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SUMMARY 

 

 

 

Climate studies and effective environmental management plans require accurate 

and unbiased climate datasets. Global model outputs are subject to model errors, which 

need to be corrected. This study develops a new bias correction approach using Artificial 

Neural Networks (ANN). A three layer feedforward neural network is employed to 

reduce the biases of climate variables (temperature and precipitation) over northern South 

America, extending from 80°W to 35°W (longitude) and from 23°S to 12°N (latitude). 

Air and skin temperature, specific humidity, net longwave and shortwave radiation are 

used as inputs for the bias correction of temperature. Precipitation at lag zero, one, two, 

and three, and the standard deviation from 3 by 3 neighbors around the pixel of interest 

are the inputs into the ANN bias correction of precipitation. The data are provided by the 

Community Climate System Model (CCSM3).   

The proposed model relies on a supervised learning approach (back propagation 

generalized delta rule, BPGDR) to construct a functional relationship between the input-

output. This relationship learns the error structure by training the inputs with observations 

(targets) to understand prediction biases. The predictive capacity of the ANN 

(generalization ability) confirms that the network can perform well with new and unseen 

datasets without any need for re-training. Results show that the trained ANN can 

markedly reduce the estimation error and improve the correlation and probabilistic 

structure of the bias-corrected variables. The ANN outperforms linear regression (LR), 

which is used for comparison purposes. 



 xxii 

The ability of the regression models to regionalize the study domain is 

investigated by defining the minimum number of training pixels necessary to achieve a 

good level of bias correction performance over the entire domain. Results confirm that it 

is possible to identify regions in terms of physical features such as land cover, 

topography, and climatology over which the trained models at a few pixels can do well. 

The number of training pixels (model calibrations) depends on the accuracy criterion and 

physical features of the domain. 
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CHAPTER 1 

INTRODUCTION 

 

   

1.1. Motivation 

 Numerical models are essential tools that allow us to fill space-time observational 

gaps and to simulate present and future dynamics of the Earth’s climate. General 

Circulation Models (GCMs) are key numerical tools to simulate land-ocean-atmosphere 

interactions and to study short- and long-term climate changes. However, the outputs of 

these models are often subject to random and structural errors (biases), mainly due to 

inadequate knowledge and simplified parameterization of the underlying physics. Thus, 

prior to using outputs of climate models into land-surface hydrologic models, bias 

removal is an essential step. In this study, we seek to develop a methodology that could 

improve estimates of the surface temperature and precipitation. The methodology is 

illustrated by operating on outputs from one of the GCMs called the Community Climate 

System Model (CCSM3) over northern South America. 

1.2. Brief Introduction to the Study Domain  

 This study looks at northern South America extending from 80°W to 35°W 

(longitude) and from 23°S to 12°N (latitude), see Figure 1.1. The region is covered by 

different land uses such as forest, pasture, agriculture, bare land, and mountain. Different 

topographic and vegetation patterns of the region and adjacent oceans are the main 

drivers to control the weather system over the area. One of the landforms of the domain is 

the Andes Mountains along the west coast of the region, the longest mountains with a 

maximum peak of about 6,962 m (22,841 ft.) above sea level. The mountains act as a 

barrier to atmospheric flow, which causes different climate and weather patterns over the 
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east and the west side of the mountains. On the west side of the mountains, the westerly 

Southern Pacific Gyre controls the climate of the area and on the east side, the subtropical 

Atlantic and the Southern Polar Gyre influence the climate. Another landform is the 

Amazon Basin with the largest tropical rainforest in the world, covering about 40 percent 

of South America. The Amazon River and its tributaries, considered the largest reservoir 

of freshwater and the second longest river in the world, rise in the Andes Mountains and 

drain into the Atlantic Ocean. The humidity and temperature are generally high over the 

basin. Diabatic heating process over the Amazon Basin and central Brazil and deviation 

of the easterly trade winds to the zone of the convergence by the Andean topography 

control the climate over the basin (Figueroa et al., 1995). They argued that the South 

American Convergence Zone (SACZ) consisting of the westerly air mass of the Amazon 

and the easterly subtropical south Atlantic air mass, is closely tied to the ecosystem of the 

Amazon Basin.  

 

 

 

Figure 1.1. Study domain extending from 80°W to 35°W (longitude) and from 23°S to 12°N 

(latitude). 
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 Different climate, land cover, and orography conditions over South America 

result in high diversity of animals and plants species, and thriving the Earth-life systems. 

Figure 1.2 shows the South America land use classification by the Olson Global 

Ecosystem Framework (Olson, 1994).  

 

 

Figure 1.2. Land classification of South America from the DisCover database, EROS center 

(Olson, 1994). 

 

Changes on the land use and vegetation types can alter climatological parameters 

including light absorption capability, reflectivity (albedo), net surface radiation, and leaf 

area index (LAI). These changes influence the drag force on winds, planetary boundary 

layer, vertical transport of heat, momentum and water vapor flux, evaporation, 

precipitation, and total runoff rate. This relationship between the climate and ecosystem 

has been investigated by many studies (Shukla, 1990; Wang, 2000, among others).  

 The Amazon rainforest has a significant impact on the hydrological climate of the 

region. Climate and land cover changes in the Amazon Basin, the largest tropical forest 
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and reservoir of freshwater and carbon in the world can influence the entire world’s 

ecosystems and is of paramount importance for climate and ecosystem studies (Cochrane 

and Barber, 2009). The Amazon rainforest stores about 40 percent of the global carbon of 

the terrestrial biomass (Dixon, 1994). Over the past decades, the rate of deforestation has 

increased mostly over an arc on the southeastern region, largely for the purpose of 

developing cattle pasture, agricultural lands, and infrastructure. The Amazon lost 6 and 

15 percent of the forest in 1988 and 2001, respectively (Skole and Tucker, 1993; Instituto 

Nacional de Pesquisas Espaciais, INPE, 2003). Figure 1.3 shows annual forest loss in the 

Amazon during 2001-2012 (Butler, 2006).  

 

Figure 1.3. Annual forest loss (ha) in the Amazon, 2001-2012 (Butler, 2006). 

 

Although an accurate estimate of deforestation rate is difficult, large degraded patches of 

the basin can be observed using remote sensing tools. Deforestation changes the 

ecosystem of the Amazon basin and influences the land-atmospheric circulation. 

Deforestation also increases the risk of fire and drought over the region. The Amazon 

basin has been experiencing severe drought and fire in the past decades. Although 

deforestation impacts the frequency and severity of the droughts, the droughts in the 
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basin are mainly related to variations in the ocean temperature, in particular the El Niño-

Southern Oscillation (ENSO) and the Atlantic Multi-decadal Oscillation (AMO) (Bagley 

et al., 2014). High sea surface temperature in the North Atlantic Ocean is recognized as 

the main driver of the severe droughts in 2005 and 2010 (Marengo et. al., 2011), which 

increased the fire frequency. Past studies using satellite data over Amazonia provide 

evidence that the intensity and frequency of the droughts in this region are increasing in a 

way that can change the structure of the entire Amazonian ecosystem (e.g., Bush et al., 

2008; Aragao et al., 2008, among others).  

 In summary, this domain is of primary interest for climate and ecosystem 

scientists because of    

 The diversity in the topography and the vastness and richness of the species and 

resources. 

  The significant impact of change of climate and land cover over the domain on 

the entire world’s ecosystems (Cochrane and Barber, 2009).  

 

1.3. Brief Introduction to the Datasets 

 This section describes the datasets used in the study, including the Community 

Climate System Model (CCSM3) dataset, the bias-corrected National Centers for 

Environmental Prediction (NCEP) Reanalysis data, and the Climate Research Unit data 

(see Table 1.1). 

1.3.1. Community Climate System Model (CCSM3) Dataset 

 Climate models are key tools to study short- and long-term climate changes under 

different scenarios. The Community Climate System Model (CCSM3) is one of the 

Global Climate Models/General Circulation Models (GCMs), which is used to 

numerically simulate land-atmosphere-ocean circulation. CCSM3 was developed by the 
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University Corporation for Atmospheric Research (UCAR) and maintained by the 

National Center for Atmospheric Research (NCAR). CCSM3 is a well-established model 

and has been successfully used for simulating the impacts of land-use changes on climate 

(Collins et al., 2006). This model includes the Community Land Model (CLM), which 

has dynamic vegetation growth, death, and succession (Bonan and Levis, 2006). The 

frequencies of CCSM3’s outputs are 6-hourly, daily, monthly, and annually from IPCC 

AR4 simulations (publicly available at www.cgd.ucar.edu/ccr/strandwg/ccsm_6hr_data. 

html). Forty two variables are available for these scenarios at 1 to 26 vertical pressure 

levels, with spatial resolution of about 1.4° (T85). The CCSM3 outputs represent 

different scenarios including 20th century (20C3M) for the period 1900-1999, climate 

change commitment (Commit), IPCC SRES A1B (SRESA1B), IPCC SRES B1 scenario 

(SRESB1), IPCC SRES A2 scenario (SRESA2), and IPCC SRES A1FI scenario 

(SRESA1FI), all for 2000-2099. For detailed descriptions of different greenhouse gases 

emission scenarios, the reader is referred to the Special Report on Emission Scenarios 

(SRES) by the IPCC Working Group III (Nakicenovic et al., 2000). This work uses one 

emission scenario “A2”, which is identified as one of the marker scenarios by the IPCC. 

A2 is based on a “worse-case scenario” with increases of CO2 by factors of four to five 

over 2000-2099 (Li et al., 2010). This scenario provides a high rate of warming based on 

model ensembles (Meehl et al., 2007) and has been widely used for different climate 

change assessments including the North American Regional Climate Change Assessment 

Program, NARCCAP (Mearns et al., 2009). The 6-hourly instantaneous and monthly air 

temperature (𝑇), skin temperature (𝑇𝑆), specific humidity (𝑄), longwave (𝐿𝑊) and 

shortwave (𝑆𝑊) radiation, surface pressure (𝑃𝑆), horizontal winds (𝑢, 𝑣), and 

precipitation (𝑃) are used in this study for two time periods: historical period 1901-1999 

(20
th

 century), and SRESA2 future projection for 2000-2013. Here 𝑇, 𝑢, 𝑣, and 𝑄 are 

chosen from the first pressure level of CCSM3 (992.56 mb), while the other variables are 

selected at the surface level.  

http://www.cgd.ucar.edu/ccr/strandwg/ccsm_6hr_data
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1.3.2. Meteorological Forcing Dataset  

 The Meteorological Forcing Dataset is a bias-corrected NCEP (National Centers 

for Environmental Prediction) Reanalysis product (Sheffield et al., 2006). The NCEP 

Reanalysis uses the Numerical Weather Prediction (NWP) model to represents the 

physical process of the earth’s atmosphere. The NCEP also incorporates data assimilation 

of the past data and observations in an analysis/forecast system to provide global dataset 

in 6-hourly, daily, and monthly temporal resolution in 17 pressure levels and 28 sigma 

levels. Sheffield et al. (2006) downscaled the 2-degree NCEP reanalysis product to 1-

degree resolution and then combined it with observation-based datasets such as those 

from the Global Precipitation Climatology Project (GPCP) and Climatic Research Unit 

(CRU) to remove the potential biases in the NCEP data. Bilinear interpolation with 

adjustment for difference of elevation is used to disaggregate 2° NCEP temperature to 1° 

spatial resolution. Sheffield et al. showed that the NCEP underestimates mean annual 

temperature compared to the Climate Research Unit (CRU) data. They argued that the 

biases in the temperature are related to the parameterization of the surface water budget. 

To match monthly average of the NCEP temperature with the corresponding CRU ones, 

they used a shifting adjustment approach based on the difference between the monthly 

average of the NCEP and CRU temperature. To adjust the monthly mean diurnal 

temperature range to the corresponding CRU ones the scaling adjustment of the diurnal 

cycle of temperature is used (The detailed description of the method is provided in 

Chapter 2). Sheffield et al. (2006) created this 1° bias-corrected meteorological forcing 

dataset (referred to hereafter as MFD) for the purpose of improving the results of land-

surface models. This product is publicly available at hydrology.princeton.edu/data.php 

and can be used as a ground truth benchmark in the absence of long term observations. 

Since it is almost impossible to find fine resolution observations (6-hourly) for all grids 

of the study domain and we want to correct the biases of 6-hourly temperature, MFD 

temperature is used as a reference.  
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1.3.3. Climate Research Unit (CRU) Dataset  

 The gridded Climate Research Unit dataset is recognized as one of the most valid 

records of the climate observations, which are widely used by the climate research 

community. The dataset is produced by the Climate Research Unit in the school of the 

Environmental Sciences and the Tyndall Centre in the University of the East Anglia, 

United Kingdom (Jones and Harris 2014). This dataset is compiled from more than 4000 

weather stations around the world. The thin-plate splines method as a function of 

longitude, latitude, and elevation is used to interpolate station data. The results are 

evaluated by cross validation and compared with other climatologies (New et al., 1999). 

The denser station network can capture well the spatial variability of the climate. The 

data are reported monthly at spatial resolution of 0.5° for all land masses excluding 

Antarctica. There are different versions of the CRU datasets with different temporal 

coverage. The newest one is CRU TS3.22, which covers the longest time period from 

1901 to 2013 (Harris et al., 2013, 2014). The data are publicly available at http://www. 

cru.uea.ac.uk/cru/data/hrg/. The new version corrected some discontinuity in the data and 

incorporated more stations. Since the CRU dataset is considered as one of the valid long 

term observations and we want to correct the biases of monthly precipitation, CRU 

precipitation is used as the true observation.    

 

Table 1.1. General information of the datasets. 

 

Dataset Variable Spatial Resolution Temporal resolution 

CCSM3 T, TS, Q, LW, 

SW, P, PS, u, v  

1.4°× 1.4° (T85) 6-hourly 

MFD T 1° 6-hourly 

CRU P 0.5° Monthly 

 

http://www.tyndall.ac.uk/
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1.4. Outline of Thesis 

 To develop a new approach to reduce the biases of the climate variables, this 

work poses the following questions:  

 Does the proposed approach improve all statistics including mean square error, 

bias, and also correlation and distribution structure of the climate variables of 

interest? 

 Does the proposed approach have generalization ability to perform well with new 

and unseen datasets? 

 Does the proposed approach have ability to regionalize the study domain? 

 Is the proposed approach efficient or in other words, does the proposed approach 

use a reasonable number of observations to construct a robust model between the 

input-output?  

 

 To address these questions, this dissertation is developed as follows:  

 We discuss previously used methods to correct biases and their advantages in 

Chapter 2.  

 Artificial Neural Networks (ANN), the nonlinear regression that is used for bias 

correction is explained in Chapter 3.  

 Chapter 4 applies the framework explained in Chapter 3 to correct the biases of 

temperature and precipitation, pixel by pixel over the study domain.  

 The potential of the regionalization of the model is evaluated in Chapter 5.  

 Chapter 6 summarizes the results and conclusions of this study and recommends 

potential future work.  

 Appendix A explains a new algorithm for retrieving hourly records of surface 

temperature based on the maximum entropy production and the half-order 

derivative/integral models. This result is not directly related to the central bias 
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correction objective of this thesis but arose from the interest to develop high 

temporal resolution datasets. 

 Appendix B provides the results of bias-corrected temperature and precipitation in 

two GCMs using Equidistant Cumulative Distribution Function method 

(EDCDF).  

 Additional figures regarding results of bias-corrected temperature and 

precipitation by the regression models are provided in Appendix C.   

 Locations (latitude and longitude) of the training pixels in the delineated domains 

are presented in Appendix D.   
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CHAPTER 2 

STATISTICAL BIAS CORRECTION METHODS 

 

2.1. Biases in the Models 

 The Earth’s climate has shaped the history of biological and cultural evolution 

and the geographical distribution of humans. Almost all of the man-made and natural 

systems such as water supplies, agriculture, forestry, fisheries, human settlements, 

industries, energy, and financial services are sensitive to climate change (Harding et al., 

2011). Since our observational knowledge is limited in space and time, accurate 

numerical simulations and predictions are necessary to understand and forecast the 

consequences of climate change. Different numerical models such as global (General 

Circulation Model, GCM) and regional (Regional Climate Model, RCM) models can 

represent the underlying physics of the land-atmosphere-ocean interactions. Although the 

models allow us to fill space-time observational gaps and to simulate present and future 

dynamics of the Earth’s climate, their outputs are often subject to random and structural 

errors (biases). The inevitable biases are model dependent and may arise due to our 

inadequate knowledge, oversimplification of the governing equations, deficient 

parameterization of the underlying physics, and calibration errors. Due to the highly 

nonlinear nature of the underlying governing equations, the errors are typically amplified 

in space-time (Dai, 2006). Although the models have been improved over time, the 

biased outputs of these models are still a matter of significant concern in climate studies 

(Dai 2001a, b, 2006; Solomon et al., 2007). For example, Sun et al., (2005) concluded 

that “most GCMs overestimate the frequency of light precipitation and underestimate the 

intensity of heavy precipitation.” Dai et al., (2001) also reported unrealistic simulations 

of the tropical precipitation regimes by the Community Climate System Model (CCSM). 
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Chang et al. (2007) illustrated a pattern in CCSM3 with cold and warm biases in the 

northern and southeastern Tropics, respectively. Bonan and Levis (2006) used the 

Dynamic Global vegetation Model (DGVM) to evaluate the biases in the CCSM3. They 

reported severe dry bias in the CCSM precipitation over the eastern United States and 

Amazonia, which produced biases in the simulation of vegetation. They also showed an 

underestimation of the global forest cover (e.g. evergreens over the tropic), indicating 

that the simulated soil moisture was low. The biases in the model influence the sensitivity 

analysis. It was shown by Castillo and Gurney (2012) that CCSM3 coupled with the 

DGVM was not able to explore the sensitivity of the biophysical climate to the tropical 

deforestation due to a warm dry bias in the model over the Amazon basin. The relatively 

flat annual cycle of the CCSM evapotranspiration (ET) with overestimation and 

underestimation during the wet and dry seasons was reported by Malhi et al. (2002); 

Nobre et al. (1996); Werth and Avissar (2004). The biases in the annual cycle of the ET 

lead to an unrealistic behavior of the hydrological cycle such as rain, evaporation, surface 

runoff, and drainage over the Amazon basin (Lawrence, 2007). They concluded that less 

frequent small- to medium-size rain events and underestimation of the photosynthesis 

were the two main consequences of the biased ET. We can conclude that the biased 

inputs to the models affect the outputs and the analysis studies. As a result, the biases are 

of critical concern to the end users, especially for those involved in climate change 

studies. 

 

2.2. Bias Correction Methodology  

 The biased forcings from the models can significantly impair outputs of other 

models such as land surface hydrologic models and hence any related risk management 

and strategic planning (see e.g., Sharma et al., 2007; Hansen et al., 2006; Feddersen and 

Andersen, 2005, among other studies). Thus, prior to using outputs of the climate models 
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as inputs into the land-surface hydrologic models, bias removal is an essential step. Due 

to the underlying natural nonlinearities and complexities of the governing equations of 

the models (GCMs), intrinsic bias correction within the model structure may not be 

practically feasible. Biases of the climate variables are commonly reduced using 

statistical and dynamical approaches.  

2.2.1. Dynamical Bias Correction  

 Dynamical bias correction methods can correct intrinsic biases within the model 

structure. They are capable of producing physically consistent climate variables. 

Dynamical bias correction can involve data assimilation to improve the modeled outputs 

and forecast skills by using various kinds of observations (radar, satellite, station). The 

optimally estimated state of the system is obtained at each analysis step, which combines 

observations and numerical modeled outputs minimizing a cost function. A cost function 

typically measures departures: 

1) From the observations, weighted by an observational error covariance.  

2) From the background field, weighted by a background error covariance.  

 

 For comprehensive and systematic descriptions of the data assimilation the reader 

is referred to “Atmospheric Modeling, Data Assimilation, and Predictability” by Kalnay 

(2003) and to “Atmospheric Data Analysis” by Daley (1993). Although data assimilation 

techniques improve the results by combining the model and the data, they require dealing 

with high dimensional matrices, which is computationally expensive. Therefore, 

assumptions, approximations, and simplification of the methods are required, which 

produce additional uncertainties and errors in the results. In addition to the various 

assumptions required for data assimilation, computation of the global minimum of the 

cost function and the uncertainty associated with the error covariance are the two big 

challenges for the users. These difficulties of the dynamical methods, in particular 
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computational costs, generally hamper their applicability for climate-scale bias correction 

problems.      

2.2.2. Statistical Bias Correction  

 The main idea of the statistical bias correction method is to develop a statistical 

relationship between modeled and observed variables over the same historical period and 

then use the constructed relationship for the modeled projection. Diagnostic statistical 

methods commonly use the statistics of the observations (mean, variance, and 

distribution) to detect and remove biases from the model predictions. In these approaches 

the statistics of the modeled data are improved by re-scaling to the statistics of the 

corresponding observation. The widely-used statistical methods follow: 

2.2.2.1. Delta Change Method 

 The Delta change method (linear scaling) is one of the most well-known statistical 

approaches that shifts or re-scales the mean of the modeled data based on the mean of the 

observations obtained from a historically selected baseline period. In this approach the 

error is identified by taking the difference between the mean of the modeled and observed 

values over a specific time period (baseline). The mean error obtained over the baseline 

period is used for bias correction over the prediction phase. Ines and Hansen (2006) used 

a simple multiplicative shift method to remove the biases from the mean monthly GCM 

precipitation outputs 𝑥𝑖 in month 𝑖 as follows: 

                                                        𝑥𝑎𝑑𝑗
𝑖 =  𝑥𝑖 ×  

  �̅�𝑖
𝑜𝑏𝑠

�̅�𝑖
𝐺𝐶𝑀

                                                   (2.1)                          

where 𝑥𝑎𝑑𝑗
𝑖   is the bias-corrected monthly precipitation, �̅�𝐺𝐶𝑀

𝑖  denotes the long-term 

monthly mean rainfall obtained from the GCM outputs, and �̅�𝑜𝑏𝑠
𝑖  refers to the 

corresponding monthly mean of the observations. The simple multiplicative scheme 

removes the mean monthly bias of the modeled precipitation but the biases of the 

intensity, frequency, and inter-annual variability of the precipitation were not adjusted. 
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Ines and Hansen (2006) used the bias-corrected GCM precipitation to drive crop 

simulation models. They concluded that the overall prediction of the yields can be 

improved mainly by improving the mean bias of precipitation through the delta change 

method. 

 Sheffield et al. (2006) constructed a 50-year bias-corrected, 3-hourly and 1° 

meteorological forcing dataset to drive land surface modeling. They used the delta 

change method and the CRU dataset as the observations to improve the biases of the 

NCEP-NCAR reanalysis precipitation and temperature as follows: 

 

 Precipitation: The accuracy of the gauge-based precipitation is influenced by the 

wind and solid precipitation (Goodison et al., 1998). Adam and Lettenmaier 

(2003) provided a global adjustment ratios dataset to correct the gauge under-

catch, which can increase the global precipitation about 12 percent. Sheffield et 

al. (2006) adjusted the monthly CRU precipitation by the adjustment ratios before 

using them as the observation. Then they used the same multiplicative scheme to 

re-scale the monthly total NCEP precipitation (𝑃𝑁𝐶𝐸𝑃,𝑀𝑜𝑛) to the corresponding 

observation (𝑃𝐶𝑅𝑈,𝑀𝑜𝑛) as 

                                     �̃�𝑁𝐶𝐸𝑃,3ℎ𝑟 =  
𝑃𝐶𝑅𝑈,𝑀𝑜𝑛

𝑃𝑁𝐶𝐸𝑃,𝑀𝑜𝑛
 ×  𝑃𝑁𝐶𝐸𝑃,3ℎ𝑟                                (2.2)           

where 𝑃𝑁𝐶𝐸𝑃,3ℎ𝑟 is 3-hourly NCEP precipitation and �̃�𝑁𝐶𝐸𝑃,3ℎ𝑟 denotes the bias 

corrected 3-hourly values.  

 

 Temperature: Sheffield et al. (2006) used an additive adjustment scheme to 

match the monthly mean NCEP temperature (𝑇𝑁𝐶𝐸𝑃,𝑀𝑜𝑛) to the corresponding 

observation one (𝑇𝐶𝑅𝑈,𝑀𝑜𝑛) as   

                          �̃�𝑁𝐶𝐸𝑃,3ℎ𝑟 = (𝑇𝐶𝑅𝑈,𝑀𝑜𝑛 − 𝑇𝑁𝐶𝐸𝑃,𝑀𝑜𝑛) + 𝑇𝑁𝐶𝐸𝑃,3ℎ𝑟                      (2.3) 
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where 𝑇𝑁𝐶𝐸𝑃,3ℎ𝑟 and �̃�𝑁𝐶𝐸𝑃,3ℎ𝑟 are 3-hourly NCEP temperature before and after 

bias correction, respectively. This adjustment scheme assured that the monthly 

mean CRU temperatures were properly conserved in the corresponding NCEP 

ones. Furthermore, they re-scaled the diurnal cycle of temperature for each day so 

that the monthly mean NCEP diurnal temperature range (𝐷𝑇𝑅𝑁𝐶𝐸𝑃,𝑀𝑜𝑛) matched 

the corresponding CRU ones (𝐷𝑇𝑅𝐶𝑅𝑈,𝑀𝑜𝑛) as 

           �̃�𝑁𝐶𝐸𝑃,3ℎ𝑟 = �̃�𝑁𝐶𝐸𝑃,𝐷𝑎𝑖𝑙𝑦 + 
𝐷𝑇𝑅𝐶𝑅𝑈,𝑀𝑜𝑛

𝐷𝑇𝑅𝑁𝐶𝐸𝑃,𝑀𝑜𝑛
 × (�̃�𝑁𝐶𝐸𝑃,3ℎ𝑟 − �̃�𝑁𝐶𝐸𝑃,𝐷𝑎𝑖𝑙𝑦)          (2.4) 

where �̃�𝑁𝐶𝐸𝑃,𝐷𝑎𝑖𝑙𝑦 is the bias-corrected daily NCEP temperature, which remains 

fixed. 

 

 Horton et al. (2011) provided bias-corrected projected temperature and 

precipitation by using a variation of the delta change method. The data is used for 

decision support of stakeholders as part of the New York City’s climate change 

adaptation plans. He used 16 GCMs with three different emission scenarios to find the 

mean change of the three time slices of a 30-year modeled projection (2010-2039; 2040-

2069; 2070-2099) relative to a 30-year modeled baseline (1970-1999). The results 

showed a significant increase in the frequency of the extreme events (coastal flooding 

and heat events), which highlighted the importance of long-term adaptation and 

mitigation planning. Hay et al. (2000) used the delta change method to project bias-

corrected precipitation, maximum and minimum of temperature from the Hadley Centre 

Coupled Model, version 2 (HadCM2) to drive a hydrologic model (U.S. Geological 

Survey’s, USGS, Precipitation-Runoff Modeling System, PRMS) over three basins in the 

United States. They concluded that projection of the modeled variables onto the 

observations using the delta change method leads to a realistic runoff simulation. The 

skill of the method depends on the ability of the GCMs to simulate the variables.           
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 The main advantage of the delta change method is its simplicity and 

computational efficiency. This method assumes that the difference between the historical 

(baseline) modeled and observed values remains the same for the projection, which is not 

verifiable. As is evident, this method adjusts only the mean of the modeled data without 

any correction of the higher order error statistics.  

 Schmidli et al. (2006) modified the linear scaling method to correct the biases of 

the precipitation not only in the mean but also in frequencies and intensities of the wet 

days. This method called the Local Intensity Scaling (LOCI) method has two steps. In the 

first step, a threshold is determined such that a number of wet days in the model 

exceeding this threshold matches the number of wet days in the observation. Then to 

adjust a wet day frequency, the days with precipitation smaller than the threshold are 

identified as dry days. In the second step, the intensities of the wet day precipitation 

(𝑃𝑎𝑑𝑗
𝑚 ) are adjusted as  

                                                         𝑃𝑎𝑑𝑗
𝑚 =  𝑃𝑤

𝑚 ×
  𝑃𝑤

𝑜̅̅ ̅̅

𝑃𝑤
𝑚̅̅ ̅̅ ̅−𝑃𝑤𝑑𝑡

𝑚                                                  (2.5) 

where 𝑃𝑤
𝑚 is wet day modeled precipitation (𝑃𝑤

𝑚 ≥  𝑃𝑤𝑑𝑡
𝑚 ), 𝑃𝑤𝑑𝑡

𝑚  is a threshold for model wet 

day, 𝑃𝑤
𝑚̅̅ ̅̅  denotes the long-term monthly mean wet day intensities from the model, and  𝑃𝑤

𝑜̅̅̅̅  

refers to the corresponding monthly mean of the observations.  

 

 Leander and Buishand (2007) used a power transformation to correct the mean 

and coefficient variation (𝐶𝑉) of the precipitation as  

                                                            𝑃𝑎𝑑𝑗
𝑚 = 𝑎 × (𝑃𝑚)𝑏                                               (2.6) 

where 𝑎 and 𝑏 are parameters. The modeled precipitation (𝑃𝑚) is transformed to the 

adjusted precipitation (𝑃𝑎𝑑𝑗
𝑚 ). Parameter 𝑏 is determined such that the 𝐶𝑉 of the adjusted 

precipitation matches the 𝐶𝑉 of the observed one through iterative procedure (Brent, 

1971). In other words, b is estimated such that 

                                                                 
𝜎(𝑃𝑎𝑑𝑗

𝑚 )

𝑃𝑎𝑑𝑗
𝑚̅̅ ̅̅ ̅̅ =  

𝜎(𝑃𝑜)

𝑃𝑂̅̅ ̅̅                                                      (2.7)                        
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where 𝜎 is the standard deviation. Parameter 𝑎 is determined such that the mean of the 

adjusted precipitation matches the mean of the observed one (𝑃𝑎𝑑𝑗
𝑚̅̅ ̅̅ ̅ = 𝑃𝑜̅̅̅̅ ). The adjusted 

precipitation has the same mean and 𝐶𝑉 with the observed ones. For temperature the 

mean and standard deviation can be adjusted by shifting and scaling as (Leander and 

Buishand, 2007; Shabalova et al., 2003; Chen et al., 2011a,b) 

                                𝑇𝑎𝑑𝑗 =  [(𝑇𝑚 − 𝑇𝑚̅̅ ̅̅ ) ×
𝜎(𝑇𝑜)

𝜎(𝑇𝑚)
+ 𝑇𝑚̅̅ ̅̅  ] + [𝑇𝑜̅̅̅̅ −  𝑇𝑚̅̅ ̅̅  ]                       (2.8) 

 

where 𝑇𝑜 is observed temperature and 𝑇𝑚 is modeled temperature. The first part in Eq. 

2.8 scales the variance of temperature and the second part adjusts the mean of the 

temperature values relative to the observation ones.  

 The adjustment factors used in the correction of mean and variance of 

precipitation and temperature values in the above approaches are assumed not to change 

in the future. Teutschbein and Seibert (2012) used the methods discussed above to correct 

the biases of precipitation and temperature from the regional climate model (RCM) 

simulations in two periods; one is 1961-1990 (control run) and the other is 2021-2050 

under the A1B scenario. All methods improved the mean modeled temperature and 

precipitation while the methods exhibited different skills in adjusting higher moments 

such as variance. They used uncorrected and bias-corrected precipitation to drive a 

conceptual streamflow model HBV (Bergström, 1976) over five catchments in Sweden. 

They found that the simulated streamflow with bias-corrected precipitation matches the 

observed one well.         

 

2.2.2.2. Cumulative Distribution Function Method (CDF) 

 The so-called quantile-based mapping method (CDF matching) maps the 

cumulative distribution function (CDF) of the biased model outputs onto the distribution 

of observations (Panofsky and Brier, 1968; Cayan et al., 2008; Hayhoe et al., 2004; 

Maurer and Hidalgo, 2008). The approach imposes the following equivalence:  
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                                                       𝐹𝑂𝐵𝑆(𝑦) =  𝐹𝑀𝑂𝐷(𝑥)                                                 (2.9) 

     

where 𝐹(∙) denotes the CDF of the observations (𝑂𝐵𝑆) and the modeled (𝑀𝑂𝐷) outputs. 

From where the bias corrected model output is obtained: 

                                                     𝑥𝑎𝑑𝑗 =  𝐹𝑂𝐵𝑆
−1 (𝐹𝑀𝑂𝐷ℎ(𝑥))                                          (2.10) 

  

 

where 𝑥𝑎𝑑𝑗 is the bias-corrected model output while 𝐹𝑀𝑂𝐷ℎ denotes the CDF of the 

historical  modeled simulations. Figure 2.1 illustrates a schematic of the CDF method for 

correction of the bias at an arbitrary point (𝑥 = 3.5, solid circle, selected for illustration 

purposes). 

 

Figure 2.1. Illustration of the CDF method for correction of the bias at 𝑥 = 3.5 (solid circle). 

Dashed line is the cumulative distribution function (CDFOBS) for the observation, cross-

dashed line is the cumulative distribution function (CDFMODh) for the historical modeled 

variable, and solid star is an adjusted value (𝑥adj) based on the CDF method. 

 

 

The CDFs and their inverse can be estimated by fitting a distribution function to the data 

empirically or theoretically through parameter estimation. The theoretical distribution 

function fitted to the historical data is more likely to capture the extreme values of the 

projection compared to the empirical one. Note that the biases associated with the 

estimates of the parameters of the theoretical distribution can influence the results of the 

bias correction method.  



 20 

 Ines and Hansen (2006) used the CDF method to correct the biases of the daily 

GCM precipitation to drive simulations of maize yield at the Katumani station in Kenya. 

They fitted the Gamma distribution to the data to map the modeled CDF of precipitation 

to the observed one. They compared the bias-corrected results with the ones obtained by 

the delta change method. Although the delta change method can correct the biases of the 

monthly and total rainfall better than the CDF method, it cannot improve the biases of the 

intensity and frequency of the precipitation. They concluded that all bias correction 

methods improved the crop growth and the yield simulations. They also showed that 

although the mean bias of precipitation was the main source of the bias in the maize 

simulations, the bias in the time structure of precipitation caused an underestimation of 

the maize yields at the location.  

 Piani et al. (2010) used the quantile-based mapping approach to remove the biases 

of the daily precipitation in a regional climate model (DMI-HIRHAM version 5) over 

Europe. They fitted a two-parameter Gamma distribution to the precipitation data (1961-

1970) to formulate Equation (2.9) between the modeled and observed values. The method 

was validated during 1991-2000. They indicated that the bias correction method 

improved not only the mean and the intensity of precipitation but also the drought and 

heavy precipitation indices for the both calibration and validation periods. Baigorria et al. 

(2007) used the CDF method to reduce the biases of the climate outputs from the Florida 

State University/Center for Ocean-Atmospheric Prediction Studies (FSU/COAPS) 

regional model. They used raw and bias-corrected climate variables to drive the CERES-

Maize crop model at three stations in the Southeastern USA including Alachua (Florida), 

De Kalb (Alabama), and Tift (Georgia). They applied Gamma, Beta, and Gaussian CDF 

to the precipitation, incoming solar radiation, and temperature (Tmin, Tmax) values, 

respectively. They concluded that the bias correction of the variables improved the 

monthly statistics of the results, number and the length of the dry spells, while the time of 

occurrences of the dry spell were not well predicted.  
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 Wood et al. (2004) evaluated the effect of bias correction of the climate variables 

from the NCAR-DOE Parallel Climate Model (PCM) and RCM outputs on hydrologic 

simulation. The two main approaches, the statistical downscaling method and the bias 

correction and spatial downscaling method (BCSD), were used to post-process the 

climate data to drive the Variable Infiltration Capacity model (VIC) over the Columbia 

River Basin (CRB) of the U.S. Pacific Northwest (PNW) region. For the downscaling 

step, they used a linear interpolation (LI) and spatial disaggregation (SD) method. For the 

bias correction step (BC), they established an empirical quantile-based relationship or 

function between modeled data (average temperature and total precipitation) and 

corresponding observations from Maurer et al. (2002) for the period of 1975-1995 

(B06.22 simulation). The established function was used for a future period (2040-2060) 

under a Business As Usual (BAU) scenario. Since the future distribution of temperature 

differed from the historical one, they removed the temperature shift. Thus, the difference 

between the mean monthly future temperature and the corresponding historical one was 

removed before bias correction and then added after the process of the bias correction. 

They assumed that the variability of the projected variables is similar to the historical 

ones, while the mean changes. They compared the results of the hydrologic simulations 

using downscaled climate data and bias-corrected, downscaled data as inputs to the VIC. 

They concluded that the downscaled data without bias correction produced biases in the 

hydrologic simulation and the bias correction was a necessary step to reasonably model 

hydro-climatological simulations.  

 Maurer et al. (2010) downscaled NCEP/NCAR reanalysis temperature and 

precipitation to drive the hydrologic model (VIC) over California for two different 

periods: 1950–1976 (calibration period) and 1977–1999 (validation period). They used a 

quantile-mapping bias correction method before statistical downscaling. They indicated 

that the bias correction improved the skill of the downscaling and predicted stream flow.  
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 The CDF approach implicitly corrects the biases of the future modeled outputs by 

using the CDF of the model historical simulations, which assumes to be the same as that 

of the CDF of the model predictions. Notice that this method can adjust not only the 

mean but also the distribution of the model simulations and higher order statistics. This 

method is simple, effective, and has been successfully reported for bias correction in 

many climate studies (Cayan et al., 2008; Hayhoe et al., 2004; Maurer and Hidalgo, 

2008; among many others). As is evident, one of the main drawbacks of this approach is 

that it implicitly assumes stationarity of the state variable of interest, which might be 

unrealistic (Solomon et al., 2007; Milly et al., 2008).  

 

2.2.2.3. Equidistant CDF Method (EDCDF)  

 The quantile-based method (CDF) uses the CDFs of the historical model outputs 

(𝐶𝐷𝐹𝑀𝑂𝐷ℎ) and the corresponding observation ones (𝐶𝐷𝐹𝑂𝐵𝑆). The method is able to 

improve all moments (the mean and the higher statistics) of the data during the time that 

the CDFs and the transfer function are constructed (historical period). The constructed 

transfer function is proper for another period if the change in the distributions is not 

significant.  

 In light of available climate model predictions, Li et al. (2010) extended the CDF 

matching approach for bias correction of climatic predictions by partially accounting for 

the distribution of the model projections in the CDF matching process. The modified 

version of the CDF matching approach, called equidistant CDF (EDCDF), uses CDF 

information of the model predictions (𝐶𝐷𝐹MODp) in addition to the current CDFs 

(historically modeled and observed data). The idea is to find an incremental adjustment 

based on the historical data for any given model prediction. This adjustment is based on 

the difference between the CDF of observations and outputs of historical simulations (Δ) 

for a given percentile of the model outputs 𝑥 as follows:  
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                                         ∆ =  𝐹OBS
−1 (𝐹MODp(𝑥)) − 𝐹MODh

−1 (𝐹MODp(𝑥))                       (2.11) 

 

                                                                 𝑥𝑎𝑑𝑗 =  𝑥 + ∆                                             (2.12) 

 

where 𝑥𝑎𝑑𝑗 is the bias-corrected modeled outputs, 𝐹(∙) is the CDF of the observations 

(OBS), the historical model simulations (MODh), and the prediction model outputs (MODp). 

Figure 2.2 illustrates the EDCDF method for correction of the bias at an arbitrary point 

(𝑥 = 3.5, solid circle, selected for illustration purposes). 

 

 

Figure 2.2. Illustration of the EDCDF method for correction of the bias at 𝑥 = 3.5 (solid 

circle). Dashed line is the cumulative distribution function (CDFOBS) for the observations, 

cross-dashed line is the cumulative distribution function (CDFMODh) for the historical 

modeled variable, and plus-dashed line is the cumulative distribution function (CDFMODp) for 

the future modeled variable, and the thick solid line is an adjustment (∆) for the EDCDF 

method according to Eq. 2.11. 

 

 

Specifically, the biased model projections (𝑥) are inverted via their estimated CDF to 

obtain their uniformly distributed counterparts in the probability space. Then these 

random values are used by the CDFs of the historical observations and the model 

simulations to obtain the estimated bias for the climate variable of interest. The idea is to 

find an adjustment function (transfer function) based on the difference between the 

historically modeled and observed data (Δ) in a distribution sense and then apply it to 

reduce the biases of the modeled values during the entire historical and future periods. 



 24 

When 𝐹𝑀𝑂𝐷𝑝 is close to 𝐹𝑀𝑂𝐷ℎ (see Eqs. 2.10 to 2.12), the results of the EDCDF method 

are very similar to the CDF method.  

 Li et al. (2010) corrected biases of modeled temperature and precipitation over the 

Northern Eurasian Earth Science Partnership Initiative (NEESPI) using the EDCDF 

method. The modeled data were from the Parallel Climate Model (PCM1) for 20
th

 

century (20C3M) and future under the Special Report on Emissions Scenarios A2 (2001-

2099). They used a four-parameter beta distribution and a mixed gamma distribution to 

fit on the temperature and precipitation values, respectively. Basically they modified the 

CDF method by incorporating the distribution of the model projections in addition to the 

distribution of the historical model and observation used in the CDF method. As a result, 

they concluded that the EDCDF method performs better than the CDF method, in 

particular for heavy tailed distributions in the presence of abundant extreme values in the 

temperature and precipitation fields. The assumption for the EDCDF method is that the 

transfer function linking observations and model outputs remains time invariant. Thus, 

the incremental differences between the CDFs of the observations and historical model 

outputs at each percentile (Δ) can be used for bias correction purposes of the entire 

period.  

 As part of this effort we used the EDCDF method to reduce the biases of 

temperature and precipitation from the Community Climate System Model (CCSM3) and 

the Regional Climate Model driven by the Hadley Centre Coupled Model (RegCM3) 

over Amazonia for the Andes-Amazon Project (http://www.oeb.harvard.edu/faculty/ 

moorcroft/andes-amazon/). Adjustments were also made on specific humidity and 

downwelling longwave radiation to avoid inconsistency between those variables and 

bias-corrected temperature values. The results are provided in Appendix B.  

 

 

http://www.oeb.harvard.edu/faculty/
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2.2.2.4. Joint Variable Spatial Downscaling Method (JVSD) 

 Zhang and Georgakakos (2012) followed the BCSD approach by Wood et al. 

(2004) and developed the Joint Variable Spatial Downscaling (JVSD) technique as a new 

statistical method for downscaling and bias correction. In this approach, the historical 

analogue approach was used for downscaling and a functional relationship between the 

joint statistics of the historical GCMs outputs and coincident observations was employed 

for bias correction purposes over the Apalachicola-Chattahoochee-Flint river basin 

(ACF) in the southeast US. They divided GCM temperature and precipitation from 1950 

to 2099 into the three periods: 

- 1950-1999 as the historical period (CON) 

- 2000-2049 as the first future period (FUT1) 

- 2050-2099 as the second future period (FUT2)    

They used a differencing process to remove seasonality and trend as 

                                                                ∆𝑥𝑡 =  ∇𝑙(𝑥𝑡)                                                (2.13) 

where 𝑥 is a climate variable (temperature and precipitation) from the observation or the 

model, ∆𝑥 is the increment of the variable, 𝑡 is the number of the month, and ∇𝑙 is a 

differencing operator with lag  𝑙 calculated as 

                                                          ∇𝑙(𝑥𝑡) =  𝑥𝑡 − 𝑥𝑡−𝑙                                             (2.14) 

They compared: 

1) Joint distributions of the actual CON modeled temperature and precipitation with 

the corresponding ones from FUT1. 

2) Joint distributions of the actual CON modeled temperature and precipitation with 

the corresponding ones from FUT2. 

3) Joint distributions of the increment of CON modeled temperature and 

precipitation with the corresponding ones from FUT1. 

4) Joint distributions of the increment of CON modeled temperature and 

precipitation with the corresponding ones from FUT2. 
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The results indicated that although the joint distributions of the actual variables for the 

CON, FUT1, and FUT2 were different, the joint distributions of the increments were very 

close for the three different periods (CON, FUT1, FUT2). It was concluded that the joint 

distributions of the increments of the variables are stationary and a constructed transfer 

function based on the historical increments (CON) can be used for the bias correction of 

the increments in the future time (FUT1 and FUT2). They found the best performance 

with the first order differencing and 12 month lag (𝑙 = 12). Thus, they used a 12-month 

differencing process to create a stationary joint cumulative distribution function of the 

increments of the variables (e.g., joint CDFs of the increments of temperature and 

precipitation). The biases were removed based on the mapping of the stationary joint 

distribution of the increments of the climate variables to corresponding increments of the 

observed ones. Each point on the contours of the joint probability distribution indicated 

the joint frequency of the two variables (e.g., temperature and precipitation). Joint 

frequencies of the GCM distribution were mapped onto the corresponding observed ones 

(with the same joint CDF) based on the minimum Euclidean distance between the GCM 

and observed contours (𝑑) in the probability space as (Fig. 2.3) 

                                                             𝑑 =  √𝑥2 + 𝑦2                                                 (2.15) 

where 𝑥 and 𝑦 are the distances between the marginal CDFs of the variables (temperature 

and precipitation). When the biases of the increments were removed, they were inverted 

to the actual values. 
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Figure 2.3. The schematic joint CDF mapping in the probability space (Zhang and 

Georgakakos, 2012). Top-right plot shows the joint distribution of temperature (T) and 

precipitation (P). Top-left and bottom-right plots are the marginal distribution of P and T, 

respectively. The red and blue contours refer to the observation (OBS) and the GCM, 

respectively. x and y are the distances between the marginal CDFs of the variables 

(temperature and precipitation, respectively).  
 

 

 Zhang and Georgakakos (2012) concluded that the JVSD approach has a distinct 

advantage over the BCSD and dynamical methods. The advantage of the JVSD is that the 

method can downscale and correct the biases of the variables of the interest consistently 

at the same time. The JVSD can consider the co-variability of the climate states by 

modeling their joint distribution, which can produce the consistent dataset. When the 

correlation between the two state variables is negligible, the BCSD and the JVSD 

methods perform similarly. As one of the key assumptions, the JVSD method assumes 

that the joint distributions of the incremented variables in the historical and future time 

are identical. This has been shown to be valid for several GCMs.  
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2.3. Summary and Conclusions 

 Bias correction approaches are commonly based on statistical relationships 

(transfer functions) between the modeled and observed variables, which are constructed 

during the historical period. Then the constructed function is applied to correct the biases 

of the modeled variables in the projection period. The statistical methods assume that the 

underlying relationship for the historical time is valid for the projection, which cannot be 

guaranteed. The consistency between the climate variables can deteriorate with statistical 

bias correction. As we explained, this deficiency was addressed and resolved to some 

extend by some proposed methods (Sheffield et al., 2006; Zhang and Georgakakos, 

2012). Although this family of statistical approaches cannot completely address the 

underlying physics and variability of the climate, they have considerable computational 

advantages over the dynamical approaches.  

 The probability matching methods (e.g. CDF, EDCDF, JVSD) adjust different 

quantiles of the modeled distribution according to the corresponding quantiles of the 

observed distribution, while the modeled value at a certain quantile may not coincide 

with the observed value of that quantile. Thus, effective implementation of the 

probability matching methods requires high correlations between the modeled and the 

observed climate variables. This is consistent with the results obtained by Chen et al. 

(2013). They compared the sensitivity of the different bias correction methods including 

mean-based (delta change) and distribution-based (quantile mapping) approaches on 

hydrological simulation. They used precipitation from four RCM provided by the NCEP 

over 10 river basins in the North America to drive the conceptual rainfall-runoff model, 

HSAMI developed by Hydro-Quebec. To evaluate the performance of the bias correction 

methods, they compared the simulated streamflow using raw and bias-corrected 

precipitation. They concluded that the distribution-based bias correction method 

outperformed the mean-based bias correction approach. The quantile mapping approach 

was not able to correct the biases of precipitation over the five watersheds. It was due to 
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the fact that there was a low temporal consistency between the time series of the modeled 

and observed precipitation.  

 The performance of the bias correction method varies with the different models 

and study locations. Note that even if the distribution-based methods can adjust the mean 

and higher statistics of the time series of the variables, they are not able to improve the 

temporal structure of the variables. This study attempts to define an approach that is able 

to remove the biases of the variables and improve the temporal sequence of them relative 

to the observations. We develop a data driven approach that allows obtaining bias-

corrected estimates of the climate variables (air temperature and precipitation) via a 

supervised statistical learning approach. To account for the model errors and in particular 

biases, the method should be able to: 

 Learn from available information. 

 Adapt.  

 Be generalizable to perform well when the observation is not available.  

 

These features exist in regression models (linear and nonlinear). Our effort tries to 

improve the estimates of air temperature and precipitation, provided by the Community 

Climate System Model (CCSM3), using Artificial Neural Network (ANN) as a nonlinear 

regression method. We compare the results with the linear regression method. In the 

subsequent chapter, the fundamentals and the mathematical structure of the ANN will be 

explained. 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS 

 

 

3.1. Introduction 

 Machine learning is defined as a “field of study that gives computer the ability to 

learn (train) without being explicitly programmed” (Simon, 2013). Training, which is 

identified with biological systems, is the process of learning through experiences, 

examples, and adaptation (Schalkoff, 1990). The brain is able to store and integrate 

experiences and previous information and also organizes itself. This ability allows the 

brain to predict new situations, which is known as a generalization capability. The 

parallel structure of the brain is fault tolerant and self-organized and also it has ability to 

adapt to the changes of the environment, which offers a similar artificial neural 

architecture to solve various tasks. An Artificial Neural Network (ANN), a biologically 

motivated idea, consists of an interaction of computational elements or units. ANN 

imitates the abilities of the human brain including storing information, learning, and 

training to produce a (hopefully) correct response to new or unseen situations (Schalkoff, 

1997). ANN seems to be suitable for: 

- Complex problems with high-dimensional space.  

- Problems with flawed and missing data. 

- Problems with unknown or complicated relationships between the variables.  

Functional approximation and pattern recognition/classification are the two main 

applications of ANNs. A list of illustrative examples is (Schalkoff, 1997): 

- “Image processing and computer vision including image matching and 

compression; processing of time-varying images.  
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- Signal processing including seismic signal analysis. 

- Pattern recognition including satellite and radar signal analysis; speech and 

fingerprint identification; character and handwriting analysis. 

- Medicine including electrocardiographic analysis; diagnosis of various diseases; 

medical image processing. 

- Military systems including undersea mine detection; radar clutter classification; 

tactical speaker recognition; target tracking. 

- Financial systems including stock market analysis; real estate appraisal; credit 

card authorization; securities trading. 

- Planning, control, and search including parallel implementation of constraint 

satisfaction problems (CSPs); system control; robotics. 

- Artificial intelligence including implementation of computer programs such as 

expert systems. 

- Power systems including system state estimation; fault detection and recovery; 

load forecasting; security assessment.”  

 

 Formulating neural networks with many unknown parameters, without any clear 

guideline to the design of the model structure, is a big challenge. Despite the fact that 

ANN models are not able to represent underlying physical equations of the process, they 

have been widely used in various fields because: 

- ANNs are known as universal approximators. In other words, ANNs are almost 

capable to approximate any continuous input and output mapping (Hornik, 1989, 

1991).  

- ANNs are able to identify complex and nonlinear relationships between predictors 

and response variables (nonlinear input-output mapping). 

- Parallel structure of the ANNs results in fast computations. 
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- ANNs can be trained when observations are available and generalized to future 

situations. 

 The first concepts and characteristics of the ANN were explained by Rosenblatt 

(1959); Widrow and Hoff (1960); Minsky and Papert (1969). A classic paper by 

McCulloch and Pitts in 1943 combined neurophysiology and mathematical logic to 

explain fundamental logic of the ANN model. The physical and mathematical concepts of 

the neural network are explained in the following sections.   

 

3.2. Fundamental Concepts behind Neural Networks  

 The structure of the ANNs is inspired by biological neural systems and is 

composed of artificial neurons (nodes) in multiple layers. The behaviour of a neural 

system that consists of billions of microscopic biological processing neurons (Churchill, 

1986) is represented at a macroscopic scale. Neurons (nerve cells) and glia (glial cells) 

are two classes of cells in the nervous system, which perform processing and support 

functions, respectively. The neuron consists of three main components as (Kandel, 1991) 

(see Figure 3.1) 

1) The cell body (soma) with a diameter of about 50 μm is made up of the nucleus 

and perikaryon.    

2) The axon in a shape of a tube with a diameter of about 0.2 to 20 μm mainly 

generates the signals and transfers them to other neurons.  

3) Dendrites in the shape of trees are connected to the axon of the other neurons by 

synaptic connections (synapses) to amplify the transmission of the impulse 

between the neurons. They act as a neuron’s input. Synaptic activity is a 

complicated process to pass chemical and electrical signals from one neuron to 

another. A single neuron has about 10
3
 to 10

4
 synapses.     

 



 33 

 Transmitted signals are integrated in the soma to increase or decrease the 

electrical potential of the cell, which is called an action potential or nerve impulse. The 

magnitude of the action potential can increase and decrease (or stop increasing) by 

excitatory and inhibitory neurotransmitters, respectively. The action potential typically 

has a spiked signal so the frequency of the action corresponds to the electrical potential of 

the soma. If the potential is below the threshold, no response is generated and if the 

potential rises above the threshold (the magnitude of the potential is not important), the 

neuron responds. This is known as the firing of the neuron.  

 

Figure 3.1. A typical biological neuron (Maltarollo, 2013; Galkin 1836). 

 

 The biological mechanisms of creative information-processing suggest the basic 

principles for artificial neural networks, although ANNs are not able to model all the 

complexity (Churchland and Sejnowski, 1993). To process the signals, the structure of 

an ANN consists of three main parts:  

1) The input layer consists of the input nodes connected to the input variables. 
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2) Hidden layers (one or more) consist of the hidden nodes (units). 

3) The output layer consisting of the output nodes that deliver the output variables. 

A three-layer ANN (sometime called two-layer) including one input, hidden, and output 

layer is a widely-used structure for many applications (see Figure 3.2).  

 

  

 

Figure 3.2. A model of a three-layer ANN. 𝑥i and 𝑂j refer to input and output variables, 

respectively. 𝑤ki and 𝑤jk are connected weights from input layer (𝑖) to the hidden layer (𝑘) 

and from hidden layer to the output layer (𝑗), respectively. 𝑖, 𝑘, and 𝑗 denote number of the 

nodes in the input, hidden, and output layers, respectively.  

 

 

 ANNs are constructed by a number of units (artificial neurons/nodes) in the layers 

that are connected by weights (synapses) in different forms (feedforward and recurrent 

neural networks). The weights determine an effective magnitude of contributed 

information between nodes. The weights in the feedforward network are connected in 

only one forward direction while the weights in the recurrent network are connected in a 

directed cycle (see Figure 3.3). The most widely used ANN is the feedforward neural 

network, FNN (Rumelhart et al., 1995; Maier and Dandy, 1998). FNNs are known as 

universal approximators (Kolmogorov, 1957; Sprecher, 1965; Lorentz, 1976; Hecht-
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Nielsen, 1987; Hornik, 1989) and have been applied successfully in many hydrological 

applications such as rainfall modeling (Dawson and Wilby, 1998; Hsu et al., 1995) river 

flow modeling (Cheng et al., 2005; Joorabchi et al., 2007) flood forecasting (Chau et al., 

2005), and water quality modeling (Muttil and Chau, 2006; May and Sivakumar, 2009).  

 

 

Figure 3.3. A two-layer: (a) feedforward network (FNN) and (b) recurrent network (RNN).  

 

 

 The non-biological concepts that are used to construct the computational structure 

of ANNs are the reason for the descriptor “artificial”. A comparison between biological 

and artificial neurons is summarized in Table 3.1 (Schalkoff, 1997). 

 

Table 3.1. Comparison of a biological and an artificial neuron (Schalkoff, 1997). 

 

Biological Artificial 

Neuron cell Unit 

Synapse Interconnection weight 

Excitatory input  (Large) positive interconnection weight 

Inhibitory input (Large) negative interconnection weight 

Activation by (spiking) frequency Activation (transfer) function 

Range of activation limited by cell physics Range of activation limited by squashing function 
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ANNs are useful because: 

- Neural systems are able to train, adapt, and self-organize information. 

- The neural system can establish an implicit computational function and structure 

by training process. 

 

3.3. Mathematical Fundamentals of Neural Networks 

 Artificial neural networks use an inherent feature of the biological neural systems: 

“the interconnection of a massively parallel array of processing elements (units) with 

variable parameters” (Schalkoff, 1997). Each unit shares a part of the computational 

effort to provide an overall result. ANN is characterized by the stimulus-response (S-R) 

process to learn the right response for each input through training. Since the internal 

computation of the ANN is not known or quantified, the network is called a black-box 

computational strategy. The strategy does not require detailed understanding of the 

internal network. The essence of a black-box method is establishing a relationship 

between input and output. A mathematical neural network typically involves a set of n-

dimensional, nonlinear equations to characterize the network operation, structure, 

characteristics of the units or nodes (e.g. weight, number of the hidden nodes), training, 

and activation function. A simplified mathematical model of the ANN is a general 

functional representation between inputs (𝑥) and outputs (𝑦) as 

                                                                  𝑦 = 𝑓(𝑥)                                                       (3.1) 

   

where 𝑓(∙) denotes the functional mapping. Function 𝑓(∙) in ANN is called a transfer 

function (activation function), which can be linear or nonlinear. Some common linear 

transfer functions are (see Figure 3.4): 

 

 

 

http://en.wikipedia.org/wiki/Mathematical_model
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- Hard-Limit (threshold, Bi-Level) Function as 

                        Hard-Limit Function                                     {
 𝑓(𝑥) = 1     𝑥 > 0

 𝑓(𝑥) = 0     𝑥 ≤ 0
                

                        Symmetric Hard-Limit Function                  {

  𝑓(𝑥) = 1     𝑥 > 0  

𝑓(𝑥) = 0      𝑥 = 0

𝑓(𝑥) = −1    𝑥 < 0

 

 

- Piecewise Linear Function as  

                        Piecewise Linear Function                           {

 𝑓(𝑥) = 1                   𝑥 ≥ 1  

𝑓(𝑥) = 𝑥           0 ≤ 𝑥 < 1

𝑓(𝑥) = 0                   𝑥 < 0  

 

                       Symmetric Piecewise Linear Function         {

𝑓(𝑥) = 1                   𝑥 > 1  

𝑓(𝑥) = 𝑥        − 1 ≤ 𝑥 ≤ 1

 𝑓(𝑥) = −1                𝑥 < −1

 

                

- Pure Linear Function as 𝑓(𝑥) = 𝑥.   

 

 

Figure 3.4. Common linear transfer functions. (a) Symmetric Hard-Limit Function, (b) 

Symmetric Piecewise Linear Function, and (c) Pure Linear Function.  

 

 

The widely used nonlinear transfer functions are (see Figure 3.5): 

 

- Radial Basis Function (RBF), which is based on the distance of the inputs from 

the origin (𝑂). A typical kind of the RBF is in the Gaussian format as  

                                                      𝑓(𝑥) =  𝑒𝑥𝑝 [−
‖𝑥−𝑂‖2

2𝜎2 ]                                                (3.2) 
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The detailed descriptions and applications of the RBF can be found in the papers 

by Broomhead and Lowe (1988); Chng (1996); Heiss and Kampl (1996).     

 

- Sigmoid Function with an “S” shape, generally includes  

                       - Log-Sigmoid (Logistic) Function               𝑓(𝑥) =  
1

1+𝑒−𝑥
             (3.3)                  

and 

                - Tan-Sigmoid Function as                        𝑓(𝑥) =  
2

1+𝑒−2𝑥 − 1          (3.4) 

  

The sigmoid functions are monotonically increasing, continuous, differentiable, 

and bounded between 0 and 1 for the logistic function and between -1 and 1 for  

the hyperbolic tangent function. 

 

 

 

Figure 3.5. Common nonlinear transfer functions. (a) Radial Basis Function, (b) Log-

Sigmoid Function, and (c) Tan-Sigmoid Function.  

 

 

The transfer function converts the summation of the synaptic weights vector, 𝑤, and 

inputs vector, 𝑥, to a corresponding output vector as 

                                                              𝑦 = 𝑓(∑ 𝒘. 𝒙)                                                   (3.5) 

 

The inputs are multiplied by synaptic weights and then fed to the first hidden layer. If the 

signal (stimulus) is above a threshold, the output is produced (the neuron fires). An 

activated function has usually a spiked shape in which the frequency is proportional to 
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the strength of the stimuli. The sigmoid-type functions are the most common activation 

functions (transfer function or threshold function) to transfer the summation of the 

weighted inputs into the next hidden layer (Funahashi, 1989; White, 1990; Hecht-

Nielsen, 1990; Blum and Li, 1991; Takahashi, 1993; Hsu et al., 1995). The same process 

occurs in the other layers until the results of the last hidden layer reach the output layer.  

 The weights (parameters of the ANNs) are determined by minimizing the 

following quadratic error function (𝐸) over the network weights iteratively in each 

iteration (epoch):  

                                                     𝑬 =  
1

2
 [𝑇𝑎𝑟𝑗 − 𝑂𝑗(𝒘, 𝒙)]

2
                                         (3.6)  

 

where 𝑂𝑗 is the output form the output layer, 𝑇𝑎𝑟𝑗 is the corresponding target, and the 

other parameters have been defined previously (see Figure 3.2). The process that adjusts 

the weights of the network in response to the set of inputs and targets values is called 

training or learning phase. The training phase is a type of teaching process to correct or 

adjust the parameters of the system iteratively among the past steps to achieve a desired 

performance in the next iteration. Furthermore, after training, the internal structure of the 

network is able to self-organize to react properly to the unseen inputs. This feature is 

called generalization capability. There are two main learning procedures: supervised and 

unsupervised learning. The goal of the unsupervised learning, uses inputs (without the 

desired output), is to find a structure or pattern in the data. This learning algorithm 

organizes the data such that inputs with similar properties are in the same cluster. For 

instance, the unsupervised algorithm is used in the “Google news” to group a set of news 

articles into the subsets with the same story. The unsupervised learning can be used for 

pre-processing, clustering of the data, and reduction of the dimensionality of the input 

space. The Kohonen self-organizing (Kohonen, 1982, 1987, 1988) and the adaptive 

resonance theory (ART) (Carpenter and Grossberg, 1987a,b) are two examples of the 

unsupervised learning.  

http://en.wikipedia.org/wiki/Adaptive_resonance_theory
http://en.wikipedia.org/wiki/Adaptive_resonance_theory
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 The objective of supervised learning, uses a set of input-output, is to learn the 

relationship between the inputs and the desired outputs. Supervised learning uses 

deterministic approaches such as the back propagation (Rumelhart et al., 1986), the 

Hebbian methods (Cline, 2003) or stochastic approaches such as genetic (Kitano, 1994) 

and simulated annealing (Kirkpatrick et al., 1989; Hinton and Sejnowski, 1986) methods. 

The most common supervised training algorithm is the back propagation generalized 

delta rule (BPGDR), which employs a gradient search strategy (Rumelhart et al., 1986; 

Rocha et al., 2005). The BPGDR has been applied as a weight optimizer in many ANN 

applications since 1990 because of its numerical efficiency (Hagan and Menhaj, 1994). 

The goal of the BPGDR is to minimize a cost function (error function) based on the 

difference between the modeled and desired outputs. The BPGDR includes the following 

steps: 

a. Initialize the weights randomly. 

b. Find a summation of the weighted inputs from the input layer to the first hidden 

layer for each unit, called net activation of unit 𝑘 (𝑛𝑒𝑡𝑘) as  

                                                  𝑛𝑒𝑡𝑘 =  ∑ 𝑤𝑘𝑖𝑥𝑖 𝑖                                                (3.7)     

 

where 𝑖, 𝑘 refer to the input nodes and hidden nodes, respectively (see Figure 3.2). 

 

c. Activate the summation of the weighted inputs by transfer function 𝑓 as 

                                                    𝑂𝑘 =  𝑓𝑘(𝑛𝑒𝑡𝑘)                                                (3.8) 

  

where 𝑂𝑘 is the output of unit 𝑘 and the input to the next layer (here output layer). 

 

d. Repeat steps b and c to get to the last layer (output layer). 

e. Estimate the error function (Eq. 3.6). 

f. Adjust the weights by minimizing the error function and propagating the error 

backward to the network (starting from the output layer). 
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In the BPGDR algorithm, a gradient descent optimization technique, the parameters 

(weights) are adjusted by moving in the direction of the gradient of the error function 

(Eq. 3.6) relative to the weight vector. The algorithm imposes the following equivalence 

for the network with three layers (see Figure 3.2): 

                                          𝛻𝐸 (𝑤) = (
𝜕𝐸

𝜕𝑤11
, … ,

𝜕𝐸

𝜕𝑤𝑘1
, … ,

𝜕𝐸

𝜕𝑤𝑘𝑖
, … ,

𝜕𝐸

𝜕𝑤𝑗𝑘
 ) = 0                    (3.9) 

where 𝛻 is the gradient or differential operator. 𝑖, 𝑘, and 𝑗 refer to the nodes in the input, 

hidden, and the output layers, respectively. As we can see, the error space is 𝑛-

dimensions (𝑛 = number of the weights). At each iteration, the weights are updated and 

the total adjusted weights define the new direction of moving on the error space for the 

next iteration. The moving on the error space (adjustments of the weights) continues till 

the error function converges to the minimum value. This complex and high dimensional 

problem is computationally expensive. To overcome this issue, the scaling parameter 

(between zero and one) called learning rate 휂  is used to determine a magnitude of 

learning (change of the error relative to the weight change) in each iteration. The BPGDR 

algorithm can be formulated as follows: 

 

I. For the weights that are connected to the output nodes (output weights): 

                                   ∆𝑤𝑗𝑘 =  휂
𝜕𝐸

𝜕𝑤𝑗𝑘
= 휂 

𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
.

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑘
= 휂

𝜕𝐸

𝜕𝑂𝑗
.

𝜕𝑂𝑗

𝜕𝑛𝑒𝑡𝑗
.

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑘
                      (3.10) 

where 𝛿𝑗 =
𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
 is the sensitivity of the error on the net activation of unit 𝑗. On the right 

side of Eq. 3.10, the first part can be computed as   

                                                 
𝜕𝐸

𝜕𝑂𝑗
=  

𝜕[
1

2
 (𝑇𝑎𝑟𝑗− 𝑂𝑗)2]

𝜕𝑂𝑗
= −(𝑇𝑎𝑟𝑗 − 𝑂𝑗)                          (3.11) 

 

the second part as 

                                                         
𝜕𝑂𝑗

𝜕𝑛𝑒𝑡𝑗
=  

𝜕𝑓𝑗(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
= 𝑓𝑗

′(𝑛𝑒𝑡𝑗)                                 (3.12)  

 

and the last part as 
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𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑘
=

𝜕(∑ 𝑤𝑗𝑘𝑂𝑘𝑘 ) 

𝜕𝑤𝑗𝑘
= 𝑂𝑘                                      (3.13) 

 

where 𝑂𝑘  is the output from unit 𝑘 in the hidden layer.  

So to correct the output weights, Eq. 3.10 leads to    

                                                    ∆𝑤𝑗𝑘 =  휂 (𝑇𝑎𝑟𝑗 −  𝑂𝑗)𝑓𝑗
′(𝑛𝑒𝑡𝑗) 𝑂𝑘                             (3.14) 

 

II. For the weights that are connected to the hidden nodes (hidden weights): 

                                    ∆𝑤𝑘𝑖 = 휂 
𝜕𝐸

𝜕𝑤𝑘𝑖
=  휂 

𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
.

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑖
= 휂 

𝜕𝐸

𝜕𝑂𝑘
.

𝜕𝑂𝑘

𝜕𝑛𝑒𝑡𝑘
.

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑖
                (3.15) 

where 𝛿𝑘 =
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
. The outputs of hidden nodes are used as the inputs to the output layer 

so the hidden weights have indirect effect on the error function. As a result, the first part 

of Eq. 3.15 on the right side, can be computed as  

                                                          
𝜕𝐸

𝜕𝑂𝑘
=  

𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
.

𝜕𝑛𝑒𝑡𝑗

𝜕𝑂𝑘
=  𝛿𝑗𝑤𝑗𝑘                                  (3.16)                   

 

and the second part of Eq. 3.15 can be expressed as 

                                                        
𝜕𝑂𝑘

𝜕𝑛𝑒𝑡𝑘
=  

𝜕𝑓(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝑓𝑘

′(𝑛𝑒𝑡𝑘)                                  (3.17) 

 

and the last part is the input from unit 𝑖 in the input layer as 

                                                           
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑖
=

𝜕(∑ 𝑤𝑘𝑖𝑥𝑖𝑖 ) 

𝜕𝑤𝑘𝑖
= 𝑥𝑖                                         (3.18)                                        

So to correct the hidden weights, Eq. 3.15 leads to  

                                                          ∆𝑤𝑘𝑖 =  휂 𝛿𝑗𝑤𝑗𝑘 𝑓𝑘
′(𝑛𝑒𝑡𝑘) 𝑥𝑖                                    (3.19)                                                             

 

The process of updating the random weights starts from the output layer (see Eq. 3.14) 

and then moves backward to update the hidden weights (see Eq. 3.19). The 

backpropagation adjustment of the weights stops when the minimum error function is 

achieved. 
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 Design of the ANN model is a complicated and iterative task. A proper 

performance of the ANN demands a suitable structure (e.g., number of the nodes and the 

way that they are connected), suitable learning algorithm (e.g., transfer function, training 

function, learning rate), and a proper set of weights. The size of the model affects the 

generalization ability of the network. A very small network is not trained well and a very 

large one attempts to model the noise. In a large network, the number of degrees of  

freedom (unknown parameters) far exceeds the number of the training samples so 

overtraining (over-fitting) occurs, which means that the network models the training 

samples well (memorization ability) but the performance of the model during the 

validation is poor. However the availability of large training samples and the training 

algorithm does not guarantee a solution to any ANN application, the quality of the 

training data and algorithm has a significant impact on the results. 

 

3.4. Hydrologic Applications of ANNs  

 Artificial neural networks (ANNs) have been widely used in the hydrology and 

modelling of water resource systems (see, ASCE Task Committee on Application of the 

Artificial Neural Networks in Hydrology, 2000). Maier et al. (2010) reviewed 210 journal 

papers from 1999-2007 that developed ANN models for the purpose of flow prediction 

(quantity and quality) in the river system. The focus of the majority of the papers was on 

the water quantity variable (e.g., discharge, water level) and a few studies focused on the 

water quality variable (e.g., salinity, sediment). Most ANNs used feedforward network 

and the gradient-based method for the architecture and training algorithm of the model, 

respectively. Maier et al. (2010) argued that although many studies described the use of 

ANNs, only a few of them focused on the optimal structure of the ANN model. Their 

statements agree with the results obtained by Maier and Dandy (2000) who reviewed 43 

papers, focused on the use of the ANN for the prediction of water resources variables 
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such as rainfall, discharge, runoff coefficient, water level, salinity, PH, and 

algal/cyanobacteria concentration. They explained different approaches that were used to 

find the unknowns in the network such as the structure of the ANN, the choice of the 

performance criteria, the inputs, hidden nodes and their topology, training algorithm, and 

transfer functions. They argued that a useful comparison between different approaches is 

not possible because the details of the ANN modelling are not well described.  

 Hsu et al. (1996) compared three different formulations including autoregressive 

moving average with exogenous inputs, ARMAX, a conceptual rainfall-runoff model 

(Sacramento soil moisture accounting model, SAC-SMA), and a nonlinear model (three-

layer feedforward ANN) to model rainfall-runoff at the Leaf River basin near Collins, 

Mississippi. They used 35 different combinations of the inputs in the ANN and the 

ARMAX model. Nodes were added to the hidden layer until the desired performance of 

the network was achieved. The sigmoid function was chosen as a transfer function. They 

used two training algorithms, simplex nonlinear optimization (Nelder and Mead, 1965) 

and linear least square (Scalero and Tepedelenlioglu, 1992) to train the hidden and output 

layers, respectively. They concluded that the ANN model outperforms the other models. 

They also argued that the ANN model may not be considered as a substitute for the 

conceptual model because the ANN is not able to represent the physical internal structure 

of the problem.  

 Hsu et al. (1999) estimated rainfall from remotely sensed data using an ANN 

model over the Japanese Islands. They used visible (VIS) and infrared (IR) imagery from 

the Geostationary Meteorological Satellite (GMS) at 0.25° by 0.25° resolution (Arkin and 

Xie, 1994). The inputs to the model were VIS and IR brightness temperatures at each 

individual pixel, mean and standard deviation around the pixel of the 3 by 3 and 5 by 5 

VIS and IR brightness temperatures of the surrounding pixels. They used a modified 

counterpropagation neural network (MCPN) as the architecture of the model. The 

counterpropagation neural network (CPN) consists of two parts; part one is to categorize 
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the inputs and provide the clusters in the hidden layer and part two is to establish a 

function between the clusters and the outputs (Hecht-Nielsonn, 1990). The first part uses 

an unsupervised clustering technique called the self-organizing feature map (SOFM) 

(Kohonen, 1982) and the second part uses a supervised linear mapping called a Grossberg 

Linear Network (GLN) (Grossberg, 1969) as the training algorithms. The SOFM 

classifies inputs into the groups, which are connected to the nodes in the hidden layer. 

The GLN trained the network to construct a linear relationship between determined 

clusters and outputs. The inputs in the same cluster produce one output so the accuracy of 

the function directly depends on the number of hidden nodes, which are identical to the 

number of the clusters. One alternative to increase the accuracy of the function without 

increasing the number of hidden nodes is using the MCPN. The MCPN incorporates all 

inputs in the clusters to estimate different outputs. Hsu et al. (1999) concluded that the 

MCPN can provide a reasonable spatial and temporal pattern of the rainfall over a small 

region, where the model was trained. They also showed that the parameters of the model 

need to be adjusted and updated when the model is used over different regions with 

different physical regimes. Hsu et al. (1996, 1999) used the MCPN model to develop the 

PERSIANN algorithm (Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Network) to estimate precipitation. Inputs to the model are 

infrared and microwave images of the satellite, radar, ground-based, and rain gages data.  

 Liong et al. (2000) used an ANN model to forecast water level of the Dhaka river, 

Bangladesh. They used water levels at eight upstream stations as inputs to the model, 30 

nodes as hidden nodes, sigmoid function as the transfer function, and back propagation as 

the training method. The sensitivity analysis on the inputs showed that using all upstream 

stations added redundant and dependent information. Thus, they eliminated three out of 

eight chosen inputs, which resulted in an efficient model (lower cost in time and memory 

usage).  
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 Kuok et al. (2010) used a three-layer feedforward neural network to model 

rainfall-runoff in the Sungai Bedup Basin, Sarawak, Malaysia. Taormina et al. (2012) 

used three-layer feedforward neural network to simulate hourly groundwater level in the 

Lagoon of Venice, Italy. The 0, 1, 2, and 3 lags of rainfall and evapotranspiration and 1, 

2, 3, 4 lags of water level were used as inputs with four hidden nodes to estimate current 

water level. The activation and training functions were hyperbolic tangent and the back 

propagation algorithm, respectively. The results suggested that the proposed model can 

be used as an alternative to physical modeling in simulating the groundwater level and 

fill-in missing water level data. They used lags of precipitation and runoff as inputs to the 

model to estimate current runoff. The optimal configuration of the model consisted of 0, 

1, 2, and 3 lags of precipitation and 1, 2, and 3 lags of runoff (inputs to the model) and 

100 nodes in the hidden layer (hidden nodes). The particle swarm optimization PSO 

(Clerc, M., and J. Kennedy, 2002), an iterative search-space method, was used to train the 

network. They concluded that the PSO-based training algorithm performed well in 

modeling rainfall-runoff processes.  

 Wu and Chau (2006) used a genetic algorithm-based artificial neural network 

(ANN-GA) to predict the flood at the Yangtze River, China. The GA determined the 

optimal parameters of the model. The inputs to the model were water levels at the 

upstream station (Luo-Shan station) and the output was the downstream water level at 

Han-Kou station. The three hidden nodes were chosen though a trial and error procedure. 

They concluded that although the ANN-GA model added more parameters and 

computational time, it provided good accuracy in performance without an over-fitting 

problem.  

 Muttil and Chau (2006) used a three-layer feedforward neural network and 

genetic programing (GP) to model algal blooms in Tolo Harbor, Hong Kong. The 

objective of the model was to predict one-week lead time of chlorophyll-a using 

significant inputs. In the first step, they chose inputs based on a priori knowledge of the 

http://link.springer.com/search?facet-author=%22K.+K.+Kuok%22
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system. They tried nine input variables, recognized as the dominant factors on the algal 

dynamics, including: chlorophyll-a (Chl-a), total inorganic nitrogen (TIN), phosphorus 

(PO4), dissolved oxygen (DO), secchi-disc depth (SD), water temperature (Temp), daily 

rainfall (Rain), daily solar radiation (SR), and daily average wind speed (WS) with a time 

lag of 7-13 days. The trial and error procedure determined 6 hidden nodes as the best 

number of the nodes in the hidden layer. The GP identified the most efficient input 

variables. The results showed that although Chl-a, PO4, DO, TIN, and SD were the most 

proper inputs from nine initially selected inputs, the models can predict the long-term 

trends of algal biomass well by using Chl-a as the only input.  

 The past studies indicate that ANN modeling is able to construct valid 

relationships between inputs and outputs by choosing a proper set of inputs and structure. 

The structure of the ANN cannot explain the underlying physics of the problem as well as 

physical models. As a result, ANN modeling is a viable alternative for problems with a 

complex and unknown input-output relationship. In the following chapters we assess the 

potential of the ANN to reduce the biases of the climate variables including temperature 

and precipitation. 

 

 

 

 

 

 

 

 

 



 48 

CHAPTER 4 

BIAS CORRECTION OF CLIMATE VARIABLES USING AN 

ARTIFICIAL NEURAL NETWORK  

 

 

4.1. Introduction 

 It is well understood that there is no perfect mathematical model that can 

completely represent and resolve underlying physical processes of land-atmosphere-

ocean interactions. Complexity of the governing equations, simplified parameterizations, 

and calibration uncertainties in the GCMs typically cause imperfect outputs, which 

contain errors. The biased climate outputs influence analysis studies and impact 

assessments. Since the GCM’s outputs are used to drive other models such as hydrologic 

and ecosystem models, the biased forcing can add uncertainty to the results. Thus, the 

biases of the outputs need to be corrected. The basic idea for bias correction is to find a 

sufficiently flexible and adaptive approach that is able to learn from available information 

to develop a predictive function, which performs well for the projection period. We use 

an Artificial Neural Network (ANN) approach to learn the error structure from the 

historical outputs and corresponding observations. Then the trained network can be used 

to reproduce bias-corrected predictions. As we explained in Chapter 3, ANN can be 

described as a set of stimuli-response (S-R) (Schalkoff, 1997). The overall characteristics 

of the network can be represented as, 

                                                               𝑟𝑖 = 𝑓(𝑠𝑖 , 𝑤, 𝑎𝑐)                                                    (4.1) 

where  𝑟𝑖  is a response (output), 𝑠𝑖 is a stimuli (input),  𝑤  denotes the interconnection 

weights between the nodes, and 𝑎𝑐 is a combination of unknown characteristics of the 

network including structure of the network, number of the hidden layers and nodes, 
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transfer function, training algorithm, and learning rate. In this study, the response is the 

bias-corrected climate variables (temperature and precipitation), and the stimuli includes 

a set of proper meteorological variables, which needs to be determined. In the subsequent 

sections, we describe the overall experimental set-up of the employed ANN to 

determine 𝑎𝑐 for the two climate variables of interest, temperature and precipitation. 

 

4.2. Experimental Setup of the ANN  

 The performance of an ANN depends on two major factors: (1) quality of the 

training dataset, and (2) architecture of the employed ANN. Quality and dependency of 

the predictors (inputs) to the response variables (outputs) are essential elements of an 

effective ANN. The architecture of ANNs is also a determining factor on their 

performance. A smaller network with few neurons and hidden layers severely restricts the 

network learning ability while a larger network with too many neurons and hidden layers 

typically leads to over-fitting and poor generalization of the network. Determination of 

the characteristics of the network follows.    

 

4.2.1. Determination of the Training Set  

 An ANN constructs a mathematical mapping function between input-output using 

a training set including input and target values (observations). Note that a proper training 

set enables the network to identify an existing function that maps inputs to the desired 

outputs. Irrelevant and redundant inputs cause an erroneous, ineffective, and large 

network without notable predictive capacity (Lachtermacher and Fuller, 1994; Taormina 

et al., 2012). The choice of a suitable set of the input-output depends on a-priori 

knowledge of an existing relationship between them. The following section describes the 

training set used for temperature and precipitation. 
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4.2.1.1. Temperature 

 The primary goal of the network is to reduce the biases of the surface air 

temperature (𝑇). Thus, a bias-corrected time series of  𝑇 is set as the output of the ANN 

model. The input vectors include the raw temperature and physically relevant climate 

variables (predictors) that have impact on the error of temperature. We examined 

different combinations of the CCSM outputs as the inputs (predictors) to the ANN model, 

including: (1) air temperature  𝑇, (2) skin temperature 𝑇𝑆, (3) specific humidity 𝑄, (4) 

downward longwave radiation  𝐿𝑊𝑑, (5) downward shortwave radiation  𝑆𝑊𝑑, (6) net 

radiation  𝑅𝑛, (7) net longwave radiation 𝐿𝑊𝑛, (8) net shortwave radiation  𝑆𝑊𝑛, (9) 

surface pressure 𝑃𝑆, (10) precipitation 𝑃, and (11) horizontal winds 𝑢, 𝑣. The network is 

trained in response to the target (observation), which is the MFD, bias-corrected 

reanalysis NCEP surface air temperature (see Subsection 1.3). Dependent and 

unnecessary inputs influence the performance of the network, in particular for the 

validation period, and generally negatively impact the generalization capability of the 

model. Unnecessary inputs also increase the complexity, uncertainty of the model, 

computational time, and memory usage (Maier et al., 2010). We used a stepwise 

approach to determine the best set of the inputs. In this approach, the network starts with 

the minimum number of the inputs (one) and the model is trained. In each step, one 

variable is added to the input vector and the model is re-trained. The process of adding 

variables continues until the desired performance of the network is achieved or the 

performance of the network stops improving (Masters, 1993; Maier and Dandy, 1998). 

Although an evaluation of all possible combination of the inputs is not feasible, we 

examined a large set of different combinations of the aforementioned predictors as inputs 

to the ANN model. We selected the minimum number necessary inputs, which are 

expected to have impact on the target variable (𝑇). In the first step, we started with only 

one input (𝑇 or  𝑇𝑆 or  𝑄  or 𝐿𝑊𝑛 or  𝑆𝑊𝑛 or 𝑅𝑛 or 𝑃  or  𝑃𝑆) and trained the network 

separately. The best performance among the one variable input was obtained using 𝑇  as 
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the input. In the next step 𝑇𝑆, 𝑄, 𝑅𝑛, 𝐿𝑊𝑛, 𝑆𝑊𝑛,  𝑃𝑆, 𝑃, 𝑢, 𝑣  were added to the input vector 

(𝑇) one at a time and the same process was repeated. The best performance was obtained 

by adding 𝑇𝑆 and 𝑄 to the existing input 𝑇. In the next step we trained the network by 

adding  𝑅𝑛, 𝐿𝑊𝑛, 𝑆𝑊𝑛, 𝑃𝑆, 𝑃, 𝑢, 𝑣 to the existing inputs (𝑇, 𝑇𝑆, 𝑄). The performance of the 

model did not improve by adding  𝑃𝑆, 𝑃, 𝑢, or  𝑢. Among different components of 

radiation (𝐿𝑊𝑑, 𝑆𝑊𝑑, 𝑅𝑛, 𝐿𝑊𝑛, 𝑆𝑊𝑛) adding net longwave and shortwave radiation to the 

inputs (𝑇, 𝑇𝑆, 𝑄) improves the performance of the network. Adding a new variable to the 

selected set of inputs (𝑇, 𝑇𝑆, 𝑄, 𝐿𝑊𝑛, 𝑆𝑊𝑛) did not influence the performance of the 

network. As a result, variables 𝑇, 𝑇𝑆, 𝑄, 𝐿𝑊𝑛, 𝑆𝑊𝑛 are selected as the proper set of inputs 

to the network for the bias correction of temperature through the rest of the study and the 

results are presented accordingly.  

 

4.2.1.2. Precipitation 

 Here the objective of the network is to provide bias-corrected precipitation so a 

bias-corrected time series of 𝑃 is selected as the output of the network. We use the CRU 

precipitation (see section 1.3) as the target to train the network. To find an appropriate set 

of inputs that has impact on the precipitation error, we again used the stepwise approach. 

Adding variables (e.g., 𝑇, 𝑇𝑆, 𝑄, 𝐿𝑊𝑛, 𝑆𝑊𝑛, 𝑅𝑛, 𝑃𝑆, 𝑢, 𝑣) to the raw precipitation (original 

model precipitation) did not improve the performance of the network. The best 

performance of the network is achieved when precipitation is selected as a predictor for 

itself. This is consistent with the results obtained by Hidalgo et al., (2008). Since we 

found that the best predictor of precipitation is itself, we examined the effect of adding 

time-lagged precipitation to the input. The performance of the network improves when 

zero, one, two, and three lags of precipitation (𝑃, 𝑃𝑡−1, 𝑃𝑡−2, 𝑃𝑡−3) are used as inputs. The 

improvement of the network stops after a lag time larger than three. Since the variability 

of precipitation can be large over time and space, we also checked the performance of the 
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network when information from surrounding pixels is added to the existing inputs. To do 

that, the mean and standard deviation of precipitation from the surrounding pixels          

(𝑛 = 3, 5, or 7) are added to the input set as 

                                                         𝜇𝑛𝑏𝑦𝑛 =  
1

𝑁
 ∑ 𝑃𝑖

𝑁
𝑖=1                                                    (4.2) 

and  

                                              𝜎𝑛𝑏𝑦𝑛 =  √
1

𝑁
 ∑ (𝑃𝑖 − 𝜇𝑛𝑏𝑦𝑛)2𝑁

𝑖=1                                        (4.3) 

where 𝑁 is the total number of the surrounding pixels. The network showed the best 

improvement when the standard deviation of precipitation from 3 by 3 neighbors around 

the pixel of interest (𝜎3𝑏𝑦3) is added to the inputs. As a result, we use 

(𝑃𝑡 , 𝑃𝑡−1, 𝑃𝑡−2, 𝑃𝑡−3,  𝜎𝑡
3𝑏𝑦3

) as the best set of inputs to the network to correct the biases of 

precipitation throughout this study.     

     

4.2.2. Determination of the ANN’s Architecture  

 The architecture of the network includes geometry, the number of the hidden 

layers, nodes, and also the way that they are connected. In general, the network should 

have sufficient hidden nodes to accurately approximate the desired mapping function, 

nevertheless an excessively large number of nodes results in overtraining (over-fitting) 

and lack of generalization ability of the network. Currently there is no well-established 

methodology for optimal design of the ANN architecture. Optimal structure of the 

network is mainly determined using prior information about the problem at hand and trial 

and error procedures. Since the performance of the model varies with different 

architectures of the ANN, a selection of an appropriate structure of the model is essential.      

 As we explained in Chapter 3, there are two main kinds of neural networks, FNN 

(Feedforward Neural Network) and RNN (Recurrent Neural Network). We found the 
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FNN as a proper network for our application. The FNN is the most common network in 

many water resources applications because  

- The FNN outperforms the RNN in many practical problems (Khotanzad et al., 

1997) and in particular for the forecasting of climate variables (Maier and Dandy, 

2000).  

- The FNN is more efficient than the RNN in processing time (Masters, 1993; 

Hochreiter and Schmidhuber, 1997). 

 

Hornik et al. (1989) concluded that FNNs with one hidden layer and enough nodes 

(degrees of freedom) are able to approximate any function. Adding hidden layers 

significantly increase the uncertainty, parameters of the model, computational time, and 

memory usage. Thus, we use a feedforward ANN (FNN) with one hidden layer to correct 

the biases of  𝑇 and  𝑃 in this study.  

 

 Once the network is selected, we need to determine an optimal number of hidden 

nodes, which is one of the big challenges in neural network studies (Maren et al., 1990; 

Rojas, 1996). The optimal number of hidden nodes is the minimum number of nodes that 

can represent the underlying function between the input and the output. More hidden 

nodes result in more complicated mapping function, which can affect the generalization 

ability of the network. The optimal number of hidden nodes is generally determined by 

the following algorithms (Bebis and Georgiopoulos, 1994): 

- The pruning algorithm: In the pruning algorithm, a large enough network is 

selected in the first step to insure that the network constructs a mapping function 

between the input and the output. Then in the next steps redundant nodes are 

removed until the desired performance is achieved. The initial size of the network 

is suggested by Hecht-Nielsen (1987), Huang and Huang (1991). For more 
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comprehensive descriptions of the pruning algorithm, the reader is referred to 

Reed (1993) and Castellano et al. (1997).  

- The constructive algorithm: The constructive algorithm moves in the opposite 

direction to the pruning algorithm. The algorithm starts with the smallest network 

(e.g. one hidden node) and then the hidden nodes are added one at a time until the 

performance of the network stops improving. For more comprehensive 

descriptions of the constructive algorithm, the reader is referred to Chen et al. 

(1997), Kwok and Yeung (1997).      

 

Since the pruning algorithm has more uncertainties and unknown parameters, it has more 

difficulties finding an optimal network than the constructive algorithm (Bebis and 

Georgiopoulos, 1994). Furthermore, the pruning algorithm is computationally expensive. 

Here, the optimal number of hidden nodes is determined by the constructive algorithm 

presented in a number of studies (Hirose et al., 1991; Setiono and Hui, 1995; Fahlman 

and Lebiere, 1990, among many others). The constructive algorithm is based on a search 

approach. We start with a pre-specified minimum number of hidden nodes and 

sequentially add one node at a time and re-train the network. At each step with a fix 

number of nodes, the algorithm controls the performance of the network and finally 

chooses the number of nodes based on the chosen error criteria. It is worthwhile to 

mention that, in general, networks with concise structure provide better generalization 

and processing speed and also they require less storage than complicated networks 

(Castellano et al., 1997; Bebis and Georgiopoulos, 1994). Details to identify a proper 

number of hidden nodes for each climate variable (𝑇 and 𝑃) are described in section 4.3.   
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4.2.3. Determination of the Training Algorithm  

 Once the network is established, a set of weighted inputs is required to transfer 

between the layers through a training algorithm to deliver a valid output. A training 

algorithm, including the transfer and training function, processes the inputs in the 

network and adjusts the weights continually, based on a cost function (see Eq. 3.6).   

 

4.2.3.1. Transfer Function  

 As we explained in Chapter 3, a transfer function (activation function) is the 

analog of the potential to activate a neuron, which represents a frequency relationship 

between the input and the output. Hornik (1991) showed that “the mapping power of the 

ANN is not inherent in the choice of a specific activation function; rather it is the 

multilayer feedforward structure that leads to the general function approximation 

capability.” Nevertheless, some transfer functions can be more appropriate for certain 

types of applications. The sigmoidal functions are the most common transfer functions in 

the water resource applications due to their computational efficiency. In the process of 

optimization, the convergence to the optimal solution is faster in the network with the 

sigmoidal functions due to the smoothness of the error surface (Rumelhart, 1995; Durbin 

and Rumelhart, 1989). The main consideration to choose a transfer function is that the 

function should meet requirements for the training algorithm. For instance, in the 

BPGDR training algorithm, the transfer functions need to be differentiable (see section 

3.3). Sigmoidal-type (logistic and hyperbolic tangent functions) and linear functions are 

among commonly used transfer functions in the FNNs that satisfy this requirement.  

 Although, in general, the performance of the network using a logistic transfer 

function is similar to the ones using a hyperbolic tangent function, using the hyperbolic 

tangent as a transfer function increases learning speed and generalization ability of the 

network (Maier and Dandy, 1998). This is consistent with the results obtained by Kalman 
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and Kwasny (1992). Therefore, one hidden layer FNN with hyperbolic tangent-linear 

transfer functions for hidden-output layers is used to construct a model to reproduce bias-

corrected temperature and precipitation.    

 

4.2.3.2. Training Function  

 The mapping ability of the FNN is related to the sequence of the transformations 

that transfer the input space (input layer) to the functional space (hidden layers), and then 

to the last layer (output layer). A transformation of the effective weighted information 

between the nodes in the input, hidden, and output layers is essential to achieve a desired 

input-output relationship. To find a best set of weights (parameters of the network) we 

train the network with the target (observation) by minimizing the objective function (see 

Eq. 3.6). Then the network can learn the relationship between the input and the output. 

The process of learning or training is analog to parameter estimation. Since we want to 

establish a function between the inputs and the desired outputs, supervised learning is 

used. In this study the BPGDR, as a supervised learning method, is used for optimizing 

the FNN for both temperature and precipitation variables (for detailed descriptions of the 

BPGDR method, the reader is referred to Section 3.3). The BPGDR method is known as 

the most common algorithm for the training of the FNN (Maier and Dandy, 2000). Since 

the BPGDR algorithm operates based on the gradient of the transfer function, the 

function needs to be continuous and differentiable. The sigmoid-type functions used in 

this study meet the requirement of the algorithm. A well trained network is able to 

produce reasonable outputs using a set of independent inputs, which are not used during 

the training process. To improve this generalization ability of the network, the technique 

called early stopping (cross validation) is used (Stone, 1974; Hecht-Nielsen, 1990; 

Hassoun, 1995; Amari et al., 1997). In this technique the network is trained by the 

training dataset and the trend of the error is monitored over an independent dataset 
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(validation set) during the training. In the beginning of the process, the error reduces in 

both training and validation datasets. The training terminates when the error in the 

validation set starts to rise. This early stopping avoids memorization in the network and it 

enhances the generalization capability.  

  

4.3. Evaluation of the Network to Reduce the Biases of the Variables  

 Having defined the ANN, including training set, architecture, and the training 

algorithm, we evaluate the capability of the constructed ANN to reduce the biases of the 

CCSM temperature and precipitation in the subsequent subsections. The performance of 

the CCSM to simulate climate variables differs for different months/seasons and location. 

In other words, systematic errors in environmental models are often space-time 

dependent quantities with seasonal and geographical variations (Moghim et al., 2015). As 

a result, it is advantageous to correct the biases of the model for each month or season 

individually.  

4.3.1. Temperature  

 Previous efforts at bias correction of climate model outputs have been mostly 

concentrated on monthly temporal scales (Wood et al., 2004; Li et al., 2010; Zhang and 

Georgakakos, 2012). We intend to develop an effective methodology to reduce biases in 

the modeled temperature on a much finer temporal resolution (6-hour). To train and test 

the network, the 6-hourly historical CCSM data (ANN input) and MFD temperature 

(ANN target) from 1970 to 2008 are divided into two periods: 

I) 1970-1988 as a training dataset to adjust the ANN synoptic weights (calibration). 

II) 1989-2008 as a testing dataset to study the performance of the trained network 

(validation).  
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 In Section 4.2, we determined an appropriate set of input, geometry, training 

algorithm, and number of the hidden layer for the network. Figure 4.1 shows a schematic 

diagram of the proposed ANN for bias correction of temperature.  

 

Figure 4.1. The proposed feedforward network (FNN). The inputs of the network are: 

surface air temperature (𝑇), skin temperature (𝑇𝑆), specific humidity (𝑄), net longwave 

radiation (𝐿𝑊𝑛), and net short wave radiation (𝑆𝑊𝑛); while the output is the bias-corrected 

surface air temperature (𝑇𝐵𝐶). Here, 𝑤𝑘𝑖 and 𝑤𝑗𝑘 denote the weights connecting the input 

layer (i) to the hidden layer (k) to the output layer (j), respectively.  

 

 

The number of hidden nodes and the learning rate are two parameters that still need to be 

determined. Since the ANN is a nonlinear regression model with many unknown 

parameters, a trial and error procedure is a viable alternative to find unknown parameters. 

The detailed descriptions of the process are explained for an arbitrary geographical 

location P (latitude: 14.71°S, longitude: 45°W) in the study domain (red circle in Figure 

4.2) and for the month of March. We study the role of the chosen number of the hidden 

nodes and the learning rate on the performance of the proposed ANN for this location. 
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Figure 4.2. The study domain extending from 80°W to 35°W (longitude) and from 23°S to 

12°N (latitude). The red circle illustrates the geographical location P.  

 

As explained previously, to find the optimal number of hidden nodes, we use the 

constructive algorithm (Kwok and Yeung, 1997b) and we choose 0.01 as a first guess for 

the learning rate (휂). It is worth noting that a similar learning rate is often reported in 

ANN applications in water resources studies (e.g., Tamura and Tateishi, 1997; 

Kuligowski and Barros, 1998a, b). In the first step, we start with 5 hidden nodes and then 

given the prescribed characteristics of the network (𝛼𝑐 in Eq. 4.1) we use the training 

dataset to train the network for the calibration period to find a set of weights that satisfy a 

desired response relative to the target. In the next steps we add hidden nodes one at a time 

and each time we re-train the network. The number of the hidden nodes varies from 5 to 

35. To evaluate the performance of the network with different hidden nodes, we calculate 

the mean squared error and correlation between the estimated ANN outputs and 

corresponding observations for both calibration and validation as:   

- Mean squared error (𝑀𝑆𝐸): Expected value of the squared error between targets 

(𝑇𝑎𝑟) and estimated outputs (𝑂) as          

                                                            𝑀𝑆𝐸 = 𝐸[(𝑇𝑎𝑟 − 𝑂)2]                                           (4.4) 

where 𝐸(∙) denotes the expectation operator. 
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- Pearson correlation coefficient (𝜌): Linear correlation between 𝑇𝑎𝑟 and 𝑂 as          

                 

                                             𝜌 =
𝐸[(𝑇𝑎𝑟−𝐸[𝑇𝑎𝑟])(𝑂−𝐸[𝑂])] 

√𝐸[(𝑇𝑎𝑟−𝐸[𝑇𝑎𝑟])2] 𝐸[(𝑂−𝐸[𝑂])2]
                                       (4.5) 

 

 

Figure 4.3 compares the performance of the ANN with different hidden nodes. 

   

Figure 4.3. Performance of the ANN for different number of the hidden nodes, ℎ𝑛. (a) The 

mean squared error, MSE and (b) correlation of the ANN outputs with the targets, 𝜌. The 

blue bars show the statistics for the calibration (March 1970-1988) and red bars denote the 

results for the validation (March 1989-2008) at location P. The blue solid and red dashed 

lines denote the statistics between the input (original temperature) and target values for the 

calibration (Cal) and validation (Val), respectively.  

 

 

The horizontal lines in Figure 4.3 correspond to the MSE and correlation between 

original input temperature (CCSM) and target values (solid lines for the calibration and 

dashed lines for the validation). Clearly, the bars below the lines in Figure 4.3a and above 

the lines in Figure 4.3b show the ranges of the hidden nodes that improve the results in 

the MSE and correlation sense, respectively. As we can see, although the network with 5 
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to 25 hidden nodes can reduce MSE, 5 and 10 hidden nodes result in a lowest MSE. 

When the number of hidden nodes exceeds 25, the MSE is not improved by the network 

(see Figure 4.3a). For the selected number of hidden nodes, the network can improve the 

correlation as all of the bars are above the reference lines. The highest correlation is 

obtained using 5, 10, and 15 hidden nodes (see Figure 4.3b). The above results indicate 

that ANNs with 5 and 10 hidden nodes perform well both in terms of the MSE and 

correlation. Although the trained network with a few number of hidden nodes (e.g., ℎ𝑛 = 

5) can improve the MSE and correlation structure of the temperature (see Figure 4.3), it is 

observed that the outputs may be an overly smooth representation of the underlying 

process with reduced variability. To assure that the ANN outputs preserve sufficient 

variability of the temperature time series and the results are not overly smooth, we use 

signal-to-noise ratio (𝑆𝑁𝑅) metric as 

                                                              𝑆𝑁𝑅 =
𝜎𝑇

|𝜎𝑇−𝜎𝑂|
                                                        (4.6) 

where 𝜎𝑂 and 𝜎𝑇 are standard deviations of the ANN outputs and targets, respectively. 

Clearly, higher values of the presented 𝑆𝑁𝑅 metric denote that the target standard 

deviation is better preserved by the network outputs. It is seen that increasing the number 

of hidden nodes increases the standard deviation of the network outputs. The results of 

the obtained 𝑆𝑁𝑅 for different number of hidden nodes are shown in Figure 4.4, which 

implies that ℎ𝑛 =10 yields the best 𝑆𝑁𝑅. 

 

Figure 4.4. Signal-to-noise ratio (𝑆𝑁𝑅) for different hidden nodes, ℎ𝑛. The blue circles 

denote the calibration period (March 1970-1988) and the red crosses denote the validation 

period (March 1989-2008) at location P.  
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A close scrutiny of Figure 4.3 reveals that the ANN with 5 and 10 hidden nodes leads to 

low MSE and good correlation. We also see in this figure that the correlation is not very 

sensitive to the number of hidden nodes. Figure 4.4 leads to the conclusion that the ANN 

with 10 hidden nodes can preserve well the standard deviation of the target compared to 

other selected number of hidden nodes. Thus, we select ℎ𝑛 = 10 for which the MSE is 

sufficiently small, while correlation and signal-to-noise ratio are near their maximum 

positions.  

 As previously mentioned, in all of the above calculations we set the learning 

rate  휂 = 0.01. This parameter determines the step size in the steepest descent 

optimization algorithm for obtaining the optimal weights of the network. A small 

learning rate slows down the training process and a large learning rate may cause the 

network to oscillate around the optimal solution. Figure 4.5 compares the mean squared 

error and correlation of the ANN outputs with different learning rates for ℎ𝑛 = 10.  

 

  

Figure 4.5. Same as Fig. 4.3 but for different learning rates, 휂. 
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As we can see, the network with different ranges of learning rate (in particular smaller 

than 0.01) can improve the results in terms of both MSE (bars are below the reference 

lines in Fig. 4.5a) and correlation metrics (bars are above the reference lines in Fig. 4.5b). 

This can indicate that the learning rate 휂 = 0.01 would be a reasonable choice in our 

study.  

 The performance of the proposed ANN with ℎ𝑛 = 10 and 휂 = 0.01 is illustrated 

through scatter plots in Figure 4.6 at location P. 

 

 

Figure 4.6. Target vs input temperature before bias correction (the red crosses) and target vs 

ANN output temperature (the blue circles) at location P for the (a) calibration (March 1970-

1988) and (b) validation (March 1989-2008). 

 

Figure 4.6 shows that the ANN temperature is in close agreement with the target ones. 

The correlations between the MFD and CCSM temperatures before bias correction 

(target-input) are 0.52 and 0.50, while these values are improved to 0.76 and 0.75 by the 

ANN model in the calibration and validation periods, respectively. The results indicate 

that the trained network noticeably increases the original correlations and improves 

estimates of air temperature. To shed more light on the performance of the ANN 
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approach in a distribution sense, the cumulative distribution function (CDF) of the MFD 

(target) and ANN (output) temperature values are illustrated in Figure 4.7 at location P.  

 

Figure 4.7. CDFs of temperature at location P for the (a) calibration (March 1970-1988) and 

(b) validation (March 1989-2008). Red solid and green dashed lines denote targets and ANN 

outputs, respectively.  

 

It is evident from Figure 4.7 that the ANN outputs can preserve the probabilistic structure 

of target temperatures and the CDF of the ANN outputs follow the CDF of the target 

closely. As we explained in Chapter 2, the CDF and EDCDF methods are the main 

quantile-based mapping approaches, which are widely used for bias correction of the 

variables. Below we compare the performance of the CDF, EDCDF, and regression 

approaches (linear regression LR and nonlinear regression ANN) to correct the biases of 

the CCSM temperature. To evaluate the performance, the following statistical metrics are 

used: 

I. MSE (see Eq. 4.4) 

II. Bias: Expected value of the absolute error between 𝑇𝑎𝑟 and 𝑂 as      

                                            𝐵𝑖𝑎𝑠 = 𝐸[|𝑇𝑎𝑟 − 𝑂|],                                             (4.7)                                                   

III. 𝜌 (see Eq. 4.5) 

IV. Kolmogorov-Smirnov test (𝐾𝑆): is a measure of differences between the 

cumulative distribution functions CDF, which determines the capability of an 
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estimated distribution to approximate a target distribution. The smaller the values 

of 𝐾𝑆 the closer are the CDFs.  

Table 4.1. compares the performance of the CDF, EDCDF, LR and ANN approaches at 

location P. 

 
Table 4.1. Performance of the CDF, EDCDF, LR, and ANN in terms of the mean squared 

error (MSE), Bias, correlation (𝜌), and Kolmogorov-Smirnov test (𝐾𝑆) for the calibration, 

Cal (March 1970-1988) and validation, Val (March 1989-2008) at location P. “In” refers to 

the input temperature before bias correction.  

 

T MSE Bias 𝝆 𝑲𝑺 

Cal Val Cal Val Cal Val Cal Val 

In 8.59 9.77 2.30 2.40 0.52 0.50 0.17 0.19 

CDF 5.31 5.56 1.85 1.88 0.50 0.49 0.004 0.03 

EDCDF  5.25 5.95 1.84 1.93 0.50 0.48 0.005 0.02 

LR 3.67 4.01 1.52 1.60 0.70 0.70 0.04 0.05 

ANN 2.58 2.82 1.24 1.33 0.76 0.75 0.032 0.03 

 

 

The regression methods (LR and ANN) can decrease MSE and Bias more than the 

distribution-based methods in both calibration and validation periods. The nonlinear 

regression method (ANN) outperforms linear regression in improving MSE/Bias and also 

correlation. The ANN improves the MSE by 70% and 71% and increases the original 

correlation by 46% and 50% for the calibration and validation periods, respectively. In 

comparison the improvements in the MSE from the LR are 57% and 59% and the 

improvements of the correlation are 35% and 40% in the calibration and the validation, 

respectively. The results show that the distribution-based methods are not able to improve 

the correlation of the temperature time series. To quantify the difference between the 

estimates in a distribution sense, the 𝐾𝑆 is provided on the last column of Table 4.1. The 

smaller 𝐾𝑆 obtained from CDF and EDCDF methods indicate that estimates resulting 
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from those methods are closer to the distribution of the target values. The CDF and 

EDCDF methods are, after all, based on the mapping of the distribution of the variables 

onto the observed ones at each quantile. However while the quantile-based mapping 

methods outperform the regression models in the sense of 𝐾𝑆 for the calibration period, 

𝐾𝑆 is similar for all methods in the validation period. The closeness of the improvements 

in the calibration and the validation periods by the regression methods indicates that the 

trained model has the generalization capability to perform well in the validation period 

and hence is more desirable than the CDF and EDCDF methods. 

 

 Up to this point, we have shown that the regression models are able to reduce the 

biases of model temperature and improve the structure of the data. Now, the linear 

regression (LR) and the developed ANN (Fig. 4.1) is trained and tested pixel by pixel for 

the entire domain extending from 80°W to 35°W (longitude) and from 23°S to 12°N 

(latitude) (see Figure 4.2). The 6-hourly CCSM data (inputs) and MFD temperature 

(target) from 1970 to 2008 are divided into two separate datasets for each individual 

month: 1970-1988 as a training period (calibration) and 1989-2008 as a testing period 

(validation). For a complete assessment of the regression models’ performance, we 

calculate the percent improvement (Imp) of each statistic as 

                                                             𝐼𝑚𝑝𝐴 =
(𝐴𝑜𝑟𝑖𝑔−𝐴𝑜𝑢𝑡)

𝐴𝑜𝑟𝑖𝑔
                                                (4-8) 

where 𝐴 refers to the statistics (either MSE, Bias, 𝜌, or 𝐾𝑆). 𝐴𝑜𝑟𝑖𝑔 denotes statistics of  the 

original CCSM temperature relative to the observations and 𝐴𝑜𝑢𝑡 denotes statistics of the 

regression models outputs (LR and ANN) relative to the observations. 

 

 Figures 4.8 to 4.24 show the statistics MSE, Bias, 𝜌, and 𝐾𝑆 resulting from the  

LR and ANN models during the validation period (1989-2008). The corresponding 

figures for the calibration period (1970-1988) are provided in Appendix C.  



 67 

 

Figure 4.8. From top-to-bottom: Improvements of the MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) by the linear (LR) and nonlinear (ANN) methods for the validation 

(Jan 1989-2008). 

 

Figure 4.8 shows that the regression models can reduce the mean square error and the 

biases for the month of January. The most significant improvements in MSE by both 

models, LR and ANN, (shown with the red color in the first row in Fig. 4.8) occur over 
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areas of the domain where CCSM3 fails to simulate temperature well. Indeed, errors in 

the CCSM3 temperature over those areas are high, and can be improved by the regression 

models well. The correlation of the estimated field with the targets is improved by the 

regression models in particular by the ANN (see over the southeast of the study domain 

in the third row in Fig. 4.8). The blue color over the northern and western parts of the 

domain, in the third row of the figure, shows the area with high original correlation (on 

average 0.75). The LR and particularly ANN are able to improve even those high 

correlations. The 𝐾𝑆  is improved considerably by the ANN. The better performance of 

the ANN over some areas such as the southeast of Brazil is evident (see the polygon 

bounded by the black line in Fig. 4.8). Figure 4.9 compares the improvements of MSE, 

Bias, ρ, and 𝐾𝑆 by LR and ANN over the southeast of Brazil (the polygon in Figure 4.8).  

 

 

Figure 4.9. Same as Fig. 4.8 but for the region bounded by the black box in Fig. 4.8. 

 

The average improvements of the MSE, Bias, 𝜌, and 𝐾𝑆 over this part of domain by LR 

are 47%, 26%, 31%, and 44%, respectively and the corresponding ones by the ANN are 

61%, 37%, 55%, and 55%, respectively. The results indicate that although the LR and 

ANN improve the results, the ANN generally outperforms the LR in all statistics.  
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Figure 4.10. Same as Fig. 4.8 but for February. 

 

The same pattern of improvements in statistics is observed over the month of February. 

The ANN outperforms the LR particularly in terms of  𝜌 and 𝐾𝑆 statistics. The similarity 

of improvements in both calibration (shown in Appendix C) and validation periods 

indicate that the trained ANN has generalization capability.  
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Figure 4.11. Same as Fig. 4.8 but for March. 

 

 

Figure 4.11 shows that the ANN is consistently better than LR in improving the MSE, 

Bias, 𝜌, and 𝐾𝑆 for most pixels in the study domain during the month of March. The 

results show that the regression methods, in particular ANN, can increase the correlation 

of temperature even when the original correlation is low. 
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 Figure 4.12 shows the original MSE, Bias, 𝜌, and 𝐾𝑆 (between biased temperature 

and the target) during the month of April. CCSM3 simulates temperature poorly over the 

west coast, southern, and northern parts of the domain during April (see Figure 4.12).  

 

 

Figure 4.12. From left-to-right: The MSE, Bias, 𝜌, and 𝐾𝑆 between the target and the input 

temperature before bias correction in month April. 

 

 

The large error of temperature is remarkably improved by the ANN for the month of 

April (Fig. 4.13). The regression models can improve the MSE and Bias over the west 

coast and the northern part of the domain more than over the south. This can be due to the 

fact that the original correlation of the input temperature with the target (third column in 

Fig. 4.12) is higher over the western and the northern parts of the domain than over the 

southern parts. Since the ANN is a data driven approach, a high correlation between 

inputs and targets is an important factor to construct a proper relationship between the 

input-output. It is clear that the ANN is able to decrease the 𝐾𝑆 over almost all pixels 

considerably. Note that the ANN outperforms LR over the entire domain. 
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Figure 4.13. Same as Fig. 4.8 but for April. 
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Figure 4.14. Same as Fig. 4.8 but for May. 

 

 

Similarly to the month of April, the large errors are remarkably reduced by the regression 

models all over the domain during the month of May. The average domain improvements 

of the MSE, Bias, 𝜌, and 𝐾𝑆 by the LR are 73%, 48%, 11%, 70%, respectively and by the 

ANN are 78%, 54%, 20%, 78%, respectively.  
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Figure 4.15. Same as Fig. 4.8 but for June. 

 

 

Figure 4.15 shows that the regression models can reduce high errors over the west coast 

and center of the domain for the month of June (regions are covered by the red color in 

the first row). The smaller error over the east coast and northern of the domain can be 

also improved by the regression models. The lower original correlations over the 
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southern part of the domain are increased considerably by the regression model, in 

particular by the ANN.  

 Figure 4.16 shows the original MSE, Bias, 𝜌, and 𝐾𝑆 (between biased temperature 

and the target) during the month of July. The larger original error occurs over the western 

and southern part of the study domain. Most parts of the domain have large original 𝜌 and 

the smaller original 𝜌 is over the southern part of the domain.  

 

 

Figure 4.16. Same as Fig. 4.12 but for month July. 

 

Figure 4.17 shows the improvements of the statistics by the regression models in month 

of July. The pattern of improvements of MSE is similar to the pattern of original MSE. In 

other words, the most significant improvements of MSE occur over the regions where the 

original MSE is high (western part of the domain, see Fig. 4.16). Also there is a similarity 

between the pattern of improvements in 𝜌 and original correlation. Indeed, the most 

significant improvements of 𝜌 occur over the regions where the original 𝜌 is small (see 

the light blue on the southern part of the domain in the third column of Fig. 4.16 and the 

red color in the third row of Fig. 4.17). The smaller original correlation over the south 

than the western part of the domain leads to smaller improvements of the MSE by the 

regression methods over the south. This can indicate that the regression models show 

better performance in improving the error over the pixels that have higher original 

correlation (covered with the red color in the third column of Fig. 4.16) and in general a 

higher original correlation between the input-target leads to a better performance of the 

regression models in improving the errors. 
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Figure 4.17. Same as Fig. 4.8 but for July. 
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Figure 4.18. Same as Fig. 4.8 but for August. 

 

 

The pattern of improvements during August and July is similar, which can indicate that 

the skill of CCSM3 to simulate temperature depends of the validity of the schemes and 

parameterizations used in each season and location. Large errors over the majority of the 

domain require bias correction for the climate models outputs (CCSM3). The results 

show that the regression methods have ability to improve the results in terms of the MSE, 

Bias, 𝜌, and 𝐾𝑆.  
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Figure 4.19. Same as Fig. 4.8 but for September. 

 

 

The maximum domain average of the MSE and Bias occurs during September (24.64𝐾2 

and 3.68𝐾, respectively). Accordingly this month has the highest domain average 

improvements of the MSE, Bias, and 𝐾𝑆 by the LR and ANN among all months. The 

overall domain average improvements of the MSE, Bias, and 𝐾𝑆 by the LR are 74%, 
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51%, and 70%, respectively and the corresponding improvements by the ANN are 81%, 

58%, and 78% in month September. 

 Figure 4.20 illustrates the original MSE, Bias, 𝜌, and 𝐾𝑆 (between biased 

temperature and the target) during October. The figure shows that the patterns of the 

original MSE, Bias, 𝜌, and 𝐾𝑆 are quite similar in October. In other words, the regions 

with large errors have large 𝐾𝑆 and small 𝜌 and vice versa.  

 

Figure 4.20. Same as Fig. 4.12 but for month October. 

 

 

The large MSE, Bias, and 𝐾𝑆 are considerably improved by the regression models for the 

month of October (see Fig. 4.21). Furthermore, the models, in particular the ANN, are 

able to increase the correlation of temperature. The overall domain average of 

improvements of MSE, Bias, 𝜌, and 𝐾𝑆 by the LR are 73%, 50%, 22%, and 68%, 

respectively and the corresponding improvements by the ANN are 79%, 56%, 33%, and 

77% respectively. Although the performance of the LR seems comparable with the ANN, 

the ANN clearly does better over some parts of the study domain (see polygon bounded 

by the black line in Fig. 4.21). For the region bounded by the black polygon over the 

eastern of Brazil, the LR improves the MSE, Bias, 𝜌, and 𝐾𝑆 by 54%, 33%, 42%, and 

52% on average, respectively while the ANN improves them by 70%, 46%, 56%, and 

69%, respectively.  
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Figure 4.21. Same as Fig. 4.8 but for October. 

 

 

Thus, the results indicate that the ANN model can be trained during the calibration period 

by the input-target set better than the LR model.  
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Figure 4.22 Same as Fig. 4.8 but for November. 

 

 

The highest domain average improvement of the 𝜌 by the LR and ANN occurs during the 

month of November (33% and 46%, respectively). The better performance of the ANN is 

obvious almost all over the study domain. The range of improvements in all statistics for 

both models is similar in the calibration (shown in Appendix C) and the validation 

periods, which indicates the robustness of the models.  
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 Figure 4.23 shows the original MSE, Bias, 𝜌, and 𝐾𝑆 (between biased temperature 

and the target) during December. Although the regression models improve all statistics, 

ANN shows better performance than LR (see Fig. 4.24). 

 

Figure 4.23. Same as Fig. 4.12 but for month December. 

 

Figure 4.24. Same as Fig. 4.8 but for December. 
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A close scrutiny of Figures 4.23 and 4.24 indicates that when the original MSE (between 

biased temperature and the target) is large and the original correlation is also high, the LR 

has a comparable performance with the ANN (see red color in the first row in Fig. 4.24). 

While the ANN outperforms the LR over the regions that the original correlation is low 

(e.g., see the eastern part of the domain). The ANN is able to construct a reliable 

relationship between the input-output even for the pixels that have low original 

correlation.  

 

 The LR and ANN models are able to improve not only the error of temperature 

but also the correlation of temperature time series. They also can improve temperature in 

term of  𝐾𝑆. In general, ANN is the best in improving the statistics for all months. Table 

4.2 summarizes the overall domain average percent improvements of the statistics by the 

LR and ANN in both calibration and validation periods for all months. 
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Table 4.2. Domain average percent improvements of MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) for calibration, Cal (1970-1988) and validation, Val (1989-2008).  

Month ImpMSE ImpBias Imp𝝆 Imp𝑲𝑺 

Cal Val Cal Val Cal Val Cal Val 

Jan 

 

LR 66 64 41 39 21 23 60 51 

ANN 73 70 47 45 30 32 73 67 

Feb 

 

LR 70 69 45 44 21 20 67 60 

ANN 77 76 52 51 31 29 77 73 

March 

 

LR 66 66 41 41 15 16 68 57 

ANN 76 76 51 51 28 29 78 70 

April 

 

LR 72 68 47 44 17 17 71 60 

ANN 79 77 55 53 26 27 81 73 

May 

 

LR 74 73 49 48 13 11 78 70 

ANN 79 78 55 54 22 20 84 78 

June 

 

LR 73 72 49 49 17 16 78 67 

ANN 81 80 57 56 27 27 84 75 

July 

 

LR 75 72 52 49 16 15 76 64 

ANN 81 79 59 56 24 23 83 74 

Aug 

 

LR 75 73 53 50 19 19 78 64 

ANN 81 78 59 56 25 25 85 75 

Sep 

 

LR 76 74 53 51 30 27 77 70 

ANN 84 81 61 58 38 33 83 78 

Oct 

 

LR 77 73 53 50 25 22 76 68 

ANN 83 79 60 56 37 33 82 77 

Nov 

 

LR 67 64 43 41 33 33 63 53 

ANN 77 73 52 50 46 46 74 68 

Dec 

 

LR 64 59 39 35 24 21 56 47 

ANN 73 69 48 44 36 33 74 68 
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 We also look at the correlation length in both S-N and W-E directions, centered at 

latitude = 6.3°S and longitude = 60.47°W (see Figs. 4.25, 4.26).  

 

Figure 4.25. The correlation in the S-N direction, centered at latitude = 6.3°S and longitude = 

60.47°W for the validation (1989-2008). 𝑟 is spatial correlation. Blue dashed lines refer to 

CCSM, red solid lines refer to target, green dash-dot lines with circle markers refer to ANN 

outputs, and the cyan dotted line with triangle markers refer to LR outputs.    
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Figure 4.26. Same as Fig. 4.25 but for the W-E direction. 

 

Results show a close agreement between the regression model outputs (LR and ANN) 

and targets. This can confirm that however the regression models correct the biases of 

temperature pixel by pixel, the spatial correlation of bias-corrected temperature can be 

conserved in the study domain.  
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4.3.2. Precipitation  

 The direct bias correction of precipitation at fine scale (e.g., 6-hour) is not feasible 

because there are many zero values (dry hours) that makes it difficult for ANN to 

construct a proper relationship between the input-output. Many studies have corrected 

biased precipitation values at a monthly scale (Chen et al., 2013; Teutschbein and Seibert, 

2012; Berg et al., 2003, among many others). To correct the biases of precipitation, we 

use seasonal historical CCSM precipitation (input to the ANN) and CRU precipitation 

(ANN target) from 1901 to 2013. The training set (the CCSM and CRU precipitation) is 

divided into two independent periods to check the validity of the trained network: 

 

I) 1901-1956 as a calibration period, used to train the network. 

II) 1957-2013 as a validation period, used to study the performance of the trained 

network. 

 In Section 4.2, we determined an appropriate training set, architecture, and the 

training algorithm of the network for the purpose of bias correction of precipitation 

values. Figure 4.27 shows a schematic diagram of the proposed ANN to reproduce bias-

corrected precipitation.  
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Figure 4.27. The proposed feedforward network (FNN). The inputs of the network are: 

current precipitation (𝑃𝑡), one time lag precipitation (𝑃𝑡−1), two time lag precipitation (𝑃𝑡−2), 

three time lag precipitation (𝑃𝑡−3), and the standard deviation of precipitation from the 3 by 3 

neighboring pixels (𝜎𝑡
3𝑏𝑦3

) at the current time; while the output is the current bias-corrected 

precipitation (𝑃𝐵𝐶𝑡). 𝑤𝑘𝑖 and 𝑤𝑗𝑘 denote the weights connecting the input layer (i) to the 

hidden layer (k) to the output layer (j), respectively.  
 

 

Following we discuss the selection of the number of hidden nodes and the learning rate 

required to train the network. The detailed description of the procedure is provided for 

location P (red circle in Fig. 4.2) for the season MAM (March, April, May). For 

temperature, we showed that the performance of the developed network was not very 

sensitive to different values of 휂 and 휂 = 0.01 was a good choice in the network. 

Therefore, here in the first step we fix 휂 at 0.01, we start with 5 hidden nodes and we 

train the network. In the next steps, we add hidden nodes one at a time and re-train the 

network. The number of hidden nodes varies from 5 to 11. The performance of the 

network using different hidden nodes is shown in Figure 4.28, using MSE and 𝜌 of the 

results for the calibration and the validation periods.       
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Figure 4.28. Performance of the ANN for different number of the hidden nodes, ℎ𝑛. (a) The 

mean squared error, MSE and (b) correlation of the ANN outputs with the targets, 𝜌. The 

blue bars show the statistics for the calibration (MAM 1901-1956) and the red bars denote 

the results for the validation (MAM 1957-2013) at location P. The blue solid and red dashed 

lines denote the statistics between the input (original precipitation) and target values for the 

calibration (Cal) and validation (Val), respectively.  
 

 

The bars below and above the horizontal lines in Figure 4.28a and 4.28b show the range 

of hidden nodes that are able to improve the original MSE and correlation between the 

CCSM and observed precipitation, respectively (the solid line refers to the calibration 

period and the dashed line refers to the validation period). As we can see all hidden nodes 

are able to reduce the original MSE and increase the correlation, while the network with 8 

hidden nodes leads to the smallest MSE and the highest correlation in both calibration 

and validation. A close scrutiny of Figure 4.28 reveals that the performance of the 

network in the calibration and the validation periods is close when we use a fewer 

number of hidden nodes. In addition, larger number of hidden nodes increases complexity 

of the model, computational time, and memory usage in the process of weight 

optimization. Thus, the optimal network is the one that performs well with a fewer 
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number of hidden nodes. For this study, the results indicate that 8 nodes are the minimum 

number of hidden nodes that the network needs to get the smallest MSE and the highest 

correlation for both calibration and validation periods. To assure that the network with 8 

hidden nodes does not reduce the temporal variability of precipitation, we compare 

the 𝑆𝑁𝑅 of the ANN outputs using different number of hidden nodes (Fig. 4.29).   

 

   
Figure 4.29. Signal-to-noise ratio (SNR) for different hidden nodes, ℎ𝑛. The blue circles 

denote the calibration period (MAM 1901-1956) and the red crosses denote the validation 

period (MAM 1957-2013) at location P.  

 

 

The results of the obtained 𝑆𝑁𝑅 for different number of hidden nodes illustrate that 8 

hidden nodes lead to a higher 𝑆𝑁𝑅 than 5, 6, or 7 nodes. On the other hand, the temporal 

variability of the outputs is not very sensitivity to the number of hidden nodes when the 

number of nodes exceeds 7, particularly for the validation period. In summary, we set 

휂 = 0.01 and we select ℎ𝑛 = 8 for which the MSE and correlation are in their minimal 

and maximal positions, respectively. Now we study the sensitivity of the network using 

different learning rates. Figure 4.30 compares the mean squared error and correlation of 

the ANN outputs (ℎ𝑛 = 8) for different learning rates.  
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Figure 4.30. Same as Fig. 4.28 but for different learning rates, 휂. 

 

 

As we can see, the performance of the network is not very sensitive to the learning rate 

since the network with different ranges of learning rates can improve the results in both 

terms of the MSE (bars are below the reference lines in Figure 4.30a) and correlation 

metrics (bars are above the reference lines in Figure 4.30b). On closer inspection of the 

figure, the MSE is larger for the learning rate smaller than 0.01 and 휂 = 0.01 leads to the 

smallest MSE. To this end, we use 휂 = 0.01 as the best choice to train the network. 

 

 We conclude that 휂 = 0.01 and ℎ𝑛 = 8 are reasonable choices for our network to 

reduce the biases of precipitation values. The performance of the developed model is 

illustrated through scatter plots in Figure 4.31 at location P. 
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Figure 4.31. Target vs input precipitation before bias correction (the red crosses) and target 

vs ANN output precipitation (the blue circles) at location P for the (a) calibration (MAM 

1901-1956) and (b) validation (MAM 1956-2013).  
 

Figure 4.31 shows a close agreement between the ANN output precipitation and targets. 

The correlations between the CRU and CCSM precipitation before bias correction 

(target-input) are 0.56 and 0.46, while these values are improved to 0.76 and 0.66 by the 

ANN model in the calibration and validation periods, respectively. The results indicate 

that the ANN improves estimates of precipitation. Figure 4.32 illustrates the performance 

of the ANN approach in a distribution sense. 

 
Figure 4.32. CDFs of precipitation at location P for the (a) calibration (MAM 1901-1956) 

and (b) validation (MAM 1957-2013). Red solid and green dotted lines denote targets and 

ANN outputs, respectively.  
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The CDF plot shows that although the ANN does not include any distribution mapping 

technique, it can preserve the probabilistic structure of the target; the CDF of the ANN 

outputs follows the CDF of the target closely. For a complete assessment of the ANN 

model, we use linear regression model and the most widely used distribution-based 

approaches such as the CDF and EDCDF methods to correct the biases of the CCSM 

precipitation at location P. A full statistical comparison between all of these methods is 

presented in Table 4.3. 

 

Table 4.3. Performance of the CDF, EDCDF, LR, and ANN in terms of the mean squared 

error (MSE), Bias, correlation (𝜌), and Kolmogorov-Smirnov test (𝐾𝑆) for the calibration, 

Cal (MAM 1901-1956) and validation, Val (MAM 1957-2013) at location P. “In” refers to 

the input precipitation before bias correction.  

 

P MSE Bias 𝝆 𝑲𝑺 

Cal Val Cal Val Cal Val Cal Val 

In 6609 7652 55 56 0.56 0.46 0.24 0.27 

CDF 7459 8532 54.97 58.28 0.51 0.40 0.06 0.09 

EDCDF  7337 8695 54.53 57.99 0.51 0.40 0.05 0.07 

LR 4130 4910 42.17 43.54 0.67 0.54 0.12 0.12 

ANN 3166 3711 36.09 37.65 0.76 0.66 0.10 0.12 

 

 

The results in Table 4.3 indicate that the regression methods, in particular ANN, can 

decrease the MSE/Bias and increase correlation considerably. The ANN improves the 

MSE by 52% and 51%, while it increases the original correlation by 36% and 43% for 

the calibration and validation periods, respectively. The improvements of the MSE by the 

LR are 37% and 36% and the improvements of the correlations are 20% and 17%, for the 

calibration and validation periods, respectively. The distribution-based methods are not 

able to improve the Bias in the validation period nor MSE and correlation in both 

calibration and validation periods. This is due to the fact that the distribution-based 
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approach is based on the mapping of the historical modeled variables onto the observed 

ones at each percentile. Since the modeled value at a certain quantile may not coincide 

with the observed value of that quantile, this mapping approach does not guarantee a 

reduction in the MSE or an increase in the correlation of the results. Although the smaller 

𝐾𝑆 for the CDF and EDCDF methods shows that these methods outperform the 

regression models in a distribution sense for the calibration period, all methods show a 

comparable performance in a distribution sense for the validation period (𝐾𝑆 for all 

methods are close in the validation). As a result, the quantitative measures in Table 4.3 

confirm that the ANN method outperforms the other approaches particularly in the 

validation period. This generalization capability of the network is vital since the main 

objective of the proposed method is to construct a trained network that performs well on 

a new set of inputs. 

 Given that the regression models are able to improve not only precipitation error 

but also correlation and the probabilistic structure of precipitation relative to the target, 

we use the linear regression (LR) and the developed ANN (Fig. 4.27) to reduce the biases 

of precipitation pixel by pixel for the entire domain extending from 80°W to 35°W 

(longitude) and from 23°S to 12°N (latitude) (see Fig. 4.2). The seasonal CCSM 

precipitation (input) and the corresponding CRU precipitation (target) from 1901 to 2013 

are divided into two separate datasets for each season: March, April, May (MAM); June, 

July, August (JJA); September, October, November (SON); December, January, February 

(DJF). Data from 1901-1956 are used to train the model in the calibration period and data 

from 1957-2013 are used to test the performance of the trained model in the validation 

period. The performance of the regression models to improve the statistics of the results 

during the validation period is illustrated in the Figures below. The corresponding figures 

for the calibration periods are provided in Appendix C.    
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 Figure 4.33 illustrates the original MSE, Bias, 𝜌, and 𝐾𝑆 (between biased 

precipitation and the target) in season MAM. The figure indicates that CCSM3 can 

simulate precipitation well over most part of Brazil (smaller MSE and 𝐾𝑆 as well as 

higher correlation). CCSM3 does not perform well over the west coast and the northeast 

of the domain (larger MSE).   

 

Figure 4.33. From left-to-right: The MSE, Bias, 𝜌, and 𝐾𝑆 between target and input 

precipitation before bias correction in season MAM. 

 

 

Figure 4.34 shows improvements of the MSE, Bias, 𝜌, and 𝐾𝑆 by the LR and ANN in 

season MAM. The figure shows that the LR and ANN models are able to improve the 

results for all pixels in the study domain. Smaller improvements of the error or 𝐾𝑆 over 

some regions (shown with the blue color in Fig. 4.34) are due to the fact that the original 

error or 𝐾𝑆 between the input and the target is small (see Fig. 4.33). The original 

correlation over most parts of the domain is high (see red color in Fig. 4.33), but it can 

still be improved by the regression models particularly by ANN. The regression models 

can significantly increase very low correlation (see the red color in the third row in Fig. 

4.34). While the LR shows a comparable performance to the ANN, the ANN yields better 

results in terms of MSE, Bias, 𝜌, and particularly 𝐾𝑆 during season MAM.  
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Figure 4.34. From top-to-bottom: Improvements of the MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) by the linear (LR) and nonlinear (ANN) methods for the validation 

(MAM 1957-2013). 
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 The original MSE, Bias, 𝜌, and 𝐾𝑆 (between biased precipitation and the target) 

in season JJA is shown in Figure 4.35. As we can see, CCSM3 shows a large error in 

precipitation over the northwest of the domain. The correlation is very low almost all 

over the domain. 

 

Figure 4.35. Same as Fig. 4.33 but for JJA. 

 

 

 

All statistics are improved by the LR and the ANN (see Fig. 4.36). The overall domain 

average improvements of the MSE, Bias, and 𝐾𝑆 in season JJA by the LR are 51%, 38%, 

and 35%, respectively and the corresponding improvements by the ANN are 58%, 45%, 

and 49%, respectively. The lowest domain average improvements of the MSE, Bias, and 

𝐾𝑆 occur in this season, JJA. This can be due to the fact that the minimum domain 

average of the original correlation occurs in this season (domain �̅� = 0.16). A high 

correlation between the input and target is an important factor in establishing a proper 

relationship between the input-output. It is clear, though, that the correlation is still 

significantly improved by the LR and ANN all over the domain (see the red color on the 

third row in Fig. 4.36). The domain average improvement of the 𝜌 by the LR and ANN is 

570% and 770%, respectively.  
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Figure 4.36. Same as Fig. 4.34 but for JJA. 
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 Figure 4.37 illustrates the original MSE, Bias, 𝜌, and 𝐾𝑆 (between biased 

precipitation and the target) in season SON. 

 

 

Figure 4.37. Same as Fig. 4.33 but for SON. 

 

 

 

Scrutiny of Figures 4.33, 4.35, and 4.37 demonstrates that in each season the highest 

error occurs over the region that has the maximum rain. This indicates that CCSM3 

underestimates high rates of precipitation, which can be improved by the LR and ANN 

models (see Fig. 4.36). We can see a similar pattern in Figures 4.37 and 4.38, meaning 

that the higher improvements of the MSE, 𝐾𝑆, and 𝜌 occur over the region that has larger 

MSE, 𝐾𝑆, and smaller 𝜌, respectively. Figure 4.38 shows that although the ANN and LR 

have a comparable performance in improving the error in season SON, the ANN 

outperforms the LR in improving 𝜌 and 𝐾𝑆. The LR and ANN are able to improve the 

low original correlation (shown with the blue color in the third column in Fig. 4.37). 

Similar improvements of the statistics in both calibration (see Appendix C) and validation 

periods reveal that the trained model has the ability to perform well when the observation 

is not available.   
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Figure 4.38. Same as Fig. 4.34 but for SON. 
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Figure 4.39. Same as Fig. 4.34 but for DJF. 

 

 

Figure 4.39 shows that the regression models, particularly ANN, improve MSE, Bias, 𝜌, 

and 𝐾𝑆 over the domain during season DJF. The maximum domain average of the 

original MSE and Bias (between input and target precipitation) occurs in season DJF 

(44671𝑚𝑚2 and 161.81𝑚𝑚, respectively). The overall domain average improvements of 

the MSE, Bias, and 𝐾𝑆 by the LR are 67%, 50%, and 39%, respectively and the 
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corresponding improvements by the ANN are 75%, 60%, and 56% for this season. The 

original correlation in this season is low, which can be increased by the regression 

method. The domain average improvement of 𝜌 is 759% and 874% by the LR and ANN, 

respectively. 

 The results indicate that the regression models, particularly ANN, can reduce the 

biases of the CCSM3 precipitation, and improve the precipitation time series in the 

correlation and distribution sense. This improvement is more dominant when the original 

error is large. Table 4.4 summarizes the overall domain average percent improvements of 

the statistics by the LR and ANN models for both calibration and validation periods in all 

seasons. 

 

Table 4.4. Domain average percent improvements of the MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) for calibration, Cal (1901-1956) and validation, Val (1957-2013).  

 

Season ImpMSE ImpBias Imp𝝆 Imp𝑲𝑺 

Cal Val Cal Val Cal Val Cal Val 

MAM 

 

LR 74 66 55 47 121 191 57 44 

ANN 82 75 65 56 155 222 74 61 

JJA 

 

LR 58 51 42 38 341 570 36 35 

ANN 65 58 50 45 511 770 50 49 

SON 

 

LR 74 69 56 51 136 89 54 45 

ANN 80 75 64 59 168 140 69 60 

DJF 

 

LR 76 67 59 50 797 759 56 39 

ANN 83 75 69 60 886 874 72 56 

 

 

 We also look at the correlation length in both S-N and W-E directions, centered at 

latitude = 6.3°S and longitude = 60.47°W (see Figs. 4.40, 4.41). 
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Figure 4.40. The correlation length in the S-N direction, centered at latitude = 6.3°S and 

longitude = 60.47°W for the validation (1957-2013). 𝑟 is spatial correlation. Blue dashed 

lines refer to CCSM, red solid lines refer to target, green dash-dot lines with circle markers 

refer to ANN outputs, and the cyan dotted line with triangle markers refer to LR outputs. 

 

 

Figure 4.41. Same as Fig. 4.40 but for the W-E direction. 
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Results show that the spatial correlation of bias-corrected precipitation can be better 

conserved in the longitude direction than the latitude direction.  

 

4.4. Summary  

 Large errors in temperature and precipitation values over the domain in all 

months/seasons are evident. The overall highest and lowest domain average errors for 

temperature occur in the months of September and December, respectively. In general, 

the skill of CCSM3 in simulating temperature over the west coast, western Brazil, and the 

southern part of the domain is weak in all months. In some months (e.g., Jan., Feb.), large 

errors extend to the north and the southeast of the domain, and in some months (e.g., 

Sep., Oct.) to the center of the domain.  

 The overall highest and the lowest domain average errors for precipitation occur 

in seasons DJF and JJA, respectively. CCSM3 shows a poor performance in simulating 

precipitation over the west coast.  

 A one hidden layer feedforward neural network with hyperbolic tangent-linear 

transfer functions for hidden-output layers was used to reproduce bias-corrected 

temperature and precipitation. Proper sets of inputs including 𝑇, 𝑇𝑆, 𝑄, 𝐿𝑊𝑛, 𝑆𝑊𝑛 and 

𝑃𝑡, 𝑃𝑡−1, 𝑃𝑡−2, 𝑃𝑡−3, 𝜎𝑡
3𝑏𝑦3

 were used as inputs to the neural networks for the bias correction 

of temperature and precipitation, respectively. Including the standard deviation of 

precipitation from 3 by 3 neighbors around the pixel of interest (𝜎𝑡
3𝑏𝑦3

) as the input can 

improve the magnitude of the precipitation error. It can also adjust the variance of 

precipitation at each pixel relative to the neighbors. Note that we also tried lag-time 

temperature, mean, and standard deviation of temperature from 3 by 3 neighbors around 

the calculation pixel as the inputs to the network. But the best performance of the 

network was achieved using 𝑇, 𝑇𝑆, 𝑄, 𝐿𝑊𝑛, 𝑆𝑊𝑛 as the inputs. This can be due to the fact 

that precipitation is more variable than temperature in time and space.  
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 We compared the ANN results with the LR ones. The results showed that both 

regression models (LR and ANN) have the ability to improve the results in all terms of 

MSE, Bias, 𝜌, and 𝐾𝑆 not only in the calibration period but also in the validation period. 

Good performance of a model in the validation period indicates that the trained model 

can be generalized to an unseen dataset. ANN performs consistently better than LR in 

correcting the biases of temperature and precipitation and specifically in improving 𝜌 and 

𝐾𝑆. The time-domain average improvements of the MSE, Bias, 𝜌, and 𝐾𝑆 for temperature 

are 76.33%, 52.5%, 29.75%, and 73% by the ANN, respectively and 68.92%, 45.08%, 

20%, and 60.92% by the LR, respectively. The time-domain average improvements of the 

MSE, Bias, and 𝐾𝑆 for precipitation are 70.75%, 55%, and 56.5%, by the ANN, 

respectively and 63.25%, 46.5%, 40.75% by the LR, respectively.  

 The two regression models are able to increase performance even when original 

correlation of precipitation with the target was very small, which is not possible by the 

quantile-based mapping approach. Note that unlike the quantile-based mapping approach, 

the regression models do not directly take into account any specific information about the 

distribution of the underlying variables and they focus on improving lump error metrics. 

Although the distribution mapping approach generally outperforms the regression model 

in the distribution sense for the calibration period, their performance in the distribution 

sense are comparable to the regression method for the validation period (see Tables 4.1, 

4.3).   

 The results confirm that the ANN model that is trained in response to the targets 

(observations) during the historical period has capability to generalize for the projection 

time. The trained ANN can improve all statistics such as MSE, Bias, 𝜌, and 𝐾𝑆 for the 

entire period. 

 The biases of temperature and precipitation are corrected independently. Figure 

4.42 shows the cross-correlation between the monthly temperature and precipitation, 
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broken up by the season for the original CCSM, target, LR outputs, and ANN outputs 

during 1970-2008.  

 

 

Figure 4.42. From left-to-right panels: The cross-correlation between the monthly 

temperature and precipitation, broken up by the season for the original CCSM (In), target 

(Tar), LR outputs, and ANN outputs during 1970-2008, respectively.  

 

 

The patterns of the cross-correlation between 𝑇 and 𝑃 in targets and regression model 

outputs are similar, particularly during MAM, JJA, and SON. The difference in the 

patterns is evident during DJF. 
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CHAPTER 5 

REGIONALIZATION OF THE ARTIFICIAL NEURAL NETWORK  

FOR BIAS CORRECTION OF TEMPERATURE AND 

PRECIPITATION  

 

 

 

5.1. Introduction 

 Statistical bias correction methods such as the proposed ANN model are inferred 

relationships between inputs and outputs. They are based on available observations, 

which are limited in time and space. To be useful, the bias correction methods need to be 

generalizable and have predictive ability beyond the set of observations. In Chapter 4, we 

assessed the generalization ability of the ANN model in time (temporal generalization) by 

dividing the datasets into two independent periods (the calibration and validation 

periods). In this case, targets (observations) were available for all pixels in the study 

domain and we corrected the biases pixel by pixel by calibrating the model at each pixel. 

The results revealed that the trained ANN model performs well for both calibration and 

validation periods. A related question is whether the ANN model is useful over locations 

in space where observations are not available. In other words, does the ANN model have 

spatial generalization skill? In this Chapter, we use a regression approach to delineate 

regions over the study domain (see Fig. 4.2) that have common error behaviour and hence 

biases could be corrected with a regional model calibrated at a certain number of the 

pixels (training pixels).  
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5.2. Delineation of the Study Domain  

 The performance of CCSM3 in simulating temperature and precipitation varies 

with different physical features of the regions (e.g., topography, land cover, and 

climatology over the domain). The climate model could show similar systematic errors 

over “homogeneous” regions, i.e., regions with similar features. To correct the biases of 

the variables in each region, the ANN model can be trained with a limited number of 

pixels (training pixels) and then applied to the rest of the pixels (validating pixels) in that 

region. In what follows, we identify the pixels (minimum possible number) that are 

representative of larger regions and could be used as training pixels to predict the climate 

response elsewhere in the region. This identification exercise is done using Linear 

Regression (LR) because it has markedly lower computational cost and smoother 

regional behavior than the ANN.  

5.2.1. Temperature 

 The goal of the regionalization is to identify a finite number of calibrations 

(training pixels) that would result in a response sufficiently close to the performance of 

the model calibrated at all domain pixels. Following is a description of how is this 

achieved using the month of March as an example. 

 First, we determine a pixel that has the largest bias in the study domain and, use 

the defined LR model (see section 4.2.1.1) for that pixel to find a proper set of weights. 

Then we use the calibrated LR model over all pixels in the domain (validating pixels) to 

correct the biases of temperature. Differences between the bias-corrected temperature and 

the targets (biases) are calculated at all pixels in the domain so a map of error is 

constructed. In the map, validating pixels that achieve a desired performance are defined 

as improved pixels. Then we find the new maximum bias over the domain and construct a 

relationship between the input-output using the LR model for that pixel (training pixel). 

The established relationship is applied for all pixels in the study domain. As a result, a 
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new error map including improved pixels is generated using the new training pixel. We 

repeat and continue the procedure until all pixels in the domain reach a pre-specified 

performance criterion. Each training pixel has an area of influence where the 

performance goal is achieved. These areas of influence may overlap, which can be 

combined to form one domain (see D1, D2, D3, D4, and D5 in Figure 5.1). In this case, 

the training pixel that performs best is used as the index pixel for the ambiguous areas. 

 Three performance criteria are explored. They are defined as reaching 70%, 80%, 

and 90% performance when using the model based on observations in every pixel (see 

Chapter 4).  So pixels are identified as improved validating pixels when their biases are 

smaller than: 

                                          {

1.3 × 𝐵𝑖𝑎𝑠𝑃𝑏𝑦𝑃                 𝐹𝑜𝑟 70% 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

1.2 × 𝐵𝑖𝑎𝑠𝑃𝑏𝑦𝑃               𝐹𝑜𝑟 80% 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

1.1 × 𝐵𝑖𝑎𝑠𝑃𝑏𝑦𝑃               𝐹𝑜𝑟 90% 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
                  (5.1) 

where 𝐵𝑖𝑎𝑠𝑃𝑏𝑦𝑃 is the bias between the bias-corrected temperature and the target, when 

the biases are corrected pixel by pixel (see Chapter 4). Figures 5.1, 5.2, and 5.3 show the 

delineation of the study domain and the corresponding training pixels for each domain in 

March for 70%, 80%, and 90% performances, respectively.  

 

Figure 5.1. Delineation of the study area into five domains for 70% performance; D1 is over 

the southeast (circle), D2 over the central (cross), D3 over the northeast coast (square), D4 

over the north (diamond), and D5 over the western of the study domain (triangle). Larger 

marker symbols denote training pixels in the delineated domains.  
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Figure 5.2. Same as Fig. 5.1 but for 80% performance. 

 

 

Figure 5.3. Same as Fig. 5.1 but for 90% performance.  

 

 

Locations (latitude and longitude) of the training pixels in the delineated domains (D1, 

D2, D3, D4, D5) for 70%, 80%, and 90% performances are presented in Appendix D. 
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The results indicate that a small number of training pixels in each domain can be used to 

achieve a desired performance of the model to correct the temperature biases in other 

pixels of the domains. The training pixels shown in the figures above can be considered 

as the minimum number of training pixels that are required to get a desired performance 

at the validating pixels (VlP). There are some pixels that cannot reach the desired 

performance using the defined training pixels (TrP). Biases of temperature over those 

pixels are improved when they are selected as the training pixels for themselves 

(hereafter called Independent TrP, IndTrP). The IndTrPs do not have any symbols of 

circle, cross, square, diamond, or triangle (see blank space in Figs. 5.1, 5.2, or 5.3). The 

number of IndTrPs for 70%, 80%, and 90% performances is 39, 46, and 87, respectively. 

The performance of the regionalization in terms of number of training pixels versus 

validating pixels over the study domain for the three levels of performance is further 

illustrated in Figure 5.4.   

 

Figure 5.4. The performance curve. A comparison between the numbers of training pixels 

(No. TrP) vs. validating pixels (No. VlP) over the study domain for 70% (green dash-dot 

line), 80% (red solid line), and 90% (blue dashed line) performances in March.  

 

As we can see, the required number of training pixels to cover the validating pixels is 
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many training pixels as the 80% performance. The number of independent training pixels 

increases noticeably from 80% to 90% performance relative to the increase when going 

from the 70% to 80% performance levels. The results show that the total number of 

training pixels (including IndTrP) required to calibrate the model for bias correction of 

temperature over the entire study domain (600 pixels) is 53, 67, and 125 for 70%, 80%, 

and 90% performance levels, respectively. This indicates that performance can be 

satisfactory using a small number of observations to derive the bias correction models. 

 

 Now that the results in March confirm that the study domain can be delineated 

and a small number of training pixels is sufficient to generalize the model over the 

delineated domains, we assess the model skill for the other months. The desired 

performance level used for the following results is 80%. Figures 5.5 to 5.15 show the 

training pixels in the delineated domains (D1, D2, D3, D4, D5) for all months. Locations 

(latitude and longitude) of the training pixels are provided in Appendix D. 

 

 

Figure 5.5. Same as Fig. 5.2 but for January. 
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 The minimum number of training pixels (excluding IndTrP) needed to validate all 

domain pixels are during March and January (21 training pixels). In January, domains 

D1, D2, D3, D4, and D5 need 2, 2, 3, 4, and 10 training pixels, respectively. The number 

of independent training pixels is 43. The number of training pixels for D1, D2, D3, D4, 

and D5 is 2, 2, 6, 4, and 10, respectively in February (Fig. 5.6). The number of 

independent training pixels is 41 in this month.  

 

Figure 5.6. Same as Fig. 5.2 but for February. 

 

 

Figure 5.7. Same as Fig. 5.2 but for April. 
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 Figure 5.7 shows that D1, D2, D3, D4, and D5 need 2, 2, 3, 4, and 11 training 

pixels, respectively in April. The number of independent training pixels is 46 in this 

month. The figure indicates that fewer numbers of training pixels is required to validate 

more number of pixels in homogeneous domains such as D1 and D2. 

 

 

Figure 5.8. Same as Fig. 5.2 but for May. 

 

 

The maximum number of training pixels (excluding the IndTrP) occurs in May (30 

training pixels) compared to the other months. In other words, more training pixels are 

required to calibrate the model for bias correction of temperature at the validating pixels 

in the delineated domains for the month of May. The required minimum number of 

training pixels in D1, D2, D3, D4, and D5 is 4, 3, 3, 4, and 16, respectively. The number 

of independent training pixels is 52 in this month. The increase in the number of the 

training pixels is more evident in D5, which is a heterogeneous domain. The results can 

indicate that the delineated domains and the density of the corresponding training pixels 

are linked to the physical features of the domains such as land cover and topography. The 

detailed assessment of this interconnection is studied in section 5.3.  

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35

-20

-15

-10

-5

0

5

10

May 

 

 

D1

D2

D3

D4

D5



 115 

 June has the maximum number of independent training pixels (59 IndTrP). In 

other words, the elected training pixels are not able to validate those 59 pixels (Fig. 5.9). 

Thus, the only alternative to correct the temperature values at those pixels is to construct 

a proper relationship between the input-output using observations over those pixels. D1, 

D2, D3, D4, and D5 need 4, 3, 2, 2, and 12 training pixels, respectively.  

 

Figure 5.9. Same as Fig. 5.2 but for June. 

 

 

Figure 5.10. Same as Fig. 5.2 but for July. 
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Figure 5.11. Same as Fig. 5.2 but for August. 

 

 

 The number of training pixels for D1, D2, D3, D4, and D5 in July is 4, 3, 2, 3, and 

14, respectively (Fig. 5.10). The number of independent training pixels is 51 in this 

month. In August, D1, D2, D3, D4, and D5 need 4, 4, 3, 4, and 13 training pixels, 

respectively (Fig. 5.11). The number of independent training pixels is 49 in this month.    

 

 

Figure 5.12. Same as Fig. 5.2 but for September. 
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Figure 5.13. Same as Fig. 5.2 but for October. 
 

 

 The number of training pixels required for D1, D2, D3, D4, and D5 in September 

is 4, 2, 3, 4, and 14 training pixels, respectively with 27 independent training pixels (Fig. 

5.12). A close scrutiny of the figures illustrates that independent training pixels are 

usually at the coast of the study domain, borders of the delineated domains, and D5. A 

complex and strong interaction between the land-ocean-atmosphere over the coast and 

the heterogeneity in D5 are most probably the cause of the increase in the number of 

independent training pixels. In October, D1, D2, D3, D4, and D5 need 4, 2, 3, 3, and 16 

training pixels, respectively (Fig. 5.13). The number of independent training pixels is 46 

in this month.  

 

 Figure 5.14 shows that the number of training pixels required for D1, D2, D3, D4, 

and D5 in November is 4, 3, 3, 4, and 14 training pixels, respectively and 28 independent 

training pixels. 
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Figure 5.14. Same as Fig. 5.2 but for November. 

 

 

Figure 5.15. Same as Fig. 5.2 but for December. 
 

In December, D1, D2, D3, D4, and D5 need 3, 2, 3, 4, and 17 training pixels, respectively 

(Fig. 5.15). As we can see, the high density of the training pixels is in D5, which is 

heterogeneous with higher elevation. The rest of the study domain is almost flat. The 

number of independent training pixels is 36 in this month, which is the minimum number 

compared to those required for the other months. 
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 Table 5.1 summarizes the number of required training pixels to validate all pixels 

in the delineated domains for all months.  

 

Table 5.1. The Number of training (TrP), independent training (IndTrP), and validating (VlP) 

pixels in each delineated domain (D1, D2, D3, D4, D5) for all months. 

 

 Jan Feb Mar Apr May June 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

D1 2 177 2 164 3 190 2 172 4 205 4 175 

D2 2 179 2 186 3 181 2 192 3 158 3 162 

D3 3 23 6 52 3 28 3 24 3 34 2 46 

D4 4 53 4 36 3 40 4 34 4 43 2 38 

D5 10 125 10 121 9 115 11 132 16 108 12 120 

IndTrP 43 41 46 46 52 59 

 July Aug Sep Oct Nov Dec 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

D1 4 186 4 171 4 176 4 180 4 192 3 186 

D2 3 131 4 160 2 134 2 145 3 168 2 149 

D3 2 65 3 61 3 55 3 60 3 28 3 50 

D4 3 46 4 38 4 52 3 43 4 51 4 50 

D5 14 121 13 121 14 130 16 126 14 116 17 129 

IndTrP 51 49 53 46 45 36 

 

 

 The results show that a relatively small number of observations can construct a 

robust model for bias correction of temperature at the other pixels with a good level of 

performance. The monthly average number of training pixels (including IndTrP) required 

to validate the entire study domain (600 pixels) is 73, which is only about 12% of the all 

pixels.  
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5.2.2. Precipitation 

 Similarly to temperature, we evaluate the possible regionalization of the bias 

correction of precipitation. We first examine the number of training pixels needed for 

season MAM under performance criteria of 70%, 80%, and 90% of bias error of the 

pixel-based correction (see Eq. 5.1). Figures 5.16, 5.17, and 5.18 show the training pixels 

for each delineated domain (D1, D2, D3, D4, D5) in MAM for 70%, 80%, and 90% 

performances, respectively.  

 

 

 

Figure 5.16. Training pixels (shown by the larger marker symbols) in the delineated 

domains; D1 (circle), D2 (cross), D3 (square), D4 (diamond), and D5 (triangle) at 70% 

performance during MAM.  
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Figure 5.17. Same as Fig. 5.16 but for 80% performance. 

 

 

 

Figure 5.18. Same as Fig. 5.16 but for 90% performance. 
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 Locations (latitude and longitude) of the training pixels in each delineated domain 

(D1, D2, D3, D4, D5) during MAM for 70%, 80%, and 90% performances are presented 

in Appendix D. The number of IndTrPs for precipitation regionalization during MAM for 

70%, 80%, and 90% performance criteria is 37, 47, and 88, respectively. The results 

show that the regionalization of the model to reduce the precipitation biases at 70%, 80%, 

and 90% levels of performance needs more training pixels than the regionalization model 

for bias correction of temperature. This is consistent with the fact that precipitation is a 

highly complex and nonlinear process with higher variability and uncertainty. Note that 

using a small number of training pixels to correct the biases of precipitation at all domain 

pixels noticeably reduces the computational requirements, time, and memory usage. 

Figure 5.19 shows the number of validating pixels as a function of training pixels and 

performance criteria.  

 

Figure 5.19. Performance curve. A comparison between the numbers of training pixels (No. 

TrP) vs. validating pixels (No. VlP) over the study domain for 70% (green dash-dot line), 

80% (red solid line), and 90% (blue dashed line) performances in MAM.  

 

 The total number of training pixels (including IndTrP) required to establish a 

reliable relationship between the input-output to correct the precipitation biases over the 
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number of good observations is able to satisfactorily regionalize the model (e.g., 11%, 

14%, and 25% of all pixels for 70%, 80%, and 90% performances, respectively). The 

performance curve (Fig. 5.19) illustrates that the number of required training pixels is 

close for performance at 70% and 80% levels while the number rises considerably for a 

90% performance level.  

 A performance level of 80% is used in what follows to define the number of 

training pixels required to regionalize bias correction over the other seasons. Figures 5.20 

to 5.22 show the training pixels for the delineated domains (D1, D2, D3, D4, D5) in all 

seasons. Locations (latitude and longitude) of the training pixels are provided in 

Appendix D. 

 

 

Figure 5.20. Same as Fig. 5.17 but for JJA. 
 

 

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35

-20

-15

-10

-5

0

5

10

JJA 

 

 

D1

D2

D3

D4

D5



 124 

 

Figure 5.21. Same as Fig. 5.17 but for SON. 

 

 Season JJA needs the maximum number of training pixels, including IndTrP (97), 

to achieve the 80% performance at all domain pixels (Fig. 5.20). This can be due to the 

fact that most of the study domain is dry in JJA (with many zero or low values of 

precipitation). As a result, we need more training pixels and corresponding observations 

to construct a robust model. The number of training pixels for D1, D2, D3, D4, and D5 is 

5, 8, 6, 5, and 9, respectively with 64 independent training pixels.  

 In SON, domains of D1, D2, D3, D4, and D5 need 7, 6, 4, 6, and 11 training 

pixels, respectively (Fig. 5.21). The number of independent training pixels is 53 in this 

season. A close scrutiny of the figures shows that the independent training pixels are 

mostly located at the coast of the study domain, borders of the delineated domains, and 

D5, which agrees with the results obtained from the regionalization of the temperature 

bias correction. The delineation and density of the training pixels can be related to the 

physical features of the study domain (such as topography, land cover, and climatology 

over the region), which are studied in the following section.  

 Figure 5.22 shows that DJF needs the minimum number of training pixels 

(including IndTrP) to regionalize the results at the desired performance (73). The 
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required minimum number of training pixels in D1, D2, D3, D4, and D5 is 5, 5, 4, 4, and 

7, respectively. The number of independent training pixels is 48 in this season. 

 

Figure 5.22. Same as Fig. 5.17 but for DJF. 

 

 

 Table 5.2 summarizes the number of required training pixels to validate all pixels 

in the delineated domains for all seasons. The seasonal average number of training pixels 

(including IndTrP) required to validate the entire study domain (600 pixels) is 85, which 

is only about 14% of the all pixels.  

 

Table 5.2. The Number of training (TrP), independent training (IndTrP), and validating (VlP) 

pixels in each delineated domain (D1, D2, D3, D4, D5) for all seasons. 

           

                   

 

MAM JJA SON DJF 
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No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

No. 

TrP 

No. 

VlP 

D1 7 187 5 172 7 184 5 174 

D2 9 167 8 149 6 134 5 157 

D3 5 27 6 55 4 54 4 44 

D4 5 52 5 38 6 53 4 56 

D5 10 120 9 122 11 122 7 121 

IndTrP 47 64 53 48 
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 The results indicate that although the regionalization of the precipitation bias 

correction needs more calibrated pixels than that of temperature, a small number of the 

pixels in the study domain suffices to regionalize the results of bias correction for both 

temperature and precipitation with a prescribed accuracy. Furthermore, the results can 

demonstrate a reliable linkage between the delineation of the domain (density of the 

training pixels) and physical features of the regions, which is evaluated in the following 

section.  

 

5.3. Physical Origins of the Regionalization 

 Here we investigate if the regionalization resulting from the statistical analysis 

can be related to features like land cover type, elevation, and temperature and 

precipitation as indicators for climatology.  

 The land cover data is from the Land Cover Type Climate Modeling Grid (CMG) 

product derived from Terra and Aqua MODIS data (publically available at https://lpdaac.  

usgs.gov/products/modis_products_table/mcd12c1). The product has 17 land cover 

classes, including 11 natural vegetation classes, 3 developed and mosaicked land classes, 

and 3 non-vegetated land classes defined by the International Geosphere Biosphere 

Programme, IGBP (see Fig. 5.23).  
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Figure 5.23. Land cover classifications defined by the IGBP over the study domain.  

 

 

 Temperature and precipitation data are from MFD (see section 1.3.2), which were 

used as targets for bias correction of temperature. The elevation data are obtained from 

30 arc-second Digital Elevation Model (DEM) of South America, provided by the U.S. 

Geological Survey's (USGS) EROS Data Center in Sioux Falls, South Dakota (publically 

available at http://databasin.org/datasets/d8b7e23f724d46c99db1421623fd1b4f). The 

average temperature, total precipitation, and elevation are illustrated in Figures 5.24, 

5.25, and 5.26, respectively.  

 

 

http://databasin.org/datasets/d8b7e23f724d46c99db1421623fd1b4
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Figure 5.24. MFD temperature for the months over the study domain. 
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Figure 5.25. MFD precipitation for the seasons over the study domain. 

 

 

 

Figure 5.26. Elevation (30 arc-second DEM of South America by USGS) over the study 

domain. 
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 Different patterns of weather and climate variability are evident over the study 

domain, which are linked to the land cover, topographic features, and wind-driven 

circulation by the trades over the tropics and the adjacent oceans. The trade winds over 

the tropics, sea surface temperature over the Atlantic Ocean, and El Niño Southern 

Oscillation (ENSO) have strong and profound impacts on the climate and rainfall patterns 

of the study domain. The Andes Mountains along the west coast with average height of 

about 4000m have the coolest temperature in all months. The mountains act as a barrier 

and block the tropospheric flow. This causes a dry climate over the west and moist 

climate over the east side of the mountains. The maximum rainfall usually occurs during 

December to June over the Amazon basin and the driest season during June to August. 

The peak of wet and dry seasons in the central part of the Amazon is DJF and JJA, 

respectively, which is in contrast to the peak of wet (JJA) and dry seasons (DJF) over the 

northern of the study domain (see Fig. 5.25). Convective activity generates large amount 

of rainfall over the basin, the largest rainforest in the world. Precipitation over the east of 

the basin is usually higher than the west side, with maximum rainfall occurring around 

the Amazon River Delta region ARD (mouth of the Amazon River, the northeast of the 

study domain). The boundary effects of the adjacent oceans can lead to large amounts of 

rainfall over the ARD and also over the northern part of the study domain. Examination 

of the delineated domains confirms that the specific physical features in each region 

correspond to the delineated domains as follows: 

 D1 and D2 mostly cover Brazil. D1, over the southeast Brazil (outside the 

Amazon basin), is mostly covered by savannas, and also small patches of deciduous 

broadleaf forest (over the southwest of D1) and sparse grassland. D2, over the majority of 

the Amazon basin in Brazil, is mostly covered by the evergreen broadleaf forest. D2 has 

on average wetter-warmer climate than D1. Similar to D2, the evergreen broadleaf forest 

covers D3. This domain over the ARD region is influenced by the strong interaction of 

the land-atmosphere-ocean system, leading to the large amount of rainfall and vast 
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estuarine wetlands. The different boundary conditions provided by the adjacent oceans, 

the Andes Mountains, and the trade winds affect the climate in D4 over the northern part 

of the study domain. Domains D4 and D5 have various types of land cover. The 

evergreen broadleaf forest, grasslands, savannas, and cropland/natural vegetation are 

found in D4 and evergreen broadleaf forest, deciduous broadleaf forest, grasslands, 

savannas, open shrub lands, cropland/natural vegetation, and barren or sparsely vegetated 

types in D5. D5 covers the west coast and contains the Andes Mountains and a small 

west part of the Amazon basin. This heterogeneous region has on average the driest-

coolest climate.   

 To further explore the physical differences between the delineated domains, we 

also compare the spatial average of the mean and standard deviation of precipitation, 

temperature, and elevation in the five domains (Figs. 5.27 to 5.29). 

 

Figure 5.27. Spatial average of mean and standard deviation of precipitation in the delineated 

domains (D1, D2, D3, D4, D5) and the entire study domain (D). 
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Figure 5.28. Same as Fig. 5.27 but for temperature. 
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Figure 5.29. Same as Fig. 5.27 but for elevation. 

 

 

 As we can see the seasonal cycle of precipitation is evident in the delineated 

domains (see Fig. 5.27). However the change of temperature over D1, D2, D3, and D4 is 

smooth, small temperature variation in those domains can be observed during different 

months (see Fig. 5.28). This can be due to the fact that high moisture content over the 

tropic and the Amazon basin moderates variability of temperature. The coldest 

temperature and the highest elevation with the largest variability is D5, clearly 

distinguishable from the other domains.  

 The statistical delineation of the domain clearly follows physical and climatic 

features of the domain. This is consistent with the fact that the skill of schemes and 

parameterizations used in CCSM3 to simulate temperature and precipitation varies over 

regions with different topography, land cover, and climatology, which can produce the 

different systematic errors over the regions. We identified the minimum number of 

training pixels (model calibrations) required to achieve a domain regionalization response 

sufficiency close to the performance attained by the calibration at all domains’ pixels. 
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The results show that in general the homogeneous regions (e.g., D1, D2) need fewer 

numbers of training pixels than the heterogeneous regions (e.g., D4 and D5).  

 

 Up to this point, we have discussed and elaborated on the regionalization ability 

of the linear regression model and reliable associations between the delineations and the 

land-atmospheric features of the regions. The performance of the trained ANN model at 

the defined training pixels to correct the biases of climate variables (temperature and 

precipitation) at the validating pixels is evaluated in the following section.  

 

5.4. Regionalization of the Neural Network model   

 We delineated the study domain and determined the training pixels for each 

month/season using the linear regression model, now we train (calibrate) the ANN model 

at the defined training pixels and apply the trained model to reproduce bias-corrected 

temperature/precipitation at all pixels within the delineated domains with a desired 

accuracy. Note that the desired performance of all pixels is at least 80% of that of pixel 

by pixel correction (Chapter 4).       

 

5.4.1. Temperature 

 Figures 5.30 to 5.41 show the regionalization ability of the ANN and LR to 

improve the results in terms of MSE, Bias, 𝜌, and 𝐾𝑆. 

 

 

 

 

 



 135 

 

Figure 5.30. From top-to-bottom: Improvements of the MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) by the linear (LR) and nonlinear (ANN) methods for 80% 

performance in January. 
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Figure 5.31. Same as Fig. 5.30 but for February. 
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Figure 5.32. Same as Fig. 5.30 but for March. 
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Figure 5.33. Same as Fig. 5.30 but for April. 
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Figure 5.34. Same as Fig. 5.30 but for May. 
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Figure 5.35. Same as Fig. 5.30 but for June. 
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Figure 5.36. Same as Fig. 5.30 but for July. 
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Figure 5.37. Same as Fig. 5.30 but for August. 
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Figure 5.38. Same as Fig. 5.30 but for September. 
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Figure 5.39. Same as Fig. 5.30 but for October. 
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Figure 5.40. Same as Fig. 5.30 but for November. 
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Figure 5.41. Same as Fig. 5.30 but for December. 
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 We can see that the LR and ANN models have generalization ability to reduce 

biases of temperature with a desired accuracy. It is also evident that the ability of the 

ANN model to improve all terms of statistics is better than that of the LR. The results 

indicate that we do not need many observations to construct a robust model. On average, 

observations from 12% of the all domain pixels are sufficient to train a model that can 

perform well for the entire study domain. This generalization can save significant time 

and memory usage particularly for the ANN model. Although the LR and ANN can 

improve the results all over the domain, the performance of the model is more dominant 

over the regions that have larger original error such as the west coast (shown with the red 

color in the first and second rows of the figures above). The smaller improvements are 

over the regions (shown by the blue color in the Figures above) where the original 

error/𝐾𝑆 (𝜌) is small (high).   

 

5.4.2. Precipitation 

 Similar to temperature, the regionalization ability of the ANN and LR to improve 

the results in terms of MSE, Bias, 𝜌, and 𝐾𝑆 is illustrated in Figures 5.42 to 5.45. 
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Figure 5.42. From top-to-bottom: Improvements of the MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) by the linear (LR) and nonlinear (ANN) methods for 80% 

performance in MAM. 
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Figure 5.43. Same as Fig. 5.42 but for JJA. 
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Figure 5.44. Same as Fig. 5.42 but for SON. 
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Figure 5.45. Same as Fig. 5.42 but for DJF. 
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 The results confirm that the trained ANN and LR at the certain number of training 

pixels can be generalized to reduce precipitation biases at all pixels. The ANN 

outperforms the LR in improving all terms of statistics. Using observations from only 

14% of the pixels to train the model for all domain pixels is a computationally efficient 

procedure in particular for the ANN. Similar to temperature, higher improvement of the 

results by the LR and ANN occurs over the regions that have larger (smaller) original 

error/ 𝐾𝑆 (𝜌). While the smaller improvement is over the regions with smaller (larger) 

original error/ 𝐾𝑆 (𝜌).   

5.5. Summary  

 Calibration of the ANN model like other bias correction methods needs 

observations that are limited in space. In other words, it is not feasible to find accurate 

and reliable observations for all geographic locations. An efficient bias correction method 

uses available observations to construct a proper relationship between the input-output 

that performs well for other locations as well. The skill of CCSM3 to simulate climate 

variables such as temperature and precipitation varies over the regions with different 

topography and climatology, which leads to different systematic errors over the regions. 

These systematic errors can be used to delineate regions in the study domain.  

 The procedure of delineation can be implemented using LR or ANN models. 

Given the significantly lower computational efforts and smoother response of the LR, it is 

used to delineate regions in the study domain and identify required training pixels. The 

delineation of domains using the LR is consistent with the topography, land features, and 

atmospheric patterns over the study domain. This is consistent with the variable skill of 

CCSM3 to simulate temperature and precipitation over different regions. The study 

domain is divided into five domains: D1 over the southeast, D2 over the center, D3 over 

the northeast coast, D4 over the north, and D5 over the west coast of the study domain. 

Three indicators including temperature, precipitation, and elevation were used to clarify 
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the differences in the delineated domains. Although precipitation was the best indicator 

of the domains, a smooth variation of temperature can be also recognized in D1, D2, D3, 

and D4. The highest variability of temperature and elevation in D5 can clearly separate 

this domain from the other domains. D5 has the coldest temperature and the highest 

elevation in the study domain.   

 A small number of pixels in each delineated domain were used as the training 

pixels, where the ANN model was trained to re-produce the bias-corrected climate 

variables (temperature and precipitation) at other pixels within the delineated domains 

with a desired accuracy. The results confirmed that a few model calibrations at selected 

training pixels within the target domain are sufficient to regionalize the bias correction 

procedure. The number of calibration pixels in each delineated domain depends on the 

accuracy criterion (70%, 80%, 90% of the performance achieved with the model 

calibrated at all domain pixels), topography of the domain, and climatology over the 

regions. The number of training pixels increases considerably in going from a 

performance of 80% to 90%. The number of training pixels also increases over the 

heterogeneous region (e.g., D5). In general, the regionalization of the bias correction for 

precipitation needs more training pixels than that of temperature. This is due to the fact 

that the change of temperature is smooth and the variability and uncertainty of the 

precipitation values are higher than temperature.  

 The LR and ANN models were calibrated (trained) at the defined training pixels 

and were subsequently applied at other pixels within the delineated domains. The results 

showed that the trained ANN outperforms the LR model in terms of the chosen metrics 

(MSE, Bias, ρ, and 𝐾𝑆) of the bias-corrected temperature and precipitation. The results 

also indicated that the model calibration at a small number of the all pixels would be 

sufficient to achieve a good accuracy for the entire domain. This generalization ability 

represents significant computational, time, and memory savings in particular for the ANN 

model.  
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CHAPTER 6 

CONCLUSIONS 

 

 We developed a new method to correct the biases of climate variables 

(temperature and precipitation) using an Artificial Neural Network. We also investigated 

the generalization ability of the method to see if the method is applicable when the 

observations are not available at all times or locations (regionalization procedure). 

 

6.1. Concluding Remarks  

 We used a three layer feedforward neural network to construct a valid relationship 

between a set of inputs and (the bias-corrected temperature or precipitation). Since the 

proposed method is a data driven method, which relies on the supervised learning 

approach, choosing a proper set of inputs is fundamental. A set of inputs including skin 

temperature, specific humidity, net longwave and shortwave radiation with raw 

temperature (before bias correction) had the best performance to reduce the temperature 

biases. Lag zero, one, two, three precipitation, and the standard deviation from 3 by 3 

neighbors around the pixel of interest were the best predictor inputs to reduce the 

precipitation biases. The use of the standard deviation of precipitation from the 

neighbouring pixels as the input can improve the variance of precipitation at the pixel of 

interest. Since the change of temperature is smooth in time and space, adding lag-time 

temperature or variance of temperature from the neighbours does not improve the results. 

Although ANN like other statistical bias correction methods cannot completely explain 

the underlying physics of the process, a main impact of input selection on the ANN 

performance indicates that it is not totally a “black-box” model. Due to the nature of the 

ANN structure, even a small increase in the number of parameters such as inputs, hidden 
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layer, and hidden nodes can significantly increase computational time and memory usage 

during optimization of weights. It also increases the complexity and uncertainty of the 

model and decreases the generalization ability of the network. Thus, we attempted to 

construct a proper network that is large enough to capture the underlying relationships in 

the data, but not too large that leads to degradation of the generalisation ability of the 

network. The constructive algorithm (achieving a desired performance by progressively 

adding nodes to the hidden layer) indicated that 10 and 8 nodes in the hidden layer were 

sufficient for the temperature and precipitation networks, respectively. The hyperbolic 

tangent-linear transfer functions for the hidden-output layers and the BPGDR training 

algorithm for the optimization of the weights established a proper internal structure of the 

network to correctly model the functional relationship between the input-output. Since 

observations are limited in time and space, a proper network should perform well in 

response to the new and unseen dataset without any need for recalibration, which is 

identified as the generalization ability.    

 To evaluate the generalization ability of the network in time, we used two 

independent intervals of the datasets as: 

- For temperature: 1970-1988 as a training set and 1989-2008 as a validation set. 

- For precipitation: 1901-1956 as a training set and 1957-2013 as a validation set. 

The ANN model was compared with the linear regression model (LR) in producing the 

bias-corrected temperature and precipitation. The results revealed that the trained model 

in the calibration period is able to improve all terms of MSE, Bias, 𝜌, and 𝐾𝑆 of the 

results in both calibration and validation periods. While the widely-used bias correction 

methods such as the delta change and the quantile-based mapping approaches only adjust 

the first or second order moment of the data and they may not able to improve the lump 

error metrics. In addition, they cannot improve the correlation of the bias-corrected data 

with the observations. The main feature of the ANN method is that it can improve all 

metric (statistics) even when the original correlation between the modeled data and the 
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observations is low. Although the ANN model does not directly take into account any 

specific information about the distribution of the underlying variables of interest, its 

performance in preserving distributional properties as reflected in the 𝐾𝑆 statistic was 

comparable with that of distribution mapping approach in the validation period.  

 The ANN outperformed the LR in improving all metrics/statistics for both 

temperature and precipitation. Similar improvements in the results for the calibration and 

validation periods indicated that the trained model has the generalization ability. 

Although the ANN improved the results all over the study domain, the larger 

improvements occurred over the regions that have larger original error and 𝐾𝑆 or smaller 

original 𝜌. The Andes Mountains over the west coast of the study domain were one of the 

regions where CCSM3 showed large error in temperature and precipitation. The large 

error extends to the other regions in different months. Parameterizations in CCSM3 

produce different systematic errors over different regions and months. These systematic 

errors can be used to delineate the domain and evaluate the generalization ability of the 

ANN in space.  

 To evaluate the regionalization ability of the ANN in space, the study domain was 

divided into five domains; D1 over the southeast, D2 over the center, D3 over the 

northeast coast, D4 over the north, and D5 over the west coast of the study domain. The 

LR was used to delineate the regions due to its smoother response and computational 

efficiency compared to the ANN. The ANN model was calibrated (trained) at training 

pixels defined by the LR model and used at other pixels within the delineated regions 

without any recalibration (retraining). The results confirmed that the network does not 

need all observations from the entire domain pixels to construct a robust functional 

relationship between the input-output. Indeed, the constructed ANNs at a few training 

pixels suffice to regionalize the results with a prescribed accuracy for bias correction of 

temperature and precipitation. The regionalization of the precipitation network needs 

more training pixels than the temperature network due to higher uncertainty and 
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variability of precipitation. A comparison between the ANN and LR results showed that 

the trained ANN outperforms the LR in improving all metrics: MSE, Bias, 𝜌, and 𝐾𝑆 

over the entire domain. 

 There is a reliable association between the derived delineated regions and 

required density of the training pixels and the physical/climatic features of the regions 

such as topography, land cover, elevation, dominant climatology (indicated by 

precipitation and temperature). Although precipitation was the best indicator of regions, a 

smooth variation of temperature can also be recognized in D1, D2, D3, and D4. The 

highest variability of temperature and elevation in D5 can clearly separate this domain 

from the others. A summary of the specific features in the delineated domains is: 

- D1 is over the southeast of Brazil (outside the Amazon basin) mostly covered by 

savannas, and also small patches of deciduous broadleaf forest and sparse 

grassland with on average drier-cooler climate than D2 

- D2 is over the majority of the Amazon basin in Brazil mostly covered by the 

evergreen broadleaf forest with on average wetter-warmer climate than D1.   

- D3 is over the Amazon River Delta region (ARD, mouth of the Amazon River, 

the northeast of the study domain), covered by evergreen broadleaf forest. This 

region is influenced by the strong interaction of the land-atmosphere-ocean 

circulation, leading to the large amount of rainfall and vast estuarine wetlands.   

- D4 is over the northern part of the study domain. The different boundary 

conditions provided by the adjacent oceans, Andes Mountains, and the trade 

winds affect the climate in D4. There is a stark contrast in rainfall regime between 

D4 and D2 (D3), with an extreme wet climate in JJA and extreme dry climate in 

DJF over D4. This domain is covered by different types of land cover including 

evergreen broadleaf forest, grasslands, savannas, and cropland/natural vegetation 

mosaic types. 
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- D5 is over the western part of the study domain, which contains the Andes 

Mountains and different land cover types such as evergreen broadleaf forest, 

deciduous broadleaf forest, grasslands, savannas, open shrub lands, 

cropland/natural vegetation mosaic types, and barren or sparsely vegetated types. 

As a result, this heterogeneous region has different climate e.g., the dry-cool 

weather on the west side of the mountains, the wetter-warmer weather over the 

east side, the tropical weather over the northern part of this domain. On average, 

D5 has the driest-coolest climate and the highest elevation in the entire study 

domain.  

 

The delineation of the domain revealed that although more training pixels are 

concentrated in the heterogeneous region (e.g., D5), model calibration at about 12% to 

14% of all pixels would achieve performance in bias correction of temperature and 

precipitation sufficiently close to that of the model calibrated at all domain pixels. This 

reduces the overall computational requirements, time and memory usage significantly.   

 

 This study suggests a methodology to correct model biases of precipitation and 

temperature over northern South America – and potentially over other locations. The new 

approach is capable of improving the error, correlation, and the probabilistic structure of 

the climate model outputs using an ANN model. The flexible and powerful predictive 

capacity of the ANN allows us to effectively employ the trained model for bias correction 

with unseen datasets in time and space.  

 

6.2. Future Research  

 Accurate and high-resolution climate datasets are essential for effective and 

efficient long-term environmental management and climate change assessment. 
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Continuous developments of bias correction methods remain important to the climate 

research community. Promising future research includes: 

- Apply the proposed bias correction method to output from other climate models 

and also under different climate scenarios.  

- Apply the ANN model to correct the biases of the climate variables 

simultaneously in order to improve the preservation of cross-correlation between 

bias-corrected precipitation and temperature. 

- Test the regionalization ability of the ANN to improve the biases of the climate 

variables over other domains. 

- Evaluate the performance of the ANN using other training (learning) approaches, 

which are able to determine the structure of the ANN and the weights 

simultaneously (e.g., stochastic approaches such as genetic, simulated annealing 

methods). 
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APPENDIX A 

RETRIEVAL OF HOURLY RECORDS OF SURFACE 

HYDROMETEOROLOGICAL VARIABLES  

(Moghim et al., 2015) 

 

A.1. Introduction  

 Global and regional climate models and remotely sensed data are commonly used 

to study the climate change. Adaption and impact assessments require high resolution 

hydrometeorological data to capture fine-scale regional climate variability (Mearns et al., 

2009; Georgakakos et al., 2012). The available data products do not always have desired 

space and time resolutions, and hence need to be downscaled by statistical and dynamical 

approaches to meet the demands of applications. Dynamical downscaling often uses 

regional climate models (RCMs) to simulate high-resolution variables. The biases of  

General Circulation Model (GCM) outputs that are used to drive the RCM affect the 

performance of the RCM (Miller et al., 1999; Xue et al., 2007; Liang et al., 2008). The 

computational cost of dynamical downscaling makes it "essentially impossible" to 

produce long-term records (Maurer and Hidalgo, 2008). As a result, statistical 

downscaling methods are often an alternative to generate high-resolution variables. The 

statistical downscaling is based on the derived relationship or transfer function between 

modeled outputs and the corresponding observations during the same periods of time 

assuming that the transfer function derived from historical data remains unchanged for 

future times (Mearns et al., 1999; Murphy, 1999). Yet, this stationarity assumption for the 

transfer function may not always hold. Mathematically, a transfer function relates 

predictands to predictors. For example, predictors can be large-scale atmospheric 

variables and predictands can be the corresponding local surface variables, the parameters 
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of the distributions of local variables, and the frequencies of the extreme local variables 

(Pfizenmayer and Storch, 2001; Katz et al., 2002). Weather classification, regression 

models, and weather generators are the common statistical downscaling methods, which 

are mainly used in the Intergovernmental Panel on Climate Change Third Assessment 

Report IPCC TAR (Giorgi et al., 2001). For a complete explanation and review of 

dynamical and statistical downscaling techniques, the reader is referred to (Fowler et al., 

2007; Wilby et al., 2004; Wilby and Wigley, 1997; Xu, 1999, among many others).  

However Statistical downscaling methods are computationally advantageous over 

dynamical downscaling methods (Hay and Clark, 2003; Wilby and Wigley, 2000; Wood 

et al., 2004), they do have drawbacks. First, statistical relationships between predictors 

and predictands may be difficult to identify. Second, transfer functions do not always 

capture the underlying physical mechanisms and variability of climate system. This 

appendix proposes a new algorithm to disaggregate daily surface hydrometeorological 

variables into hourly variables using physically and statistically based models with input 

data from satellite remote sensing observations complemented by ground observations 

(Moghim et al., 2015). The work was sponsored by the Andes-Amazon Initiative of the 

Gordon and Betty Moore Foundation. Funding was also provided by NSF grant EAR-

1138611 and ARO grant W911NF-07-1-0126.  

A.2. Methodology  

 The retrieval algorithm of hourly meteorological variables from hourly satellite 

data and in-situ daily air temperature is based on three models: (1) surface net radiation 

(𝑅𝑛) is estimated using hourly albedo derived from channel one (visible) of the GOES 

satellite (Bisht and Bras, 2010); (2) partition of net radiation into fluxes (sensible, latent, 

and ground heat fluxes) is estimated using the maximum entropy production (MEP) 

model (Wang and Bras, 2011); (3) hourly surface air temperature is retrieved from 
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sensible heat flux obtained from (2) using the half-order integral model (Wang and Bras, 

1999). 

A.2.1. Net Radiation Model  

 Surface net radiation 𝑅𝑛 is expressed as 

                                                          𝑅𝑛 = 𝑅𝑆
↓ − 𝑅𝑆

↑ + 𝑅𝐿
↓ − 𝑅𝐿

↑                                         (A.1)      

where 𝑅𝑆
↓, 𝑅𝑆

↑, 𝑅𝐿
↓, and 𝑅𝐿

↑ are downwelling shortwave, reflected shortwave, downweling 

longwave, and upwelling longwave radiation, respectively. Components of the surface 

energy budget can be parameterized using near-surface air temperature, humidity, and 

surface temperature (Brutsaert, 1975; Diak and Gautier, 1983; Idso, 1981; Prata, 1996; 

Zillman, 1972; Bisht and Bras, 2010). Downwelling shortwave radiation for clear sky 

(𝑅𝑆
↓𝑐𝑙𝑒𝑎𝑟) is expressed as (Zillman, 1972) 

                                            𝑅𝑆
↓𝑐𝑙𝑒𝑎𝑟 =  

𝑆0𝑐𝑜𝑠2𝜃

1.85 𝑐𝑜𝑠𝜃+𝑒0(2.7+𝑐𝑜𝑠𝜃)×10−3+𝛽
                                    (A.2)                  

 

where 𝑆0 is the solar constant (1367 W m
-2

), 휃 the solar zenith angle, 𝑒0 (mb) the near-

surface vapor pressure, and 𝛽 an empirical coefficient set to be 0.1. It has been shown 

that Eq. A.2 tends to overestimate 𝑅𝑆
↓𝑐𝑙𝑒𝑎𝑟 (Niemelä et al., 2001a,b; Bisht et al., 2005). In 

this study, 𝛽 is set to be 0.2 to correct the overestimation (Bisht and Bras, 2010). 𝑒0 is 

approximated as the saturated vapor pressure at air temperature 𝑇𝑎. The second term in 

denominator of Eq. A.2 plays a minor role on 𝑅𝑆
↓𝑐𝑙𝑒𝑎𝑟 as it is at least one order of 

magnitude smaller than the first and third term, allowing a convenient approximation 

when surface humidity data are not available.  

 Surface downwelling and reflected shortwave radiation are expressed in terms of 

cloud and surface albedo, 𝛼𝑐 and 𝛼𝑠, respectively as 

                                                           𝑅𝑆
↓ = (1 − 𝛼𝑐) 𝑅𝑆

↓𝑐𝑙𝑒𝑎𝑟                                              (A.3) 

 

and  

                                                                 𝑅𝑆
↑ = 𝛼𝑠 𝑅𝑆

↓                                                          (A.4) 



 163 

Albedo data used in this study are derived from the GOES visible images. 𝛼𝑐 is obtained 

under cloudy condition and 𝛼𝑠 is obtained under clear sky condition. Since the temporal 

variability of 𝛼𝑠 is relatively low (Tsvetsinskaya et al., 2006), the obtained 𝛼𝑠 is assigned 

as the time-invariant parameter for each site.  

 The other components of net radiation, downwelling and upwelling longwave 

radiation, are calculated based on the Stefan-Boltzmann’s law as 

                                                                 𝑅𝐿
↓ =  휀𝑎𝜎𝑇𝑎

4                                                       (A.5) 

and 

                                                              𝑅𝐿
↑ =  휀𝑠𝜎𝑇𝑠

4                                                        (A.6) 

 

where 𝜎 is the Stefan-Boltzmann constant (5.67 × 10
-8

 W m
-2

 K
-4

); 𝑇𝑎 is assumed to be 

equal to surface temperature (𝑇𝑠) as an approximation when hourly 𝑇𝑠 is not available. 

Surface emissivity (휀𝑠) is taken as unity due to its small variability over the land 

(Dickinson et al., 1986). Air emissivity (휀𝑎) is parameterized using 𝑒0 (mb) and 𝑇𝑎 (K) as 

(Prata, 1996) 

                                                   휀𝑎 = 1 − (1 + 휁)exp (−√1.2 + 3휁)                               (A.7) 

where the dimensionless parameter 휁 is calculated as  

                                                                  휁 = 46.5
𝑒0

𝑇𝑎
                                                        (A.8)                                 

A.2.2. Sensible Heat Flux Model  

 The recently developed maximum entropy production (MEP) model of 

evapotranspiration ET (Wang and Bras, 2011) provides a parameterization of sensible 

heat flux used in this study. The theory and formulation of the MEP model are described 

in detail in (Wang and Bras 2009; Wang and Bras, 2011). The MEP model predicts the 

partition of net radiation 𝑅𝑛 into sensible 𝐻, latent 𝐸, and ground 𝐺 heat fluxes according 

to 

                                                            𝑅𝑛 = 𝐻 + 𝐸 + 𝐺                                                     (A.9) 
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                                                         𝐺 =  
𝐵(𝜎)

𝜎

𝐼𝑠

𝐼0
 𝐻|𝐻|−

1

6                                                (A.10) 

and 

                                                            𝐸 = 𝐵(𝜎)𝐻                                                      (A.11) 

 

where 𝐼𝑠 is the thermal inertia of the soil, 𝐼0 is the apparent thermal inertia of the air, and 

𝐵, the inverse Bowen ratio, is given as 

                                                      𝐵(𝜎) = 6 (√1 +
11

36
𝜎 − 1)                                      (A.12) 

and 

                                                              𝜎 =  
𝐿𝑣

2

𝑐𝑃𝑅𝑣

𝑞𝑠

𝑇𝑠
2                                                       (A.13)      

where 𝑐𝑃 is the specific heat of air at constant pressure, 𝐿𝑣 is the latent heat of 

vaporization of liquid water, 𝑅𝑣 is the gas constant for water vapor, and 𝑞𝑠 is the surface 

specific humidity at surface (skin) temperature 𝑇𝑠. For a saturated soil, a dimensionless 

parameter 𝜎 may be expressed as 

                                                                     𝜎 =  
∆

𝛾
                                                     (A.14) 

where ∆ is the slope of the saturation vapor pressure at 𝑇𝑠 according to the Clausius-

Clapeyron equation and 𝛾 is the psychrometric constant (Brunt, 1939; Brutsaert, 1982). 

A.2.3. Air Temperature Model  

 The diurnal variation of near-surface air temperature may be expressed in terms of 

a weighted time average (i.e. half-order integral) of sensible heat flux analogous to the 

half-order integral model of soil temperature and ground heat flux (Wang and Bras, 1999; 

Bennett et al., 2008)  

                                                        𝑇𝑎(𝑡) =  𝑇0 + 
1

𝐼
∫

𝐻(𝑠)𝑑𝑠

√𝜋(𝑡−𝑠)

𝑡

−∞
                                     (A.15) 

where 𝑇0 is a reference temperature. In this study, 𝑇0 is determined in such a way that the 

modeled daily mean air temperature 𝑇𝑎
̅̅ ̅, according to Eq. A.15, is equal to the observed 
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daily mean air temperature. 𝐼 is the thermal inertia of air, which is treated as a fitting 

parameter to the model in this study (the details are described in subsection A.3.1).  

A.3. Tests of the Algorithm 

 The proposed algorithm was tested at two sites in Brazil, Caxiuana (Cax) and 

Reserva Pe-de-Gigante (PDG), during January and February 2002 and two sites in 

Arizona, Kendall (Ken) and Lucky Hills (LKH), during January 2002. Table A.1 presents 

the characteristics of the sites used in the study.  

 

Table A.1. General characteristics of the sites. Caxiuana and Reserva Pe-de-Gigante are sites 

of the LBA project; Kendall and Lucky Hills are sites of the Walnut Gulch Experimental 

Watershed. 

Site Location Lat Lon Elev(m) Biome Type 

Caxiuanã Para, Brazil 1.72°S 51.46°W 23 Forest 

Reserva Pé-de-Gigante São Paulo, Brazil 21.62°S 47.65°W 690 Savanna 

Kendall Arizona, US 31.74°N 109.94°W 1526 Grass 

Lucky Hills Arizona, US 31.74°N 110.05°W 1372 Shrub 

 

Observations of hourly air temperature for the two sites in Brazil are from the Large 

Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) project (de Goncalves et 

al., 2013). More detailed information about the data is available at http://dx.doi.org/ 

10.3334/ORNLDAAC/1177. Observations of net radiation, sensible heat flux, air 

temperature, and other meteorological and hydrological data at the two sites in Arizona 

are from the Walnut Gulch Experimental Watershed (Emmerich and Verdugo, 2008). 

Data products are publicly available at http://www.tucson.ars.ag.gov/dap/. Daily mean air 

temperature required as an input to the proposed algorithm is obtained by averaging the 

observed hourly air temperature at the sites. Satellite-based remote sensing data as the 

other input used in this study come from the Geostationary Operational Environmental 

Satellite (GOES) of the National Oceanic and Atmospheric Administration (NOAA) 

http://dx.doi.org/%2010.3334/ORNLDAAC/1177
http://dx.doi.org/%2010.3334/ORNLDAAC/1177
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(publicly available at http://www.class.ngdc. noaa.gov). Visible images of GOES 8 

centered at 0.65 μm with 1 km and hourly spatial-temporal resolution are used for the 

retrieval of hourly records of meteorological variables in the study.  

A.3.1. Procedure  

 The hydrometeorological variables including hourly net radiation, sensible heat 

flux, and air temperature are estimated through three steps. In step one, mean daily air 

temperature and cloud albedo are used to calculate the components of radiation 

(longwave and shortwave radiation). Albedo, as an input to the algorithm, is assigned to 

each site based on the closest distance of the GOES images to the coordinates (longitude 

and latitude) of the site; sensible heat flux is computed for a given net radiation using the 

MEP model; and hourly air temperature is estimated using the half-order integral model. 

In step two, the same process is repeated by using the estimated hourly temperature as the 

input to update the calculated radiation and heat flux from step one. In step one and two, 

𝐼 is set at 3000 tiu (J m
-2

 K
-1

 s
-1/2

) as an initial guess. In step three, the hourly temperature 

and sensible heat flux obtained from step two are used to estimate 𝐼 as the regression 

coefficient between diurnal amplitudes of air temperature (∆𝑇𝑎) and sensible heat flux 

(∆𝐻) according to the following equation (Wang et al., 2010)                 

                                                                𝐼 =  
∆𝐻

∆𝑇𝑎√𝜔0
                                                      (A.16)                                           

where 𝜔0 =  
2𝜋

𝑑
 with 𝑑 being the length of day (24 hours). In step three, the estimated 𝐼 is 

used to re-calculate the hourly temperature. The schematic diagram of the procedure is 

illustrated in Figure A.1.  

http://www.class.ngdc/
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Figure A.1. The schematic diagram of the three-step algorithm. 

 

A.3.2. Results 

 Estimated hourly net radiation and sensible heat flux at two sites in Brazil are 

illustrated in Figure A.2.  

 

Figure A.2. Estimated hourly net radiation (blue dashed line) and sensible heat flux (red 

solid line) at (a) Cax in January 2002 and (b) PDG in February 2002. 
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The lower negative net longwave radiation at Cax agrees with the fact that more (thicker) 

clouds over Cax block more surface emitted longwave radiation from escaping to the 

space. It suggests that the average cloud albedo over Cax is greater than that over PDG 

during the test period. Note that a narrowband albedo data derived from one visible 

channel of the GOES satellite centered at 0.65 μm (0.55-0.75 μm) is essentially 

equivalent to "broadband" since the channel covers the range of the high intensity of 

shortwave radiation energy. Average sensible heat flux over PDG is higher than that over 

Cax. This is consistent with the fact that lower humidity over the savanna site (PDG) 

results from higher sensible heat flux compared to those over the forest site (Cax). Figure 

A.3 compares estimated hourly air temperature with the corresponding observations at 

the two sites. 

 

Figure A.3. Estimated hourly air temperature (blue dashed line) compared with observations 

(red solid line) from the LBA project at (a) Cax in January 2002 and (b) PDG in February 

2002. 
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The field tests suggest that the proposed algorithm is able to retrieve hourly records of 

surface hydrometeorological variables using satellite remote sensing data supplemented 

by in-situ daily mean temperature. The performance of the algorithm is further illustrated 

through scatter plots in Figure A.4 at the two sites.  

 

Figure A.4. Estimated vs observed air temperature corresponding to Fig. A.3 for (a) Cax  

(𝜌 = 0.90) and (b) PDG (𝜌 = 0.81). 
 

 

Correlation coefficients (𝜌) between observed and estimated air temperature of Cax and 

PDG are 0.90 and 0.81, respectively. The algorithm tends to underestimate lower 

temperatures and overestimate higher temperatures at Cax, but no apparent biases in the 

estimated temperature at PDG. This may be due to the fact that the stability of the 

atmosphere over the forest (Cax) is lower than that over the Savanna (PDG). It implies 

that improvement of parameterization of the thermal inertia is needed over forest sites 

with more unstable atmosphere. Since observations of 𝑅𝑛 and 𝐻 at Cax and PDG sites 

were not available to the authors, the radiation and flux models were tested using field 

observations from the Walnut Gulch Experimental Watershed. Figure A.5 compares 

estimated hourly net radiation with the corresponding observations at Ken and LKH sites 

for January 2002.  
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Figure A.5. Estimated hourly net radiation (blue dashed line) compared with observations 

(red solid line) from the Walnut Gulch Experimental Watershed at (a) Ken and (b) LKH in 

January 2002. 
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Figure A.6. Estimated hourly sensible heat flux (blue dashed line) compared with 

observations (red solid line) from the Walnut Gulch Experimental Watershed at (a) Ken and 

(b) LKH in January 2002. 
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Figure A.7. Estimated vs observed net radiation corresponding to Fig. A.5 for (a) Ken and 

(b) LKH. 

 

 

 

Figure A.8. Estimated vs observed sensible heat flux corresponding to Fig. A.6 for (a) Ken 

and (b) LKH. 
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Figure A.9. Estimated hourly air temperature (blue dashed line) compared with observations 

(red solid line) from the Walnut Gulch Experimental Watershed at (a) Ken and (b) LKH in 

January 2002. 
 

Correlation coefficients (𝜌) between observed and estimated air temperature of Ken and 

LKH are 0.80 and 0.74, respectively shown in Figure A.10. 

 

 

Figure A.10. Estimated vs observed air temperature corresponding to Fig. A.9 for (a) Ken 

(𝜌 = 0.80) and (b) LKH (𝜌 = 0.74). 
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The differences between estimated and observed 𝑅𝑛 and 𝐻 obtained from the Net 

Radiation and the Sensible Heat Flux Models may cause the discrepancies between 

estimated and observed 𝑇𝑎 because the Air Temperature Model requires sensible heat flux 

obtained from the Sensible Heat Flux Model and net radiation from the Net radiation 

Model. The disaggregated hourly air temperature is affected by the thermal inertia 

parameter, daily mean air temperature, and GOES images as inputs to the algorithm. For 

any given sensible heat flux, greater thermal inertia leads to smaller diurnal amplitude of 

air temperature and vice versa (see Eq. A.15). Daily mean temperature affects diurnal 

variations of air temperature through longwave radiation. When daily mean temperature 

decreases, upward longwave radiation decreases, leading to an increase in net radiation 

and sensible heat flux, and a greater amplitude of the diurnal variation of air temperature 

and vice versa.  

 

A.4. Summary and Conclusions 

 This study develops a new physically and statistically based algorithm for 

retrieving hourly surface hydrometeorological variables including air temperature, 

radiation, and heat flux. The close agreement between the observed and estimated air 

temperature over the sites with different climate (see Table A.1) suggests that the MEP 

and the half-order time integral models used in the proposed algorithm have potential to 

improve the estimates of the variability and magnitude of air temperature globally. 

Although the physically-based models (e.g. transfer based models) often use gradients of 

the variables such as temperature and humidity, the MEP model uses only one level of 

the inputs and the vertical profiles of the inputs are avoided. A major advantage of the 

algorithm is that the algorithm requires only mean daily temperature and satellite-based 

single level observations as inputs. The algorithm has lower computational cost compared 

to other existing dynamical downscaling methods. Decision makers and water resources 
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planners may use the retrieved hourly data to drive other land, ecosystem, and coupled 

climate-hydrology-water resources models. 
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APPENDIX B 

BIAS CORRECTION OF THE CLIMATE MODEL OUTPUTS OVER 

AMAZONIA 

(Moghim et al., 2015) 

 

B.1. Introduction  

 This appendix explains the process of correcting biases of the variables including 

temperature 𝑇, precipitation 𝑃, specific humidity 𝑄, and downwelling longwave radiation 

𝐿𝑊𝑑 over Amazonia (Moghim et al., 2015). The data are obtained from the global and 

regional climate models, the Climate System Model (CCSM3) and the Regional Climate 

Model driven by the Hadley Centre Coupled Model (RegCM3), for historical (under 

20C3M scenario) and future (under A2 scenario) period over the Amazon Basin 

extending from 74.5°W to 49.5°W and from 17.5°S to 3.5°N (Fig. B1). The regional Eta-

CPTEC Model nested in HadCM3 (RegCM3) is used to provide the data over South 

America (Chou et al., 2012). The standard (unperturbed) HadCM3 was used as boundary 

conditions of RegCM3 at every 6 hour and updated linearly along the boundaries for each 

time step. We used 1960-1990 and 1940-2009 modeled datasets as the historical time for 

the RegCM3 and CCSM3, respectively and 2010-2099 as the projection time. The final 

long-term unbiased climate datasets can be used as forcing of ecosystem and hydrologic 

models to study climate changes and impact assessments over the Amazon Basin (Zhang 

et al., 2015). This work was supported by the Andes-Amazon Initiative of the Gordon 

and Betty Moore Foundation (http://www.oeb.harvard.edu/faculty/moorcroft/andes-

amazon/).  

 

 

http://www.oeb.harvard.edu/%20faculty/
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Figure B.1. Northern of South America. The Amazon Basin is bounded by the green line and 

the study domain is shaded by green color. 

 
 

B.2. Methodology  

 The EDCDF method was used to reduce the biases of 6-hourly temperature and 

precipitation for the historical period and projection (under A2 scenario). Then specific 

humidity and downwelling longwave radiation were adjusted to be physically consistent 

with the bias-corrected temperature values. The correction methods of the climate 

variables are described in detail as follows: 

B.2.1. Precipitation and Temperature  

 The differences between the empirical CDFs of the observations and the modeled 

outputs in the historical period at each percentile of the future projection (∆) were used to 

correct the biases of the monthly model projections. We considered 1940-2009 and 1960-

1990 as the historical periods for CCSM3 and RegCM3, respectively and 2010-2099 as 

the future projection period. We used the Climate Research Unit dataset (CRU) as the 

reference observations. To unify the spatial scales of this dataset with the spatial 

resolution of the studied model outputs, the monthly CRU data with original resolution of 
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0.5° were averaged to the models resolution. The years of the observations were selected 

based on available years of the historically modeled data (1940-2009 for CCSM3 and 

1960-1990 for RegCM3). The longer record of the CCSM3 data, in particular years of 

1991-2009, resulted in a better representative CDF of the modeled historical period 

compared to the RegCM3. Indeed, this recent period was reported by the IPCC as the 

beginning of a significant warming regime (Third Assessment Report, TAR 2001). For 

the temperature and precipitation variables, first we obtained bias-corrected values using 

the explained EDCDF method in a monthly basis. Then we multiplicatively adjusted 

hourly data (𝑃ℎ) to conserve the bias-corrected monthly mean precipitation (�̃�𝑚) as 

follows: 

                                                               �̃�ℎ =  𝑃ℎ ×
�̃�𝑚

𝑃𝑚
                                                 (B.1) 

 

where 𝑃𝑚 is originally modeled monthly precipitation and �̃�ℎ denotes the bias-corrected 

values. Analogous to precipitation, we used an additive adjustment scheme (Eq. B.2) to 

assure that the bias-corrected mean monthly temperature (�̃�𝑚) is properly conserved. 

                                               �̃�ℎ =  𝑇ℎ + (�̃�𝑚 − 𝑇𝑚)                                       (B.2) 

 

where 𝑇𝑚 is originally modeled mean monthly values, while 𝑇ℎ and �̃�ℎ denotes hourly 

temperature before and after bias correction, respectively.  

B.2.2. Specific Humidity 

 Adjustments of the temperature values can cause supersaturation and 

inconsistency between temperature and specific humidity. To resolve this inconsistency, 

specific humidity is adjusted (Sheffield et al., 2006; Cosgrove et al., 2003). In particular, 

the saturated vapor pressure 𝐸𝑠𝑎𝑡 as a function of air temperature for pure water vapor 

was expressed as (Buck, 1981) 

                                                        𝐸𝑠𝑎𝑡 = 𝑎 × 𝑒𝑥𝑝 [
(𝑏−

𝑇

𝑑
)×𝑇

𝑇+𝑐
]                                        (B.3) 
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where 𝑎, 𝑏, 𝑐, 𝑑 are empirical parameters defined in Table A.1 and 𝑇 is modeled 

temperature before bias correction in Celsius. Buck (1981) also suggested an 

enhancement factor 𝑓, that is used to account for moist air as follow: 

                                                    𝑓 = 1 + 𝛼 + 𝑃𝑆 × (𝛽 + 𝛾 × 𝑇2)                                (B.4) 

 

where 𝑃𝑆 is modeled surface pressure (in millibar) and 𝛼, 𝛽, and 𝛾 are empirical 

constants reported in Table B.1. Thus, the modified saturated vapor pressure (𝐸𝑠𝑎𝑡,𝑚𝑜𝑑) 

can be computed as 

                                                            𝐸𝑠𝑎𝑡,𝑚𝑜𝑑 =  𝐸𝑠𝑎𝑡 × 𝑓                                           (B.5) 

 

and the saturated specific humidity 𝑄𝑠𝑎𝑡 can be computed as  

                                                           𝑄𝑠𝑎𝑡 =  
0.622𝐸𝑠𝑎𝑡,𝑚𝑜𝑑

(𝑃𝑆−0.378𝐸𝑠𝑎𝑡,𝑚𝑜𝑑)
                                      (B.6) 

 

and thus, the corresponding relative humidity as follows: 

                                               𝑅𝐻 =  
𝐸

𝐸𝑠𝑎𝑡,𝑚𝑜𝑑
=  

𝑄×(0.622+0.378𝑄𝑠𝑎𝑡)

𝑄𝑠𝑎𝑡×(0.622+0.378𝑄)
 ≤ 1                          (B.7) 

 

where 𝑄 denotes the modeled specific humidity. To adjust specific humidity, bias-

corrected temperatures were plugged into all of the above equations. The new calculated 

saturated specific humidity was called 𝑄𝑠𝑎𝑡,𝑎𝑑𝑗. Then the bias-corrected specific humidity 

 �̃�, was expressed as   

                                                               �̃� =  𝑄𝑠𝑎𝑡,𝑎𝑑𝑗 × 𝑅𝐻                                          (B.8) 

  

The above steps were used to adjust specific humidity values for CCSM3. The RegCM3 

provided dew point temperature and not the specific humidity. Therefore, one additional 

step was required to convert dew point temperature to specific humidity in this model 

outputs. To this end, given the dew point temperature, the water vapor pressure 𝐸 was 

calculated using Eq. B.3 and then was used in Eq. B.6 to obtain the specific humidity.  
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Table B.1. Empirical parameters for calculation of vapor pressure as a function of 

temperature in Eqs. B.3 and B.4 (Buck, 1981).  

 

Parameters a b c d α β γ 

T > 0°C 6.1121 18.729 257.87 227.3 7.2×10
-4

 3.2×10
-6

 5.9×10
-10

 

T < 0°C 6.1115 23.036 279.82 333.7 2.2×10
-4

 3.83×10
-6

 6.4×10
-10

 

 

B.2.3. Downwelling Longwave Radiation  

 Changes in air temperature values influence downwelling longwave radiation. To 

have a consistent bias-corrected temperature with downwelling longwave radiation 

values, we adjust longwave radiation using modeled emissivity values 𝜖. The implied 

emissivity is computed using the modeled longwave radiation 𝐿𝑊𝑑 and the biased 

temperature 𝑇 based on the Stefan-Boltzmann law as 

                                                                     𝜖 =  
𝐿𝑊𝑑

𝜎𝑇4
                                                     (B.9) 

  

where 𝜎 is the Stefan-Boltzmann constant (5.67×10
-8 W m−2 K−4). Then bias-corrected 

downwelling longwave radiation (𝐿𝑊�̃�) was identified using the modeled emissivity 

values computed in Eq. B.9 and bias-corrected temperatures �̃� as 

                                                                   𝐿𝑊�̃� =  𝜖𝜎�̃�4                                             (B.10) 

 

It is important to note that changes in the temperature values play a more dominant role 

than changes in the emissivity values due to the fourth power temperature dependence in 

the Stefan-Boltzmann law. Thus, we adjusted downwelling longwave radiation only 

based on the changes in temperature values. 

B.3. Results 

 To illustrate the spatial and temporal performance of the models, we use 

differences between original and statistically bias-corrected variables (hereafter estimated 

differences) in the historical and future periods. Figure B.2 illustrates the temporal 
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average of estimated differences for CCSM3 and RegCM3 variables at 1° by 1° spatial 

resolution.  

 

 

Figure B.2. From left-to-right panels: The temporal average of estimated differences of 

CCSM3 (first and second columns) and RegCM3 (third and fourth columns) in historical and 

future periods, respectively. From top-to-bottom: The estimated differences for temperature 

∆𝑇 (K), precipitation ∆𝑃 (mm), specific humidity ∆𝑄 (kg kg-1), and downwelling longwave 

radiation, ∆𝐿𝑊𝑑 (W m-2), respectively. The outlet of the Amazon Basin and the city of 

Manaus are illustrated by numbers 1 and 2, respectively. 

 

In this figure, the rows from top to bottom show the spatial fields of the estimated 

differences over all grid cells for temperature (∆𝑇), precipitation (∆𝑃), specific humidity 

(∆𝑄), and downwelling longwave radiation (∆𝐿𝑊𝑑), respectively. The first two columns 
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demonstrate the estimated differences in CCSM3 while the last two columns show the 

estimated differences for RegCM3 in the historical and future periods. The first row 

demonstrates that CCSM3 overestimates temperature in major parts of the domain, in 

particular over the western edge of the study domain (∆𝑇 is negative). In contrast, 

RegCM3 underestimates temperature over most of those areas (∆𝑇 is positive). We also 

see that both CCSM3 and RegCM3 show a small underestimation over the city of 

Manaus in the State of Amazonas (see Figure B.2).  

The second row indicates that precipitations is generally underestimated by CCSM3 

particularly over west, north, and around the outlet of the basin (see Figure B.2). Note 

that, CCSM3 shows a potential wet cool bias over Manaus. The estimated differences in 

the precipitation fields are smaller in RegCM3 compared to CCSM3 almost over the 

entire study domain. Precipitation is also underestimated by RegCM3 around the outlet. 

A poor performance of the model in simulating temperature and precipitation fields can 

be caused by inappropriate schemes and parametrizations used in the model over the 

above regions. Land cover representation can also contribute to the imperfect 

performance of the models. Differences between the land surface parameters of the 

models and land cover from remotely sensed MODIS product are reported by Tian et al. 

(2004); Oleson et al. (2003); Wang et al. (2004).  

Since 𝑄 and 𝐿𝑊𝑑 are adjusted based on the bias-corrected temperature values, the 

patterns of spatial differences for specific humidity and downwelling longwave radiation, 

shown in the third and the fourth rows, are relatively analogous to the patterns of the 

temperature differences shown in the first row. For instance, where ∆𝑇 is negative, the 

estimated difference for longwave radiation (∆𝐿𝑊𝑑) is also negative and vice versa. We 

can also observe that the patterns of the differences in all fields for the historical and 

future periods are very similar because in the bias correction method we assumed that the 

differences between the CDFs of observed and modeled values are stationary over time. 
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Figure B.3 illustrates the mean monthly domain average of the estimated differences 

between bias- corrected and the original time series for CCSM3 and RegCM3 outputs in 

the historical and future periods.  

 

Figure B.3. The mean monthly domain average of estimated differences for CCSM3 and 

RegCM3 in the historical and future period. Blue dashed and red solid lines are CCSM3 and 

RegCM3, respectively. The first to fourth rows are the estimated differences for 

temperature ∆𝑇 (K), precipitation ∆𝑃 (mm), specific humidity ∆𝑄 (kg kg-1), and downwelling 

longwave radiation, ∆𝐿𝑊𝑑 (W m-2), respectively. 

 

The Figure illustrates the temporal performance of the models over the study domain. 

The first to fourth rows show estimated differences for temperature (∆𝑇), precipitation 

(∆𝑃), specific humidity (∆𝑄), and downwelling longwave radiation (∆𝐿𝑊𝑑), respectively. 

The first column shows the results in the historical period and the second column is 
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referred to the future period. From the first row, it can be inferred that the CCSM3 

overestimates temperature in almost all months while small underestimation can be seen 

during December. Furthermore, RegCM3 underestimates temperature in all months 

except for August, September, and October. The results show that both models tend to 

have a warm bias during the dry-warm season (Aug., Sep., Oct.). The largest estimated 

difference of temperature for both CCSM3 and RegCM3 occurs in September, which is 

more significant in CCSM3.  

The second row indicates that, on average, the underestimation in the CCSM3 monthly 

precipitation fields is more significant than those by RegCM3 for all months. It is seen 

that the highest difference occurs during the rainy months in the Amazon (January to 

June) and the smaller difference is during the dry months (July through December) for 

both CCSM3 and RegCM3.  

As expected, the patterns of ∆𝑄 and ∆𝐿𝑊𝑑 in the third and fourth rows follow the same 

pattern as of temperature. We can also observe that the patterns of future differences are 

similar to those of the historical differences although the magnitudes are slightly 

different.  

As we previously mentioned, there are uncertainties regarding the predicted effects of 

climate change on the Amazon Basin and its ecosystem as a result of uncertainties in 

different GCMs’ outputs. Therefore, using multiple models can perhaps shed more light 

on the existing uncertainties. To better understand the inter-annual trends of the domain 

average values of the climate variables of interest, Figure B.4, from top to bottom, shows 

the annual bias-corrected values of CCSM3 and RegCM3 temperature, precipitation, 

specific humidity, and long-wave radiation, respectively. We compared the datasets with 

bias-corrected PCM1 data (Sheffield et al., 2006 and Li et al., 2010), which used the 

same bias correction method (EDCDF) and the CRU as the reference dataset. The 

monthly CRU data, used to reduce the biases of the modeled temperature and 

precipitation, are also shown for comparison purposes in Figures B.4a,b.  
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Figure B.4. Annual domain average of bias-corrected (a) temperature 𝑇, (b) precipitation 𝑃, 

(c) specific humidity 𝑄, and (d) downwelling longwave radiation 𝐿𝑊𝑑 for the models 

(CCSM3, RegCM3, PCM1). 
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To evaluate the statistical significance of the results, Table B.2 presents 𝑝-value of the 

linear trend in the modeled variables (𝑇, 𝑃, 𝑄, 𝐿𝑊𝑑) for the historical and future periods. 

The measured 𝑝-value smaller than 0.05 or 0.01 is conventionally defined “statistically 

significant” or “very significant”, respectively (Nuzzo, 2014).  

 

Table B.2. The statistical significance (𝑝-value) of the linear trend in the modeled variables 

(𝑇, 𝑃, 𝑄, 𝐿𝑊𝑑) for the historical and future periods. 

 

Models 𝑻 𝑷 𝑸 𝑳𝑾𝒅 

                  His 

CCSM3 

                  Fut 

𝑃 < 0.0001 

 

𝑃 < 0.0001 

𝑃 = 0.29 

 

𝑃 < 0.0001 

𝑃 < 0.0001 

 

𝑃 < 0.0001 

𝑃 < 0.0001 

 

𝑃 < 0.0001 

                   His 

RegCM3 

                   Fut 

𝑃 = 0.02 

 

𝑃 < 0.0001 

𝑃 = 0.04 

 

𝑃 = 0.02 

𝑃 = 0.75 

 

𝑃 < 0.0001 

𝑃 = 0.04 

 

𝑃 < 0.0001 

                   His 

PCM1 

                   Fut 

𝑃 = 0.02 

 

𝑃 < 0.0001 

𝑃 = 0.72 

 

𝑃 < 0.0001 

𝑃 < 0.0001 

 

𝑃 < 0.0001 

𝑃 < 0.0001 

 

𝑃 < 0.0001 

 

 

Figure B.4a indicates that all models have a long-term trend of rising temperature over 

the domain, which is significant (𝑝-value is smaller than 0.05 for the entire period). A 

clear warming trend is apparent for the future (2010-2099), which is more significant 

than historical period in all models (𝑝-value is smaller than 0.0001). The trend of rising 

temperature over the Amazon Basin has been previously reported (e.g., Malhi et al., 

2009). All models show a similar skill to represent the CRU reference temperature. For 

precipitation (Fig. B.4b) the monthly data from the Tropical Rainfall Measuring Mission 

(TRMM_3B43) product from 1998 to 2013 is also used as an independent dataset for 

comparison purposes. The TRMM product (publicly available at http://trmm.gsfc.nasa. 

http://trmm.gsfc.nasa/
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gov/) is known as one of the best estimates of precipitation, resulting from integrating 

multi-sensor precipitation datasets across different remote sensing platforms and ground-

based rain gauges (Huffman et al., 2007). The TRMM data at spatial resolution of 0.25° 

by 0.25 are averaged onto the horizontal grids used for the disaggregated GCM outputs. 

Figure 5b shows that the models agree well with the CRU dataset and also the TRMM 

precipitation during the time that data are available. CCSM3 and PCM1 do not display a 

significant trend for precipitation in the historical time (𝑝 = 0.29 and 0.72, respectively). 

Also the upward trend in the TRMM and CRU precipitation is not significant (𝑝 = 0.24 

and 0.07, respectively). While RegCM3 shows a weak downward trend in the historical 

time (𝑝  = 0.04). Although CCSM3 and PCM1 show a significant trend of increase in 

precipitation for the future (𝑝 < 0.0001), RegCM3 displays a downward trend of 

precipitation (𝑝 = 0.02). For specific humidity (Fig. B.4c) the models exhibit an upward 

trend, which is significant (𝑝 < 0.0001). Note that there is a weak downward trend in the 

RegCM3 specific humidity for the historical time, which is not significant (𝑝 = 0.75). 

The upward trend in specific humidity is consistent with the observed warming trend in 

atmospheric temperature that leads to increased moisture content. Furthermore, it can be 

seen that the models exhibit a significant upward trend in downwelling longwave 

radiation time series (Fig. B.4d), which is consistent with the observed warming trend in 

temperature. The upward trend of downwelling longwave radiation in CCSM3 and PCM1 

is more significant than in RegCM3 during the historical time (see Table B.2). On 

average RegCM3 shows a higher inter-annual variability compared to the other models in 

particular in projection period. 

 

Table B.3 compares temporally averaged values of the annual domain mean and standard 

deviation of temperature, precipitation, specific humidity, and longwave radiation from 

three models for the historical and future periods.  
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Table B.3. Comparison of the mean annual domain average of the statistics (mean 𝜇 and 

standard deviation 𝜎) of the three modeled variables for the two historical and future periods. 

 

 

Models 

𝑻(K) 𝑷(mm) 𝑸(kg kg-1) 𝑳𝑾𝒅 (W m-2) 

𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

                   His 

CCSM3 

                   Fut 

299.01 

 

301.23 

0.28 

 

1.05 

2037.5 

 

2151.8 

88.94 

 

109.22 

0.0132 

 

0.0149 

2.60E-4 

 

8.21E-4 

389.72 

 

409.19 

2.27 

 

9.17 

                   His 

RegCM3 

                   Fut 

298.97 

 

301.80 

0.32 

 

1.26 

2019.6 

 

2136.5 

91.90 

 

143.13 

0.0143 

 

0.0155 

2.40E-4 

 

6.57E-4 

398.96 

 

419.29 

3.48 

 

8.30 

                   His 

PCM1 

                   Fut 

299.25 

 

300.01 

0.69 

 

0.81 

2029.7 

 

2146.5 

125.81 

 

148.66 

0.0163 

 

0.0173 

3.42E-4 

 

5.99E-4 

411.63 

 

424.39 

2.98 

 

6.39 

 

 

In particular, on average, the mean temperatures increased by 2.22, 2.83, and 0.76 °K, 

while comparing the historical years (1940-2009, 1960-1990, 1948-2009) with the future 

period (2010-2099) for CCSM3, RegCM3, and PCM1, respectively. Precipitation also 

increased 114.3, 116.9, and 116.8 mm in the bias corrected datasets, respectively. We 

need to note that the average RegCM3 precipitation has increased from historical to 

future period- conditioned to the fact that the data are missing from 1991 to 2009, which 

may affect the interpretation of the trends.  

 

The potential impact of climate change varies over the region. To highlight the potential 

regional impacts of climate change, Figure B.5 shows the difference of temporal averages 

of the bias-corrected modeled variables (𝑇, 𝑃, 𝑄, 𝐿𝑊𝑑) in the future from the 

corresponding ones in the historical period.  
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Figure B.5. From top-to-bottom: changes in temperature (𝑇 change), precipitation (𝑃 

change), specific humidity (Q change), and downwelling longwave radiation (𝐿𝑊𝑑 change). 

From left-to-right columns: changes in CCSM3, RegCM3, and PCM1. The outlet of the 

Amazon Basin, Manaus, Belem, Mato Grosso, and Bolivia are illustrated by numbers 1, 2, 3, 

4, and 5, respectively. 

 

 

This figure indicates that the potential impact of climate change on the differences is not 

evenly distributed over the study domain. The CCSM3, RegCM3, and PCM1 results 

show warmer areas over the eastern and the southern part of the Amazon Basin, while the 
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magnitude of the changes in the models are different. The strongest, intermediate, and 

moderate warming trends are in RegCM3, CCSM3, and PCM1, respectively. The 

warming effect is reported to be related to the deforestation trend over those regions 

(Davidson et al., 2012). The warmer areas are smaller over the northwest of the study 

domain. The PCM1 results indicate that temperature may decrease over the northern 

regions of the basin, where CCSM3 also shows a smaller increase of the surface 

temperature over the same northern regions.  

The CCSM3 and RegCM3 results show that  precipitation may increase over the western 

parts of the study domain while it may decrease over the eastern and central parts, in 

particular over the Bolivia and Mato Grosso (see Figure B.5), where the vast areas of the 

Amazon rainforest are deforested (Bagley et al., 2014). A decrease in precipitation over 

the eastern part of the Amazon Basin is also reported by Paiva and Clarke (1995); 

Reboita et al. (2014); Bombardi and Carvalho (2009). The PCM1 and CCSM3 results 

show large precipitation decreases around the Belem and large precipitation increases 

around the Manaus region (see Figure B.5), which is consistent with the results by Chu et 

al. (1994). This increase in precipitation occurs over the areas with the smaller increase in 

temperature.  

The models produce different patterns of changes in specific humidity. The pattern of 

changes in specific humidity is similar to those of precipitation in CCSM3 and RegCM3. 

This similarity can indicate that higher water content of the air can potentially increase 

the rainfall amount with the condition that the atmosphere has sufficient convective 

energy. For 𝐿𝑊𝑑 the variability of changes is smaller in PCM1 compared to the other 

models. The CCSM3 and RegCM3 results exhibit a relatively large positive change of 

𝐿𝑊𝑑 over the southwest (e.g. Bolivia), where the changes in temperature are large over 

that regions. Also the smaller changes of 𝐿𝑊𝑑 over the northwest of the study domain 

agree with the smaller changes in temperature. While the changes of 𝐿𝑊𝑑 is small over 

the southeast of the domain, where the temperature changes are large over the same 
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southeast regions. This might be due to the fact that 𝐿𝑊𝑑 depends not only on 

temperature but also on air emissivity and clouds. 

 

B.4. Summary and Conclusions 

 Efficient and effective long-term environmental management plans over the 

Amazon Basin require accurate climate datasets. This study provides bias-corrected 

climate datasets using the probability matching technique (EDCDF), which can be used 

as forcing for ecosystem and land surface modeling over Amazonia. It is important to 

note that the EDCDF method cannot explicitly correct biases for particular years (e.g., El 

Niño or La Niña years). In other words, if the model is unable to properly simulate a 

specific phenomenon, the EDCDF method is not capable to correct the biases associated 

with that specific phenomenon. A limitation of most bias correction methods, including 

distribution mapping, is the stationarity assumption. The advantage of using the EDCDF 

method is that it incorporates information from the projection period of the models to at 

least partially accommodate some features of potential future changes (Li et al., 2010). 

The use of a long record of observation (CRU) from the historical period does add 

robustness to the method.  

In general, CCSM3 tends to have a dry warm bias in most parts of the domain, while 

RegCM3 mostly shows a tendency to have a dry cool bias. These tendencies imply the 

presence of systematic errors in the models. Various schemes and parameterizations of 

the models may influence their performances over different months and locations. On 

average, RegCM3 exhibits smaller bias corrections (estimated differences) than those of 

CCSM3, for temperature and precipitation. This might be due to a better 

parameterization, for this domain, of clouds, and other related processes in RegCM3 

compared to CCSM3 (Milton and Wilson, 1996; Gregory et al., 1998; Smith, 1990). 

Furthermore, a better simulation of mesoscale patterns and topographic effects on 
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precipitation in RegCM3, compared with the GCMs, is reported by many studies (e.g., 

Reboita et al., 2014; Frei et al., 2003, 2006; Intergovernmental Panel on Climate Change, 

2007; Buonomo et al., 2007, among others).  

Bias-corrected annual CCSM3, RegCM3, and PCM1 temperature showed a clear 

warming trend under the A2 simulation of the future. Warming over the Amazon Basin 

may have positive feedback. In other words, an increase in temperature can increase the 

risk of fire and drought over the Amazon Basin, possibly amplifying temperature 

increases. All models also exhibit an upward trend in specific humidity and downwelling 

longwave radiation, which agrees with the warming trend of temperature. Although no 

significant trend of precipitation is observed in the models’ simulations of the historical 

period, the models do show different trends under the A2 simulation of the future. The 

RegCM3 results show a downward trend in precipitation while the CCSM3 and PCM1 

results show an upward trend of precipitation. The upward trend of precipitation in 

CCSM3 and PCM1 is more significant than the downward trend of precipitation in 

RegCM3. The CCSM3 and PCM1 outputs mostly show lower inter-annual variability 

than the RegCM3 outputs, especially during the simulations of the future.  

Results of the impacts of climate change at a regional scale revealed that the eastern and 

southern part of the region, where deforestation rate and risk of fire are high, experience a 

warmer and drier atmosphere under the A2 simulation of the future. Human activities 

such as deforestation and natural events such as El Niño may decrease precipitation over 

the Amazon (Malhi et al., 2008) and make it more susceptible to droughts and fires. The 

results, especially those of CCSM3 and RegCM3, indicate that north and northwestern 

parts of the region may experience an increasing trend in precipitation, which is strongly 

correlated with the observed increases in the air humidity.  
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APPENDIX C 

BIAS CORRECTION OF CLIMATE VARIABLES IN THE 

CALIBRATION PERIOD USING THE ANN MODEL 

 

 

 The developed ANN (see section 4.2) is used to correct the biases of the climate 

variables (temperature and precipitation). The network is trained by the training set in the 

calibration period. Then the trained network is used in the validation period to check the 

generalization ability.    

 

C.1. Temperature 

 To train and test the network, the 6-hourly historical CCSM data (ANN input) and 

MFD temperature (ANN target) from 1970 to 2008 are divided into two periods: 

I) 1970-1988 as a training dataset to adjust the ANN synoptic weights (calibration). 

II) 1989-2008 as a testing dataset to study the performance of the trained network 

(validation).  

 

 

Figures C.1 to C.12 show the statistics MSE, Bias, 𝜌, and 𝐾𝑆  resulting from the LR and 

ANN models during the calibration period (1970-1988). 
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Figure C.1. From top-to-bottom: Improvements of the MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) by the linear (LR) and nonlinear (ANN) methods for the calibration 

(Jan 1970-1998). 
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Figure C.2. Same as Fig. C.1 but for February. 
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Figure C.3. Same as Fig. C.1 but for March. 
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Figure C.4. Same as Fig. C.1 but for April. 
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Figure C.5. Same as Fig. C.1 but for May. 
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Figure C.6. Same as Fig. C.1 but for June. 
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Figure C.7. Same as Fig. C.1 but for July. 
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Figure C.8. Same as Fig. C.1 but for August. 
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Figure C.9. Same as Fig. C.1 but for September. 
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Figure C.10. Same as Fig. C.1 but for October. 
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Figure C.11. Same as Fig. C.1 but for November. 
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Figure C.12. Same as Fig. C.1 but for December. 
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C.2. Precipitation 

 To correct the biases of precipitation, we use seasonal historical CCSM 

precipitation (input to the ANN) and CRU precipitation (ANN target) from 1901 to 2013. 

The training set (the CCSM and CRU precipitation) is divided into two independent 

periods: 

I) 1901-1956 as a calibration period, used to train the network. 

II) 1957-2013 as a validation period, used to study the performance of the trained 

network. 

 

 

Figures C.13 to C.16 show the statistics MSE, Bias, 𝜌, and 𝐾𝑆  resulting from the LR and 

ANN models during the calibration period (1970-1988). 
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Figure C.13. From top-to-bottom: Improvements of the MSE (ImpMSE), Bias (ImpBias), 𝜌 

(Imp𝜌), and 𝐾𝑆 (Imp𝐾𝑆) by the linear (LR) and nonlinear (ANN) methods for the validation 

(MAM 1957-2013). 
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Figure C.14. Same as Fig. C.13 but for JJA. 
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Figure C.15. Same as Fig. C.13 but for SON. 
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Figure C.16. Same as Fig. C.13 but for DJF. 
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APPENDIX D 

LOCATIONS OF THE TRAINING PIXELS IN THE  

DELINEATED DOMAINS 

 

 

 

 The regression model is used to regionalize the study domain and identify the 

minimum number of training pixels necessary to achieve a good level of bias correction 

performance over the entire domain (see Chapter 5). 

 

 

D.1. Temperature 

 Results in Chapter 5 confirm that a small number of training pixels suffices to 

regionalize the procedure with prescribed accuracy. Locations (latitude and longitude) of 

the training pixels in the delineated domains (D1, D2, D3, D4, D5) for 70%, 80%, and 

90% performances in March and for 80% performance in other months are listed in the 

following tables. 
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Table D.1. Locations of the training pixels in the delineated domains for 70% performance 

corresponding to Fig. 5.1 in March.  

 

Domain Lat Lon 

D1 9.10S 47.81W 

18.91S 56.25W 

D2 2.10S 57.66W 

6.30S 68.91W 

D3 

 

2.10N 53.44W 

4.91N 57.66W 

D4 7.70N 64.69W 

4.91N 63.28W 

 

 

 

D5 

6.30N  74.53W 

10.50S 77.34W 

11.90S 73.125W 

7.70S 77.34W 

0.70S 75.94W 

20.31S 64.69W 

 

 

Table D.2. Same as Table D.1 but for 80% performance corresponding to Fig. 5.2 in March.   

 

Domain Lat Lon 

 

D1 

9.10S 47.81W 

16.11S 52.03W 

20.31S 45W 

 

D2 

0.70S 59.06 

10.51S 64.69W 

3.50S 68.91W 

 

D3 

  

4.90N 57.66W 

2.10N 54.84W 

3.50N 54.84W 

 

D4 

4.90 64.69W 

6.30N 64.69W 

9.10N 64.69W 

 

 

 

D5 

 

 

 

 

 

7.70S 75.94W 

4.90N 73.12W 

14.71S 73.12W 

10.51S 77.34W 

20.31S 68.91W 

0.70N 74.53W 

16.11S 66.09W 

13.31S 70.31W 

18.91S 66.09W 
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Table D.3. Same as Table D.1 but for 90% performance corresponding to Fig. 5.3 in March.   

 

Domain Lat Lon 

 

 

 

D1 

9.10S 47.81W 

23.11S 50.625W 

17.51S 40.78W 

14.71S 52.03W 

7.70S 42.19W 

17.51S 57.66W 

23.11S 46.41W 

 

 

 

 

D2 

7.70S 70.31W 

3.50S 52.03W 

7.70S 57.66W 

3.50S 47.81W 

0.70N 56.25W 

0.70N 60.47W 

0.70S 56.25W 

10.51S 56.25W 

2.10S 52.03W 

 

D3 

4.90N 57.66W 

2.10N 57.66 

3.50N 56.25W 

3.50N 53.44W 

 

 

D4 

7.70N 64.69W 

9.10N 64.69W 

6.30N 68.91W 

6.30N 61.875W 

3.50N 64.69W 

3.50N 63.28W 

 

 

 

 

 

D5 

13.31S 74.53W 

4.90N 73.125W 

16.11S 71.72W 

7.70S 75.94W 

14.71S 66.09W 

6.30S 78.75W 

20.31S 70.31W 

0.70N 75.94W 

2.10S 75.94W 

20.31S 64.69W 

21.71S 66.09W 

18.91S 68.91W 
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Table D.4. Same as Table D.2 but for January corresponding to Fig. 5.5.   

Domain Lat Lon 

D1 9.10S 47.81W 

14.71S 50.625W 

D2 4.90S 61.875W 

3.50S 52.03W 

D3 4.90N 54.84W 

3.50N 54.84W 

2.10N 54.84W 

 

D4 

3.50N 68.91W 

4.90N 64.69W 

9.105N 66.09W 

10.51N 70.31W 

 

 

 

 

D5 

 

 

 

 

 

6.30N 77.34W 

0.70N 74.53W 

17.51S 70.31W 

3.50N 73.125W 

16.11S 68.91W 

6.30S 77.34W 

10.51S 74.53W 

3.50S 75.94W 

14.71S 74.53W 

14.71S 70.31W 

 

Table D.5. Same as Table D.2 but for February corresponding to Fig. 5.6.   

Domain Lat Lon 

D1 9.10S 47.81W 

16.11S 56.25W 

D2 4.90S 46.41W 

4.90S 59.0625W 

 

 

D3 

0.70N 50.625W 

3.50N 57.66W 

3.50N 56.25W 

4.90N 59.0625W 

7.70N 60.47W 

0.70S 54.84W 

 

D4 

4.90N 64.69W 

6.30N 66.09W 

9.105N 64.69W 

7.70N 63.28W 

 

 

 

 

 

D5 

 

 

 

 

9.105S 75.94W 

14.71S 68.91W 

3.50N 75.94W 

0.70N 75.94W 

7.70N 75.94W 

11.91S 71.72W 

3.50N 74.53W 

21.71S 64.69W 

23.11S 67.50W 

6.30S 78.75S 
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Table D.6. Same as Table D.2 but for April corresponding to Fig. 5.7.   

 

Domain Lat Lon 

D1 9.10S 47.81W 

14.705S 50.63W 

D2 3.50S 54.85W 

11.90S 64.69W 

 

D3 

3.505N 57.66W 

2.10N 53.44W 

6.31N 60.47W 

 

D4 

3.505N 63.28W 

6.31N 67.50W 

6.31N 63.28W 

7.71N 67.50W 

 

 

 

 

D5 

4.90S 77.34W 

4.91N 74.53W 

13.30S 71.72W 

6.31N 74.53W 

0.70N 78.75W 

11.90S 74.53W 

20.31S 64.69W 

4.91N 73.125W 

16.106S 66.09W 

7.70S 78.75W 

11.90S 75.94W 
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Table D.7. Same as Table D.2 but for May corresponding to Fig. 5.8.   

 

Domain Lat Lon 

 

D1 

9.10S 47.81W 

10.51S 37.97W 

16.11S 46.41W 

14.71S 61.875W 

 

D2 

4.90S 60.47W 

2.10S 66.09W 

10.51S 64.69W 

 

D3 

6.30N 60.47W 

3.50N 57.66W 

2.10N 54.84W 

 

D4 

6.30N 64.69W 

3.50N 64.69W 

10.51N 68.91S 

3.50N 61.875W 

 

 

 

 

 

 

 

D5 

6.30S 74.53W 

4.90S 75.94W 

6.30S 75.94W 

10.51S 78.75W 

3.50S 75.94W 

11.91S 74.53W 

21.71S 68.91W 

21.71S 66.09W 

7.70S 75.94W 

20.31S 70.31W 

2.10N 77.34W 

7.70S 77.34W 

6.30S 80.16W 

2.10N 75.94W 

7.70S 78.75W 

10.51S 77.34W 
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Table D.8. Same as Table D.2 but for June corresponding to Fig. 5.9.   

 

Domain Lat Lon 

 

D1 

13.30S 45.00W 

9.10S 47.81W 

11.90S 39.38W 

20.31S 54.85W 

 

D2 

7.70S 61.88W 

3.50S 47.815W 

3.50S 66.09W 

D3 4.906N 53.44W 

2.10N 53.44W 

D4 4.906N 63.28W 

9.11N 66.09W 

 

 

 

 

 

D5 

14.705S 75.94W 

9.102S 75.94W 

2.098S 77.34W 

2.10N 77.34W 

4.90S 74.53W 

3.50S 80.16W 

13.30S 70.31W 

9.11N 74.53W 

9.102S 78.75W 

16.106S 66.09W 

11.90S 77.34W 

10.50S 77.34W 
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Table D.9. Same as Table D.2 but for July corresponding to Fig. 5.10.   

 

Domain Lat Lon 

 

D1 

6.30S 39.38W 

17.51S 45.00W 

20.31S 43.60W 

16.106S 63.28W 

 

D2 

0.70S 63.28W 

0.70S 68.91W 

7.70S 61.88W 

D3 4.91N 53.44W 

2.10N 53.44W 

 

D4 

9.11N 67.50W 

3.505N 63.28W 

3.505N 61.88W 

 

 

 

 

 

 

 

D5 

4.91N 75.94W 

6.31N 73.125W 

3.505N 77.34W 

3.505N 73.125W 

4.90S 77.34W 

2.10N 74.53W 

7.71N 73.125W 

21.71S 70.31W 

11.90S 71.72W 

10.50S 74.53W 

16.11S 71.72W 

14.705S 70.31W 

6.30S 78.75W 

10.50S 77.34W 
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Table D.10. Same as Table D.2 but for August corresponding to Fig. 5.11.   

 

Domain Lat Lon 

 

D1 

4.90S 37.97W 

7.70S 40.78W 

14.705S 50.63W 

20.31S 47.815W 

 

D2 

0.70N 59.06W 

0.70N 64.69W 

4.90S 61.88W 

10.50S 68.91W 

 

D3 

4.906N 59.06W 

3.505N 56.25W 

0.70S 56.25W 

 

 

D4 

3.505N 67.50W 

6.31N 63.28W 

9.11N 68.91W 

9.11N 67.50W 

 

 

 

 

 

D5 

3.505N 71.72W 

7.71N 73.125W 

2.10N 71.72W 

6.31N 75.94W 

11.90S 70.31W 

17.51S 70.31W 

7.70S 75.94W 

2.10N 73.125W 

0.70N 77.34W 

16.106S 73.125W 

10.50S 74.53W 

14.705S 74.53W 

9.102S 77.34W 
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Table D.11. Same as Table D.2 but for September corresponding to Fig. 5.12.   

 

Domain Lat Lon 

 

D1 

9.10S 47.81W 

7.70S 39.38W 

6.30S 47.81W 

18.91S 45.00W 

D2 4.90S 56.25W 

4.90S 66.09W 

 

D3 

0.70S 50.63W 

3.505N 54.85W 

2.098S 52.03W 

 

 

D4 

6.31N 68.91W 

7.71N 64.69W 

3.505N 68.91W 

9.11N 68.91W 

 

 

 

 

 

 

D5 

0.70N 75.94W 

9.11N 75.94W 

4.906N 71.72W 

7.71N 74.53W 

21.71S 70.31W 

2.098S 75.94W 

9.11N 78.75W 

3.505N 75.94W 

10.50S 74.53W 

6.31N 73.125W 

21.71S 66.09W 

16.106S 67.50W 

13.30S 74.53W 

9.102S 77.34W 
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Table D.12. Same as Table D.2 but for October corresponding to Fig. 5.13.   

 

Domain Lat Lon 

 

D1 

9.10S 47.81W 

4.90S 40.78W 

18.91S 42.19W 

7.70S 39.38W 

D2 3.50S 60.47W 

7.70S 67.50W 

 

D3 

3.505N 52.03W 

0.70S 50.63W 

2.098S 53.44W 

 

D4 

4.906N 68.91W 

7.71N 61.88W 

6.31N 68.91W 

 

 

 

 

 

 

 

D5 

 

7.71N 71.72W 

9.11N 75.94W 

6.30S 77.34W 

2.10N 77.34W 

4.906N 73.125W 

16.106S 73.125W 

0.70S 75.94W 

9.11N 73.125W 

10.50S 77.35W 

4.90S 80.16W 

11.90S 75.94W 

13.30S 68.91W 

14.705S 74.53W 

16.106S 66.09W 

13.30S 75.94W 

16.106S 67.50W 
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Table D.13. Same as Table D.2 but for November corresponding to Fig. 5.14.   

 

Domain Lat Lon 

 

D1 

9.10S 47.81W 

6.30S 40.78W 

16.106S 56.25W 

7.70S 43.60W 

 

D2 

6.30S 61.88W 

0.70S 66.09W 

7.70S 64.69W 

 

D3 

0.70N 52.03W 

3.505N 52.03W 

6.31N 59.06W 

 

 

D4 

3.505N 68.91W 

3.505N 66.09W 

7.71N 61.88W 

6.31N 67.50W 

 

 

 

 

 

 

 

D5 

3.50S 75.94W 

4.906N 73.125W 

0.70N 74.53W 

6.30S 77.34W 

9.11N 78.76W 

16.106S 71.72W 

0.70S 75.94W 

4.906N 71.72W 

3.50S 78.75W 

13.30S 68.91W 

13.30S 75.94W 

7.70S 78.75W 

16.106S 66.09W 

21.71S 66.09W 
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Table D.14. Same as Table D.2 but for December corresponding to Fig. 5.15.   

 

Domain Lat Lon 

 

D1 

9.10S 47.81W 

14.705S 52.03W 

6.30S 40.78W 

D2 3.50S 57.66W 

7.70S 64.69W 

 

D3 

2.10N 52.03W 

4.906N 57.66W 

2.098S 53.44W 

 

 

D4 

3.505N 64.69W 

4.906N 64.69W 

6.31N 61.88W 

9.11N 64.69W 

 

 

 

 

 

 

 

 

D5 

9.11N 78.75W 

3.50S 75.94W 

7.70S 74.53W 

3.505N 77.34W 

3.505N 73.125W 

4.90S 77.34W 

23.11S 70.31W 

13.30S 70.31W 

18.91S 64.69W 

17.51S 70.31W 

23.11S 67.50W 

11.90S 71.72W 

3.505N 74.53W 

11.90S 73.125W 

14.705S 74.53W 

6.30S 78.75W 

10.50S 77.34W 
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D.2. Precipitation 

 The training pixels listed in the following tables can be considered as the 

minimum number of training pixels that are required to get a desired performance at the 

validating pixels (VlP) in precipitation regionalization. 

 

 

Table D.15. Locations of the training pixels for 70% performance corresponding to Fig. 5.16.  

 

Domain Lat Lon 

 

 

D1 

18.91S 61.88W 

21.71S 61.88W 

16.11S 59.06S 

9.10S 42.19W 

14.70S 49.22W 

13.30S 56.25W 

 

 

D2 

7.70S 53.44W 

4.90S 73.12W 

2.10S 68.91W 

3.50S 52.03W 

9.10S 66.09W 

2.10S 49.22W 

 

 

D3 

0.70N 53.44W 

2.10N 56.25W 

2.10N 54.85W 

4.91N 56.25W 

3.50N 54.85W 

 

D4 

10.51N 68.91W 

4.91N 66.09W 

3.50N 64.69W 

6.31N 70.31W 

 

 

 

D5 

21.71S 68.91W 

17.51S 70.31W 

17.51S 67.50W 

11.90S 74.53W 

14.70S 68.91W 

11.90S 73.12W 

4.90S 78.75W 

4.91N 75.94W 
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Table D.16. Same as Table D.15 but for 80% performance corresponding to Fig. 5.17.   

 

Domain Lat Lon 

 

 

D1 

18.91S 60.47W 

9.10S 39.38W 

11.90S 52.03W 

10.50S 42.19W 

17.51S 56.25W 

13.30S 53.44W 

9.10S 47.81W 

 

 

 

 

D2 

10.50S 60.47W 

3.50S 53.44W 

2.10S 63.28W 

7.70S 61.88W 

2.10S 50.63W 

0.70S 57.66W 

2.10N 70.31W 

3.50S 46.41W 

2.10S 45.00W 

 

 

D3 

2.10N 59.06W 

0.70N 52.03W 

2.10N 56.25W 

6.31N 60.47W 

3.50N 56.25W 

 

 

D4 

9.11N 70.31W 

6.31N 68.91W 

6.31N 64.69W 

6.31N 63.28W 

3.50N 63.28W 

 

 

 

 

D5 

20.31S 68.91W 

18.91S 67.50W 

17.51S 70.31W 

16.11S 70.31W 

2.10S 78.75W 

9.10S 77.33W 

3.50N 75.94W 

3.50S 75.94W 

0.70S 74.53W 

0.70N 75.94W 
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Table D.17. Same as Table D.15 but for 90% performance corresponding to Fig. 5.18.   

 

Domain Lat Lon 

 

 

 

 

 

 

D1 

18.91S 61.88W 

21.71S 61.88W 

11.90S 52.03W 

20.31S 50.63W 

21.71S 53.44W 

18.91S 54.85W 

20.31W 40.78W 

13.30S 53.44W 

9.10S 52.03W 

9.10S 42.19W 

17.51S 46.41W 

7.70S 45.00W 

9.10S 46.41W 

6.30S 39.38W 

 

 

 

 

 

 

D2 

6.30S 56.25W 

9.10S 61.88W 

11.90S 66.09W 

6.30S 74.53W 

4.90S 71.72W 

6.30S 73.12W 

9.10S 64.69W 

7.70S 71.72W 

3.50S 74.53W 

2.10S 67.50W 

2.10S 64.69W 

3.50S 67.50W 

3.50S 46.41W 

2.10S 45.00W 

3.50S 40.78W 

 

 

 

D3 

0.70S 53.44W 

0.70S 50.63W 

0.70N 54.85W 

4.91N 60.47W 

0.70N 53.44W 

3.50N 56.25W 

6.31N 59.06W 

 

 

 

D4 

7.71N 66.09W 

6.31N 63.28W 

4.91N 70.31W 

4.91N 66.09W 

3.50N 64.69W 

3.50N 66.09W 

7.71N 70.31W 

4.91N 63.28W 
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Table D.17. Continued. 

 

 

 

 

 

 

 

 

 

 

D5 

20.31S 68.91W 

18.91S 68.91W 

20.31S 66.09W 

17.51S 70.31W 

20.31S 64.69W 

13.30S 71.72W 

16.11S 70.31W 

10.50S 75.94W 

4.90S 78.75W 

7.71N 75.94W 

16.11S 64.69W 

4.90S 75.94W 

3.50S 80.16W 

2.10S 74.53W 

2.10S 75.94W 

6.31N 74.53W 

0.70N 75.94W 
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Table D.18. Same as Table D.16 but for JJA corresponding to Fig. 5.20.   

 

Domain Lat Lon 

 

 

D1 

14.70S 43.60W 

9.10S 45.00W 

17.51S 42.19W 

18.91S 43.60W 

18.91S 50.63W 

 

 

 

D2 

4.90S 45.00W 

10.50S 64.69W 

7.70S 60.47W 

3.50S 60.47W 

2.10S 61.88W 

2.10S 64.69W 

2.10N 67.50W 

2.10S 67.50W 

 

 

 

D3 

2.10S 50.63W 

0.70S 54.85W 

2.10S 56.25W 

2.10S 53.44W 

2.10N 53.44W 

4.91N 59.06W 

 

 

D4 

9.11N 63.28W 

9.11N 67.50W 

6.31N 61.88W 

3.50N 66.09W 

6.31N 66.09W 

 

 

 

 

D5 

21.71S 66.09W 

14.70S 71.72W 

21.71S 68.91W 

18.91S 63.28W 

0.70S 78.75W 

7.70S 74.53W 

4.91N 75.94W 

16.11S 66.09W 

4.90S 74.53W 
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Table D.19. Same as Table D.16 but for SON corresponding to Fig. 5.21.   

 

Domain Lat Lon 

 

 

 

D1 

3.50S 40.78W 

4.90S 45.00W 

18.91S 53.44W 

20.31S 56.25W 

21.71S 49.22W 

10.50S 50.63W 

14.70S 49.22W 

 

 

 

D2 

0.70N 60.47W 

11.90S 61.88W 

3.50S 59.06W 

6.30S 68.91W 

4.90S 52.03W 

6.30S 53.44W 

 

 

D3 

2.10S 45.00W 

0.70N 56.25W 

2.10S 53.44W 

2.10S 50.63W 

 

 

D4 

9.11N 66.09W 

7.71N 70.31W 

7.71N 68.91W 

6.31N 61.88W 

4.91N 67.50W 

3.50N 66.09W 

 

 

 

 

 

D5 

14.70S 74.53W 

18.91S 68.91W 

21.71S 66.09W 

11.90S 75.94W 

2.10S 78.75W 

11.90S 73.12W 

0.70N 77.34W 

6.30S 75.94W 

14.70S 64.69W 

7.71N 75.94W 

4.91N 71.72W 
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Table D.20. Same as Table D.16 but for DJF corresponding to Fig. 5.22.   

 

Domain Lat Lon 

 

 

D1 

18.91S 61.88W 

9.10S 39.38W 

23.11S 53.44W 

23.11S 50.63W 

18.91S 47.81W 

 

 

D2 

7.70S 52.03W 

6.30S 60.47W 

7.70S 73.12W 

9.10S 63.28W 

2.10S 45.00W 

 

D3 

0.70N 53.44W 

2.10S 50.63W 

0.70N 52.03W 

4.91N 53.44W 

 

D4 

6.31N 67.50W 

6.31N 66.09W 

9.11N 70.31W 

3.50N 67.50W 

 

 

 

D5 

21.71S 68.91W 

6.30S 78.75W 

4.90S 78.75W 

6.31N 75.94W 

6.30S 75.94W 

0.70N 75.94W 

10.50S 73.12W 
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