((n− k − 1)/2)) (2.15)

Here ψ(z) = Γ′(z)
Γ(z)

is the digamma function. The test statistic used in this work is:

GC
k,n =

Gk,n

C
(2.16)

Recursive expressions for the mean and variance in the GLRT formula

The search for k∗ = argmink∈{2,n−2}G
C
k,n requires us to compute the estimates of the vari-

ance before the change in S0,k and after the change in Sk,n. Instead of recomputing the

variance to estimate S0,k+1 for all the points {1, 2, . . . , k, k+1}, it is possible to simply up-

date S0,k with the new point xk to obtain S0,k+1 with a forward variance update. Similarly,

it is possible to update Sk,n to obtain Sk+1,n with a backward variance update.
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The forward variance update can be formulated as follows:

x̄r,s+1 =
(s− r)x̄r,s + xs+1

s− r + 1
(2.17)

Sr,s+1 =
s− r

s− r + 1
(Sr,s + x̄2

r,s − 2x̄r,s+1x̄r,s + x̄2
r,s+1) +

(xs+1 − x̄r,s+1)2

s− r + 1
(2.18)

The backward variance can be computed as follows:

x̄r+1,s =
(s− r)x̄r,s − xr

s− r − 1
(2.19)

Sr+1,s =
s− r

s− r − 1
Sr,s + x̄2

r,s − 2x̄r+1,sx̄r,s + x̄2
r+1,s −

(xr+1 − x̄r+1,s)
2

s− r − 1
(2.20)

During simulated tests, it was observed that the forward variance estimator is more

stable than the backward variance estimator for Gaussian distributed variables.

2.3.3 Change Point Models Library

We use the change point models (cpm) library by Gordon J. Ross [35] to detect change

points using GLRT.

2.4 Detecting Change Point in Queues and Batch Means

Waiting times, age and queue lengths are highly correlated random processes in a M/M/1

queue, it is therefore not possible to assume their independence. It is not possible to directly

apply LRT or GLRT to this change point detection problem because those two tests assume

i.i.d normal variables. It is possible, on the other hand, to transform those statistics into

new normaly distributed variables with low to no correlation. Once such transform, is the

NOBM process, which reduces the correlation between inputs and increase the power of

the detection test.
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2.4.1 Non-Overlapping Batch Means

Batch Means methods allow faster convergence to identically independently distributed

Normal samples. Under weakly-stationary assumptions [37], The sample mean of the

batch means converges to the expected value of the distribution and the sample variance

converges to the analytical variance. They are widely used in simulations as they require

less samples in order for the central limit theorem to hold. NOBM is the simplest type of

batch mean method. It partition the samples into batches of identical sizes.

2.4.2 The NOBM Method

Let {Yi, i = 1, 2, . . . , n} be realizations from a weakly stationary process. The data is split

into b batches of size m such that b = n/m. Then the observations {Yi, i := 1, 2 . . . , b}

constitute the ith overlapping batch with mean Yi,m =
∑m

k=1

Y(i−1)m+k

m
. The sample variance

for the NOBM converge to σ2 with a rate proportional to the inverse of the square of the

batch size for low autocorrelation [37] plus another term that depends on the autocorrelation

of the batches Equation 2.22. Let the estimator be σ2
NBM is defined as follows:

σ2
NBM ≡

m

b− 1

∑
i=1

b(Ȳi,m − Ȳn)2 ⇒
σ2χ2

b−1

b− 1
(2.21)

E[σ2
NBM ] = σ2 +

γ(b− 1)

bm
+O(1/m2) (2.22)

2.4.3 NOBM for Waiting Times

Waiting times for M/M/1 queues are problematic in change point detection for several

reasons.

1. There is a high autocorrelation between consecutive waiting times. Even at steady-

state, the autocorrelation function of the waiting times decays very slowly.
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2. During simulation, the initialization bias has a high magnitude which decays slowly.

3. In steady-state operations, the marginal distribution of the waiting times has an ex-

ponential tail which breaks the normality assumption. There is always the chance of

a rare event that breaks the symmetry assumption of the normal distribution.

4. The variance of the waiting times grows quickly as the service rate gets closer to the

arrival rate as seen in equation Equation 2.2 for the variance of the waiting times in

a M/M/1 system.

NOBMs can be used in the context of waiting times to create normaly distributed sam-

ples with low correlations for change point detection. In order to make the transformation

useful, a small batch size that leads to low auto-correlation is desired. Large batch sizes

cause large delays in detection and in extreme cases dilute the signal making it hard to

detect change points as shall be seen in the simulated experiments below. First, we look

at the auto-correlations between waiting-times and then at the auto-correlations between

batch mean waiting times to

2.4.4 Auto-correlations of Waiting Times

Let {Yi}i=1,...,n be an arbitrary sequence of observations. For a batch Y1,m = 1
m

∑m
i=1 Yi of

size m, we define the lag-1 auto-correlation as in equation Equation 2.23.

rBM =
Cov(Y1,m, Y2,m)

V ar(Y1,m)
(2.23)

Let Rj = Cov(Y1, Y1+j) and rj = Corr(Y1, Y1+j), Rj/R0. By Lemma 2 of [38], the

variance of a NOBM can be written as in equation Equation 2.24.

V ar(Y1,m) =
R0

m

[
1 + 2

m−1∑
i=1

(1− i

m
)ri

]
(2.24)
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The covariance between batch means was derived by Steiger and Wilson [39] as in equation

Equation 2.25

Cov(Y1,m, Y2,m) =
R0

m

m+1∑
q=−m+1

(
1− |q|

m

)
rm+q (2.25)

Using both equations Equation 2.24 and Equation 2.25, the lag-1 auto-correlation between

batch means can be derived as:

rBM,1 =

∑m−1
q=−m+1

(
1− |q|

m

)
rm+q

1 + 2
∑m−1

j=1 (1− j
m

)rj
(2.26)

To obtain the lag-1 auto-correlation between batches, only the variance of the individual

samples (V ar(Y1,m)) and their auto-correlations (rj) are needed.

Auto-correlation between Waiting Times

Since NOBMs are unbiased estimators, the NOBM expected waiting time is the same as in

equation Equation 2.1. The correlation between waiting times is defined as Equation 2.27

from the work of Daley [40].

rj = Corr(W1,Wj+1) = c

∫ a

0

tjf(t)dt (2.27)

c =
(1− ρ)3(1 + ρ)

2πρ3(2− ρ)
(2.28)

f(t) =
t3/2(a− t)1/2

(1− t)3
(2.29)

a =
4ρ

(1 + ρ)2
< 1 (2.30)

This results in the analytical batch mean waiting times auto-correlation in equation Equa-

tion 2.31.

rBM(m, ρ) =
c
∫ a

0
t
m

(1−tm
1−t )2f(t)dt

1 + 2c
∫ a

0
t(tm−mt+m−1)

m(1−t)2 f(t)dt
(2.31)
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The variance between batch mean waiting times can be expressed as:

V ar(W1,m) =
ρ(2− ρ)

m(µ− λ)2

[
1 + 2

m−1∑
i=1

(1− i

m
)ri

]
(2.32)

The results on the batch mean variances were used in computing the auto-correlation

between batches empirically in section subsection 2.4.6. The auto-correlations between

batches were used as an additional check during the validation of the simulation process.

As can be seen in table Table 2.1, relatively low batch sizes are required to obtain low

correlation between samples.

Table 2.1: Minimum batch sizes required to satisfy r(m, ρ) ≤ ε

ε ρ = 0.25 ρ = 0.75 ρ = 0.9
0.50 1 6 29
0.1 9 33 182
0.05 17 61 337
0.01 76 282 1561

2.4.5 Normality of NOBM Waiting Times

The NOBM also create identically distributed normal samples. To test this assumption,

it suffices to compare the moment generating function (m.g.f.) of a standardized sum of

waiting time samples against them.g.f. of the standard normal, equation Equation 2.33.

Let X ≡ N(0, 1),

E[etX ] = et
2/2 (2.33)

The m.g.f. of steady-state waiting time is:

E[etW1 ] = 1− ρ+ ρ

(
γ

γ − t

)
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where γ = µ− λ = λ(1− ρ)/ρ Let the mean of m consecutive waiting times be

W̄m =
1

m

m∑
j=1

Wj

The standardized mean batch waiting time is:

Xm =
W̄m − E[W̄m]√

V ar(W̄m)
(2.34)

We then have that

logE[etXm ] = logE

[
exp{tm

m∑
j=1

Wj}

]
− tmE[W1] (2.35)

where

tm =
t

m
√
V ar(W̄m)

(2.36)

tm <
µ− λ
m

(2.37)

E[W1] = ρ/(µ− λ) (2.38)

E[et
∑m

j=1Wj ] = (1− ρ)
m∑
j=1

cm,j(t) + ρ

(
cm,1(t)

[
γ

γ −mt

]
+ summ

j=2cm,j(t)

[
γ

γ − (m− j + 1)t+ λ

])
(2.39)

The derivation of equations Equation 2.35 and Equation 2.39 are in the appendix. It was

found analytically that logE[etXm ] → t2/2 by computing equation Equation 2.35 for dif-

ferent values of m. This was confirmed experimentally by drawing multiple consecutive

waiting times from simulation for different values of ρ in the next section.
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2.4.6 Validating the i.i.d. NOBM assumptions for waiting times empirically

As mentioned above, the generalized likelihood ratio test (GLRT) is designed with the as-

sumption that the samples are independently and identically Gaussian distributed with the

parameters of the distribution being not known a priori. Waiting times are highly corre-

lated with a correlation that increases as the traffic utilization ratio gets bigger. In order to

use GLRT, the sampled waiting times need to be first transformed into i.i.d. normal vari-

ables. The transformation is obtained using non-overlapping batch means of various batch

sizes. To evaluate the accuracy of the i.i.d. normal assumption after the transformation,

the sampled NOBM waiting times are tested for normality and independence. To test the

normality assumption, the moment generating function of the standardized NOBMs are

comparared to the theoretical normal m.g.f. for various batch sizes. A Shapiro-Wilk test

was also performed on the samples. In addition, to verify that the samples are independent,

the auto-correlation between batches was computed for various batch sizes m and traffic

intensity ratios ρ.

Normality Empirical Validation

To evaluate the normality of the batch means, a Shapiro-Wilk test is performed 100 times

for each configuration at the 0.05 level. A positive outcome occurs when the Shapiro-

Wilk test fails to reject the normality assumption. The proportion of positive outcomes

then yields a normality ratio. A higher ratio gives a stronger confidence that the normality

assumption is true. This fraction is reported in table Table 2.2 for the three different ob-

servations. The relationship between batch size, ρ and the normality of the batch means

is nonlinear. It is difficult to generalize from this hypothesis test alone. Yet, a few con-

clusions can be made from the results of the test. The time spent in queue or age of the

process naturally provides higher confidence in the normality assumption compared to ei-

ther the waiting times or the queue lengths. The batch mean age is an average of average

due to how the times spent in queue are recorded. The large number of samples that are be-
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hind the batch observations for the time spent in queue are making the draws more normal

thanks to the central limit theorem. In agreement with the previous observation, with higher

traffic utilization there are more occupants in the queue leading to a more adequate normal

assumption. On the other hand, since waiting times and queue lengths are not averages, the

NOBMs appear less normal. Furthermore, the relationship between traffic utilization and

normality is reversed for the latter two. For the same batch size, a higher utilization rate

implies less normal samples when looking at queue lengths and waiting times. This could

be attributed in part to the higher correlation at large utilization rates. To confirm those

results, Q-Q plots were created for the waiting times, the queue length and the time spent

in queue. The plots were added to the appendix. By visual inspection, it was found that the

normal assumption became approximately valid for batches greater than 100 when looking

at the age of a process. It takes batches greater than 2,000 to have a visually normal Q-Q

plots for the queue lengths and the waiting-times.

In addition to the q-q plots, the moment generating function (m.g.f.) is used to vali-

date the normality assumption following the derivations of section subsection 2.4.5. After

extracting the waiting times, the log m.g.f. is computed from the samples and compared

against the log m.g.f. of the standard normal in figures Figure 2.1a, Figure 2.1b, Figure 2.2a

and Figure 2.2b.

The figures illustrate the change in the log normal with changes in t as in equation

Equation 2.33. At low values of traffic utilization, the samples are close to normal. Figures

Figure 2.1a and Figure 2.1b have many points right on the parabola t2/2. The samples

get closer to normal with bigger batch sizes and higher traffic utilization rates. Another

observation is that the convergence to normality is slower for larger traffic utilization as

can be seen in figures Figure 2.2a and Figure 2.2b where the m.g.f. are indistinguishable

for batches of size 500 and 2000.
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(a) ρ = 0.1 (b) ρ = 0.25

Figure 2.1: Waiting times Log m.g.f. at ρ = 0.10 and ρ = 0.25

(a) ρ = 0.5 (b) ρ = 0.75

Figure 2.2: Waiting times Log m.g.f. at ρ = 0.5 and ρ = 0.75

Independence Empirical Validation

Instead of running a test for independence, the auto-correlation between batches is com-

puted. The batch means are assumed independent if there is low correlation between the

batches and no evidence that the batches are normal. Let {Yi}i=1,...,n be an arbitrary se-

quence of observations. The auto-correlation of a the discrete NOBMs can be estimated as

follows:

r̂BM,t =
1

(n− t)V ar(Y1,n)

n−t∑
j=1

(Yj,m − E[Y ])(Yj+t,m − E[Y ]) (2.40)
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The expected value of waiting times and queue lengths are well-known. The variance

of the batch sizes, equation Equation 2.24, requires the knowledge of the wait times and

queue length variances as well as their auto-correlation. The lag-1 auto-correlation be-

tween batch mean waiting times is presented above in equation Equation 2.31. The lag-1

auto-correlation between batch mean queue lengths can be obtained by plugging the batch

mean variance Equation 2.42 into equation Equation 2.26 along with the expected queue

length statistic Equation 2.3. The age-of a process does not have a closed-form solution for

the auto-correlation. The simulated times spent in queue were not tested for independence

or correlation. From the table Table 2.2, one can sees that waiting times are much more

correlated than queue lengths especially at high traffic intensities. Bigger batch sizes con-

siderably lower the correlation. Even for a batch of size 1,000, the auto-correlation between

batches were still above 0.1 for a near congested queue (ρ = 0.9). Table Table 2.2 shows

that we can have a high confidence in the i.i.d. assumption by picking a batch size above

200 and a ρ not too close to 1. During the change point detection experiments, the power

of the tests will become clear.
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m ρ Shapiro-Wilk Auto-correlation

Wait-Times Age Queue Length Wait-Times Queue Length

100

0.25 0 0 0 0.0031 0.0

0.50 0 0 0 0.0259 0.0033

0.75 0 0.08 0 0.1561 0.073

0.9 0 0.09 0 0.7194 0.3314

150

0.25 0.01 0.03 0 0.00 0.0

0.50 0 0.03 0 0.0266 0.0011

0.75 0 0.28 0 0.0995 0.0386

0.9 0 0.2 0 0.6251 0.276

200

0.25 0.15 0.29 0.03 0.0059 0.0

0.50 0 0.26 0 0.0105 0.0013

0.75 0 0.42 0 0.0653 0.0227

0.9 0 0.4 0 0.5494 0.2315

500

0.25 0.7 0.77 0.47 0.016 0.0

0.50 0.22 0.78 0.15 0.0055 0.0009

0.75 0 0.78 0 0.0149 0.0043

0.9 0 0.85 0 0.2872 0.0952

1000

0.25 0.88 0.91 0.82 0.0113 0.0002

0.5 0.6 0.81 0.57 0.0 0.0005

0.75 0.1 0.9 0.05 0.040 0.0002

0.9 0 0.95 0 0.1549 0.0318

Table 2.2: Looking at the fraction of non-rejected normality tests for 100 runs
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2.5 NOBMs of Queue Length

2.5.1 Auto-correlation between Queue Lengths

Similarly to waiting times, it is possible to compute the auto-correlation between batch

mean queue lengths. We use the approximation by Morse [41] for the auto-correlation

between queue lengths.

rj = Corr(LQ,1, LQ,1+i) ' λµ+ exp

[
−(µ− λ)2 i

λ

]
(2.41)

The variance of a queue length batch mean can then be defined as:

V ar(LQ,1,m) =
λµ

(λ− µ)2m

[
1 + 2

m−1∑
i=1

(1− i

m
)ri

]
(2.42)

The latter result was used to compute the auto-correlations between batch mean queue

lengths.

2.6 Simulation environment for the Change Point Detection Test

The change point detection is performed on observations made on waiting times, time spent

in queue (also called age of the process) and length of the queue for a M/M/1 system. All of

these statistics can be fully or partially observed in real queues. The process of developing

and testing a change point method for these observations requires the development of a

simulation of a server queue system. In this particular instance, a single server was method.

The simulation also requires a method to generate the desired statistics from the simulation,

a method to bin the observations and lastly a routine to run the change point detection on the

batches. The diagram in figure Figure 2.3 illustrates the design selected for the environment

in which the different change point detection methods are evaluated.

The simulation starts by setting a traffic intensity ρ. With minor loss of generality, the

service rate is taken to be constant µ = 1. The traffic intensity ρ = λ/µ is the arrival
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rate λ. Together the arrival rate and service rate completely define the performance of

the queue. The three direct outputs of the M/M/1 queue are the arrival times A(t), start

of service times S(t) and departure times D(t). From these three time series, the waiting

times (Wq(t)), time spent in queue (A(t)) and queue length (Q(t)) can be derived. The latter

three time series are independently fed to a batching procedure to obtain non-overlapping

batches of size m. The Generalized Likelihood Ratio is then deployed on the i.i.d. normal

batch means to obtain the estimated detection time indicesKW
t ,KQ

t andKA
t for the waiting

times, queue length and time in queue respectively. By comparing these estimates against

the true change time K∗ it is possible to generate the detection test metrics of interest

detailed in section subsection 2.6.3

Figure 2.3: Simulation and Detection Process
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2.6.1 M/M/1 simulation

A DEDS is used to emulate the dynamics of a M/M/1 queue. A DEDS is an event-driven

simulation, where the simulation time moves forwards after each event. Three types of

events exist: an arrival, a service an a departure. An arrival occurs when a customer arrives

at the queue or at the server if the queue is empty. A service occurs when the customer

leaves the queue and reaches the server. A departure represents the end of service and the

immediate departure from the queuing system. During the simulation, the program collects

statistics on throughput, queue length, waiting times and the age of the process upon a new

arrival.

The simulation starts with the queue in a steady state for the chosen utilization factor ρ.

Then each new inter-arrival time is drawn independently from an exponential distribution

with rate λ. Each service time is drawn independently from an exponential distribution

with rate µ. The simulation ends when the desired number of entities has been processed

or when a desired stop time has been reached.

It is possible to simulate more directly the waiting times by directly drawing from a

waiting time distribution or by simulating the ladder point process using Lindley equation

[42]. Although these processes are faster and less data intensive, they are not amenable to

the present change-point detection experiments. They do not offer the granularity to track

all desired statistics or to change the distribution after a change point while keeping the

implicit correlation between observations.

2.6.2 Simulating a change point in a M/M/1 queue

For a given observation, a good detection method can accurately sense a change and not

signal a change-point when none is present no matter the number of observations that have

been processed. In other words, although the observations do not come from a stationary

process, it is desired that the change point detection method exhibits a stationary perfor-

mance. To ensure the method is independent of the run length, the placement of the actual
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change point is taken uniformly at random over the time domain of the simulation. To

account for the possibility of no change point, the probability of having no changes during

the whole detection time interval is taken to be non-zero.

To simulate the change-point, the time domain is discretized at each time unit. Each

time unit is then selected as a candidate changepoint with probability p. There is therefore

a non-negligible probability (1−1/T )T of having no changepoints in a time interval [0, T ].

As T gets larger this probability converges to e−1.

Another way to simulate the change-point is to draw a r.v. u uniformly at random from

the interval (0,1), i.e. u ∼ U(0, 1). If u is larger than e−1, then select a change point time

uniformly at random in the time domain of the simulation, otherwise no change point will

occur for the given run. This assumes that p is sufficiently small and T sufficiently large.

2.6.3 Output Statistics

There are four outcomes for the change point detection test. If a true change-point existed

in the run, there is a false positive if the change is detected before the change-point, a true

positive if it is detected after the change-point and a false negative if no change point is

detected. On the other hand, if the run has no true change point, there can only be a false

positive or a true negative. All of these outcomes are aggregated to obtain the number of

true positives, true negatives, false positives and false negatives for that experiment. These

statistics are summarized below.

• True positive (TP) number: The number of times a triggered change is detected.

• False positive (FP) or false alarm number: The number of time a change is detected

before the actual change point or in the absence of a change point.

• True negative (TN) number: The number of times no change is detected when no

change has been triggered.
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• False negative (FN): The number of times no change point is detected for an entire

run that had a triggered change point.

From these general statistics, it is possible to reproduce the metrics of interest for an hy-

pothesis test such as precision (also called specificity or positive predictive value), recall

(also called sensitivity), true positive rate (TPR), false positive rate (FPR), correct detection

rate (CDR) and false alarm rate (FAR).

TPR =
TP

TP + FN
(2.43)

FPR =
FP

FP + TN
(2.44)

recall =
TP

TP + FP
(2.45)

precision =
TP

TP + FN
(2.46)

CDR =
TP + TN

1
(2.47)

FAR =
FP

FP + TP
(2.48)

ARL1, the expected time to detection after a change-point, is also considered as a metric

of interest. It is computed over all the runs by averaging the detection delays.

2.7 Setting up the single change-point detection for a M/M/1 Queue

We run the simulation for 100,000 time units with a single change point. The change

consists in a relative increment in traffic intensity at a change point generated from the

aforementioned procedure. The set of relative change points is: ∆ = {δρ : δρ = ρ1−ρ0
ρ0
}

is ∆ ∈ {−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1.0, 1.2}. The traffic intensity after the change

ρ1 is related to the traffic intensity before the change ρ0 by the following relation: ρ1 =

(1 + δρ)ρ0. The simulation starts with an arrival rate λ0 and a service rate µ = 1.0. Only

the arrival rate is effectively changed in the present scenario.

The detection algorithm operates on three measurements: the waiting time, the instan-
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taneous time spent in queue (age of the process) and the instantaneous queue length. The

instantaneous queue length Q(t) is recorded by looking at the number of elements in the

queue before each arrival or departure. The waiting time of the queue W (t) is obtained

by looking at the time spent in queue for an entity about to be served. It is the difference

between the start of service time and the time of arrival of the entity in the queuing system.

The age of the entity in the queue or the time spent in queue A(tk)„ is the time an entity i

has spent in queue by time tk. Contrarily to the waiting time, this statistic is instantaneous.

It can be collected at any instant during the sojourn of an entity in the queue. In the present

work, the average age of the process Ā(tk) is collected for all the entities in the queue at a

given tk after an arrival or a departure.

The simple way to compute the age of a process statistic is to average the time spent in

queue of all entities that have arrived at the queuing system and not gone through one of the

servers yet per equation Equation 2.49. An alternative method that is more computationally

efficient is to continuously update the mean age of the entity for each observation, see

equation Equation 2.50. After each time update, there are only three possible changes to

the size of the queue. The queue increases by 1 after each arrival that is not preceded by a

departure if the server is currently busy. The queue decreases by one following a departure.

The size of the queue stays the same otherwise. Let us define the size of the queue at time

t as Q(t). `Q(tk) = Q(tk)−Q(tk−1) ∈ {−1, 0, 1} is the change in queue size.

Ā(tk) =
∑
i∈Q

(ti − t)
|Q|

(2.49)

A(tk) =


[
a(tk−1)Q(tk−1)+(tk−tk−1)`Q(tk)

Q(tk)

]
+

if Q(tk) > 0

0 if Q(tk) = 0

(2.50)

After the waiting times, the times spent in queue and the queue lengths are observed,

they are independently binned into NOBMs before being analyzed for a change point using
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Ross’ implementation of GLRT for Gaussian data [35].

Outcomes of the detection experiment

For each relative deviation in traffic intensity (δρ) and each change of batch size, a new

detection test is run 1,000 times. Each run resulting in one of four outcomes: a true positive,

a true negative, a false positive or a false negative. Then the correct detection rate (CDR),

the detection delay (ARL1), the true positive rate and the false positive rates are evaluated.

We first compare and contrast the results of the change point detection based off time spent

in queue, waiting times and queue lengths. The key take-aways from the experiments are

then presented.

2.7.1 Performance of the test for different performance measures

Across all experiments, we have varied the change point intensity (δρ), the initial state

of the queue (ρ0) and the size of the NOBM. Only a few metrics characterize the quality

of change point detection test: the Correct Detection Rate (CDR), the time to detection

(ARL1), the sensitivity and the specificity of the test. The relation between the different

variables are highly nonlinear. Rather than trying to illustrate all the results by a single plot,

we resort to pairwise comparisons of experiments with different performance measures for

different δρ, ρ and batch size.

Comparison between waiting times and mean age in queue

In a real system, there is a possibility that a job takes a very long time to be served. When-

ever this occurs, the waiting time measure may become unavailable for a long time because

of this particular job. By the time, that entity is served and a waiting time is observed,

the dynamics of a queue may have totally changed. To handle this scenario, it is often

desired to look at more instantaneous measures such as the average age of the process for

the entities that are in the queue.
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The average age of a process is the average time spent in queue by entities which are

about to get served. The performance of the test is characterized by a competition between

the capability of the test to quickly detect a change and the high variability in the quality of

the test for large batches. It takes the least number of observations to reach normality with

the age of a process as compared to the other two performance metrics, see Figure 2.5b.

High correct detection rates can be achieved with low batch sizes when looking at the time

spent in queue. Yet, there is a high variability in the observations as the queue gets longer.

This is observed in Figure A.24. Batches that are too big actually lead to low correct

detection probabilities when the signal is not strong (low δρ).

There must therefore exists an optimum batch size when selecting a change point based

off the age of a process, see figures Figure 2.4b, Figure 2.5b. Looking at the age of the

process, the maximum correct detection rate is obtained for a batch of size 200 for all δρ

except for the case of no change δρ = 0.0. Although waiting times takes more samples to

provide precise detection, they can provide higher CDR as compared to using the age in

queue as a measure of performance when ρ = 0.5. When the arrival rate is high, there are

more observations and the age in queue is quite reliable as seen in Figure 2.5b for any size

of the change in traffic intensity.

(a) Waiting Times (b) Age of Process

Figure 2.4: CDR vs. Batch Size (ρ = 0.5)
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(a) Waiting Times (b) Age of Process

Figure 2.5: CDR vs. Batch Size (ρ = 0.75)

Change point detection based on the mean age in a queue provides both the shorter

detection delay and the lower rate of false positive for the same initial conditions. Hence,

it is expected that the detection delay is higher when waiting times are observed instead of

average time spent in the queue. Small batch sizes tend to provide higher correct detection

rates when looking at the age in queue. Batches of sizes greater than 500 tend to have both

a higher detection rates and lower CDR for all δρ below 1. For a δρ of 1 or more, the age

of a process tend to provide a higher CDR, while still paying the price of a longer detection

delays.

Although the correct detection rate tends to be higher when looking at the age of a

process, the detection delay is similar or higher for waiting time observations especially

when considering large batch sizes.

When looking at CDR against detection delay, one can see that detecting small changes

can get expensive not only in terms of delays but also in terms of error rate (figures Fig-

ure 2.6a and Figure 2.6b). All of the plots show that there is a batch size that maximizes

the CDR. The plots also illustrate the trade-offs that would need to be made to reduce the

detection delay.
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(a) Waiting Times (b) Age of Process

Figure 2.6: CDR vs. ARL1 (ρ = 0.5, δρ = 0.25)

(a) Waiting Times (b) Age of Process

Figure 2.7: CDR vs. ARL1 (ρ = 0.5, δρ = 0.5)

(a) Waiting Times (b) Age of Process

Figure 2.8: CDR vs. ARL1 (ρ = 0.5, δρ = 1.0)
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Receiver Operating Characteristic (ROC) for Waiting Times and Time Spent in Queue

The Receiver Operating Characteristic (ROC) curve is a typical view of the trade-off be-

tween true positive and false positive rates for classification test. It illustrates how much

error must be accepted in order to achieve a high rate of correct detection. As a test is tuned

to deliver more correct detections (moving up on the Receiver Operating Characteristic

(ROC) chart), it starts to also trigger more false detection (moving to the right on the ROC

chart). A test that triggers every changes would be situated on the top right corner, rejecting

and accepting every change. According to the ROC curve, the age of the process always

performs better than the other two measures providing higher true positive rates with lower

false positive rates for every ρ, δρ and batch size.

(a) Waiting Time (b) Age of process

Figure 2.9: ROC curves for ρ0 = 0.5
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(a) Waiting Time (b) Age of process

Figure 2.10: ROC curves for ρ0 = 0.75

Comparison between Waiting Times and Queue Length

As previously seen, it takes larger batch sizes to achieve normality when a change point

is triggered based on a queue length as opposed to a wait time or time spent in queue

performance measure. It can be observed on figures Figure 2.11 and Figure 2.12, that it

takes larger batch sizes to accurately detect a change in the queue dynamics. On the other

hand, observing the queue length provides a clear benefit in detection delays. Although the

test may not provides the same amount of accuracy, it takes less time to get an answer. This

suggests the possibility to combine the different performance measures to create a faster

and accurate test. This line of thinking will be explored in the next section.

(a) Waiting Times (b) Queue Length

Figure 2.11: CDR vs. Batch Size (ρ = 0.5)

76



(a) Waiting Times (b) Queue Length

Figure 2.12: CDR vs. Batch Size (ρ = 0.75)

(a) Waiting Times (b) Queue Length

Figure 2.13: CDR vs. ARL1 (ρ = 0.5, δρ = 0.25)

(a) Waiting Times (b) Queue Length

Figure 2.14: CDR vs. ARL1 (ρ = 0.5, δρ = 0.5)
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(a) Waiting Times (b) Queue Length

Figure 2.15: CDR vs. ARL1 (ρ = 0.5, δρ = 1.0)

Based on ROC, the detections made using the queue length are strictly dominated by

the detections from waiting times. Meaning that detections based off queue length achieve

both a higher false positive and a lower true positive rates for the same configuration.

(a) Waiting Time (b) Queue Length

Figure 2.16: ROC curves for ρ0 = 0.5

78



(a) Waiting Time (b) Queue Length

Figure 2.17: ROC curves for ρ0 = 0.75

2.8 Picking a batch size

The normality of samples is highly affected by the batch size. The good performance of

the test therefore, requires the right selection of batch size for a specific intensity of change

point depending on the performance measure.

2.8.1 Empirical Results for Detection on One Measure

The performance of the detection is quantified by looking at the probabilities of correct

or incorrect detection given the absence or presence of a change-point. This approach ac-

counts for but is not limited to Type I and Type II errors. Let X ∈ {A,Q,W} be the

outcome of a test for an age measure (A), queue length measure (Q) and waiting time mea-

sure (W ). X+ denotes the detection of a test after the change-point and X− denotes the

absence of a detection. Then each detection outcome of a test defines an hypothesis out-

come depending on whether there was a change-point or not, see equations Equation 2.52.

This can easily be generalized to more than one test as will be showed in the section on

combining multiple measures.
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X + |Changepoint ⇐⇒ TP

X − |Changepoint ⇐⇒ FN

X + |No Changepoint ⇐⇒ FP

X − |No Changepoint ⇐⇒ TN (2.51)

(2.52)

Figure Figure 2.18 illustrates the decision logic to assign a change point.

Figure 2.18: Hypothesis Test Outcome for a Change-point Detection Test

Armed with these definitions, it is possible to compare the performance of the change-

point detection for different types of measure.
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2.8.2 Outcomes of the Detection Test

Figure 2.19: Simulation Output Statistics

The results from the simulated experiments can inform the selection of a batch size prior

during live testing. The choice of batch size is a trade-off of three decisions: how low is the

desired false alarm rate (FAR), how low can the false negative rate be made and how high

a detection delay can be tolerated. All of these secondary performance measures can be

simply inferred from the test outcomes as illustrated in figure Figure 2.19. Minimizing on

only one variable can cause some undesired outcomes such as having a very quick test with

a high error rate. For this reason, it is desirable to optimize on at least two objectives or to

create a rejection region based on one metric and optimizes on another within the accep-

tance rejection such as for a Neyman-Pearson detection rule [4]. For the single detection

tests, three different heuristics have been developed to tune the test.

• Picking the batch size with the lowest FAR (Metric 1)

• Fixing FAR at or below 0.05 and picking the batch size with the lowest false negative

rate (Metric 2)

• Fixing FAR at or below 0.05 and picking the batch size with the shortest detection

delay (Metric 3)
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After testing for batch sizes ranging from 100 to 2,000, the performance of all the

detection tests were evaluated with respect to the three performance metrics above to define

the "best" batch size. For each combination of traffic intensity (ρ) and change in traffic

intensity (δρ), a batch size was selected following one of the heuristics. The best batches

were then color-coded in a heatmap on figures Figure 2.20, Figure 2.21 and Figure 2.22. A

square with no value was left blank. The detection delays were computed for batch sizes

no greater than 1,000. The detection based off queue lengths had a FAR above the desired

threshold value of 0.05. For these instances, no change point could be detected. The test is

incomplete which is represented by a white square in figures Figure 2.21c and Figure 2.22c.

Hence the heatmap for scenario 3 shows as incomplete for some combinations of change

intensity (δρ) and batch size.

For scenario 2, looking at time spent in queue provides the smallest batch size. Whereas

for scenario 1 and 3, waiting times provide the best performance. In all cases, the queue

length performance measure requires the largest batch size to ensure the desired perfor-

mance.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 2.20: Heatmaps for Time Spent in Queue
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 2.21: Heatmaps for Queue Length Observations

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 2.22: Heatmaps for Waiting Times

After analyzing the heatmaps, a few conclusions can be drawn. The detections based

on age or waiting time in queue are the ones requiring the smallest batch size for all three

metrics. Hence those detections have the shortest delays. Any detection based off queue

length would require at least 1,000 elements to provide an acceptable test according to our

FAR criterion. Higher batch sizes are needed when starting at bigger traffic intensities and

for lower changes in traffic intensities. On a few rare instances, the observations based

on waiting times could be competitive with the ones based off instantaneous time spent in

queue. This is notably the case for ρ = 0.25 and δρ = 1.2.

2.9 Key take-aways from the simulated experiments

From the comparison of the detection and the properties of the batches, we can draw some

conclusions.
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• Smaller changes in traffic intensities require longer detection delays.

• Larger batch sizes cause larger detection delays.

• Stronger signals (δρ) result in larger correct detection rates

• Larger batch sizes also in general produce higher CDR and true positive rates.

• There is not significant gain in accuracy of increasing the batch, past a certain batch

size.

• Observations based on queue length provides the quickest detection for the same

batch size and signal conditions.

• Observations based on the time spent in queue provides the most accurate detec-

tion for smaller batches, batches of size less than 500. This is especially true when

considering the false alarm rates, false negatives and detection delays.

• It can be useful to combine performance measures. This is especially true if the

observations have different frequencies.

2.10 Conclusion

In this chapter, we have reviewed a general framework to detect changes in traffic inten-

sities for a M/M/1 queue by performing a generalized likelihood ratio test on the non-

overlapping batch mean waiting times, times spent in queue and queue length observations.

It was showed that the non-overlapping batch mean procedure creates reasonable normal

i.i.d samples with low auto-correlation and moderate to high p-values. Furthermore the test

was able to provide high correct detection rates with the proper batch size selection. This

high correct detection rates can be to the detriment to the detection time. The higher correct

detection rates obtained for the times spent in queue come with longer detection delays. It

suggests the possibility to optimize the selection of batch size to optimize detection delay
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while controlling for correct detection. The results for different measure types and batch

sizes show that different measures had different advantages, suggesting the possibility to

combine the measures and run them in parallel online to achieve a high confidence in the

change point for unknown traffic utilization and times at which the change points occur.

85



CHAPTER 3

COMBINING MULTIPLE PERFORMANCE MEASURES FOR CHANGE-POINT

DETECTION

It is often possible to monitor more than one performance measure at a time. In the case

where each measure can be used to detect a change, how do we adjust the detection results

to decide when to stop collecting observations for the test? In the single observation cases,

detection tests are designed with Type I error probability (e.g.: P (NoChange|A+)) and

Type II error probability (e.g.: P (Change|A−)) in mind. What do those results and condi-

tions look like for multiple observations? This problem of multiple observations hypothesis

testing is treated in two distinct ways. First, some general theoretical bounds on the union

of the events are derived. Although, they are expected to be conservative they can be used

to complement our understanding of the detection policy and to validate some other results

with join probabilities. A second approach looks at the joint conditional probability of a

correct detection and the likelihood of the observations given a success in order to derive

importance metrics such as CDRs and fars from empirical experiments. A regression model

generalizes the results to unseen combinations of traffic intensities. A comparison of the

performance of the detection test from a single observation against the performance of a

policy that combines all the observations concludes the chapter.

3.1 Union Bounds

Union bounds such as Boole’s inequality Equation 3.1 and Bonferroni inequalities are exact

results that provide upper and lower bounds to the union and intersection of events provided
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that the events are independent.

Pr(
n⋃
i=1

Ai) ≤
n∑
i=1

Pr(Ai) (3.1)

If we look at the complement, we obtain:

Pr(
n⋂
i=1

Ai) ≥ 1−
N∑
i=1

Pr(Āi) (3.2)

Using the Inclusion-Exclusion principle, it is still possible to obtain exact bounds for

unions of events. The Inclusion-Exclusion principle is derived from a well known property

of sets

card(A1 ∪ A2 ∪ . . . ∪ An) =
∑

1≤i≤n

card(Ai)−
∑

1≤i<j≤n

card(Ai ∩ Aj)+

. . .+ (−1)n−1card(A1 ∩ A2 ∩ . . . ∩ An)

(3.3)

Pr(A1∪A2∪. . .∪An) =
∑

1≤i≤n

Pr(Ai)−
n∑
j=1

∑
i<j

Pr(Ai∩Aj)+. . .+(−1)n−1Pr(A1∩A2∩. . .∩An)

(3.4)

Let’s define some identities that will be used to present other Bonferroni inequalities:

S1 ≡
n∑
i=1

Pr(Ai)

S2 ≡
∑
i<j

Pr(Ai ∩ Aj)

S3 ≡
∑
i<j<k

Pr(Ai ∩ Aj ∩ Ak)

...

Sl ≡
∑

i1<i2<...il

Pr(Ai1 ∩ Ai2 ∩ . . . ∩ Ail)
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Then we have the following two Bonferroni inequalities

Pr(
n⋃
i=1

Ai) ≤
l∑

j=1

(−1)j−1Sj if l is odd and l ≤ n (3.5)

Pr(
n⋃
i=1

Ai) ≥
l∑

j=1

(−1)j−1Sj if l is even and l ≤ n (3.6)

The previous two inequalities are conservative. A tighter bound is presented in equation

Equation 3.7. It was used to validate all the joint probabilities obtained in the next section.

2

3
S1 −

1

3
S2 ≤ Pr(A1 ∪ A2 ∪ A3) ≤ S1 −

2

3
S2 (3.7)

S1 ≡
n∑
i=1

Pr(Ai) (3.8)

S2 ≡
∑
i<j

Pr(Ai ∩ Aj) (3.9)

3.2 Empirical Evaluation of Joint Distributions

In an online test, waiting times, queue length and time spent in queue observations may

all be available but not necessarily simultaneously. This is because queue length and time

information may not come from the same device. When more than one of these measures

is available, it is possible to combine the observations to increase the power of the test for

the same significance level. Combining such tests require the knowledge of the power of

individual tests, but also of their correlation. As can be seen in figure Figure 2.4, the best

batch size may not be the same for different test type. In this work, multiple computer

experiments were performed to obtain the joint conditional probability of a change. These

results were then validated against the union bounds in Equation 3.7.
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3.2.1 The value of information

Each performance measure comes with different costs and associated delays. It might be

more difficult to compute precise waiting times or time spent in a queue rather than cycle

time or time spent in the system because of the added geographical precision required to

discriminate between queue and servers. Furthermore, wrong decisions also have a cost.

This is the case when a change in distribution informs the decision to open or close a server

or change the staff level.

3.2.2 Setting for the multiple change-point detection

To develop a combined detection test for multiple measures, we assume that each obser-

vation comes sequentially. With each new observation, new batches are formed. For the

new batches, a test for the change point is made controlling for the Type II error. The ex-

periment is stopped as soon as a decision can be made with enough confidence. This could

mean stopping the tests after a change has been identified at the right significance level.

The questions then become:

• Which test or combination of tests to use to minimize detection delay?

• What combination of tests to use to minimize cost while satisfying some detection

delay constraints?

3.2.3 General notation for joint probabilities

Just as in the single measure test, we look at the hypothesis test outcome as conditional

probabilities Equation 2.52.

The overall approach is to fix the significance level for the combined test and then

backtrack the significance levels and the required batch size for each single test.

To obtain the joint significance level, it suffices to generate to generate the joint error

probabilities at each batch size.
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Instead of computing all of true positives, false positives, false negatives and true neg-

atives outcomes which would results in 43 = 64 combinations, we compute the equivalent

probability of a positive or negative result for each test given that a change-point was or

was not triggered during a measurement event. Let A,Q,W be the outcomes of correct

detection or no detection for tests based of the age of a process, the queue length and the

waiting times respectively. The outcomes of the tests can be written as Equation 3.11.

Pr(A±, Q±,W±|Changepoint) (3.10)

Pr(A±+, Q±,W±|NoChangepoint) (3.11)

For a given test Ti, the mapping between this definition and the hypothesis test outcome

joint probability is as follows:

This redefinition already accounts for impossible combination such as the simultaneous

outcome of a true negative and a false negative or a true negative and a true positive.

Once these probabilities are obtained they can be used to obtain bounds on the signifi-

cance levels for any combination of tests.

Pr(Changepoint|A+, Q+,W+) =
#(A+, Q+,W+,with a changepoint)

∆
(3.12)

=
#(A+, Q+,W+,with a changepoint)

# of changes
(3.13)

Where

∆ = #(A+, Q+,W+, with a changepoint )

+#(A+, Q+,W+, with no changepoint )Pr(A+, Q+,W+|Changepoint)
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3.2.4 Joint Detection Simulation Results

Figures Figure 3.1 and Figure 3.2 illustrate the two possible conditional probabilities that

can be extracted from the simulations as defined in equations Equation 3.12 and Equa-

tion 3.13.

The conditional probability of a specific combination of tests outcomes given a change

Equation 3.13 marks how likely it is to observe a certain outcome given a change. The

three-way joint conditional probabilities are easy to manipulate to obtain one-way or two-

way probabilities conditioned on the presence or absence of a change. These probabilities

relate directly to the true positives, false positives, false negatives and true negatives by

equations Equation 2.52. Therefore, they can be used during the analysis of new results

but also to fine tune a test to a desired precision level as was done in the single measure

case. Figure Figure 3.1 represents the ideal situations of having each test detects an existing

change. Each number inside the Venn diagram denotes the probability that can be attributed

to that specific outcome. For example, there is a probability of 0.0984 that a test based off

the time spent in queue returns positive but the tests based off the waiting times and the

queue lengths are both negative. Furthermore, if there is a change, there is a probability of

0.823 that all three tests will detect the change.

The conditional probability of change given an outcome, defined as Equation 3.12,

gives the confidence we have in a certain outcome. It directly expresses the probability of

seeing a change given an outcome. It can be used during a live test to present the confidence

in the tests outcome to the user(s).
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Figure 3.1: Example of Venn diagram of probabilities of joint hypothesis outcome condi-
tioned on change

Figure 3.2: Example of Venn diagram of probabilities of change conditioned on hypothesis
outcome combination
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RMSE
Cross-validation 0.018

Train Set 0.010
Test Set 0.070

3.2.5 Generalizing the results

We used XGBoost to generalize the results on the the conditional probability of a change

given positive or negative detections for our three measures Equation 3.12. For all com-

binations of batch sizes, traffic intensities and relative changes in traffic intensities, there

were 2018 data points to learn from for the different probabilities. The hypothesis was one-

hot encoded to form eight new features The training-validation and the test sets were split

in a 80-20 ratio. To ensure good generalization, a 5-fold cross-validation was performed

while training the model to minimize the root mean square error (RMSE). The results of

the training are summarized in table Table ??.

3.2.6 Naive policy for multiple performance measures

Designing the right policy to detect a change requires combining an optimization over

detection delay, type I and type II error. With the statistics obtained in the previous sec-

tion and the regression presented above, it is possible to pick the most appropriate de-

tection given an array of detection outcomes for different measures and batch sizes. To

show what such policy can offer, a naive policy is proposed. For each set of observations,

the policy chosen picks the earliest detection point with a change-point likelihood (e.g.

Pr(Success|A+, Q−,W−)) greater than a given threshold. The threshold is taken to be

0.95 in the experiment. This is a naive policy has it doesn’t account for type I and type II

error directly.
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3.2.7 Batch detection test design

To evaluate the performance of the detection framework, an experiment was performed

that varies simulation setting parameters such as batch size, traffic intensities and relative

change in traffic intensities. Each combination of parameters was ran 100 times to obtain

the precision, sensitivity, correct detection rate and average detection delays for the test.

Each simulation run was started from t = 0s and ended at t = 10, 000s. The change-point

is selected at random according to the procedure described in section subsection 2.6.2 with

an added difference that one of the relative change in traffic intensities was set to zero to

obtain more true and false negative outcomes.

The parameters of the tests are the following:

• Batch sizes: {50, 100, 200, 300, 500, 1000, 1500, 2000}

• Traffic intensities: ρ ∈ {0.25, 0.5, 0.75}

• Relative changes in traffic intensities: δρ ∈ {−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1.0, 1.2}

3.2.8 Results from the detection test

Most performance curves for hypothesis testing are meant binary classification problems

and do not account for the complexity of dealing with a time series for a change point

detection. There is no curve that accounts for the detection delay. It is also not possible

to distinguish between a false detection due to the absence of change or to the fact that the

change was attributed to a point that appeared before the actual change when looking at

batch detection. The CDR vs far plot Figure 3.3 shows how accurate the test is even as

it becomes easier to throw a false detection. As can be seen in figure Figure 3.3, even a

simple policy can dominate the results obtained by a single measure test over many tests.

The price for the added accuracy is a longer average detection delay as reported in tables

Table A.1, Table A.2, Table A.3 and Table A.4 in the appendix.
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Figure 3.3: CDR vs. far

3.3 Conclusion

The problem when considering multiple performance measure is mainly to combine the

detections obtained from multiple observations to create a stronger test, a test with greater

power, significance level and lower detection delay. When the performance of the test is

known for the individual performance measure, the problem reduces to finding joint con-

ditional probabilities for the success of the detection and using them to design an optimal

online detection test. Computing these probabilities is intractable and can only be approxi-

mated via techniques such as Expectation Maximization. Two approaches are presented to

get closer to an optimal online detection test.

The first approach revisits some well known Bonferroni bounds and sharpen some of the

results for the union of probabilities. These results provide a basis to bound the significance

and power of different tests. In the second approach, the simulation is used to track multiple

joint conditional probabilities of success. A boosted random forest model is then trained

on those results to provide a generalization to unseen combinations of batch size, traffic

intensities and relative changes in traffic intensities. A naive policy is then introduced and

showed to outperform the individual measure tests.
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The policy presented in this section is naive. It only considers the empirical results

concerning the conditional probability of a success. To obtain robust results, it would be re-

quired to also consider probability of the two types of errors and perform a multi-objective

optimization on Type I error, Type II error and detection delay to optimize the detection

test. If the end goal is to develop a realistic online detection algorithm, the conditional

probabilities of a correct or incorrect detections should be bounded or obtained even when

combining performance measures with different batch sizes. This is because queue length,

waiting times and time spent in queue (age) observations rely on different sensors and dif-

ferent computation methods. It is therefore unreasonable to assume that the observations

should be available at the same frequencies and with batches of the same size or reliability.

96



CHAPTER 4

CONCLUSION

The thesis has treated the problem of gaining valuable information from multiple possibly

incomplete observations. The first part of the thesis investigated the use of passenger cel-

lular data to model passenger traffic inside SYD between gates and immigration. A frame-

work to refine the service distribution at immigration within the simulation was presented.

The in-loop optimization utilizes incomplete waiting times observations together with the

throughput information at the servers to make the updates. The second part of the thesis

narrowed the focus on the quick estimation of a change point in a single Markovian queue

from a combination of wait times, queue length and time spent in queue observations. The

study shows that the information gleaned from the three different observations had different

performance characteristics and could be combined to provide a stronger test. The research

opens many opportunities. The use of in-the-loop queuing parameters simulations and

change-point estimations can lead to highly accurate simulations of queueing simulations

that accounts for inherent non-stationarities in the dynamics of queuing systems and alert

the system manager or any large congestion in time for the user to react. Further research

can be done in combining the in-loop estimation of service rates with adaptive dynamic

control or reinforcement learning to mitigate the effects of congestion in an airport or any

other high traffic areas. The work on the change-point detections could easily be extended

to make the batch detection an online batch detections where the observations are unveiled

with time. To make the test framework more realistic, a method to estimate the arrival rate

and service rate and hence the traffic intensity would be needed. On the theoretical side,

the work could be augmented by deriving strong bonds on the Type I and Type II error con-

ditional probabilities. These joint probabilities could then be used to optimize a detection

test on multiple observations taken at different times. It would be a multiple observation
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change point detection test with batches of different sizes in our framework.
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APPENDIX A

CHANGE-POINT DETECTION RESULTS

A.1 Appendix A: Q-Q plots

Normality results

A.1.1 Age in Queue

Figure A.1: Age of Process Batch of Size 100 (ρ0 = .75)
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Figure A.2: Age of Process Batch of Size 200 (ρ0 = .75)

Figure A.3: Age of Process Batch of Size 500 (ρ0 = .75)
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Figure A.4: Age of Process Batch of Size 1000 (ρ0 = .75)

Figure A.5: Age of Process Batch of Size 2000 (ρ0 = .75)
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A.1.2 Waiting-Times

Figure A.6: Wait Times Batch of Size 100 (ρ0 = .75)

Figure A.7: Wait Times Batch of Size 200 (ρ0 = .75)

103



Figure A.8: Wait Times Batch of Size 500 (ρ0 = .75)

Figure A.9: Wait Times Batch of Size 1000 (ρ0 = .75)
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Figure A.10: Wait Times Batch of Size 2000 (ρ0 = .75)

Figure A.11: Wait Times Batch of Size 4000 (ρ0 = .75)
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Figure A.12: Wait Times Batch of Size 6000 (ρ0 = .75)

A.1.3 Queue Length

Figure A.13: Queue Length for a Batch of Size 100 (ρ0 = .75)
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Figure A.14: Queue Length for a Batch of Size 200 (ρ0 = .75)

Figure A.15: Queue Length for a Batch of Size 500 (ρ0 = .75)
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Figure A.16: Queue Length for a Batch of Size 1000 (ρ0 = .75)

Figure A.17: Queue Length for a Batch of Size 1000 (ρ0 = −.75)

A.2 Appendix B: m.g.f. waiting time derivation

E[et
∑m

i=1Wi ] (A.1)

E[etW1 ] = 1− ρ+ ρ

(
γ

γ − t

)
for t < γγ = µ− λ = µ(1− ρ) = λ(1− ρ)/ρ
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Using the Lindley recursion

Wj+1 = (Wj + Vj − Tj)+, j = 1, 2, . . . (A.2)

where Vj ∼ Exp(µ) and Tj ∼ Exp(λ) for j = 1, 2, . . ., are i.i.d.,the conditional m.g.f. of

Wj+1 is obtained as:

A.3 Appendix C: Change-point Detection (CPD) results

A few observations are in order. The detection delay gets smaller with longer batch sizes

as can be seen in figures Figure A.19, Figure A.20 and Figure A.21.

For different changes in traffic intensity, we plotted the correct detection rate against the

mean time to detection ARL1. An increase of δρ represents an increase in the strength of

the signal. As the signal gets stronger, the CDR increases, figures Figure A.19, Figure A.20

and Figure A.21. Small signals; however, can become hard to detect for larger batch sizes,

causing a drop in the true positive rates, see figures Figure A.23a and Figure A.23b.

Larger batch sizes produce better performance both in terms of true positive rates. The

growth has a limit; however, as past a certain batch size, no significant gain in accuracy

can be gained, as can be observed when comparing the performance changes between a

batch of size 500 and 1,000 on figures Figure A.18, Figure A.23a and Figure A.23b. This

suggests the possibility to find the "best" batch size that achieves both a high precision and

high recall for a given δρ.

For larger batch size,ARL1 monotically increases, see figures Figure A.19, Figure A.20

and Figure A.21. The main reason for that delay is due to the warm-up delay for GLRT. At

least 20 samples need to be collected to detect a change. At a batch size of 500, no change

could be detected till at least T = 10, 000.

Except for δρ = 1.2, there is a slight drop in CDR for all the tests between a batch of

size 500 and a batch of size 1,000. The
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Figure A.18: CDR vs. Batch Size based on Waiting Times (ρ = 0.5)

(a) Delta Rho -0.50 (b) δρ = −0.25

Figure A.19: Correct Detection vs. Detection Delay (ρ = 0.5) based-off Wq

(a) δρ = 0.25 (b) Delta Rho 0.50

Figure A.20: Correct Detection vs. Detection Delay (ρ = 0.5) based-off Wq
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(a) Delta Rho 1.0 (b) Delta Rho 1.2

Figure A.21: Correct Detection vs. Detection Delay (ρ = 0.5) based-off Wq

(a) Batch of size 100 (b) Batch of size 200

Figure A.22: ROC

(a) Batch of size 500 (b) Batch of size 1000

Figure A.23: ROC
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A.3.1 In queue Waiting Times Detection Results

Figure A.24: CDR vs. Batch Size Based on Age of Process (ρ = 0.5)

(a) δρ = −0.50 (b) δρ = −0.25

Figure A.25: Correct Detection vs. Detection Delay for age of a process (-0.5, -0.25)
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(a) δρ = 2.5 (b) δρ = 0.75

Figure A.26: Correct Detection vs. Detection Delay for age of a process (0.25, 0.75)

(a) δρ = 1.0 (b) δρ = 1.2

Figure A.27: Correct Detection vs. Detection Delay for age of a process (1.0, 1.2)

(a) Batch of size 100 (b) Batch of size 200

Figure A.28: ROC for the age of process
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(a) Batch of size 500 (b) Batch of size 1000

Figure A.29: ROC for the age of process

A.3.2 Queue Length Detection Results

Figure A.30: CDR vs. Batch Size Based on the Queue Length (ρ = 0.5)
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(a) δρ = −0.50 (b) δρ = −0.25

Figure A.31: Correct Detection vs. Detection Delay for the Queue Length (ρ = 0.5)

(a) δρ = 0.25 (b) δρ = 0.50

Figure A.32: Correct Detection vs. Detection Delay for the Queue Length (ρ = 0.75)

(a) δρ = 1.0 (b) δρ = 1.2

Figure A.33: Correct Detection vs. Detection Delay for the Queue Length (ρ = 0.5)
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(a) Batch of size 100 (b) Batch of size 200

Figure A.34: ROC for the Queue Length (ρ = 0.75)

(a) Batch of size 500 (b) Batch of size 1000

Figure A.35: ROC for the Queue Length (ρ = 0.75)

A.4 Parallel Detection Tests
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Batch Size rho delta_rho TP TN FN FP CDR Missed Detection Prob Precision Recall tp_rate fp_rate ARL_1
50 0.25 -0.5 0 20 0 0 1 0 0 0 0 0
100 0.25 -0.25 0 20 0 0 1 0 0 0 0 0
50 0.25 0 0 20 0 0 1 0 0 0 0 0
50 0.25 0.25 3 7 2 8 0.5 0.727273 0.272727 0.6 0.6 0.533333 2378.197
50 0.25 0.5 9 6 0 5 0.75 0.357143 0.642857 1 1 0.454545 2577.784
50 0.25 0.75 12 4 2 2 0.8 0.142857 0.857143 0.857143 0.857143 0.333333 2826.927
50 0.25 1 11 7 1 1 0.9 0.083333 0.916667 0.916667 0.916667 0.125 3290.804
100 0.25 1.2 13 5 2 0 0.9 0 1 0.866667 0.866667 0 1852.518
50 0.5 -0.5 0 20 0 0 1 0 0 0 0 0
200 0.5 -0.25 0 20 0 0 1 0 0 0 0 0
50 0.5 0 0 20 0 0 1 0 0 0 0 0
50 0.5 0.25 10 7 1 2 0.85 0.166667 0.833333 0.909091 0.909091 0.222222 1827.4
50 0.5 0.5 15 4 0 1 0.95 0.0625 0.9375 1 1 0.2 2401.817
100 0.5 0.75 12 8 0 0 1 0 1 1 1 0 2857.707
500 0.5 1 11 9 0 0 1 0 1 1 1 0 4009
500 0.5 1.2 13 7 0 0 1 0 1 1 1 0 3664.483
100 0.75 -0.5 0 20 0 0 1 0 0 0 0 0
50 0.75 -0.25 0 20 0 0 1 0 0 0 0 0
100 0.75 0 0 20 0 0 1 0 0 0 0 0
300 0.75 0.25 13 6 0 1 0.95 0.071429 0.928571 1 1 0.142857 2708.859
50 0.75 0.5 11 9 0 0 1 0 1 1 1 0 4301.92
1000 0.75 0.75 15 5 0 0 1 0 1 1 1 0 4944.002
50 0.75 1 14 6 0 0 1 0 1 1 1 0 6128.572
50 0.75 1.2 16 4 0 0 1 0 1 1 1 0 6389.88

Table A.1: Results for a test on all 3 observations

117



m rho delta_rho Correct_Detection TP TN FP FN Precision Recall tp_rate fp_rate ARL_1
0.25 -0.5 1 0 20 0 0 0 0 0 0

50 0.25 -0.25 1 0 20 0 0 0 0 0 0
0.25 0 1 0 20 0 0 0 0 0 0

50 0.25 0.25 0.3 0 6 0 14 0 0 0 0
50 0.25 0.5 0.5 1 9 0 10 1 0.090909 0.090909 0 1287.459
50 0.25 0.75 0.55 4 7 0 9 1 0.307692 0.307692 0 5188.317
50 0.25 1 0.7 8 6 0 6 1 0.571429 0.571429 0 3475.093
200 0.25 1.2 0.85 10 7 0 3 1 0.769231 0.769231 0 2778.164
50 0.5 -0.5 1 0 20 0 0 0 0 0 0
50 0.5 -0.25 1 0 20 0 0 0 0 0 0

0.5 0 1 0 20 0 0 0 0 0 0
50 0.5 0.25 0.45 3 6 0 11 1 0.214286 0.214286 0 2988.766
300 0.5 0.5 0.7 6 8 0 6 1 0.5 0.5 0 2012.648
200 0.5 0.75 0.95 11 8 0 1 1 0.916667 0.916667 0 2507.866
500 0.5 1 0.95 11 8 0 1 1 0.916667 0.916667 0 2972.175
500 0.5 1.2 1 12 8 0 0 1 1 1 0 3918.172

0.75 -0.5 1 0 20 0 0 0 0 0 0
0.75 -0.25 1 0 20 0 0 0 0 0 0

50 0.75 0 1 0 20 0 0 0 0 0 0
100 0.75 0.25 1 14 6 0 0 1 1 1 0 2376.718
500 0.75 0.5 1 13 7 0 0 1 1 1 0 3661.441
1000 0.75 0.75 0.95 13 6 0 1 1 0.928571 0.928571 0 5583.784
500 0.75 1 1 12 8 0 0 1 1 1 0 6814.269
100 0.75 1.2 1 11 9 0 0 1 1 1 0 3970.344

Table A.2: Results for a test based off age observations
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Batch Size rho delta_rho TP TN FP FN CDR Precision Recall fp_rate tp_rate ARL_1
50 0.25 -0.5 0 20 0 0 1 0 0 0 0
50 0.25 -0.25 0 20 0 0 1 0 0 0 0
50 0.25 0 0 20 0 0 1 0 0 0 0
50 0.25 0.25 3 8 0 9 0.55 1 0.25 0 0.25 3226.013
50 0.25 0.5 2 6 0 12 0.4 1 0.142857 0 0.142857 1540.747
100 0.25 0.75 9 9 0 2 0.9 1 0.818182 0 0.818182 2565.601
50 0.25 1 15 4 0 1 0.95 1 0.9375 0 0.9375 1669.389
50 0.25 1.2 15 4 0 1 0.95 1 0.9375 0 0.9375 1970.81
50 0.5 -0.5 0 20 0 0 1 0 0 0 0
50 0.5 -0.25 0 20 0 0 1 0 0 0 0
100 0.5 0 0 20 0 0 1 0 0 0 0
50 0.5 0.25 9 10 0 1 0.95 1 0.9 0 0.9 3444.496
50 0.5 0.5 14 5 1 0 0.95 0.933333 1 0.166667 1 3630.902
300 0.5 0.75 13 7 0 0 1 1 1 0 1 2309.338
200 0.5 1 14 6 0 0 1 1 1 0 1 3312.504
50 0.5 1.2 13 7 0 0 1 1 1 0 1 3401.458
50 0.75 -0.5 0 20 0 0 1 0 0 0 0
100 0.75 -0.25 0 20 0 0 1 0 0 0 0
100 0.75 0 0 20 0 0 1 0 0 0 0
50 0.75 0.25 13 7 0 0 1 1 1 0 1 2787.172
300 0.75 0.5 17 3 0 0 1 1 1 0 1 3653.426
500 0.75 0.75 14 6 0 0 1 1 1 0 1 4038.855
500 0.75 1 11 9 0 0 1 1 1 0 1 3141.415
300 0.75 1.2 13 7 0 0 1 1 1 0 1 2816.774

Table A.3: Results for a test based off queue observations
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Batch Size rho delta_rho TP TN FP FN CDR Precision Recall fp_rate tp_rate ARL_1
50 0.25 -0.5 0 20 0 0 1 0 0 0 0
100 0.25 -0.25 0 20 0 0 1 0 0 0 0
50 0.25 0 0 20 0 0 1 0 0 0 0
50 0.25 0.25 9 5 3 3 0.7 0.75 0.75 0.375 0.75 3193.508
50 0.25 0.5 9 8 2 1 0.85 0.818182 0.9 0.2 0.9 2813.45
50 0.25 0.75 8 9 2 1 0.85 0.8 0.888889 0.181818 0.888889 1349.277
100 0.25 1 19 1 0 0 1 1 1 0 1 2221.911
100 0.25 1.2 10 9 1 0 0.95 0.909091 1 0.1 1 1867.452
50 0.5 -0.5 0 20 0 0 1 0 0 0 0
100 0.5 -0.25 0 20 0 0 1 0 0 0 0
50 0.5 0 0 20 0 0 1 0 0 0 0
200 0.5 0.25 7 12 1 0 0.95 0.875 1 0.076923 1 3319.809
50 0.5 0.5 13 7 0 0 1 1 1 0 1 1972.853
300 0.5 0.75 12 8 0 0 1 1 1 0 1 3119.401
300 0.5 1 12 5 3 0 0.85 0.8 1 0.375 1 2125.51
50 0.5 1.2 12 8 0 0 1 1 1 0 1 3012.321
50 0.75 -0.5 0 20 0 0 1 0 0 0 0
100 0.75 -0.25 0 20 0 0 1 0 0 0 0
100 0.75 0 0 20 0 0 1 0 0 0 0
300 0.75 0.25 15 4 1 0 0.95 0.9375 1 0.2 1 2916.906
100 0.75 0.5 14 6 0 0 1 1 1 0 1 4820.327
500 0.75 0.75 14 5 1 0 0.95 0.933333 1 0.166667 1 4084.533
200 0.75 1 12 8 0 0 1 1 1 0 1 4154.059
100 0.75 1.2 10 8 2 0 0.9 0.833333 1 0.2 1 2121.593

Table A.4: Results for a test based off wait observations
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A.5 Results of the Comparison Multiple Observation Test

From the receiver operating curve Figure A.36, one sees that the multiple observations

provides a high

Figure A.36: Receiver Operating Curve

A lift chart relates the number of correct detections to the total rate of detections. It is

desired that the curve be concave up, above the bisector, to represent the fact that the test is

accurate not simply accepting all the changes.

Figure A.37: Lift Chart
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