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”You can’t connect the dots looking forward; you can only connect them looking

backwards. So you have to trust that the dots will somehow connect in your future. You

have to trust in something - your gut, destiny, life, karma, whatever. Because believing

that the dots will connect down the road will give you the confidence to follow your heart

even when it leads you off the well worn path; and that will make all the difference.”

Steve Jobs
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SUMMARY

As the big data era has come, a lot of machine learning problems involve data with

very high dimension. However, the computational power is always limited. Such kind of

practical issue motivates the works in this thesis. In the thesis, we study two major topics

on statistical inference of high dimensional data with low rank structure occurred in many

machine learning and statistics applications.

The first topic is about nonparametric estimation of low rank matrix valued function

with applications in building dynamic recommender systems and recovering euclidean dis-

tance matrices in molecular biology. We propose an innovative nuclear norm penalized

local polynomial estimator and establish an upper bound on its point-wise risk measured

by Frobenius norm. Then we extend this estimator globally and prove an upper bound on

its integrated risk measured by L2-norm. We also propose another new estimator based on

bias-reducing kernels to study the case when the matrix valued function is not necessarily

low rank and establish an upper bound on its risk measured by L∞-norm. We show that the

obtained rates are all optimal up to some logarithmic factor in minimax sense. Finally, we

propose an adaptive estimation procedure for practitioners based on Lepski’s method and

the penalized data splitting technique which is computationally efficient and can be easily

implemented and parallelized. Most results in this work is in the paper [1].

The other topic is about spectral perturbation analysis of higher order singular value de-

composition (HOSVD) of tensor under Gaussian noise. Given a tensor contaminated with

Gaussian noise, we establish sharp upper bounds on the perturbation of linear forms of sin-

gular vectors of HOSVD. In particular, sharp upper bounds are proved for the component-

wise perturbation of singular vectors. These results can be applied on sub-tensor localiza-

tion and low rank tensor denoising. This work is a collaboration with Dong Xia and can be

found in the paper [2].

xi



CHAPTER 1

INTRODUCTION TO NONPARAMETRIC ESTIMATION OF LOW RANK

MATRIX VALUED FUNCTION

1 Introduction

Let A : [0, 1] → Hm (the space of Hermitian matrices) be a matrix valued function. The

goal is to study the problem of statistical estimation of A based on the regression model

E(Yj|τj, Xj) = 〈A(τj), Xj〉, j = 1, . . . , n, (1.1)

where τj are i.i.d. time design variables uniformly distributed in [0, 1], Xj are i.i.d. matrix

completion sampling matrices, Yj are independent bounded random responses. Sometimes,

it will be convenient to write model (1.1) in the form

Yj = 〈A(τj), Xj〉+ ξj, j = 1, . . . , n, (1.2)

where the noise variables ξj = Yj −E(Yj|τj, Xj) are independent and have zero means. In

particular, we are interested in the case whenA is low rank and satisfies certain smoothness

condition. When A(t) = A0 for some A0 ∈ Hm and for any t ∈ [0, 1], such problem

coincides with the well known matrix completion/recovery problem which has drawn a lot

of attention in the statistics community during the past few years, see [3, 4, 5, 6, 7, 8,

9, 10, 11, 12]. The low rank assumption in matrix completion/estimation problems has

profound practical background. For instance, when [13] introduced their famous work

on matrix factorization techniques for recommender systems, they considered temporal

dynamics, see [14]. Another very common example is Euclidean distance matrix (EDM)

which contains the distance information of a large set of points like molecules which are in
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low dimensional spaces such as R2 or R3. To be more specific, given m points p1, ..., pm

in Rd, the EDM D ∈ Rm×m formed by them has entries Dij = ‖pi − pj‖2
2. Clearly, this

matrix has rank at most d+1 regardless of its size m. If m� d, then the recovery problem

falls into the low rank realm. Similar topics in cases when points are fixed (see [15]) or in

rigid motion (see [16]) have been studied. While points are moving in smooth trajectories,

the EDMs are naturally high dimensional low rank matrix valued functions.

An appealing way to address the low rank issue in matrix completion/estimation is

through nuclear norm minimization, see [17]. In section 1 of chapter 2, we inherit this idea

and propose a local polynomial estimator (see [18]) with nuclear norm penalization:

Ŝh = arg min
S∈D

1

nh

n∑
j=1

K
(τj − t0

h

)(
Yj −

〈∑̀
i=0

Sipi

(τj − t0
h

)
, Xj

〉)2

+ ε‖S‖1. (1.3)

where D ⊂ H(`+1)m is a closed subset of block diagonal matrices with Sj ∈ Hm on its diag-

onal, and {pi} is a sequence of orthogonal polynomials with nonnegative weight function

K. The solution to the convex optimization problem (1.3) induces a pointwise estimator

of A(t0): Ŝh(t0) :=
∑`

i=0 Ŝ
h
i pi(0). We prove that under mild conditions, Ŝh(t0) achieves

a rate of O
((

mr logn
n

)2β/(2β+1))
on the pointwise risk measured by 1

m2

∥∥Ŝh(t0) − A(t0)
∥∥2

2

over Hölder class Σ(β, L) with low rank parameter r, where ‖ · ‖2 denotes the Frobenius

norm of a matrix. In section 2.1 of chapter 2, we propose a new global estimator Â based

on the local results and prove that Â achieves a rate of O
((

mr logn
n

)2β/(2β+1))
on the in-

tegrated risk measured by L2-norm, i.e. 1
m2

∫ 1

0

∥∥Â(t) − A(t)
∥∥2

2
dt. Then we study another

naive kernel estimator Ã which can be used to estimate matrix valued functions which are

not necessarily low rank. This estimator is associated with another popular approach to deal

with low rank recovery which is called singular value thresholding, see [4, 9, 12]. We prove

that Ã achieves a rate of O
((

m logn
n

)2β/(2β+1))
measured by sup

t∈[h,1−h]

1
m2

∥∥Ã(t) − A(t)
∥∥2,

where ‖ · ‖ denotes the matrix operator norm. Note that those rates coincide with that of

classical matrix recovery/estimation setting when the smoothness parameter β →∞.
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An immediate question is whether the above rates are optimal. In section 3 of chapter

2, we prove that all the rates we established are optimal up to some logarithmic factor in

the minimax sense, which essentially verified the effectiveness of our methodology.

As one may have noticed, there is an adaptation issue involved in (1.3). Namely, one

needs to choose a proper bandwidth h and a proper order of degree ` of polynomials. Both

parameters are closely related to the smoothness of A which is unknown to us in advance.

In section 4 of chapter, we propose a model selection procedure based on Lepskii’s method

([19]) and the work of [20] and [21]. We prove that this procedure adaptively selects an

estimator that achieves a rate on the integrated risk measured by L2-norm which is the

smallest among all candidates plus a negligible term. What is more important, such a

procedure is computationally efficient, feasible in high dimensional setting, and can be

easily parallelized.

The major contribution of our work is that we generalized the recent developments of

matrix completion/estimation theory to low rank matrix valued function setting by propos-

ing a new optimal estimation procedure. To our best knowledge, no one has ever thoroughly

studied such problems from a theoretical point of view.

2 Preliminaries

In this section, we introduce some important definitions, basic facts, and notations for the

convenience of presentation.

2.1 Notations

For any Hermitian matrices A,B ∈ Hm, denote 〈A,B〉 = tr(AB) which is known as the

Hilbert-Schmidt inner product. Denote 〈A,B〉L2(Π) = E〈A,X〉〈B,X〉, where Π denotes

the distribution ofX . The corresponding norm ‖A‖2
L2(Π) is given by ‖A‖2

L2(Π) = E〈A,X〉2.

We use ‖ · ‖2 to denote the Hilbert-Schimidt norm (Frobenus norm or Schatten 2-norm)

generated by the inner product 〈·, ·〉; ‖ · ‖ to denote the operator norm (spectral norm) of

3



a matrix: the largest singular value; ‖ · ‖1 to denote the trace norm (Schatten 1-norm or

nuclear norm), i.e. the sum of singular values; |A| to denote the nonnegative matrix with

entries |Aij| corresponding to A.

We denote

σ2 := Eξ2, σ2
X :=

∥∥∥n−1

n∑
j=1

EX2
i

∥∥∥, UX :=
∥∥‖X‖∥∥

L∞
.

2.2 Matrix Completion and statistical learning setting

The matrix completion setting refers to that the random sampling matrices Xj are i.i.d.

uniformly distributed on the following orthonormal basis X of Hm:

X := {Ekj : k, j = 1, ...,m},

where Ekk := ek ⊗ ek, k = 1, ...,m; Ejk := 1√
2
(ek ⊗ ej + ej ⊗ ek), 1 ≤ k < j ≤ m;

Ekj := i√
2
(ek ⊗ ej − ej ⊗ ek), 1 ≤ k < j ≤ m with {ej}mj=1 being the canonical basis of

Cm. The following identities are easy to check when the design matrices are under matrix

completion setting:

∥∥A∥∥2

L2(Π)
=

1

m2

∥∥A∥∥2

2
, σ2

X ≤
2

m
, UX = 1. (2.1)

The statistical learning setting refers to the bounded response case: there exists a constant

a such that

max
j=1,...n

|Yj| ≤ a, a.s. (2.2)

In this paper, we will consider model (1.1) under both matrix completion and statistical

learning setting.

4



2.3 Matrix Valued Functions

Let A : [0, 1] → Hm be a matrix valued function. One should notice that we consider

the image space to be Hermitian matrix space for the convenience of presentation. Our

methods and results can be readily extended to general rectangular matrix space. Now we

define the rank of a matrix valued function. Let rankA(t) := rank(A(t)), ∀t ∈ [0, 1].

Definition 1. Let β and L be two positive real numbers. The Hölder class Σ(β, L) on [0, 1]

is defined as the set of ` = bβc times differentiable functions f : [0, 1]→ R with derivative

f (`) satisfying

|f (`)(x)− f (`)(x′)| ≤ L|x− x′|β−`, ∀x, x′ ∈ [0, 1]. (2.3)

In particular, we are interested in the following assumptions on matrix valued functions.

A1 Given a measurement matrix X and for some constant a,

sup
t∈[0,1]

∣∣〈A(t), X〉
∣∣ ≤ a.

A2 Given a measurement matrix X and for some constant a, the derivative matrices A(k)

of A satisfy

sup
t∈(0,1)

∣∣〈A(k)(t), X〉
∣∣ ≤ a, k = 1, ..., `.

A3 The rank of A, A′, ...,A(`) are uniformly bounded by a constant r,

sup
t∈[0,1]

rankA(k)(t) ≤ r, k = 0, 1, ..., `.

A4 Assume that for ∀i, j, aij is in the Hölder class Σ(β, L).

5



CHAPTER 2

OPTIMAL ESTIMATION OF LOW RANK MATRIX VALUED FUNCTION

1 A local polynomial Lasso estimator

In this section, we study the estimation of matrix valued functions that are low rank. The

construction of our estimator is inspired by localization of nonparametric least squares

and nuclear norm penalization. The intuition of the localization technique originates from

classical local polynomial estimators, see [18]. The intuition behind nuclear norm penal-

ization is that whereas rank function counts the number of non-vanishing singular values,

the nuclear norm sums their amplitude. The theoretical foundations behind nuclear norm

heuristic for the rank minimization was proved by [17]. Instead of using the trivial ba-

sis {1, t, t2, ..., t`} to generate an estimator, we use orthogonal polynomials which fits our

problem better. Let {pi}∞i=0 be a sequence of orthogonal polynomials with nonnegative

weight function K compactly supported on [−1, 1], then

∫ 1

−1

K(u)pi(u)pj(u)du = δij.

There exist an invertible linear transformation T ∈ R(`+1)×(`+1) such that

(1, t, t2/2!, ..., t`/`!)T = T (p0, p1, ..., p`)
T .

Apparently, T is lower triangular. We denote R(T ) = max1≤j≤`+1

`+1∑
i=1

|Tij|. Note that in

some literature, R(T ) is denoted as ‖T‖1 as the matrix ”column norm”. Since we already

used ‖ · ‖1 to denote the nuclear norm, R(T ) is used to avoid any ambiguity. Denote

D :=

{
Diag

[
S0 S1 . . . S`−1 S`

]}
⊂ Hm(`+1)

6



the set of block diagonal matrices with Sk ∈ Hm satisfying |Sij| ≤ R(T )a. With observa-

tions (τj, Xj, Yj), j = 1, ..., n from model (1.1), define Ŝh as

Ŝh = arg min
S∈D

1

nh

n∑
j=1

K
(τj − t0

h

)(
Yj −

〈∑̀
i=0

Sipi

(τj − t0
h

)
, Xj

〉)2

+ ε‖S‖1. (1.1)

Ŝh naturally induces a local polynomial estimator of order ` around t0:

Ŝh(τ) :=
∑̀
i=0

Ŝhi pi

(τ − t0
h

)
I
{∣∣∣τ − t0

h

∣∣∣ ≤ 1
}
. (1.2)

The point estimate at t0 is given by

Ŝh(t0) :=
∑̀
i=0

Ŝhi pi(0). (1.3)

In the following theorem, we establish an upper bound on the point-wise risk of Ŝh(t0)

when A(t) is in the Hölder class Σ(β, L) with ` = bβc.

Theorem 1.1. Under model (1.1), let (τj, Xj, Yj), j = 1, ..., n be i.i.d. copies of the random

triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly distributed in [0, 1], X and

τ are independent, and |Y | ≤ a, a.s. for some constant a > 0. Let A be a matrix valued

function satisfying A1, A2, A3, and A4. Denote Φ = maxi=0,...,` ‖
√
Kpi‖∞, and ` = bβc.

Take

ĥn = C1

((`3(`!)2Φ2R(T )2a2mr log n

L2n

) 1
2β+1

, ε = D`aΦ

√
log 2m

nmĥn
,

for some numerical constants C1 and D. Then for any ĥn ≤ t0 ≤ 1 − ĥn, the estimator

defined in (1.3) satisfies with probability at least 1− 1
nmr

,

1

m2

∥∥∥Ŝh(t0)− A(t0)
∥∥∥2

2
≤ C1(a,Φ, `, L)

(mr log n

n

) 2β
2β+1

, (1.4)

where C1(a,Φ, `, L) is a constant depending on a,Φ, ` and L.
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One should notice that when β → ∞, bound (1.4) coincides with similar result in

classical matrix completion. In section 3, we prove that bound (1.4) is minimax optimal up

to a logarithmic factor.

Proof. Firstly, we introduce a sharp oracle inequality of ”locally integrated risk” of estima-

tor (1.2) in the following lemma.

Lemma 1. Assume that the condition of Theorem 1.1 holds. Then there exist a numerical

constants D > 0 such that for all

ε ≥ D(`+ 1)R(T )Φa
(√ log 2m

nmh

∨ (log 2m)Φ

nh

)
,

and for arbitrary η > 0, the estimator (1.3) satisfies with probability at least 1− e−η

1

h
EK
(τ − t0

h

)〈
A(τ)− Ŝh(τ), X

〉2

≤ inf
S∈D

{1

h
EK
(τ − t0

h

)〈
A(τ)− S(τ), X

〉2

+
D2(`+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh

}
.

(1.5)

where S(τ) :=
∑̀
i=0

Sipi
(
τ−t0
h

)
.

The proof of Lemma 1 can be derived from Theorem 19.1 in [22], see Appendix. To be

more specific, one just needs to rewrite (1.1) as

Ŝh = arg min
S∈D

1

n

n∑
j=1

(
Ỹj −

〈
S, X̃j

〉)2

+ ε‖S‖1. (1.6)

where

X̃j = Diag
[√1

h
K
(τj − t0

h

)
p0

(τj − t0
h

)
Xj, ...,

√
1

h
K
(τj − t0

h

)
p`

(τj − t0
h

)
Xj

]
,

and Ỹj =

√
1
h
K
(
τj−t0
h

)
Yj . Then Lemma 1 is just application of Theorem 19.1 in [22].
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Consider

1

h
EK
(τ − t0

h

)〈
A(τ)−

∑̀
i=0

Ŝhi pi

(τ − t0
h

)
, X
〉2

=
1

h
EK
(τ − t0

h

)〈
A(τ)−

∑̀
i=0

Sipi

(τ − t0
h

)
+
∑̀
i=0

(Si − Ŝhi )pi

(τ − t0
h

)
, X
〉2

=
1

h
EK
(τ − t0

h

)〈∑̀
i=0

(Si − Ŝhi )pi

(τ − t0
h

)
, X
〉2

+
1

h
EK
(τ − t0

h

)〈
A(τ)−

∑̀
i=0

Sipi

(τ − t0
h

)
, X
〉2

+
2

h
EK
(τ − t0

h

)〈
A(τ)−

∑̀
i=0

Sipi

(τ − t0
h

)
, X
〉〈∑̀

i=0

(Si − Ŝhi )pi

(τ − t0
h

)
, X
〉
(1.7)

Therefore, from (1.5) and (1.7), we have for any S ∈ D

1

h
EK
(τ − t0

h

)〈∑̀
i=0

(Si − Ŝhi )pi

(τ − t0
h

)
, X
〉2

≤ 2

h
EK
(τ − t0

h

)∣∣∣〈A(τ)−
∑̀
i=0

Sipi

(τ − t0
h

)
, X
〉〈∑̀

i=0

(Si − Ŝhi )pi

(τ − t0
h

)
, X
〉∣∣∣

+
D2(`+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh
.

≤
( c4

c2 − 1

)1

h
EK
(τ − t0

h

)〈
A(τ)−

∑̀
i=0

Sipi

(τ − t0
h

)
, X
〉2

+
( c2

c2 − 1

){D2(`+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh

}
,

(1.8)

where we used the fact that for any positive constants a and b, 2ab ≤ 1
c2
a2 + c2b2 for some

c > 1. Take S such that

∑̀
i=0

Sipi

(τ − t0
h

)
= A(t0) + A′(t0)h

(τ − t0
h

)
+ ...+

A(`)(t0)h`

`!

(τ − t0
h

)`
. (1.9)

Note that this is possible since the right hand side is a matrix valued polynomial of τ−t0
h

up to order `, and span{p0, p1, ..., p`} = span{1, x, ..., x`}. Under the condition that all

9



entries of A(k)(t) are bounded by a, then entries of Sk are bounded by R(T )a. Thus, the

corresponding S ∈ D. Obviously, rank(Si) ≤ (`+1−i)r. SinceA ∈ Σ(β, L), we consider

`-th order Taylor expansion of A at t0 to get

A(τ) = A(t0) + A′(t0)(τ − t0) + ...+
Ã(τ − t0)`

`!
, (1.10)

where Ã is the matrix with Ãij = a
(`)
ij (t0 + αij(τ − t0)) for some αij ∈ [0, 1]. Then we

apply the Taylor expansion (1.10) and identity (1.9) to get

1

h
EK
(τ − t0

h

)〈
A(τ)−

∑̀
i=0

Sipi

(τ − t0
h

)
, X
〉2

≤ 1

h
EK
(τ − t0

h

) 1

m2

∥∥∥LU(τ − t)β

`!

∥∥∥2

2
≤ L2h2β

(`!)2
.

(1.11)

where U denotes the matrix with all entries being 1. The first inequality is due to aij ∈

Σ(β, L), and the second is due to |τ − t0| ≤ h. Under the condition that X is uniformly

distributed in X , and the orthogonality of {pi}`i=0, it is easy to check that

1

h
EK
(τ − t0

h

)〈∑̀
i=0

(Si − Ŝhi )pi

(τ − t0
h

)
, X
〉2

=
1

m2

∑̀
i=0

‖Ŝhi − Si‖2
2 (1.12)

Note that

∥∥Ŝh(t0)− S(t0)
∥∥2

2
=
∥∥∑̀
i=0

(Ŝhi − Si)pi(0)
∥∥2

2
≤ (`+ 1)Φ2

∑̀
i=0

∥∥Ŝhi − Si∥∥2

2
, (1.13)

where the second inequality is due to Cauchy-Schwarz inequality and pi are uniformly

bounded on [-1,1]. Combining (1.8), (1.11), (1.12), and (1.13), we get with probability at

least 1− e−η

1

m2
‖Ŝh(t0)− A(t0)‖2

2 ≤
( c4

c2 − 1

)2L2h2β

(`!)2

+
( c2

c2 − 1

){D2(`+ 1)2Φ2R(T )2a2(rank(S)m log 2m+ η)

nh

}
,
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By optimizing the right hand side with respect to h and take η = mr log n, we take

ĥn = C
(`3(`!)2Φ2R(T )2a2mr log n

L2n

) 1
2β+1

.

where C is a numerical constant. This completes the proof of the theorem.

2 Global estimators and upper bounds on integrated risk

In this section, we propose two global estimators and study their integrated risk measured

by L2-norm and L∞-norm.

2.1 From localization to globalization

Firstly, we construct a global estimator based on (1.2). Take

ĥn = C1

(`3(`!)2Φ2R(T )2a2mr log n

L2n

) 1
2β+1

, M = d1/ĥne.

Without loss of generality, assume that M is even. Denote Ŝhk (t) the local polynomial

estimator around t2k−1 as in (1.2) by using orthogonal polynomials withK = I[−1,1], where

t2k−1 = 2k−1
M

, k = 1, 2, ...,M/2 and I is the indicator function. Denote

Â(t) =

M/2∑
k=1

Ŝhk (t)I(t2k−1−ĥn,t2k−1+ĥn], t ∈ (0, 1). (2.1)

Note that the weight function K is not necessary to be I[−1,1]. It can be replaced by any

K that satisfies K ≥ K0 > 0 on [−1, 1]. The following result characterizes the global

performance of estimator (2.1) under matrix completion setting measured by L2-norm.

Theorem 2.1. Assume that the conditions of Theorem 1.1 hold, and let Â be an estimator

defined as in (2.1). Then with probability at least 1− 1
nmr−1 ,

1

m2

∫ 1

0

∥∥Â(t)− A(t)
∥∥2

2
dt ≤ C2(a,Φ, `, L)

(mr log n

n

) 2β
2β+1

, (2.2)
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where C2(a,Φ, `, L) is a constant depending on a,Φ, `, L.

Compared with the integrated risk measured by L2-norm of real valued functions in

Hölder class, the result in (2.2) has an excess log n term, which is introduced by the matrix

Bernstein inequality, see [23]. In section 3, we show that bound (2.2) is minimax optimal

up to a logarithmic factor.

Proof. It is easy to see that

∫ 1

0

‖Â(t)− A(t)‖2
2dt ≤

M/2∑
k=1

∫ t2k−1+ĥn

t2k−1−ĥn
‖Ŝhk (t)− A(t)‖2

2dt. (2.3)

For each k,

1

m2

∫ t2k−1+ĥn

t2k−1−ĥn

∥∥Ŝhk (t)− A(t)
∥∥2

2
dt = Eτ,XI(t2k−1−ĥn,t2k−1+ĥn]

〈
A(τ)− Ŝh(τ), X

〉2

By (1.5), (1.11) and arguments used to prove Theorem 1.1, we have with probability at

least 1− 1
nmr

,

1

m2ĥn

∫ t2k−1+ĥn

t2k−1−ĥn

∥∥Ŝhk (t)− A(t)
∥∥2

2
dt ≤ C1(a,Φ, `, L)

(mr log n

n

) 2β
2β+1

.

We take the union bound over k, from (2.3) we get with probability at least 1− 1
nmr−1 ,

1

m2

∫ 1

0

‖Â(t)− A(t)‖2
2dt ≤ C2(a,Φ, `, L)

(mr log n

n

) 2β
2β+1

.

where C2(a,Φ, `, L) is a constant depending on a,Φ, `, L.

2.2 Bias reduction through higher order kernels

IfA(t) is not necessarily low rank, we propose an estimator which is easy to implement and

prove an upper bound on its risk measured by L∞-norm. Such estimators are related to an-

other popular approach parallel to local polynomial estimators for bias reduction, namely,

12



using high order kernels to reduce bias. They can also be applied to another important

technique of low rank estimation or approximation via singular value thresholding, see [4]

and [12]. The estimator proposed by [9] is shown to be equivalent to soft singular value

thresholding of such type of estimators.

The kernels we are interested in satisfy the following conditions:

K1 K(·) is symmetric, i.e. K(u) = K(−u).

K2 K(·) is compactly supported on [−1, 1].

K3 RK =
∫∞
−∞K

2(u)du <∞.

K4 K(·) is of order ` for some ` ∈ N∗.

K5 K(·) is Lipschitz continuous with 0 < LK <∞.

Consider

Ã(t) =
m2

nh

n∑
j=1

K
(τj − t

h

)
YjXj. (2.4)

Note that when K ≥ 0, (2.4) is the solution to the following optimization problem

Ã(t) = arg min
S∈D

1

nh

n∑
j=1

K
(τj − t

h

)
(Yj − 〈S,Xj〉)2. (2.5)

In the following theorem we prove an upper bound on its global performance measured by

L∞-norm over Σ(β, L) which is much harder to obtain for matrix lasso problems.

Theorem 2.2. Under model (1.1), let (τj, Xj, Yj), j = 1, ..., n be i.i.d. copies of the random

triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly distributed in [0, 1], X and

τ are independent, and |Y | ≤ a a.s. for some constant a > 0; Kernel K satisfies K1-K5;

A(t) be any matrix valued function satisfying A1 and A4. Denote ` = bβc. Take

h̃n := c∗(K)
(a2(`!)2m log n

2βL2n

) 1
2β+1

, (2.6)
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Then with probability at least 1− n−2, the estimator defined in (2.4) satisfies

sup
t∈[h̃n,1−h̃n]

1

m2

∥∥Ã(t)− A(t)
∥∥2 ≤ C∗(K)

(a2(`!)2m log n

2βL2n

) 2β
2β+1

, (2.7)

where C∗(K) and c∗(K) are constants depending on K.

When the smoothness parameter β tends to infinity, bound (2.7) coincides with similar

bounds in classical matrix completion, which is O(m
3 logn
n

). When m degenerates to 1, the

bound coincides with that of real valued case, which is O(( logn
n

)2β/(2β+1)). In section 3, we

show that this bound is minimax optimal up to a logarithmic factor.

Proof. In this proof, we use C(K) to denote any constant depending on K which may vary

from place to place. This simplifies the representation while does no harm to the soundness

of our proof. Consider

sup
t∈[h̃n,1−h̃n]

‖Ã(t)−A(t)‖ ≤ sup
t∈[h̃n,1−h̃n]

‖Ã(t)−EÃ(t)‖+ sup
t∈[h̃n,1−h̃n]

‖EÃ(t)−A(t)‖. (2.8)

The first term on the right hand side is recognized as the variance and the second is the bias.

Firstly, we deal with the bias term. Denote B(t0) := EÃ(t0) − A(t0), t0 ∈ [h̃n, 1 − h̃n].

Recall from (1.2), E(ξj|τj, Xj) = 0 for any t0 ∈ [h̃n, 1− h̃n] we have

EÃ(t0) = E
m2

nh

n∑
j=1

K
(τj − t0

h

)
(〈A(τj), Xj〉+ ξj)Xj =

m2

h
EK
(τ − t0

h

)
〈A(τ), X〉X.

By applying the Taylor expansion of A(τ) as in (1.10) and the fact that K is a kernel of

order `, we get

EÃ(t0) = E
m2

h
K
(τ − t0

h

)
〈A(t0), X〉X + E

m2

h
K
(τ − t0

h

)(τ − t0)`

`!
〈Ã,X〉X,

where Ã is the same as in (1.10). It is easy to check that the first term on the right hand side
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is A(t0). Therefore we rewrite B(t0) as

B(t0) = E
m2

h
K
(τ − t0

h

)(τ − t0)`

`!
〈Ã,X〉X = E

m2

h
K
(τ − t0

h

)(τ − t0)`

`!
〈Ã−A(`)(t0), X〉X,

where the second equity is due to the fact that each element of A(t) is in Σ(β, L) and K is

a kernel of order `. Then we can bound each element of matrix B(t0) as

|Bij(t0)| ≤
∫ 1

0

1

h
K
(τ − t0

h

) |τ − t0|`
`!

|a(`)
ij (t0 + α(τ − t0))− a(`)

ij (t0)|dτ

≤ L

∫ 1

0

|K(u)| |uh|
β

`!
du

≤ C(K)
Lhβ

`!
.

Thus

sup
t∈[h̃n,1−h̃n]

‖B(t)‖ ≤ C(K)
Lmhβ

`!
. (2.9)

On the other hand, for the variance term supt∈[h̃n,1−h̃n] ‖Ã(t) − EÃ(t)‖2, we construct

a δ − net on the interval [0, 1] with δ = 1/M , and

M = n2, tj =
2j − 1

2M
, j = 1, ...,M.

Denote Sn(t) := Ã(t)− EÃ(t), then we have

sup
t∈[h̃n,1−h̃n]

‖Sn(t)‖ ≤ sup
t∈[0,1]

‖Sn(t)‖ ≤ max
i
‖Sn(ti)‖+ sup

|t−t′|≤δ
‖Sn(t)− Sn(t′)‖. (2.10)

Next, we bound both terms on the right hand side respectively. For each ti,

Sn(ti) =
m2

nh

n∑
j=1

(
K
(τj − ti

h

)
YjXj − EK

(τj − ti
h

)
YjXj

)
.

The right hand side is a sum of zero mean random matrices, we apply the matrix Bernstein

inequality, see [23]. Under the assumption of Theorem 2.2, one can easily check that with

15



probability at least 1− e−η,

‖Sn(ti)‖ ≤ C(K)m2
(√a2(η + log 2m)

mnh

∨ a(η + log 2m)

nh

)
.

Indeed, by setting X̄ = m2

h
K
(
τ−t
h

)
Y X − Em2

h
K
(
τ−t
h

)
Y X , it is easy to check that UX̄ .

‖K‖∞am2/h and σ2
X̄

. RKa
2m3/h. By taking the union bound over all i and setting

η = 4 log n, we get with probability at least 1− n−2,

max
i

∥∥Sn(ti)
∥∥2 ≤ C(K)

a2m3 log n

nh
,

As for the second term on the right hand side of (2.10), by the assumption that K is a

Lipschitz function with Lipschitz constant LK , we have

sup
|t−t′|≤δ

‖Sn(t)− Sn(t′)‖ ≤ sup
|t−t′|≤δ

‖(Ã(t)− Ã(t′))‖+ sup
|t−t′|≤δ

‖E(Ã(t)− Ã(t′))‖

≤ LKam
3

n2h2
+
LKam

n2h2
.

Thus with probability at least 1− n−2,

sup
t∈[h̃n,1−h̃n]

‖Sn(t)‖2 ≤ C(K)
a2m3 log n

nh

Together with the upper bound we get on the bias in (2.9), we have with probability at least

1− n−2,

sup
t∈[h̃n,1−h̃n]

1

m2
‖Ã(t)− A(t)‖2 ≤ C(K)

(a2m log n

nh
+
L2h2β

`!2

)
.

Choose

h̃n = C(K)
(a2(`!)2m log n

2βL2n

) 1
2β+1

,

we get

sup
t∈[h̃n,1−h̃n]

1

m2
‖Ã(t)− A(t)‖2 ≤ C(K)

(a2(`!)2m log n

2βL2n

) 2β
2β+1

.
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3 Lower bounds under matrix completion setting

In this section, we prove the minimax lower bound of estimators (1.3), (2.1) and (2.4). In

the realm of classical low rank matrix estimation, [11] studied the optimality issue mea-

sured by the Frobenius norm on the classes defined in terms of a ”spikeness index” of the

true matrix; [10] derived optimal rates in noisy matrix completion on different classes of

matrices for the empirical prediction error; [9] established that the rates of the estimator

they propose under matrix completion setting are optimal up to a logarithmic factor mea-

sured by the Frobenius norm. Based on the ideas of [9], standard methods to prove minimax

lower bounds in real valued case in [24], and some fundamental results in coding theory,

we establish the corresponding minimax lower bounds of (1.4), (2.2) and (2.7) which es-

sentially shows that the upper bounds we get are all optimal up to some logarithmic factor.

For the convenience of representation, we denote by infÂ the infimum over all estima-

tors Â of A. We denote by A(r, a) the set of matrix valued functions satisfying A1, A2,

A3, and A4. We denote by P(r, a) the class of distributions of random triplet (τ,X, Y ) that

satisfies model (1.1) with any A ∈ A(r, a).

Theorem 3.1. Under model (1.1), let (τj, Xj, Yj), j = 1, ..., n be i.i.d. copies of the random

triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly distributed in [0, 1], X and

τ are independent, and |Y | ≤ a, a.s. for some constant a > 0; let A be any matrix valued

function inA(r, a). Then there is an absolute constant η ∈ (0, 1) such that for all t0 ∈ [0, 1]

inf
Â

sup
PAτ,X,Y ∈P(r,a)

PPAτ,X,Y
{ 1

m2

∥∥Â(t0)− A(t0)
∥∥2

2
> C(β, L, a)

(mr
n

) 2β
2β+1

}
≥ η. (3.1)

where C(β, L, a) is a constant depending on β, L and a.

Note that compared with the upper bound (1.4), the lower bound (3.1) matches it that
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up to a logarithmic factor. As a consequence, it shows that the estimator (1.3) achieves a

near optimal minimax rate of pointwise estimation. Although, the result of Theorem 3.1 is

under bounded response condition, it can be readily extended to the case when the noise in

(1.2) is Gaussian.

Proof. Without loss of generality, we assume that both m and r are even numbers. We

introduce several notations which are key to construct the hypothesis set. For some constant

γ > 0, denote

C =
{
Ã = (aij) ∈ C

m
2
× r

2 : aij ∈ {0, γ},∀1 ≤ i ≤ m/2, 1 ≤ j ≤ r/2
}
,

and consider the set of block matrices

B(C) =

{[
Ã Ã . . . Ã O

]
∈ C

m
2
×m

2 : Ã ∈ C

}
, (3.2)

where O denotes the m/2× (m/2− rbm/rc/2) zero matrix. Then we consider a subset of

Hermitian matrices Sm ⊂ Hm,

Sm =

{ Õ Â

Â∗ Õ

 ∈ Cm×m : Â ∈ B(C)

}
. (3.3)

An immediate observation is that for any matrix A ∈ Sm, rank(A) ≤ r.

Due to the Varshamov-Gilbert bound (see Lemma 2.9 in [24]), there exists a subset

A0 ⊂ Sm with cardinality Card(A0) ≥ 2mr/32 + 1 containing the zero m × m matrix 0

such that for any two distinct elements A1 and A2 of A0,

‖A1 − A2‖2
2 ≥

mr

16
bm
r
cγ2 ≥ γ2m

2

32
. (3.4)

Let fn(t) denote the function fn(t) := Lhβnf
(
t−t0
hn

)
, t ∈ [0, 1],where hn = c0

(
mr
n

) 1
2β+1

,
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with some constant c0 > 0, and f ∈ Σ(β, 1/2) ∩ C∞ and Supp(f) = [−1/2, 1/2]. Note

that there exist functions f satisfying this condition. For instance, one can take

f(t) = αe
− 1

1−4u2 I(|u| < 1/2), (3.5)

for some sufficient small α > 0. It is easy to check that fn(t) ∈ Σ(β, L) on [0, 1].

We consider the following hypotheses of A at t0:

Aβ0 :=
{
Â(t) = Afn(t), t ∈ [0, 1] : A ∈ A0

}
.

The following claims are easy to check: firstly, any element in Aβ0 together with its deriva-

tive have rank uniformly bounded by r, and the difference of any two elements of Aβ0

satisfies the same property for fixed t0; secondly, the entries of any element of Aβ0 together

with its derivative are uniformly bounded by some constant for sufficiently small chosen

γ; finally, each element of A(t) ∈ Aβ0 belongs to Σ(β, L). Therefore, Aβ0 ⊂ A(r, a) with

some chosen γ.

According to (3.4), for any two distinct elements Â1(t) and Â2(t) of Aβ0 , the difference

between Â1(t) and Â2(t) at point t0 is given by

‖Â1(t0)− Â2(t0)‖2
2 ≥

γ2L2c2β
0 f

2(0)

32
m2
(mr
n

) 2β
2β+1

. (3.6)

On the other hand, we consider the joint distributions PA
τ,X,Y such that τ ∼ U [0, 1],X ∼ Π0

where Π0 denotes the uniform distribution on X , τ and X are independent, and

PA(Y |τ,X) =


1
2

+ 〈A(τ),X〉
4a

, Y = a,

1
2
− 〈A(τ),X〉

4a
, Y = −a.

One can easily check that as long as A(τ) ∈ Aβ0 , such PA
τ,X,Y belongs to the distribution
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class P(r, a). We denote the corresponding n−product probability measure by PA. Then

for any A(τ) ∈ Aβ0 , the Kullback-Leibler Divergence between P0 and PA is

K(P0,PA) = nE
(
p0(τ,X) log

p0(τ,X)

pA(τ,X)
+ (1− p0(τ,X)) log

1− p0(τ,X)

1− pA(τ,X)

)
,

where pA(τ,X) = 1/2+ 〈A(τ), X〉/4a. Note that PA(Y = a|τ,X) ∈ [1/4, 3/4] is guaran-

teed provided that |〈A(t), X〉| ≤ a. Thus by the inequality− log(1+u) ≤ −u+u2/2, ∀u >

−1, and the fact that PA(Y = a|τ,X) ∈ [1/4, 3/4], we have

K(P0,PA) ≤ nE2(p0(τ,X)− pA(τ,X))2 ≤ n

8a2
E〈A(τ), X〉2.

Recall that A(τ) = Afn(τ) ∈ Aβ0 , by τ ∼ U [0, 1] and X ∼ Π0, we have

K(P0,PA) ≤ n

8a2

1

m2
L2‖f‖2

2h
2β+1
n m2γ2 ≤ L2‖f‖2

2c
2β+1
0 γ2

8a2
mr. (3.7)

Therefore, provided the fact that Card(A0) ≥ 2mr/32 + 1, together with (3.7), we have

1

Card(Aβ0 )− 1

∑
A∈Aβ0

K(P0,PA) ≤ α log(Card(Aβ0 )− 1) (3.8)

is satisfied for any α > 0 if γ is chosen as a sufficiently small constant. In view of (3.6)

and (3.8), the lower bound (3.1) follows from Theorem 2.5 in [24].

Theorem 3.2. Under model (1.1), let (τj, Xj, Yj), j = 1, ..., n be i.i.d. copies of the random

triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly distributed in [0, 1], X and

τ are independent, and |Y | ≤ a, a.s. for some constant a > 0; let A be any matrix valued

function in A(r, a). Then there is an absolute constant η ∈ (0, 1) such that

inf
Â

sup
PAτ,X,Y ∈P(r,a)

PPAτ,X,Y
{ 1

m2

∫ 1

0

∥∥Â(t)− A(t)
∥∥2

2
dt > C̃(β, L, a)

(mr
n

) 2β
2β+1

}
≥ η, (3.9)
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where C̃(β, L, a) is a constant depending on L, β and a.

The lower bound in (3.9) matches the upper bound we get in (2.2) up to a logarithmic

factor. Therefore, our estimator (2.1) achieves a near optimal minimax rate on the inte-

grated risk measured by L2-norm up to a logarithmic factor. The result of Theorem 3.2 can

be readily extended to the case when the noise in (1.2) is Gaussian.

Proof. Without loss of generality, we assume that both m and r are even numbers. Take a

real number c1 > 0, define

M =
⌈
c1

( n

mr

) 1
2β+1

⌉
, hn =

1

2M
, tj =

2j − 1

2M
,

and

φj(t) = Lhβnf
(t− tj

hn

)
, j = 1, ...M, t ∈ [0, 1],

where f is defined the same as in (3.5). Meanwhile, we consider the set of all binary

sequences of length M : Ω =
{
ω = (ω1, ..., ωM), ωi ∈ {0, 1}

}
= {0, 1}M . By Varshamov-

Gilbert bound, there exists a subset Ω0 = {ω0, ..., ωN} of Ω such that ω0 = (0, ..., 0) ∈ Ω0,

and d(ωj, ωk) ≥ M
8
, ∀ 0 ≤ j < k ≤ N, and N ≥ 2

M
8 , where d(·, ·) denotes the Hamming

distance of two binary sequences. Then we define a collection of functions based on Ω0:

E =
{
fω(t) =

M∑
j=1

ωjφj(t) : ω ∈ Ω0

}
. From the result of Varshamov-Gilbert bound, we

know that S := Card(E) = Card(Ω0) ≥ 2
M
8 + 1. It is also easy to check that for all

fω, fω′ ∈ E ,

∫ 1

0

(fω(t)− fω′(t))2dt =
M∑
j=1

(ωj − ω′j)2

∫
∆j

φ2
j(t)dt

= L2h2β+1
n ‖f‖2

2

M∑
j=1

(ωj − ω′j)2

≥ L2h2β
n ‖f‖2

2/16,

(3.10)

where ∆j = [(j − 1)/M, j/M ].
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In what follows, we combine two fundamental results in coding theory: one is Varshamov-

Gilbert bound ([25, 26]) in its general form of a q-ary code, the other is the volume estimate

of Hamming balls. Let Aq(n, d) denote the largest size of a q-ary code of block length n

with minimal Hamming distance d.

Proposition 3.3. The maximal size of a q − ary code of block length n with minimal

Hamming distance d = pn, satisfies

Aq(n, d+ 1) ≥ qn(1−hq(p)), (3.11)

where p ∈ [0, 1− 1/q], hq(p) = p logq(q− 1)−p logq p− (1−p) logq(1−p) is the q−ary

entropy function.

We now have all the elements needed in hand to construct our hypotheses set. Denote

Ω1 = {ω1, ..., ωN}, which is a subset of Ω0 without ω0. We then consider a subset E1 of

E which is given by E1 :=
{
fω(t) =

M∑
j=1

ωjφj(t) : ω ∈ Ω1

}
. Clearly, S1 := Card(E1) ≥

2M/8. Then we define a new collection of matrix valued functions as

C =
{
Ã = (aij) ∈ C

m
2
× r

2 : aij ∈ {δfω : ω ∈ Ω1

}
, δ ∈ C,∀1 ≤ i ≤ m/2, 1 ≤ j ≤ r/2}.

Obviously, the collection C is a S1-ary code of block length mr/4. Thus, we can apply the

result of Proposition 3.3. It is easy to check that for p = 1/4, and q ≥ 4

1− hq(p) = 1− p logq
q − 1

p
+ (1− p) logq(1− p) ≥

1

4
. (3.12)

In our case, q = S1 ≥ 2M/8 and n = mr/4. If we take p = 1/4, we know that

AS1(mr/4,mr/16) ≥ AS1(mr/4,mr/16 + 1) ≥ S
mr/16
1 . (3.13)

In other words, (3.13) guarantees that there exists a subset H0 ⊂ C with Card(H0) ≥
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2Mmr/128 such that for any A1, A2 ∈ H0, the Hamming distance between A1 and A2 is at

least mr/16. Now we define the building blocks of our hypotheses set

H := H0 ∪
{
Om

2
× r

2

}
,

where Om
2
× r

2
is the m

2
× r

2
zero matrix. Obviously, H has size Card(H) ≥ 2Mmr/64 + 1,

and for any A1(t), A2(t) ∈ H, the minimum Hamming distance is still greater than mr/16.

We consider the set of matrix valued functions

B(H) =

{[
Ã Ã . . . Ã O

]
: Ã ∈ H

}
,

where O denotes the m/2 × (m/2 − rbm/rc/2) zero matrix. Finally, our hypotheses set

of matrix valued functionsHm is defined as

Hm =

{ Õ Â

Â∗ Õ

 ∈ Cm×m : Â ∈ B(H)

}
.

By the definition ofHm and similar to the arguments in proof of Theorem 3.1, it is easy to

check thatHm ⊂ A(r, a), and also

Card(Hm) ≥ 2Mmr/64 + 1. (3.14)

Now we consider any two different hypotheses Aj(t), Ak(t) ∈ Hm.

∫ 1

0

‖Aj(t)− Ak(t)‖2
2dt ≥ γ2mr

16
2
⌊m
r

⌋ ∫ 1

0

(fω(t)− fω′(t))2dt, (3.15)

where ω 6= ω′. Based on (3.10), we have

1

m2

∫ 1

0

‖Aj(t)− Ak(t)‖2
2dt ≥

γ2L2h2β
n ‖f‖2

2

256
≥ c∗

(mr
n

) 2β
2β+1

. (3.16)
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where c∗ is a constant depending on ‖f‖2, L, c1 and γ.

On the other hand, we repeat the same analysis on the Kullback-Leibler divergence

K(P0,PA) as in the proof of Theorem 3.1. One can get

K(P0,PA) ≤ n

8a2
E〈A(τ), X〉2 ≤ n

8a2
γ2

M∑
j=1

∫ 1

0

φ2
j(τ)dτ ≤ γ2c2β+1

1 L2Mmr‖f‖2
2

8a2
,

(3.17)

where A(τ) ∈ Hm. Combine (3.14) and (3.17) we know that

1

Card(Hm)− 1

∑
A(t)∈Hm

K(P0,PA) ≤ α log(Card(Hm)− 1) (3.18)

is satisfied for any α > 0 if γ is chosen as a sufficiently small constant. In view of (3.16)

and (3.18), the lower bound follows from Theorem 2.5 in [24].

Now we consider the minimax lower bound on integrated risk measured by L∞-norm

for general matrix valued functions without any rank information. Denote

A(a) =
{
A(t) ∈ Hm, ∀t ∈ [0, 1] : |aij(t)| ≤ a, aij ∈ Σ(β, L)

}
.

We denote by P(a) the class of distributions of random triplet (τ,X, Y ) that satisfies model

(1.1) with any A ∈ A(a).

Theorem 3.4. Under model (1.1), let (τj, Xj, Yj), j = 1, ..., n be i.i.d. copies of the random

triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly distributed in [0, 1], X and

τ are independent, and |Y | ≤ a, a.s. for some constant a > 0; let A(t) be any matrix

valued function in A(a). Then there exist an absolute constant η ∈ (0, 1) such that

inf
Â

sup
PAτ,X,Y ∈P(a)

PPAτ,X,Y
{

sup
t∈(0,1)

1

m2

∥∥Â(t)− A(t)
∥∥2
> C̄(β, L, a)

(m ∨ log n

n

) 2β
2β+1

}
≥ η.

(3.19)

where C̄(β, L, a) is a constant depending on β, L and a.

24



Recall that in the real valued case, the minimax lower bound measured by sup norm of

Hölder class is O(( logn
n

)2β/(2β+1)). In our result (3.19), if the dimension m degenerates to

1, we get the same result as in real valued case and it is optimal. While the dimension m is

large enough such that m � log n, the lower bound (3.19) shows that the estimator (2.4)

achieves a near minimax optimal rate up to a logarithmic factor.

Proof. Without loss of generality, assume that m is an even number. For some constant

γ > 0, denote V =
{
v ∈ Cm

2 : ai ∈ {0, γ},∀ 1 ≤ i ≤ m/2
}
. Due to the Varshamov-

Gilbert bound (see Lemma 2.9 in [24]), there exists a subset V0 ⊂ V with cardinality

Card(V0) ≥ 2m/16 + 1 containing the zero vector 0 ∈ Cm
2 , and such that for any two

distinct elements v1 and v2 of V0,

‖v1 − v2‖2
2 ≥

m

16
γ2. (3.20)

Consider the set of matrices

B(V) =
{[

v v . . . v

]
∈ C

m
2
×m

2 : v ∈ V0

}
.

Clearly, B(V) is a collection of rank one matrices. Then we construct another matrix set

Vm,

Vm =

{ Õ V

V ∗ Õ

 ∈ Cm×m : V ∈ B(V)

}

where Õ is the m/2×m/2 zero matrix. Apparently, Vm ⊂ Hm.

On the other hand, we define the grid on [0, 1]

M =
⌈
c2

( n

m+ log n

) 1
2β+1

⌉
, hn =

1

2M
, tj =

2j − 1

2M
,

and

φj(t) = Lhβnf
(t− tj

hn

)
, j = 1, ...M, t ∈ [0, 1]
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where f is defined the same as in (3.5), and c2 is some constant. Denote Φ :=
{
φj : j =

1, ...M
}
. We consider the following set of hypotheses: AβB := {Â(t) = V φj(t) : V ∈

Vm, φj ∈ Φ}. One can immediately get that the size of AβB satisfies

Card(AβB) ≥ (2m/16 + 1)M. (3.21)

By construction, the following claims are obvious: any element Â(t) of AβB has rank at

most 2; the entries of Â(t) ∈ AβB are uniformly bounded for some sufficiently small γ, and

Âij(t) ∈ Σ(β, L). Thus AβB ⊂ A(a).

Now we consider the distance between two distinct elements A(t) and A′(t) ofAβB. An

immediate observation is that

sup
t∈[0,1]

‖A(t)− A′(t)‖2 ≥ 1

4
sup
t∈[0,1]

‖A(t)− A′(t)‖2
2,

due to the fact that ∀t ∈ (0, 1), rank(A(t)− A′(t)) ≤ 4. Then we turn to get lower bound

on sup
t∈(0,1)

‖A(t) − A′(t)‖2
2. Recall that by construction of AβB, we have for any A 6= A′,

A(t) = A1φj(t), A
′(t) = A2φk(t), where A1, A2 ∈ Vm. There are three cases need to be

considered: 1). A1 6= A2 and j = k; 2). A1 = A2 6= 0 and j 6= k; 3). A1 6= A2 and j 6= k.

For case 1,

sup
t∈[0,1]

‖A(t)− A′(t)‖2
2 = ‖A1 − A2‖2

2‖φj‖2
∞ ≥

m2

16
γ2L2h2β

n ‖f‖2
∞ ≥ c∗1m

2
(m+ log n

n

) 2β
2β+1

,

where c∗1 is a constant depending on ‖f‖2
∞, β, L and γ.

For case 2,

sup
t∈[0,1]

‖A(t)− A′(t)‖2
2 = ‖A1‖2

2‖φj − φk‖2
∞ ≥

m2

16
γ2L2h2β

n ‖f‖2
∞ ≥ c∗2m

2
(m+ log n

n

) 2β
2β+1

,

where c∗2 is a constant depending on ‖f‖2
∞, β, L and γ.
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For case 3,

sup
t∈[0,1]

‖A(t)− A′(t)‖2
2 ≥ (‖A1‖2

2‖φj‖2
∞ ∨ ‖A2‖2

2‖φk‖2
∞) ≥ m2

16
γ2L2h2β

n ‖f‖2
∞ ≥ c∗3m

2
(m+ log n

n

) 2β
2β+1

,

where c∗3 is a constant depending on ‖f‖2
∞, β, L and γ.

Therefore, by the analysis above we conclude that for any two distinct elements A(t)

and A′(t) of AβB,

sup
t∈[0,1]

‖A(t)− A′(t)‖2 ≥ 1

4
sup
t∈[0,1]

‖A(t)− A′(t)‖2
2 ≥ c∗m

2
(m+ log n

n

) 2β
2β+1

, (3.22)

where c∗ is a constant depending on ‖f‖2
∞, L, γ and β.

Meanwhile, we repeat the same analysis on the Kullback-Leibler divergenceK(P0,PA)

as in the proof of Theorem 3.1. One can get that for any A ∈ AβB, the Kullback-Leibler

divergence K(P0,PA) between P0 and PA satisfies

K(P0,PA) ≤ n

8a2
E|〈A(τ), X〉|2 ≤ n

8a2
γ2

∫ 1

0

φ2
j(τ)dτ ≤ γ2c2β+1

2 L2(m+ log n)‖f‖2
2

8a2
.

(3.23)

Combine (3.21) and (3.23) we know that

1

Card(AβB)− 1

∑
A∈AβB

K(P0,PA) ≤ α log(Card(AβB)− 1) (3.24)

is satisfied for any α > 0 if γ is chosen as a sufficiently small constant. In view of (3.22)

and (3.24), the lower bound follows from Theorem 2.5 in [24].

4 Model selection

Despite the fact that estimators (1.3) and (2.1) achieve near optimal minimax rates in the-

ory with properly chosen bandwidth h and order of degree `, such parameters depend on
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quantities like β and L which are unknown to us in advance. In this section, we propose

an adaptive estimation procedure to choose h and ` adaptively. Two popular methods to

address such problems are proposed in the past few decades. One is Lepskii’s method,

and the other is aggregation method. In the 1990s, many data-driven procedures for select-

ing the ”best” estimator emerged. Among them, a series of papers stood out and shaped

a method what is now called ”Lepskii’s method”. This method has been described in its

general form and in great detail in [19]. Later, [27] proposed a bandwidth selection pro-

cedure based on pointwise adaptation of a kernel estimator that achieves optimal minimax

rate of point estimation over Hölder class, and [28] proposed a new bandwidth selector that

achieves optimal rates of convergence over Besov classes with spatially imhomogeneous

smoothness. The basic idea of Lepskii’s method is to choose a bandwidth from a geometric

grid to get an estimator not ”very different” from those indexed by smaller bandwidths on

the grid. Although Lepskii’s method is shown to give optimal rates in pointwise estimation

over Hölder class in [27], it has a major defect when applied to our problem: the proce-

dure already requires a huge amount of computational cost when real valued functions are

replaced by matrix valued functions. Indeed, with Lepskii’s method, in order to get a good

bandwidth, one needs to compare all smaller bandwidth with the target one, which leads

to dramatically growing computational cost. Still, we have an extra parameter ` that needs

to fit with h. As a result, we turn to aggregation method to choose a bandwidth from the

geometric grid introduced by Lepskii’s method, which is more computationally efficient

for our problem. The idea of aggregation method can be briefly summarized as follows:

one splits the data set into two parts; the first is used to build all candidate estimators and

the second is used to aggregate the estimates to build a new one (aggregation) or select one

(model selection) which is as good as the best candidate among all constructed. The model

selection procedure we use was initially introduced by [20] in classical nonparametric es-

timation with bounded response. [21] generalized this method to the case where the noise

can be unbounded but with a finite p-th moment for some p > 2. One can find a more
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detailed review on such penalization methods in [29].

Firstly, we introduce the geometric grid created by [27] where to conduct our model

selection procedure. Assume that the bandwidth being considered falls into the range

[hmin, hmax]. Recall that the ”ideal” bandwidth ĥn which is given as

ĥn = C1

(`3
(
`!ΦR(T )a

)2
mr log n

L2n

) 1
2β+1

, (4.1)

hmax, hmin can be chosen as

hmax = C1

(`∗3(`∗!ΦR(T )a
)2
mr log n

L2
∗n

) 1
2β∗+1

, hmin = C1

(`3
∗
(
`∗!ΦR(T )a

)2
mr log n

L∗2n

) 1
2β∗+1

,

where [β∗, β
∗] and [L∗, L

∗] are the possible ranges of β, L respectively. Obviously, β is

the most important parameter among all. Note that when those ranges are not so clear, a

natural upper bound of hmax is 1, and a typical choice of hmin can be set to n−1/2. Denote

d(h) =

√
1 ∨ 2 log

(hmax
h

)
, dn =

√
2 log

(hmax

hmin

)
, α(h) =

1√
d(h)

.

Apparently, dn = O(
√

log n). Define gridH inductively by

H =
{
hk ∈ [hmin, hmax] : h0 = hmax, hk+1 =

hk
1 + α(hk)

, k = 0, 1, 2, ...
}
. (4.2)

Note that the gridH is a decreasing sequence and the sequence becomes denser as k grows.

We consider possible choices of `k for each hk. A trivial candidate set is `k ∈ L :=

{bβ∗c, bβ∗c + 1, ..., bβ∗c} ⊂ N∗. If the size of this set is large, one can shrink it through

the correspondence (4.1) between h and β, `k ≤
⌊ logn−1+logmr log 2m

log hk
−1

2

⌋
. If n ≥ md for some

d > 1,
⌊ (1− 1

d
) logn−1

log hk
−1

2

⌋
≤ `k ≤

⌊ logn−1

log hk
−1

2

⌋
,which indicates the more the data, the narrower

the range. We denote the candidate set for ` as L. Then the set

H̃ = H×L := {(h, `) : h ∈ H, ` ∈ L}
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indexed a countable set of candidate estimators. Once (hk, `k) is fixed, one can take εk =

D(`k + 1)R(T )Φa
√

log 2m
nmhk

.

Now we introduce our model selection procedure based on H̃. We split the data

(τj, Xj, Yj), j = 1, ..., 2n, into two parts with equal size. The first part of the observations

{(τj, Xj, Yj) : j ∈ ~n} contains n data points, which are randomly drawn without replace-

ment from the original data set. We construct a sequence of estimators Âk, k = 1, 2, ...

based on the training data set ~n through (2.1) for each pair in H̃. Our main goal is to select

an estimator Â among {Âk}, which is as good as the one that has the smallest mean square

error. We introduce an quantity πk associated with each estimator Âk which serves as a

penalty term. We use the remaining part of the data set {(τj, Xj, Yj) : j ∈ `n} to perform

the selection procedure:

k∗ = arg min
k

1

n

∑
j∈`n

(Yj − 〈Âk(τj), Xj〉)2 +
πk
n
. (4.3)

Denote Â∗ = Âk
∗ as the adaptive estimator. In practice, we suggest one to rank all estima-

tors Âk according to the following rule: 1. pairs with bigger h always have smaller index;

2. if two pairs have the same h, the one with smaller ` has smaller index. Our selection

procedure can be summarized in Algorithm 1:

Algorithm 1: Model Selection Procedure

1. Construct the geometric gridH defined as in (4.2) and compute the candidate set H̃;

2. Equally split the data set (τj, Xj, Yj), j = 1, ..., N into two parts (~n and `n) by

randomly drawing without replacement;

3. For each pair in H̃, construct an estimator Âk defined as in (2.1) using data set ~n;

4. Using the second data set `n to perform the selection rule defined as in (4.3).
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The selection procedure described in Algorithm 1 have several advantages: firstly, it

chooses a global bandwidth instead of a local one; secondly, since our selection procedure

is only based on computations of entries of Âk, no matrix computation is involved in the last

step, which saves a lot of computational cost and can be easily applied to high dimensional

problems; finally, step 3 and 4 can be easily parallelized. The following theorem shows that

the integrated risk of Â∗ measured by L2-norm can be bounded by the smallest one among

all candidates plus an extra term of order n−1 which is negligible.

Theorem 4.1. Under model (1.1), let (τj, Xj, Yj), j = 1, ..., 2n be i.i.d. copies of the

random triplet (τ,X, Y ) with X uniformly distributed in X , τ uniformly distributed in

[0, 1], X and τ are independent, and |Y | ≤ a, a.s. for some constant a > 0; let A be a

matrix valued function satisfying A1, A2, A3, and A4; let {Âk} be a sequence of estimators

constructed from H̃; let Â∗ be the adaptive estimator selected through Algorithm 1. Then

with probability at least 1− 1
nmr

1

m2

∫ 1

0

∥∥Â∗(t)− A(t)
∥∥2

2
dt ≤ 3 min

k

{ 1

m2

∫ 1

0

∥∥Âk(t)− A(t)
∥∥2

2
dt+

πk
n

}
+
C(a)

n
, (4.4)

where C(a) is a constant depending on a.

Recall that Card(H) = O(log n), we can take πk = kmr. Then πk ≤ c1mr log n

uniformly for all k with some numerical constant c1. According to Lepskii’s method that at

least one candidate inH gives the optimal bandwidth associated with the unknown smooth-

ness parameter β, together with the result of Theorem 2.1, the following corollary follows

from Theorem 4.1.

Proof. For any Âk, denote the difference in empirical loss between Âk and A by

rn(Âk, A) : =
1

n

n∑
j=1

(Yj − 〈Âk(τj), Xj〉)2 − 1

n

n∑
j=1

(Yj − 〈A(τj), Xj〉)2 = − 1

n

n∑
j=1

Uj,

31



where Uj = (Yj − 〈A(τj), Xj〉)2 − (Yj − 〈Âk(τj), Xj〉)2. It is easy to check that

Uj = 2(Yj − 〈A(τj), Xj〉)〈Âk(τj)− A(τj), Xj〉 − 〈Âk(τj)− A(τj), Xj〉2. (4.5)

We denote r(Âk, A) := E〈Âk(τ) − A(τ), X〉2. The following concentration inequality

developed by [30] to prove Bernstein’s inequality is key to our proof.

Lemma 2. Let Uj , j = 1, ..., n be independent bounded random variables satisfying |Uj −

EUj| ≤M with h = M/3. Set Ū = n−1
∑n

j=1 Uj . Then for all t > 0

P
{
Ū − EŪ ≥ t

nε
+
nεvar(Ū)

2(1− c)

}
≤ e−t,

with 0 < εh ≤ c < 1.

Firstly, we bound the variance of Uj . Under the assumption that |Y | and |〈A(τ), X〉|

are bounded by a constant a, one can easily check that h = 8a2/3. Given E(Yj|τj, Xj) =

〈A(τj), Xj〉, we know that the covariance between the two terms on the right hand side of

(4.5) is zero. Conditionally on (τ,X), the second order moment of the first term satisfies

4Eσ2
Y |τ,X〈Âk(τj)− A(τj), Xj〉2 ≤ 4a2r(Âk, A).

To see why, one can consider the random variable Ỹ with the distribution P{Ỹ = a} =

P{Ỹ = −a} = 1/2. The variance of Y is always bounded by the variance of Ỹ which

is a2 under the assumption that |Yj| and |〈Âk(τj), Xj〉| are bounded by a constant a > 0.

Similarly, we can get that the variance of the second term conditioned on (τ,X) is also

bounded by 4a2E〈Âk(τj) − A(τj), Xj〉2. As a result, nvar(Ū) ≤ 8a2r(Âk, A). By the

result of Lemma 2, we have for any Âk with probability at least 1− e−t

r(Âk, A)− rn(Âk, A) <
t

nε
+

4a2εr(Âk, A)

1− c
.
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Set t = επk + log 1/δ, we get with probability at least 1− δ/eεπk

(1− α)r(Âk, A) < rn(Âk, A) +
πk
n

+
4a2

(1− c)α

( log 1/δ

n

)
.

where α = 4a2ε/(1− c) < 1. Denote

k̃∗ = arg min
k

{
r(Âk, A) +

πk
n

}
.

By the definition of Â∗, we have with probability at least 1− δ/eεπ̂∗

(1− α)r(Â∗, A) < rn(Âk̃
∗
, A) +

πk̃∗

n
+

4a2

(1− c)α

( log 1/δ

n

)
. (4.6)

where π̂∗ is the penalty terms associated with Â∗.

Now we apply the result of Lemma 2 one more time and set t = log 1/δ, we get with

probability at least 1− δ

rn(Âk̃
∗
, A) ≤ (1 + α)r(Âk̃

∗
, A) +

4a2

(1− c)α
log 1/δ

n
. (4.7)

Apply the union bound of (4.6) and (4.7), we get with probability at least 1− δ(1 + e−επ̂
∗
)

r(Â∗, A) ≤ (1 + α)

(1− α)

(
r(Âk̃

∗
, A) +

πk̃∗

n

)
+

4a2

(1− c)α(1− α)

log 1/δ

n
.

By taking ε = 3/32a2 and c = εh,

r(Â∗, A) ≤ 3
(
r(Âk̃

∗
, A) +

πk̃∗

n

)
+

64a2

3

log 1/δ

n
.

By taking δ = 1/nmr and adjusting the constant, we have with probability at least 1−1/nmr

1

m2

∫ 1

0

∥∥Â∗(t)−A(t)
∥∥2

2
dt ≤ 3 min

k

{ 1

m2

∫ 1

0

∥∥Âk(t)−A(t)
∥∥2

2
dt+

πk
n

}
+C(a)

mr log n

n
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where C(a) is a constant depending on a.

Corollary 4.1. Assume that the conditions of Theorem 4.1 hold with πk = kmr, and

n > mr log n. Then with probability at least 1− 1
nmr−1

1

m2

∫ 1

0

∥∥Â∗(t)− A(t)
∥∥2

2
dt ≤ C(a,Φ, `, L)

(mr log n

n

) 2β
2β+1

(4.8)

where C(a,Φ, `, L) is a constant depending on a, Φ, `, and L.
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CHAPTER 3

SIMULATION RESULTS OF NONPARAMETRIC ESTIMATION OF LOW

RANK MATRIX VALUED FUNCTION

1 An ADMM Algorithm

The alternating direction method of multipliers (ADMM) is a powerful algorithm to solve

convex optimization problems, see a comprehensive introduction in [31]. The application

of ADMM to matrix recovery problems can be found in [32, 33] and the references therein.

Recall that the major optimization problem to solve is

Ŝh = arg
1

nh

n∑
j=1

K
(τj − t0

h

)(
Yj −

〈∑̀
i=0

Sipi

(τj − t0
h

)
, Xj

〉)2

+ ε‖S‖1. (1.1)

where D ⊂ H(`+1)m is a closed subset of block diagonal matrices with Sj ∈ Hm on its

diagonal, and {pi} is a sequence of orthogonal polynomials with nonnegative weight func-

tion K. Such a problem belongs to the standard form of optimization problems considered

in ADMM applications, see [31]. To be more specific, the optimization problem involves

the sum of two functions of the solution, i.e. a loss function and a penalization term. In-

stead of solving the original optimization problem, our ADMM algorithm presented below

introduces a new variable such that the original problem to solve is transformed into the

following one:

Ŝh = arg min
S=S̄ S,S̄∈D

1

nh

n∑
j=1

K
(τj − t0

h

)(
Yj −

〈∑̀
i=0

Sipi

(τj − t0
h

)
, Xj

〉)2

+ ε‖S̄‖1.

(1.2)

Then the corresponding augmented Lagrangian multipliers of function of (1.2) is defined
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as

Ŝh = arg min
S=S̄ S,S̄∈D

1

nh

n∑
j=1

K
(τj − t0

h

)(
Yj −

〈∑̀
i=0

Sipi

(τj − t0
h

)
, Xj

〉)2

+ ε‖S̄‖1 +
ρ

2
‖S − S̄‖2

2 + 〈Z, S − S̄〉.

(1.3)

where ρ > 0 is a constant and Z ∈ D. Our ADMM algorithm is presented in Algorithm 2.

It updates S and S̄ alternatively and the multiplier Z is updated by the difference between

the iterates of S and S̄. Note that in order to update S̄(k), it is equivalent to solve the

following optimization problem:

S̄(k+1) = arg min
S̄∈D

ε‖S̄‖1 +
ρ

2
‖S(k+1) − S̄ +

Z(k)

ρ
‖2

2. (1.4)

It was proved by [9] that the solution to this problem has a simple form which can be

obtained by soft thresholding of singular values of S(k+1) + Z(k)

ρ
as

S̄(k+1) =
∑
j

(σj(S̃)− ε

ρ
)+uj(S̃)vj(S̃)T , (1.5)

where S̃ = S(k+1) + Z(k)

ρ
, x+ = max{x, 0}, and σj(S̃), uj, vj are the singular values, left

and right singular vectors of S̃ respectively.

2 Numerical results

In this section, we present the numerical simulation results of our estimators (1.3) and (2.1),

and simulation results of our model selection procedure in Algorithm 1. The underlying

matrix valued function we create is in Hölder class Σ(β, L) with β = 3/2, L = 24 and rank

constraint rankA(t) ≤ 3. The orthogonal polynomial we choose is Chebyshev polynomials

of the second kind.
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Algorithm 2: ADMM Algorithm
Set up the values of max Iteration and tolerance εtol > 0; Initialize S(0), S̄(0) ∈ D
and Z(0) = 0 ; while k < max Iteration do

S(k+1) = arg min
S∈D

1
nh

n∑
j=1

K
(
τj−t0
h

)(
Yj −

〈 ∑̀
i=0

Sipi

(
τj−t0
h

)
, Xj

〉)2

+ ρ
2
‖S −

S̄(k)‖2
2 + 〈Z(k), S − S̄(k)〉;

S̄(k+1) = arg min
S̄∈D

ε‖S̄‖1 + ρ
2
‖S(k+1) − S̄‖2

2 + 〈Z(k), S(k+1) − S̄〉;

Z(k+1) = Z(k) + ρ(S(k+1) − S̄(k+1));
if ‖S̄(k+1) − S̄(k)‖2

2 ≤ εtol or ‖Z(k+1) − Z(k)‖2
2 ≤ ρ2εtol then

Reaching the tolerance;
end
Return S̄(k+1). k = k + 1;

end
Return S̄(k+1).

In Fig. 3.1 and Fig. 3.2 we plot the pointwise error at t0 = 0.5 and integrated risk

against the iteration number of Algorithm 2. As we can see, our ADMM algorithm con-

verges really fast when ρ is small. We should also mention that according to our experi-

ments, smaller ρ value gives faster convergence speed typically. But it doesn’t mean that

smaller ρ is always better. There is an optimal value of ρ that gives the best accuracy. One

needs to tune this parameter in order to get the best accuracy and fairly good convergence

speed.

Figure 3.1: Pointwise risk convergence of
ADMM Algorithm

Figure 3.2: Integrated risk convergence of
ADMM Algorithm
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2.1 Pointwise estimation simulation

By plug in the optimal bandwidth in Theorem 1.1, we run our Algorithm 2 to solve the

point estimator at t0 = 0.5 with m = 150. Fig. 3.3 - Fig. 3.10 show different levels of

recovery for the true underlying data matrix. As we can see, the recovery quality increases

evidently as sample size n grows.

Figure 3.3: n = 1600 Figure 3.4: n = 6400

Figure 3.5: n = 25600 Figure 3.6: n = 102400

In table 3.1 and table 3.2 we display the comparison of pointwise risk measured by

1
m2‖Â(t0)−A(t0)‖2

2 between our theoretical bounds proved in (1.4), (3.1) and our simula-
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Figure 3.7: n = 409600 Figure 3.8: n = 1638400

Figure 3.9: n = 3276800 Figure 3.10: True data

tion results. The data is plotted in Fig. 3.11. As we can see, the simulation results match

well with the minimax lower bound (3.1).

Sample size 800 1600 3200 6400 12800 25600
Theoretical upper bound 19.1780 11.4033 6.7805 4.0317 2.3973 1.4254
Minimax lower bound 5.1962 3.0897 1.8371 1.0924 0.6495 0.3862
Experimental error rate 7.2122 4.4569 1.9499 0.8600 0.5302 0.4329

Table 3.1: Pointwise error rate comparison with different sample size n
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Sample size 51200 102400 204800 409600 819200 1638400
Theoretical upper bound 0.8476 0.5040 0.2997 0.1782 0.1059 0.0630
Minimax lower bound 0.2296 0.1365 0.0812 0.0483 0.0287 0.0171
Experimental error rate 0.2518 0.1156 0.0584 0.0466 0.0354 0.0194

Table 3.2: Pointwise error rate comparison with different sample size n

Figure 3.11: The point risk comparison at t0 = 0.5

2.2 Integrated risk estimation simulation

In table 3.3 and table 3.4 we display the comparison of integrated risk measured by the L2-

norm between the theoretical bounds proved in (2.2), (3.9) and our simulation results. Since

β = 3/2 and ` = 1, we use piecewise linear polynomials to approximate the underlying

function. The data is plotted in Fig. 3.11. As we can see, the simulation results match well

with the minimax lower bound (3.9).
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Sample size 800 1600 3200 6400 12800 25600
Theoretical upper bound 1683.1 1000.8 595.1 353.8 210.4 125.1
Minimax lower bound 456.0163 271.1489 161.2261 95.8656 57.0020 33.8936
Experimental error rate 457.7443 293.3489 170.4948 106.8291 57.8282 37.2912

Table 3.3: Integrated error rate comparison with different sample size n

Sample size 51200 102400 204800 409600 819200 1638400
Theoretical upper bound 74.4 44.2 26.3 15.6 9.3 5.5
Minimax lower bound 20.1533 11.9832 7.1253 4.2367 2.5192 1.4979
Experimental error rate 19.1367 11.4798 8.0132 4.0110 2.9849 1.5030

Table 3.4: Integrated error rate comparison with different sample size n

Figure 3.12: The integrated risk comparison with different sample size n

2.3 Simulation of model selection

Recall that in section 4, we emphasized that choosing a good bandwidth h is crucial to get

better estimation. We developed Algorithm 1 to choose the optimal bandwidth. We imple-

ment Algorithm 1 in this section, and perform simulation with m = 90 and n = 3200000.

We choose hmax = 1.0 and hmin = 1/
√
n to construct the geometric gridH as in (4.2). We
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display the simulation results in table 3.5 and 3.6. To be more specific, we computed each

global estimator as in (2.1) with each bandwidth on the H. The corresponding integrated

risks measured by L2-norm are displayed in second row and our model selection criterion

computed as in (4.3) are displayed in the third row. The smaller value of the third row, the

better. The data are plotted in Fig. 3.13. As we can see, our selector selects ĥ = 0.0853

with the smallest criterion value of 0.3490. The corresponding integrated risk is also the

smallest among all candidates on the grid.

Bandwidth on gridH 1.0000 0.5000 0.2602 0.1461
Integrated risk 68.1239 45.0275 1.0207 0.0657

Model selection criterion 5.8238 4.7442 1.0100 0.3862

Table 3.5: Model Selection

Bandwidth on gridH 0.0853 0.0510 0.0311 0.0192 0.0121
Integrated risk 0.0333 0.04371 0.0538 0.0663 0.0807

Model selection criterion 0.3490 0.4821 0.6741 0.9771 1.3199

Table 3.6: Model Selection
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Figure 3.13: Model Selection on GridH
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CHAPTER 4

THE `∞ PERTURBATION OF HOSVD AND LOW RANK TENSOR DENOISING

1 Introduction

A tensor is a mutliarray of more than 2 dimensions, which can be viewed as a higher order

generalization of matrices. Data of tensor types has been widely available in many fields,

such as image and video processing (see [34], [35], [36], [37], [38]); latent variable mod-

eling (see [39], [40], [41]); genomic signal processing ([42], [43] and [44]) and references

therein. It is demanding to handle these datasets in order to take the most advantages of

the tensor structures. The task is challenging due to the highly non-convexity of tensor re-

lated optimization problems. For instance, computing the tensor operator norm is generally

NP-hard while it can be implemented fast for matrices, see [45].

The higher order singular value decomposition (HOSVD) is one machinery to deal with

tensors which generalizes the matrix SVD to higher order tensors, see [46],[47], [48], [49]

and [50]. The conceptual simplicity and computational efficiency make HOSVD popular

and successful on several applications including face recognition (see [38]), genomic signal

processing (see [43]) and more examples in a survey paper [51]. Basically, the HOSVD

unfolds a higher order tensor into matrices and treat it with standard matrix techniques to

obtain the principal singular subspaces in each dimension, see more details in Section 2.

Although HOSVD is appealing, there are several fundamental theoretical mysteries yet to

be uncovered.

One important problem is to study the perturbation of HOSVD when stochastic noise

is observed. The difficulty comes from both methodological and theoretical aspects. The

computation of HOSVD is essentially reduced to matrix SVD which can be achieved effi-

ciently. This naive estimator is actually statistically suboptimal and further power iterations
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can lead to a minimax optimal estimator, see [52], [53], [54], [55] and references therein.

Another intriguing phenomenon is on the signal-to-noise ratio (SNR) exhibiting distinct

computational and statistical phase transitions, which do not exist for matrices. In partic-

ular, there is a gap on SNR between statistical optimality and computational optimality

for HOSVD, see [53]. For introductory simplicity ∗, we consider the third-order tensors

where an unknown tensor A ∈ Rd×d×d with multilinear ranks (r, r, r) is planted in a noisy

observation Y with

Y = A + Z ∈ Rd×d×d

with Z(i, j, k) ∼ N (0, σ2) being i.i.d. for i, j, k ∈ [d] and [d] := {1, . . . , d}. The signal

strength Λ(A) is defined as the smallest nonzero singular values of matricizations of A,

see definitions in Section 3.3. Let U,V,W ∈ Rd×r denote the singular vectors of A in

the corresponding dimensions. It was proved (see [53] and [55]) that if the signal strength

Λ(A) ≥ D1σd
3/4 for a large enough constant D1 > 0, the following bound holds

r−1/2 max
{∥∥ÛÛ> −UU>

∥∥
`2
,
∥∥V̂V̂> −VV>

∥∥
`2
,
∥∥ŴŴ> −WW>∥∥

`2

}
= Op

(
σd1/2

Λ(A)
+

σd3/2

Λ2(A)

)
,

where Û, V̂,Ŵ represent the naive SVD obtained from noisy tensor Y and ‖ · ‖`2 denotes

the Euclidean norm. Power iterations (also called higher order orthogonal iterations, see

[56]) can improve the estimate (denoted by Ũ, Ṽ,W̃) to

r−1/2 max
{∥∥ŨŨ> −UU>

∥∥
`2
,
∥∥ṼṼ> −VV>

∥∥
`2
,
∥∥W̃W̃>−WW>∥∥

`2

}
= Op

(
σd1/2

Λ(A)

)
, (1.1)

which is minimax optimal (see [53]). Moreover, it is demonstrated in [53] via an assump-

∗Results of this paper cover the general case where A is d1 × d2 × d3 with multilinear ranks (r1, r2, r3),
and can be easily generalized to higher order tensors.
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tion on hypergraphical planted clique detection that if Λ(A) = o
(
σd3/4

)
, then all polyno-

mial time algorithms produce trivial estimates of U,V,W.

This work is focused on the estimation of linear forms of tensor singular vectors. More

specifically, consider singular vectors U =
(
u1, . . . ,ur

)
∈ Rd×r and our goal is to estimate

〈uj,x〉 for fixed x ∈ Rd and j = 1, . . . , r. By choosing x over the canonical basis vectors

in Rd, we end up with an estimation of uj whose componentwise perturbation bound can

be attained. Unlike the `2-norm perturbation bound, the `∞ bound can characterize the

entrywise sign consistency and entrywise significance (i.e. entrywise magnitude) of singu-

lar vectors. The componentwise signs of singular vectors have been utilized in numerous

applications, such as community detection (see [57], [58], [59] and [60]). The entrywise

significance is useful in submatrix localizations, see [61], [62] and references therein. We

show in Section 4 that `∞ bounds require a weaker condition than `2 bounds to guarantee

exact clustering in high dimensions. Furthermore, it enables us to construct a low rank

estimator of A with a sharp bound on ‖Â −A‖`∞ . To the best of our knowledge, ours is

the first result concerning the low rank tensor denoising with sharp `∞ bound.

To better explain our results, Suppose that A is an orthogonally decomposable third or-

der tensor with (in particular, the CP decomposition of orthogonally decomposable tensors)

A =
r∑

k=1

λk
(
uk ⊗ vk ⊗wk

)
, λ1 ≥ . . . ≥ λr > 0 (1.2)

where U = (u1, . . . ,ur),V = (v1, . . . ,vr) and W = (w1, . . . ,wr) are d× r orthonormal

matrices. The k-th eigengap is written as ḡk
(
M1(A)

)
= ḡk

(
M2(A)

)
= ḡk

(
M3(A)

)
=

min
(
λk−1−λk, λk−λk+1

)
whereMj(A) represents the matricization (see Section 2) and

we preset λ0 = +∞ and λr+1 = 0. We show that if ḡk
(
M1(A)M>

1 (A)
)
≥ D1

(
σλ1d

1/2 +

σ2d3/2
)
, the following bound holds for any x ∈ Rd,

∣∣∣〈ûk,x〉 − (1 + bk)
1/2〈uk,x〉

∣∣∣ = Op

(
‖x‖`2

λ1σ + dσ2

ḡk
(
M1(A)M>

1 (A)
)) = Op

(
‖x‖`2
d1/2

)
.
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where bk ∈ [−1/2, 0] is an absolute constant which does not depend on x.

If r = 1 (rank one spiked tensor PCA model, see [52]) such that Λ(A) = ḡ1

(
M1(A)

)
=

λ1, we get

∣∣∣〈û1,x〉 − (1 + b1)1/2〈u1,x〉
∣∣∣ = Op

(
σ

Λ(A)
+

σ2d

Λ2(A)

)
‖x‖`2 .

By taking x over the canonical basis vectors in Rd, the above fact implies that

∥∥û1 − (1 + b1)1/2u1

∥∥
`∞

= Op

(( log d

d

)1/2
)

under the eigengap condition λ1 ≥ D1σd
3/4 which is a standard requirement in tensor PCA

†. Moreover, a low rank estimator (denoted by Â) is constructed under the same conditions

such that

‖Â−A‖`∞ = Op

((σ2d

λ1

+ σ
)(
‖u1‖`∞‖v1‖`∞ + ‖u1‖`∞‖w1‖`∞ + ‖v1‖`∞‖w1‖`∞

))

implying that the `∞ bound is determined by the coherence max
{
‖u1‖`∞ , ‖v1‖`∞ , ‖w1‖`∞

}
.

Our main contribution is on the theoretical front. The HOSVD is essentially the stan-

dard SVD computed on an unbalanced matrix where the column size is much larger than

the row size. The perturbation tools such as Wedin’s sin Θ theorem ([64]) characterize the

`2 bounds through the larger dimension, even when the left singular space lies in a low

dimensional space. At the high level, the HOSVD is connected to the one-sided spectral

analysis, see [65], [66] and references therein, which provide sharp perturbation bounds in

`2-norm. There are recent bounds (see [67] and [68]) in `∞-norm developed under addi-

tional constraint (incoherent singular spaces) and structural noise (sparse noise). To obtain

a sharp `∞-norm bound, we borrow the instruments invented by [69] and extensively ap-

plied in [63]. Our framework is built upon a second order method of estimating the singular

†We shall point out that a similar result on matrix SVD has appeared in [63] which is suboptimal for
tensors. Indeed, the result in [63] is established under the eigengap condition λ1 ≥ D1σd.
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subspaces, which improves the eigengap requirement than the first order method. Similar

techniques have been proposed for solving tensor completion ([70]) and tensor PCA ([55]).

The success of this seemingly natural treatment hinges upon delicate dealing with the cor-

relations among higher order terms. We benefit from these `∞-norm spectral bound by

proposing a low rank estimator for tensor denoising such that entrywise perturbation is

guaranteed through the tensor incoherence.

We organize this chapter as follows. Tensor notations and preliminaries on HOSVD

are explained in Section 2. Our main theoretical contributions are presented in Section 3

which includes the `∞-norm bound on singular vector perturbation and the accuracy of

a low rank tensor denoising estimator. In Section 4, we apply our theoretical results on

applications including high dimensional clustering and sub-tensor localizations to manifest

the advantages of utilizing `∞ bounds. The proofs are provided in Section 5.

2 Preliminaries on Tensor and HOSVD

2.1 Notations

We first review some notations which will be used through the paper. We use boldfaced

upper-case letters to denote tensors or matrices, and use the same letter in normal font

with indices to denote its entries. We use boldfaced lower-case letters to represent vectors,

and the same letter in normal font with indices to represent its entries. For notationally

simplicity, our main context is focused on third-order tensors, while our results can be

easily generalized to higher order tensors.

Given a third-order tensor A ∈ Rd1×d2×d3 , define a linear mappingM1 : Rd1×d2×d3 7→

Rd1×(d2d3) such that

M1(A)
(
i1, (i2 − 1)d3 + i3

)
= A(i1, i2, i3), i1 ∈ [d1], i2 ∈ [d3], i3 ∈ [d3]

which is conventionally called the unfolding (or matricization) of tensor A. The columns
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of matrix M1(A) are called the mode-1 fibers of A. The corresponding matricizations

M2(A) andM3(A) can be defined through a similar fashion. The multilinear ranks of A

are then defined by:

r1(A) := rank
(
M1(A)

)
, r2(A) := rank

(
M2(A)

)
, r3(A) := rank

(
M3(A)

)
Note that r1(A), r2(A), r3(A) are unnecessarily equal with each other in general. We write

r(A) :=
(
r1(A), r2(A), r3(A)

)
.

The marginal product ×1 : Rr1×r2×r3 × Rd1×r1 7→ Rd1×r2×r3 is given by

C×1 U =

( r1∑
j1=1

C(j1, j2, j3)U(i1, j1)

)
i1∈[d1],j2∈[r2],j3∈[r3]

,

and×2 and×3 are defined similarly. Therefore, we write the multilinear product of tensors

C ∈ Rr1×r2×r3 ,U ∈ Rd1×r1 ,V ∈ Rd2×r2 and W ∈ Rd3×r3 as

C · (U,V,W) = C×1 U×2 V ×3 W ∈ Rd1×d2×d3 .

We use ‖ · ‖ to denote the operator norm of matrices and ‖ · ‖`2 and ‖ · ‖`∞ to denote `2 and

`∞ norms of vectors, or vectorized matrices and tensors.

2.2 HOSVD and Eigengaps

For a tensor A ∈ Rd1×d2×d3 with multilinear ranks r(A) =
(
r1(A), r2(A), r3(A)

)
, let U ∈

Rd1×r1(A),V ∈ Rd2×r2(A) and W ∈ Rd3×r3(A) be the left singular vectors ofM1(A),M2(A)

and M3(A) respectively, which can be computed efficiently via matricization followed

by thin singular value decomposition. The higher order singular value decomposition

(HOSVD) refers to the decomposition

A = C×1 U×2 V ×3 W (2.1)
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where the r1(A)×r2(A)×r3(A) core tensor C is obtained by C := A×1U
>×2V

>×3W
>.

Suppose that a noisy version of A is observed:

Y = A + Z

where Z ∈ Rd1×d2×d3 is a noise tensor with i.i.d. entries satisfying Z(i, j, k) ∼ N (0, σ2).

By observing Y, the goal is to estimate U,V and W. An immediate solution is to compute

HOSVD of Y. To this end, let Û ∈ Rd1×r1 , V̂ ∈ Rd2×r2 ,Ŵ ∈ Rd3×r3 be the corresponding

top singular vectors of M1(Y),M2(Y) and M3(Y). The key factor characterizing the

perturbation of Û, V̂ and Ŵ is the so-called eigengap.

Observe that the computing of Û is essentially via matrix SVD onM1(A). It suffices

to consider eigengaps for matrices. Given a rank r matrix M ∈ Rm1×m2 with SVD:

M =
r∑

k=1

λk
(
gk ⊗ hk

)
where singular values λ1 ≥ λ2 ≥ . . . ≥ λr > 0 and {g1, . . . ,gr} are the corresponding left

singular vectors and {h1, . . . ,hr} are its corresponding right singular vectors. Introduce

further λ0 = +∞ and λr+1 = 0. The k-th eigengap of matrix M is then defined by

ḡk(M) := min
(
λk − λk+1, λk−1 − λk

)
, ∀ 1 ≤ k ≤ r.

Recall that U, Û ∈ Rd1×r1 are the top-r1 left singular vectors of M1(A) and M1(Y)

respectively. By Wedin’s sin Θ theorem ([64]),

‖ÛÛ> −UU>‖ = O

(
‖M1(Z)‖

ḡr1
(
M1(A)M>

1 (A)
)), (2.2)

which is generally suboptimal especially when M1(Z) ∈ Rd1×(d2d3) is unbalanced such

that d2d3 � d1. Sharper bounds in `2-norm concerning one sided perturbation have been
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derived in [65] and [66]. In this paper, we focus on the perturbation bound in `∞-norm.

To this end, write U =
(
u1, . . . ,ur

)
and Û =

(
û1, . . . , ûr

)
. We are interested in the per-

turbation of linear forms 〈ûk,x〉 for x ∈ Rd1 . Similar results can be obtained for singular

vectors V̂ and Ŵ.

3 Main Results

3.1 Second Order Spectral Analysis

The `∞-norm spectral perturbation for balanced matrices has been developed in [63]. Re-

call that uk denotes the k-th left singular vector of M1(A) and ûk denotes the k-th left

singular vector of M1(Y) where M1(A) is of size d1 × (d2d3). The operator norm

‖M1(Z)‖ is determined by the larger dimension (d1 ∨ d2d3), see Section 5. It turns out

that the machinery in [63] is suboptimal meaning that the eigengap requirement becomes

ḡk
(
M1(A)M>

1 (A)
)
≥ D1σ

(
d1∨ d2d3

)1/2, which shall be unnecessarily strong in view of

the recent results in [66], [53] and [55].

In this paper, we conduct a second order spectral analysis for Û. Basically, the top left

singular vectors ofM1(Y) are also the top eigenvectors ofM1(Y)M>
1 (Y). The second

order method seeks the spectral perturbation on M1(Y)M>
1 (Y) instead of on M1(Y).

Clearly,

M1(Y)M>
1 (Y) =M1(A)M>

1 (A) + Γ ∈ Rd1×d1

where Γ =M1(A)M>
1 (Z)+M1(Z)M>

1 (A)+M1(Z)M>
1 (Z). Note that U are the lead-

ing eigenvectors ofM1(A)M>
1 (A) and Û are the top-r1 eigenvectors ofM1(Y)M>

1 (Y).

Moreover, the following fact is obvious:

ḡr1

(
M1(A)M>

1 (A)
)
≥ ḡ2

r1

(
M1(A)

)
.

The advantage of our method comes from the observation that even though E
∥∥M1(Z)M>

1 (Z)
∥∥
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is of the order σ2(d1 ∨ d2d3), the symmetric matrix M1(Z)M>
1 (Z) is concentrated at

d2d3σ
2Id1 such that (see more details in Section 5)

∥∥M1(Z)M>
1 (Z)− σ2d2d3Id1

∥∥ = Op

(
σ2
(
d1d2d3

)1/2
)
.

Note that subtracting by an identity matrix does not change the eigen-structure. The sec-

ond order method introduces the additional term M1(A)M>
1 (Z) whose operator norm

is bounded by D1σ
√
d1

∥∥M1(A)
∥∥ with high probability, which creates a constraint on the

condition number ofM1(A). Moreover, in order to characterize a sharp perturbation bound

of linear forms 〈ûk,x〉, we need to pay more attention to dealing with correlations among

the higher order terms than the first order method in [63].

3.2 Perturbation of Linear Forms of Singular Vectors

In this section, we present our main theorem characterizing the perturbation of linear forms

〈ûk,x〉 for any x ∈ Rd1 , where ûk is the k-th left singular vector ofM1(Y). Our results

have similar implications as the previous work [63], meaning that the bias Eûk−uk is well

aligned with uk. Therefore, by correcting the bias term, we are able to obtain a sharper

estimation of linear forms 〈uk,x〉. To this end, denote the condition number of the matrix

M1(A) by

κ
(
M1(A)

)
=
λmax

(
M1(A)

)
λmin

(
M1(A)

)
where λmax(·) and λmin(·) return the largest and smallest nonzero singular values.

Theorem 3.1. Let‡ M := M1(A) and δ(d1, d2, d3) = σd
1/2
1 ‖M‖ + σ2(d1d2d3)1/2 and

suppose d2d3e
−d1/2 ≤ 1. There exist absolute constantsD1, D2 > 0 such that the following

fact holds. Let uk be M’s k-th left singular vector with multiplicity 1. If ḡk
(
MM>) ≥

D1δ(d1, d2, d3), there exist a constant bk ∈ [−1/2, 0] with |bk| ≤
√

2δ(d1,d2,d3)
ḡk(MM>)

such that for

‡Observe that if we set d3 = 1 and consider the case with d1 � d2, then Theorem 3.1 elaborates the
one-sided spectral perturbation in `∞-norm for unbalanced (or fat) matrices.
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any x, the following bound holds with probability at least 1− e−t,

∣∣〈ûk,x〉 − (1 + bk)
1/2〈uk,x〉

∣∣
≤D2

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))
‖x‖`2 (3.1)

for all log 8 ≤ t ≤ d1. In particular, if x = ±uk, then with the same probability,

∣∣|〈ûk,uk〉| − 1
∣∣ ≤ ∣∣√1 + bk − 1

∣∣
+D2

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))
.

It is easy to check that the condition ḡk
(
M1(A)M>

1 (A)
)
≥ D1δ(d1, d2, d3) holds

whenever

ḡk
(
M1(A)

)
≥ D1

(
σ(d1d2d3)1/4 + σd

1/2
1 κ

(
M1(A)

))
.

If κ
(
M1(A)

)
≤
(
d2d3
d1

)1/4, the above bound becomes ḡk
(
M1(A)

)
≥ D1σ(d1d2d3)1/4

which is a standard requirement in tensor SVD or PCA, see [53], [54] and [52]. By taking

x over the standard basis vectors in Rd1 and choosing t ≥ D3 log d1, we end up with a

`∞-norm perturbation bound for empirical singular vector ûk.

Corollary 3.1. Under the conditions in Theorem 3.1, there exists a universal constantD1 >

0 such that the following bound holds with probability at least 1− 1
d1

,

∥∥ûk − (1 + bk)
1/2uk

∥∥
`∞
≤ D1

(( log d1

d1

)1/2

+
( d1

d2d3

)1/2
)
.

If d1 � d2 � d3 � d, we obtain

P
(∥∥ûk − (1 + bk)

1/2uk
∥∥
`∞
≥ D1

( log d

d

)1/2)
≤ 1

d

which has an analogous form to the perturbation bound in [63] implying a famous delo-
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calization phenomenon in random matrix theory, see [71] and [72] and references therein.

The bias bk is usually unknown and we borrow the idea in [63] to estimate bk based on two

independent samples, which happens in the application of tensor decomposition for gene

expression, usually multiple independent copies are available, see [73].

Suppose that two independent noisy version of A ∈ Rd1×d2×d3 are observed with

Y(1) = A + Z(1) and Y(2) = A + Z(2) where Z(1) and Z(2) have i.i.d. centered Gaus-

sian entries with variance σ2. Let û
(1)
k and û

(2)
k denote the k-th left singular vector of

M1

(
Y(1)

)
and M1

(
Y(2)

)
respectively. The signs of û

(1)
k and û

(2)
k are chosen such that

〈û(1)
k , û

(2)
k 〉 ≥ 0. Define the estimator of bk by

b̂k := 〈û(1)
k , û

(2)
k 〉 − 1.

Define the scaled version of empirical singular vector ũk := ûk
(1+b̂k)1/2

, which is not neces-

sarily a unit vector.

Theorem 3.2. Under the assumptions in Theorem 3.1, there exists an absolute constant

D1 > 0 such that for any x ∈ Rd1 , the follow bound holds with probability at least 1− e−t

for all t ≥ 0,

∣∣̂bk − bk∣∣ ≤ D1

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))

and

∣∣〈ũk − uk,x
〉∣∣ ≤ D1

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))
‖x‖`2

where M =M1(A).

Remark 1. If d/2 ≤ mink dk ≤ maxk dk ≤ 2d, we get

P
(
‖ũk − uk‖`∞ ≥ D1

( log d

d

)1/2)
≤ 1

d
.
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Moreover, if rank(A) = (1, 1, 1), we can write ‖ũ1 − u1‖`∞ = Op

(
σ log1/2 d

Λ(A)
+ σ2d log1/2 d

Λ2(A)

)
where Λ(A) = λmin

(
M1(A)

)
. Note that ‖ũ1 − u1‖`2 = Op

(
σd1/2

Λ(A)
+ σ2d3/2

Λ2(A)

)
, see [53].

Therefore, our one-sided SVD perturbation bound in `∞-norm for a matrix M ∈ Rd1×d2 is

optimal if it is ultra-fat such that d2
1 ≤ d2.

3.3 Low Rank Tensor Denoising `∞ Bound

In this section, we consider low rank estimate of A through projection of Y. Let Ũ =

(ũ1, . . . , ũr1) ∈ Rd1×r1 be scaled singular vectors each of which is computed as in Theo-

rem 3.2. Similarly, let Ṽ ∈ Rd2×r2 and W̃ ∈ Rd3×r3 be the corresponding scaled singular

vectors computed fromM2(Y) andM3(Y). Define the low rank estimate

Ã := Y ×1 PŨ ×2 PṼ ×3 PW̃

where PŨ represents the scaled projector PŨ := ŨŨ>. Clearly, rank(Ã) = (r1, r2, r3)

which serves as a low rank estimate of A. We characterize the entrywise accuracy of Ã,

namely, the upper bound of ‖Ã − A‖`∞ in terms of the coherence of U,V and W. Our

‖Ã−A‖`∞ bound relies on the simultaneous `∞-norm perturbation bounds on ũk, ṽk, w̃k.

We shall need the following conditions on the eigengaps: for a large enough constant D1 >

0,

ḡk
(
M1(A)M>

1 (A)
)
≥ D1

(
σd

1/2
1 Λ(A) + σ2(d1d2d3)1/2

)
, 1 ≤ k ≤ r1, (3.2)

ḡk
(
M2(A)M>

2 (A)
)
≥ D1

(
σd

1/2
2 Λ(A) + σ2(d1d2d3)1/2

)
, 1 ≤ k ≤ r2, (3.3)

ḡk
(
M3(A)M>

3 (A)
)
≥ D1

(
σd

1/2
3 Λ(A) + σ2(d1d2d3)1/2

)
, 1 ≤ k ≤ r3, (3.4)
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where

Λ(A) := max
{
λmax

(
M1(A)

)
, λmax

(
M2(A)

)
, λmax

(
M3(A)

)}
.

Similarly, define

Λ(A) := min
{
λmin

(
M1(A)

)
, λmin

(
M2(A)

)
, λmin

(
M3(A)

)}

and the overall eigengap

ḡmin

(
A
)

:= min

{
ḡ

1/2
k1

(
M1(A)M>

1 (A)
)
, ḡ

1/2
k2

(
M2(A)M>

2 (A)
)
, ḡ

1/2
k3

(
M3(A)M>

3 (A)
)

, 1 ≤ k1 ≤ r1, 1 ≤ k2 ≤ r2, 1 ≤ k3 ≤ r3

}
.

By definition, it is clear that Λ(A) ≥ ḡmin(A).

Theorem 3.3. Suppose conditions (3.2) (3.3) (3.4) hold and assume that for all i ∈ [d1], j ∈

[d2], k ∈ [d3],

‖U>ei‖`2 ≤ µU

√
r1

d1

, ‖V>ej‖`2 ≤ µV

√
r2

d2

, ‖W>ek‖`2 ≤ µW

√
r3

d3

for some constants µU, µV, µW ≥ 0. Suppose that d
2
≤ min1≤k≤3 dk ≤ max1≤k≤3 dk ≤ 2d

and r
2
≤ min1≤k≤3 rk ≤ max1≤k≤3 rk ≤ 2r. There exists an absolute constant D2 > 0

such that, with probability at least 1− 1
d
,

∥∥Ã−A
∥∥
`∞

≤ D2σr
3

(
κ̃(A)σ

ḡmin(A)
+
κ̃2(A)

d

)(
µUµV + µUµW + µVµW

)
log3/2 d

where κ̃(A) = Λ(A)/ḡmin(A).

Remark 2. To highlight the contribution of Theorem 3.3, let r = O(1) and κ̃(A) = O(1).

Note that if the coherence constants µU, µV, µW = d( 3
4
−ε)/2 for ε ∈ (0, 3/4), i.e., U,V,W
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can be almost spiked, under the minimal eigengap ḡmin(A) & σd3/4, then

‖Ã−A‖`∞ = Op

( σ
dε

log3/2 d
)

It worths to point out that the minimax optimal bound of estimating A in `2-norm is

O
(
σd1/2

)
, see [53]. Theorem 3.3 is more interesting when A is incoherent such that

µU, µV, µW = O(1). We conclude that

‖Ã−A‖`∞ = Op

(( σ2

ḡmin(A)
+
σ

d

)
log3/2 d

)
= Op

( σ

d3/4
log3/2 d

)
.

4 Applications

In this section, we review two applications of `∞-norm. It is interesting to observe that it is

unnecessary to estimate the bias bk in these applications.

4.1 High Dimensional Clustering

Many statistical and machine learning tasks are associated with clustering high dimen-

sional data, see [74], [75], [76], [77], [78] and references therein. We consider a two-class

Gaussian mixture model such that each data point yi ∈ Rp can be represented by

yi = −`iβ + (1− `i)β + εi ∈ Rp

where the associated label `i ∈ {0, 1} for i = 1, 2, . . . , n is unknown and the noise vector

εi ∼ N (0, Ip). The vector β ∈ Rp is unknown with p� n.

Given the data matrix

Y =
(
y1, . . . ,yn

)> ∈ Rn×p,

the goal is to conduct bi-clustering. Let nk := Card
(
{1 ≤ i ≤ n : `i = k}

)
for k = 0, 1

such that n0 + n1 = n. Observe that EY has rank 1 and its leading left singular vector
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u ∈ Rn with

u(i) =
1− `i
n1/2

− `i
n1/2

, 1 ≤ i ≤ n.

The signs of u immediately produce the cluster membership. Moreover, the leading sin-

gular value of EY is n1/2‖β‖`2 . Let û denotes the leading left singular vector of Y. By

Corollary 3.1, if ‖β‖`2 ≥ D1

(
1 ∨ (p/n)1/4

)
such that |(1 + bk)

−1/2 − 1| ≤ 1/2, then

P
(∥∥û− (1 + bk)

1/2u
∥∥
`∞
≤ D2

( 1

‖β‖`2
+

(p/n)1/2

‖β‖2
`2

)( 1

‖β‖2
`2

+

√
log n

n

))
≥ 1− 1

n
.

On this event, if ‖β‖`2 ≥ D1

(
n1/6 ∨ p1/8 ∨

(
p log(n)/n

)1/4
)

‖û− u‖`∞ ≤ ‖û− (1 + bk)
1/2u‖`∞ +

∣∣(1 + bk)
−1/2 − 1

∣∣‖u‖`∞
≤ ‖û− (1 + bk)

1/2u‖`∞ +
1

2n1/2
≤ 3

4n1/2

implying that if `i = `j , then sign
(
û(i)

)
= sign

(
û(j)

)
for all 1 ≤ i, j ≤ n. The above

analysis also implies that it is unnecessary to estimate bk in this application, since scaling

will not change the entrywise signs. Therefore, in order to guarantee exact clustering, the

`∞ bound requires

‖β‖`2 ≥ D1

(
n1/6 ∨ p1/8 ∨

(
p log(n)/n

)1/4
)
,

while the `2 bound in [66] requires

‖β‖`2 ≥ D1

(
n1/2 ∨ p1/4 ∨ (p/n)1/4

)
for exact clustering.

Remark 3. The above framework can be directly generalized to Gaussian mixture model

with k-clusters. Suppose that the j-th cluster has mean vector βj and size nj , then without
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loss of generality, the data matrix Y = M + Z

M =
(
β1, · · · ,β1︸ ︷︷ ︸

n1

, · · · ,βj, · · · ,βj︸ ︷︷ ︸
nj

, · · · ,βk, · · · ,βk︸ ︷︷ ︸
nk

)> ∈ RN×p

with N =
∑k

j=1 nj and Z ∈ RN×p having i.i.d. standard Gaussian entries. Observe that

rank(M) ≤ k, it suffices to consider the top-k left singular vectors of M. However, it

requires nontrivial effort to investigate the eigengaps of M without further assumptions

on {βj}kj=1. In the case that nj = n and β1, . . . ,βk are mutually orthogonal such that

‖β1‖`2 ≥ . . . ≥ ‖βk‖`2 , then M’s top-k singular values are λj =
√
nj‖βj‖`2 , 1 ≤ j ≤

k. Clearly, the non-zero entries of M’s top-k left singular vectors provide the cluster-

ing membership. By Theorem 3.1, if ∆j ≥ C1

√
k‖β1‖`2 + C2(kp/n)1/2 where ∆j =

min{
(
‖βj‖2

`2
− ‖βj+1‖2

`2

)
,
(
‖βj−1‖2

`2
− ‖βj‖2

`2

)
}, then

‖ûj −
√

1 + bjuj‖`∞ = Op

((‖β1‖`2
∆j

+
(p/n)1/2

∆j

)(k3/2

∆j

+

√
k log n

n

))

for all 1 ≤ j ≤ k.

4.2 Subtensor Localization

In gene expression association analysis (see [73], [79], [80] and [81]) and planted clique

detection (see [82], [83] and [84]), the goal is equivalent to localizing a sub-tensor whose

entries are statistically more significant than the others. One simple model characterizing

this type of tensor data is as

Y = λ1C1 ⊗ 1C2 ⊗ 1C3 + Z ∈ Rd1×d2×d3

with Ck = ∪bkj=1C
(j)
k ⊂ [dk] where

{
C

(1)
k , . . . , C

(bk)
k

}
are disjoint subsets of [dk] for k =

1, 2, 3, i.e., there are bk dense blocks in the k-th direction. Then, in total, there are b1b2b3

dense blocks in EY. The vector 1Ck ∈ Rpk is a zero-or-one vector whose entry equals
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1 only when the index belongs to Ck. The noise tensor Z has i.i.d. entries such that

Z(i, j, k) ∼ N (0, 1). Given the noisy observation of Y, the goal is to localize the unknown

subsets {C(j)
1 }b1j=1, {C

(j)
2 }b2j=1 and {C(j)

3 }
(b3)
j=1. The appealing scenario is λ = O(1), since

otherwise the signal is so strong that the problem can be easily solved by just looking at

each entry. The tensor EY has rank 1 with leading singular value λ|C1|1/2|C2|1/2|C3|1/2

and corresponding singular vectors

u =
1

|C1|1/2
1C1 , v =

1

|C2|1/2
1C2 and w =

1

|C3|1/2
1C3 ,

where |C| denotes the cardinality of C. By Theorem 3.1, if λ ≥ D1
(d1d2d3)1/4

|C1|1/2|C2|1/2|C3|1/2
for

a large enough constant D1 > 0, then with probability at least 1 − 1
dmax

where dmax :=

(d1 ∨ d2 ∨ d3) and we assume dmax ≤ D1(d1d2d3)1/2,

‖û− (1 + b1)1/2u‖`∞

≤ D1

λ|C1|1/2|C2|1/2|C3|1/2
+

D1(d2d3)1/2

λ2|C1||C2||C3|
+

D1d1

λ2|C1||C2||C3|

(
(d1d2d3)1/2

λ2|C1||C2||C3|

)
.

≤ D1

(
1

d
1/2
1

+
( d1

d2d3

)1/2
)
. (4.1)

If we let Ĉ1 denote the locations of entries of û whose magnitudes are among the |C1|

largest, it is straightforward to see that Ĉ1 = C1 on the above event if D2|C1|d1 ≤ d2d3 for

a large enough constant D2 > 0. Note that it is also unnecessary to estimate b1 if we are

only interested in the top-|C1| largest entries of |û|.

4.3 Numerical Experiments

We present simulation results of experiments on the above applications. In high dimen-

sional clustering, we randomly sample a vector β ∈ Rp with p = 1000. Fixed β, n/2 = 50

random vectors are sampled from distribution N (β, Ip) and n/2 = 50 random vectors are

sampled from distributionN (−β, Ip). Then, we compare between the leading left singular
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α such that ‖β‖ℓ2 = n
α
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√
1 + bu‖ℓ∞
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deed improves the `∞ norm.

Figure 4.1: Comparison on `∞-norm, `2-norm and bias corrected `∞ norm in high dimen-
sion clustering and subtensor localization.

vector of Y and leading left singular vector of EY, i.e., ‖û − u‖∞ and ‖û − u‖`2 , with-

out bias correction. For each ‖β‖`2 ∈ [n0.03, n0.9], the loss is reported by averaging 30

independent simulations. The results are displayed in Figure 4.1a where we can observe a

significant gap between `2-norm and `∞-norm. It explains why `∞-norm is more powerful

for exact clustering than `2-norm in this application.

In subtensor localization, we fix d1 = d2 = d3 = 100 and C1 = C2 = C3 = [20], i.e.,

the subtensor is the bottom-left-front corner of EY. The λ is varied from 0.36 to 0.55. For

each λ, we report the average `∞-norm, `2-norm and bias corrected `∞-norm, all from 30

independent simulations. It is interesting to observe that actually the bias correction indeed

can improve the `∞-norm when λ is small. The results are displayed in Figure 4.1b.

5 Proofs

For notational brevity, we write A . B if there exists an absolute constant D1 such that

A ≤ D1B. A similar notation would be & and A � B means that A . B and A & B

simultaneously. If the constant D1 depends on some parameter γ, we shall write .γ,&γ

and �γ .

Recall that the HOSVD is translated directly from SVD on M1(A) and the matrix
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perturbation model M1(Y) = M1(A) +M1(Z). Without loss of generality, it suffices

to focus on matrices with unbalanced sizes. In the remaining context, we write A,Z,Y ∈

Rm1×m2 instead ofM1(A),M1(Z),M1(Y) ∈ Rm1×m2 , where m1 = d1 and m2 = d2d3

such that m1 . m2. The second order spectral analysis begins with

YY> = AA> + Γ, where Γ = AZ> + ZA> + ZZ>.

Suppose that A has the thin singular value decomposition

A =

r1∑
k=1

λk
(
uk ⊗ hk

)
∈ Rm1×m2

where {h1, . . . ,hr1} ⊂ span
{
vj ⊗ w>k : j ∈ [r2], k ∈ [r3]

}
are the right singular vectors

of A. Moreover, AA> admits the eigen-decomposition:

AA> =

r1∑
k=1

λ2
k

(
uk ⊗ uk

)
.

In an identical fashion, denote the eigen-decomposition of YY> by

YY> =

m1∑
k=1

λ̂2
k

(
ûk ⊗ ûk

)
.

Even though Theorem 3.1 and Theorem 3.2 are stated when the singular value λk has

multiplicity 1, we present more general results in this section. Note that when there are

repeated singular values, the singular vectors are not uniquely defined. In this case, let

µ1 > µ2 > . . . > µs > 0 be distinct singular values of A with s ≤ r1. Denote ∆k := {j :

λj = µk} for 1 ≤ k ≤ s and νk := Card(∆k) the multiplicity of µk. Let µs+1 = 0 which

is a trivial eigenvalue of AA> with multiplicity m1− r1. Then, the spectral decomposition
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of AA> can be represented as

AA> =
s+1∑
k=1

µ2
kP

uu
k

where the spectral projector Puu
k :=

∑
j∈∆k

uj ⊗ uj which is uniquely defined. Corre-

spondingly, define the empirical spectral projector based on eigen-decomposition of YY>,

P̂uu
k :=

∑
j∈∆k

ûj ⊗ ûj.

We develop a sharp concentration bound for bilinear forms
〈
P̂uu
k x,y

〉
for x,y ∈ Rm1 .

Observe that YY> has an identical eigen-space as YY> − m2σ
2Im1 . Let Γ̂ := Γ −

m2σ
2Im1 and the spectral analysis shall be realized on AA> + Γ̂.

Several preliminary facts are introduced as follows. It is clear that the k-th eigengap is

ḡk
(
AA>

)
:= min

(
µ2
k−1 − µ2

k, µ
2
k − µ2

k+1

)
for 1 ≤ k ≤ s, where we set µ0 = +∞. The

proof of Lemma 3 is provided in the Appendix.

Lemma 3. For any deterministic matrix B ∈ Rm3×m2 , the following bounds hold

E‖BZ>‖ . σ‖B‖
(
m

1/2
1 +m

1/2
3 + (m1m3)1/4

)
(5.1)∥∥EZZ> −m2σ

2Im1

∥∥ . σ2(m1m2)1/2.

For any t > 0, the following inequalities hold with probability at least 1− e−t,

‖BZ>‖ . σ‖B‖
(
m

1/2
1 +m

1/2
3 + (m1m3)1/4 + t1/2 + (m1t)

1/4
)

(5.2)∥∥ZZ> −m2σ
2Im1

∥∥ . σ2m
1/2
2

(
m

1/2
1 + t1/2

)
.
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5.1 Proof of Theorem 3.1

To this end, define

Cuu
k :=

∑
s 6=k

1

µ2
s − µ2

k

Puu
s

and

Phh
k :=

∑
j∈∆k

hj ⊗ hj.

Theorem 3.1 is decomposed of two separate components. Theorem 5.1 provides the con-

centration bound for
∣∣〈Pkx,y〉 −E〈Pkx,y〉

∣∣ by Gaussian isoperimetric inequality and the

proof is postponed to the Appendix. In Theorem 5.2, we characterize the bias EP̂uu
k −Puu

k .

Theorem 5.1. Let δ(m1,m2) := µ1σm
1/2
1 + σ2(m1m2)1/2 and suppose that ḡk

(
AA>

)
≥

D1δ(m1,m2) for a large enough constant D1 > 0. Then, for any x,y ∈ Rm1 , there exists

an absolute constant D2 > 0 such that for all log 8 ≤ t . m1, the following bound holds

with probability at least 1− e−t,

∣∣〈P̂uu
k x,y〉 − E〈P̂uu

k x,y〉
∣∣ ≤ D2t

1/2

(
σµ1 + σ2m

1/2
2

ḡk
(
AA>

) )
‖x‖`2‖y‖`2 .

The following spectral representation formula is needed whose proof can be found in

[69].

Lemma 4. The following bound holds

‖P̂uu
k −Puu

k ‖ ≤
4‖Γ̂‖

ḡk(AA>)
.

Moreover, P̂uu
k can be represented as

P̂uu
k −Puu

k = Lk(Γ̂) + Sk(Γ̂)
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where Lk(Γ̂) = Puu
k Γ̂Cuu

k + Cuu
k Γ̂Puu

k and

‖Sk(Γ̂)‖ ≤ 14

(
‖Γ̂‖

ḡk(AA>)

)2

.

Theorem 5.2. Let δ(m1,m2) := µ1σm
1/2
1 + σ2(m1m2)1/2 and suppose that ḡk

(
AA>

)
≥

D1δ(m1,m2) for a large enough constant D1 > 0 and m2e
−m1/2 ≤ 1. Then there exists an

absolute constant D2 > 0 such that

∥∥EP̂uu
k −Puu

k −Puu
k

(
EP̂uu

k −Puu
k

)
Puu
k

∥∥ ≤ D2νk
σ2m1 + σ2m

1/2
2 + σµ1

ḡk
(
AA>

) (
δ(m1,m2)

ḡk
(
AA>

)).
Proof of Theorem 3.1. Combining Theorem 5.1 and Theorem 5.2, we conclude that for any

x,y ∈ Rm1 with probability at least 1− e−t for all log 8 ≤ t ≤ m1,

∣∣〈P̂uu
k x,y

〉
−
〈
Puu
k x,y

〉
−
〈
Puu
k (EP̂uu

k −Puu
k )Puu

k x,y
〉∣∣

.

(
t1/2

σµ1 + σ2m
1/2
2

ḡk(AA>)
+
σ2m1δ(m1,m2)

ḡ2
k(AA>)

)
‖x‖`2‖y‖`2

where we used the fact δ(m1,m2)
ḡk(AA>)

≤ 1 and νk = 1. Since νk = 1 such that Puu
k = uk ⊗ uk

and P̂uu
k = ûk ⊗ ûk, we can write

Puu
k (EP̂uu

k −Puu
k )Puu

k = bkP
uu
k

where

bk = E〈ûk,uk〉2 − 1 ∈ [−1, 0].

Moreover, a simple fact is bk ≤ E‖P̂uu
k − Puu

k ‖ . δ(m1,m2)
ḡk(AA>)

by Wedin’s sinΘ theorem

([64]). If ḡk(AA>) ≥ Dδ(m1,m2) for a large enough constant D > 0, we can ensure

bk ∈ [−1/2, 0]. Then, with probability at least 1− e−t,

∣∣〈(P̂uu
k − (1 + bk)P

uu
k

)
x,y

〉∣∣ . (t1/2σµ1 + σ2m
1/2
2

ḡk(AA>)
+
σ2m1δ(m1,m2)

ḡ2
k(AA>)

)
‖x‖`2‖y‖`2 .
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By choosing x = y = uk, we obtain for all log 8 ≤ t ≤ m1,

P
(∣∣〈ûk,uk〉2 − (1 + bk)

∣∣ & t1/2
σµ1 + σ2m

1/2
2

ḡk(AA>)
+
σ2m1δ(m1,m2)

ḡ2
k(AA>)

)
≤ e−t.

Denote this event by E1. Observe that if the constant D > 0 is large enough and m1 � m2,

we conclude that on event E1, 〈ûk,uk〉2 ≥ 1
4
. Then, on event E1,

∣∣〈ûk,x〉−√1 + bk〈uk,x〉
∣∣

≤
∣∣∣ 1 + bk
〈ûk,uk〉

−
√

1 + bk

∣∣∣|〈uk,x〉|
+

1

|〈ûk,uk〉|

∣∣∣〈ûk,uk〉〈ûk,x〉 − (1 + bk)〈uk,x〉
∣∣∣

=

√
1 + bk

∣∣1 + bk − 〈ûk,uk〉2
∣∣|〈uk,x〉|

|〈ûk,uk〉|
(√

1 + bk + 〈ûk,uk〉
) +

1

|〈ûk,uk〉|
∣∣〈(P̂uu

k − (1 + bk)P
uu
k

)
uk,x

〉∣∣
.t1/2

σµ1 + σ2m
1/2
2

ḡk(AA>)
‖x‖`2 +

σ2m1

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2 ,

which concludes the proof after replacing A withM1(A) and µ1 with ‖M1(A)‖.

Proof of Theorem 5.2. Recall the representation formula of P̂uu
k in Lemma 4 that

EP̂uu
k = Puu

k + ESk(Γ̂)

where Γ̂ := AZ> + ZA> + ZZ> −m2σ
2Im1 . To this end, define

Γ̃ := Γ̂−
(
ZPhh

k Z> − νkσ2Im1

)
such that we can write EP̂uu

k = Puu
k +ESk(Γ̃)+

(
ESk(Γ̂)−ESk(Γ̃)

)
. We derive an upper

bound on
∥∥ESk(Γ̃) − ESk(Γ̂)

∥∥ and the proof can be found in the Appendix. Lemma 5

implies that our analysis can be proceeded by replacing Γ̂ with Γ̃.
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Lemma 5. There exists a universal constant D1 > 0 such that if m2e
−m1/2 ≤ 1, then

∥∥ESk(Γ̃)− ESk(Γ̂)
∥∥ ≤ D1

σµ1 + σ2m1

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
.

Let δt = E‖Γ̂‖ + D1σµ1t
1/2 + D2σ

2m
1/2
2 t1/2 for 0 < t ≤ m1 to be determined later

and large enough constants D1, D2 > 0 such that P
(
‖Γ̂‖ ≥ δt

)
≤ e−t. We write

EP̂uu
k −Puu

k −Puu
k ESk(Γ̃)Puu

k

=ESk(Γ̂)− ESk(Γ̃)

+E
(
Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)Puu

k + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)
1
(
‖Γ̃‖ ≤ δt

)
+E
(
Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)Puu

k + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)
1
(
‖Γ̃‖ > δt

)
.

(5.3)

We prove an upper bound for E
〈
x, (Puu

k )⊥Sk(Γ̃)Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
for x,y ∈ Rm1 .

Similar to the approach in [63], under the assumption ‖Γ̃‖ ≤ δt, Sk(Γ̃) is represented in

the following analytic form,

Sk(Γ̃) = − 1

2πi

∮
γk

∑
r≥2

(−1)r
(
RAA>(η)Γ̃

)r
RAA>(η)dη

where γk is a circle on the complex plane with center µ2
k and radius ḡk(AA>)

2
, and RAA>(η)

is the resolvent of the operator AA> with RAA>(η) = (AA> − ηIm1)
−1 which can be

explicitly written as

RAA>(η) := (AA> − ηIm1)
−1 =

∑
s

1

µ2
s − η

Puu
s .

We also denote

R̃AA>(η) := RAA>(η)− 1

µ2
k − η

Puu
k =

∑
s6=k

1

µ2
s − η

Puu
s .
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It is easy to check that

(Puu
k )⊥

(
RAA>(η)Γ̃

)r
RAA>(η)Puu

k

=(Puu
k )⊥

(
RAA>(η)Γ̃

)r 1

µ2
k − η

Puu
k

=

(
1

(µ2
k − η)2

r∑
s=2

(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃
)(

RAA>(η)Γ̃
)r−s

Puu
k

)
+

1

µ2
k − η

(
R̃AA>(η)Γ̃

)r
Puu
k ,

where we used the formula (a+ b)r = br +
∑r

s=1 b
s−1a(a+ b)r−s. As a result,

(Puu
k )⊥Sk(Γ̃)Puu

k

= −
∑
r≥2

(−1)r
1

2πi

∮
γk

(
1

(µ2
k − η)2

r∑
s=2

(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃
)(

RAA>(η)Γ̃
)r−s

Puu
k

+
1

µ2
k − η

(
R̃AA>(η)Γ̃

)r
Puu
k

)
dη. (5.4)

For any x,y ∈ Rm1 , we shall derive an upper bound for

E
〈
x,
(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃
)(

RAA>(η)Γ̃
)r−s

Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
, s = 2, . . . , r.

Recall that rank(Puu
k ) = νk and Puu

k =
∑

j∈∆k
uj ⊗ uj . Then,

〈
x,
(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃
)(

RAA>(η)Γ̃
)r−s

Puu
k y
〉

=
∑
j∈∆k

〈
x,
(
R̃AA>(η)Γ̃

)s−1(
uj ⊗ ujΓ̃

)(
RAA>(η)Γ̃

)r−s
Puu
k y
〉

=
∑
j∈∆k

〈
Γ̃
(
RAA>(η)Γ̃

)r−s
Puu
k y,uj

〉〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj,x

〉
.

Observe that

∣∣〈Γ̃(RAA>(η)Γ̃
)r−s

Puu
k y,uj

〉∣∣ ≤‖RAA>(η)‖r−s‖Γ̃‖r−s+1‖y‖`2
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≤
( 2

ḡk(AA>)

)(r−s)
‖Γ̃‖r−s+1‖y‖`2 .

Therefore,

E
〈
x,
(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃
)(

RAA>(η)Γ̃
)r−s

Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
=
∑
j∈∆k

E
〈
Γ̃
(
RAA>(η)Γ̃

)r−s
Puu
k y,uj

〉〈(
R̃AA>(η)Γ̃

)s−1
uj,x

〉
1
(
‖Γ̃‖ ≤ δt

)
≤
∑
j∈∆k

E1/2
∣∣∣〈Γ̃(RAA>(η)Γ̃

)r−s
Puu
k y,uj

〉
1
(
‖Γ̃‖ ≤ δt

)∣∣∣2
× E1/2

∣∣∣〈(R̃AA>(η)Γ̃
)s−1

uj,x
〉
1
(
‖Γ̃‖ ≤ δt

)∣∣∣2
≤
( 2δt
ḡk(AA>)

)r−s
δt‖y‖`2

∑
j∈∆k

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj,x

〉
1
(
‖Γ̃‖ ≤ δt

)∣∣∣2.
(5.5)

It then remains to bound, for each j ∈ ∆k,

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj,x

〉∣∣∣21(‖Γ̃‖ ≤ δt

)
.

Recall that we can write

Γ̃ = AZ> + ZA> + Z
∑
k′ 6=k

Phh
k′ Z

> − σ2(m2 − νk)Im1

and correspondingly

Γ̃uj = AZ>uj + ZA>uj + Z
∑
k′ 6=k

Phh
k′ Z

>uj − σ2(m2 − νk)uj.

We write

〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj,x

〉
=
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)ZA>uj,x
〉

(5.6)
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+
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)AZ>uj,x
〉

(5.7)

+
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)
(
Z
∑
k′ 6=k

Phh
k′ Z

>uj − σ2(m2 − νk)uj
)
,x
〉
. (5.8)

The upper bounds of (5.6), (5.7), and (5.8) shall be obtained separately via different repre-

sentations.

Bound of E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj,x

〉∣∣21(‖Γ̃‖ ≤ δt

)
. Observe that A>uj =

µkhj ∈ Rm2 for j ∈ ∆k such that

ZA>uj = µkZhj = µk

m1∑
i=1

〈zi,hj〉ei

where {e1, . . . , em1} denote the canonical basis vectors in Rm1 and {z>1 , . . . , z>m1
} denote

the rows of Z. Therefore,

〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj,x

〉
=µk

m1∑
i=1

〈zi,hj〉
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)ei,x
〉
.

It is clear that 〈zi,hj〉, i = 1, . . . ,m1 are i.i.d. and 〈zi,hj〉 ∼ N (0, σ2). Recall that

R̃AA>(η) =
∑

k′ 6=k
Puu
k′

µ2
k′−η

, implying that
(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η) can be viewed as a

linear combination of operators

(Puu
t1

Γ̃Puu
t2

)(Puu
t2

Γ̃Puu
t3

) . . . (Puu
ts−2

Γ̃Puu
ts−1

)

where t1, . . . , ts−1 6= k. For each Puu
t1

Γ̃Puu
t2

, we have

Puu
t1

Γ̃Puu
t2

= Puu
t1

AZ>Puu
t2

+Puu
t1

ZA>Puu
t2

+Puu
t1

(
Z
∑
k′ 6=k

Phh
k′ Z

>)Puu
t2
−σ2(m2−νk)Puu

t1
Puu
t2
.
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Clearly, Puu
t1

AZ> is a function of random vectors Puu
t1

Azi, i = 1, . . . ,m1; ZA>Puu
t2

is a

function of random vectors Puu
t2

Azi, i = 1, . . . ,m1; Z
∑

k′ 6=k Phh
k′ Z

> = Z
∑

k′ 6=k(P
hh
k′ )

2Z>

is a function of random vectors Phh
k′ zi, i = 1, . . . ,m1. The following facts are obvious

E〈zi,hj〉Puu
t1

Azi = Puu
t1

A(Ezi ⊗ zi)hj = σ2Puu
t1

Ahj = σ2µkP
uu
t1

uj = 0, ∀t1 6= k

and

E〈zi,hj〉Phh
k′ zi = Phh

k′ (Ezi ⊗ zi)hj = σ2Phh
k′ hj = 0, ∀k′ 6= k.

Since
{
〈zi,hj〉, i = 1, . . . ,m1

}
are Gaussian random variables and

{
Puu
t1

Azi,P
hh
k′ zi, i =

1, . . . ,m1

}
are (complex) Gaussian random vectors, uncorrelations indicate that

{
〈zi,hj〉 :

i = 1, . . . ,m1

}
are independent with

{
Puu
t1

Azi,P
hh
k′ zi : t1 6= k, k′ 6= k, i = 1, . . . ,m1

}
.

We conclude that
{
〈zi,hj〉 : i = 1, . . . ,m1

}
are independent with

{〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ei,x

〉
, i = 1, . . . ,m1

}
.

To this end, define the complex random variables

ωi(x) =
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)ei,x
〉

= ω
(1)
i (x) + ω

(2)
i (x)Im ∈ C, i = 1, . . . ,m1

where Im denotes the imaginary number. Then,

〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj,x

〉
= µk

m1∑
i=1

〈zi,hj〉ω(1)
i (x) +

(
µk

m1∑
i=1

〈zi,hj〉ω(2)
i (x)

)
Im

=: κ1(x) + κ2(x)Im ∈ C.
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Conditioned on
{
Puu
t1

Azi,P
hh
k′ zi : t1 6= k, k′ 6= k, i = 1, . . . ,m1

}
, we get

Eκ2
1(x) = µ2

kσ
2

m1∑
i=1

(
ω

(1)
i (x)

)2

and

Eκ1(x)κ2(x) = µ2
kσ

2

m1∑
i=1

ω
(1)
i (x)ω

(2)
i (x)

implying that the centered Gaussian random vector (κ1(x), κ2(x)) has covariance matrix:

(
µ2
kσ

2

m1∑
i=1

ω
(k1)
i (x)ω

(k2)
i (x)

)
k1,k2=1,2

.

Finally,

E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj,x

〉∣∣21(‖Γ̃‖ ≤ δt

)
=E1/2

(
κ2

1(x) + κ2
2(x)

)
1
(
‖Γ̃‖ ≤ δt

)
= σµkE1/2

( m1∑
i=1

(
ω

(1)
i (x)

)2
+
(
ω

(2)
i (x)

)2
)
1
(
‖Γ̃‖ ≤ δt

)
= σµkE1/2

m1∑
i=1

∣∣ωi(x)
∣∣21(‖Γ̃‖ ≤ δt

)
.

Moreover,

m1∑
i=1

∣∣ωi(x)
∣∣2 =

m1∑
i=1

∣∣〈R̃AA>(η)
(
R̃AA>(η)Γ̃

)s−2
x, ej

〉∣∣2 ≤ ∥∥R̃AA>(η)
(
R̃AA>(η)Γ̃

)s−2
x
∥∥2

`2

≤ ‖R̃AA>(η)‖2(s−1)‖Γ̃‖2(s−2)‖x‖2
`2
≤
( 2

ḡk(AA>)

)2(s−1)

‖Γ̃‖2(s−2)‖x‖2
`2
.

As a result,

E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj,x

〉∣∣21(‖Γ̃‖ ≤ δt

)
≤ σµkE1/2

( 2

ḡk(AA>)

)2(s−1)

‖Γ̃‖2(s−2)‖x‖2
`2

1
(
‖Γ̃‖ ≤ δt

)
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≤ σµk
ḡk(AA>)

( 2δt
ḡk(AA>)

)s−2

‖x‖`2 .

Bound of E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)AZ>uj,x

〉∣∣21(‖Γ̃‖ ≤ δt
)
. With a little abuse

on the notations, we denote by z1, . . . , zm2 ∈ Rm1 the corresponding columns of Z in this

paragraph. Then,

〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)AZ>uj,x

〉
=

m2∑
i=1

〈zi,uj〉
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)Aei,x
〉
.

Similarly,
(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η) can be represented as linear combination of operators

(
Puu
t1

Γ̃Puu
t2

)(
Puu
t2

Γ̃Puu
t3

)
. . .
(
Puu
ts−2

Γ̃Puu
ts−1

)
, t1, . . . , ts−1 6= k.

To this end, we write

Puu
t1

Γ̃Puu
t2

= Puu
t1

AZ>Puu
t2

+Puu
t1

ZA>Puu
t2

+Puu
t1

(
Z
∑
k′ 6=k

Phh
k′ Z

>)Puu
t2
−σ2(m2−νk)Puu

t1
Puu
t2
.

Observe that Puu
t1

AZ>Puu
t2

, Puu
t1

ZA>Puu
t2

and Puu
t1

(
Z
∑

k′ 6=k Phh
k′ Z

>)Puu
t2

are functions of

random vectors {Puu
t1

zi,P
uu
t2

zi : t1, t2 6= k, i = 1, . . . ,m2}. Moreover,

E〈zi,uj〉Puu
t1

zi = Puu
t1

(
Ezi ⊗ zi

)
uj = σ2Puu

t1
uj = 0, ∀ t1 6= k

which implies that {〈zi,uj〉 : i = 1, . . . ,m2} and
{〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)Aei,x
〉

:

i = 1, . . . ,m2

}
are independent. Following an identical analysis as above, we get

E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)AZ>uj,x

〉∣∣21(‖Γ̃‖ ≤ δt
)
≤ σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)s−2

‖x‖`2 .

Bound of E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)

(
Z
∑

k′ 6=k Phh
k′ Z

>)uj,x〉∣∣∣21(‖Γ̃‖ ≤ δt
)
. Note

that we used the fact R̃AA>(η)uj = 0 in (5.8). Again, let {z1, . . . , zm2} ⊂ Rm1 denote the
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corresponding columns of Z. We write

〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)

(
Z
∑
k′ 6=k

Phh
k′ Z

>)uj,x〉
=

m2∑
i=1

〈zi,uj〉
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)Z
(∑
k′ 6=k

Phh
k′

)
ei,x

〉
.

In a similar fashion, we show that
(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Z is a function of random

vectors
{
Puu
t zi : t 6= k, i = 1, . . . ,m2

}
which are independent with

{
〈zi,uj〉 : i =

1, . . . ,m2

}
. Then,

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)

(
Z
∑
k′ 6=k

Phh
k′ Z

>)uj,x〉∣∣∣21(‖Γ̃‖ ≤ δ
)

≤E1/2σ2‖R̃AA>(η)‖2(s−1)‖Γ̃‖2(s−2)‖Z
∑
k′ 6=k

Phh
k′ ‖2‖x‖2

`2
1
(
‖Γ̃‖ ≤ δt

)
.

σ2m
1/2
2

ḡk(AA>)

( δt
ḡk(AA>)

)s−2

‖x‖`2 .

where we used the fact E1/2
∥∥(
∑

k′ 6=k Phh
k′ )Z

>
∥∥2

. σm
1/2
2 from Lemma 3.

Finalize the proof of Theorem. Combining the above bounds into (5.7), (5.6) and (5.8),

we conclude that

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj,x

〉∣∣∣21(‖Γ̃‖ ≤ δt
)

.
σ2m

1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)s−2

‖x‖`2 .

Continue from (5.5) and we end up with

E
〈
x,
(
R̃AA>(η)Γ̃

)s−1
(Puu

k Γ̃)
(
RAA>(η)Γ̃

)r−s
Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
.νkδt

σ2m
1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)r−2

‖x‖`2‖y‖`2 .

74



Plug the bounds into (5.4),

∣∣E〈(Puu
k )⊥Sk(Γ̃)Puu

k y,x
〉
1
(
‖Γ̃ ≤ δt‖

)∣∣
.
∑
r≥2

πḡk(AA>)

2π

( 2

ḡk(AA>)

)2

(r − 1)νkδt
σ2m

1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)r−2

‖x‖`2‖y‖`2

≤ D1νk
σ2m

1/2
2 + σµ1

ḡk(AA>)
‖x‖`2‖y‖`2

∑
r≥2

(r − 1)
( 2δt
ḡk(AA>)

)r−1

where we used the fact
∮
γk

(
R̃AA>(η)Γ̃

)r
Puu
k dη = 0. By the inequality

∑
r≥1 rq

r =

q
(1−q)2 ,∀q < 1 and the fact D1δt ≤ ḡk(AA>) for some large constant D1 > 0 and t ≤ m1,

we conclude with

∣∣E〈(Puu
k )⊥Sk(Γ̃)Puu

k y,x
〉
1
(
‖Γ̃ ≤ δt‖

)∣∣
. νk

σ2m
1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)
‖x‖`2‖y‖`2 , ∀x,y ∈ Rm1

implying that

∥∥∥E(Puu
k )⊥Sk(Γ̃)Puu

k 1
(
‖Γ̃‖ ≤ δt

)∥∥∥ . νk
σ2m

1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)
.

The same bound holds for

∥∥EPuu
k Sk(Γ̃)(Puu

k )⊥1
(
‖Γ̃‖ ≤ δt

)∥∥ and
∥∥E(Puu

k )⊥Sk(Γ̃)(Puu
k )⊥1

(
‖Γ̃‖ ≤ δt

)∥∥,
following the same arguments. As a result,

∥∥∥E((Puu
k )⊥Sk(Γ̃)Puu

k + Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)
1
(
‖Γ̃‖ ≤ δt

)∥∥∥
. νk

σ2m
1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)
. (5.9)
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By choosing t = m1 such that P(‖Γ̃‖ ≥ δm1) ≤ e−m1/2, we get

∥∥∥E((Puu
k )⊥Sk(Γ̃)Puu

k + Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)
1
(
‖Γ̃‖ > δm1

)∥∥∥
≤ E

∥∥∥((Puu
k )⊥Sk(Γ̃)Puu

k + Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)∥∥∥1(‖Γ̃‖ > δm1

)
≤ E‖Sk(Γ̃)‖1

(
‖Γ̃‖ > δm1

)
≤ E1/2‖Sk(Γ̃)‖2P1/2

(
‖Γ̃‖ > δm1

)
.
( δm1

ḡk(AA>)

)2

P1/2
(
‖Γ̃‖ > δm1

)
.
( δm1

ḡk(AA>)

)2

e−m1/2,

which is clearly dominated by (5.9). Substitute the above bounds into (5.3) and we get

∥∥∥EP̂uu
k −Puu

k −Puu
k Sk(Γ̃)Puu

k

∥∥∥ ≤ ‖ESk(Γ̃)− Sk(Γ̂)‖+D1νk
σ2m

1/2
2 + σµ1

ḡk(AA>)

(2δ(m1,m2)

ḡk(AA>)

)
≤ D2νk

σ2m
1/2
2 + σ2m1 + σµ1

ḡk(AA>)

(2δ(m1,m2)

ḡk(AA>)

)
.

5.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is identical to the proof of Corollary 1.5 in [63] and will be

skipped here.

5.3 Proof of Theorem 3.3

It suffices to prove the upper bound of
∣∣Ã(i, j, k)−A(i, j, k)

∣∣ for i ∈ [d1], j ∈ [d2], k ∈ [d3].

To this end, denote by ei the i-th canonical basis vectors. Observe that

〈
Ã−A, ei ⊗ ej ⊗ ek

〉
=
〈
A×1 PŨ ×2 PṼ ×3 PW̃ −A, ei ⊗ ej ⊗ ek

〉
+
〈
Z×1 PŨ ×2 PṼ ×3 PW̃, ei ⊗ ej ⊗ ek

〉
.
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Some preliminary facts shall be concluded from Theorem 3.1. By Theorem 3.2, there exists

an event E2 with P
(
E2

)
≥ 1− 1

d2
on which

∥∥e>i (Ũ−U
)∥∥

`2
≤ r1/2

∥∥e>i (Ũ−U
)∥∥

`∞
.
σΛ(A)r1/2 + σ2dr1/2

ḡ2
min(A)

log1/2 d

and

∥∥Ũ>U− Ir1
∥∥ ≤ ‖Ũ>U− Ir1‖F . r‖Ũ>U− Ir1‖`∞ .

σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d.

The following decomposition is straightforward,

A ·
(
PŨ,PṼ,PW̃

)
−A

=A ·
(
PŨ −PU,PV,PW

)
+ A ·

(
PU,PṼ −PV,PW

)
+A ·

(
PU,PV,PW̃ −PW

)
+ A ·

(
PŨ −PU,PṼ −PV,PW

)
+A ·

(
PŨ −PU,PV,PW̃ −PW

)
+ A ·

(
PU,PṼ −PV,PW̃ −PW

)
+A ·

(
PŨ −PU,PṼ −PV,PW̃ −PW

)
Recall that A = C · (U,V,W) and we get

〈
A ·
(
PŨ −PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉
=e>i

(
Ũ
(
Ũ>U

)
−U

)
M1(C)

(
V ⊗W

)>
(ej ⊗ ek).

Observe that

e>i

(
Ũ
(
Ũ>U

)
−U

)
= e>i

(
Ũ−U

)(
Ũ>U

)
+ e>i U

(
Ũ>U− Ir1

)
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implying that on event E2,

∥∥∥e>i (Ũ
(
Ũ>U

)
−U

)∥∥∥
`2

≤
∥∥(Ũ−U)>ei

∥∥
`2
‖Ũ>U‖+

∥∥Ũ>U− Ir1
∥∥‖U>ei‖`2

.
σΛ(A)r1/2 + σ2dr1/2

ḡ2
min(A)

log1/2 d+ ‖U>ei‖`2
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

.
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d,

where we used the facts ‖Ũ>U‖ ≤ ‖Ũ‖‖U‖ ≤ (1 + bk)
−1/2 = O(1) and

‖U>ei‖`2 =
〈
UU>, ei ⊗ ei

〉1/2 ≤ 1.

Therefore, on event E2,

∣∣〈A · (PŨ −PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)
‖V>ej‖`2‖W>ek‖`2 .

Similar bounds hold for

∣∣〈A·(PU,PṼ−PV,PW

)
, ei⊗ej⊗ek

〉∣∣ and
∣∣〈A·(PU,PV,PW̃−PW

)
, ei⊗ej⊗ek

〉∣∣.
Following the same method, we can show that on event E2,

∣∣〈A · (PŨ −PU,PṼ −PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)2

‖W>ek‖`2

and

∣∣〈A · (PŨ −PU,PṼ −PV,PW̃ −PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
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.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)3

.

We conclude that on event E2,

∣∣〈A · (PŨ,PṼ,PW̃

)
−A, ei ⊗ ej ⊗ ek

〉∣∣
.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)(
‖V>ej‖`2‖W>ek‖`2

+ ‖U>ei‖`2‖W>ek‖`2 + ‖U>ei‖`2‖V>ej‖`2
)

+ Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)2(
‖V>ej‖`2 + ‖U>ei‖`2 + ‖W>ek‖`2

)
+ Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)3

.

Recall that for all i ∈ [d1], j ∈ [d2], k ∈ [d3]

‖U>ei‖`2 ≤ µU

√
r

d
, ‖V>ej‖`2 ≤ µV

√
r

d
, ‖W>ek‖`2 ≤ µW

√
r

d

and conditions (3.2) (3.3) (3.4) imply

σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d . r
( log d

d

)1/2

.

We end up with a simpler bound on event E2,

∣∣〈A · (PŨ,PṼ,PW̃

)
−A, ei ⊗ ej ⊗ ek

〉∣∣ (5.10)

.σr3

(
σκ̃(A)

ḡmin(A)
+
κ̃2(A)

d

)
(µUµV + µUµW + µVµW) log3/2 d

where κ̃(A) = Λ(A)/ḡmin(A).

Next, we prove the upper bound of
∣∣〈Z · (PŨ,PṼ,PW̃), ei⊗ej⊗ek

〉∣∣ and we proceed
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with the same decomposition. Observe that

〈
Z · (PU,PV,PW), ei ⊗ ej ⊗ ek

〉
=
〈
Z, (PUei)⊗ (PVej)⊗ (PWek)

〉
∼N

(
0, σ2

∥∥PUei
∥∥2

`2

∥∥PVej
∥∥2

`2

∥∥PWek
∥∥2

`2

)

The standard concentration inequality of Gaussian random variables yields that with prob-

ability at least 1− 1
d2

,

∣∣〈Z · (PU,PV,PW), ei ⊗ ej ⊗ ek
〉∣∣ .σ‖U>ei‖`2‖V>ej‖`2‖W>ek‖`2 log1/2 d

.σ
(r
d

)3/2

µUµVµW log1/2 d.

Similarly, with probability at least 1− 1
d2

,

∣∣〈Z · (PŨ −PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
=
∣∣e>i (PŨ −PU

)
M1(Z)

(
V ⊗W

)(
(V>ej)⊗ (W>ek)

)∣∣
≤‖(PŨ −PU)ei‖`2

∥∥M1(Z)(V ⊗W)
∥∥‖V>ej‖`2‖W>ek‖`2

.σd1/2‖(PŨ −PU)ei‖`2
∣∣‖V>ej‖`2‖W>ek‖`2

where we used Lemma 3 for the upper bound of
∥∥M1(Z)(V ⊗W)

∥∥. Moreover, since

µU ≥ 1,

∥∥(PŨ −PU

)
ei
∥∥
`2
≤‖(Ũ−U)ei‖`2 + ‖Ũ−U‖`2‖U>ei‖`2

.
σΛ(A)r + σ2dr

ḡ2
min(A)

µU log1/2 d.

Denote the above event by E3. On E2 ∩ E3,

∣∣〈Z · (PŨ −PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣ . σr

d1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)
µUµVµW log1/2 d.
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Similar bounds can be attained for

∣∣〈Z·(PU,PṼ−PV,PW

)
, ei⊗ej⊗ek

〉∣∣ and
∣∣〈Z·(PU,PV,PW̃−PW

)
, ei⊗ej⊗ek

〉∣∣.
In an identical fashion, on event E2 ∩ E3,

∣∣〈Z · (PŨ −PU,PṼ −PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.σr1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)2

µUµVµW log d.

and

∣∣〈Z · (PŨ −PU,PṼ −PV,PW̃ −PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.σd1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)3

µUµVµW log3/2 d.

Observe by conditions (3.2) (3.3) (3.4) that

σΛ(A)r + σ2dr

ḡ2
min(A)

.
r

d1/2
.

We conclude on event E2 ∩ E3 with

∣∣〈Z · (PŨ,PṼ,PW̃

)
, ei ⊗ ej ⊗ ek

〉∣∣ . σr2

d1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)
µUµVµW log3/2 d.(5.11)

By combining (5.10) and (5.11), we get on event E2 ∩ E3,

∣∣〈Ã−A, ei ⊗ ej ⊗ ek
〉∣∣

.σr3

(
σκ̃(A)

ḡmin(A)
+
κ̃2(A)

d

)
(µUµV + µUµW + µVµW) log3/2 d

+
σr2

d1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)
µUµVµW log3/2 d
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.σr3

(
σκ̃(A)

ḡmin(A)
+
κ̃2(A)

d

)
(µUµV + µUµW + µVµW) log3/2 d,

where the last inequality is due to fact ḡmin(A) & σd3/4 and max
{
µU, µV, µW

}
.
√
d.
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1 Proof of Lemma 1

The proof of Lemma 1 follows from a similar approach introduced by [22].

Proof. For any S ∈ Hm of rank r, S =
∑r

j=1 λi(ej ⊗ ej), where λj are non-zero eigenval-

ues of S (repeated with their multiplicities) and ej ∈ Cm are the corresponding orthonor-

mal eigenvectors. Denote sign(S) :=
r∑
j=1

sign(λi)(ej ⊗ ej). Let PL, P⊥L be the following

orthogonal projectors in the space (Hm, 〈·, ·〉):

PL(A) := A− PL⊥APL⊥ , P⊥L (A) := PL⊥APL⊥ , ∀A ∈ Hm

where PL denotes the orthogonal projector on the linear span of {e1, ..., er}, and PL⊥ is its

orthogonal complement. Clearly, this formulation provides a decomposition of a matrix A

into a ”low rank part” PL(A) and a ”high rank part” P⊥L (A) if rank(S) = r is small. Given

b > 0, define the following cone in the space Hm:

K(D;L; b) := {A ∈ D : ‖P⊥LA‖1 ≤ b‖PL(A)‖1}

which consists of matrices with a ”dominant” low rank part if S is low rank.

Firstly, we can rewrite (1.1) as

Ŝh = arg min
S∈D

1

n

n∑
j=1

(
Ỹj −

〈
S, X̃j

〉)2

+ ε‖S‖1. (1.1)

where X̃j = Diag
[√

1
h
K
(
τj−t0
h

)
p0

(
τj−t0
h

)
Xj,

√
1
h
K
(
τj−t0
h

)
p1

(
τj−t0
h

)
Xj, ...,

√
1
h
K
(
τj−t0
h

)
p`

(
τj−t0
h

)
Xj

]
,

and Ỹj =

√
1
h
K
(
τj−t0
h

)
Yj .

Denote the loss function as

L
(
Ỹ ; 〈S(τ), X̃〉

)
:=
(
Ỹj −

〈
S, X̃j

〉)2

,
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and the risk

PL
(
Ỹ ; 〈S(τ), X̃〉

)
:= EL

(
Ỹ ; 〈S(τ), X̃〉

)
= σ2 + E

1

h
K
(τ − t0

h

)(
Y − 〈S(τ), X〉)2

Since Ŝh is a solution of the convex optimization problem (1.1), there exists a V̂ ∈

∂
∥∥Ŝh∥∥

1
, such that for ∀S ∈ D (see [85] Chap. 2)

2

n

n∑
j=1

(〈
Ŝh, X̃j

〉
− Ỹj

)
〈Ŝh − S, X̃j〉+ ε〈V̂ , Ŝh − S〉 ≤ 0.

This implies that, for all S ∈ D,

EL′(Ỹ ; 〈Ŝ, X̃〉)〈Ŝh − S, X̃〉+ ε〈V̂ , Ŝh − S〉

≤ EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉 − 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉.
(1.2)

where L′ denotes the partial derivative of L(y;u) with respect to u. One can easily check

that for ∀S ∈ D,

EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉 ≥ E(L(Ỹ ; 〈Ŝh, X̃〉)− L(Ỹ ; 〈S, X̃〉)) + ‖Ŝh − S‖2
L2(Π̃)

.

(1.3)

where Π̃ denotes the distribution of X̃ . If EL(Ỹ ; 〈Ŝh, X̃〉) ≤ EL(Ỹ ; 〈S, X̃〉) for ∀S ∈ D,

then the oracle inequality in Lemma 1 holds trivially. So we assume that EL(Ỹ ; 〈Ŝh, X̃〉) >

EL(Ỹ ; 〈S, X̃〉) for some S ∈ D. Thus, inequalities (1.2) and (1.3) imply that

EL(Ỹ ; 〈Ŝh, X̃〉) + ‖Ŝh − S‖2
L2(Π̃)

+ ε〈V̂ , Ŝh − S〉

≤ EL(Ỹ ; 〈S, X̃〉) + EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉 − 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉.

(1.4)

According to the well known representation of subdifferential of nuclear norm, see [86]
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Sec. A.4, for any V ∈ ∂‖S‖1, we have

V := sign(S) + P⊥L (W ), W ∈ Hm , ‖W‖ ≤ 1.

By the duality between nuclear norm and operator norm

〈P⊥L (W ), Ŝh − S〉 = 〈P⊥L (W ), Ŝh〉 = 〈W,P⊥L (Ŝh)〉 = ‖P⊥L (Ŝh)‖1.

Therefore, by the monotonicity of subdifferentials of convex function ‖ · ‖1, for any V :=

sign(S) + P⊥L (W ) ∈ ∂‖S‖1, we have

〈V, Ŝh − S〉 = 〈sign(S), Ŝh − S〉+ ‖P⊥L (Ŝh)‖1 ≤ 〈V̂ , Ŝh − S〉, (1.5)

we can use (1.5) to change the bound in (1.4) to get

EL(Ỹ ; 〈Ŝh, X̃〉) + ‖S − Ŝh‖2
L2(Π̃)

+ ε‖P⊥L (Ŝh)‖1

≤ EL(Ỹ ; 〈S, X̃〉) + ε〈sign(S), S − Ŝh〉+ EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉

− 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉.

(1.6)

For the simplicity of representation, we use the following notation to denote the empirical

process:

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 :=

EL′(Ỹ ; 〈Ŝh, X̃〉)〈Ŝh − S, X̃〉 − 2

n

n∑
j=1

(〈Ŝh, X̃j〉 − Ỹj)〈Ŝh − S, X̃j〉.
(1.7)

The following part of the proof is to derive an upper bound on the empirical process (1.7).

Before we start with the derivation, let us present several vital ingredients that will be used
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in the following literature. For a given S ∈ D and for δ1, δ2, δ3, δ4 ≥ 0, denote

A(δ1, δ2) := {A ∈ D : A− S ∈ K(D;L; b), ‖A− S‖L2(Π̃) ≤ δ1, ‖P⊥LA‖1 ≤ δ2},

Ã(δ1, δ2, δ3) := {A ∈ D : ‖A− S‖L2(Π̃) ≤ δ1, ‖P⊥LA‖1 ≤ δ2, ‖PL(A− S)‖1 ≤ δ3},

Ǎ(δ1, δ4) := {A ∈ D : ‖A− S‖L2(Π̃) ≤ δ1, ‖A− S‖1 ≤ δ4},

and

αn(δ1, δ2) := sup{|(P − Pn)(L′(Ỹ ; 〈A, X̃〉))〈A− S, X̃〉| : A ∈ A(δ1, δ2)},

α̃n(δ1, δ2, δ3) := sup{|(P − Pn)(L′(Ỹ ; 〈A, X̃〉))〈A− S, X̃〉| : A ∈ Ã(δ1, δ2, δ3)},

α̌n(δ1, δ4) := sup{|(P − Pn)(L′(Ỹ ; 〈A, X̃〉))〈A− S, X̃〉| : A ∈ Ǎ(δ1, δ4)}.

Given the definitions above, Lemma 6 below shows upper bounds on the three quantities

αn(δ1, δ2), α̃n(δ1, δ2, δ3), α̌n(δ1, δ4). The proof of Lemma 6 can be found in section 2.

Denote

Ξ := n−1

n∑
j=1

εjX̃j (1.8)

where εj are i.i.d. Rademacher random variables.

Lemma 6. Suppose 0 < δ−k < δ+
k , k = 1, 2, 3, 4. Let η > 0 and

η̄ := η +
2∑

k=1

log([log2(
δ+
k

δ−k
)] + 2) + log 3,

η̃ := η +
3∑

k=1

log([log2(
δ+
k

δ−k
)] + 2) + log 3,

η̌ := η +
∑

k=1,k=4

log([log2(
δ+
k

δ−k
)] + 2) + log 3.
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Then with probability at least 1− e−η, for all δk ∈ [δ−k , δ
+
k ], k=1,2,3

αn(δ1, δ2) ≤ C1(`+ 1)R(T )Φa√
h

{
E‖Ξ‖(

√
rank(S)mδ1+δ2)+

2(`+ 1)R(T )Φaη̄

n
√
h

+δ1

√
η̄

n

}
(1.9)

α̃n(δ1, δ2, δ3) ≤ C2(`+ 1)R(T )Φa√
h

{
E‖Ξ‖(δ2+δ3)+

2(`+ 1)R(T )Φaη̃

n
√
h

+δ1

√
η̃

n

}
(1.10)

α̌n(δ1, δ4) ≤ C3(`+ 1)R(T )Φa√
h

{
E‖Ξ‖δ4 +

2(`+ 1)R(T )Φaη̌

n
√
h

+ δ1

√
η̌

n

}
(1.11)

where C1, C2, and C3 are numerical constants.

Since both Ŝh and S are in D, by the definition of α̃ and α̌, we have

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 ≤ α̃(‖Ŝh − S‖L2(Π̃); ‖P
⊥
L Ŝ

h‖1; ‖PL(Ŝh − S)‖1),

(1.12)

and

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 ≤ α̌(‖Ŝh − S‖L2(Π̃); ‖Ŝ
h − S‖1), (1.13)

If Ŝh − S ∈ K(D;L; b), by the definition of α, we have

(P − Pn)(L′(Ỹ ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 ≤ α(‖Ŝh − S‖L2(Π̃); ‖P
⊥
L Ŝ

h‖1), (1.14)

Assume for a while that

‖Ŝh − S‖L2(Π̃) ∈ [δ−1 , δ
+
1 ], ‖P⊥L Ŝh‖1 ∈ [δ−2 , δ

+
2 ], ‖P⊥L (Ŝh − S)‖1 ∈ [δ−3 , δ

+
3 ]. (1.15)

89



By the definition of subdifferential, for any V̂ ∈ ∂‖Ŝh‖1,

〈V̂ , S − Ŝh〉 ≤ ‖S‖1 − ‖Ŝh‖1.

Then we apply (1.13) in bound (1.4) and use the upper bound on α̌n(δ1, δ4) of Lemma 6,

and get with probability at least 1− e−η,

P (L(Ỹ ; 〈Ŝh, X̃〉)) + ‖Ŝh − S‖2
L2(Π̃)

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε(‖S‖1 − ‖Ŝh‖1) + α̌n(‖Ŝh − S‖L2(Π̃), ‖Ŝ
h − S‖1)

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε(‖S‖1 − ‖Ŝh‖1)

+
C3(`+ 1)R(T )Φa√

h

{
E‖Ξ‖‖Ŝh − S‖1 +

2(`+ 1)R(T )Φaη̌

n
√
h

+ ‖Ŝh − S‖L2(Π̃)

√
η̌

n

}
.

(1.16)

Assuming that

ε >
C(`+ 1)R(T )Φa√

h
E‖Ξ‖, (1.17)

where C = C1 ∨ 4C2 ∨ C3. From (1.16)

P (L(Ỹ ; 〈Ŝh, X̃〉)) ≤ P (L(Ỹ ; 〈S, X̃〉)) + 2ε‖S‖1 +
C3(`+ 1)2R(T )2Φ2a2η̃

nh
. (1.18)

We now apply the upper bound on α̃n(‖Ŝh − S‖L2(Π̃), ‖P⊥L Ŝh)‖1, ‖PL(Ŝh − S)‖1) to

(1.6) and get with probability at least 1− e−η,

P (L(Ỹ ; 〈Ŝh, X̃〉)) + ‖Ŝh − S‖2
L2(Π̃)

+ ε‖P⊥L (Ŝh)‖1

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε‖PL(Ŝh − S)‖1 + α̃n(‖Ŝh − S‖L2(Π̃), ‖P
⊥
L Ŝ

h)‖1, ‖PL(Ŝh − S)‖1)

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε‖PL(Ŝh − S)‖1

+
C2(`+ 1)R(T )Φa√

h

{
E‖Ξ‖(‖P⊥L Ŝh)‖1 + ‖PL(Ŝh − S)‖1)

}
+
C2(`+ 1)2R(T )2Φ2a2η̃

nh
,

(1.19)
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where the first inequality is due to the fact that

|〈sign(S), S−Ŝh〉| = |〈sign(S),PL(S−Ŝh)〉| ≤ ‖sign(S)‖‖PL(S−Ŝh)‖1 ≤ ‖PL(S−Ŝh)‖1.

With assumption (1.17) holds, we get from (1.19)

PL(Ỹ ; 〈Ŝh, X̃〉) + ε‖P⊥L (Ŝh)‖1

≤ PL(Ỹ ; 〈S, X̃〉) +
5ε

4
‖PL(Ŝh − S)‖1 +

ε

4
‖P⊥L (Ŝh)‖1 +

C2(`+ 1)2R(T )2Φ2a2η̃

nh
.

(1.20)

If the following is satisfied:

C2(`+ 1)2R(T )2Φ2a2η̃

nh
≥ 5ε

4
‖PL(Ŝh − S)‖1 +

ε

4
‖P⊥L (Ŝh)‖1, (1.21)

we can just conclude that

P (L(Ỹ ; 〈Ŝh, X̃〉)) ≤ P (L(Ỹ ; 〈S, X̃〉)) +
C2(`+ 1)2R(T )2Φ2a2η̃

nh
, (1.22)

which is sufficient to meet the bound of Lemma 1. Otherwise, by the assumption that

P (L(Ỹ ; 〈Ŝh, X̃〉)) > P (L(Ỹ ; 〈S, X̃〉)), one can easily check that

‖P⊥L (Ŝh − S)‖1 ≤ 5‖PL(Ŝh − S)‖1,

which implies that Ŝh−S ∈ K(D;L; 5). This fact allows us to use the bound on αn(δ1, δ2)

of Lemma 6. We get from (1.6)

P (L(Ỹ ; 〈Ŝh, X̃〉)) + ‖Ŝh − S‖2
L2(Π̃)

+ ε‖P⊥L (Ŝh)‖1

≤ P (L(Ỹ ; 〈S, X̃〉)) + ε〈sign(S), S − Ŝh〉

+
C1(`+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)m‖Ŝh − S‖L2(Π̃) + ‖P⊥L (Ŝh)‖1) +

C1(`+ 1)2R(T )2Φ2a2η̄

nh
.

(1.23)
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By applying the inequality

∣∣〈sign(S), Ŝh − S〉
∣∣ ≤ m

√
rank(S)‖Ŝh − S‖L2(Π̃),

and the assumption (1.17), we have with probability at least 1− e−η,

P (L(Ỹ ; 〈Ŝh, X̃〉)) ≤ P (L(Ỹ ; 〈S, X̃〉)) + ε2m2rank(S) +
C1(`+ 1)2R(T )2Φ2a2η̄

nh
.

(1.24)

To sum up, the bound of Lemma 1 follows from (1.18), (1.22) and (1.24) provided that

condition (1.17) and condition (1.15) hold.

We still need to specify δ−k , δ+
k , k = 1, 2, 3, 4 to establish the bound of the theorem. By

the definition of Ŝh, we have

Pn(L(Ỹ ; 〈X, Ŝh〉)) + ε‖Ŝh‖1 ≤ Pn(L(Ỹ ; 〈X, 0〉)) ≤ Q,

implying that ‖Ŝh‖1 ≤ Q
ε

. Next, ‖P⊥L Ŝh‖1 ≤ ‖Ŝh‖1 ≤ Q
ε

and ‖PL(Ŝh − S)‖1 ≤ 2‖Ŝh −

S‖1 ≤ 2Q
ε

+ 2‖S‖1. Finally, we have ‖Ŝh − S‖L2(Π̃) ≤ 2a. Thus, we can take δ+
1 := 2a,

δ+
2 := Q

ε
, δ+

3 := 2Q
ε

+ 2‖S‖1, δ+
4 := Q

ε
+ ‖S‖1. With these choices, δ+

k , k = 1, 2, 3, 4 are

upper bounds on the corresponding norms in condition (1.15). We choose δ−1 := a√
n
, δ−2 :=

a2

nε
∧ δ+2

2
, δ−3 := a2

nε
∧ δ+3

2
, δ−4 := a2

nε
∧ δ+4

2
. Let η∗ := η+3 log(B log2(‖S‖1∨n∨ε∨a−1∨Q)).

It is easy to verify that η̄ ∨ η̃ ∨ η̃ ≤ η∗. for a proper choice of numerical constant B in the

definition of η∗. When condition (1.15) does not hold, which means at least one of the

numbers δ−k , k = 1, 2, 3, 4 we chose is not a lower bound on the corresponding norm, we

can still use the bounds

(P − Pn)(L′(Y ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉

≤ α̃(‖Ŝh − S‖L2(Π̃) ∨ δ
−
1 ; ‖P⊥L Ŝh‖1 ∨ δ−2 ; ‖PL(Ŝh − S)‖1 ∨ δ−3 ),

(1.25)
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and

(P − Pn)(L′(Y ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 ≤ α̌(‖Â(t)ε − S‖L2(Π̃) ∨ δ
−
1 ; ‖Ŝh − S‖1 ∨ δ−4 ),

(1.26)

instead of (1.12), (1.13). In the case when Ŝh − S ∈ K(D;L; 5), we can use the bound

(P − Pn)(L′(Y ; 〈Ŝh, X̃〉))〈Ŝh − S, X̃〉 ≤ α(‖Ŝh − S‖L2(Π̃) ∨ δ
−
1 ; ‖P⊥L Ŝh‖1 ∨ δ−2 ),

(1.27)

instead of bound (1.14). Then one can repeat the arguments above with only minor modi-

fications. By the adjusting the constants, the result of Lemma 1 holds.

The last thing we need to specify is the size of ε which controls the nuclear norm

penalty. Recall that from condition (1.17), the essence is to control E‖Ξ‖. Here we use a

simple but powerful noncommutative matrix Bernstein inequalities. The original approach

was introduced by [87]. Later, the result was improved by [23] based on the classical result

of [88]. We give the following lemma which is a direct consequence of the result proved

by [23], and we omit the proof here.

Lemma 7. Under the model (1.1), Ξ is defined as in (1.8) with τj are i.i.d. uniformly dis-

tributed in [0,1], and εj are i.i.d. Rademacher random variables, and Xj are i.i.d uniformly

distributed in X . Then for any η > 0, with probability at least 1− e−η

‖Ξ‖ ≤ 4
(√(η + log 2m)

nm

∨ (η + log 2m)Φ

n
√
h

)
,

and by integrating its exponential tail bounds

E‖Ξ‖ ≤ C
(√ log 2m

nm

∨ (log 2m)Φ

n
√
h

)

where C is a numerical constant.
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Together with (1.17), we know for some numerical constant D > 0,

ε ≥ D
Φa(`+ 1)R(T )√

h

(√ log 2m

nm

∨ (log 2m)Φ

n
√
h

)
.

which completes the proof of Lemma 1.

2 Proof of Lemma 6

Proof. We only prove the first bound in detail, and proofs of the rest two bounds are sim-

ilar with only minor modifications. By Talagrand’s concentration inequality [89], and its

Bousquet’s form [90], with probability at least 1− e−η,

αn(δ1, δ2) ≤ 2Eαn(δ1, δ2) +
24(`+ 1)2R(T )2Φ2a2η

nh
+

12(`+ 1)R(T )Φaδ1
√
η

√
nh

. (2.1)

By standard Rademacher symmetrization inequalities, see [86], Sec. 2.1, we can get

Eαn(δ1, δ2) ≤ 4E sup
{∣∣∣ 1
n

n∑
j=1

εj(〈A, X̃j〉 − Ỹj)〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
, (2.2)

where {εj} are i.i.d. Rademacher random variables independent of {(τj, Xj, Ỹj)}. Then

we consider the function f(u) = (u−y+v)u, where |y| ≤ 2Φa√
h

and |v|, |u| ≤ 2(`+1)R(T )Φa√
h

.

Clearly, this function has a Lipschitz constant 6(`+1)R(T )Φa√
h

. Thus by comparison inequality,

see [86], Sec. 2.2, we can get

E sup
{∣∣∣n−1

n∑
j=1

εj(〈A, X̃j〉 − Ỹj)〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
≤ 6(`+ 1)R(T )Φa√

h
E sup

{
n−1
∣∣∣ n∑
j=1

εi〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
.

(2.3)
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As a consequence of (2.2) and (2.3), we have

Eαn(δ1, δ2) ≤ 12(`+ 1)R(T )Φa√
h

E sup
{
n−1
∣∣∣ n∑
j=1

εi〈A−S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
. (2.4)

The next step is to get an upper bound on
∣∣n−1

n∑
j=1

εi〈A − S, X̃j〉
∣∣. Recall that Ξ :=

n−1
n∑
j=1

εjX̃j, then we have n−1
n∑
j=1

εi〈A− S, X̃j〉 = 〈A− S,Ξ〉. One can check that

|〈A− S,Ξ〉| ≤ |〈PL(A− S),PLΞ〉|+ |〈P⊥L (A− S),Ξ〉|

≤ ‖PLΞ‖2‖PL(A− S)‖2 + ‖Ξ‖‖P⊥LA‖1

≤ m
√

2rank(S)‖Ξ‖‖A− S‖L2(Π̃) + ‖Ξ‖‖P⊥LA‖1.

The second line of this inequality is due to Hölder’s inequality and the third line is due to the

facts that (A−S) ∈ K(D;L; 5), rank(PL(Ξ)) ≤ 2rank(S), ‖PLΞ‖2 ≤ 2
√

rank(PL(Ξ))‖Ξ‖,

and
∥∥A− S∥∥2

L2(Π̃)
= 1

m2

∥∥A− S∥∥
2
. Therefore,

12(`+ 1)R(T )Φa√
h

E sup
{∣∣∣n−1

n∑
j=1

εi〈A− S, X̃j〉
∣∣∣ : A ∈ A(δ1, δ2)

}
≤ 12(`+ 1)R(T )Φa√

h
E‖Ξ‖(2

√
2rank(S)mδ1 + δ2).

(2.5)

It follows from (2.1), (2.4) and (2.5) that with probability at least 1− e−η,

αn(δ1, δ2) ≤
(12(`+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)mδ1 + δ2)

)
+

24(`+ 1)2R(T )2Φ2a2η

nh
+

12(`+ 1)R(T )Φaδ1
√
η

√
nh

.

Now similar to the approach in [22], we make this bound uniform in δk ∈ [δ−k , δ
+
k ]. Let

δjkk = δ+
k 2−jk , jk = 0, ..., [log2(δ+

k /δ
−
k )]+1, k = 1, 2. By the union bound, with probability
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at least 1− e−η/3, for all jk = 0, ..., [log2(δ+
k /δ

−
k )] + 1, k = 1, 2, we have

αn(δ1, δ2) ≤
(12(`+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)mδj11 + δj22 )

)
+

24(`+ 1)2R(T )2Φ2a2η

nh
+

12(`+ 1)R(T )Φaδj11

√
η

√
nh

.

which implies that for all δk ∈ [δ−k , δ
+
k ], k = 1, 2,

αn(δ1, δ2) ≤
(12(`+ 1)R(T )Φa√

h
E‖Ξ‖(

√
rank(S)mδ1 + δ2)

)
+

24(`+ 1)2R(T )2Φ2a2η̄

nh
+

12(`+ 1)R(T )Φaδ1

√
η̄√

nh
.

The proofs of the second and the third bounds are similar to this one, we omit the repeated

arguments.

3 Proof of Lemma 3

Let zi ∈ Rm1 , i = 1, . . . ,m2 denote the columns of Z. Then, we write

ZZ> − σ2m2Im1 =

m2∑
i=1

(
zi ⊗ zi − σ2Im1

)
.

Similarly, let z̃j ∈ Rm1 , j = 1, . . . ,m1 denote the rows of Z and observe that ‖BZ>‖ =

‖BZ>ZB>‖1/2 and

BZ>ZB> =

m1∑
j=1

((
Bžj

)
⊗
(
Bžj

)
− σ2BB>

)
.

The inequalities (5.7) and (5.2) are on the concentration of sample covariance operator,

where a sharp bound has been derived in [91] and will be skipped here.
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4 Proof of Theorem 5.1

Since EΓ̂ = 0, we immediately get ELk(Γ̂) = 0. Then,

〈
x, P̂uu

k y
〉
− E

〈
x, P̂uu

k y
〉

=
〈
x,Lk(Γ̂)y

〉
+
〈
x,Sk(Γ̂)y

〉
− E

〈
x,Sk(Γ̂)y

〉
.

Lemma 8. For any x,y ∈ Rm1 , there exists an absolute constant D1 > 0 such that for all

0 ≤ t ≤ m1, with probability at least 1− e−t,

∣∣〈x,Lk(Γ̂)y〉
∣∣ ≤ D1t

1/2

(
σµ1 + σ2m

1/2
2

ḡk(AA>)

)
‖x‖`2‖y‖`2 .

Proof. Recall that

Γ̂ = AZ> + ZA> + ZZ> −m2σ
2Im1 .

Then, we write
〈
x,Lk(Γ̂)y

〉
as

〈x,Lk(Γ̂)y〉 =〈Γ̂Puu
k x,Cuu

k y〉+ 〈Γ̂Cuu
k x,Puu

k y〉

=〈(AZ> + ZA> + ZZ> −m2σ
2Im1)P

uu
k x,Cuu

k y〉

+〈(AZ> + ZA> + ZZ> −m2σ
2Im1)C

uu
k x,Puu

k y〉.

It suffices to consider the following terms separately for x,y ∈ Rm1:

〈ZA>x,y〉, 〈AZ>x,y〉,
〈(

ZZ> −m2σ
2Im1

)
x,y

〉
.

It is straightforward to check that 〈ZA>x,y〉 is a normal random variable with zero mean

and variance

E〈ZA>x,y〉2 = E〈Z,y ⊗ (A>x)〉2 = σ2‖y ⊗ (A>x)‖2
`2

= σ2‖y‖2
`2
‖A>x‖2

`2
,
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where we used the fact that Z is a m1 ×m2 matrix with i.i.d. N (0, σ2) entries. Therefore,

E〈ZA>Puu
k x,Cuu

k y〉2 ≤ σ2µ2
k

ḡ2
k(AA>)

‖x‖2
`2
‖y‖2

`2
,

where we used the facts ‖Ck‖ ≤ 1
ḡk(AA>)

and ‖A>Puu
k ‖ ≤ µk. By the standard concentra-

tion inequality of Gaussian random variables, we get for all t ≥ 0,

P
(∣∣〈ZA>Puu

k x,Cuu
k y
〉∣∣ ≥ 2t1/2

σµk
ḡk(AA>)

‖x‖`2‖y‖`2
)
≤ e−t.

Similarly, for all t ≥ 0,

P
(∣∣〈ZA>Cuu

k x,Puu
k y
〉∣∣ ≥ 2t1/2

σµ1

ḡk(AA>)
‖x‖`2‖y‖`2

)
≤ e−t.

We next turn to the bound of
∣∣〈(ZZ>−m2σ

2Im1

)
Puu
k x,Cuu

k y
〉∣∣. Recall that Puu

k Cuu
k = 0

implying that it suffices to consider
〈
ZZ>Puu

k x,Cuu
k y
〉
. Let z1, . . . , zm2 ∈ Rm1 denote the

columns of Z such that zi ∈ N
(
0, σ2Im1

)
for 1 ≤ i ≤ m2. Write

〈
ZZ>(Puu

k x),Cuu
k y
〉

=

m2∑
i=1

〈
zi,P

uu
k x
〉〈

zi,C
uu
k y
〉
.

Observe that E
(
Puu
k zi

)
⊗
(
Cuu
k zi

)
= 0 implying that

〈
zi,P

uu
k x
〉

is independent of
〈
zi,C

uu
k y
〉
.

By concentration inequalities of Gaussian random variables, for all t ≥ 0,

P
(∣∣〈ZZ>(Puu

k x),Cuu
k y
〉∣∣ ≥ 2t1/2‖y‖`2

σ
(∑m2

i=1〈zi,Puu
k x〉2

)1/2

ḡk(AA>)∣∣∣{〈zi,Puu
k x〉 : i = 1, . . . ,m2

})
≤ e−t.

By [92, Prop 5.16], the following bound holds with probability at least 1− e−t,

∣∣ m2∑
i=1

〈zi,Puu
k x〉2 − σ2m2‖x‖2

`2

∣∣ . σ
(
m

1/2
2 t1/2 + t

)
‖x‖`2 .
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If t . m1 ≤ m2, we conclude that there exists an absolute constant D1 > 0 such that

P
(∣∣〈ZZ>(Puu

k x),Cuu
k y
〉∣∣ ≥ D1

σ2m
1/2
2 t1/2

ḡk(AA>)
‖x‖`2‖y‖`2

)
≤ e−t.

To sum up, for all 0 ≤ t . m1, the following bound holds with probability at least 1− e−t,

∣∣〈x,Lk(Γ̂)y
〉∣∣ . t1/2

(
σµ1 + σ2m

1/2
2

ḡk(AA>)

)
‖x‖`2‖y‖`2

which concludes the proof.

It remains to derive the upper bound of
∣∣〈x,Sk(Γ̂)y〉 − E〈x,Sk(Γ̂)y〉

∣∣.The following

lemma is due to [69].

Lemma 9. Let δ(m1,m2) := σµ1m
1/2
1 + σ2(m1m2)1/2 and suppose that δ(m1,m2) ≤

1−γ
2(1+γ)

ḡk(AA>) for some γ ∈ (0, 1). There exists a constant Dγ > 0 such that, for all sym-

metric Γ̂1, Γ̂2 ∈ Rm1×m1 satisfying the condition max
{
‖Γ̂1‖, ‖Γ̂2‖

}
≤ (1 + γ)δ(m1,m2),

‖Sk(Γ̂1)− Sk(Γ̂2)‖ ≤ Dγ
δ(m1,m2)

ḡ2
k(AA>)

‖Γ̂1 − Γ̂2‖.

Define function ϕ(·) : R+ 7→ [0, 1] such that ϕ(t) = 1 for 0 ≤ t ≤ 1 and ϕ(t) = 0 for

t ≥ (1 + γ) and ϕ is linear in between. Then, function ϕ is Lipschitz on R+ with constant

1
γ

. To illustrate the dependence of Γ̂ on Z, we write Γ̂(Z) instead of Γ̂. To this end, fix

x,y ∈ Rm1 and constants δ1, δ2 > 0 and define the function

Fδ1,δ2,x,y(Z) :=
〈
x,Sk

(
Γ̂(Z)

)
y
〉
ϕ
(‖Γ̂(Z)‖

δ1

)
ϕ
(‖Z‖
δ2

)
.

where we view Z as a point in Rm1×m2 rather than a random matrix.

Lemma 10. For any δ1 ≤ 1−γ
2(1+γ)

ḡk(AA>) for some γ ∈ (0, 1) and δ2 > 0, there exists an
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absolute constant Cγ > 0 such that

∣∣Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)
∣∣ ≤ Cγ

δ1

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖Z1 − Z2‖‖x‖`2‖y‖`2

Proof of Lemma 10. Since ϕ(‖Γ̂(Z)‖
δ1

)ϕ(‖Z‖
δ2

) 6= 0 only if ‖Γ̂(Z)‖ ≤ (1 + γ)δ1 and ‖Z‖ ≤

(1 + γ)δ2, Lemma 4 implies that

∣∣Fδ1,δ2,x,y(Z)
∣∣ =

∣∣∣〈x,Sk
(
Γ̂(Z)

)
y
〉
ϕ
(‖Γ̂(Z)‖

δ1

)
ϕ
(‖Z‖
δ2

)∣∣∣ ≤ 14(1 + γ)2 δ2
1

ḡ2
k(AA>)

.

Case 1. If max
{∥∥Γ̂(Z1)

∥∥, ∥∥Γ̂(Z2)
∥∥} ≤ (1 + γ)δ1 and max

{
‖Z1‖, ‖Z2‖

}
≤ (1 +

γ)δ2.

By the Lipschitzity of function ϕ, Lemma 9 and definition of Γ̂(Z), it is easy to check

|Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)|

≤‖Sk
(
Γ̂(Z1)

)
− Sk

(
Γ̂(Z2)

)
‖‖x‖`2‖y‖`2

+
14(1 + γ)2δ1

γḡ2
k(AA>)

∥∥Γ̂(Z1)− Γ̂(Z2)
∥∥‖x‖`2‖y‖`2 +

14(1 + γ)2δ2
1

δ2γḡ2
k(AA>)

‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

‖Γ̂(Z1)− Γ̂(Z2)‖‖x‖`2‖y‖`2 +
14(1 + γ)2δ2

1

δ2γḡ2
k(AA>)

‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖Z1 − Z2‖‖x‖`2‖y‖`2 .

Case 2. If ‖Γ̂(Z1)‖ ≤ (1 + γ)δ1, ‖Γ̂(Z2)‖ ≥ (1 + γ)δ1 and max
{
‖Z1‖, ‖Z2‖

}
≤

(1 + γ)δ2. Since ‖Γ̂(Z2)‖ ≥ (1 + γ)δ1, we have ϕ
(‖Γ̂(Z2)‖

δ1

)
= 0 and Fδ1,δ2,x,y(Z2) = 0.

Then,

∣∣Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)
∣∣

=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)∣∣∣
=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)
−
〈
x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z2)‖

δ1

)
ϕ
(‖Z1‖

δ2

)∣∣∣
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≤
∥∥Sk(Γ̂(Z1)

)∥∥ 1

δ1γ
‖Γ̂(Z1)− Γ̂(Z2)‖‖x‖`2‖y‖`2

≤ (1 + γ)2δ2
1

ḡ2
k(AA>)δ1γ

(
2µ1 + 2(1 + γ)δ2

)
‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

(µ1 + δ2)‖Z1 − Z2‖‖x‖`2‖y‖`2 .

Case 3. If ‖Γ̂(Z1)‖ ≤ (1+γ)δ1, ‖Γ̂(Z2)‖ ≥ (1+γ)δ1, ‖Z1‖ ≤ (1+γ)δ2, ‖Z2‖ ≥

(1 + γ)δ2. It can be proved similarly as Case 2.

Case 4. If ‖Γ̂(Z1)‖ ≤ (1+γ)δ1, ‖Γ̂(Z2)‖ ≥ (1+γ)δ1, ‖Z1‖ ≥ (1+γ)δ2, ‖Z2‖ ≥

(1 + γ)δ2. It is a trivial case since Fδ1,δ2,x,y(Z1) = Fδ1,δ2,x,y(Z2) = 0.

Case 5. If max
{
‖Γ̂(Z1)‖, ‖Γ̂(Z2)‖

}
≤ (1 + γ)δ1, ‖Z1‖ ≤ (1 + γ)δ2, ‖Z2‖ ≥

(1 + γ)δ2. Again, we have Fδ1,δ2,x,y(Z2) = 0. Then,

∣∣Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)
∣∣

=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)∣∣∣
=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)
−
〈
x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z2‖

δ2

)∣∣∣
≤
∥∥Sk(Γ̂(Z1)

)∥∥ 1

δ2γ
‖Z1 − Z2‖‖x‖`2‖y‖`2 ≤

(1 + γ)2δ2
1

ḡ2
k(AA>)δ2γ

‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

δ1

δ2

‖Z1 − Z2‖‖x‖`2‖y‖`2 .

All the other cases shall be handled similarly and we conclude the proof.

Note that ‖Z1−Z2‖ ≤ ‖Z1−Z2‖`2 , Lemma 10 indicates that Fδ1,δ2,x,y(Z) is Lipschitz

with constant

Dγ
δ1

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖x‖`2‖y‖`2 .

Lemma 11. Let δ(m1,m2) := σµ1m
1/2
1 +σ2(m1m2)1/2 and suppose that E‖Γ̂‖ ≤ 1−γ

2
ḡk(AA>)

for some γ ∈ (0, 1). There exists some constant Dγ such that for any x,y ∈ Rm1 and all
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log 8 ≤ t ≤ m1, the following inequality holds with probability at least 1− e−t,

∣∣〈x,Sk(Γ̂)y〉 − E〈x,Sk(Γ̂)y〉
∣∣ ≤ Dγt

1/2σµ1 + σ2m
1/2
2

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2‖y‖`2 .

Proof of Lemma 11. Choose δ1 = δ1(m1,m2) and δ2 = δ2(m1,m2) as follows where

log 8 ≤ t ≤ m1 is to be determined:

δ1(m1,m2) : = δ1(m1,m2, t) := E‖Γ̃‖+D1t
1/2(σµ1 + σ2m

1/2
2 )

δ2(m1,m2) : = δ2(m1,m2, t) := E‖Z‖+D2σt
1/2

and the constants D1, D2 > 0 are chosen such that P
(
‖Γ̂‖ ≥ δ1(m1,m2, t)

)
≤ e−t and

P
(
‖Z‖ ≥ δ2(m1,m2, t)

)
≤ e−t. Let M := Med(〈x,Sk(Γ̂)y〉) denote its median.

Case 1. IfD1t
1/2(µ1σ+σ2m

1/2
2 ) ≤ γ

4
ḡk(AA>). Then, δ1 ≤ (1−γ

2
) ḡk(AA>)

2
= 1−2γ′

1+2γ′
ḡk(AA>)

2

for some γ′ ∈ (0, 1/2). By Lemma 10, Fδ1,δ2,x,y(·) satisfies the Lipschitz condition. By

definition of Fδ1,δ2,x,y(Z), we have Fδ1,δ2,x,y(Z) = 〈x,Sk(Γ̂)y〉 on the event {‖Γ̂‖ ≤

δ1, ‖Z‖ ≤ δ2}. By Lemma 3 and t ≥ log 8,

P
{
Fδ1,δ2,x,y(Z) ≥M

}
≥P
{
Fδ1,δ2,x,y(Z) ≥M, ‖Γ̂‖ ≤ δ1, ‖Z‖ ≤ δ2

}
≥P
{
〈x,Sk(Γ̂)y〉 ≥M

}
− P{‖Γ̂‖ ≤ δ1, ‖Z‖ ≤ δ2}

≥P
{
〈x,Sk(Γ̂)y〉 ≥M

}
− P

{
‖Γ̂‖ ≤ δ1

}
− P

{
‖Z‖ ≤ δ2

}
≥1

2
− 1

8
− 1

8
= 1/4,

and similarly,

P
{
Fδ1,δ2,x,y(Z) ≤M)

}
≥ 1/4.
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It follows from Gaussian isoperimetric inequality (see [63, Lemma 2.6]) and Lemma 10

that with some constant Dγ > 0, for all t ≥ log 8 with probability at least 1− e−t,

∣∣Fδ1,δ2,x,y(Z)−M
∣∣ ≤ Dγ

σδ1t
1/2

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖x‖`2‖y‖`2 .

Since t ≤ m1 ≤ m2, it is easy to check by Lemma 3 that δ1 � σµ1m
1/2
1 +σ2(m1m2)1/2 and

δ2 � σm
1/2
2 . Moreover, P

{
‖Γ̂‖ ≤ δ1, ‖Z‖ ≤ δ2

}
≥ 1− 2e−t. As a result, with probability

at least 1− e−3t,

∣∣〈x,Sk(Γ̂)y〉 −M
∣∣ ≤ Dγ

σµ1t
1/2 + σ2m

1/2
2 t1/2

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2‖y‖`2 . (4.1)

Case 2. If D1t
1/2(σµ1 + σ2m

1/2
2 ) > γ

4
ḡk(AA>). It implies that

E‖Γ̂‖ ≤ D1
(1− γ)

γ
t1/2(σµ1 + σ2m

1/2
2 ),

and δ1 ≤ Dγt
1/2(σµ1 + σ2m

1/2
2 ). By Lemma 3 and Lemma 4, with probability at least

1− e−t,

|〈x,Sk(Γ̂)y〉| ≤ ‖Sk(Γ̂)‖ ≤ Dγt
(σµ1 + σ2m

1/2
2 )2

ḡ2
k(AA>)

‖x‖`2‖y‖`2 ,

which immediately yields that

M ≤ Dγ
(σµ1 + σ2m

1/2
2 )2

ḡ2
k(AA>)

‖x‖`2‖y‖`2 .

The above inequalities imply that with probability at least 1− e−t for log 8 ≤ t ≤ m1,

|〈x,Sk(Γ̂)y〉 −M | ≤Dγt
(σµ1 + σ2m

1/2
2 )2

ḡ2
k(AA>)

‖x‖`2‖y‖`2

≤Dγ
σµ1t

1/2 + σ2m
1/2
2 t1/2

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2‖y‖`2 . (4.2)
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Therefore, bounds (4.1) and (4.2) hold in both cases. The rest of the proof is quite standard

by integrating the exponential tails and will be skipped here, see [63].

Proof of Theorem 5.1. By Lemma 8 and Lemma 11, if D1δ(m1,m2) ≤ ḡk(AA>) for a

large enough constant D1 > 0 such that γ ≤ 1/2, we conclude that for all log 8 ≤ t ≤ m1,

with probability at least 1− 2e−t,

∣∣〈x, P̂ky
〉∣∣ ≤ Dt1/2

σµ1 + σ2m
1/2
2

ḡk(AA>)
‖x‖`2‖y‖`2

which concludes the proof after adjusting the constant D accordingly.

5 Proof of Lemma 5

Observe that for any x,y ∈ Rm1 with ‖x‖`2 = ‖y‖`2 = 1 and δt = E‖Γ̂‖ + D1σµ1t
1/2 +

D2σ
2m

1/2
2 t1/2 with t ≤ m1 and some γ ∈ (0, 1/2],

∣∣∣E〈x, (Sk(Γ̃)− Sk(Γ̂)
)
y
〉∣∣∣ ≤ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥

= E
∥∥∥Sk(Γ̃)− Sk(Γ̂)

∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
+ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ > (1 + γ)δt

)
+ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥1(‖Γ̃‖ > (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
+ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥1(‖Γ̃‖ > (1 + γ)δt

)
1
(
‖Γ̂‖ > (1 + γ)δt

)

where the constantsD1, D2 > 0 are chosen such that max
{
P
(
‖Γ̃‖ ≥ δt

)
,P
(
‖Γ̂‖ ≥ δt

)}
≤

e−t. By Lemma 9,

E
∥∥∥Sk(Γ̃)−Sk(Γ̂)

∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
≤Dγ

δt
ḡ2
k(AA>)

E‖Γ̃− Γ̂‖ ≤ Dγ
δt

ḡ2
k(AA>)

E‖ZPhh
k Z> − νkσ2Im1‖.
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By writing Phh
k :=

∑
j∈∆k

hj ⊗ hj , we obtain

ZPhh
k Z> − σ2νkIm1 =

∑
j∈∆k

(Zhj)⊗ (Zhj)− σ2νkIm1

=νk

( 1

νk

∑
j∈∆k

(Zhj)⊗ (Zhj)− σ2Im1

)
.

where νk = Card(∆k). The vectors Zhj ∼ N (0, σ2Im1) and {Zhj : . . . , j ∈ ∆k} are

independent. By [91],

E
∥∥∥ 1

νk

∑
j∈∆k

(Zhj)⊗ (Zhj)− σ2Im1

∥∥∥ . σ2
(√m1

νk
∨ m1

νk

)
.

Since νk ≤ m1, we conclude with

E
∥∥∥Sk(Γ̃)− Sk(Γ̂)

∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
(5.1)

.γ
δt

ḡk(AA>)

(
m1σ

2

ḡk(AA>)

)
.

Choose t = m1, by Lemma 4 and Lemma 3,

E
∥∥∥Sk(Γ̃)−Sk(Γ̂)

∥∥∥1(‖Γ̂‖ ≤ (1 + γ)δm1

)
1
(
‖Γ̃‖ > (1 + γ)δm1

)
≤ Dγ

δ2
m1

ḡ2
k(AA>)

E
‖Γ̃‖2

ḡ2
k(AA>)

1
(
‖Γ̃‖ > (1 + γ)δm1

)
.γ

δ2
m1

ḡ4
k(AA>)

e−m1/2E1/2‖Γ̃‖4 .
δ4
m1

ḡ4
k(AA>)

e−m1/2

.
δ(m1,m2)

ḡk(AA>)

(
σµ1 + σ2m1

ḡk(AA>)

)

which is clearly dominated by (5.1) for t = m1 and m2e
−m1/2 ≤ 1. The other terms are

bounded in a similar fashion. To sum up, we obtain

‖ESk(Γ̃)− ESk(Γ̂)‖ . σµ1 + σ2m1

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
.
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