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Where To Differentiate Your Product 
 When Stocking Levels Are Coupled 

 
 
 

A critical assumption of Lee and Tang’s (1997) analysis of where in the production 

process a company should delay differentiation of its product is the independent treatment of 

installations in the production network.  We show this “decoupling” approach gives rise to 

inaccuracies in assessing the value of delayed differentiation, frequently overestimating but also 

potentially underestimating the savings in inventory costs by failing to appropriately exploit the 

risk pooling effect.  By doing so, we reveal a previously hidden factor in determining the optimal 

delayed differentiation strategy: the pattern of holding costs assessed for the various stages of 

work-in-process, which we refer to as the holding cost profile, plays an important role in the 

determination of the optimal strategy.  Prior work has established the importance of the absolute 

holding cost at each stage in this decision but the relative holding costs are also important; as 

sharp increases in the local holding costs indicate potential cost reduction opportunities.  Finally, 

we provide insight on the conditions when the decoupling assumption may lead to significant 

errors and cause a firm to make a costly mistake when determining where in the process to 

differentiate its product.   
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1.  Introduction 

In many industries and product lines, the growing diversity of customer demands is causing 

firms to dramatically increase product variety.  For instance, in 2003 alone, 26,893 new food and 

household products were introduced, including 115 deodorants, 187 breakfast cereals, and 303 

women's fragrances (Bianco, 2004).  Such an increase poses significant challenges to firms as 

product proliferation is typically accompanied by increasingly inaccurate forecasts, higher 

inventories, and more frequent stockouts (Lee, 1996).  The delay of differentiation between 

multiple product lines, through use of common components or modularity, has been examined as 

one solution to this problem.  Delayed differentiation, first introduced by Alderson (1950), refers 

to the redesign of production processes to delay the stage where a universal set of product 

components is modified to their final distinct configurations.  A delay in differentiation typically 

allows for greater service levels at decreased inventory costs, as firms exploit better information 

and risk-pooling effects.  Thus, benefits of delayed differentiation tend to increase the further 

down the supply chain that differentiation takes place (Lee, 1996).  

 Unfortunately, implementing delayed differentiation is not free.  There are often significant 

costs involved in redesigning (and in many cases, over-designing) the product (Fisher et. al., 

1999).  In addition, configuring the product further down the supply chain (for instance, at the 

warehouse or retailer stage) is rarely as cost efficient as at the primary manufacturing facility.  

Both of these costs (design and assembly) tend to increase the further down the supply chain that 

differentiation takes place.  Since both the benefits and the costs of delayed differentiation 

increase the further down the supply chain, the question of where in the supply chain to optimally 

differentiate arises.  In this paper, we explicitly model this tradeoff to determine the optimal point 

of differentiation.  While this problem has been previously modeled in the literature (Lee and 
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Tang, 1997), we relax one of their major assumptions and find some instances where our solutions 

are significantly different. 

As in Lee and Tang (1997), we assume the production process may be modeled by a series of 

discrete processing stages or installations.  We refer to the last stage that the generic product exists 

as the Last Common Operation (LCO), and seek to determine which stage should be selected as 

the LCO to minimize total cost.   For example, a comparison of the total cost of the two networks 

shown in Figure 1 will assist a firm in deciding if it is better to differentiate its product either one 

or two stages from the last stage.  

 

 

 

 

 

Figure 1: Delayed Differentiation Product Networks 

When Lee and Tang (1997) choose the amount of product to stock at each stage, they assume 

the stages may be treated independently; i.e. there is no connection between the service level of 

one stage with the stocking level of the stage preceding it.  This assumption is referred to as the 

decoupling heuristic (DH) because it allows each stage to be analyzed in isolation.  While the DH 

is appropriate when every stage is required to maintain a high service level, the literature on multi-

echelon inventory systems shows it is rarely optimal to maintain high service levels in the stages 

of the system that do not directly serve the final customer (see for example Chapter 8 in Zipkin, 

2000).  We relax the DH and provide guidance on the conditions where its use can lead to far from 

optimal decisions.   
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Because the analysis of arboreal multi-echelon supply chains without the DH becomes 

prohibitively complex, we approximate the echelon stocking levels for each installation through 

an extension of the Newsvendor Bounds Heuristic (NBH) of Lystad and Ferguson (2005) to 

networks of more than two echelons.  The heuristic is tested using these stocking levels as 

parameters in a series of supply chain simulation experiments and compare the resulting supply 

chain costs to the costs obtained using the best stocking levels found from a full enumeration 

search.  After verifying the heuristic performs well under common conditions, we compare the 

results against the results generated using the DH.  

We show that the NBH performs much better than the DH and the optimal point of 

differentiation shifts towards the end of the supply chain as backorder costs increase and towards 

the beginning of the supply chain as echelon holding costs increase.  These results are in 

agreement with the results of Lee and Tang (1997), however, we also find the DH may over or 

underestimate the value of delaying differentiation.  Specifically, the DH often overestimates the 

value of delaying differentiation, except for cases when the echelon holding costs are high in the 

initial stages of production and the backordering costs are also high.  In these cases, the DH 

results in the firm failing to carry sufficient inventory in the intermediate stages, and 

correspondingly underestimates the risk pooling benefits of delaying differentiation.  Both the 

over and underestimation are often significant and may lead a firm to select suboptimal supply 

chain structures.   

Finally, by not assuming the stages are decoupled, we discover a non-intuitive and previously 

hidden insight that the shape of the holding cost profile (how much the holding cost increases 

from one stage to the next) significantly affects the choice of where in the process product 

differentiation occurs.  We find the presence of sharp rises in local holding cost between stages is 
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associated with increased cost savings due to the reduction in effective backordering costs at the 

downstream stages.  Thus, capturing holding cost ‘spikes’ under a common component form is 

more valuable than previously believed, and may serve as justification for a more extensive use of 

delayed differentiation strategies. 

The remainder of this paper is organized as follows.  We provide a summary of the relevant 

literature in §2.  The model is defined in §3 and a simulation study is presented and discussed in 

§4.  We state and explain our experimental results in §5 and conclude in §6.  Appendix 1 

contains additional numerical results and Appendix 2 provides proofs to our propositions.       

2.  Literature Review 

The realities of increasing product variety has led to many proposals to address the 

corresponding complexities, such as part commonalities, process sequencing, delayed 

differentiation, and lead-time reduction  (see Chapters 15, 16, and 18 in Tayur et al.(1999) for a 

representative sample).  Delayed differentiation exploits the variance reduction through the risk 

pooling effect, reducing the required safety stock to meet a given service level: Lee et al.(1993), 

Lee (1996), and Lee and Tang (1997).  Garg and Tang (1997) add a second level of 

differentiation to the firm’s decision resulting in even more benefits of late differentiation. 

Historically, the analysis of delayed differentiation of multiple product lines typically 

assumes installations along the supply chain may be treated independently from one another (e.g. 

Lee and Tang 1997; Ma, Wang, and Wu 2002), resulting in single stage inventory policies.  Aviv 

and Federgruen (2001) avoid the use of this decoupling assumption when considering 

capacitated, two-echelon production systems under seasonally fluctuating demand distributions. 

Instead, they utilize a balance relaxation, where negative inventory allocations may be applied to 
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the differentiated installations.  In this paper, we avoid the use of decoupling and balance 

relaxations. 

Decoupling assumptions are also made in the literature on component commonalities (e.g. 

Hsu and Wang 2003).   The use of common components is a special case of delayed 

differentiation, postponing the differentiation of an assembly system until the first non-common 

component is included.  By incorporating common components, firms may increase their 

flexibility to meet diverse customer demands at a higher service level but often face the tradeoff 

of increased redesign and component costs.  Baker et al. (1986), Gerchak, Magazine, and 

Gamble (1988) and Eynan and Rosenblatt (1996) show under general demand distributions and 

correlations, the optimal levels of common component inventories are non-intuitive.  

Furthermore, Eynan and Rosenblatt (1996) show it may be optimal to not utilize commonality 

when the costs of a common assembly are substantially more expensive than the specific 

assemblies it replaces.  Although these works suggest the optimal inventory policy of stages of a 

product line poses an interesting, non-intuitive problem, they also limit their analysis to 2-

echelon systems and focus on service levels rather than minimizing expected costs.  In this 

paper, we use a heuristic to determine inventory base-stock levels for an N-echelon network, 

where total holding and penalty costs are minimized.   

Our heuristic is an extension of the NBH provided by Lystad and Ferguson (2005) who 

suggest the expected periodic cost of a two-echelon distribution system may be bounded from 

above and below by two constructed serial systems.  The heuristic calculates the inventory base-

stock levels at each stage through the use of single-stage newsvendor solutions.  To estimate the 

inventory cost effects on the value of delaying differentiation, we extend this technique to 

analyze and compare three-echelon network topologies. 
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3.  Model 

Consider a multi-echelon supply chain with N stages, a single initial common product form 

and M final products as shown in Figure 2 (the following constructs assume that all differentiation 

occurs at the single node k, although our approach may be extended to any arborescent topology).  

  

  

                        

 

Figure 2: Model of Supply Chain Network 

We assume a periodic review policy where the system updates as follows:  Allow Ln to represent 

the known, deterministic lead-time of shipments from the n+1th to the nth installation.  At the 

beginning of period t, a shipment arrives to installation n that was shipped Ln time units ago from 

installation n+1.  Demand occurs at the final stage of the echelon tree, nodes 11 through 1M. 

Unmet demand is fully backordered.  A centralized decision maker observes the current state of 

inventory in the entire chain and places orders for each stage.  The upstream stage consequently 

ships downstream the minimum of the net order quantity and the on-hand inventory at stage n+1.   

Our decision of interest is identical to Lee and Tang (1997)’s; i.e. at which stage should 

product differentiation occur.  Our objective is to minimize the expected periodic total supply 

chain cost by properly selecting stage k (between N and 1) as the point of differentiation.  Before 

presenting our model, we introduce the following terminology: 

n = the stage index, (1,.. )n N∈  

i = the product (equivalently sub-chain) index, (1,.. )i M∈  

k = the stage of last common operations (LCO), our decision variable 

D1 

DM 

kN 

j1 

jM 

11 

1M 

k+1 
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Ln = the constant transportation lead-time from stage n+1 to stage n when n ≥  k. 

Li,n = the constant transportation lead-time for product i from stage n+1 to stage n when n < k. 

Sk = the annuitized cost per period for an investment in the ability to perform a common 

operation at stage k 

Pn = the common processing costs per unit at stage n when n ≥  k. 

Pi,n = the processing cost per unit of product i at stage n when n < k. 

Fi,n(x) = the ,
1

n

i j
j

L
=

∑ fold convolution of the distribution function of periodic demand for 

product i. 

Di(t) = the cumulative demand for product i in the time interval (0,t] 

Di,n = Di(t+Li,n) – Di(t), the lead-time demand for product i in installation n   

µi = the mean single period demand of product i 

Hn = the common installation holding costs per unit per period at stage n when n ≥  k. 

Hi,n = the installation holding cost per period and per unit of product i at stage n when n < k. 

hn = Hn – Hn+1, echelon inventory holding cost per unit, per period at stage n  when n ≥  k. 

hi,n = Hi,n – Hi,n+1, Hi,k = Hk, echelon inventory holding cost per unit, per period in chain i at 

stage n when n < k.  

In
k
 = the echelon inventory base-stock level for installation n, given LCO = k 

Ii,n
k = the echelon inventory base-stock level of product i for installation n, given LCO = k 

Tn = the common transportation cost per unit at stage n. 

Ti,n = the transportation cost per unit of product i at stage n. 

Rk
n = the net echelon inventory at stage n, given the last common operation is stage k 

Ri
k
n = the net echelon inventory of product i at stage n, given the last common operation is 

stage k 
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bi = the per period unit cost of a backorder at retail installation i  

b = 
i i

i

i
i

bµ

µ

∑
∑

 the demand weighted average unit backorder cost 

The expected periodic cost is comprised of annuitized investment costs that allow a product to 

remain in a generic form until the LCO (stage k), processing costs, inventory holding and stockout 

costs, and transportation costs between the installations.  Let the sum of these costs be Z(k), so the 

firm’s problem is to find the stage k  where 

1

,
1 1 1 1 1

, ,
1 1 1 1

,
1 1

arg min ( ) * *

* *

* *

N N M k M

n i n i n i
k N n k n k i n i

N M k M
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n n i i n i n i
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i n i n i
i n i

k Z k S P P

H R D H R D

T T

µ µ

µ µ

−

≤ ≤ − = = = = =

+
+

= + = = =

= = =

    
= = + +    

    
       +Ε − + −             

   
+ +   

   

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑
1
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k
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b D R
− +

= =

 
 + Ε −   

 
∑ ∑ ∑

 (1)  

 
The first term in (1) is the total investment costs, the terms in the first bracket are the total 

processing costs, the second bracket includes the total holding costs, the third bracket includes the 

transportation costs, and the fifth and sixth terms include the backorder costs.  As in Lee and Tang 

(1997), the optimal LCO is determined by comparing the objective function Z(k) for stages k = 1 

through N-1.  Unlike their model however, which uses a decoupling argument to determine an 

inventory stocking level (or safety stock factor) at each stage in the chain, we determine the 

echelon stocking level for each stage.  An optimal policy for this type of system has not yet been 

solved (although Federgruen and Zipkin (1984) provide bounds and Zipkin (2000) provides 

approximations).  Even these approximations are complex and difficult to compute, thus we solve 

the problem using the NBH from Lystad and Ferguson (2005).  We provide a brief description of 

this heuristic below. 
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To analyze a given multiechelon topology, we construct two serial supply chain systems 

whose costs bound the optimal costs of a branched chain from above and below.  Our illustrative 

network is depicted in Figure 1, and faces demand processes D1, D2, ... , DM   at the terminal ends 

of the chain segments.  Following the approach of Lystad and Ferguson (2005), we construct an 

upper bound by decomposing the system depicted in Figure 2 into the set of serial chains 

depicted in Figure 3. 

 

 

 

 

 

 

Figure 3: Decomposed Serial Chains 

Likewise, we construct a lower bound by collapsing the system depicted in Figure 1 into a single 

serial chain as depicted in Figure 4. 

 

 

Figure 4: Collapsed Supply Chain 

To describe our heuristic, we need the following additional notation: 

si,n  = a base-stock level for stage n in serial chain i 
*

,
x
i ns  = the “best found” base-stock level for stage n in serial chain i, where ( , , , )x d c e a∈  

( ), ,
x
i n i nC s  = the expected per period cost of the first n stages of serial chain i under base-stock 

policy  si,n, where ( , , , )x d c e a∈  

u, l  = superscripts denoting upper and lower bounds, respectively 

D1 N1 k-11 11 k+11 k1 

D2 N2 k-12 12 k+12 k2 

DM NM k-1M 1M kM 

D1+D2+…+DM k N k+1 k-1 1 

k+1M 
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d, c = superscripts denoting decomposed and collapsed systems, respectively 

e = superscript denoting the arborescent topology 

a = superscript denoting the heuristic policy for the arborescent topology 

The decomposition and collapsed system results combine to give 

( ) ( ) ( )* * *
, ,

c c e e d
N N N N i N i N

i
C s C s C s≤ ≤ ∑         (2) 

and suggest that * * *
,

1

M
c e d
n n i n

i
s s s

=

≤ ≤ ∑   (for n = k...N).                      (3) 

We use the stocking level results of the serial systems to approximate the optimal base-stock 

levels for the arborescent network.  Our approach is similar to the Shang and Song (2003) 

heuristic for each of the M+1 constructed chains.  Using an illustrative two-retailer system, for 

the collapsed serial chain system, the stocking level at stage n is  

 

1 11 1
1 2, 1 2,

1

2

N N

j j
j n j n

n nN N

j j
j j nc

n

b h b h
F F

b h b h
s

= + = +− −
+ +

= =

   + +   
   +
   + +   
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∑ ∑

∑ ∑
. (4) 

 

For the decomposed serial chain system, the stocking levels at stage n are, for our illustrative 

system,  

1 1, 1 1,
1 11 1

1, 1,

1 1, 1 1,
1

1, 2

N N

j j
j n j n

n nN N

j j
j j nd

n

b h b h
F F

b h b h
s

= + = +− −

= =

   + +   
   +
   + +   
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∑ ∑

∑ ∑
   and   

2 2, 2 2,
1 11 1

2, 2,

2 2, 2 2,
1

2, 2

N N

j j
j n j n

n nN N

j j
j j nd

n

b h b h
F F

b h b h
s

= + = +− −

= =

   + +   
   +
   + +   
   =

∑ ∑

∑ ∑
.  (5,6)  

 
The sum of the base-stock levels, 1, 2,

d d d
n n ns s s= + , represents an approximation for the echelon 

inventory of the arborescent chain.  If the backorder costs or holding costs differ between 
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product chains, Equation 4 is adjusted to use average backorder and holding costs weighted by 

the mean demands. 

Our heuristic for setting echelon base stock levels at stage n ( k n N≤ ≤ ) is to average the 

approximations resulting from the collapsed and decomposed chains,  

 
2

c d
a n n
n

s ss +
= . (7) 

4.  Simulation Experiments 

The NBH is extensively tested for a two-echelon distribution network in Lystad and 

Ferguson (2005).  To demonstrate its usefulness in a delayed differentiation analysis, however, 

we need to test it on systems of at least three echelons.  Because closed form solutions are as of 

yet unavailable, we do so using simulation.  We consider two candidate supply chains of three 

echelons with LCOs of 2 and 3, respectively, as shown below in Figures 5 and 6.  Comparing 

these topologies captures the critical elements of a delayed differentiation process. 

 

 

 

 

Figure 5:  k=2                                           Figure 6: k=3 
 

The simulations are conducted as follows; for a single, steady state replication, random 

demands are generated for 100,000 periods.   In each period, demand is satisfied or backordered, 

orders are placed and filled, and linear holding and backordering costs are assessed.  These costs 

are aggregated into 1000 batch means of 100 periods each.  The first batch mean is removed to 

eliminate initialization effects.  The removal of the first 100 periods of data is overly 

D2 D2 

D1 D1 
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conservative because, under base-stock policies, the state spaces of the investigated supply 

chains are independent after L3 + L2 + L1 + 1 periods.  The average costs and standard deviations 

for the remaining 99 batch means (periods 1001 through 100,000) are reported.  We utilize 

common random numbers across systems during demand generation, for computational 

simplicity and to potentially exploit variance reduction.  Demand for both products is assumed 

Poisson with a mean rate of 10 units per period.    

We compare the NBH results to those generated by the DH used in Lee and Tang’s (1997) 

procedure and to the set of echelon base-stock levels that results in the lowest average system 

cost found via the simulation.  The DH stocking levels are determined by calculating the optimal 

local fill rate at the retail stages and applying this rate to each upstream installation.  The lowest 

average system costs are found by conducting a full enumeration across the expected minimizing 

local base-stock level ± ½µ.  If lowest cost set of stock levels are potentially constrained by these 

limits, the study is widened so that the set contains no elements at the limits.  We conduct simple 

difference of means tests between the NBH and DH to establish statistically significant results.  

We achieve significant results in 46 of 48 experiments, while the remaining 2 experiments fail to 

achieve a significant difference at the 5% level using a two-tailed t-test.   

5.  Experimental Results 

5.1 Symmetric Costs 

The first series of experiments assumes the echelon holding costs and backordering costs for 

each installation at each stage are identical.  We further assume that the processing and 

transportation costs are constant regardless of k (e.g. 1, 2,n n nP P P= = ), and that 
1

k

k
n

S
=

∑  = 0 for all k.   
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Under these assumptions, differences in the solution to Equation (1) arise solely from inventory 

related effects. 

 We begin establishing the accuracy of the two heuristics by varying the backorder costs 

across a 4,000% range while keeping the echelon holding costs constant.  For these examples, 

the echelon holding costs of each of three levels of installations is set to 1 (i.e. the local 

installation holding costs are 1, 2, and 3, respectively).  Simulations were conducted as described 

in §4 and the results are depicted in Appendix 1 in Tables A.1 and A.2. 

Observation 1: The NBH policies result in lower costs than the DH policies. 

For the non-delayed case, the NBH generates inventory policies that exceed the cost of the 

best found policy by an average of 0.2%, compared to 1.7% for the DH.  For the delayed case, 

the errors of the NBH policies and DH policies are 0.7% and 2.0%, respectively.  

Observation 2:  The NBH performs progressively better at higher backordering costs.   The DH 

also performs better as the backordering costs increase, but reaches a point where it begins to 

perform worse. 

As the backordering costs increase, the consistently high service levels at each installation 

required by the DH are justified.  Thus it is unsurprising that here, the DH policies perform well.  

However, these policies are still outperformed by the NBH.  In the non-delayed case, the NBH 

finds the best policy in over half of the experiments with the highest backordering costs. 

Observation 3: The largest discrepancies between the NBH and the DH occur in the low 

backordering cost range. 

We focus on this area in the remainder of this paper, believing the greatest contribution may 

be achieved in this range.  Intuitively, it is in this region that the optimal upstream fill rates are 

significantly smaller than at the retail stage.  Thus, in the low backordering cost range, the DH is 

particularly inappropriate.  We specifically consider backordering to holding cost ratios of 
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approximately 7:1 at the retailer, noting that this ratio describes a wide variety of products.  For 

instance, by taking the backordering cost as the lost revenue of a sale of a product with a 50% 

profit margin, this ratio applies as long as the holding costs exceed 7% of the value of the 

product.   

5.2 Asymmetric Costs 

The second series of experiments addresses asymmetric costs where the backordering cost 

and/or the holding costs at the terminal stage are allowed to differ.  We continue to assume the 

processing and transportation costs are constant regardless of the topology given by the selection 

of k, and that 
1

0
k

k
n

S
=

=∑ for all k, again resulting in an investigation into solely the role of 

inventory effects on Equation (1). 

We test two levels of holding cost at each echelon, hn = {1,2} and three backordering costs, 

b={5,10,20}.  The NBH and DH stocking levels are generated as before.  The findings of these 

experiments are summarized in Appendix 1 in Tables A.3 and A.4. 

Observation 4: The NBH is robust to asymmetric costs in the production network beyond the 

last common operation. 

For the non-delayed and delayed production networks, the NBH produces an average error of 

0.6% and 1.2%, respectively.  In contrast, use of the DH leads to errors of 1.7% and 1.8%, 

respectively.  We note that when both holding and backordering costs differ between the chains, 

the NBH performs worse than the DH in the delayed network.  The allocation policy utilized in 

the NBH is suboptimal for asymmetric retailers but the errors induced by this allocation policy 

are small relative to the DH results.   These results should also be viewed in the context of the 

range of diversity in holding costs (100%) and backordering costs (400%) between installations.  

Products originating from a common form are unlikely to experience this degree of cost 

parameter asymmetry.   We leave an investigation for a slight correction to the heuristic for 
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future work.  For both the DH and NBH, the errors are greater in the asymmetric cost 

experiments than in the symmetric cost experiments.   

5.3 The Value of Delaying Differentiation 

Having established the NBH performs well in three-echelon topologies, we expand the 

experiment to compare the NBH results to the DH results as the echelon holding costs and 

backordering costs vary.  These results are summarized in Table 1. 

 
Composite Results 

Echelon Holding Costs Backorder Cost 
Non-delayed 
Chain Costs 

Delayed Chain 
Costs 

h3 h2 h1  b NBH DH NBH DH 
1 1 1 2.5 8110 8603 7970 8385 
1 1 1 5 8928 9226 8733 8940 
1 1 1 7.5 9426 9637 9183 9302 
1 1 1 10 9814 9980 9544 9603 
1 1 1 20 10676 10819 10331 10380 
1 1 2 5 9341 9460 9132 9175 
1 1 2 10 10411 10484 10136 10088 
1 1 2 20 11592 11644 11155* 11146* 
1 2 1 5 11473 12382 11180 11859 
1 2 1 10 12597 13232 12236 12578 
1 2 1 20 13773 14176 13286 13458 
1 2 2 5 11798 12208 11507 11741 
1 2 2 10 13159 13420 12667 12861 
1 2 2 20 14561 14706 14076* 14027* 
2 1 1 5 13428 14473 13201 14156 
2 1 1 10 14621 15324 14308 14947 
2 1 1 20 15852 16268 15399 15827 
2 1 1 50 17461 17509 16880 17090 
2 1 2 5 13840 14300 13613 13973 
2 1 2 10 15175 15550 14842 15158 
2 1 2 20 16643 16835 16210 16324 
2 2 1 5 15934 17326 15663 16595 
2 2 1 10 17317 18331 16919 17926 
2 2 1 20 18845 19439 18322 18904 
2 2 2 5 16221 17206 15940 16770 
2 2 2 10 17856 18452 17467 17880 
2 2 2 20 19574 19959 19087 19206 

* Denotes an insignificant difference of means on a two-tailed t-test at the 5% level 
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Table 1: Comparative Costs  

Observation 5: The experiments show that delaying differentiation is consistently valuable.   

This observation is expected since we assume the redesign cost to be zero.   

Observation 6: The NBH outperforms the results of the DH. 

In 45 of the 48 cases the NBH outperforms the DH at the 5% significance level.  In 2 of the 

remaining 3 cases, the difference of means is statistically insignificant at the 5% level after 

200,000 periods.  In only one case did the DH significantly outperform the NBH.  Thus, when 

determining stocking levels for a multi-level production system, our results indicate NBH 

stocking levels result in lower inventory costs for a given service level than DH stocking levels.  

In designing the manufacturing process, a firm seeks to answer the question of whether the 

savings in inventory costs from delaying differentiation are worth the additional costs from 

processing, transportation, or redesign.  To examine the effects of the DH on this decision, we 

revisit the data presented in Table A.3 and compare the differences in the expected inventory 

costs between the non-delayed and delayed chains.  This data is presented in Table 2 

. 
Expected Value of Delayed Differentiation 

Echelon Holding Costs Backorder Cost Delay Value   

h3 h2 h1  b NBH DH  DH Overestimation  
1 1 1 2.5 140.65 218.3 35.6% 
1 1 1 5 194.56 286.28 32.0% 
1 1 1 7.5 242.65 334.8 27.5% 
1 1 1 10 270.13 376.8 28.3% 
1 1 1 20 344.6 438.1 21.3% 
1 1 2 5 209.02 284.44 26.5% 
1 1 2 10 274.8 395.6 30.5% 
1 1 2 20 437.8 498.1 12.1% 
1 2 1 5 293.7 523.1 43.9% 
1 2 1 10 360.7 654.7 44.9% 
1 2 1 20 487 718.6 32.2% 
1 2 2 5 291.4 467.9 37.7% 
1 2 2 10 491.1 559.1 12.2% 
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1 2 2 20 485.2 678.5 28.5% 
2 1 1 5 226.6 317.5 28.6% 
2 1 1 10 312.6 376.9 17.1% 
2 1 1 20 453.2 440.9 -2.8% 
2 1 1 50 581 418.8 -38.7% 
2 1 2 5 227 326.9 30.6% 
2 1 2 10 333.8 391.6 14.8% 
2 1 2 20 433.5 510.9 15.1% 
2 2 1 5 271 730.3 62.9% 
2 2 1 10 398.5 405.2 1.7% 
2 2 1 20 523.3 534.7 2.1% 
2 2 2 5 281.3 436.6 35.6% 
2 2 2 10 389.1 572.6 32.0% 
2 2 2 20 486.5 753.6 35.4% 

Table 2: Value of Delaying Differentiation 

Observation 7: In the majority of cases studied, the DH overestimates the potential cost savings 

of delaying differentiation.   

In 93% of the cases investigated, the cost savings generated by delaying differentiation under 

the DH exceeds that generated by delaying differentiation under the NBH, and this discrepancy 

ranged as high as 62.9%.  The overestimation of value is greatest when a significant increase in 

holding cost occurs at the potential LCO stage.  Here, the DH overestimates the cost savings by 

decreasing the inventory held at the LCO by amounts greater than the NBH.  Because the DH 

relies on the decoupling assumption, it carries excessive inventory at upstream stages.  This 

excessive inventory is reduced by greater amounts upon realization of the pooling effect than the 

more appropriately set inventory levels under the NBH.  Thus, the DH often leads to an 

overestimation of the benefits of delayed differentiation. 

Observation 8: Use of the DH may also significantly underestimate the potential cost savings of 

delaying differentiation.   

The underestimation of value is greatest when the local holding costs are high at the 

beginning of the process and backordering costs are also high.  This may occur when there is 

considerable value in the raw materials compared to the value added during the production 
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process, or when dealing with materials that require expensive or dangerous handling such as 

molten metal.  Here, the DH fails to capitalize fully on the benefits of holding product in 

intermediate stages.  Because a majority of the holding costs are applied regardless of the 

position of the inventory, the effective cost of shifting base-stock levels downstream towards the 

intermediate installations decreases.  This increases inventory at the potential LCO stage under 

the NBH, affording a greater savings upon merging the chains and exploiting the risk pooling 

effect.  By ignoring the effects of the delayed differentiation decision on installations upstream 

of the LCO echelon, the DH also fails to appreciate potential cost savings and may underestimate 

the value of delaying differentiation.   

5.4  Holding Cost Profile Insights 

The use of the NBH allows the development of a non-intuitive and previously obscured result 

in the behavior of the value of delayed differentiation as a function of the local holding costs.  To 

demonstrate, consider the data in Table 2 where H1 = 4 and b = 20.  Three local holding cost 

profiles meet this criteria; P1: {H3 = 2, H2 = 3, H1 = 4}, P2: {H3 = 1, H2 = 3, H1 = 4}, and P3: {H3 

= 1, H2 = 2, H1 = 4}.  These data are plotted below in Figure 7, where the plotted areas represent 

the local holding cost of a unit of product as it progresses through the production process, and the 

values in parenthesis are the associated values of delaying differentiation.  Under the DH, the 

value of delaying differentiation under holding cost profiles P1 and P2 are equal, and larger than 

under P3, due to the inventory savings at the second echelon.  Using the NBH, however, clearly 

shows the value under profile P2 > P1 > P3.    
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Figure 7: Values of Delaying Differentiation for Three Holding Cost Profiles 

The example above indicates the value of delaying differentiation is related to the shape of 

the holding cost profile in addition to the absolute level of local holding cost.  When comparing 

P1 and P2, we see that under P2, the holding costs increase at the potential point of delayed 

differentiation.  We refer to this as a holding cost ‘spike’; that is, a region in the production 

process where the slope of the holding cost profile is large.  We find that it is more valuable than 

previously expected to capture this spike, a finding that is consistent with all of our numerical 

examples.  This value may even exceed that obtained from the absolute holding cost savings.  

Note that in the above example, the increase in savings due to reduction of inventory when 

holding costs are 2 rather than 3 (e.g. P1 and P3) is 15.4 cost units.  However, the additional 

benefit obtained from including a holding cost spike in delayed differentiation (e.g. P1 and P2) is 

an additional 33.8 cost units beyond that predicted solely from the absolute holding cost related 

savings.  We formalize this finding in Propositions 1 and 2, whose proofs are presented in 

Appendix 2.  The propositions require the following two assumptions: 
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Assumption 1: The investment, processing, and transportation costs are independent of the 

selection of k.  That is, 
1

0
k

k
n

S
=

=∑ , 1, 2,n n nP P P= = , and 1, 2,n n nT T T= = .  Assumption 1 limits our 

consideration to the effects of inventory costs only.  Even if the conditions of the assumption 

never occur in practice, the analysis allows us to isolate the role of these costs from those of the 

investment, processing, and transportation costs, which are additive in the objective function and 

may be treated independently from the inventory considerations. 

Assumption 2: Consider two network topologies, each with the same number of echelons, where 

the first consists of serial chains and the second consists of a distribution center feeding the same 

chains, as depicted in Figures 7 and 8, respectively.  We assume the addition of an upstream 

echelon that converts the networks into Figures 9 and 10 affects the costs of operating each 

system identically.  That is, the difference in expected periodic costs between the topologies 

represented by Figures 7 and 8 is equal to the difference in expected periodic costs between the 

topologies represented by Figures 9 and 10. 
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Assumption 2 is weaker than a decoupling assumption, as we need not assume the upstream 

echelon behaves as an infinite supplier for both topologies but rather it affects the downstream 

system in identical ways.  Under a base-stock policy, the demand process observed at echelon 

k+1 is identical under both topologies and the additional echelon holding costs and implied 

backordering costs are constant across topologies.  We can now present our two propositions.  

Proposition 1: Let h’k-1 = hk-1 + ∆ and h’k = hk - ∆.  Then, under Assumptions 1 and 2, and 

holding all other parameters constant, the value of delaying differentiation is non-increasing in 

∆.  This effect becomes more pronounced as the number of final product forms increase. 

Proposition 2: Let h’k = hk + ∆ and h’k+1 = hk+1 - ∆.  Then, under Assumptions 1 and 2, and 

holding all other parameters constant, the value of delaying differentiation is non-decreasing in 

∆. This effect becomes more pronounced as the number of final product forms increase. 

Proposition 1 states when larger holding costs are applied early in the process, the value of 

delayed differentiation is greater than when the holding costs are applied later in the process.  

This result is largely intuitive and arises from the decrease in inventory at the second stage 

associated with the pooling effect.    Proposition 2 considers changes in the local holding costs 

that apply before the stage of differentiation and states the value of delayed differentiation 

increases as holding costs shift downstream towards the point of differentiation. 

This non-intuitive result arises from the decrease in the effective backordering cost for 

carrying insufficient inventory in the LCO echelon.  The lower upstream holding cost allows for 

greater inventory to be held at the installation just upstream of the LCO, insulating the LCO from 

stockouts in a manner that has previously been unobserved.  By failing to capture the role of the 

entire supply chain when determining the value of delayed differentiation, the DH misses these 

important cost savings.  In this instance, the holding cost profile serves as a qualitative indicator 
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for the presence of potential savings via delayed differentiation, and the presence of ‘spikes’ in 

the holding cost from one stage to the next gives rise to the most favorable conditions for the use 

of delayed differentiation strategies.  

An example of Proposition 2 may be found in the products of Experimental Craftworks 

(http://www.experimentalcraftworks.com), a handmade jewelry boutique.  Experimental 

Craftworks designs and produces faceted gemstone and woven seed glass chandelier earrings.  

The gemstone products are simple in design and require little labor (approximately one half-

hour) in assembly, but have relatively expensive raw materials, costing on average $35 per pair.  

The woven seed glass earrings, however, have inexpensive raw materials, costing only $5 per 

pair, but require substantial assembly time and expertise.  Thus, although the raw materials costs 

differ, at the earring drop (completed subassembly) state, their values are approximately equal.  

Both products are also candidates for delayed differentiation strategies, as customers are 

sensitive to the type of earring backing, such as French hook, lever back, clip-on, or post.  These 

backings are finalized in a separate production stage.  Proposition 2 states the woven seed crystal 

earrings are more suitable for delayed differentiation.  In essence, the lower raw material value 

of the seed crystals allows larger quantities to be held in raw inventory, reducing the effective 

backordering rate of stockouts. 

5.5 Numerical Example Demonstrating How the DH May Lead To More Costly Supply 

Chain Configurations 

To see the possible implications of the error induced by the DH, consider the case of a 

manufacturer who produces a product in three separate steps.  Initially the product utilizes a 

generic component that is differentiated upon completion of the first stage.  For ease of 

exposition, suppose the processing, shipping, and holding costs of the intermediate stage product 
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are identical to that of a possible generic component at the second stage (i.e. the case of delayed 

differentiation).  In other words, let H2 = H1,2 = H2,2, T2=T1,2=T2,2 and P2 = P1,2 = P2,2. 

Suppose the manufacturer faces the following inventory and backorder costs: H3 = 1, H2 = 3, 

H1,1 = H2,1 = 4, and b1 = b2 = 10, corresponding to the parameters presented in the 10th row of 

example problems in Table 1.  Suppose further that the firm faces an average demand of µ1 = µ2 

= 10 units per period for each product, and the per-period annuitized cost of redesigning the 

process to allow for use of the generic component at the second stage is S2 = 6.  This is a set of 

parameters where we expect the DH to overestimate the value of delaying differentiation.  From 

Table 2, we see that under the NBH, the firm is only willing to pay up to 3.61 cost units per 

period to enable delayed differentiation, and will thus opt to not implement the strategy.  

However, under the DH, the firm will pay up to 6.55 cost units, and will delay the differentiation 

of the products.  In this case, solving the problem using the DH compares an expected cost of 

Z(3)Decoupling  = 132.3+20*[P1+T1]+10*[T1,2+T2,2+T1,3+T2,3]+10* [P1,2+P2,2+P1,3+P2,3] 

to 

Z(2)Decoupling = 125.8+6+20*[P1+T1+P2+T2]+10*[T1,3+T2,3] + 10* [P1,3+P2,3] . 

By assumption, the processing and transportation costs are equivalent in the two cases and 

thus are ignored, leaving Z(3)Decoupling = 152.3 and Z(2)Decoupling = 151.8. Because Z(2)Decoupling < 

Z(3)Decoupling, the firm delays differentiation, believing the savings in inventory costs exceed the 

cost of redesigning the product for delayed differentiation.  By a similar analysis, if the firm 

utilizes the NBH, it opts to not delay differentiation because Z(3)Bounds < Z(2)Bounds.  

To see the importance of this difference, consider the difference between the total supply 

chain costs of the two strategies; that is, Z(3)Bounds - Z(2)Decoupling.  Again, the processing and 

transportation costs are equal and thus cancel.  Therefore the difference in expected costs 
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between the two options is 5.81 per period.  This represents 4.6% of the total expected inventory 

related costs per period.   

6.  Conclusions 

When firms face increasing operational costs driven by product proliferation, they often turn 

to delayed differentiation as a potential cure.  To properly assess the benefits of delayed 

differentiation, firms need to balance the savings from inventory risk-pooling with the costs of 

process and design modifications.   In this paper, we make three major contributions: I) we 

provide guidance for when the decoupling assumption used by Lee and Tang (1997) may 

mislead a firm attempting to determine the optimal point to differentiate its products, II) we 

verify the Newsvendor Bounds Heuristic of Lystad and Ferguson (2005) is robust in three 

echelon topologies, and most importantly, III) we show the shape of the holding cost profile 

impacts the optimal point in the production process to delay differentiation. 

We show in most cases, the benefits of delaying differentiation are smaller than those 

predicted by Lee and Tang (1997) due to their decoupling assumption, especially when the 

echelon holding costs at the last common operation are relatively large.  This situation occurs 

when the majority of the value added processing occurs at the potential point of differentiation, 

because the inventory becomes relatively expensive at this point.  Because the high value add 

stages also, sometimes incorrectly, appear to benefit the most from delaying differentiation, the 

decoupling assumption may lead to significant errors in supply chain design.   

The decoupling assumption also underestimates the risk pooling savings when the echelon 

holding costs at stages upstream from the differentiating stage are high relative to the holding 

costs at other echelons and the backordering costs are high.  This is due to a failure to exploit the 

holding cost structure in the intermediate installations, resulting in lower inventory levels, and 
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consequently, smaller cost savings from risk pooling.  This effect is exacerbated when 

inventories are large due to significant backordering costs.   

Finally, we discover the non-intuitive and previously hidden insight that the shape of the 

holding cost profile significantly affects the optimal point in the process to delay differentiation.  

We show that the presence of sharp rises in local holding cost is associated with increased cost 

savings due to the reduction in effective backordering costs at the downstream stages.  In other 

words, capturing holding cost spikes through the use of a common component is more valuable 

than previously believed, and may serve as an additional justification for using delayed 

differentiation strategies. 
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Appendix 1 

 
  Non-Delayed (k=3) Cost Results   

  Best Found Base Stock Policy   

b s3 s2 s1 Cost % Error 
2.5 15 9 13 8109.7 N/A 
5 18 9 14 8935.5 N/A 

7.5 17 11 14 9452.7 N/A 
10 18 10 15 9822.9 N/A 
20 19 11 16 10710.9 N/A 
30 19 12 16 11210.8 N/A 
50 20 12 17 11824.1 N/A 

100 19 13 18 12599.2 N/A 

  Newsvendor Bounds Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 18 9 13 8169.69 0.7 
5 18 10 14 8985.39 0.6 

7.5 18 11 14 9475.62 0.2 
10 18 11 15 9864.56 0.4 
20 19 11 16 10710.9 0.0 
30 19 12 16 11210.8 0.0 
50 20 12 17 11824.1 0.0 

100 19 13 18 12599.2 0.0 
    

  
 

Decoupling Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 19 11 13 8588.5 5.9 
5 19 11 14 9204.5 3.0 

7.5 18 12 14 9606.4 1.6 
10 17 12 15 9944.1 1.2 
20 18 12 16 10758.6 0.4 
30 17 13 16 11234.9 0.2 
50 17 13 17 11850.4 0.2 

100 17 13 18 12681.5 0.7 

Table A.1: Stocking Level and Costs for Non-Delayed Chain (k=3) 
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  Delayed (k=2) Cost Results   
    
  Best Found Base Stock Policy   

b s3 s2 s1 Cost % Error 
2.5 17 16 13 7882.2 N/A 
5 18 17 14 8632.6 N/A 

7.5 19 19 14 9100.5 N/A 
10 18 19 15 9444.2 N/A 
20 19 20 16 10243.7 N/A 
30 20 21 16 10694.3 N/A 
50 21 21 17 11256.3 N/A 

100 22 21 18 11952.2 N/A 
    
  Newsvendor Bounds Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 18 18 13 7954.43 0.9 
5 19 19 14 8715.86 1.0 

7.5 20 20 14 9160.29 0.7 
10 21 19 15 9519.34 0.8 
20 21 20 16 10287.7 0.4 
30 21 22 16 10748.9 0.5 
50 22 22 17 11329.2 0.6 

100 23 22 18 12017.9 0.5 
    
  Decoupling Heuristic Policy   

b s3 s2 s1 Cost % Error 
2.5 21 20 13 8376.9 6.3 
5 22 19 14 8926.1 3.4 

7.5 22 20 14 9282.6 2.0 
10 22 19 15 9579.1 1.4 
20 23 19 16 10338.5 0.9 
30 23 20 16 10754.2 0.6 
50 23 20 17 11289.7 0.3 

100 24 19 18 12071.7 1.0 
 

Table A.2: Stocking Level and Costs for Delayed Chain (k=2) 
 
 

Asymmetric Costs, Nondelayed (k=3) Results 

Echelon Holding 
Costs 

Backordering 
Costs Best Found Base Stock Policy  

h3 h2 h1,1 h1,2 b1 b2 s3 s2,1 s2,2 s1.1 s1.2 Cost %Error 
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1 1 1 2 10 10 18 11 12 14 13 10131 N/A 
1 2 1 2 10 10 19 9 9 15 14 12891 N/A 
2 1 1 2 10 10 15 10 12 15 13 14969 N/A 
2 2 1 2 10 10 17 9 9 15 14 17625 N/A 
1 1 1 1 5 10 18 10 10 13 15 9388 N/A 
1 1 1 1 5 20 18 10 11 13 16 9839 N/A 
1 1 1 1 10 20 18 10 11 13 16 10386 N/A 
1 1 1 2 5 5 16 10 11 14 12 9134 N/A 
1 1 1 2 5 10 18 10 12 13 13 9696 N/A 
1 1 1 2 5 20 18 10 12 13 15 10274 N/A 
1 1 1 2 10 5 18 11 10 14 12 9572 N/A 
1 1 1 2 10 20 18 11 12 14 15 10709 N/A 
1 1 1 2 20 5 19 12 10 15 12 10008 N/A 
1 1 1 2 20 10 19 12 11 15 13 10566 N/A 
1 1 1 2 20 20 18 12 12 15 15 11146 N/A 
             

Echelon Holding 
Costs 

Backordering 
Costs Newsvendor Bounds Heuristic Policy  

h3 h2 h1,1 h1,2 b1 b2 s3 s2,1 s2,2 s1.1 s1.2 Cost %Error 
1 1 1 2 10 10 18 11 12 15 13 10150 0.2 
1 2 1 2 10 10 21 9 10 15 14 12988 0.8 
2 1 1 2 10 10 15 11 12 15 14 15016 0.3 
2 2 1 2 10 10 17 10 10 15 14 17703 0.4 
1 1 1 1 5 10 18 10 11 14 15 9499 1.2 
1 1 1 1 5 20 20 10 11 14 16 9930 0.9 
1 1 1 1 10 20 19 11 11 15 16 10423 0.4 
1 1 1 2 5 5 17 10 12 14 12 9174 0.4 
1 1 1 2 5 10 19 10 12 14 13 9757 0.6 
1 1 1 2 5 20 19 10 12 14 15 10332 0.6 
1 1 1 2 10 5 18 11 12 15 12 9650 0.8 
1 1 1 2 10 20 19 11 12 15 15 10764 0.5 
1 1 1 2 20 5 19 11 12 16 12 10103 1.0 
1 1 1 2 20 10 20 11 12 16 13 10618 0.5 
1 1 1 2 20 20 19 11 12 16 15 11157 0.1 
             

Echelon Holding 
Costs  

Backordering 
Costs Decoupling Heuristic Policy 

h3 h2 h1,1 h1,2 b1 b2 s3 s2,1 s2,2 s1.1 s1.2 Cost %Error 
1 1 1 2 10 10 18 12 12 15 13 10226 0.9 
1 2 1 2 10 10 18 12 11 15 14 13256 2.8 
2 1 1 2 10 10 18 12 11 15 14 15345 2.5 
2 2 1 2 10 10 18 12 11 15 14 18367 4.2 
1 1 1 1 5 10 18 11 12 14 15 9575 2.0 
1 1 1 1 5 20 19 11 12 14 16 10017 1.8 
1 1 1 1 10 20 18 12 12 15 16 10475 0.9 
1 1 1 2 5 5 19 11 11 14 12 9288 1.7 
1 1 1 2 5 10 19 11 12 14 13 9840 1.5 
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1 1 1 2 5 20 19 11 11 14 15 10406 1.3 
1 1 1 2 10 5 19 12 11 15 12 9730 1.7 
1 1 1 2 10 20 18 12 11 15 15 10829 1.1 
1 1 1 2 20 5 19 12 11 16 12 10080 0.7 
1 1 1 2 20 10 18 12 12 16 13 10593 0.2 
1 1 1 2 20 20 18 12 11 16 15 11195 0.4 

 
Table A.3: Asymmetric Results for Non-Delayed Differentiation Network 

 
 

Asymmetric Costs, Delayed (k=2) Results 

Echelon Holding 
Costs 

Backordering 
Costs Best Found Base Stock Policy  

h3 h2 h1,1 h1,2 b1 b2 s3 s2 s1,1 s1,2 Cost % Error 
1 1 1 2 10 10 19 21 14 13 9740.4 N/A 
1 2 1 2 10 10 20 17 15 14 12373.4 N/A 
2 1 1 2 10 10 17 19 15 14 14481.6 N/A 
2 2 1 2 10 10 18 18 14 14 17033.9 N/A 
1 1 1 1 5 10 18 19 13 15 9040.7 N/A 
1 1 1 1 5 20 19 18 13 17 9456.5 N/A 
1 1 1 1 10 20 19 20 14 16 9845.9 N/A 
1 1 1 2 5 5 18 20 13 12 8826.0 N/A 
1 1 1 2 5 10 19 19 13 14 9343.1 N/A 
1 1 1 2 5 20 19 21 12 15 9893.7 N/A 
1 1 1 2 10 5 19 20 14 12 9229.5 N/A 
1 1 1 2 10 20 20 20 14 15 10266.8 N/A 
1 1 1 2 20 5 19 20 16 12 9627.4 N/A 
1 1 1 2 20 10 20 21 15 13 10137.6 N/A 
1 1 1 2 20 20 20 21 15 15 10667.8 N/A 
            

Echelon Holding 
Costs 

Backordering 
Costs Newsvendor Bounds Heuristic Policy 

h3 h2 h1,1 h1,2 b1 b2 s3 s2 s1,1 s1,2 Cost % Error 
1 1 1 2 10 10 20 21 15 13 9826.5 0.9 
1 2 1 2 10 10 22 18 15 14 12520.6 1.2 
2 1 1 2 10 10 18 20 15 14 14581.9 0.7 
2 2 1 2 10 10 19 18 15 14 17150.7 0.7 
1 1 1 1 5 10 20 19 14 15 9126.9 1.0 
1 1 1 1 5 20 21 20 14 16 9623.2 1.8 
1 1 1 1 10 20 21 20 15 16 9943.3 1.0 
1 1 1 2 5 5 19 20 14 12 8905.7 0.9 
1 1 1 2 5 10 20 21 14 13 9510.1 1.8 
1 1 1 2 5 20 20 21 14 15 10040.3 1.5 
1 1 1 2 10 5 20 21 15 12 9354.3 1.4 
1 1 1 2 10 20 22 20 15 15 10392.8 1.2 
1 1 1 2 20 5 20 22 16 12 9775.0 1.5 
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KM 
 

k-1M 
 

1M 

k-11 11 

k-1M 
 

1M 

k 

1 1 1 2 20 10 22 21 16 13 10265.6 1.3 
1 1 1 2 20 20 21 21 16 15 10739.9 0.7 
            

Echelon Holding 
Costs 

Backordering 
Costs Decoupling Heuristic Policy 

h3 h2 h1,1 h1,2 b1 b2 s3 s2 s1,1 s1,2 Cost % Error 
1 1 1 2 10 10 22 20 15 13 9869.2 1.3 
1 2 1 2 10 10 22 19 15 14 12650.0 2.2 
2 1 1 2 10 10 22 19 15 14 14946.1 3.2 
2 2 1 2 10 10 22 19 15 14 17748.7 4.2 
1 1 1 1 5 10 22 19 14 15 9254.2 2.4 
1 1 1 1 5 20 22 20 14 16 9695.7 2.5 
1 1 1 1 10 20 23 19 15 16 9995.7 1.5 
1 1 1 2 5 5 21 20 14 12 9017.9 2.2 
1 1 1 2 5 10 21 20 14 13 9498.5 1.7 
1 1 1 2 5 20 22 19 14 15 10018.5 1.3 
1 1 1 2 10 5 19 20 15 12 9247.8 0.2 
1 1 1 2 10 20 22 19 15 15 10343.3 0.7 
1 1 1 2 20 5 22 20 16 12 9739.8 1.2 
1 1 1 2 20 10 22 20 16 13 10204.3 0.7 
1 1 1 2 20 20 22 19 16 15 10695.5 0.3 

 

Table A.4: Asymmetric Results for Delayed Differentiation Network 

 
Appendix 2: Proofs of Propositions 1 and 2 
 

Propositions 1 and 2 investigate the difference in inventory costs associated with varying 

production network topologies.   Under Assumption 2, we may analyze the network topologies 

below in Figures A1 and A2. 
 
 

 
 
 
 
 
 
 

Figure A1                                                Figure A2 
 
We define the critical fractiles 
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and let  
 

( ), 1 ,l c l c
n nz −= Φ Θ  and ( ), 1 ,u c u c

n nz −= Φ Θ . 
 

Let φ(·) and Φ(·) represent the standard normal pdf and cdf, respectively.  Following the 

approach in Zipkin (2000) (see also Shang and Song, 2003),  
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Let the value of delaying differentiation,  
 
Vd = Z(k+1)-Z(k)         (A13) 
 
Proof of Proposition 1 

By decomposing the network in Figure A2, a lower bound on Vd is obtained.  Under the 

decomposition, the two networks are identical, thus  
 

0dV ≥            (A14) 
 

By allowing instantaneous and costless transshipments between echelons in Figure A2, an upper 

bound on Vd is obtained.  This transforms Figure A2 into a serial network.  By reducing the serial 

chains to single stage problems (see Shang and Song (2003)), we have an upper bound for 

dV which is in turn bounded by 
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Equation A15 is equal to  
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Let '
1k kh h− = + ∆ and '

k kh h= − ∆ .  Then Equation A17 becomes 
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Hence Equation A17 is decreasing in ∆ . 
 
Likewise, Equation A16 is equal to 
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Hence Equation A16 is independent of ∆ . 
 

Thus the lower bound of dV  is independent of ∆ , while the upper bound is non-increasing (and 

potentially decreasing) in ∆ .  Hence shifting holding costs downstream from the point of 

differentiation may decrease the value of delaying differentiation.  As M increases, the factor 

2 2( ) i kM M Lσ− also increases, hence the decrease in the value of delayed differentiation 

attributable to the holding cost shift is increasing in M. 
 
Proof of Proposition 2 
 
By a similar argument as in Proposition 1, we have 
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and 
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Let '

2 2h h= + ∆ and '
3 3h h= − ∆ .  Then (A21) becomes 
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Hence (A21) is increasing in ∆ . 
 
Likewise, (A22) becomes 
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Hence (A22) is increasing in ∆ . 
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Thus the upper bound of dV is increasing in ∆ , the shift of holding costs from the third echelon 

to the second, through the mechanism of effective backordering cost rate at the second echelon.  

The lower bound remains independent of ∆ , hence the value of delaying differentiation is non-

decreasing, and likely increasing in ∆. As M increases, the factor 2 2( ) i kM M Lσ− also 

increases, hence the increase in the value of delayed differentiation attributable to the holding 

cost shift is increasing in M. 

 


