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SUMMARY 

 
 This dissertation focuses on utilization of pNIPAm based mirogels for regulated 

macromolecule drug delivery applications. There is particular emphasis on incorporation 

of stimuli responsive materials into multi-layer thin film constructs with the main goal 

being fabrication of highly functional materials with tunable release characteristics. 

Chapter 1 gives a broad overview of hydrogel and microgel materials focusing on 

fundamental properties of pNIPAm derived materials. Chapter 2 illustrates the 

progression of controlled macromolecule release from hydrogel and microgel materials 

and sets up the scope of this thesis work. Chapter 3 details studies on thermally 

modulated insulin release from microgel thin films where extended pulsatile release 

capabilities are shown. Chapters 4 and 5 focus on more fundamental synthesis and 

characterization studies of PEG and acrylic acid modified pNIPAm microgels that could 

ultimately lead to the design of protein loaded microgel films with tunable release 

characteristics. Chapter 6 illustrates fundamental macromolecule loading strategies, 

which could also prove useful in future protein drug delivery design using stimuli 

responsive networks. Chapter 7 concentrates on direct insulin release studies that probe 

the interaction between entrapped and freely diffusing protein and microgels. These 

model experiments could prove useful in design of tunable macromolecule drug release 

from functionally modified microgels and could aid in the tailored design of peptide-

loaded microgel thin films. Chapter 8 discusses the future outlook of controlled 

macromolecule release from microgel based materials.

 xvi



CHAPTER 1 
 
 

INTRODUCTION 
 

 
 This chapter gives a broad overview of hydrogel and microgel based materials. It 

pays particular attention to networks fabricated from the thermoresponsive monomer, N-

Isopropylacrylamide (NIPAm). It focuses on synthesis, characterization and properties of 

these unique sets of materials. 

 

1.1 Hydrogel Materials 

1.1.1 Definition and Classification of Hydrogels 

Hydrogels, by definition, are three-dimensional cross-linked polymeric networks 

that can imbibe large amounts of water.1-4 These materials are generally classified into 

one of two categories based on their cross-linking chemistry.5 The first category entails 

physical gels which are defined as polymeric networks that are bound together via 

polymer chain entanglement and/or non-covalent interactions that exist between polymer 

chains.1,3,6,7 The attractive forces holding these networks together are typically based on 

hydrogen bonding, electrostatic or hydrophobic interactions and thus, the gels can be 

reversibly dissolved under certain conditions that would weaken these attractive forces, 

i.e. a change in pH.  

In contrast to these weak physically cross-linked networks, the other general class 

of hydrogels is chemically cross-linked gels. These hydrogels exhibit improved stability 

due to the formation of covalent bonds between different polymer chains throughout the 

networks and display endurance with respect to network structure.1,5,8 These gels are 

 1



commonly formed through monomer polymerization in the presence of a cross-linking 

agent, which is typically a monomer with at least two polymerizable functional moieties. 

Beyond this simple classification of hydrogel materials based on cross-linking 

chemistry, these networks can also be categorized on the basis of their responsivity or 

lack thereof. Non-responsive gels are simple polymeric networks that dramatically swell 

upon exposure to water. Responsive gels, on the other hand, have added functionality and 

display changes in solvation in response to certain stimuli such as temperature,9 pH,10,11 

ionic strength,12-14 light,15-19 and electric field.20 Hence, this effect has broad implications 

in many arenas including biotechnology and biomedicine.21 Reversible volume changes 

(sometimes as large as several hundred times the original volume) in response to minute 

changes in external environmental conditions have been thoroughly reported for a variety 

of gels derived from polymeric networks.20,22,23  

Yet another area in which hydrogel materials can be categorized is based on gel 

dimensions. Typically, hydrogels can be categorized as either macrogels or microgels. 

Macrogels are bulk, monolithic networks that typically range in size from millimeters or 

greater.9,23-26 Microgels, on the other hand, are defined as colloidally stable, water 

swellable polymeric networks whose diameter typically ranges from 100 nm to 1 

 µm.10,27-34 While microgels internally have the same gel structure as their macroscopic 

version, microgels and macrogels are physically different. Microgel particles have 

surface to volume ratios that are several orders of magnitude larger than those existing in 

bulk gels.35 The synthesis of microgel particles typically involves a nucleation, 

aggregation and growth mechanism that ultimately results in a non-uniform distribution  
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of polymer chains throughout the network.35,36 Macrogels, on the other hand are typically 

prepared under conditions that result in fairly homogenous structures.35  

 

1.1.2 Poly(N-Isopropylacrylamide) Hydrogels 

As previously described, hydrogels are cross-linked polymeric networks that can 

take up immense quantities of solvent. Poly (N-alkyl acrylamides) have been extensively 

studied with respect to their thermoresponsivity27,37,38 with poly(N-isopropylacrylamide) 

(pNIPAm) being one of the most strongly explored temperature sensitive hydrogels 

within this group.8,27,38-41 The main incentive behind studies of pNIPAm has been its 

unique thermal behavior in aqueous solution that manifests itself in inverse solubility 

upon heating.42  

The behavior of a polymer in aqueous media is a delicate balance between 

polymer-polymer versus polymer-solvent interactions where the solvent-solvent 

interactions that exist in water are especially strong, thus causing them to have some 

ordered structure.42,43 When pNIPAm is solvated in water, there is ordering of the water 

molecules that results from hydrogen bonding. This ordering is quite important when the 

water molecules must reorient themselves around nonpolar areas, resulting in what is 

known as the hydrophobic effect.42,43 This hydrophobic effect is what causes these unique 

systems to experience a reversible volume phase transition (VPT) at a lower critical 

solution temperature (LCST) where the hydrogel backbone collapses upon itself, thereby 

expelling water in an entropically favored fashion. Isopropyl groups in the pNIPAm 

sidechains play an important role in this temperature dependent phase separation above 

the LCST.41 The temperature at which this coil-to-globule transition occurs is 
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approximately 31 °C,27,44-46 with this temperature being dependent on the identity of the 

N-alkyl group. Below the LCST, the gel is swollen, hydrated and hydrophilic.47 In this 

state, the powerful hydrogen bonding between water molecules and the hydrophilic 

amide groups exceeds the unfavorable free energy related to exposure of hydrophobic 

isopropyl groups to water.35,48 Above the LCST, the gel becomes collapsed, dehydrated 

and hydrophobic47 due to disruption of the water-polymer hydrogen bonding, allowing 

for intra- and inter-chain hydrogen bonding and attractive hydrophobic interactions to 

dominate.35,48 This leads to entropically driven phase separation48 where the entropy term 

dominates the enthalpy of hydrogen bonding between polar polymer groups and water.42 

The diminished rotational freedom of the polymer chains is compensated for by an 

entropic gain accomplished by release of structured water surrounding polymer 

hydrophobic groups.48 Above the LCST, the overall free energy change becomes positive 

upon mixing and phase separation occurs.42 A diagram depicting this phase transition 

event can be seen in Figure 1-1. The phase transition behavior of pNIPAm hydrogel 

networks has been investigated using a variety of detection modes including UV/vis 

spectroscopy, light scattering, differential scanning calorimetry, viscometry and 

fluorescence spectroscopy.44-46,49-54 
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Figure 1-1. Diagram depicting the water dissociation process that occurs when pNIPAm 
hydrogel networks deswell. At temperatures below the LCST value of pNIPAm, water 
acts as a good solvent for the polymer chains forming hydrogen bonds with the amide 
hydrogens. When the temperature is raised above the LCST value, however, polymer-
polymer interactions become dominant expelling water in an entropically favored 
fashion. 
 

 

 

1.1.3 Macroscopic Poly(N-isopropylacrylamide) Hydrogels 

Macroscopic bulk pNIPAm based hydrogels have been extensively studied over  

the past few decades due to the fact that these gels adopt the inherent thermoresponsive 

nature of the parent polymer that they are fabricated from. The dimensions of these 

networks typically fall within the millimeter scale. The thermosensitivity of these 

monolithic networks can be modulated based on cross-linker content and/or identity and 

also by the addition of hydrophilic and/or hydrophobic comonomers. Extensive work has 

been reported by Tanaka et al. that investigated the deswelling kinetics of such gels.9,20,23-
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26 In particular, they have shown that the rate at which these networks collapse is 

inversely proportional to the square of the smallest dimension of the gel.9,55 Due to this 

relationship, bulk gels can take up to hours or even days to fully collapse. One reason for 

this slow response is that when a swollen pNIPAm gel is subjected to temperatures above 

the LCST, deswelling immediately starts at the surface of the network, thus forming a 

dense skin layer.56,57 This layer acts as a barrier retarding the diffusion of water out of the 

collapsed network. This dependence of deswelling rate on gel size and skin layer effect 

limits the applications of these macroscopic gels if fast deswelling rates are desired. 

Incorporation of functional moieties within hydrogel materials that alter the 

hydrophilic/hydrophobic balance is another area that has been heavily explored. 

Typically, addition of hydrophobic comonomers decreases the LCST while incorporation 

of hydrophilic comonomers elevates the LCST of thermoresponsive hydrogels due to 

changes in the free energy of mixing.48 It is well-known that cross-linked polymeric 

networks that bear weakly ionizable pendant groups absorb water in a pH dependent 

fashion.47 pH sensitive hydrogels are typically prepared by copolymerization of weakly 

ionizable electrolytes into the polymer networks.58 Variations in solution pH induce 

modulation of overall network ionization which causes significant differences in swelling 

behavior.59 Typically, if a gel contains acidic groups, the swelling increases as the 

solution pH increases.60,61 Conversely, a gel containing weak basic moieties decreases in 

size as the pH is elevated.62 A commonly studied incorporated comonomer has been 

acrylic acid.63 The effect of pH modulation on the swelling properties of these acid 

modified pNIPAm based systems has been studied in great detail.21,35,47,64-66 Use of dually 

responsive temperature and pH sensitive hydrogel materials for controlled drug delivery 
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applications has also been increasingly examined.67-69 Typically these doubly responsive 

networks exhibit controlled deswelling kinetics and a variety of release profiles can be 

obtained based on the ability to turn on and turn off release in response to the squeezing 

ability of these gels.67 Studies on acid-incorporated and poly(ethylene glycol) (PEG)-

modified systems have also been performed56 and are also highly applicable for drug 

release devices.69,70 

    

1.2 Microgel Materials 

In contrast to slowly responding macrogels, discrete microgels are colloidally 

stable cross-linked polymeric networks on the size scale of nanometers to micrometers.27 

As previously discussed, the deswelling process is controlled by diffusion where the rate 

of collapse is strongly correlated to the gel dimension.66 Tanaka and Fillmore (TF) 

developed a theory on deswelling kinetics that was based on the concept of cooperative 

diffusion.55 According to the TF theory, 

τ ≈ R2/D     (1) 

where τ, R and D are the time of gel swelling or collapse, gel size and cooperative 

diffusion coefficient, respectively. According to this relation, the most obvious way to 

achieve faster response rates is to decrease the size of the gel.66 Microgels, therefore, 

because of their significantly decreased size, deswell at rates much faster than bulk gels. 

The deswelling rates of temperature induced microgel collapse are typically on the 

microseconds timescale.71  
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1.2.1 Poly(N-isopropylacrylamide) Microgels 

Microgel networks, just like macrogels, are extremely solvent swollen 

(approximately 95 % by volume) in their hydrated state and contain approximately 20 % 

solvent in their deswollen state.27 An example of the typical volume phase transition 

behavior of pNIPAm based microgels can be seen in Figure 1-2. At low temperatures  

 

 

 

 

Figure 1-2. Example of a volume phase transition curve obtained via DLS. At low 
temperatures (below the characteristic LCST value of 31 °C), the microgels display an 
average hydrodynamic radius of approximately 200 nm. At temperatures above the 
LCST, the microgels deswell to approximately 90 nm in radius. The corresponding light 
scattering profile shows that when the microgels are swollen at low temperatures, little 
scattered light is detected but upon particle collapse, the microgels deswell into dense 
globules, thereby increasing the refractive index contrast. This results in a dramatic 
increase in detected scattered light. 
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(below the characteristic LCST value of 31 °C), the microgels display an average 

hydrodynamic radius of approximately 200 nm. At temperatures above the LCST, 

however, the microgels deswell and dramatically decrease in size to approximately 90 nm 

in radius. The corresponding light scattering profile illustrates that when the microgels 

are swollen at low temperatures, little scattered light is detected. This is due to the fact 

that in this highly hydrated state, the network is highly index matched to its environment. 

But, upon particle collapse, the microgels become dense globules, thereby increasing the 

refractive index contrast. This results in a dramatic increase in detected scattered light. 

The versatility of pNIPAm microgels has been realized in modulation of the  

volume phase transition behavior through adjustment of the cross-linker identity and/or 

concentration, as well as incorporation of various comonomers. Many studies of pNIPAm 

based microgels have utilized the well-known cross-linker N, N’-

Methylene(bisacrylamide) (BIS).10,31-35,72-76 The overbearing choice for this cross-linker 

is most likely due to its structural resemblance to NIPAm along with its sustained 

precedence in polyacrylamide gels used in electrophoresis.42 Work done in our group and 

by others has focused on fundamental synthesis and characterization of BIS cross-linked 

pNIPAm microgels10,35 where it has been shown that there exists a cross-linking density 

gradient that radially decreases from the microgel interior outwards.77  

Incorporation of functional moieties within pNIPAm based microgel materials 

that alter the hydrophilic/hydrophobic balance as well as swelling capacity is another area 

that has been widely explored where the main application has been drug delivery.64,69,78,79 

Work performed earlier in our group investigated tunable swelling kinetics of 

hydrophobically modified core/shell hydrogel nanoparticles.31 Other studies done 
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previously in our group focused on incorporation of acrylic acid as a pH sensitive 

comonomer in core/shell materials that resulted in pH induced swelling phenomena.10 

These acrylic acid modified systems also proved useful for polyelectrolyte deposition 

onto charged substrates via electrostatics75 which found employment in controlled uptake 

and release of various model drug compounds.74,76  

 

1.2.2 PNIPAm Based Microgel Synthesis 

Microgel particles composed primarily of pNIPAm can be synthesized using a  

variety of techniques including emulsion polymerization80,81 and thermally induced free-

radical precipitation polymerization.10,27,31-33,73,75 The synthetic route by which all of the 

microgels discussed in this work have been fabricated is precipitation polymerization. In 

all of the syntheses performed, NIPAm served as the main monomer. Two different types 

of cross-linkers were explored. The first was BIS, a relatively short and rigid cross-linker, 

while the second was a more flexible oligomeric cross-linker, PEG diacrylate. Acrylic 

acid comonomer was also employed in certain cases to allow for pH sensitivity. The 

chemical structures of all of these monomers can be seen in Figure 1-3. 

 

 

 

 10



 

 

Figure 1-3. Chemical structures for N-isopropylacrylamide (NIPAm), N, N’-
Methylene(bisacrylamide) (BIS), acrylic acid and poly(ethylene glycol) (PEG) diacrylate. 
These are the monomers utilized throughout this thesis work. 
 

 

The details of temperature induced free-radical precipitation polymerization used 

in these studies are as follows. Sodium dodecyl sulfate (SDS) was used as the stabilizing 

surfactant while ammonium persulfate (APS) was used as the free radical initiator. The 

NIPAm monomer, cross-linker and surfactant were dissolved in nanopure water and then 

filtered through a 0.2 µm nylon membrane filter to remove any large particulate matter 

that could act as unwanted nuclei in the reaction. This dissolved solution was 

continuously stirred in a three-neck, 250 mL round-bottom flask. This solution was 

heated to 70 ºC while being purged with N2 gas. This purging was necessary to remove 

any dissolved oxygen that could act as a free-radical scavenger that may interfere with 
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the polymerization process. Approximately one hour later, the temperature of the solution 

was stable at 70 ºC. Fifteen minutes later, the reaction was initiated by adding a hot (70 

ºC) solution of APS. The solution turned turbid within 10 minutes, indicating successful 

initiation. The reaction proceeded for approximately 6 hours under a constant stream of 

nitrogen gas. Following synthesis, the microgels were cooled and filtered using a P2 

Whatman filter paper. They were then dialyzed (using 10, 000 MWCO) for 2 weeks 

against nanopure water with a daily exchange of fresh water. For the synthesis of pH 

sensitive microgels, acrylic acid was added approximately 15 minutes prior to the 

addition of the initiator. A scheme depicting microgel synthesis using this technique is 

illustrated in Figure 1-4. This synthetic process results in the fabrication of monodisperse 

microgel particles. 
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Figure 1-4. Synthesis scheme for pNIPAm based microgel particles. The monomers and 
surfactant (SDS) are all dissolved in water and this solution is heated to 70 °C. The 
polymerization is then initiated by addition of the free-radical initiator (APS). For pH 
sensitive microgel synthesis, the comonomer acrylic acid can be incorporated.  
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The route by which these microgels grow in solution is a typical nucleation, 

aggregation and growth mechanism.27 An illustration of this mechanism is shown in 

Figure 1-5. It is important to note that all of these syntheses are carried out at 70 °C, 

which is a temperature well above the LCST of the polymer. This high temperature 

allows the thermal free-radical initiator (APS) to act effectively. It also aids in the 

nucleation process. Once the free-radical initiator is added to the heated monomer 

solution, growing oligoradical chains are formed immediately. These chains keep 

growing until a critical chain length is reached, after which these chains hydrophobically 

collapse upon themselves forming precursor particles. The reason for this collapse is 

because the polymer phase separates at temperatures above its LCST. It is onto these 

precursor particles that other growing oligoradical chains can attach, thereby forming  

  

 

 

  

Figure 1-5. Schematic depicting the mechanism by which pNIPAm based microgel 
particles grow during free-radical precipitation polymerization. Once initiator is added to 
the heated monomer solution, growing oligoradicals form in solution. Once these 
growing chains reach a critical chain length, the chain collapses and forms precursor 
particles. To these precursor particles, other growing oligoradicals can attach until all 
monomer is exhausted, resulting in the formation of colloidally stable microgel particles. 
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growing particles that keep maturing until all of the monomer has been exhausted. The 

size of these microgel particles can be tuned by modulating the concentration of 

stabilizing surfactant as well as initiator. Typically, higher surfactant concentration 

results in smaller microgels and vice versa. Previous work done in our group has focused 

on expanding upon this fundamental synthetic technique whereby various functionalities 

have been spatially localized in pNIPAm core/shell microgels.10,31-34,72  

 

1.2.3 PNIPAm Based Microgel Characterization 

Characterization of pNIPAm based microgels can be achieved with a variety of  

techniques,27 including dynamic light scattering,82-85 differential scanning calorimetry14 

and neutron scattering.86-89 In this dissertation, dynamic light scattering (DLS) has been 

the most commonly used technique to characterize the phase transition behavior of the 

microgel particles. This detection mode will hence be discussed in detail. 

 For all of the DLS experiments performed in this work, a Protein Solutions 

DynaPro-MS/X system was utilized. A schematic of this setup is illustrated in Figure 1-6. 

The laser source uses a wavelength of 784.8 nm. This light hits the ultradilute microgel 

dispersion and scattered light at 90 °C with respect to the incident light is detected by an 

avalanche photodiode detector. This signal is then sent to an autocorrelator board which 

relays the signal to a CPU. DLS monitors fluctuations in scattered light intensity and 

these fluctuations are analyzed in terms of correlation functions. From the autocorrelation 

function, a relaxation rate can be determined which is directly proportional to the 

translational diffusion coefficient. With the assumption of random Brownian motion, the  
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Figure 1-6. Schematic of Dynamic Light Scattering (DLS) setup. An ultradilute colloid 
dispersion is placed in the sample cuvette and scattered light is detected at 90 °C with 
respect to the incident light. The detected signal goes to the autocorrelator, an 
autocorrelation function is calculated, from which translational diffusion coefficients of 
the particles in solution are derived.  
 
 
 

hydrodynamic radius of the dispersed microgels can be calculated using the Stokes-

Einstein equation 

Rh = kbT/6πηD    (2) 

where Rh is the hydrodynamic radius, kb is the Boltzman constant, T is the temperature, η 

is the viscosity and D is the diffusion coefficient. 

 This chapter gave a broad overview of synthesis, characterization and unique 

properties of hydrogel and microgel based materials. This sets up the next chapter which 

focuses on controlled macromolecule release from such responsive systems. The next 
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chapter deals with the progression of advancements made in the field of modulated 

biomolecule delivery devices and sets the overall scope of this thesis work. 
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CHAPTER 2 
 
 
 
 

CONTROLLED MACROMOLECULE RELEASE  
FROM HYDROGEL MATERIALS 

 
 
 

 
 Given the broad overview of hydrogel and microgel materials discussed in the 

previous chapter, this chapter delves into the specific application of regulated 

macromolecule drug delivery from both sets of materials. This chapter serves to illustrate 

the progression of macromolecular release devices studied within the past decade and 

ultimately casts the purpose of this thesis work. 

 

2.1 Drug Delivery from Hydrogel Based Materials  

Over the past decade, great strides have been made in the fields of controlled and 

targeted drug delivery. As discussed previously, hydrogels are three-dimensional 

polymeric networks that can imbibe large amounts of water. Thus, they have been 

extensively studied as a vehicle for controlled drug release systems due to their high 

water content, soft tissue-like consistency, and potential biocompatibility.1-5 Stimuli-

responsive hydrogels, which experience changes in swelling in response to perturbations 

in external conditions, have found great use as novel materials in controlled drug delivery 

applications.6-11 Poly(N-isopropylacrylamide) (pNIPAm), one of the most commonly 

utilized temperature sensitive hydrogels, displays reversible volume phase transition 

behavior at the characteristic lower critical solution temperature (LCST) value of 31 °C.12 

During this deswelling event the polymer goes from a highly solvated swollen state to a 
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collapsed dehydrated globule. This squeezing phenomenon has been utilized as a 

mechanism to control uptake and release of various model drug compounds. Microgels, 

discrete sub-micron sized spherical hydrogel networks,12-14 are another subclass of 

hydrogels that have also been extensively pursued for drug release studies,15-20 

considering the fact that they display the same stimuli responsive nature that the parent 

polymer exhibits but, at a faster rate. 

 

2.2 Macromolecule Release from Hydrogels 

Advances in the development of protein therapeutic agents9 has created the need  

for design of controlled drug delivery vehicles, driven by a number of components.21 For 

instance, these devices when used in vivo help to protect the protein from harsh enzymes 

that may cause denaturation.22 Furthermore, many of these macromolecularly based 

therapeutic agents are extremely potent and thus, the carrier can act to target the drug to 

its desired location in the body, thereby diminishing any unwanted systemic side 

effects.22 Among the types of materials explored in these type of applications, polymer-

based devices have been heavily pursued22 with hydrogels playing a major role.21,23,24 

Due to its temperature dependent responsivity, cross-linked pNIPAm hydrogels have 

been increasingly investigated for drug delivery systems.6-11,25 Early work done by 

Hoffman and coworkers focused on uptake and release of model enzymes and 

macromolecules using pNIPAm hydrogel materials.26-33 They then investigated 

macromolecule release from pH sensitive and thermoresponsive networks.34-36  

Temperature sensitive hydrogel materials that are also responsive to pH can 

generally be fabricated by copolymerization of pNIPAm with an array of hydrophilic and 
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hydrophobic comonomers. This results in the production of positive and negative, or on 

and off, pulsatile drug release profiles in reaction to temperature changes across the 

LCST value.37 Significant progress in this area has been made by Peppas et al. where 

they have fabricated pH sensitive copolymer hydrogels capable of preserving a peptide 

while it is transported through the harsh environment of the stomach. Early studies 

focused on optimizing protein loading and release from ionic hydrogels.34,38 They then 

showed that poly(methacrylic-g-ethylene glycol) hydrogels display reversible pH 

dependent swelling behavior and have proposed these systems be utilized mainly for oral 

protein delivery applications. Under low pH conditions, the hydrogels are collapsed and 

protect the encapsulated peptide from denaturing enzymes present in the stomach. But, as 

the loaded vehicle passes to the upper small intestine, the pH becomes more basic thereby 

inducing protein release due to dramatic swelling of the hydrogel.39,40 Modified release of 

peptide agents has also been achieved by exploring ionized amphiphilic hydrogel 

networks.41  

Since insulin is endogenously released in a cyclical manner,42 methods to achieve 

pulsatile release of this protein from hydrogel materials have also been vigorously 

pursued.43 Park and coworkers utilized dually responsive pH and temperature sensitive 

hydrogels to achieve controlled insulin release from pNIPAm hydrogels copolymerized 

with N, N’-diethylaminopropyl methacrylamide that exhibited swelling changes at pH 

7.4.44 Further advances in self-regulated insulin delivery were made with studies focusing 

on glucose sensitive hydrogels that utilize entrapped glucose oxidase45,46 or phenylborate 

moieties47 as a mechanism to switch pH, causing reversible hydrogel swelling. This 

resulted in subsequent regulated insulin delivery. Studies on modulated insulin release 
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from biodegradable dextran hydrogels have been pursued as well48,49 where 

investigations performed by Yui and coworkers utilized PEG containing dextran gels to 

preferentially load the protein.49,50 

 Regulated protein release by use of degradable hydrogel drug delivery devices has 

been yet another area heavily explored.  Work done by McBride and coworkers 

illustrated enhanced loading and activity retention of bioactive proteins using dextran 

gels.51 Investigations conducted by Hubbell et al. examined controlled protein release 

from degradable PEG hydrogels52 while Langer and coworkers studied protein release 

from biodegradable poly(lactic acid) containing gels.53 Extensive work has been 

performed by Hennink and coworkers who focused on using physically cross-linked 

dextran based hydrogels as biocompatible and biodegradable macromolecule release 

devices.54-58 Work from Park et al. also investigated the use of enzyme digestible dextran 

hydrogels for regulated protein delivery.59-62  

While all of these studies are significant advances in the field of modulated 

macromolecule release, bulk hydrogels have the inherent disadvantage of slow response 

due to their large dimensions. Thus, use of smaller, faster responding microgel networks 

for controlled protein delivery has seen much more precedence recently. 

 

2.3 Macromolecule Release from Microgels 

As previously illustrated with macrogels, there have also been significant 

advances made in the design of controlled macromolecule release devices involving 

microgel materials.18,22,63-65 Encapsulation of protein drugs into microspheres has been 

widely explored in recent years due to the fact that these carriers provide longer 
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circulatory half-lives and better stability of their cargo.66 In the late 1980’s and early 

1990’s, significant progress in the field of protein drug delivery was made with use of 

polysaccharide hydrogels. These systems have the advantages of being non-toxic, 

biocompatible, biodegradable and abundant.66 Many of these early studies focused on 

insulin delivery via a nasal route using starch microspheres.67-71 Enhanced bioavailability 

of the peptide was reported and was attributed to the mucoadhesive properties of the 

polymers. Work done by Langer et al. has focused on controlled macromolecule release 

using ionotropic hydrogels.72 They have also investigated hydrogel nanoparticle carriers 

for protein nasal administration73 and DNA encapsulation and release.74 The use of 

microgel particles composed of other hydrogel materials for controlled insulin delivery 

has also found great precedence in the literature.75-78 

  As similarly seen with macrogels, incorporation of functional moieties within  

microgel materials that alter the hydrophilic/hydrophobic balance as well as swelling 

capacity has been heavily explored for development of biomolecule carriers. Early work 

done by Peppas et al. has concentrated on using pH sensitive bulk gels for controlled 

macromolecule release.39,40 This work was then extended to include faster responding 

discrete microgel particles composed of the same pH responsive poly(methacrylic-g-

ethylene glycol) polymer.79,80 A particular focus on regulated oral insulin delivery was 

made.77,81-86 They made further advances in these systems by investigating pulsatile 

release characteristics of glucose-oxidase immobilized microspheres.83 When these 

networks are exposed to external glucose in solution, glucose oxidase turns into gluconic 

acid, thereby causing a decrease in pH.87 This ultimately yields these networks pH 

sensitive and this switch can cleverly be used to trigger release of embedded proteins, i. e. 
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insulin. By using poly(diethylamino-ethyl methacrylate-g-ethylene glycol) 

microparticles, they were able to achieve pH induced swelling at pH values below 7.0. 

Thus, the pH responsivity of these networks was indicative of their response to external 

glucose levels and could be useful in cyclical insulin release.83 Peppas et al. also made 

thorough studies focusing on transport mechanisms of macromolecules,80 particularly 

insulin,88-91 across cellular membranes where they observed enhanced transport when the 

protein was encapsulated in microgels. 

Among the extensive studies focusing on microgels for controlled protein 

delivery, exploration of biodegradable networks has shown great promise.92 Work done 

by Park and co-workers has focused on controlled protein release from degradable 

microspheres composed of lactic acid containing networks.93-97 Work done by Hennink 

and coworkers has utilized dextran based networks that are both biocompatible and 

biodegradable.98 Even further advances have been made by Frechet and co-workers 

regarding acid-labile cross-linked networks. Typically, most hydrogel networks are cross-

linked using amide, ester or carbonate linkages that are degradable under basic pH 

conditions.19 For targeted drug delivery applications, use of protein loaded networks that 

utilize acid degradable cross-links would be especially useful considering the fact that 

many targets needing therapeutics exist at slightly acidic pHs. These include tumors and 

inflammatory tissues.99,100 Frechet et al. developed a novel acetal cross-linker that allows 

for protection from release under neutral pH conditions but pH dependent release of 

model macromolecules due to acid degradation under slightly acidic pH conditions of 

5.0.19 They have extended these studies to also include development of protein and DNA 

based vaccines where they take advantage of the pH differential between serum (pH 7.4) 
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and the lysosome (pH 5.0). Hence, once these loaded microgels are internalized in 

lysosomal components, the particles should degrade and expel the impregnated bioactive 

species.18,20  

 Advances in release of proteins in an oscillatory fashion have also been realized 

in recent years due to the fact that many hormones are known to be endogenously 

released in a pulsatile manner.42,101-104 Among these are insulin and gonodotropic 

releasing hormone (GnRH).105,106 Studies have shown that the efficacy of replacement 

therapy improves dramatically when the hormones are administered in a pulsatile 

manner.107 Oscillatory insulin release from hydrogel systems has thus been explored.50 

Self-regulating insulin delivery systems that utilize pH responsivity as a means to 

respond to increases in free glucose concentration have been investigated.45,108 

Superporous hydrogel networks109 and biodegradable hydrogel networks are yet another 

area of insulin release devices that have been researched.48,49,110  

 The fundamental challenges that remain for protein and DNA based therapeutic 

delivery are effective targeting to specific tissues and the subsequent intracellular release 

into the correct cellular components.111 In this area, momentous advances have been 

made by Hoffman and coworkers who have developed polymer-biomolecule conjugates, 

or bioconjugates.112 They have illustrated thermally triggered release of bound biotin 

from site-specific pNIPAm-streptavidin conjugates.113,114 They have also prepared site-

specific conjugates with pH and light sensitive polymers.112,115 Furthermore, they have 

shown that the specific site for polymer conjugation can be spatially localized far away 

from, close to, or even within the active site in order to regulate the protein-ligand 

binding process as well as biological activity of the protein.116,117 In the area of cellular 

 29



release, studies have shown that pH sensitive hydrogels can be molecularly engineered to 

efficiently disrupt eukaryotic membranes within narrow pH ranges118-120 as well as 

significantly enhance gene expression levels while providing serum stability in cell 

culture models.121 The function of these systems was expanded by the design and 

synthesis of a glutathione containing pH sensitive terpolymer. This novel design served 

to not only cause pH dependent endosomal membrane disruption and escape into the 

cytoplasm but, it also was cleverly designed to allow for drug release by reduction of 

disulfide linkages in the presence of glutathione (a highly abundant reducing agent 

present in most cells).122 Hoffman et al. also developed polymeric carriers that target 

uptake and enhance intracellular delivery of oligonucleotides.123 

 

2.4 Macromolecule Drug Delivery from Hydrogel Films, Implants and Through 
Hydrogel Membranes 

 
Release of macromolecules from hydrogel films and implants is yet another mode  

of controlled drug delivery devices being heavily explored. Work done by Hoffman and 

coworkers investigated hormone release from hydrogel films made of chitosan124 while 

Park et al. explored deposition of enzymes onto hydrogel contact lenses.61,125 

Investigations on extended insulin release from hydrogels implanted into mice have also 

been pursued.126,127 Langer and coworkers made advances by investigating glucose-

mediated insulin release from implantable polymers128,129 while Ratner et al. looked at 

insulin transport through glucose sensitive membranes.130 Tunable macromolecule 

release from erosion-controlled films has also been demonstrated.131 Work done by Lynn 

and coworkers displayed sustained release of functional DNA from mutli-layer thin 
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films.132 Yet even more recently, work has focused on a novel technique to encapsulate 

cells into hollow hydrogel particles.133  

As previously mentioned, exploration of glucose sensitive hydrogel systems has 

seen much activity over the years in efforts to achieve self-regulating insulin release 

devices. One of the strategies pursued has involved the specific interaction between 

polymer-bound glucose and concanavalin A (Con-A). In these approaches, hydrogels can 

be cross-linked by binding of Con-A, which has four glucose binding sites, to the 

glucose-bound polymer. Early in these approaches, Hoffman and coworkers showed that 

interactions between glucose bound polymers and con-A resulted in precipitation134,135 

and glucose sensitivy.136 Work done by Park et al. showed that such interactions could 

result in glucose dependent reversible gel transitions137,138 and that that these responses 

could control the release of insulin through a hydrogel membrane.139 This work done by 

Park et al. was later improved upon by PEGylating Con-A to improve solubility and 

stability which resulted in enhanced reproducibility140 of modulated insulin delivery 

through the membrane.108  

Significant advances in macromolecule delivery devices that achieve release in a  

pulsatile fashion have been made by Siegel and coworkers. They first proposed a novel 

strategy for open loop, sustained pulsatile drug release that does not need an external 

activation source.107,141 They then showed that rhythmic delivery of the hormone GnRH 

was achievable due to the pH dependent swelling state of a polyelectrolyte pNIPAm-

methacrylic acid (pNIPAm-MAAc) hydrogel membrane that displayed glucose 

sensitivity. They attributed oscillatory release to nonlinear feedback between the 

membrane and glucose oxidase.142-144 Siegel and coworkers utilized the well-established 
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pH responsivity of the hydrogel network but, for the first time, cleverly used it in such a 

way that the rhythms were autonomous. That is, the hydrogel behaves rhythmically even 

at constant levels of glucose which is in contrast to previously reported glucose 

responsive systems.145 They have also worked on further development of glucose 

responsive hydrogels using a phenylboronic acid (PBA) containing network that has been 

shown to bind to glucose and thus achieve a change in polymer charge, leading to tunable 

swelling and permeability to insulin.146,147 This system has important implications in 

microfabricated glucose sensitive hydrogel based valve constructs.  

Given all of the progress made within the field of regulated macromolecule  

release using hydrogel materials, a fundamental challenge that still remains in this arena 

is initial burst. Ways to reserve the encapsulated protein and achieve extended pulsatile 

delivery still need to be realized.148 Along this note, formulations involving a multi-layer 

thin film construct may serve beneficial since these materials are inherently more stable 

than free carriers in solution. Furthermore, with the explosion of activity within the field 

of multi-layer thin films in recent years, there is great opportunity to finely tune the 

functionalities of these films at the molecular level. Thus, incorporation of stimuli 

responsive materials into these multi-layer thin films could conceivably allow for tunable 

release characteristics of highly functional materials. It is this rational that has been the 

main driving force behind the studies discussed in this dissertation, which lie at the 

interface between drug delivery and colloidal polymeric science. Chapter 3 details studies 

on thermally modulated insulin release from microgel thin films where extended pulsatile 

release capabilities are shown. Chapters 4 and 5 focus on more fundamental synthesis and 

characterization studies of PEG and acrylic acid modified microgels that could ultimately 
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lead to the design of protein loaded microgel films with tunable release characteristics. 

Chapter 6 illustrates fundamental macromolecule loading strategies, which could also 

prove useful in future protein drug delivery design using stimuli responsive networks. 

Chapter 7 focuses on direct insulin release studies that probe the interaction between 

entrapped and freely diffusing protein and microgels. These model experiments could 

prove useful in design of tunable macromolecule drug release from functionally modified 

microgels and could aid in the tailored design of peptide-loaded microgel thin films. 

Finally, Chapter 8 illustrates the general outlook of future research studies that could be 

pursued in this area. 
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CHAPTER 3 

 

THERMALLY MODULATED INSULIN RELEASE 
FROM MICROGEL THIN FILMS 

 
 

 In this chapter we present results on the construction and characterization of 

insulin impregnated microgel thin films for controlled pulsatile release applications. Our 

aim was to effectively load a model peptide, insulin, into poly(N-isopropylacrylamide-co-

acrylic acid) (pNIPAm-co-AAc) microgels and then build up multi-layer thin films in a 

uniform manner through Layer-by-Layer (LbL) polyelectrolyte assembly. We hoped to 

achieve extended, cyclical release of the peptide while tunability over the quantity of 

macromolecule pulsed out was explored by controlling the release temperature and film 

thickness. We also rationalized the mechanism of release by studying the deswelling and 

delivery kinetics of these novel films. We hypothesize that film thermoresponsivity plays 

an important role in that subjection to many thermal cycles enables the embedded peptide 

to solubilize and subsequently partition through film layers. These insulin-impregnated 

films are extremely stable with the potential to release constant pulses of peptide for more 

than one month at a time. These studies indicate that these highly robust peptide loaded 

microgel thin films show great potential in future drug delivery design.  

 

3.1 Introduction  

As discussed previously, great strides have been made in the fields of controlled 

and targeted drug delivery utilizing hydrogel materials, with pNIPAm being one of the 

most heavily studied thermosensitive gels.1 Because of their high water content, soft 
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tissue-like consistency, and potential biocompatibility2-6 significant work has focused on 

using responsive gels as carriers for peptide delivery, among which many studies have 

focused on hydrogel insulin release systems.7-12 Another field of research that has found 

great popularity in biotechnology is that of polyelectrolyte multi-layer thin films.  

The buildup of multi-layer thin films is typically achieved through a Layer-by-

Layer (LbL) assembly process, first introduced by Decher,13 where oppositely charged 

polyelectrolytes are deposited in an alternating-charge fashion.14 A schematic 

representing this protocol is shown in Figure 3-1. Traditionally, a substrate is 

functionalized with some polyelectrolyte to yield it multiply charged. In this case, it is 

positively charged and this can be achieved by exposure to 3-

Aminopropyltrimethoxysilane (APTMS). In step 1, this charged substrate is exposed to a 

polyelectrolyte solution of opposite charge, which adsorbs to the surface via electrostatic 

attractive forces, resulting in charge reversal. This step is key for true multi-layer buildup 

and relies upon the fact that the molecules in solution are multiply charged. In step 2, the 

substrate is once again exposed to an oppositely charged polyion solution. These steps 

can be repeated as many times as one desires to achieve as many layers as needed.15 A 

well studied polycation has been poly(allylamine hydrochloride) (PAH) while a heavily 

explored polyanion has been poly(styrene sulfonate) (PSS).15 A diagram illustrating the 

molecular structure of these common polyelectrolytes is shown in Figure 3-2. 
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Figure 3-1. Schematic representing traditional Layer-by-Layer (LbL) assembly of 
electrostatically bound polyelectrolyte films. In step 1, a polyanionic species is deposited 
onto a positively charged substrate, resulting in charge reversal. In step 2, an oppositely 
charged polycationic species is deposited onto the negatively charged surface. These 
steps can be repeated as many times as desired to build up films of any desired thickness. 
 

 

 

The advantages of this technology are numerous and include short preparation 

time, precise control over polycation–polyanion complexes at the molecular level, 

minimal sample volume and control over the composition, and surface functionality of 

these materials in three dimensions. Other advantages to this technique are that it is 

inexpensive, simple, and versatile.16 Thus, this technique has been commonly explored 

for fabrication of various polymer based thin films.17-24 Furthermore, it has found many 

applications in the biosciences including the work of Caruso and co-workers, wherein 

they have prepared hollow polyelectrolyte capsules by depositing oppositely charged 

polyelectrolytes onto a sacrificial core template.25 These hollow capsules can in theory  

serve as drug containers for applications in drug or gene delivery. The use of 

polyelectrolyte multi-layer thin films for the uptake and release of small model drug 

compounds has also been successfully explored.26,27 Deposition of biological species 
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Figure 3-2. Chemical structures for commonly used polyelectrolytes. Poly(allylamine 
hydrochloride) (PAH) is a common cationic polyelectrolyte while poly(styrene sulfonate) 
(PSS) is a common anionic polyelectrolyte. 
 

 

within thin films themselves has also been studied,28-34 with the main proposed 

application being biosensing.28 Direct encapsulation of bioactive species within 

polyelectrolyte shells has been pursued wherein oppositely charged polyelectrolyte layers 

are deposited onto charged core crystals.35,36 Other work done by Sukhorukov et al. 

extended these studies to tuning the permeability of hollow polyelectrolyte shells to 

encapsulate macromolecular species based on pH-dependent changes in shell porosity.37-

39 The versatility of these systems can be enhanced by adding functionally modified 

materials to them and are not limited to polyelectrolytes alone. Inclusion of nano-objects 

such as inorganic and metal colloidal nanoparticles has been pursued.40-44 Work done 

earlier in our group showed that incorporation of discrete thermoresponsive microgels 

could be achieved in order to build up thermosensitive polymeric thin films.45 With this 

 46



knowledge, we wanted to add increased functionality to polymeric thin films and 

investigate their capabilities toward the regulation of macromolecule delivery. 

 

3.2 Experimental Section 

Materials  

All chemicals were obtained from Sigma Aldrich unless otherwise stated. N-

Isopropylacrylamide (NIPAm) was recrystallized from hexane (J. T. Baker) prior to use. 

N, N′-Methylene(bisacrylamide) (BIS), ammonium persulfate (APS), anhydrous acrylic 

acid (AAc; Fluka), hydrochloric acid (J. T. Baker), 95% ethanol, 200 proof anhydrous 

ethanol, sodium hydroxide (NaOH), formic acid (J. T. Baker), 70, 000 MW 

poly(allylamine hydrochloride) (PAH), fluorescein isothiocyanate labeled insulin (FITC-

insulin) from bovine pancreas, sodium chloride, and potassium dihydrogenphosphate 

were used as received. 3-Aminopropyltrimethoxysilane (APTMS) was obtained from 

United Chemical Technologies. Anhydrous dibasic sodium phosphate was purchased 

from EM Science. Glass microscope coverslips (22 × 22 mm) were purchased from 

Fisher Scientific. 0.2 µm nylon membrane disks and Spectra/Por 10, 000 MWCO dialysis 

membrane were purchased from VWR. Water used in all experiments was distilled and 

then purified using a Barnstead E-Pure system operating at a resistance of 18 MΩ. A 0.2 

µm filter was incorporated into this system to remove particulate matter. 

Particle Synthesis 

Microgels of 1 mole % BIS cross-linked pNIPAm-co-AAc (9:1) were synthesized 

by free-radical precipitation polymerization via a method slightly modified from that 

previously described.46 The total monomer concentration was 100 mM, no surfactant was 
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used, and APS was used as the free radical initiator. The NIPAm monomer and BIS 

cross-linker were dissolved in 100 mL of nanopure water and then continuously stirred in 

a three-neck, 200 mL round-bottom flask. This solution was heated to 70 °C while being 

purged with N2 gas. Approximately 1 hour later, the temperature of the solution was 

stable at 70 °C. To this hot solution, the acrylic acid comonomer was added. Fifteen 

minutes later, the reaction was initiated by adding a hot (70 °C) 35 mg/mL solution of 

APS (1 mM final concentration). The solution turned turbid within 10 minutes, indicating 

successful initiation. The reaction proceeded for 6 hours under a constant stream of 

nitrogen. Following synthesis, the microgels were filtered using a P2 Whatman filter 

paper and then dialyzed (using 10, 000 MWCO) for 2 weeks against nanopure water with 

a daily exchange of fresh water.   

Dynamic Light Scattering (DLS) 

Hydrodynamic radii and light scattering intensities were obtained by DLS 

(Protein Solutions, Inc.). The 10 mM solutions of pH 3.5, 4.3, and 6.5 were first prepared 

using the appropriate buffer systems (formate and phosphate). Prior to analysis, the 

purified microgels were diluted in filtered media (using 0.2 µm filters) until a count rate 

of 250 kCt/s was obtained. The suspensions were then held at each temperature for 10 

minutes to achieve thermal equilibration before measurements were taken. Longer 

equilibration times did not result in variations of particle radius, polydispersity, or light 

scattering intensity. The data points presented here are an average of 25 measurements 

with a 5 second acquisition time and a signal-to-noise ratio threshold of 2.5. 

Hydrodynamic radii were calculated from the measured diffusion coefficients using the 
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Stokes–Einstein equation. All correlogram analyses were performed with manufacturer-

supplied software (Dynamics v.5.25.44, Protein Solutions, Inc.). 

Microgel Loading of FITC-insulin 

A FITC-insulin stock solution was prepared by dissolving approximately 3 mg of 

FITC-insulin in 1.5 mL of 0.1 N HCl. This was done because insulin is most soluble 

under acidic conditions.10 This stock solution was then mixed with 10 mL of the 1 mole 

% BIS cross-linked p(NIPAm-co-AAc) (9:1) microgels, and the pH was adjusted to 7.4 

by slow addition of 0.1 M NaOH. This solution was left to stir in the refrigerator 

overnight in the dark. It should be noted that insulin and/or FITC-insulin can also be 

completely dissolved in 25 mM pH 3.5 formate buffer so milder, less harsh acidic 

conditions can be utilized. 

Thin Film Deposition and Buildup Characterization 

Spin coating was used to build up the multi-layer thin films. This technique was 

used, as opposed to passive adsorption, to achieve uniform films within a short time 

frame. Glass microscope slides were used as the substrates and were cleaned by placing 

in a plasma cleaner using argon gas (Harrick Plasma Cleaner/Sterilizer PDC-32G) for 10 

minutes. After this treatment the slides were rinsed with 200 proof anhydrous ethyl 

alcohol. APTMS was then used to amine-functionalize the glass slides. The slides were 

immersed in a 0.4 % APTMS solution (in 200 proof ethanol) at room temperature for 2 

hours, and were then rinsed with 95 % ethanol to remove excess/unreacted silane. The 

slides were stored in 95 % ethanol until use. Prior to spin coating, an amine-

functionalized slide was rinsed well with nanopure water and then dried with nitrogen 

gas. The slide was positioned on the spin coater (Speedline Technologies, Spincoater, 
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P6700 Series) vacuum chuck as illustrated in Figure 3-3. The rotor speed was maintained 

at 3, 000 rpm during deposition.  

 

 

 

 

 

Figure 3-3. Schematic of the spin coating process. A substrate is placed on the vacuum 
chuck of the spin coater. While the substrate is rotating at high speed, the solution to be 
deposited is dropped on the center of the substrate. Upon impact at this high speed, the 
solution immediately spreads uniformly over the surface. 
 

 

Deposition of one bilayer consisted of depositing 5 drops of the FITC-insulin loaded 1 

mole % BIS cross-linked p(NIPAm-co-AAc) (9:1) microgels (pH 7.4), rinsing with 

nanopure water, depositing 5 drops of a 4.0 × 10-5 M PAH solution, and then rinsing with 
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water. After each step, 45 seconds was allowed to pass to ensure adequate removal of 

excess water. In this fashion, films made up of 3, 6, 9 and 30 layers were deposited. To 

achieve more uniform buildup, it was observed that after the 45 seconds passed, if the 

film was left spinning on the spin coater for two minutes before the next layer was 

deposited, enhanced linear buildup resulted. It was also noted that it was key to have the 

FITC-insulin loaded microgel solution, as well as the PAH solution, at equilibrated room 

temperature to ensure optimal deposition (no splattering of the solution off of the 

substrate). To monitor the buildup of these multi-layer thin films, UV/vis spectroscopy 

was employed. After each bilayer of a film was deposited, the absorbance of the film was 

taken in the wavelength range of 400-600 nm using a bare glass slide as a reference. 

Optical Microscopy 

To ascertain effective macromolecule loading into the microgels, as well as 

qualitative evaluation of peptide content after release cycles, fluorescence microscopic 

images of the FITC-insulin loaded films were taken using an Olympus IX-70 inverted 

microscope equipped with a mercury arc lamp. Images were captured using a color CCD 

camera (Pixel Fly, Cooke Corp.) and an Olympus 100x UplanFl 1.30 NA oil immersion 

objective. Scanning electron microscopy (SEM) images were also obtained for a 1 layer 

film with the aid of Dr. Michael Serpe. 

Thermoresponsivity Light Scattering Studies 

A steady state fluorescence spectrophotometer (Photon Technology International) 

equipped with a Model 814 PMT photon-counting detector was used to record scattered 

light at an angle of 90° as a function of temperature. The temperature was controlled 

using a PE 60 temperature controller Peltier stage (Linkam Scientific Instruments Ltd., 
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Surrey, UK). A rectangular piece of the film was placed diagonally in the cuvette sitting 

inside the fluorimeter such that the film face was at a 45° angle with respect to both the 

source and the detector. A schematic representing this setup is shown in Figure 3-4. 

 

 

 

 

Figure 3-4. Schematic of light scattering setup for thermoresponsivity measurements of 
FITC-insulin loaded microgel thin films. The detected light is 90 ° from the incident 
light. 
 

 

The cuvette was filled with 3.5 mL of 0.02 M PBS, and scattered light intensity of the 

film was monitored at the desired temperature until equilibration of the signal was 

reached. The slit widths were set to a bandwidth of 2 nm while the excitation and 

emission monochromators were each set to pass 600 nm light. 

 

 52



Drug Release Studies 

For direct release investigations, a rectangular piece of an insulin-impregnated 

microgel thin film (10 × 22 mm) was carefully mounted to the side of the cuvette (as 

shown in Figure 3-5) that was filled with 1.35 mL of release medium (0.02 M PBS). This 

solution was constantly stirred at 220 rpm to maintain a homogeneous solution. The 

fluorescence emission of the release medium was monitored using an excitation 

wavelength of 473 nm and an emission wavelength of 512 nm. Thermally induced 

pulsatile release was monitored at 25, 37 and 40 °C.  

 

 

 

 
 
Figure 3-5. Experimental setup for direct detection of insulin release from microgel thin 
films via fluorescence spectroscopy. 
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To test the robustness of these films under extended release conditions, the FITC-

insulin loaded films were placed in 4 mL of 0.02 M PBS. These films were left in the 

cold medium (25 °C) for 1 hour, the medium was then fully replaced, and the films were 

placed in a 40 °C hot bath for the same length of time; the cycle was then repeated. This 

was done every weekday for 1 month. The release medium samples were then analyzed 

via fluorescence spectroscopy using an excitation wavelength of 473 nm and an emission 

wavelength of 512 nm, to obtain cumulative release profiles. 

 

3.3 Results and Discussion       

Particle synthesis and characterization 

As described above, p(NIPAm-co-AAc) (9:1) microgels containing 1 mole % BIS 

as the cross-linker were chosen for construction of the insulin-loaded films. The main 

monomer, NIPAm, imparts thermoresponsivity to these particles, while the comonomer, 

acrylic acid, imparts pH sensitivity and a negative charge to the microgels. 

Characterization of hydrodynamic radius as a function of pH and temperature was 

performed using DLS. Panel a of Figure 3-6 illustrates the volume phase transition 

behavior of these microgels at three different pH values. At pH 3.22 (open circles), the 

microgels have an average hydrodynamic radius of 280 nm at low temperatures, and then 

undergo a sharp volume phase transition at approximately 31 °C to a minimum 

hydrodynamic radius of 80 nm. This corresponds well with the LCST of typical pNIPAm 

microgels.1 At this pH, the system is below the pKa of the acrylic acid groups, which is 

approximately 4.26, and almost all of the acid groups within the microgels are 

protonated. When the pH of the system is increased to the pKa (open squares), 

 54



approximately half of the acid groups are deprotonated, causing osmotic swelling as well 

as Coulombic repulsion between negatively charged groups in the particle. This results in 

a size increase to 405 nm at 25 °C. Under these conditions the system still deswells to 

about the same size that it did under pH 3.22 conditions upon increasing the temperature. 

The LCST, however, has been shifted to a higher temperature and the transition itself is 

somewhat broadened. This is due to the increased hydrophilicity of the system, resulting 

from an increased amount of negatively charged acid groups that can accommodate 

increased water solvation.47-50 At a pH value of 6.15, well above the pKa (open triangles), 

almost all of the acid groups are deprotonated and hence there exists tremendous osmotic 

swelling and Coulombic repulsion between the negatively charged AAc moieties. This 

results in essentially no observable phase transition within the temperature range of 22–

42 °C. This type of behavior, where greater swelling ratios result from increased 

hydrophilicity of the network, is common hydrogel behavior.47-50 Panel b of Figure 3-6 

shows the corresponding light scattering profiles of the same systems at different pH 

values. Under all three pH conditions, the microgels show very little scattered light 

intensity at low temperatures below the corresponding LCST values. This is due to the 

fact that these porous microgel networks are highly solvent swollen (approximately 95% 

water by volume) and are, therefore, nearly index matched to their environment. When 

the microgels collapse into dense globules at temperatures above the LCST, however, the 

microgels display a higher scattering cross section, and therefore, a dramatic increase in 

scattered light intensity is observed from the suspensions above the LCST. 
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Figure 3-6. (a) Volume phase transition curves for 1 mole % BIS cross-linked p(NIPAm-
co-AAc) (9:1) microgels and (b) light scattering profiles in pH 3.22 (open circles), pH 
4.37 (open squares), and pH 6.15 (open triangles) 10 mM media. 
 

 

Impregnation of Microgels with FITC-Insulin  

These multi-responsive microgels were passively loaded with a concentrated 

solution of a therapeutic agent, FITC labeled insulin.  The molecular formula of insulin is 

shown in Figure 3-7 below.  It consists of 51 amino acids with 21 residues on the A 

chain, 30 residues on the B chain and includes two disulfide bridges. It has an overall 

molecular weight of 5, 800 Daltons, has an isoelectric point (pI) of 5.6 and hence, is 

zwitterionic.51 In the loading procedure, we take advantage of the pH responsivity of 

these microgels as well as the pH-dependent solubility of insulin. Insulin is only 

sparingly soluble at neutral pH values but is quite soluble under acidic conditions. Thus, 

it was first dissolved in 0.1 N HCl to prepare the stock solution.7 This solution was then 
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mixed with 10 mL of the microgel solution. Slow addition of NaOH was used to 

gradually increase the pH to 7.4.  Upon increasing the pH of this solution, the microgels 

increase in size due to osmotic swelling and Coulombic repulsion between deprotonated 

acid groups. This pH switch allows for the microgels to become more porous as well as 

the insulin solubility in water to decrease. The overall effects that supposedly propel 

insulin partitioning into the microgel networks are an amalgamation of its low water 

solubility52 as well as hydrophobic effects and electrostatic interactions (at pH 7 insulin is 

zwitterionic).53 At pH 7.4, both the insulin and the microgels are overall negatively 

charged.  This allows for the FITC-insulin loaded microgels to serve as a polyanion for 

polyelectrolyte multi-layer deposition.   

 

  

 

 

 

Figure 3-7. Primary structure of insulin. 
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Deposition and characterization of FITC-insulin loaded microgel thin films 

To prepare the FITC-insulin loaded microgel thin films, the traditional charge-

based alternate layer deposition protocol was followed. Glass substrates were first 

functionalized with 3-aminopropyltrimethoxysilane (APTMS) solution to make them 

cationic. Films were then deposited by spin coating as described above. Work done 

previously in our group has demonstrated that p(NIPAm-co-AAc) (9:1) particles can be 

used as the anionic component in film assembly.45 Hence, negatively charged, insulin-

impregnated microgels served as the polyanionic layer to which poly(allylamine 

hydrochloride) (PAH) was then deposited as a polycationic layer. A schematic depicting 

a 3 layer FITC-insulin loaded microgel film construct is shown below in Figure 3-8. 

 

 

 
 
Figure 3-8. Schematic representation of the structure of a 3 layer film where 1 bilayer 
consists of negatively charged FITC-insulin loaded microgels alternated with positively 
charged PAH.  
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Figure 3-9, panel a, illustrates an SEM image obtained for a 1 layer film.  What should be 

noted here is that the microgels (which are depicted by the dark circles) appear oblong in 

shape and somewhat flattened. This is to be expected considering that these soft spheres 

were deposited using a high impact technique such as spin coating.  Panel b of Figure 3-9 

shows a fluorescence microscopic image of a 1 layer film. The strong fluorescence of the 

microgels, along with decreased background fluorescence, indicates that the FITC-insulin 

is effectively impregnated within the microgels while high particle packing density 

indicates uniform layer deposition. This uniform deposition, even for a 1 layer film, is in 

contrast to results observed earlier in our group, where passive adsorption led to low 

surface coverages.45  

 

 

 

 

Figure 3-9. (a) SEM image and (b) fluorescence microscopic image of a 1 layer FITC-
insulin loaded microgel thin film. The scale bars represent 1 µm and 10 µm for panels a 
and b, respectively. 
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Multi-layer Thin Film Buildup Confirmation 

The linearity of film assembly was investigated using UV/vis spectroscopy. After 

one layer of a film was deposited, the absorbance of the film was taken in the wavelength 

range of 400–600 nm using a bare glass slide as a reference. Figure 3-10, panel a, shows 

a steady increase in film absorbance as the layer number increases. Panels b, c and d of 

Figure 3-10 confirm that this increase is linear as a function of film layer number for 3, 6 

and 9 layer films, respectively. In this work, we chose to investigate the possibility of 

building up thicker films uniformly that could possibly release more effective amounts of 

insulin. The linearity of buildup for a thick 30 layer film was also probed using UV/vis 

spectroscopy and is shown in Figure 3-11. Panel a of Figure 3-11 again shows a 

monotonic growth in film absorbance as the layer number increases while panel b verifies 

that this increase is linear as a function of film layer number. These findings suggest that 

the FITC-insulin loaded microgel thin films are being built up in a uniform manner even 

for a 30 layer thick film. 
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Figure 3-10. FITC-insulin loaded microgel thin film buildup confirmation. (a) Increase 
in film absorbance with increasing layer number. Plots of film absorbance versus layer 
number for a (b) 3 layer, (c) 6 layer and (d) 9 layer microgel thin film. 
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Figure 3-11. FITC-insulin loaded microgel thin film buildup confirmation for a 30 layer 
film. (a) Increase in film absorbance with increasing layer number. (b) Plot of film 
absorbance versus layer number. 
 

 

Thermoresponsivity Studies of the Insulin Loaded Microgel Thin Films 

The scope of this project relies on the hypothesis that release of macromolecule 

from microgel thin films can be controlled by utilizing the thermoresponsive nature of 

these films, considering the fact that these microgels are temperature sensitive in solution.  

Hence, thermoresponsivity of these films first needed to be proven.  The setup for these 

experiments is detailed in the Experimental Section (see Figure 3-4).  As described 

previously,45 LbL films containing pNIPAm particles display a temperature-dependent 

opacity due to thermal deswelling of the component microgels at the LCST. To map out 

the phase transition behavior of these films, the scattered light intensity was measured as 

a function of bath temperature. Figure 3-12 illustrates the phase transition profiles  
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Figure 3-12. Phase transition curves for 3, 6 and 9 layer FITC-insulin loaded microgel 
thin films. 
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obtained for 3, 6, and 9 layer FITC-insulin loaded microgel thin films in 0.02 M PBS. In 

comparing the profiles shown in Figure 3-12, it is clear that the phase transition 

temperature (inflection point of the profile) decreases as the film layer number increases. 

Similar findings have been reported wherein the decreased phase transition temperatures 

for thicker films was ascribed to the relaxation of substrate effects on film behavior.54 It 

is interesting to note that these films do indeed deswell at pH 7.4, despite the fact that the 

microgels themselves in high pH solution do not deswell within the temperature range of 

22–42 °C (see Figure 3-6). We assume that the films collapse under these pH conditions 

due to partial or complete charge neutralization of the acrylic acid moieties within the 

microgels by the PAH chains. 

To probe the possibility of these films to maintain thermally induced pulsatile 

release capabilities over many cycles, the thermoresponsivity of these films under these 

cyclical conditions was investigated by obtaining light scattering signals of the films in 

0.02 M PBS at temperatures below and above the LCST of the microgels (25 and 40 °C). 

In panels a, b and c of Figure 3-13, the odd number cycles represent light scattering 

signals obtained at 25 °C while the even number cycles were values obtained at 40 °C. 

The values plotted represent equilibrated light scattering intensities. In all cases, the films 

show an increase in scattered light upon heating and a concurrent decrease in scattered 

light intensity upon film reswelling at 25 °C. These results indicate that these 

thermoresponsive films do show potential in thermally triggered pulsatile release. 

Furthermore, they suggest that they can potentially be used to effectively uptake media 

thereby, solubilizing the embedded drug and then can thermally pump out insulin in a 

regulated manner. 
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Figure 3-13. Light scattering thermoresponsivity plots for (a) 3 (b) 6 and (c) 9 layer 
FITC-insulin loaded microgel thin films in 0.02 M PBS with oscillating temperature.  
Odd cycle number = 25 °C, even cycle number = 40 °C. 
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Kinetic Studies 

To probe the thermodynamic behavior of peptide release from these films, the 

correlation between film collapse and FITC-insulin pulsed release under hot 

conditions (40 °C) was investigated. Figure 3-14 shows plots of film light scattering 

intensity and insulin release versus time for 3 (panel a), 6 (panel b), and 9 layer (panel c) 

films. Some differences in film deswelling rates are observed as a function of thickness, 

with the six-layer film apparently deswelling more slowly than the three- and nine-layer 

films. However, it should be noted that measuring light scattering from the films is more 

correctly a measure of microstructure dimensions and refractive index contrast, as 

opposed to simply film dimension. Thus, there is some uncertainty as to the direct 

relationship between film thickness and scattering intensity. Nonetheless, the scattering 

changes give a semiquantitative picture of the changes in film morphology, and 

comparing these changes to the release kinetics offers some insight into the relationship 

between these two quantities. In all cases, the films deswell at a rate that is faster than the 

release of insulin. The slopes of the release profiles also appear to be somewhat linear 

during the initial stages of release. These results suggest that release of insulin from these 

films is not solely limited to the “pumping action” presumably associated with the 

collapse of the network, but is also regulated by solubility or partitioning effects. This 

type of permeability, governed by polymer hydration, has been previously observed for 

thermosensitive polymers.55 In comparing the release profiles for the three-, six-, and 

nine-layer films, it is obvious that more FITC-insulin is released as the film increases in 

layer number. These findings suggest that the amount of peptide released can be tuned 

based on film layer thickness. 
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Figure 3-14. Profiles of deswelling (left axis) versus release (right axis) kinetics for (a) 3, 
(b) 6 and (c) 9 layer FITC-insulin loaded microgel thin films in 0.02 M PBS.  
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Investigation of Pulsatile Release Capabilities 

To directly monitor the pulsatile release characteristics of these insulin-

impregnated films, a rectangular piece of the film was mounted to the side of a  

fluorescence cuvette filled with 1.35 mL of 0.02 M PBS release medium. In this 

geometry, the film itself is located outside the beam path such that only the fluorescence 

of insulin released into the medium is detected (see Figure 3-5). The solution was 

constantly stirred at 220 rpm to maintain a homogeneous mixture. The fluorescence 

emission from the release medium was monitored at 512 nm as a function of time and 

temperature. Figure 3-15 shows the results obtained for direct release of FITC-insulin 

from a 9 layer film. The pink curves represent cold (25 °C) release, while the black 

curves represent hot (40 °C) release. At first, placing a freshly prepared dry film into cold 

media results in some insulin release, presumably from weakly adsorbed insulin 

molecules at the surface. However, after ramping the temperature to 40 °C, the amount of 

peptide released increases significantly. Upon full media replacement (indicated by 

dashed lines), the film displays almost zero insulin release upon reswelling at 25 °C. 

However, upon repeating the heating cycle, another fast burst of insulin is released. This 

thermal pulsing of insulin can be repeated over many cycles while the magnitude of 

release remains roughly constant. This ability to effectively turn off release under cold 

conditions and subsequently turn on release under hot conditions makes these model 

systems highly attractive.  
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Figure 3-15. Direct release profiles of FITC-insulin from a 9 layer microgel thin film 
into 0.02 M PBS.  The dashed lines indicate full media replacement. 

 

 

These pulsatile release capabilities were also directly probed for a thicker 30 layer 

film to perhaps achieve more biologically relevant quantities of release. Figure 3-16 

illustrates the direct release profiles obtained from this thicker peptide loaded film. Panel 

a represents the thermal pulses that the film is subjected to while panel b illustrates the 

actual oscillations in release. When the highly loaded film is initially placed into the cold 

release medium, not an insignificant amount of peptide is released presumably from  
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Figure 3-16. Direct pulsatile release profiles of FITC-insulin from a 30 layer microgel 
thin film into 0.02 M PBS. Panel a represents the thermal pulses that the film is subjected 
to while panel b illustrates the actual oscillations in release. The dashed lines indicate full 
media replacement. 
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weakly adsorbed insulin molecules at the film exterior. After ramping the temperature to 

37 °C, the amount of peptide released increases significantly. Upon full media 

replacement (as indicated by dashed lines), the film displays significantly reduced insulin 

release upon reswelling at 25 °C. But, upon duplicating the thermal pulse, a second burst 

of insulin is quickly expelled from the film. The peptide can be repeatedly pulsed out in 

response to thermal modulation over many cycle times while the quantity released stays 

roughly consistent. This feature of thermally tuning the magnitude of insulin released 

makes these model thin film constructs highly attractive for macromolecule drug delivery 

applications. 

Investigation of Extended Release Capabilities 

To test the robustness of these thin films, extended release studies were performed 

wherein the drug loaded microgel thin films were placed in 4 mL of 0.02 M PBS release 

medium for 1 h at 25 °C. After this, the media was removed completely and replaced, 

after which the film was placed in a hot bath at 40 °C for the same length of time. This 

thermal cycling was repeated daily for 1 month. Panel a of Figure 3-17 shows cumulative 

release profiles for 3, 6 and 9 layer films subjected to these conditions. These profiles 

show a strong correlation between the amount of peptide released and the film thickness, 

confirming the earlier observation that the amount of insulin released is tunable. While 

the profile for the 3 layer film seems to have reached a plateau region toward the end of 

the month (perhaps indicating film depletion), the profiles for the 6 and 9 layer films are 

still increasing. As with the direct release studies, we find that the films effectively turn 

off release under cold conditions and turn on release under hot conditions as illustrated in 

panels b, c and d of Figure 3-17. These panels show an expansion of the curves in Figure 

 71



3-17a (cycles 10–22) for the 3, 6 and 9 layer films, where even numbers represent hot 

cycles and odd numbers represent cold cycles.  

 

 

 

 

Figure 3-17. (a) Cumulative thermally induced release profiles for FITC-insulin loaded 
microgel thin films over 1 month (numbers indicate film layer number).  Expanded view 
of cycles 10-22 for the (b) 3 layer, (c) 6 layer and (d) 9 layer films.  
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To ascertain how stable these films were against constant thermal cycling for an 

entire month, fluorescence microscopic images of the films after subjection to such 

conditions were obtained.  Figure 3-18 shows these images for the corresponding 3 (panel 

a), 6 (panel b) and 9 (panel c) layer films after one month of pulsatile release.  In all 

cases, the films still appear highly fluorescent.  The image of the 3 layer film, however, 

shows areas with decreased fluorescence, supporting the earlier conclusion of some film 

depletion. These findings indicate that the films are still highly loaded with drug and can 

potentially keep releasing drug for much longer periods of time. These images also 

support the conclusion that these insulin impregnated films are extremely stable to 

excessive thermal cycling and hold great capacity to keep releasing therapeutic agents for 

extended periods of time.   
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Figure 3-18. Fluorescence microscopic images of a (a) 3, (b) 6 and (c) 9 layer FITC-
insulin loaded microgel thin film after one month of one hour thermal pulsing.  Scale bar 
represents 20 µm. 
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3.4 Conclusions 

Multifunctional microgels, successfully impregnated with a bioactive 

macromolecule, FITC-insulin, have been incorporated into multi-layer thin films that 

exhibit controlled release capabilities.  These drug loaded thin films can be built up in a 

stepwise growth fashion allowing for uniform deposition of individual layers, even up to 

30 layers. While the mechanism of release can mostly be attributed to partitioning effects, 

the fact that these films exhibit thermosensitivity is key in that it allows for solubilization 

of embedded drug material and subsequent thermally induced release.  These films can 

successfully deliver fast bursts of FITC-insulin over many cycles and also prove to be 

extremely stable after extended continuous thermal pumping.  Hence, these novel 

macromolecule loaded microgel thin films may prove quite useful for drug delivery 

devices.  
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CHAPTER 4  

 

SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF 
POLY(ETHYLENE GLYCOL) (PEG) CROSS-LINKED PNIPAM MICROGELS 

 

This chapter focuses on the fundamental synthesis and characterization of PEG 

cross-linked microgels. Thermoresponsive poly(N-isopropylacrylamide) (pNIPAm) 

microgels cross-linked with various concentrations of PEG diacrylates of three different 

PEG chain lengths were synthesized via free-radical precipitation polymerization in order 

to investigate the phase transition and protein adsorption behavior as the hydrophilicity of 

the network is increased. It also deals with macromolecule loading studies designed to 

elucidate future applications of such oligomerically cross-linked materials. 

Characterization through 1H NMR, isopycnic centrifugation as well as protein adsorption 

studies provides some insight into the morphology of these porous systems as a function 

of temperature. Dynamic Light Scattering (DLS) reveals that as the concentration of PEG 

cross-linker incorporated into the microgels is increased, an increase in the temperature 

and breadth of the phase transition occurs. Qualitative differences in microgel density 

using isopycnic centrifugation confirm that higher PEG concentrations result in denser 

networks. Efficient incorporation of PEG cross-linker was confirmed with 1H NMR, and 

variable temperature NMR studies suggest that in the deswollen state, the longer PEG 

cross-links are flexible enough to protrude from the dense globular microgel. This 

behavior apparently manifests itself as a decrease in non-specific protein adsorption with 
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increasing PEG length and content. These PEG modified particles also prove useful in 

hydrophilic macromolecule loading applications. Hence, these systems may show 

promise in drug delivery and/or biomedical applications. 

 

4.1       Introduction 

 Efforts to incorporate biocompatible polymers within responsive hydrogel 

networks have been vigorously pursued in recent years. Addition of poly(ethylene glycol) 

(PEG), a hydrophilic, non-degradable polymer,1 into bio-related materials has many 

advantages, including biocompatibility, non-toxicity, non-immunogenicity and water 

solubility.2 Nanoparticles that are surface-modified with PEG have become increasingly 

investigated3,4 due to the fact that PEG facilitates control of protein adsorption and 

minimizes nonspecific cell adhesion in vitro.5-8 This also makes PEG-modified systems 

highly attractive for drug delivery applications.9-12 For example, controlled delivery of 

macromolecules has been investigated using degradable PEG hydrogel networks13,14 

partly due to the fact that many materials made from hydrophilic polymers have also been 

shown to be relatively non-inflammatory.2,15 Furthermore, PEG has been synthesized 

within semi-interpenetrating polymeric networks for drug release devices.16,17  

Incorporation of PEG chains also allows tunability of the 

hydrophilic/hydrophobic balance of these hydrogel networks, thereby controlling their 

deswelling characteristics.18 Much work has been done wherein PEG chains have been 

grafted to hydrogels, thereby greatly affecting their deswelling behavior.19,20 Recently, 

our group has shown that by grafting PEG chains to the periphery of pNIPAm core/shell 

hydrogel nanoparticles, a reduction in bovine serum albumin (BSA) adsorption, as well 

 81



as an increased LCST and breadth of the phase transition, occurred.3 Yet, little work has 

focused on using PEG chains as cross-linking units within discrete thermoresponsive 

microgel particles.  

Herein, we describe results from studies performed to show that modulation of 

phase transition behavior and microgel surface energy can be accomplished by 

incorporating oligomeric cross-linkers of varying length. Characterization through 1H 

NMR, isopycnic centrifugation as well as protein adsorption studies provide some insight 

into the morphology of these porous systems as a function of temperature. These particles 

also prove effective in hydrophilic macromolecule loading applications. Hence, these 

systems may show promise in drug delivery and/or biomedical applications.  

 

4.2 Experimental Section 

Materials 

All chemicals were obtained from Sigma Aldrich unless otherwise noted. N-

isopropylacrylamide (NIPAm) was recrystallized from hexane (J. T. Baker) prior to use. 

Sodium dodecyl sulfate (SDS), ammonium persulfate (APS), N, N’-

Methylene(bisacrylamide) (BIS), fluorescein isothiocyanate labeled insulin (FITC-

insulin) from bovine pancreas, FITC-dextran (4, 000, 70, 000 and 150, 000 MW), FITC 

labeled bovine serum albumin (FITC-BSA), deuterium oxide (D2O), sucrose and 

poly(ethylene glycol) diacrylate (PEG) (PEG MW 200, 575 and 700, Polysciences, Inc.) 

were used as received. Phosphate buffered saline (PBS) solution (pH 7.4, 0.02 M) was 

prepared in house from NaCl (Fisher), Na2HPO4 (EM Science) and KH2PO4. Water used 

in all experiments was distilled and then purified using a Barnstead E-Pure system 
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operating at a resistance of 18 MΩ. A 0.2 µm filter was incorporated into this system to 

remove particulate matter. 

Particle Synthesis 

Thermoresponsive pNIPAm microgels, synthesized by precipitation 

polymerization via a method slightly modified from that previously described, were 

cross-linked with PEG diacrylate of MWs 200, 575 and 700 at concentrations of 0.2, 1, 2 

and 5 mole %.21 2 mole % BIS cross-linked microgels were also synthesized for 

comparison. The total monomer concentration was 100 mM in all reactions. SDS was 

used as a surfactant and APS was used as the free radical initiator. The NIPAm monomer, 

cross-linker and surfactant (0.01 g) were dissolved in 200 mL of nanopure water, filtered 

through a 0.2 µm nylon membrane filter to remove any large particulate matter and then 

continuously stirred in a three-neck, 250 mL round-bottom flask. This solution was 

heated to 70 ºC while being purged with N2 gas. Approximately one hour later, the 

temperature of the solution was stable at 70 ºC. Fifteen minutes later, the reaction was 

initiated by adding a hot (70 ºC) solution of APS (1 mM final concentration). The 

solution turned turbid within 10 minutes, indicating successful initiation. The reaction 

proceeded for 6 hours under a constant stream of nitrogen. Following synthesis, the 

microgels were filtered using a P2 Whatman filter paper and then dialyzed (using 10, 000 

MWCO) for 2 weeks against nanopure water with a daily exchange of fresh water.  

Dynamic Light Scattering (DLS) 

Hydrodynamic radii and light scattering intensities were obtained by DLS 

(Protein Solutions, Inc.).  Prior to analysis, the purified microgels were diluted in filtered 

nanopure (using 0.2 µm filters) water until a count rate of 250 kCt/sec was obtained. The 
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suspensions were then held at each temperature for 10 minutes to achieve thermal 

equilibration before measurements were taken. Longer equilibration times did not result 

in variations of particle radius, polydispersity or light scattering intensity. The data points 

presented herein are an average of 25 measurements with a 5 second acquisition time. 

Hydrodynamic radii were calculated from the measured diffusion coefficients using the 

Stokes-Einstein equation. All correlogram analyses were performed with manufacturer 

supplied software (Dynamics v.5.25.44, Protein Solutions, Inc.). The volume deswelling 

ratios (Vo/V) of the microgels were calculated via the relation Vo /V= Ro
3/R3, where Ro 

and R are the DLS measured particle radii at 25 °C and the measured temperature, 

respectively. 

Isopycnic Sucrose Density Gradient Centrifugation 

Sucrose density gradient equilibrium centrifugation studies were carried out using 

a Beckman ultracentrifuge with 10 mL ultraclear centrifuge tubes. A sucrose density 

gradient was made by carefully layering 25 %, 20 %, 15 % and 10 % sucrose solutions 

(2.0 mL each) within the centrifuge tubes and then depositing 30 µL of the PEG cross-

linked pNIPAm microgels on top. The samples were then centrifuged at 26 °C, 25,000 

rpm for 4 hours to allow the particle bands to reach their equilibrium density zones. 

Actual densities of these particles were not calculated, but qualitative differences were 

obtained by comparing the distances traveled down the sucrose density gradient. Samples 

were prepared in triplicate and are presented as an average value ± one standard 

deviation. 
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1H NMR 

A Varian Unity 300 MHz NMR spectrometer was used to determine the chemical 

compositions of the PEG cross-linked microgels. Lyophilized microgels (1.0 mg) were 

redispersed in D2O and the spectra were recorded at both 20 and 40 °C. Before taking 

measurements, the sample was thermally equilibrated for 15 minutes at each temperature. 

No changes in the signal intensities were observed if the equilibration time was 

prolonged. 

Protein Adsorption 

The amount of protein adsorbed to the PEG cross-linked microgels was 

previously determined using the dye-complexation based Bradford Assay.3,22 For these 

experiments, fluorescein isothiocyanate labeled BSA (FITC-BSA) was used to eliminate 

the need for complexation and allow for more sensitive spectrofluorimetric 

measurements. The PEG cross-linked microgels (10 mg/mL) were mixed with FITC-

BSA (1 mg/mL) in 0.02 M PBS, pH 7.4. These samples were incubated by shaking in a 

heat block on a shaker table at either 25 or 37 °C for three hours and then centrifuged at 

14, 000 rpm for 60 minutes at either 25 or 37 °C. The amount of protein remaining in 

solution was determined by extracting 200 µL of supernatant and then diluting this with 3 

mL of 0.02 M PBS, pH 7.4. The concentration of protein that did not adsorb to the 

particles was then determined by measuring the fluorescence intensity of the solution 

using λex = 473 nm and λem = 512 nm, and correlating these intensity values to a 

calibration curve. The value for the amount of protein adsorbed to the microgels was 

finally calculated taking into account the dilution factor and the concentration of FITC-
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BSA in a control sample that did not contain any microgels. Samples were prepared in 

triplicate and are presented as an average value ± one standard deviation. 

Macromolecule Loading Studies 

To determine the capability of these microgels to effectively load 

macromolecules, the PEG cross-linked microgels (10 mg/mL) were mixed with FITC-

dextran (4, 000, 70, 000 or 150, 000 MW) or FITC-insulin (1 mg/mL) in 0.02 M PBS, pH 

7.4 via shaking. After 24 hours of incubation, the amount of macromolecule remaining in 

solution (not loaded) was determined by first centrifuging at 14, 000 rpm at 26 °C for 60 

minutes. Then 200 µL of supernatant was extracted and diluted with 3 mL of 0.02 M 

PBS, pH 7.4. The comparative amount of macromolecule that did not load into the 

particles was then determined by measuring the fluorescence intensity of the solution 

using λex = 473 nm and λem = 512 nm. To quantitate the amount of macromolecule that 

loaded into the microgels, the sample supernatant fluorescence was compared to that of a 

control sample containing no microgels. Samples were prepared in triplicate and are 

represented as an average value ± one standard deviation. 

 

4.3 Results and Discussion 

Particle Synthesis and Characterization 
 
 In this work, thermoresponsive pNIPAm microgels were cross-linked with PEG 

diacrylate of MWs 200, 575 and 700 to investigate the effect of cross-linker chain length, 

as well as concentration, on the overall phase transition behavior of these particles. Table 

4-1 illustrates the chain lengths and corresponding repeat units for these three cross-

linkers, along with the chain length for BIS. PEG is more hydrophilic than the NIPAm  
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Table 4-1. Properties of cross-linkers used for microgel syntheses 

Cross-linker Chain length (Å) Ethylene Glycol repeats 

N, N’-Methylene(bisacrylamide) 12 N/A 

PEG 200 diacrylate 28.6 4 

PEG 575 diacrylate 63.5 13 

PEG 700 diacrylate 78.6 16 
 

 

monomer. Thus, incorporation of these chains as cross-linking units should influence the 

hydrophilic balance and thereby alter the deswelling thermodynamics of the microgels. 

Increasing the PEG chain length from a relatively short chain (MW 200; four repeat units 

and a chain length of 29 Å) to a longer one of MW 700 (16 repeat units and a chain 

length of 79 Å) could dramatically affect the overall phase transition behavior and 

perhaps morphology of these loosely cross-linked networks. 

Characterization of hydrodynamic radius as a function of temperature was 

performed using DLS. Figure 4-1 illustrates the volume phase transition behavior of these 

systems as a function of PEG chain length (Panels a, b, and c correspond to PEG 200, 

575 and 700, respectively). In terms of PEG content, a subtle increase in the phase 

transition temperature can be observed for the PEG 200 samples upon increasing the 

concentration from 0.2 to 5 mole % (panel a1). For these systems, a slightly broadened 

phase transition can also be observed upon increasing the PEG content. For the 

intermediate chain length of PEG 575 samples, the same trend is observed (panel b1). For 

the longest PEG chain (PEG 700), the most pronounced difference in VPT behavior is 

exhibited upon increasing the cross-linker concentration (panel c1). To better visualize 
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Figure 4-1. Temperature dependent DLS determined hydrodynamic radii (panel 1) and 
deswelling ratios (panel 2) of (a) PEG 200, (b) PEG 575 and (c) PEG 700 cross-linked 
pNIPAm microgels; 0.2 (circles), 1 (upward triangles), 2 (squares) and 5 (downward 
triangles) mole % cross-linker concentrations. 
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phase transition differences between particles of different radii, the size variations have 

been normalized to deswelling volume ratios as described in the experimental section. 

Panels a2, b2, and c2 represent the deswelling ratios for the corresponding microgels and 

also show an increase in VPT temperature as well as breadth with increased PEG content, 

especially for the longest chain length of PEG 700 (panel c2). In the case of PEG 200, it 

appears that the 5 mole % (panel a2) microgels deswell to the least extent (show the 

smallest change in deswelling ratio), while the 2, 1 and 0.2 mole % microgel systems 

show a steady increase in deswelling magnitude with a decrease in cross-linker content. 

These findings suggest that less elastic and denser networks are produced with higher 

PEG content. The same trend is observed for the PEG 575 samples where an increase in 

cross-linker content results in smaller deswelling magnitudes. For the PEG 700 systems, 

there is an observable decrease in the deswelling ratio for the more highly cross-linked 

microgels (1 and 2 mole %) over the 0.2 mole % system. 

To illustrate the effects of cross-linker chain length on modulation of the phase  

transition behavior of these particles, Figure 4-2 shows the deswelling curves for 0.2  

(panel a), 1 (panel b) and 2 (panel c) mole % PEG cross-linker. 2 mole % BIS cross-

linked microgels are also included in panel c for comparison. At an extremely low 

concentration of PEG (0.2 mole %), increasing the chain length from PEG 200 to PEG 

700 MW essentially does not alter the phase transition behavior of the nanoparticles 

(panel a1) where all three samples exhibit approximately the same sharp phase transition 

with an LCST at approximately 31-32 °C. The fact that quite sharp phase transitions 

resulted for all chain lengths could indicate a uniform distribution of sub-chain lengths 

within the microgels due to a constant cross-linker incorporation rate at these low PEG 
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Figure 4-2. Temperature dependent DLS determined hydrodynamic radii (panel 1) and 
deswelling ratios (panel 2) of (a) 0.2, (b) 1.0 and (c) 2.0 mole % PEG cross-linked 
pNIPAm microgels; PEG 200 (circles), PEG 575 (upward triangles), PEG 700 (squares) 
and BIS (downward triangles). 
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concentrations. Inspection of the deswelling ratios (panel a2), however, shows that there 

is an observable decrease in deswelling magnitude as the chain length increases. At a 

slightly higher concentration of PEG (1 mole %), more distinct differences in the 

deswelling thermodynamics can be observed upon increasing the cross-linker chain 

length (panel b1), where a small elevation in breadth and LCST value occurs. Again, for 

these systems there is a diminished deswelling capacity observed as the cross-linker chain 

length increases. At 2 mole %, the effect of incorporating longer hydrophilic chains 

within these microgels can be clearly observed (panel c1). As the PEG MW increases 

from 200 to 575 to 700, the phase transition significantly shifts to a higher temperature 

due to an increased hydrophilic balance of the particles, which reduces the propensity for 

hydrophobic collapse of pNIPAm. Noted increased breadth of the phase transitions could 

be due to a more heterogeneous distribution of sub-chain lengths. The increased LCST 

values with increased incorporation of hydrophilic moieties has been observed before and 

has been attributed to increased gel hydration which restricts hydrophobic network 

aggregation.23 Similar observations have also been made by Virtanen et al. who noted 

increased solubilization of pNIPAm by poly(ethylene oxide) (PEO) chains resulted in an 

increased LCST. They also noted broadening of the phase transitions as the content of 

PEO was increased.20,24 By comparison, the 2 mole % BIS microgels displayed 

approximately the same PT temperature as the PEG 200 microgels with a significantly 

smaller deswelling magnitude. These findings suggest that the BIS cross-linker, being the 

shortest and also being more hydrophobic than PEG, results in a denser network with a 

decreased ability to swell in water. All of these results obtained by PCS suggest that these 
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types of syntheses are quite robust and result in well-behaved thermoresponsive 

microgels with predictable shifts in phase transition behavior. 

Isopycnic Sucrose Density Gradient Centrifugation 

Differences in microgel density were investigated using isopycnic density  

gradient centrifugation studies. Sucrose gradients were prepared by carefully layering 25,  

20, 15 and 10 % sucrose solutions on top of each other and then placing the microgel  

samples (30 µL) on top of the entire gradient. Upon centrifugation at high speeds, the  

microgels traveled through the gradient until reaching the point where the microgels are  

perfectly buoyant (an equilibrium density zone was reached). This technique allowed for  

extremely tight microgel bands to be observed (approximately 3 mm in width) and  

therefore, qualitative comparisons between different sample densities could be made. The  

tabulated results are shown in Table 4-2. The samples with the highest concentration of  

PEG (2 mole %) and 5 mole % BIS traveled farthest down the sucrose gradient while the  

0.2 mole % samples traveled the least, regardless of PEG chain length. These results  

confirm what one would predict for cross-linked networks; increasing the concentration  

of cross-linker causes denser particle networks to be formed. These findings correlate  

well with literature findings based on BIS cross-linked pNIPAm microgels where within  

1 to 7 % cross-linker concentration, the higher the BIS content, the more dense the cross- 

linked network became.25   
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Table 4-2. Isopycnic sucrose density gradient centrifugation 

 results for PEG and BIS cross-linked microgels 

Mole % Cross-linker Avg. distance traveled, cm 

0.2 PEG 200 2.27 ± 0.02 

2.0 PEG 200 2.64 ± 0.05 

0.2 PEG 575 2.12 ± 0.03 

2.0 PEG 575 2.65 ± 0.01 

0.2 PEG 700 2.15 ± 0.01 

2.0 PEG 700 2.59 ± 0.01 

2.0 BIS 2.62 ± 0.02 

5.0 BIS 2.99 ± 0.02 
 

 

  

1H NMR 

To further characterize these PEG cross-linked microgel systems, 1H NMR 

spectra of all samples were recorded at both 20 and 40 °C to investigate the structure of 

the particles in both their swollen and deswollen states. To determine actual PEG 

incorporation into these systems, the ratio of the PEG peak (at 3.52 ppm, resulting from 

the methyl protons in the OCH2CH2 repeat units) to the main pNIPAm peak (at 1.1 ppm, 

resulting from the methyl protons of the isopropyl group) was calculated at room 

temperature. The proton assignments for the pNIPAm polymer are in agreement with its 

chemical structure and are illustrated in Figure 4-3.26,27 The peak at 1.1 ppm can be 

attributed to the methyl protons of the N-isopropyl group (peak a). The resonance for the 
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methylene proton of the isopropyl group is observed at 3.8 to 4.0 ppm (peak b) while the 

resonances from 1.2 to 2.2 ppm (peaks c and d) are attributed to the protons on the 

polymer backbone. The entire ratio results are shown in Table 4-3 and confirm that the 

expected concentration of PEG was effectively incorporated. The value obtained for the 

0.2 mole % PEG 200 microgels, however is higher than expected. This is most likely due 

to the fact that at this low concentration of such a short chain length, the PEG peak in 1H 

NMR was extremely small and perhaps overestimation of the integrated peak area was 

made.  

Shown in Table 4-3 are also the PEG/pNIPAm peak (e/a) ratios obtained for the 

microgels at temperatures both below and above their LCST values. For all samples, an 

increase in the ratios of PEG/pNIPAm peak areas is observed upon particle collapse. This 

may suggest that the PEG cross-links are mobile enough to partially protrude from the 

deswollen network during pNIPAm collapse, which has been observed previously for 

PEG-grafted pNIPAm microgels.3 It should be noted that for the longer chain lengths of 

PEG 575 and PEG 700, the most notable increase in these ratios is observed while a 

statistically insignificant increase is observed for the PEG 200 samples. These findings 

suggest that the shortest cross-link chains are buried within the collapsed microgels while 

the longer chains may perhaps be flexible enough to protrude from the deswollen 

networks.  
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Table 4-3. 1H NMR determined peak integrations at 20 °C and PEG/pNIPAm 

peak integration ratios at 20 and 40 °C for PEG cross-linked microgels 

Sample 
Mole % 

PEG         

Mole % PEG 

detected 

PEG 
peak/pNIPAm 
peak at 20 °C 

PEG 
peak/pNIPAm 
peak at 40 °C 

PEG 200 0.2 0.33 0.01 not determined 

PEG 200 1.0 0.94 0.02 0.03 

PEG 200 2.0 1.94 0.06 0.10 

PEG 200 5.0 3.88 0.10 0.13 

PEG 575 0.2 0.16 0.01 0.34 

PEG 575 1.0 0.98 0.06 0.11 

PEG 575 2.0 2.00 0.16 0.38 

PEG 700 0.2 0.20 0.04 0.19 

PEG 700 1.0 0.98 0.11 0.31 

PEG 700 2.0 1.97 0.20 0.48 
 

 

 

Figure 4-3 shows 1H NMR spectra for 2 mole % PEG 700 pNIPAm microgels at 

both 20 and 40 °C. This figure clearly illustrates that upon raising the temperature above 

the LCST of these systems, the pNIPAm peak resonances become suppressed while the 

PEG peaks seem to increase in relation, thus supporting the earlier finding that the 

mobility of the long PEG chains is not strongly coupled to the more solid-like pNIPAm 

chains in their deswollen state. Virtanen et al. observed similar results where they noted 

that PEO grafts tended to turn outward into the aqueous phase at temperatures both below  
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Figure 4-3. 1H NMR spectra of 2 mole % PEG 700 cross-linked pNIPAm microgels in 
D2O at 20 and 40 °C. 
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and above the LCST of pNIPAm.24 Similar findings were also observed by Gan et al. for 

PEG modified pNIPAm core/shell nanoparticles.3 

Protein Adsorption 

Another probe to give us insight into the properties of these networks is the 

measure of non-specific protein adsorption, using FITC-BSA as the model protein. We 

hypothesized that the cross-linked PEG chains, presumably occupying mainly the interior 

of the particles, would significantly influence the protein adsorption properties of these 

microgels in their swollen and deswollen states. FITC-BSA protein adsorption studies 

were carried out at temperatures below and above the LCST of the microgels. The results 

for these studies are presented in Figure 4-4. At 25 °C (black bars), below the phase 

transition temperature, there is an observable decrease in the amount of FITC-BSA 

adsorbed to the PEG 200, PEG 575 and PEG 700 samples as the chain length and content 

increases. This presumably is a result of an increased hydrophilicity of these networks, 

causing a decrease in the hydrophobic protein adsorption properties of the microgels. 

These results are in agreement with previous findings where hydrogen bonded water to 

PEG resulted in a high degree of water solvation, thus preventing hydrophobic protein 

adsorption.7 At 37 °C (grey bars), where the microgels are in their phase-separated state, 

there is only an observable decrease in the amount of protein adsorption for the longest 

chain systems (PEG 700). This result could be supportive of the earlier 1H NMR findings 

that suggested these chains were long enough and flexible enough to protrude from the 

collapsed deswollen network. These findings imply that there is a critical cross-linker 

chain length needed to significantly modulate the surface energy of these particles in their 

deswollen state. The results for FITC-BSA adsorption under swollen (25 °C) versus 
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deswollen (37 °C) conditions show that, in all cases, an increase in the amount of protein 

adsorbed to the particles resulted when the microgels were in their collapsed states. It is 

apparent from these results, as others have reported previously,3,28 that even though the 

flexible PEG chains may be extended to the outer aqueous environment of the collapsed 

dense globule in some cases, the propensity for protein adsorption is still stronger when 

the particles are hydrophobically collapsed. The 2 % BIS cross-linked systems resulted in 

the largest amount of FITC-BSA adsorption, which is attributable to the fact that these 

are the most hydrophobic systems compared to the hydrophilically modified, PEG 

containing microgels.  
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Figure 4-4. FITC-BSA protein adsorption results for PEG and BIS cross-linked 
microgels in 0.02 M PBS, pH 7.4; black (25 °C) and grey (37 °C). The PEG MW is 
indicated on the bottom axis, while the PEG concentrations in the microgels are indicated 
on the top axis.  
 

 

Macromolecule Loading  

 To probe the efficacy of these types of systems for macromolecule drug delivery, 

loading studies using varying MW species were performed. To investigate microgel 

porosity, four different sized macromolecules were investigated (4, 000, 70, 000, and 

150, 000 MW FITC-dextrans along with 5, 800 MW FITC-insulin). The first of these 

results are illustrated in Figure 4-5 and show that as the content of PEG 200 cross-linker 
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increases from 0.2 to 5 mole % an overall increase in the amount of 70, 000 (panel a) and 

150, 000 (panel b) MW FITC-dextran loaded results (as indicated by less FITC-dextran 

remaining in the supernatant). These findings suggest that the most hydrophilic microgels 

yield the best loading results for these hydrophilic macromolecules. Thus, the two most 

hydrophilic samples, 5 mole % PEG 200 and 2 mole % PEG 700, were tested for loading 

efficacy of three different MW macromolecules as illustrated in Figure 4-6. These results 

show that in all cases, the 2 mole % PEG 700 loaded more of each macromolecule with 

the smallest MW species (4, 000 MW FITC-dextran) loading at the highest yield. These 

findings suggest that perhaps it is the most hydrophilic system that shows most promise 

in loading of hydrophilic macromolecules and perhaps microgel porosity plays a role.  
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Figure 4-5. Macromolecule loading efficiency results for 0.2, 1, 2 and 5 mole % PEG 
200 cross-linked pNIPAm microgels in 0.02 M PBS, pH 7.4 for (a) 70, 000 MW FITC-
dextran and (b) 150, 000 MW FITC-dextran. 

 
 
 
 

 
 
 
 
Figure 4-6. Macromolecule loading efficiency results for 5 mole % PEG 200 and 2 mole 
% PEG 700 cross-linked pNIPAm microgels in 0.02 M PBS, pH 7.4 for (a) 4, 000 MW 
FITC-dextran,  (b) 70, 000 MW FITC-dextran and (c) 5, 800 MW FITC-insulin. 
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4.4 Conclusions 

By incorporating hydrophilic, flexible oligomeric cross-linkers (PEG chains) 

within pNIPAm microgels, predictable modulation of the phase transition behavior as 

well as particle surface energy can be achieved. DLS studies reveal that as the 

concentration of PEG incorporated into the microgels was raised, an increase in the phase 

transition temperature, as well as breadth, was observed. Isopycnic centrifugation studies 

indicated that a higher PEG content resulted in denser cross-linked systems. Efficient 

incorporation of the PEG cross-linker was confirmed with 1H NMR and variable 

temperature NMR studies are suggestive of a particle structure where the longest, most 

freely mobile cross-linking chains stretch outward from the collapsed globule. The 

protein adsorption studies showed that reduced protein sticking resulted when the 

concentration of PEG incorporated into the microgels increased. Above the LCST, the 

microgels containing the longest cross-link chains resulted in the least amount of FITC-

BSA adsorption, and also suggest that these long chains are flexible enough to protrude 

from the collapsed microgel network. These oligomerically cross-linked systems also 

proved effective in hydrophilic macromolecule loading. Overall these PEG cross-linked 

microgels displayed highly predictable behavior that may serve useful for biomedical 

applications, such as protein drug delivery vehicles and/or bioengineering.  
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CHAPTER 5 

 

SYNTHESIS, CHARACTERIZATION AND APPLICATIONS OF 
POLY(ETHYLENE GLYCOL) (PEG) CROSS-LINKED                             

PNIPAM-CO-ACRYLIC ACID MICROGELS 

 

This chapter focuses on the fundamental synthesis and characterization of PEG 

cross-linked pNIPAm-co-Acrylic acid (pNIPAm-co-AAc) (9:1) microgels. It also deals 

with cell adhesion studies designed to elucidate future applications of such oligomerically 

cross-linked dually responsive materials. Herein, we describe results from studies 

performed to show that modulation of phase transition behavior and microgel surface 

energy can be accomplished by incorporating oligomeric cross-linkers of varying length 

and content within pH sensitive microgels. Characterization through DLS provides some 

insight into the responsivity of these porous systems as a function of temperature and pH. 

These particles also prove to be effective for non-fouling and cell adhesion-resistant 

applications when longer chain lengths or increased content are utilized. Thus, these 

types of oligomerically cross-linked dually responsive microgels could prove useful in 

biomedical applications. 
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5.1      Introduction 

 As described earlier, efforts to enhance the overall biocompatibility of hydrogel 

networks by incorporation of poly(ethylene glycol) (PEG) moieties have been thoroughly 

made in recent years. PEG is a hydrophilic, non-degradable polymer,1 and has many 

features that make it attractive for bio-related materials. These include biocompatibility, 

non-toxicity, non-immunogenicity and water solubility.2 Nanoparticles that are surface-

modified with PEG have become increasingly investigated3,4 due to the fact that PEG 

facilitates control of protein adsorption and minimizes nonspecific cell adhesion in 

vitro.5-8 Incorporation of PEG chains allows tunability of the hydrophilic/hydrophobic 

balance of these hydrogel networks, thereby modulating their deswelling characteristics.9 

Much work has been done wherein PEG chains have been grafted to hydrogels, thereby 

greatly affecting their phase transition behavior.10,11  

 Incorporation of functional moieties within hydrogel materials that yield them pH 

responsive has been another heavily explored avenue. Variations in solution pH induce 

modulation of network ionization that result in changes in swelling capacity.12 For 

example, the effect of modulated pH on the swelling properties of acid modified pNIPAm 

based networks has been studied in great detail.13-18 Use of dually responsive temperature 

and pH sensitive hydrogel materials for controlled drug delivery applications has also 

been increasingly investigated.19-21 Studies on acid incorporated and PEG modified 

networks have also been performed22 are highly attractive for drug delivery 

applications.21,23 Yet, little work has focused on using PEG chains as cross-linking units 

within discrete thermo- and pH responsive microgel particles. Herein, we describe results 

from investigations that show modulation of phase transition behavior, swelling 
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capacities and cell adhesion properties can be achieved by incorporating oligomeric 

cross-linkers of varying length and/or content into both thermo- and pH sensitive 

microgels.  

 

5.2 Experimental  

Materials 

All chemicals were obtained from Sigma Aldrich unless otherwise noted. N-

isopropylacrylamide (NIPAm) was recrystallized from hexane (J. T. Baker) prior to use. 

Sodium dodecyl sulfate (SDS), ammonium persulfate (APS), N, N’-

Methylene(bisacrylamide) (BIS), sodium hydroxide (NaOH), anhydrous acrylic acid 

(AAc; Fluka), formic acid (J. T. Baker), 95% ethanol, 200 proof anhydrous ethyl alcohol 

and poly(ethylene glycol) diacrylate (PEG) (PEG MW 200, 575 and 700, Polysciences, 

Inc.) were used as received. 3-Aminopropyltrimethoxysilane (APTMS) was obtained 

from United Chemical Technologies. Phosphate buffered saline solution (pH 7.4, 0.02 M) 

was prepared in house from NaCl (Fisher), Na2HPO4 (EM Science) and KH2PO4. 12-well 

tissue culture-treated polystyrene plates were from Corning Inc. Dulbecco’s phosphate 

buffered saline and Modified Eagle medium were purchased from Invitrogen. Murine 

NIH-3T3 fibroblasts (CRL-1658) were from the American Type Culture Collection.  

Newborn calf serum was purchased from Hyclone, while all other cell culture reagents 

were obtained from Invitrogen. Glass microscope coverslips (22 x 22 mm) were 

purchased from Fisher Scientific. 0.2 µm nylon membrane disks and Spectra/Por 10, 000 

MWCO dialysis membrane were purchased from VWR. Water used in all experiments 
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was distilled and then purified using a Barnstead E-Pure system operating at a resistance 

of 18 MΩ. A 0.2 µm filter was incorporated into this system to remove particulate matter. 

Particle Synthesis 

Thermoresponsive pNIPAm-co-AAc (9:1) microgels, synthesized by precipitation 

polymerization via a method slightly modified from that previously described,24 were 

cross-linked with PEG diacrylate of MWs 200, 575 and 700 at concentrations of 0.2, 1, 2 

and 5 mole %.2428 2 mole % BIS cross-linked pNIPAm-co-AAc (9:1) microgels were also 

synthesized for comparison in cell adhesion studies. The total monomer concentration 

was 100 mM in all reactions. SDS was used as a surfactant and APS was used as the free 

radical initiator. The NIPAm monomer, cross-linker and surfactant (0.01 g) were 

dissolved in 200 mL of nanopure water, filtered through a 0.2 µm nylon membrane filter 

to remove any large particulate matter and then continuously stirred in a three-neck, 250 

mL round-bottom flask. This solution was heated to 70 ºC while being purged with N2 

gas. Approximately one hour later, the temperature of the solution was stable at 70 ºC. To 

this hot solution, the acrylic acid comonomer was added. Fifteen minutes later, the 

reaction was initiated by adding a hot (70 ºC) 35 mg/mL solution of APS (1 mM final 

concentration). The solution turned turbid within 10 min, indicating successful initiation. 

The reaction proceeded for 6 hours under a constant stream of nitrogen. Following 

synthesis, the microgels were filtered using a P2 Whatman filter paper and then dialyzed 

(using 10, 000 MWCO) for 2 weeks against nanopure water with a daily exchange of 

fresh water.  
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Dynamic Light Scattering (DLS) 

Hydrodynamic radii and light scattering intensities were obtained by DLS 

(Protein Solutions, Inc.). The 20 mM solutions of pH 3.5 and 6.5 were first prepared 

using the appropriate buffer systems (formate and phosphate). Prior to analysis, the 

purified microgels were diluted in filtered media (using 0.2 µm filters) until a count rate 

of 250 kCt/s was obtained. The suspensions were then held at each temperature for 10 

minutes to achieve thermal equilibration before measurements were taken. Longer 

equilibration times did not result in variations of particle radius, polydispersity, or light 

scattering intensity. The data points presented here are an average of 25 measurements 

with a 5 second acquisition time and a signal-to-noise ratio threshold of 2.5. 

Hydrodynamic radii were calculated from the measured diffusion coefficients using the 

Stokes–Einstein equation. All correlogram analyses were performed with manufacturer-

supplied software (Dynamics v.5.25.44, Protein Solutions, Inc.). 

Light Scattering 

To monitor the phase transition behavior of one set of these microgels in high 

ionic strength cell-culture medium (pH 7.4), a light scattering profile was obtained using 

a steady state fluorescence spectrophotometer (Photon Technology International) 

equipped with a Model 814 PMT photon-counting detector. The slit widths were set to a 

bandwidth of 1.5 nm while the excitation and emission monochromators were each set to 

pass 600 nm light. The scattered light intensity of the solution was monitored at an angle 

of 90° as a function of time and temperature using a temperature ramp experiment. The 

temperature range was from 24 to 52 °C, the temperature ramp rate was set at 1 

°C/minute, the integration time was set at 1 second and data was collected every 0.1 °C. 
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The temperature was controlled using a PE 60 temperature controller Peltier stage 

(Linkam Scientific Instruments Ltd., Surrey, UK). The cuvette was filled with 3.5 mL of 

cell culture medium and 50 µL of the microgel solution.  

Potentiometric Titrations 

 To verify 10 mole % acrylic acid incorporation into these PEG cross-linked 

pNIPAm-co-AAc (9:1) microgels, potentiometric titrations were performed. The 

microgels were first lyophilized, then weighed out and resuspended in nanopure water to 

yield a final concentration of 5 mg/mL. This solution was titrated against standardized 10 

mM NaOH using 150 µL aliquots. After each aliquot was added, the solution was 

allowed to stir for 1 minute and then left to sit for 5 minutes before equilibrated pH 

measurements were taken. Based on the theoretical concentration of acrylic acid 

incorporated into the microgels, the number of mmole of acid/gram of solid was 

calculated. Upon completion of a titration curve, the inflection point was used to 

determine the end point and hence, the volume of base needed to neutralize the acid 

groups. From this volume of base, the actual concentration of acrylic acid in the solution 

was calculated. This value was used in reference to the theoretical value and hence, the 

effective amount of acrylic acid incorporated into the microgels was calculated.  

Cell Adhesion Studies 

The actual cell adhesion studies were performed by Catherine D. Reyes, a 

graduate student in Dr. Andres J. Garcia’s lab in The Woodruff School of Mechanical 

Engineering, Georgia Institute of Technology. Stock solutions (8 mg/mL) of the PEG or 

BIS cross-linked pNIPAm-co-AAc (9:1) microgels were first prepared by dissolving 

lyophilized microgels in 20 mM PBS. A spin-coating process was used to deposit one 
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layer of PEG cross-linked pNIPAm-co-AAc (9:1) microgels onto glass microscope cover 

slips. The glass substrates were first cleaned by placing in a hot plasma cleaner for 10 

minutes. After this, the slides were rinsed with 200 proof anhydrous ethyl alcohol before 

functionalization. A 0.4 % APTMS solution in anhydrous ethanol was used to make the 

glass slides positively charged. The slides were left in this solution at room temperature 

for two hours and were then rinsed well with 95 % ethanol and finally stored in 95 % 

ethanol. Prior to spin coating, the positively functionalized slide was rinsed well with 

nanopure water and then gently dried with nitrogen gas.  This slide was placed on the 

spin coater chuck and held in place via vacuum. The rotor speed was maintained at 3, 000 

rpm. Deposition of one microgel layer consisted of depositing 5 drops of the PEG cross-

linked pNIPAm-co-AAc (9:1) microgel solution (pH 7.4), waiting 20 seconds and then 

rinsing vigorously with nanopure water. 2 mole % BIS cross-linked pNIPAm-co-AAc 

(9:1) microgels were also used in these studies for comparison of cross-linker 

hydrophobicity. Microgel-coated glass coverslips were transferred to separate wells in a 

12-well tissue culture-treated polystyrene plate. The coverslips were sterilized with 2 mL 

70 % ethanol and then rinsed three times with Dulbecco’s phosphate buffered saline. 

Murine NIH-3T3 fibroblasts (CRL-1658) were detached from tissue culture plates using 

trypsin/EDTA and resuspended in Dulbecco’s Modified Eagle medium containing 10 % 

newborn calf serum and 1% penicillin-streptomycin. Cells were seeded onto the wells 

containing the microgel-coated coverslips at a density of 10,000 cells/cm2 with 1 mL of 

growth media per well. The culture plates were maintained at 37 ºC in a humid 

environment supplemented with 5 % CO2 from 1 hour to 3 days. Phase contrast images 
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were captured using a Nikon Eclipse E400 fluorescence microscope with 10x and 20x 

objectives and ImagePro Plus image acquisition software. 

 

 

5.3 Results and Discussion 

Particle Synthesis and Characterization 

 In this work, dually responsive pNIPAm-co-AAc (9:1) microgels were cross-

linked with PEG diacrylate of MWs 200, 575 and 700 to investigate the effect of cross-

linker chain length, as well as concentration, on the overall phase transition behavior of 

these networks as a function of both temperature and pH. As previously discussed, PEG 

is more hydrophilic than the NIPAm monomer. Thus, incorporation of these chains as 

cross-linking units should significantly affect their hydrophilic balance, and thereby, alter 

their deswelling behavior. Incorporation of a pH sensitive comonomer, as well as varying 

the hydrophilic oligomer chain length and/or content could dramatically alter the overall 

phase transition behavior and responsivity of these loosely cross-linked networks. 
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Figure 5-1. Temperature dependent DLS determined hydrodynamic radii of  (a) PEG 
200, (b), PEG 575 and (c) PEG 700 cross-linked pNIPAm-co-AAc (9:1) microgels at pH 
3.5; 0.2 (circles), 1.0 (squares), 2.0 (upward triangles) and 5.0 (downward triangles) mole 
% cross-linker concentrations. 
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Characterization of hydrodynamic radius as a function of temperature was  

performed on these dually responsive networks using DLS. Figure 5-1 illustrates the 

volume phase transition behavior of these microgels as a function of PEG chain length at 

a constant pH of 3.5 (panels a, b and c correspond to PEG 200, 575 and 700, 

respectively). In terms of PEG content, an obvious increase in the phase transition 

temperature can be observed for the PEG 200 samples upon increasing the concentration 

from 0.2 to 5 mole % (panel a). For these systems, a trend of increasingly broadened 

phase transitions can also be observed upon increasing the PEG content with the sample 

of the highest cross-linker concentration of 5.0 mole % resulting in the broadest phase 

transition. Similar findings have been reported before by Virtanen et al. who noted 

increased solubilization of pNIPAm by poly(ethylene oxide) (PEO) chains resulted in 

anincreased LCST. They also noted broadening of the phase transitions as the content of 

PEO was increased.11,25 For the intermediate chain length of PEG 575 samples, a more 

distinct increase in the phase transition temperature is noted upon increasing the cross-

linker concentration from 0.2 to 1.0 to 2.0 mole %. The same trend of decreased PT 

sharpness is also observed with augmented cross-linker concentrations. For the longest 

PEG chain of MW 700, increased breadth of the PT can be observed even at only 1.0 

mole %.  It should be noted that for these types of syntheses, conditions of 2.0 mole % 

PEG 700 with 10 mole % acrylic acid did not result in robust synthetic conditions where 

phase separation was a significant problem. Furthermore, it was only for the shortest PEG 

cross-linker of 200 MW that 5.0 mole % was effectively incorporated. 

To illustrate the effects of cross-linker chain length on modulation of the phase 

transition behavior of these particles, Figure 5-2 shows the deswelling curves for 0.2 
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(panel a), 1.0 (panel b) and 2.0 (panel c) mole % PEG cross-linker, again at a constant pH 

of 3.5. At an extremely low concentration of PEG (0.2 mole %), a subtle increase in the 

phase transition temperature is observed upon increasing the chain length from PEG 200 

to PEG 700 MW (panel a). These findings are in contrast to previously reported results 

on PEG cross-linked networks without AAc comonomer (see Chapter 4). In these 

previous studies, essentially no difference in the phase transition temperature was 

observed when the chain length varied at this low mole %. We attribute modulation of the 

phase transition temperature however, in this case, to the overall increase in the 

hydrophilic balance of these networks considering 10.0 mole % acrylic acid was 

incorporated as a comonomer. At a slightly higher concentration of PEG (1.0 mole %), 

more distinct differences in the deswelling kinetics can be observed (panel b) upon 

increasing the cross-linker chain length, where a small elevation in breadth and LCST 

value occurs. At 2.0 mole %, the effect of incorporating longer hydrophilic chains within 

these AAc modified microgels can be clearly observed (panel c) by just increasing the 

MW from 200 to 575. Significant broadening of the phase transition occurs for the longer 

PEG 575 chain. In all cases, this shift of the phase transition out to higher temperatures 

can be attributed to the increased hydrophilic character of the particles, which reduces the 

propensity for hydrophobic collapse of the pNIPAm polymer backbone. Furthermore, 

increasing the PEG chain length within these already hydrophilically modified networks 

(with 10.0 mole % AAc comonomer) only augments the elevation of the hydrophilic 

balance of the network, thereby concurrently decreasing the propensity for structured 

water molecules to be expelled during microgel collapse. Again, these types of  
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Figure 5-2. Volume phase transition curves for (a) 0.2, (b) 1.0 and (c) 2.0 mole % PEG 
cross-linked pNIPAm-co-AAc (9:1) microgels in pH 3.5 media. PEG 200 (circles), PEG 
575 (squares) and PEG 700 (upward triangles). 
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observations have been made before by Virtanen et al. who noted an increased LCST and 

phase transition broadening as the concentration of PEO increased.11,25 

To further consider the effect of PEG cross-linking on the structure of these 

pNIPAm-co-AAc (9:1) microgels, the sharpness and breadth of the transitions can be 

analyzed. The lowest mole % (0.2 mole %) samples resulted in sharper phase transitions 

for all chain lengths (panel a) in contrast to the higher concentrations of 1.0 (panel b) and 

2.0 mole % (panel c). This could indicate a more heterogeneous distribution of sub-chain 

lengths for the higher concentration samples at 1.0 and 2.0 mole %. Higher LCST values 

with increased incorporation of hydrophilic moieties has been previously reported and 

has been attributed to increased gel hydration which restricts hydrophobic network 

aggregation.30
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Figure 5-3. Volume phase transition curves (panels 1) for PEG 200 cross-linked 
pNIPAm-co-AAc (9:1) microgels in pH 3.5 (circles) and 6.5 (squares) media and 
corresponding light scattering profiles (panels 2). Panels a (0.2 mole %), panels b (1.0 
mole %), panels c (2.0 mole %) and panels d (5.0 mole %). 
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To illustrate the pH responsivity of these PEG cross-linked AAc modified 

microgels, volume phase transition curves were obtained via DLS at pH 3.5 and 6.5. 

These pH values were chosen because they are below and above the pKa value of the 

acrylic acid groups incorporated at 10 mole % comonomer. As discussed previously in 

earlier chapters, this pKa value is approximately 4.26. Figure 5-3 illustrates the effects of 

varying pH on the PEG 200 cross-linked pNIPAm-co-AAc (9:1) hydrogel nanoparticles 

at 0.2 (panels a), 1.0 (panels b), 2.0 (panels c) and 5.0 (panels d) mole %. At all 

concentrations, under pH 3.5 conditions (circles), the microgels undergo a sharp volume 

phase transition at approximately 31-32 °C which corresponds well with the LCST of 

typical pNIPAm microgels.26 At this pH value, the system is below the pKa of the acrylic 

acid groups and almost all of the acid groups within the microgels are protonated. When 

the pH of the system is increased to 6.5 (squares), however, the networks are well above 

the pKa value and the carboxylic acid groups are fully dissociated resulting in 

electrostatic repulsion between negatively charged acid groups which favors swelling. In 

addition to this, Donnan equilibrium guarantees a higher concentration of dissociated ions 

within the microgel interior, resulting in additional osmotic pressure that results in 

swelling.13 This results in significant increases in the sizes of the microgels in all cases. 

This type of behavior, where greater swelling ratios result from increased hydrophilicity 

of the network, is common hydrogel behavior.13,27-30 Furthermore, essentially no 

observable phase transition within the temperature range of 22–42 °C can be detected. 

Similar findings of diminishment of LCST behavior at high pH values for acrylic acid 

networks have been reported.31 Panels 2 of Figure 5-3 illustrate the corresponding light 

scattering profiles of the same systems at the two pH values. Under both pH conditions, 
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the microgels in all cases show very little scattered light intensity at low temperatures 

below the corresponding LCST values. This is due to the fact that these porous microgel 

networks are highly solvated (approximately 95% water by volume) and are therefore, 

refractive index matched to their environment. When the microgels deswell into dense 

globules at temperatures above the LCST, however, the microgels display a higher 

scattering cross section, and therefore, a dramatic increase in scattered light intensity is 

detected from all suspensions above the LCST.  

Figure 5-4 illustrates the pH sensitivity of the PEG 575 cross-linked pNIPAm-co-

AAc (9:1) microgels at 0.2 (panels a), 1.0 (panels b) and 2.0 (panels c) mole %. Again, 

under low pH conditions of 3.5 (circles), the particles all display a typical volume phase 

transition at approximately 31-32 °C. At pH 6.5, however, all of the microgels display an 

increase in size due to osmotic swelling and Coulombic repulsion between the negatively 

charged AAc groups. This, once again, manifests itself as essentially no phase transition 

to be observed within the measured temperature range. The corresponding light scattering 

profiles for these networks, illustrated in panels 2 of Figure 5-4, once again illustrate the 

refractive index difference that occurs when the microgels are in their highly solvent 

swollen state (low temperatures) versus their collapsed deswollen state (high 

temperatures under low pH conditions). Figure 5-5 illustrates the pH effect on the 

responsivity of the PEG 700 cross-linked pNIPAm-co-AAc (9:1) microgels. The same 

trends of pH induced swelling and diminishment of volume phase transitions at high pH 

values can be observed.  
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Figure 5-4. Volume phase transition curves (panels 1) for PEG 575 cross-linked 
pNIPAm-co-AAc (9:1) microgels in pH 3.5 (circles) and 6.5 (squares) media and 
corresponding light scattering profiles (panels 2). Panels a (0.2 mole %), panels b (1.0 
mole %) and panels c (2.0 mole %). 

 

 121



 
 
 
 

Figure 5-5. Volume phase transition curves (panels 1) for PEG 700 cross-linked 
pNIPAm-co-AAc (9:1) microgels in pH 3.5 (circles) and 6.5 (squares) media and 
corresponding light scattering profiles (panels 2). Panels a (0.2 mole %) and panels b (1.0 
mole %). 
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Potentiometric Titrations 

To verify 10.0 mole % acrylic acid incorporation, potentiometric titrations were 

performed on each microgel system using 10 mM sodium hydroxide as the base.  The 

results are illustrated in Table 5-1.  

 

 

Table 5-1. Potentiometric titration data obtained for  

PEG cross-linked pNIPAm-co-AAc (9:1) microgels 

Sample Mole % PEG  Mole % AAc calculated 

PEG 200 0.2 9.84 

PEG 200 1.0 9.93 

PEG 200 2.0 9.97 

PEG 200 5.0 9.99 

PEG 575 0.2 9.94 

PEG 575 1.0 9.82 

PEG 575 2.0 9.95 

PEG 700 0.2 9.78 

PEG 700 1.0 9.76 

  

 

  

These results verify that the acrylic acid comonomer was effectively incorporated into the 

PEG cross-linked pNIPAm-co-AAc microgels at values of at least 9.76 mole % or 
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greater. An example of an obtained potentiometric titration curve can be seen in Figure 5-

6 for 2 mole % PEG 200 cross-linked pNIPAm-co-AAc (9:1) microgels. 

 

 

 

 

 

Figure 5-6. Potentiometric titration curve obtained for 2 mole % PEG 200 cross-linked 
pNIPAm-co-AAc (9:1) microgels.  
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Cell Adhesion Studies  

It is generally acknowledged that reduction in adsorption of adhesive proteins 

from serum-containing solutions results in a reduction in cell adhesion and spreading. 

While protein adsorption studies were not performed on these PEG cross-linked 

pNIPAm-co-AAc (9:1) hydrogel nanoparticles, they have been performed on similarly 

prepared PEG cross-linked microgels not modified with AAc moieties that incorporated 

the same overall mole percentages of cross-linker as studied in this chapter (see Chapter 

4). These previously discussed protein adsorption results showed that reduced protein 

sticking resulted when the concentration of PEG incorporated into the microgels 

increased. The previous findings also showed enhanced suppression of protein adsorption 

at elevated temperatures when the longest chain length of PEG 700 MW was used. Along 

this note, the efficacy of these PEG cross-linked pNIPAm-co-AAc (9:1) microgels for 

preventing cell adhesion when electrostatically attached to substrates in non-fouling 

applications was probed. As previously discussed in Chapter 3, incorporation of the acid 

groups in these microgels allows them to be electrostatically bound to positively 

functionalized glass substrates. An example of the thermoresponsivity of these microgels 

was tested in cell culture medium for 2 mole % PEG 200 cross-linked pNIPAm-co-AAc 

(9:1) particles and can be viewed in Figure 5-7. Due to the presence of AAc in the 

network the volume phase transition is shifted to higher temperatures and the curve 

becomes quite broad. However, these microgels are at least partially deswollen under cell 

culture conditions.  

For the cell adhesion studies, stock solutions of the microgels were first prepared 

in 0.02 M PBS and then electrostatically attached to positively charged glass substrates  
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Figure 5-7. Phase transition curve obtained via light scattering for 2 mole % PEG cross-
linked pNIPAm-co-AAc (9:1) microgels in cell culture medium. 
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Figure 5-8. Optical micrographs (20 x magnification) of PEG 200 cross-linked pNIPAm-
co-AAc (9:1) microgel functionalized substrates exposed to cell culture medium after 
three days at 37 °C; (a) 0.2, (b) 1.0, (c) 2.0 and (d) 5.0 mole % cross-linker 
concentrations. The scale-bar represents 20 µm. 
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via spin coating. These substrates were then exposed to fibroblasts in serum-containing 

cell culture medium at 37 °C for a set length of time to probe the non-fouling capabilities 

of these PEG microgel modified surfaces. The first of these results are illustrated in 

Figure 5-8 for the shortest cross-linker, PEG 200, at 0.2 (panel a), 1.0 (panel b), 2.0 

(panel c) and 5.0 (panel d) mole %. There is a clear enhancement in the non-fouling 

capability of the substrates as the concentration of PEG cross-linker increases. Figure 5-9 

represents the findings for PEG 575 cross-linked pNIPAm-co-AAc (9:1) systems at 0.2 

(panel a), 1.0 (panel b) and 2.0 (panel c) mole %. These images portray the same trend in 

that as the PEG content increases, the surfaces display diminished cell adhesion after 

three days of incubation. For the PEG 700 microgels, Figure 5-10 illustrates that even at 

very low content (only 0.2 and 1 mole % for panel a and b, respectively), these longer 

cross-link chains are flexible enough to allow for enhanced non-fouling behavior. The 

concentration of PEG cross-links needed when using longer chains apparently decreases 

with an increase in PEG molecular weight, suggesting that a critical chain length is 

required to modify the surface energy of the deswollen particles. Similar findings have 

been reported by Du et al. for grafted PEG modified surfaces.15  

The results obtained for the control samples are shown in Figure 5-11 and confirm 

that after three days, non-PEG modified surfaces result in significant cell adhesion and 

proliferation in culture. Overall, these cell adhesion results are in support of earlier 

discussed 1H NMR and protein adsorption findings for PEG cross-linked microgels (see 

Chapter 4). The previously discussed results suggested that in their deswollen state, the 

structure of the microgels containing the longest chains was one where the PEG chains  
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Figure 5-9. Optical micrographs (20 x magnification) of PEG 575 cross-linked pNIPAm-
co-AAc (9:1) microgel functionalized substrates exposed to cell culture medium after 
three days at 37 °C; (a) 0.2 mole %, (b) 1.0 and (c) 2.0 mole % cross-linker 
concentrations. The scale-bar represents 20 µm. 
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Figure 5-10. Optical micrographs (20 x magnification) of PEG 700 cross-linked 
pNIPAm-co-AAc (9:1) microgel functionalized substrates exposed to cell culture 
medium after three days at 37 °C; (a) 0.2 mole % and (b) 1.0 mole %. The scale-bar 
represents 20 µm. 
 

 

 

were mobile enough to protrude from the hydrophobically collapsed network. Even 

though the experimental conditions have not been optimized with respect to surface 

coverage and/or PEG chain length, these studies are quite promising and illustrate that 

PEG cross-linked microgel functionalized surfaces can display tunable behavior in terms 

of cell adhesion by simply modifying the cross-linker content and/or chain length over a 

narrow range. 
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Figure 5-11. Optical micrographs (20 x magnification) of control samples exposed to cell 
culture medium after three days at 37 °C; (a) 2 mole % BIS cross-linked pNIPAm-co-
AAc (9:1) microgels and (b) Tissue culture polystyrene. The scale-bar represents 20 µm. 
 

 

   

5.4 Conclusions 

By incorporating hydrophilic, flexible oligomeric cross-link chains (PEG chains) 

within dually responsive pNIPAm-co-AAc (9:1) microgels, added responsivity results in 

modulation of the phase transition behavior as well as swelling properties of the hydrogel 

particles. Results from DLS revealed that as the concentration of PEG incorporated into 

the microgels was augmented an increase in the phase transition temperature, as well as 

breadth, was observed. These acrylic acid modified microgels also exhibited pH induced 

swelling under pH 6.5 conditions. When electrostatically attached to a functionalized 

surface, these oligomerically cross-linked systems proved effective in non-fouling and 

cell adhesion control. These results support the earlier reported conclusions that in their 
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deswollen state, the oligomeric cross-links are mobile enough to protrude from the 

hydrophobic collapsed microgel interior (see Chapter 4). Such highly responsive 

networks may find applications in biomedical devices or controlled drug delivery 

devices.  
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CHAPTER 6  

 

OTHER MICROGEL LOADING STUDIES 

 

 This chapter focuses on fundamental loading studies of pNIPAm based microgel 

networks. It looks at macromolecule loading strategies for different cross-linked 

networks, as well as microgels with and without acrylic acid comonomer. It also 

differentiates between loading achieved via a breathing-in technique versus simple 

equilibrium partitioning. It is meant to elucidate general loading strategies that could be 

useful in future design of drug delivery devices using microgel based materials.  

 
6.1       Introduction 
 

As discussed in detail in previous chapters, due to the reversible deswelling nature 

of hydrogel networks, use of these materials in controlled drug release devices has been 

thoroughly pursued in recent years.1-6 This squeezing phenomenon has been utilized as a 

mechanism to control both uptake and release of various model drug compounds using 

discrete microgel networks.7-12 Due to the fact that proteins and peptides are inherently 

powerful therapeutic agents,4 there have also been significant advances made in the 

design of controlled macromolecule release devices involving microgels.10,13-16 Insulin 

has been of particular interest for controlled delivery from discrete microgel networks.17-

20 Along this note, and considering our initial success at insulin loading into our 

 135



microgels, we wanted to perform fundamental loading studies using larger bioactive 

species within our array of functionally modified microgel networks.  

Herein, we describe results from studies designed to probe the effect of hydrophilic 

balance within microgel networks on impregnation of hydrophilic macromolecules. 

Hence, two different cross-linkers were studied, poly(ethylene glycol)-diacrylate versus 

N,N’-Methylenebis(acrylamide), and microgels both with and without acrylic acid 

comonomer were probed. In addition, the mechanism of loading was studied where 

equilibrium partitioning as well as loading via a breathing-in technique were compared. 

These studies could offer some insight into the design of future protein release devices 

using responsive microgel networks. 

 
 

 
6.2      Experimental Section 
 
Materials  

All chemicals were obtained from Sigma Aldrich unless otherwise stated. N-

Isopropylacrylamide (NIPAm) was recrystallized from hexane (J. T. Baker) prior to use. 

N, N′-Methylene(bisacrylamide) (BIS), ammonium persulfate (APS), anhydrous acrylic 

acid (AAc; Fluka), 95% ethanol, 200 proof anhydrous ethanol, fluorescein isothiocyanate 

labeled insulin (FITC-insulin) from bovine pancreas, formic acid, FITC-dextran (70, 000 

MW), poly(ethylene glycol) diacrylate (PEG) (200 MW, Polysciences, Inc.) and FITC 

labeled bovine serum albumin (FITC-BSA; 68, 000 MW) were used as received. 3-

Aminopropyltrimethoxysilane (APTMS) was obtained from United Chemical 

Technologies. Phosphate buffered saline solution (pH 7.4, 0.02 M) was prepared in house 

from NaCl (Fisher), Na2HPO4 (EM Science) and KH2PO4. Glass microscope coverslips 
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(22 × 22 mm) were purchased from Fisher Scientific. 0.2 µm nylon membrane disks and 

Spectra/Por 10, 000 MWCO dialysis membrane were purchased from VWR. Water used 

in all experiments was distilled and then purified using a Barnstead E-Pure system 

operating at a resistance of 18 MΩ. A 0.2 µm filter was incorporated into this system to 

remove particulate matter. 

Particle Synthesis 

The details of free-radical precipitation polymerization used in these studies have 

been discussed in previous chapters. In general, the following protocol was followed. 

Sodium dodecyl sulfate (SDS) was used as the stabilizing surfactant while ammonium 

persulfate (APS) was used as the free radical initiator. The NIPAm monomer, cross-

linker (BIS or PEG diacrylate of 200 MW) and surfactant were dissolved in nanopure 

water and then filtered through a 0.2 µm nylon membrane filter to remove any large 

particulate matter that could act as unwanted nuclei in the reaction. This dissolved 

solution was continuously stirred in a three-neck, 250 mL round-bottom flask. This 

solution was heated to 70 ºC while being purged with N2 gas. Approximately one hour 

later, the temperature of the solution was stable at 70 ºC. Fifteen minutes later, the 

reaction was initiated by adding a hot (70 ºC) solution of APS. The solution turned turbid 

within 10 minutes, indicating successful initiation. The reaction proceeded for 

approximately 6 hours under a constant stream of nitrogen gas. Following synthesis, the 

microgels were cooled and filtered using a P2 Whatman filter paper. They were then 

dialyzed (using 10, 000 MWCO) for 2 weeks against nanopure water with a daily 

exchange of fresh water. For the synthesis of pH sensitive microgels, acrylic acid was 

added approximately 15 minutes prior to the addition of the initiator.  
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For use of large microgels not containing acrylic acid comonomer, particles were 

borrowed from Ashlee St. John. To achieve large microgels without a charged 

comonomer, the total monomer concentration was kept at 140 mM and no surfactant was 

used. In short, 1.5 g NIPAm, 0.04 g BIS and 0.03 g APS were used in 100 mL nanopure 

water. The same synthesis procedure as cited above was followed otherwise. 

Dynamic Light Scattering (DLS) 

Characterization of the hydrodynamic radii and light scattering intensities of the 

microgels used in these studies has been discussed in detail in previous chapters. These 

results will not be discussed here.  

Microgel Loading Strategies and Characterization of Loaded Microgels 

For macromolecule loading studies, both equilibrium partitioning and swelling 

dried microgels in concentrated solution strategies were explored. Three model 

macromolecules studied were FITC-insulin, FITC-dextran (70, 000 MW) and FITC-

bovine serum albumin (FITC-BSA; 68, 000 MW). For loading studies that involved the 

analysis of these FITC labeled probes in solution, the fluorescence emission was 

monitored using λex = 473 nm and λem = 512 nm.  

For initial macromolecule loading studies, microgels cross-linked with 2 mole % 

PEG 200 and 2 mole % BIS, both with and without acrylic acid comonomer, were 

investigated. The loading conditions in these experiments were kept at low pH (3.5) to 

probe the actual effect of hydrophilic content on loading and not just porosity of the 

networks that might be a factor under higher pH conditions. In these experiments, stock 

solutions of the microgels were prepared at 6 mg/0.9mL in 50 mM pH 3.5 formate buffer. 

To these already swollen solutions, 0.5 mL of 9.8 x 10-6 M 70, 000 MW FITC-dextran in 
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50 mM pH 3.5 formate buffer was added. These solutions were allowed to mix via 

shaking for 24 hours. They were then centrifuged at 14, 000 rpm for 90 minutes at 26 °C. 

150 µL of supernatant was extracted from each sample and diluted with 4.0 mL of 0.02 

M PBS. This dilution into PBS buffer was made so that the analyzed solutions would be 

at a suitable pH for fluorescence emission detection (FITC has poor emission properties 

at low pH). These solutions were then analyzed via fluorescence spectroscopy for 

qualitative differences in loading capacity. 

For pH-induced loading, equilibrium partitioning was utilized where stock 

solutions of FITC-dextran and FITC-BSA were first prepared by dissolving 

approximately 3 mg of model drug in 1.5 mL of pH 3.5 formate buffer. This stock 

solution was then mixed with 10 mL of the 1 mole % BIS cross-linked pNIPAm-co-AAc 

(9:1) microgels, and the pH was adjusted to 7.4 by slow addition of 0.1 M NaOH. This 

solution was left to stir in the refrigerator overnight in the dark. This procedure mimics 

that used to load FITC-insulin into 1 mole % BIS cross-linked pNIPAm-co-AAc (9:1) 

microgels for the thermally modulated insulin release from microgel thin films (see 

Chapter 3).21 The idea here is to ascertain if larger macromolecules than insulin could be 

effectively loaded into these dually responsive microgels via the same method. To 

ascertain effective macromolecule loading, the impregnated microgel dispersions were 

electrostatically deposited onto positively charged glass substrates via spin coating as a 

monolayer. It should be noted that the macromolecule loaded microgel solutions were at 

pH 7.4 and thus, should be negatively charged making them amenable for polyelectrolyte 

deposition.21 Fluorescence microscopic images were then taken of these monolayers 

using an Olympus IX-70 inverted microscope equipped with a mercury arc lamp. Images 
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were captured using a color CCD camera (Pixel Fly, Cooke Corp.) and an Olympus 

100x UplanFl 1.30 NA oil immersion objective. 

To investigate the idea of loading microgels with macromolecules without the 

need for pH induced swelling, a simple breathing-in technique was explored where 

lyophilized 2 mole % BIS cross-linked microgels were allowed to swell in a concentrated 

solution of FITC-insulin for 24 hours. These microgels were synthesized by Ashlee St. 

John and were used because they were large enough in hydrodynamic radius to be 

observed using optical microscopy. FITC-insulin was first dissolved in pH 3.5 formate 

buffer to prepare the stock solution22 and then the pH was increased by addition of NaOH 

until pH 7.4 was achieved. A final concentration of 3 mg/mL of insulin was achieved for 

the stock solution.  1 mL of this stock solution was added to 20 mg of lyophilized 2 mole 

% BIS pNIPAm microgels and the particles were allowed to swell in this solution, 

thereby imbibing the concentrated insulin, for 24 hours. To ascertain actual loading and 

not just adsorption, these FITC-insulin loaded microgels were cleaned via centrifugation 

at 14, 000 rpm for 30 minutes at 26 °C. After each centrifugation cycle, the supernatant 

was taken off and the FITC-insulin loaded microgel pellet was then redispersed in 20 mM 

PBS. The UV/vis absorbance of the supernatant solution was monitored for presence of 

FITC-insulin until negligible absorbance was seen. This occurred after two cleaning 

cycles. Again, to ascertain effective macromolecule loading of FITC-insulin into these 2 

mole % BIS cross-linked pNIPAm microgels via a breathing-in technique, the loaded 

microgels were electrostatically deposited onto positively charged glass substrates via 

spin coating and then fluorescence microscopic images were taken. 
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6.3 Results and Discussion       

Particle synthesis and characterization 

The large 2 mole % BIS cross-linked pNIPAm microgels without acrylic acid 

comonomer were synthesized by Ashlee St. John. The obtained DLS results showed that 

they had an average hydrodynamic radius of 391.33 nm at 25 °C with an average 

polydispersity of 5.1 %. Hence, these microgels, once loaded and deposited onto a 

charged substrate should be visible for verification of effective FITC-insulin loading. As 

discussed in the experimental section, characterization of the other microgels used in 

these studies (2 mole % PEG and 2 mole % BIS cross-linked microgels both with and 

without 10.0 mole % acrylic acid comonomer) has been described in detail in previous 

chapters and will not be discussed here.  

Microgel Loading Strategies and Characterization of Loaded Microgels 

For these macromolecule loading studies, both equilibrium partitioning and 

swelling via a breathing-in technique were explored. The three model macromolecules 

studied were FITC-insulin, FITC-dextran (70, 000 MW) and FITC-bovine serum albumin 

(FITC-BSA).  

Initial loading studies interrogated the impregnation of a large hydrophilic 

macromolecule (FITC-dextran of 70, 000 MW) into both PEG and BIS cross-linked 

microgels with and without AAc comonomer at 10.0 mole %. The idea here was to 

ascertain if any differences in the hydrophilic balance of the microgel networks played a 

significant role in their loading capacity. It is important to note that the loading 

conditions here were kept at pH 3.5 to directly probe the effect of hydrophilic balance 

and not porosity (which could be a factor under pH 7 conditions). The results for this 
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study are illustrated in Figure 6-1. For both 2 mole % PEG and BIS cross-linked samples, 

the microgels containing the acrylic acid comonomer at 10.0 mole % loaded more FITC-

dextran than the corresponding microgels without AAc. This is indicated by decreased 

fluorescence emission observed in the supernatant, meaning more macromolecule loaded 

into the centrifuged microgel pellet. These results indicate that the overall hydrophilic 

balance does play a role in loading efficiency. Furthermore, the BIS cross-linked samples 

(the most hydrophobic networks) resulted in the lowest loading yields (as indicated by 

the highest fluorescence emission values). Again, these results indicate that the 

hydrophilic/hydrophobic balance of thermoresponsive microgels plays an important role 

in their ability to impregnate large hydrophilic macromolecules. These findings are in 

support of results discussed in Chapter 4 which showed that with higher PEG 200 

content, enhanced loading of large FITC dextran molecules (both 70, 000 and 150, 000 

MW) resulted. 
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Figure 6-1. Plot of loading efficiency results obtained for FITC-dextran (70, 000 MW) 
loaded 2 mole % PEG and BIS cross-linked pNIPAm microgels both with and without 
10.0 mole % acrylic acid comonomer.  
 

 

This effect of enhanced hydrophilic macromolecule loading has been observed in 

preliminary studies. In these preliminary studies, after two weeks of initial loading and 

centrifugation, the drug loaded pellet for the 2 mole % BIS cross-linked pNIPAm-co-

AAc (9:1) sample still appeared bright yellow versus the 2 mole % BIS and 5 mole % 

BIS cross-linked pNIPAm microgels. The sample pellets that did not contain acrylic acid 

comonomer were opaque and not yellow. Furthermore, it was obvious by eye that the 

supernatants for the networks without AAc were much brighter than the more effectively 

loaded AAc containing network. These results suggest that the more hydrophilic sample  
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Figure 6-2. Photograph of FITC-dextran (70, 000 MW) loaded BIS cross-linked samples 
after two weeks of initial loading and centrifugation. The sample with 10.0 mole % AAc 
comonomer kept the macromolecule effectively loaded due to enhanced hydrophilic 
balance. 
 

 

(that containing 10.0 mole % AAc) results in the most effective loading of the 

hydrophilic macromolecule. 

Based on the positive results obtained for FITC-insulin loading into 1 mole % BIS 

cross-linked pNIPAm-co-AAc (9:1) microgels (see Chapter 3)21 and the results discussed 
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above, we wanted to further prove the concept that acrylic acid modified BIS cross-linked 

microgels could effectively load larger macromolecules. We chose to load the identical 1 

mole % BIS cross-linked pNIPAm-co-AAc (9:1) microgels using the same pH induced 

swelling protocol followed in the initial FITC-insulin loading studies (see Chapter 3). In 

these studies, we impregnated the microgels with both FITC-dextran (70, 000 MW) and 

FITC-BSA (68, 000 MW). After impregnation at pH 7.4, these loaded microgel solutions 

were electrostatically deposited onto positively functionalized glass substrates and then 

imaged via fluorescence microscopy. The first of these results are shown in Figure 6-3. 

As observed with the initial FITC-insulin pH induced loading studies, this fluorescence 

microscopic image indicates that the particles all appear highly fluorescent while there is 

little background fluorescence. This suggests that the large macromolecule was 

effectively impregnated into these microgels. Figure 6-4 shows a similar image obtained 

for FITC-BSA loaded microgels and again, suggests successful loading using this pH-

induced swelling technique. 
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Figure 6-3. Fluorescence microscopic image of 1 layer of FITC-dextran (70, 000 MW) 
loaded 1 mole % BIS cross-linked pNIPAm-co-AAc (9:1) microgels via pH-induced 
swelling. Scale bar represents 20 µm. 
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Figure 6-4. Fluorescence microscopic image of 1 layer of FITC-bovine serum albumin 
(68, 000 MW) loaded 1 mole % BIS cross-linked pNIPAm-co-AAc (9:1) microgels via 
pH-induced swelling. Scale bar represents 20 µm. 
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To investigate the idea of loading microgels with macromolecules without the 

need for pH-induced swelling, a simple breathing-in technique was explored where 

lyophilized 2 mole % BIS cross-linked microgels were allowed to swell in a concentrated 

solution of FITC-insulin for 24 hours. It should be noted that large microgels were 

borrowed from Ashlee St. John in this study so that optical microscopy could be used to 

probe loading. To ascertain actual loading and not just adsorption, these FITC-insulin 

loaded microgels were cleaned via centrifugation at 14, 000 rpm for thirty minutes at 26 

°C. After each centrifugation cycle, the supernatant was taken off and the FITC-insulin 

loaded microgel pellet was then redispersed in 20 mM PBS. The UV/vis absorbance of 

the supernatant solution was monitored for presence of FITC-insulin until negligible 

absorbance was seen. This occurred after two cleaning cycles. The loaded microgel 

suspension was then deposited via spin coating onto a positively charged substrate and 

then imaged via fluorescence microscopy. Figure 6-5 shows this image and again, shows 

highly fluorescent microgels which suggest effective FITC-insulin loading with this 

breathing-in technique. In comparison to Figure 6-3 and 6-4, this image appears less 

fluorescent overall. But, this is to be expected considering the fact that these microgels 

were cleaned before deposition to remove any non-specifically adsorbed FITC-insulin. 

Even after thorough cleaning, though, this fluorescence microscopic image shows highly 

fluorescent microgels indicating that the FITC-insulin is effectively entrapped in the 

microgels. 
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Figure 6-5. Fluorescence microscopic image of FITC-insulin loaded 2 mole % BIS 
cross-linked pNIPAm microgels via a breathing-in technique. Scale bar represents 20 µm. 

 

 

 

6.4 Conclusions 

These general loading strategies indicate that the hydrophilic balance of microgel 

networks does indeed significantly affect the corresponding loading capacities with 

respect to hydrophilic macromolecules. By simply changing the cross-linker chemistry to 

 149



utilize PEG versus BIS, enhanced loading can be achieved. Furthermore, incorporation of 

a pH sensitive comonomer, acrylic acid, can be advantageous for both pH induced 

loading as well as enhanced impregnation resulting from an overall increase in 

hydrophilicity. Beyond using a pH switch to imbibe macromolecules, these studies show 

that the inherent swelling behavior of microgels alone can be used as an effective loading 

tool of large bioactive species. These investigations could prove useful in the design of 

future protein release devices composed of stimuli-responsive hydrogel nanoparticles. 
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CHAPTER 7 

 

A 1H NMR INVESTIGATION OF THERMALLY TRIGGERED                
INSULIN RELEASE FROM PNIPAM MICROGELS 

 

 We describe investigations of direct insulin release detection from 

thermoresponsive microgels using variable temperature 1H NMR. pNIPAm microgels 

were imbibed with the peptide via a breathing-in technique which was compared to a 

simple equilibrium partitioning strategy. Dynamic light scattering results suggest that the 

phase transition of insulin-impregnated microgels is not perturbed as compared to the 

native particles. Variable temperature 1H NMR studies, performed on both lyophilized 

microgels swollen in concentrated insulin versus simple mixing of solutions, suggests 

that the breathing-in methodology results in enhanced entrapment of the peptide. A 

centrifugation loading assay supports this finding and shows that the swelling technique 

results in more efficient impregnation. 1H NMR temperature jump studies were also 

performed and suggest that the insulin release rate is partially decoupled from microgel 

collapse depending upon the temperature differential applied. These types of direct 

release investigations could prove as useful templates in the future design of controlled 

macromolecule drug delivery devices. 
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7.1 Introduction 

As described previously, significant work has focused on using responsive 

hydrogels as carriers for peptide delivery in recent years.1-5 Insulin is a therapeutic agent 

that is known to be endogenously released in a pulsatile manner6-10 and hence, oscillatory 

insulin release from hydrogel systems has been heavily explored.11 Work done by Siegel 

et al. has proposed a general strategy for pulsatile drug release12 and these studies have 

been extended to self-regulated hormone release systems.13,14 The use of discrete 

microgel particles for controlled insulin delivery has also found great precedence in the 

literature.15-18 

We have previously reported results on thermally modulated insulin release from 

Layer-by-Layer (LbL) assembled microgel thin films (see Chapter 3).19 The microgels 

utilized in this earlier discussed work contained pH sensitive acrylic acid groups. This pH 

responsivity allowed the microgels to swell under neutral pH conditions and this was 

what we hypothesized was the main driving force allowing for insulin imbibition into the 

particles. In this current study, we wanted to ascertain whether or not this pH swelling 

was necessary to effectively load our microgels with a macromolecularly sized 

therapeutic agent. Hence, microgels without acrylic acid comonomer were investigated. 

Two loading strategies were compared. One takes advantage of the inherent sponge-like 

ability of hydrogels to swell dramatically in solution, thereby allowing solute molecules 

to partition into the porous network. This technique was directly compared to a simple 

equilibrium partitioning strategy where an already swollen microgel solution was mixed 

with an insulin solution. In the previously mentioned work, a microgel thin film construct 

was utilized that resulted in relatively slow release rates from the films as compared to 

 154



the deswelling rate of the native microgels themselves in solution. Timed-release 

experiments on the seconds to minutes timescale that could detect direct insulin expulsion 

from microgels in solution could offer some insight into early release kinetics of these 

networks. To directly monitor insulin release into solution, we hypothesize that 1H NMR 

can be used as a probe, considering the fact that similar release events have been 

previously studied in such a manner.20 These types of studies could serve as model 

experiments to probe different particle release characteristics and may give us some 

insight into the possibility of ultimately tuning film release rates based on different 

particle properties in solution.  

Herein, we describe results of optimized entrapment of a therapeutic agent, 

insulin, into thermoresponsive microgels. A rapid breathing-in technique results in 

efficient loading of the peptide. Direct insulin release from the microgels in solution was 

probed using a simple 1H NMR technique. Temperature jump studies gave some insight 

into the correlation between microgel collapse and insulin release and suggested that the 

two were not directly correlated depending upon the temperature differential. These types 

of direct release studies that probe the interaction between entrapped and freely diffusing 

proteins and microgels could prove as model experiments in future design of 

macromolecule drug release from functionally modified thermoresponsive hydrogel 

networks. This could ultimately lead to the tailored design of peptide-loaded microgel 

thin films with tunable release rates. 
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7.2      Experimental 

Materials 

All chemicals were obtained from Sigma Aldrich unless otherwise stated. N-

Isopropylacrylamide (NIPAm) was recrystallized from hexane (J. T. Baker) prior to use. 

N, N′-Methylene(bisacrylamide) (BIS), sodium dodecyl sulfate (SDS), ammonium 

persulfate (APS), deuterium oxide (D2O), deuterated hydrochloric acid (DCl), deuterated 

sodium hydroxide (DOH), deuterated acetone and insulin (from bovine pancreas) were 

used as received. 0.2 µm nylon membrane disks and Spectra/Por 10, 000 MWCO dialysis 

membrane were purchased from VWR. Water used in all experiments was distilled and 

then purified using a Barnstead E-Pure system operating at a resistance of 18 MΩ. A 0.2 

µm filter was incorporated into this system to remove particulate matter. 

Particle Synthesis 

2 mole % BIS cross-linked pNIPAm microgels were synthesized by precipitation 

polymerization via a method slightly modified from that previously described.21 The total 

monomer concentration was 100 mM in all reactions. SDS was used as a surfactant and 

APS was used as the free radical initiator. The NIPAm monomer, cross-linker and 

surfactant (0.01 g) were dissolved in 200 mL of nanopure water, filtered through a 0.2 

µm nylon membrane filter to remove any large particulate matter and then continuously 

stirred in a three-neck, 250 mL round-bottom flask. This solution was heated to 70 ºC 

while being purged with N2 gas. Approximately one hour later, the temperature of the 

solution was stable at 70 ºC. Fifteen minutes later, the reaction was initiated by adding a 

hot (70 ºC) solution of APS (1 mM final concentration). The solution turned turbid within 

10 minutes, indicating successful initiation. The reaction proceeded for 6 hours under a 
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constant stream of nitrogen. Following synthesis, the microgels were filtered using a P2 

Whatman filter paper and then dialyzed (using 10, 000 MWCO) for 2 weeks against 

nanopure water with a daily exchange of fresh water. 

Dynamic Light Scattering (DLS) 

Hydrodynamic radii and light scattering intensities were obtained by DLS 

(Protein Solutions, Inc.). Prior to analysis, the purified microgels were diluted in filtered 

nanopure water (using 0.2 µm filters) until a count rate of 350 kCt/s was obtained. The 

suspensions were then held at each temperature for 15 minutes to achieve thermal 

equilibration before measurements were taken. Longer equilibration times did not result 

in variations of particle radius, polydispersity, or light scattering intensity. The data 

points presented here are an average of 5 measurements with a 60 s acquisition time and a 

signal-to-noise ratio threshold of 2.5. Hydrodynamic radii were calculated from the 

measured diffusion coefficients using the Stokes–Einstein equation. All correlogram 

analyses were performed with manufacturer-supplied software (Dynamics v.5.25.44, 

Protein Solutions, Inc.). 

Impregnation of Microgels with Insulin 

Two loading strategies were compared.  The first was to swell lyophilized 

microgels in a concentrated solution of insulin for 24 hours. Insulin is sparingly soluble at 

neutral pH values but is quite soluble under acidic conditions.22 Thus, it was first 

dissolved in deuterated HCl to prepare the stock solution22 and then the pH was increased 

by addition of deuterated NaOH until pH 7.4 was achieved. A final concentration of 31 

mg/mL of insulin was achieved. A known volume of diluted stock solution was then 

added to a known mass of lyophilized microgels (15.2 mg) and the particles were allowed 
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to swell in this solution, thereby imbibing the concentrated insulin, for 24 hours. The 

overall concentration of insulin in the final solution was 15 mg/mL. For the physical 

mixture, the same mass of lyophilized microgels was weighed out (15.2 mg) and 

dissolved in D2O. This already swollen mixture of microgels was then physically mixed 

with a known volume of diluted insulin stock solution to yield the same overall 

concentration of insulin as the previously mentioned sample. 

1H NMR  

A Bruker Digital Avance DRX 500 MHz NMR spectrometer was used for the 

insulin release investigations and experiments were run by Dr. Leslie Gelbaum. 

Lyophilized microgels (1.0 mg) and insulin (8.0 mg) were dissolved in 1 mL of D2O and 

the spectra of each were recorded at 25 °C. Spectra of insulin loaded microgels (both 

swollen and mixed solutions) were also recorded at 25 °C. For the variable temperature 

studies, spectra of loaded microgels (both swollen and mixed solutions) were taken at 25, 

28, 31, 34 and 37 °C. For these studies, before taking measurements, the samples were 

thermally equilibrated for 15 minutes at each temperature. No changes in the signal 

intensities were observed if the equilibration time was prolonged. For the temperature 

jump studies, the NMR spectrometer probe was set at either 34, 37 or 40 °C and a cool 

(25 °C) insulin impregnated sample (via swelling) was inserted into the spectrometer. 

Spectra were immediately recorded every 7.5 seconds and a total of 39 spectra were 

taken. For all variable temperature studies, an external deuterated acetone standard was 

used where the acetone solution was inserted into a microcapillary and was then sealed.  

This standard was then directly inserted into the center of the NMR tube containing the 

insulin loaded microgel solutions. The integrated ratios of the main pNIPAm peak at 1.1 
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ppm and the insulin peaks from 6.6 to 7.4 ppm were normalized with respect to the 

acetone standard. The main pNIPAm peak was chosen for integration due to its strong 

signal while the insulin peaks from 6.6 to 7.4 ppm were chosen due to non-spectral 

overlap. 

Centrifugation Loading Assay 

Following 1H NMR analyses, both samples of the insulin loaded microgels (swollen 

and mixture) were transferred to 2 mL eppendorf tubes and centrifuged at 14, 000 rpm at 

26 °C for 20 minutes. 250 µL of supernatant was extracted from each sample and then 

diluted with 4 mL of 20 mM PBS. The absorption spectra of these samples were analyzed 

via UV/vis spectroscopy, along with a control sample containing the same overall 

concentration of insulin as the loaded samples without any microgels present. The 

percent of insulin loaded was then calculated with respect to the control sample. 

 

7.3       Results and Discussion 

Particle synthesis and characterization 

As described previously, 2 mole % BIS cross-linked pNIPAm microgels were 

chosen for these insulin loading and release investigations. We have previously reported 

results on insulin-impregnated microgels that contained pH sensitive acrylic acid groups 

(see Chapter 3).19 This pH responsivity allowed the microgels to swell under neutral pH 

conditions and this was what we hypothesized was the main driving force allowing for 

insulin imbibition into the particles. In this study, we wanted to ascertain whether or not 

this pH swelling was necessary to effectively load our microgels with a 

macromolecularly sized therapeutic agent. Hence, microgels without acrylic acid 
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comonomer were investigated. Two loading strategies were compared. The first was to 

swell lyophilized microgels in a concentrated solution of insulin for 24 hours. Insulin is 

sparingly soluble at neutral pH values but is quite soluble under acidic conditions.22 Thus, 

it was first dissolved in deuterated HCl to prepare the stock solution and then the pH was 

increased by addition of deuterated NaOH until neutral pH was achieved. This stock 

solution was then added to a known mass of dried microgels and the particles were 

allowed to swell in this solution, thereby imbibing the concentrated insulin, for 24 hours. 

The other method for comparison entailed a simple equilibrium partitioning technique 

whereby an already swollen microgel solution was physically mixed with an insulin 

solution.  Both strategies utilized the same mass of dried microgels to start with and used 

the same overall concentration of insulin so they could be directly compared to one 

another. 

To probe the effect that insulin impregnation has on the phase transition behavior 

of 2 mole % BIS cross-linked microgels, characterization of hydrodynamic radius as a 

function of temperature was performed on both insulin loaded microgels (via the swelling 

technique) and unloaded microgels using DLS. Panel a of Figure 7-1 illustrates the 

volume phase transition behavior of these two systems where the open circles represent 

the loaded sample and the open squares represent the unloaded sample. At low 

temperatures both sets of particles display approximately the same average hydrodynamic 

radius of 190 nm. The loaded and unloaded microgel networks both undergo a sharp 

volume phase transition at approximately 32 °C after which they deswell to a minimum 

hydrodynamic radius of approximately 90 nm. The LCST for both sets of particles 

corresponds well with the LCST of typical pNIPAm microgels.23 Figure 7-1, panel b 
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shows the corresponding light scattering profiles of the same systems. Both sets of 

particles display very little scattered light intensity at low temperatures below the 

corresponding LCST values. This is because these porous microgel networks are highly 

solvent swollen (approximately 95% water by volume) and are therefore, nearly index  

matched to their environment. When the microgels collapse into dense globules at 

temperatures above the LCST, however, the microgels display a higher scattering cross 

section, and therefore, a dramatic increase in scattered light intensity is observed from the 

suspensions above the LCST. These results suggest that impregnation of the microgels  

with insulin does not perturb their deswelling capabilities and/or phase transition 

temperature to any significant extent. 
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Figure 7-1. (a) Volume phase transition curves (in nanopure water) for 2 mole % BIS 
cross-linked pNIPAm microgels loaded via swelling (open circles) and not loaded (open 
squares) with insulin;  (b) corresponding light scattering profiles for 2 mole % BIS cross-
linked pNIPAm microgels loaded via swelling (open circles) and not loaded (open 
squares) with insulin. 
 
 
 

 
1H NMR 

To design these direct release experiments, 1H NMR spectra of insulin in D2O 

(pH 7.4) and the 2 mole % BIS cross-linked microgels were first taken at 25 °C to 

determine if spectral resolution could be achieved. The spectra for insulin is illustrated in 

panel a of Figure 7-2. The proton assignments for the insulin resonances are in agreement 

with its chemical structure at this neutral pH value.24 The peaks from approximately 0.6 

to 1.1 ppm arise from isoleucine, leucine and valine residues while the peak at 1.4 ppm 

can be attributed to isoleucine, threonine, alanine and lysine moieties. The resonance at 

about 1.7 ppm arises from arginine, leucine and lysine residues while the peak at 1.8 ppm 

is attributed to arginine and lysine residues. The peak at 2.0 ppm results from proline, 
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isoleucine and glutamine residues while the peak at approximately 2.3 ppm is attributed 

to valine, glutamine, proline and glutamine residues. The resonance at 2.9 ppm is 

attributed to asparagine, tyrosine, lysine and cysteine residues. The peaks from 3.1 to 4.3 

ppm are assigned to tyrosine, phenylalanine, histidine, arginine, proline, glycine, 

threonine, valine, isoleucine, leucine, lysine, alanine, serine, cysteine and asparagine 

residues. The peaks in the region of approximately 6.6 to 7.4 ppm arise from the thirty-

five aromatic protons of the two histidines, three phenylalanines and four tyrosine 

residues. Panel b of Figure 7-2 shows the spectra obtained for the 2 mole % BIS cross- 

linked microgels and the proton assignments for the pNIPAm polymer also suitably 

correspond to its chemical structure.33,34 The peak at 1.1 ppm can be attributed to the 

methyl protons of the N-isopropyl group. The resonance for the methylene proton of the 

isopropyl group is observed at 3.8 to 4.0 ppm while the resonances from 1.2 to 2.2 ppm 

are attributed to the protons on the polymer backbone. In all 1H NMR spectra, the peak at 

approximately 4.7 ppm is the suppressed solvent water peak. While there is some spectral 

overlap within the region of 0.0 to 4.0 ppm, the most intense peak from the pNIPAm 

polymer at approximately 1.0 ppm is somewhat spectrally resolved. Furthermore, there is 

no spectral overlap for the down shifted insulin peaks from 6.6 to 7.4 ppm. It is these two 

peak signals that will be interrogated as a function of temperature to try and probe direct 

insulin expulsion from impregnated particles.   
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Figure 7-2. 1H NMR spectra of (a) insulin in D2O (pH adjusted to 7.4) and (b) 2 mole % 
BIS cross-linked microgels in D2O at 25 °C. 
 
 

 

To first investigate feasibility of detecting an increase in insulin signal due to 

expulsion from the microgels using this NMR technique, spectra of insulin loaded 2 mole  

% BIS cross-linked microgel samples (both swollen and mixed) were recorded at 

temperatures both below and above the phase transition temperatures of the particles. 

These results are shown in Figure 7-3. Panels a and b represent the spectra for insulin 

loaded microgels via the breathing-in technique at 25 °C and 37 °C, respectively. In these 

spectra, as mentioned in the experimental section, an external deuterated acetone standard  
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Figure 7-3. 1H NMR spectra of insulin loaded 2 mole % BIS cross-linked microgels at 
temperatures below and above the volume phase transition temperature (overall pH 7.4); 
(a) insulin loaded microgels via breathing-in technique at 25 °C, (b) insulin loaded 
microgels via breathing-in technique at 37 °C, (c) insulin loaded microgels via mixing at 
25 °C and (d) insulin loaded microgels via mixing at 37 °C. 
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was used for normalization and its resonance is observed at approximately 2.9 ppm. This 

resonance is somewhat shifted from what is expected since the water peak at 4.7 ppm was 

used as a reference. Panels c and d correspond to the insulin loaded microgel sample via 

simple equilibrium partitioning at temperatures below and above the LCST, respectively. 

For both sets of particles, at 25 °C the pNIPAm resonances dominate the spectra and only 

relatively small insulin peaks are observable in the far end of the spectra. Under these 

cold conditions, it is presumed that predominantly most of the insulin is impregnated 

within the microgel interior. Hence, the signal due to insulin is diminished due to lack of 

free rotation in the network. When the temperature is raised above the LCST to 37 °C, 

however, the particles deswell and release insulin into surrounding solution resulting in 

an increase in the insulin signal with respect to the acetone standard. It is clearly evident 

that for both loaded samples (swollen and mixed) a relative increase in the ratios of 

insulin/acetone occurs upon elevation in temperature from 25 to 37 °C while a 

concomitant decrease in the pNIPAm/acetone ratios results upon particle collapse. At 

elevated temperatures, the pNIPAm resonances become significantly depressed due to the 

fact that as the microgel hydrophobically collapses it becomes denser and more solid-

like.25-27 These results suggest that microgel deswelling results in osmotically driven 

insulin expulsion from the network as the free volume in the microgel interior decreases. 

To probe this release event in more detail, 1H NMR spectra of each loaded 

solution were obtained at equilibrated temperatures ranging from 25 to 37 °C every three 

degrees. The results for these experiments are shown in Figure 7-4. Panel a shows the 

normalized pNIPAm/acetone peak ratios as a function of temperature for the loaded  
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microgels via swelling (open circles) and via equilibrium partitioning (open squares). 

This plot illustrates that the temperature at which both sets of loaded microgels deswell 

suitably corresponds with their well-known phase transition temperature of 32 °C.23 

These profiles also correlate well with the LCST curves obtained for the loaded and 

unloaded solutions shown in panel a of Figure 7-1. Panel b of Figure 7-4 shows the peak 

ratios of insulin/acetone as a function of temperature for both loaded samples. A distinct 

difference in the release profiles is illustrated here where the normalized insulin signal for 

the physical mixture is consistently higher than that for the swollen sample at all 

temperatures. This indicates that perhaps, the swelling technique results in enhanced 

entrapment of the peptide versus simple mixing and hence, not as much insulin is free in 

solution to be detected. The slopes of the two profiles are also definitively different. The 

sample loaded with the breathing-in technique (open circles) does not display a 

significant increase in normalized insulin signal until 34 and 37 °C while the sample 

loaded via equilibrium partitioning shows a steady increase within the entire temperature 

range. These findings again suggest more efficient insulin loading for the swollen sample. 

The microgels loaded via mixing are perhaps leaky and hence, more insulin is in solution 

to be detected regardless of particle collapse. The sample impregnated via the breathing-

in technique, however, effectively entraps insulin in the particle interior and it is not until 

the microgel partially or fully deswells that entrapped species are expelled into solution. 
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Figure 7-4. Plots of the normalized ratios of (a) pNIPAm/acetone standard and (b) 
insulin/acetone standard as a function of equilibrated temperature.  Open circles represent 
insulin loaded microgels via the breathing-in technique; open squares represent insulin 
loaded microgels via equilibrium partitioning. 
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To try and probe the early stages of insulin release from 2 mole % BIS cross-

linked microgels, 1H NMR temperature jump investigations were conducted. In these 

investigations, an insulin-impregnated sample (via swelling) held at 25 °C was quickly 

inserted into the NMR spectrometer that was equilibrated at either 34, 37 or 40 °C. Upon 

insertion, the sample was immediately exposed to the elevated temperature and spectra 

were collected every 7.5 seconds. The results for this experiment are illustrated in Figure 

7-5. Panel a shows the profiles for microgel collapse as a function of time and 

temperature. It is clear that differences in microgel deswelling rates occur depending 

upon the temperature differential used, with the 40 °C temperature jump resulting in 

fastest collapse. The magnitudes of deswelling are also distinctly different depending 

upon the temperature pulse applied. Panel b illustrates the corresponding insulin release 

profiles for each temperature jump. The 34 °C experiment shows that some insulin 

release occurs within the first 110 seconds and then this profile plateaus. This is most 

likely due to the fact that the microgels at this temperature are not fully deswollen and 

most of the insulin remains embedded within the microgel interior after an initial burst of 

release. The 37 °C temperature jump shows a somewhat different profile. Some release 

occurs within the first 60 seconds corresponding to the time course of the deswelling 

event at this temperature. This release, however, levels off after this up until 

approximately 220 seconds where slightly more insulin expulsion occurs. The 40 °C 

temperature jump experiment shows higher insulin/acetone ratios at all times, thus 

indicating a significant amount of insulin gets immediately released once the sample is 

injected. This release profile gradually increases with time suggesting gradual insulin 

partitioning out of the network. These NMR experiments are simple, quick and direct and  
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Figure 7-5. Plots of (a) 2 mole % BIS cross-linked microgel deswelling and (b) insulin 
release kinetics for an insulin loaded microgel sample (via swelling) subjected to a 
temperature jump from 25 °C to 34 (circles), 37 (squares) and 40 °C (triangles). 
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show promise in elucidation of differences in release kinetics between various 

functionalized particles. 

Centrifugation Loading Assay 

To ascertain how efficient each loading strategy actually was, a centrifugation 

loading assay was performed following NMR analyses. The loaded samples were allowed 

to reswell at 4 °C overnight and were then centrifuged and analyzed as described in the 

experimental section. The results for these experiments are shown in Table 7-1 along 

with a summary of the normalized pNIPAm and insulin ratios obtained in the 1H NMR 

release studies. These results confirm all of the previously mentioned conclusions that the 

breathing-in technique does result in enhanced loading of the therapeutic agent, insulin at 

40 %. The fact that the normalized insulin signal at 25 °C is higher for the mixture versus 

the sample swollen in concentrated insulin again reaffirms these differences and suggests 

effective peptide entrapment with the breathing-in technique. It is interesting to note that 

even after a release event occurred, both samples were able to reswell and reload the 

expelled peptide. This only reinforces the great promise that these type of microgel 

particles possess in pulsatile drug delivery applications.  
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Table 7-1. Insulin loading results for 2 mole % BIS cross-linked  

microgels and 1H NMR normalized ratios of pNIPAm and Insulin at 25 °C 

 Obtained via 
UV/vis Obtained via 1H NMR at 25 °C 

Insulin loaded 
microgel sample % Loaded Insulin PNIPAm/Acetone 

Ratio 
Insulin/Acetone 

Ratio 

Swollen 40.2 45.45 1.47 

Mixture 22.7 45.96 2.04 

 

 

 

 7.4 Conclusions 

 A macromoleculary sized therapeutic agent, insulin, was rapidly and effectively 

impregnated into thermoresponsive pNIPAm microgels via a breathing-in technique that 

proved superior over simple equilibrium partitioning. Thermally induced release was 

directly monitored using 1H NMR and again suggested that the swelling strategy results 

in entrapment of the peptide to some extent. A 1H NMR temperature jump study was also 

performed and suggests that the rate at which insulin is released from the loaded network 

is partially decoupled from its collapse depending upon the thermal pulse used. These 

types of direct release experiments could prove as useful templates in the future design of 

controlled macromolecule release devices utilizing functionally modified 

thermoresponsive particles.  
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CHAPTER 8 

 

FUTURE OUTLOOK 

 

 Given the initial progress made and encouraging results obtained with this thesis 

work on regulated macromolecule release from microgel materials, some future 

directions are described hereafter. Chapter 3 illustrated very promising results of tightly 

controlled pulsatile insulin release from extremely stable microgel thin film constructs. 

To explore this work even further, one could investigate many parameters in the actual 

construction of these macromolecule impregnated microgel thin films. These include 

exploration of spin coating deposition speed, concentration of polyions deposited, type of 

polyelectrolytes used (beyond PAH), varying charge density of these polyions (based on 

solution pH) and microgels (based on incorporated comonomer concentration), use of 

both positively charged (by addition of an amine comonomer) and negatively charged (by 

incorporation of other acid comonomers such as lactic acid) microgels, use of highly 

functional core/shell microgels and impregnation of microgels with various 

macromolecules (range of MWs and charge). The idea in varying all of these parameters 

would be to develop highly functional macromolecule impregnated microgel thin films 

with tunable release rates. Incoporation of microgels with higher LCST values (based on 

use of N-isopropylmethacrylamide as the main monomer) could also be very promising in 

that these constructs could potentially stay swollen in vivo and only deswell when an 

external thermal pulse was applied. Chapters 4 and 5 focused on fundamental synthesis of 
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more biocompatible PEG cross-linked microgels both with and without a pH sensitive 

comonomer. Incorporation of these types of microgels into macromolecule loaded 

microgel thin films could also be explored given the promising results that when these 

materials are deposited onto substrates, they display diminished cell adhesion properties. 

Exploration of these types of microgels within a core/shell motif may also prove fruitful. 

Chapter 6 concentrated on loading strategies using microgels of different hydrophilic 

balance, i.e. microgels with and without PEG and acrylic acid moieties. Further studies 

on loading macromolecules of different hydrophobicities into microgels of varying 

hydrophobic balance (use of butyl methacrylate based comonomers) could also be 

pursued. Furthermore, exploration of loading various macromolecules (with different 

hydrophobic balance, charge density and size) by both the pH induced loading strategy as 

well as the breathing-in technique into an array of functionally modified microgels could 

prove useful. Chapter 7 illustrated promising results on simple, quick and direct 1H NMR 

experiments that could give some insight into early release events of macromolecules 

from microgels in solution. These types of model experiments could be utilized to probe 

release kinetics of various bioactive species loaded into an array of functionally modified 

microgel motifs. Furthermore, these studies could be extended where instead of just 

probing peptide loaded microgel solutions, effective cross-linked gels could be made by 

simple addition of polyelectrolytes. Hence, interrogation of protein release from a similar 

construct as that obtained with multi-layer thin films could be probed and perhaps would 

prove more useful. 
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