
Massive Analytics for Streaming Graph Problems

David A. Bader

Outline

• Overview
• Cray XMT
• Streaming Data Analysis

– STINGER data structure

• Tracking Clustering Coefficients
• Tracking Connected Components
• Parallel Graph Frameworks

David A. Bader 2

STING Initiative:
Focusing on Globally Significant Grand Challenges

• Many globally-significant grand challenges can be modeled by Spatio-
Temporal Interaction Networks and Graphs (or “STING”).

• Emerging real-world graph problems include
– detecting community structure in large social networks,
– defending the nation against cyber-based attacks,
– improving the resilience of the electric power grid, and
– detecting and preventing disease in human populations.

• Unlike traditional applications in computational science and engineering,
solving these problems at scale often raises new research challenges
because of sparsity and the lack of locality in the massive data, design of
parallel algorithms for massive, streaming data analytics, and the need
for new exascale supercomputers that are energy-efficient, resilient, and
easy-to-program.

David A. Bader 3

Center for Adaptive Supercomputing Software

• WyomingClerk, launched July 2008

• Pacific-Northwest Lab
– Georgia Tech, Sandia, WA State, Delaware

• The newest breed of supercomputers have hardware set up not just for
speed, but also to better tackle large networks of seemingly random
data. And now, a multi-institutional group of researchers has been
awarded over $14 million to develop software for these supercomputers.
Applications include anywhere complex webs of information can be
found: from internet security and power grid stability to complex
biological networks.

David A. Bader 4

CASS-MT TASK 7: Analysis of Massive Social Networks

Objective
To design software for the analysis of massive-scale
spatio-temporal interaction networks using
multithreaded architectures such as the Cray XMT.
The Center launched in July 2008 and is led by Pacific-
Northwest National Laboratory.

Description
We are designing and implementing advanced,
scalable algorithms for static and dynamic graph
analysis, including generalized k-betweenness
centrality and dynamic clustering coefficients.

Highlights
On a 64-processor Cray XMT, k-betweenness centrality
scales nearly linearly (58.4x) on a graph with 16M
vertices and 134M edges. Initial streaming clustering
coefficients handle around 200k updates/sec on a
similarly sized graph.

Our research is focusing on temporal analysis,
answering questions about changes in global
properties (e.g. diameter) as well as local structures
(communities, paths).

Image Courtesy of Cray, Inc.

David A. Bader (CASS-MT Task 7 LEAD)
David Ediger, Karl Jiang, Jason Riedy

5David A. Bader

Exascale Streaming Data Analytics:
Real-world challenges

All involve analyzing massive
streaming complex networks:
• Health care  disease spread, detection

and prevention of epidemics/pandemics
(e.g. SARS, Avian flu, H1N1 “swine” flu)

• Massive social networks 
understanding communities, intentions,
population dynamics, pandemic spread,
transportation and evacuation

• Intelligence  business analytics,
anomaly detection, security, knowledge
discovery from massive data sets

• Systems Biology  understanding
complex life systems, drug design,
microbial research, unravel the mysteries
of the HIV virus; understand life, disease,

• Electric Power Grid  communication,
transportation, energy, water, food supply

• Modeling and Simulation  Perform full-
scale economic-social-political
simulations

6

0

50

100

150

200

250

300

350

400

450

De
c‐
04

M
ar
‐0
5

Ju
n‐
05

Se
p‐
05

De
c‐
05

M
ar
‐0
6

Ju
n‐
06

Se
p‐
06

De
c‐
06

M
ar
‐0
7

Ju
n‐
07

Se
p‐
07

De
c‐
07

M
ar
‐0
8

Ju
n‐
08

Se
p‐
08

De
c‐
08

M
ar
‐0
9

Ju
n‐
09

Se
p‐
09

De
c‐
09

Million Users

Exponential growth:
More than 500 million active users

Sample queries:
Allegiance switching:
identify entities that switch
communities.
Community structure:
identify the genesis and
dissipation of communities
Phase change: identify
significant change in the
network structure

REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME AT SCALE

Ex: discovered minimal
changes in O(billions)-size
complex network that could
hide or reveal top influencers
in the community

David A. Bader

Open Questions: Algorithmic Kernels for
Spatio-Temporal Interaction Graphs and Networks (STING)

• Traditional graph theory:
– Graph traversal (e.g. breadth-first search)
– S-T connectivity
– Single-source shortest paths
– All-pairs shortest paths
– Spanning Tree
– Connected Components
– Biconnected Components
– Subgraph isomorphism (pattern matching)
– ….

David A. Bader 7

Hierarchy of Interesting Graph Analytics

Extend single-shot graph queries to include time.
Are there s-t paths between time T1 and T2?
What are the important vertices at time T?

Use persistent queries to monitor properties.
Does the path between s and t shorten drastically?
Is some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.
Does a small community stay independent rather than merge with
larger groups?
When does a vertex jump between communities?

New types of queries, new challenges...

8David A. Bader

Graph Analytics for Social Networks

• Are there new graph techniques? Do they parallelize?
Can the computational systems (algorithms,
machines) handle massive networks with millions to
billions of individuals? Can the techniques tolerate
noisy data, massive data, streaming data, etc. …

• Communities may overlap, exhibit different
properties and sizes, and be driven by different
models
– Detect communities (static or emerging)
– Identify important individuals
– Detect anomalous behavior
– Given a community, find a representative

member of the community
– Given a set of individuals, find the best

community that includes them

David A. Bader 9

Open Questions for Massive Analytic Applications

• How do we diagnose the health of streaming systems?
• Are there new analytics for massive spatio-temporal interaction

networks and graphs (STING)?
• Do current methods scale up from thousands to millions and

billions?
• How do I model massive, streaming data streams?
• Are algorithms resilient to noisy data?
• How do I visualize a STING with O(1M) entities? O(1B)? O(100B)?

with scale-free power law distribution of vertex degrees and
diameter =6 …

• Can accelerators aid in processing streaming graph data?
• How do we leverage the benefits of multiple architectures (e.g.

map-reduce clouds, and massively multithreaded architectures) in
a single platform?

David A. Bader 10

Limitations of Current Analysis and Viz Tools

Graphs with millions of vertices are well beyond simple
comprehension or visualization: we need tools to
summarize the graphs.
Existing tools: UCINet, Pajek, SocNetV, tnet
Limitations:

Target workstations, limited in memory
No parallelism, limited in performance.
Scale only to low density graphs with a few million vertices

We need a package that will easily accommodate graphs
with several billion vertices and deliver results in a timely
manner.

Need parallelism both for computational speed and memory!
The Cray XMT is a natural fit...

11David A. Bader

David A. Bader 12

Architectural Requirements for
the Efficient Graph Analysis (Challenges)

• Runtime is dominated by latency
– Random accesses to global address space
– Perhaps many at once

• Essentially no computation to hide memory
costs

• Access pattern is data dependent
– Prefetching unlikely to help
– Usually only want small part of cache line

• Potentially abysmal locality at all levels of
memory hierarchy

12

David A. Bader 13

Architectural Requirements for
the Efficient Graph Analysis (Desired Features)

• A large memory capacity
- Low latency / high bandwidth

– For small messages!
• Latency tolerant
• Light-weight synchronization mechanisms
• Global address space

– No graph partitioning required
– Avoid memory-consuming profusion of ghost-nodes
– No local/global numbering conversions

13

The Cray XMT

• Tolerates latency by massive multithreading
– Hardware support for 128 threads on each processor
– Globally hashed address space
– No data cache
– Single cycle context switch
– Multiple outstanding memory requests

• Support for fine-grained,
• word-level synchronization

– Full/empty bit associated with every
• memory word

• Flexibly supports dynamic load balancing

• GraphCT currently tested on a 128 processor XMT: 16K threads

– 1 TB of globally shared memory

•  PilgrimShadow, SundryMaximal

David A. Bader 14

Image Source: cray.com

XMT ThreadStorm Processor (logical view)

i = n

i = 3

i = 2

i = 1

. . .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

. . .
Sub-

problem
B

Subproblem A

Serial
Code

Unused streams

. . . .

Programs
running in
parallel

Concurrent
threads of
computation

Hardware
streams
(128)

Instruction
Ready
Pool;

Pipeline of
executing
instructions

Slide Credit: Cray, Inc.

15David A. Bader

XMT ThreadStorm System (logical view)

i = n

i = 3

i = 2

i = 1

. . .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

. . .
Sub-

problem
B

Subproblem A

Serial
Code

Programs
running in
parallel

Concurrent
threads of
computation

Multithreaded
across
multiple
processors

.

Slide Credit: Cray, Inc.

16David A. Bader

What is not important on XMT

• Placing data near computation
• Modifying shared data
• Accessing data in order
• Using indirection or linked data-structures
• Partitioning program into independent,

balanced computations
• Using adaptive or dynamic computations
• Minimizing synchronization operations

17David A. Bader

 Shared memory
Some memory can be reserved as local memory at boot time
Only compiler and runtime system have access to local memory

 Memory module cache
Decreases latency and increases bandwidth
No coherency issues

 8 word data segments randomly distributed across the memory system
Eliminates stride sensitivity and hotspots
Makes programming for data locality impossible
Segment moves to cache, but only word moves to processor

 Full/empty bits on all data words

XMT memory

tag bits data values

063
forward
trap 1
trap 2
full-empty

Slide Credit: Cray, Inc.

18David A. Bader

Graph Analysis Performance:
Multithreaded (Cray XMT) vs. Cache-based multicore

• SSCA#2 network, SCALE 24 (16.77 million vertices
and 134.21 million edges.)

David A. Bader 19

Number of processors/cores

1 2 4 8 12 16

Be
tw

ee
nn

es
s

TE
PS

 ra
te

(M
ill

io
ns

 o
f e

dg
es

 p
er

 s
ec

on
d)

0

20

40

60

80

100

120

140

160

180 Cray XMT
Sun UltraSparcT2

2.0 GHz quad-core Xeon

STREAMING DATA ANALYSIS

20David A. Bader

Current Unserved Applications

• Separate the “good” from the “bad”
– Spam. Frauds. Irregularities.
– Pick news from world-wide events tailored to interests as the

events & interests change.
• Identify and track changes

– Disease outbreaks. Social trends. Utility & service changes
during weather events.

• Discover new relationships
– Similarities in scientific publications.

• Predict upcoming events
– Present advertisements before a user searches.

Shared features: Relationships are abstract. Physical locality is only
one aspect, unlike physical simulation.

21David A. Bader

Streaming Data Characteristics

• The data expresses unknown (i.e.
unpredictable) relationships.
– The relationships are not necessarily bound by or

related to physical proximity.
– Arranging data for storage locality often is

equivalent to the desired analysis.
– There may be temporal proximity... That is a

question we want to answer!

22David A. Bader

Streaming Data Characteristics

• The data expresses relationships partially.
– Personal friendship is not the same as on-line

“friendship.”
– Streams often are lossy or contain errors.

•Real links may be dropped, false links added.
•Time synchronization is difficult.

– Need to determine error models...

23David A. Bader

STING Extensible Representation (STINGER)

• Enhanced representation developed for dynamic graphs developed in
consultation with David A. Bader, Johnathan Berry, Adam Amos-Binks, Daniel
Chavarría-Miranda, Charles Hastings, Kamesh Madduri, and Steven C. Poulos.

• Design goals:
– Be useful for the entire “large graph” community
– Portable semantics and high-level optimizations across multiple platforms &

frameworks (XMT C, MTGL, etc.)
– Permit good performance: No single structure is optimal for all.
– Assume globally addressable memory access
– Support multiple, parallel readers and a single writer

• Operations:
– Insert/update & delete both vertices & edges
– Aging-off: Remove old edges (by timestamp)
– Serialization to support checkpointing, etc.

David A. Bader 24

STING Extensible Representation

• Semi-dense
edge list blocks
with free space

• Compactly
stores
timestamps,
types, weights

• Maps from
application IDs
to storage IDs

• Deletion by
negating IDs,
separate
compaction

David A. Bader 25

STINGER

• Georgia Tech implementation runs in parallel
on Cray XMT and OpenMP/multicore desktop

• Shows little or no performance overhead for
many kernels

• Recent publication using STINGER:
– David Ediger, Karl Jiang, Jason Riedy, and David A. Bader,

“Massive Streaming Data Analytics: A Case Study with
Clustering Coefficients.” MTAAP, Atlanta, GA, 2010.

– Demonstrates good performance for small graphs on Intel
Nehalem and large streaming datasets on the Cray XMT

David A. Bader 26

STINGER: Extending the Hybrid

Many applications need different kinds of relationships / edges. The hybrid
approach can accommodate those by separating different kinds' edge arrays.
An additional level of indirection permits fast access by source vertex or edge
type.

D. Bader, J. Berry, A. Amos-Binks, D. Chavarría-Miranda, C. Hastings, K. Madduri, S. Poulos, "STINGER: Spatio-Temporal
Interaction Networks and Graphs (STING) Extensible Representation"

27David A. Bader

STINGER: Edge Insertion
Insertion (best case): From the source vertex, skip to the edge type, then search
for a hole.

Worst case: Allocate a new block and add to the list...

28David A. Bader

STINGER: Edge Removal
Removal: Find the edge. Remove by negating the adj. vertex. Atomic store.

If insertion sets the adj. vertex > 0 after other updates, insertion will appear atomic.

29David A. Bader

TRACKING CLUSTERING
COEFFICIENTS

30David A. Bader

Case Study: Clustering Coefficients
 Used as a measure of “small-worldness.”

 Larger clustering coefficient → more inter-related
 Roughly, the ratio of actual triangles to possible triangles

around a vertex.
 Defined in terms of triplets.
 i-j-v is a closed triplet (triangle).
 m-v-n is an open triplet.
 Clustering coefficient

closed triplets / # all triplets
 Locally, count around v.
 Globally, count across entire graph.

 Multiple counting cancels (3/3=1)

31David A. Bader

Streaming updates to clustering coefficients
Monitoring clustering coefficients could identify anomalies,
find forming communities, etc.
Computations stay local. A change to edge <u, v> affects
only vertices u, v, and their neighbors.

Need a fast method for updating the triangle counts,
degrees when an edge is inserted or deleted.

Dynamic data structure for edges & degrees: STINGER
Rapid triangle count update algorithms: exact and approximate

“Massive Streaming Data Analytics: A Case Study with Clustering Coefficients.” Ediger,
David, Karl Jiang, E. Jason Riedy, and David A. Bader. MTAAP 2010, Atlanta, GA, April
2010.

u v-1 -1

-1
-1

32David A. Bader

Batching Graph Changes
 Individual graph changes for local properties will not expose

much parallelism. Need to consider many actions at once
for performance.

 Conveniently, batches of actions also amortize transfer
overhead from the data source.
 Common paradigm in network servers (c.f. SEDA: Staged Event-

Driven Arch.)

 Even more conveniently, clustering coefficients lend
themselves to batches.
 Final result independent of action ordering between edges.

 Can reconcile all actions on a single edge within the batch.

33David A. Bader

Updating Triplet Counts

Consider a starting graph:

34David A. Bader

Updating Triplet Counts

Insert two edges (green):

35David A. Bader

Updating Triplet Counts

Consider adjacent vertices (green boxes):

The open triplet count is a function only of degree. Update the
local open triplet count for each green boxed vertex.

36David A. Bader

Updating Triplet Counts

Now examine all vertices adjacent to those:

37David A. Bader

Updating Triplet Counts
Prune consideration to vertices adjacent to two newly
attached vertices (red boxes):

 Being adjacent to two newly joined edges is necessary for being part of a
new closed triple (triangle) although not sufficient.
 From each red boxed vertex, search for a new edge opposite it. Only need
to search the red edges.

38David A. Bader

Updating Triplet Counts
Update closed triplet (triangle) counts for found triangles
(blue boxes):

 Note: Only accessed edges adjacent to the newly inserted edges.
Batching reduces work over individual actions.
 Glossed over cases (two, three new edges in triangle); none need extra
searches.
 Technique also handles edge removal.

39David A. Bader

Updating clustering coefficients
Using RMAT as a graph and edge stream generator.

16M vertices, 537M initial

Mix of insertions and deletions

Result summary for single actions
– Exact: from 8 to 618 actions/second
– Approx: from 11 to 640 actions/second

Alternative: Batch changes
– Lose some temporal resolution within the batch
– Median rates for batches of size B:

Approx: Summarizes adj. structure with a Bloom filter, 100% accuracy in this test.

STINGER overhead is minimal; most time in spent metric.

Algorithm B = 1 B = 1000 B = 4000

Exact 90 25 100 50 100

Approx. 60 83 700 193 300

40David A. Bader

64p Cray XMT

TRACKING CONNECTED
COMPONENTS

41David A. Bader

Tracking connected components

Goals:
Given a graph and a sequence of many
edge insertions and fewer removals,
track the components.
Provide component membership
information for many other kernels,
including diameter, searches, etc.
Evaluate STINGER's efficiency on the
XMT.

David A. Bader

Adapting for STINGER: Original static code

while (!is_empty(stack, &top)) {
int64_t k, myStart, myEnd;
u = pop(stack, &top);
myStart = off[u];
myEnd = off[u+1];
for (k = myStart; k < myEnd; k++) {

v = ind[k];
if (int_fetch_add(marks + v, 1) == 0) {

d[v] = my_root;
push(v, stack, &top);

} else {
if (!(d[v]==d[my_root])) {

int64_t t = int_fetch_add(&cross_count, 1);
crossU[t] = u;
crossV[t] = v;

} } } }

ind[] : end vertex array
off[] : vertex offset into ind[]

Leveraging GraphCT base...

David A. Bader

Adapting for STINGER: static connected components

while (!is_empty(stack, &top)) {

int64_t k, myStart, myEnd;

size_t md;
u = pop(stack, &top);

deg_u = stinger_outdegree(S, u);
myStart = stinger_int64_fetch_add(&head, deg_u);
myEnd = myStart + deg_u;
stinger_gather_typed_successors(S, 0, u, &md, &neighbors[myStart], deg_u);
for (k = myStart; k < myEnd; k++) {

v = neighbors[k];
if (stinger_int64_fetch_add(marks + v, 1) == 0) {

d[v] = my_root;

push(v, stack, &top);

} else {

if (!(d[v]==d[my_root])) {

int64_t t = stinger_int64_fetch_add(&cross_count, 1);
crossU[t] = u;

crossV[t] = v;

} } } }

S : STINGER data structure
neighbors[] : pre-allocated buffer
head : end pointer into neighbors[]

Assuming a pre-allocated
buffer, neighbors.

David A. Bader

Adapting for STINGER: static connected components

while (!is_empty(stack, &top)) {

int64_t k, myStart, myEnd;

size_t md;

u = pop(stack, &top);

deg_u = stinger_outdegree(S, u);

myStart = stinger_int64_fetch_add(&head, deg_u);

myEnd = myStart + deg_u;

stinger_gather_typed_successors(S, 0, u, &md, &neighbors[myStart], deg_u);

for (k = myStart; k < myEnd; k++) {

v = neighbors[k];

if (stinger_int64_fetch_add(marks + v, 1) == 0) {
d[v] = my_root;

push(v, stack, &top);

} else {

if (!(d[v]==d[my_root])) {

int64_t t = stinger_int64_fetch_add(&cross_count, 1);
crossU[t] = u;

crossV[t] = v;

} } } }

S : STINGER data structure
neighbors[] : pre-allocated buffer
head : end pointer into neighbors[]

Portable spelling for atomic
operations.

David A. Bader

Adapting for STINGER: static connected components

while (!is_empty(stack, &top)) {

int64_t k, myStart, myEnd;

size_t md;
u = pop(stack, &top);

deg_u = stinger_outdegree(S, u);
myStart = stinger_int64_fetch_add(&head, deg_u);
myEnd = myStart + deg_u;
stinger_gather_typed_successors(S, 0, u, &md, &neighbors[myStart], deg_u);
for (k = myStart; k < myEnd; k++) {

v = neighbors[k];
if (stinger_int64_fetch_add(marks + v, 1) == 0) {

d[v] = my_root;

push(v, stack, &top);

} else {

if (!(d[v]==d[my_root])) {

int64_t t = stinger_int64_fetch_add(&cross_count, 1);

crossU[t] = u;

crossV[t] = v;

} } } }

S : STINGER data structure
neighbors[] : pre-allocated buffer
head : end pointer into neighbors[]

Copying neighbors isolates
from dynamic changes.
Keeps compiler-optimizable
loop structure.

David A. Bader

Tracking connected components

Assumptions:
Scale-free network: most changes are
within one large component.
Edge additions: primarily merge small
component into the one large
component.
– Do not need access to graph...

Deletions: rarely disconnect
components
– Needs static connected components

algorithm to look for changes
– Heuristics may avoid the full run

David A. Bader

Tracking connected components

Edge addition (in batches):
Relabel batch of additions with
component numbers.
Collapse the graph, removing self-
edges. Any edges that remain cross
components.
Compute components of component ↔
component graph. Relabel smaller into
larger.
Problem size reduces from number of
changes to number of components
Proceeds concurrently with STINGER
modification

David A. Bader

Tracking connected components

Edge deletion:
A single deletion in a batch will trigger
static connected components
Heuristic: Accumulate n deletions
before recomputation
Heuristic: Perform truncated breadth
first search k steps away from each
endpoint. Null intersection means
recomputation.
Heuristic: Deleted edges that provably
do not form triangles within a batch can
be ignored. (In progress.)
Can tune heuristics for data

David A. Bader

From prior work, XMT can process ~100,000 updates/sec
Initial implementation: 1100 updates/sec

Execution time scaled with batch size – not good
Removed memory allocation & parallelized all loops

No observed change in performance
Instrumented 13 loops & function calls for timing
qsort(): majority of time & does not scale

• (Note: qsort is standard, programmers expect it to
work reasonably well.)

Experimented with several parallel sorting algorithms
• While we have experience optimizing parallel sorting

on the MTA, our current need requires a different
sort.

Performance Tuning Case Study

David A. Bader

Two-valued sort of edges: 1st by source, then by
destination
Expecting 1,000 to 100,000 pairs (power law distribution)
Recursive quicksort with futures

Not enough parallelism
Sandia merge sort

Single batch is too small to take advantage
Fastest: Bucket sort by source, then concurrent qsort()s

~30 lines of code
Parallel loops, linear recurrences, reductions

Result: improved from 1.1K updates/sec to 150K upd./sec

Sorting edges for batching

David A. Bader

Experimental Results: Connected components

Synthetic, Power Law Input: 16M vertices, 135M edges
16 proc. on the Cray XMT (20 batches of 50,000) 6.25%

deletions

*Threshold recomputes static connected components after
50,000 deletes are accumulated

Updates / sec
Edge adds only 77,600
Edge adds + STINGER 54,000
Adds + Deletes + STINGER 5,900
Threshold 50K deletes* 46,500

David A. Bader

Experimental Results on Intel Nehalem-EP

Synthetic, Power Law Input: 1M vertices, 8M edges
(SMALL)

16 threads (batches of 1) 6.25% deletions

*Performs breadth first search 5 steps from source and
destination and recomputes when intersection is null.
Note that the graph is very sparse, diameter much larger
than 5.

Updates / sec
Edge adds only 2,770,000
Edge adds + STINGER 537,000
Adds + Deletes + STINGER 397,000
Truncated BFS-5* 440,000

David A. Bader

Static code easy to convert
Maximum graph size reduced by ~16x

1 TB Cray XMT: 268M vertices  16M vertices
12 GB Intel: 16M vertices  1M vertices
Metadata & block overheads

•Blocks sized to store >100 edges, these examples
have average <10 per vertex.
•Reduction of these overheads in progress.

With large batch sizes, running static connected
components on XMT faster than many parallel truncated
breadth first searches (heuristic)

STINGER findings

David A. Bader

PARALLEL GRAPH FRAMEWORKS

55David A. Bader

Parallel Graph Frameworks
• SNAP

– Georgia Tech, Bader/Madduri

• Parallel Boost Graph Library
– Indiana, Lumsdaine

• MultiThreaded Graph Library (MTGL)
– Sandia, Berry

• GraphCT
– Georgia Tech, Ediger, Riedy, Jiang, Bader

• STINGER
– Georgia Tech, Bader, Riedy, Ediger, Jiang

David A. Bader 56

SNAP: Small-world Network Analysis and Partitioning

snap-graph.sourceforge.net

• New parallel framework for small-world network analysis
• 10-100x faster than existing approaches
• Can process graphs with billions of vertices and edges
• Open-source
• [Bader/Madduri]

Image Source: visualcomplexity.com

57David A. Bader

Parallel Boost Graph Library

• C++ library for parallel & distributed graph
computations

• Provides similar data structures and
algorithms as sequential Boost Graph Library

• Developed by Indiana University in 2005
• Scales up to 100 processors for some

algorithms on ideal graphs
– see earlier slide on PBGL performance

David A. Bader 58

http://www.osl.iu.edu/research/pbgl/

Multithreaded Graph Library (MTGL)

• Under development at Sandia National Labs
• Primitives for “visiting” a vertex

– Get data about the vertex
– Retrieve a list of all adjacencies

• Abstract connector to graph representation
• Tailored for Cray XMT, but portable to multicore

using Qthreads
• Programmer must still understand code that is

generated in order to get good performance on
the XMT

David A. Bader 59

https://software.sandia.gov/trac/mtgl

GraphCT (Georgia Tech)

Graph Characterization Toolkit

Efficiently summarizes and analyzes static graph data

Built for large multithreaded, shared memory machines like
the Cray XMT

Increases productivity by decreasing programming
complexity

Classic metrics & state-of-the-art kernels

Works on many types of graphs
directed or undirected
weighted or unweighted

David A. Bader 60

Dynamic spatio-temporal graph

Key Features of GraphCT

Low-level primitives to high-level analytic kernels
Common graph data structure
Develop custom reports by mixing and matching functions
Create subgraphs for more in-depth analysis
Kernels are tuned to maximize scaling and performance (up
to 128 processors) on the Cray XMT

David A. Bader 61

Load the Graph Data Find Connected Components Run k-Betweenness Centrality
on the largest component

GraphCT: Example Script

David A. Bader 62

read dimacs patents.txt => binary_pat.bin
print diameter 10
save graph
extract component 1 => component1.bin
print degrees
kcentrality 1 256 => k1scores.txt
kcentrality 2 256 => k2scores.txt
restore graph
extract component 2
print degrees

GraphCT Functions

David A. Bader 63

Name

RMAT graph generator

Degree distribution statistics

Graph diameter

Maximum weight edges

Connected components

Component distribution statistics

Vertex Betweenness Centrality

Vertex k-Betweenness Centrality

Multithreaded BFS

Edge-divisive Betweenness-based Community
Detection (pBD)

Lightweight Binary Graph I/O

Name

Modularity Score

Conductance Score

st-Connectivity

Delta-stepping SSSP

Bellman-Ford

GTriad Census

SSCA2 Kernel 3 Subgraphs

Greedy Agglomerative Clustering

Minimum spanning forest

Clustering coefficients

DIMACS Text Input

Key

Included

In Progress

Proposed/Available

Scalability of k-Betweenness Centrality in GraphCT

• 58x speed-up on 64
processor XMT

• Synthetic power-law
graph with 16M
vertices & 135M
edges

• Able to run 20
breadth-first
searches in parallel

David A. Bader 64

Clustering Coefficients in GraphCT

• A measure of the
connectivity of the
network

• Used in the definition
of “small world”

• 51x speed-up on 64
processor XMT

• Total time: 22 secs for
16M vertices

David A. Bader 65

Bader, Related Recent Publications (2005-2008)

• D.A. Bader, G. Cong, and J. Feo, “On the Architectural Requirements for Efficient Execution of Graph Algorithms,” The 34th International
Conference on Parallel Processing (ICPP 2005), pp. 547-556, Georg Sverdrups House, University of Oslo, Norway, June 14-17, 2005.

• D.A. Bader and K. Madduri, “Design and Implementation of the HPCS Graph Analysis Benchmark on Symmetric Multiprocessors,” The 12th
International Conference on High Performance Computing (HiPC 2005), D.A. Bader et al., (eds.), Springer-Verlag LNCS 3769, 465-476,
Goa, India, December 2005.

• D.A. Bader and K. Madduri, “Designing Multithreaded Algorithms for Breadth-First Search and st-connectivity on the Cray MTA-2,” The 35th
International Conference on Parallel Processing (ICPP 2006), Columbus, OH, August 14-18, 2006.

• D.A. Bader and K. Madduri, “Parallel Algorithms for Evaluating Centrality Indices in Real-world Networks,” The 35th International
Conference on Parallel Processing (ICPP 2006), Columbus, OH, August 14-18, 2006.

• K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “Parallel Shortest Path Algorithms for Solving Large-Scale Instances,” 9th DIMACS
Implementation Challenge -- The Shortest Path Problem, DIMACS Center, Rutgers University, Piscataway, NJ, November 13-14, 2006.

• K. Madduri, D.A. Bader, J.W. Berry, and J.R. Crobak, “An Experimental Study of A Parallel Shortest Path Algorithm for Solving Large-Scale
Graph Instances,” Workshop on Algorithm Engineering and Experiments (ALENEX), New Orleans, LA, January 6, 2007.

• J.R. Crobak, J.W. Berry, K. Madduri, and D.A. Bader, “Advanced Shortest Path Algorithms on a Massively-Multithreaded Architecture,” First
Workshop on Multithreaded Architectures and Applications (MTAAP), Long Beach, CA, March 30, 2007.

• D.A. Bader and K. Madduri, “High-Performance Combinatorial Techniques for Analyzing Massive Dynamic Interaction Networks,” DIMACS
Workshop on Computational Methods for Dynamic Interaction Networks, DIMACS Center, Rutgers University, Piscataway, NJ, September
24-25, 2007.

• D.A. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating Betewenness Centrality,” The 5th Workshop on Algorithms and Models for
the Web-Graph (WAW2007), San Diego, CA, December 11-12, 2007.

• David A. Bader, Kamesh Madduri, Guojing Cong, and John Feo, “Design of Multithreaded Algorithms for Combinatorial Problems,” in S.
Rajasekaran and J. Reif, editors, Handbook of Parallel Computing: Models, Algorithms, and Applications, CRC Press, Chapter 31, 2007.

• Kamesh Madduri, David A. Bader, Jonathan W. Berry, Joseph R. Crobak, and Bruce A. Hendrickson, “Multithreaded Algorithms for
Processing Massive Graphs,” in D.A. Bader, editor, Petascale Computing: Algorithms and Applications, Chapman & Hall / CRC Press,
Chapter 12, 2007.

• D.A. Bader and K. Madduri, “SNAP, Small-world Network Analysis and Partitioning: an open-source parallel graph framework for the
exploration of large-scale networks,” 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS), Miami, FL, April 14-
18, 2008.

66David A. Bader

Bader, Related Recent Publications (2009-2010)
• S. Kang, D.A. Bader, “An Efficient Transactional Memory Algorithm for Computing Minimum Spanning Forest

of Sparse Graphs,” 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), Raleigh, NC, February 2009.

• Karl Jiang, David Ediger, and David A. Bader. “Generalizing k-Betweenness Centrality Using Short Paths and
a Parallel Multithreaded Implementation.” The 38th International Conference on Parallel Processing (ICPP),
Vienna, Austria, September 2009.

• Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, Daniel Chavarría-Miranda. “A Faster Parallel
Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive
Datasets.” 3rd Workshop on Multithreaded Architectures and Applications (MTAAP), Rome, Italy, May 2009.

• David A. Bader, et al. “STINGER: Spatio-Temporal Interaction Networks and Graphs (STING) Extensible
Representation.” 2009.

• David Ediger, Karl Jiang, E. Jason Riedy, and David A. Bader. “Massive Streaming Data Analytics: A Case
Study with Clustering Coefficients,” Fourth Workshop in Multithreaded Architectures and Applications
(MTAAP), Atlanta, GA, April 2010.

• Seunghwa Kang, David A. Bader. “Large Scale Complex Network Analysis using the Hybrid Combination of a
MapReduce cluster and a Highly Multithreaded System:,” Fourth Workshop in Multithreaded Architectures
and Applications (MTAAP), Atlanta, GA, April 2010.

• David Ediger, Karl Jiang, Jason Riedy, David A. Bader, Courtney Corley, Rob Farber and William N. Reynolds.
“Massive Social Network Analysis: Mining Twitter for Social Good,” The 39th International Conference on
Parallel Processing (ICPP 2010), San Diego, CA, September 2010.

• Virat Agarwal, Fabrizio Petrini, Davide Pasetto and David A. Bader. “Scalable Graph Exploration on Multicore
Processors,” The 22nd IEEE and ACM Supercomputing Conference (SC10), New Orleans, LA, November
2010.

67David A. Bader

Collaborators and Acknowledgments

• Jason Riedy, Research Scientist, (Georgia Tech)
• Graduate Students (Georgia Tech):

– Seunghwa Kang
– David Ediger
– Karl Jiang
– Pushkar Pande

• Bader PhD Graduates:
– Kamesh Madduri (Lawrence Berkeley National Lab)
– Guojing Cong (IBM TJ Watson Research Center)

• John Feo and Daniel Chavarría-Miranda (Pacific Northwest
National Laboratory)

• Jon Berry, Bruce Hendrickson (Sandia National Labs)
• Jeremy Kepner (MIT Lincoln Laboratory)

David A. Bader 68

Acknowledgment of Support

David A. Bader 69

Backup Slides

David A. Bader 70

MOTIVATION:
NETWORK ANALYSIS

71David A. Bader

Routing in transportation networks

Road networks, Point-to-point shortest paths: 15 seconds (naïve)  10 microseconds

H. Bast et al., “Fast Routing in Road Networks with Transit Nodes”, Science 27, 2007.

72David A. Bader

Internet and the WWW

• The world-wide web can be represented as a directed graph
– Web search and crawl: traversal
– Link analysis, ranking: Page rank and HITS
– Document classification and clustering

• Internet topologies (router networks) are naturally modeled
as graphs

73David A. Bader

“Google, Citing Attack, Threatens to Exit China”

• This article was reported by Andrew Jacobs, Miguel Helft and John Markoff and written by Mr. Jacobs.

• BEIJING — Google said Tuesday that it would stop
cooperating with Chinese Internet censorship and
consider shutting down its operations in the country
altogether, citing assaults from hackers on its
computer systems and China’s attempts to “limit
free speech on the Web.”

David A. Bader 74

12 January 2010
Elizabeth Dalziel/Associated Press

“95% of User Generated Content is spam or malicious”

• Covering the last six months of 2009, the report is based upon the findings of
the ThreatSeeker Network which is used to discover, classify and monitor global
Internet threats and trends courtesy of something called the Internet HoneyGrid.

• Scanned 40M sites, 10M email messages
– 13.7% of searches for trending news/buzz words (as defined by Yahoo Buzz & Google Trends) led

to malware.
– 71% of Web sites with malicious code are legitimate sites that have been compromised.
– 95% of user-generated posts on Web sites are spam or malicious.
– Consistent with previous years, 51% of malware still connects to host Web sites registered in the

United States.
– China remains second most popular malware hosting country with 17%, but during the last six

months Spain jumped into the third place with 15.7% despite never having been in the top 5
countries before.

– 81% of emails during the second half of the year contained a malicious link.
– 85.8% of all emails were spam.
– 35% of malicious Web-based attacks included data-stealing code.
– 58% of all data-stealing attacks are conducted over the Web.

David A. Bader 75

Source: Davey Winder, 6 February 2010, http://www.daniweb.com/news/story258407.html

Scientific Computing
• Reorderings for sparse solvers

– Fill reducing orderings
• partitioning, traversals, eigenvectors

– Heavy diagonal to reduce pivoting (matching)

• Data structures for efficient exploitation
of sparsity

• Derivative computations for optimization
– Matroids, graph colorings, spanning trees

• Preconditioning
– Incomplete Factorizations
– Partitioning for domain decomposition
– Graph techniques in algebraic multigrid

• Independent sets, matchings, etc.
– Support Theory

• Spanning trees & graph embedding techniques
B. Hendrickson, “Graphs and HPC: Lessons for Future Architectures”,
http://www.er.doe.gov/ascr/ascac/Meetings/Oct08/Hendrickson%20ASCAC.pdf

76David A. Bader

David A. Bader 77

Informatics Graphs are Even Tougher

• Very different from graphs in scientific computing!
– Graphs can be enormous
– Power-law distribution of the number of neighbors
– Small world property – no long paths
– Very limited locality, not partitionable
– Highly unstructured
– Edges and vertices have types

• Experience in scientific computing applications
provides only limited insight.

Six degrees of Kevin Bacon
Source: Seokhee Hong

77

Graphs are pervasive in large-scale data analysis

• Sources of massive data: petascale simulations, experimental devices,
the Internet, scientific applications.

• New challenges for analysis: data sizes, heterogeneity, uncertainty, data
quality.

Astrophysics
Problem: Outlier detection.
Challenges: massive datasets,
temporal variations.
Graph problems: clustering,
matching.

Bioinformatics
Problem: Identifying drug target
proteins.
Challenges: Data heterogeneity,
quality.
Graph problems: centrality,
clustering.

Social Informatics
Problem: Discover emergent
communities, model spread of
information.
Challenges: new analytics routines,
uncertainty in data.
Graph problems: clustering,
shortest paths, flows.

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg
(2,3) www.visualComplexity.com

78David A. Bader

Data Analysis and Graph Algorithms in Systems Biology

• Study of the interactions
between various components
in a biological system

• Graph-theoretic formulations
are pervasive:
– Predicting new interactions:

modeling
– Functional annotation of novel

proteins: matching, clustering
– Identifying metabolic pathways:

paths, clustering
– Identifying new protein

complexes: clustering, centrality
Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

79David A. Bader

Image Source: Nexus (Facebook application)

Graph –theoretic problems in social networks

– Community identification: clustering
– Targeted advertising: centrality
– Information spreading: modeling

80David A. Bader

Network Analysis for Intelligence and Survelliance

• [Krebs ’04] Post 9/11 Terrorist
Network Analysis from public domain
information

• Plot masterminds correctly identified
from interaction patterns: centrality

• A global view of entities is often more
insightful

• Detect anomalous activities by
exact/approximate graph matching

Image Source: http://www.orgnet.com/hijackers.html

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies
for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47

81David A. Bader

Characterizing Graph-theoretic computations

• graph sparsity (m/n ratio)
• static/dynamic nature
• weighted/unweighted, weight
distribution
• vertex degree distribution
• directed/undirected
• simple/multi/hyper graph
• problem size
• granularity of computation at
nodes/edges
• domain-specific characteristics

• paths
• clusters
• partitions
• matchings
• patterns
• orderings

Input: Graph
abstraction

Problem: Find ***

Factors that influence
choice of algorithmGraph

algorithms

• traversal
• shortest path
algorithms
• flow algorithms
• spanning tree
algorithms
• topological sort
…..

Graph problems are often recast as sparse
linear algebra (e.g., partitioning) or linear
programming (e.g., matching) computations

82David A. Bader

Massive data analytics in Informatics networks

• Graphs arising in Informatics are very different from
topologies in scientific computing.

• We need new data representations and parallel algorithms
that exploit topological characteristics of informatics
networks.

Emerging applications: dynamic,
high-dimensional data

Static networks,
Euclidean topologies

83David A. Bader

What we’d like to infer from Information networks

• What are the degree distributions, clustering coefficients, diameters,
etc.?

– Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions,
...

• How do networks grow, evolve, respond to perturbations, etc.?
– Preferential attachment, copying, HOT, shrinking diameters, ..

• Are there natural clusters, communities, partitions, etc.?
– Concept-based clusters, link-based clusters, density-based clusters, ...

• How do dynamic processes – search, diffusion, etc. – behave on
networks?

– Decentralized search, undirected diffusion, cascading epidemics, ...

• How best to do learning, e.g., classification, regression, ranking, etc.?
– Information retrieval, machine learning, ...

Slide credit: Michael Mahoney, Stanford

84David A. Bader

David A. Bader 85

The Big Picture

Analyst makes
queries.

Mongo
Databases

Fast
Graph
Query

Extract “Window”Extract “Window”

High Latency Query

Graph resides in memory
of supercomputer.

85

Graph Analysis

• Irregularly traversing large (multi-billion vertices with
up to a trillion edges) graph data.

86David A. Bader

ALGORITHMS:
SOCIAL NETWORK ANALYSIS
(CENTRALITY)

87David A. Bader

• Centrality: Quantitative measure to capture the importance
of a vertex/edge in a graph.

– Application-specific: can be based on degree, paths, flows, eigenvectors, …

Finding “central” entities is a key graph analytics routine

Intelligence
Problem: Unraveling terrorist
networks.

Bioinformatics
Problem: Identifying drug target
proteins, metabolic pathways.

Online Social networks
Problem: Discover emergent
communities, identify influential
people.

Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”,
Science 302, 1722-1736, 2003.

Image Source: http://www.orgnet.com/hijackers.html

US power transmission grid
Problem: Contingency analysis

88David A. Bader

Centrality in Massive Social Network Analysis

• Centrality metrics: Quantitative measures to capture the importance of
person in a social network

– Betweenness is a global index related to shortest paths that traverse
through the person

– Can be used for community detection as well

• Identifying central nodes in large complex networks is the key metric in a
number of applications:
– Biological networks, protein-protein interactions
– Sexual networks and AIDS
– Identifying key actors in terrorist networks
– Organizational behavior
– Supply chain management
– Transportation networks

• Current Social Network Analysis (SNA) packages handle 1,000’s of entities, our
techniques handle BILLIONS (6+ orders of magnitude larger data sets)

David A. Bader 89

David A. Bader

Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77, Goh ’02, Newman ’03, Brandes ’03]

• : Number of shortest paths between vertices s and t
• : Number of shortest paths between vertices s and t

passing through v

• Exact BC is compute-intensive

   st

s v t V st

v
BC v


  

 

)(vst
st

90

Vertex ID

0 1000 2000 3000 4000
Be

tw
ee

nn
es

s
ce

nt
ra

lit
y

sc
or

e
1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7 Exact (scatter data)
Approximate (smooth)

David A. Bader

BC Algorithms

• Brandes [2003] proposed a faster sequential algorithm for BC on sparse
graphs

– time and space for weighted graphs
– time for unweighted graphs

• We designed and implemented the first parallel algorithm:
– [Bader, Madduri; ICPP 2006]

• Approximating Betweenness Centrality
[Bader Kintali Madduri Mihail 2007]

– Novel approximation algorithm for determining the
betweenness of a specific vertex or edge in a graph

– Adaptive in the number of samples
– Empirical result: At least 20X speedup over exact BC

)(nO)log(2 nnmnO 

)(mnO

91

Graph: 4K vertices and 32K edges,
System: Sun Fire T2000 (Niagara 1)

IMDB Movie Actor Network (Approx BC)

92

Degree

Fr
eq

ue
nc

y

Degree
B

et
w

ee
nn

es
s

0 100 200 300 400 500 600 700

Intel Xeon 2.4GHz (4)

Cray XMT (16)

Running Time (sec)

An undirected graph of 1.54 million vertices (movie actors) and 78 million edges. An
edge corresponds to a link between two actors, if they have acted together in a movie.

Kevin
Bacon

David A. Bader 92

Fine-grained Parallel BC Algorithm

• Consider an undirected, unweighted graph
• High-level idea: Level-synchronous parallel Breadth-

First Search augmented to compute centrality
scores

• Exact BC computation
– n source vertices (iterations)
– Each iteration:

• traversal and path counting
• dependency accumulation

 )(1
)(
)()(

)(

w
w
vv

wPv



  



1. Traversal and path counting

2. Dependency accumulation

93David A. Bader

Illustration of Parallel BC (pBC-Old)

1. Traversal step: visit adjacent vertices, update distance
and path counts.

0 7

5

3

8

2

4 6

1

9

source
vertex

94David A. Bader

Step 1 (traversal) Illustration

1. Traversal step: visit adjacent vertices, update distance
and path counts.

0 7

5

3

8

2

4 6

1

9

source
vertex

2
7
5
00

00

11

11

11

D

0

0 0

0

S P

S: stack of
visited vertices

D: Distance from
source vertex

P: Predecessor
multiset

95David A. Bader

Step 1 Illustration

1. Traversal step: visit adjacent vertices, update distance
and path counts.

0 7

5

3

8

2

4 6

1

9

source
vertex

88

2
7
5
00

00

11
22

11

11
22

D

0

0 0

0

S P

33

2 7

5 7

Level-synchronous approach: The adjacencies of all vertices
in the current frontier can be visited in parallel

S: stack of
visited vertices

D: Distance from
source vertex

P: Predecessor
multiset

96David A. Bader

Step 1 Illustration

1. Traversal step: at the end, we have all reachable vertices,
their corresponding predecessor multisets, and D values.

0 7

5

3

8

2

4 6

1

9

source
vertex

99
11
66
44
88

2
7
5
00

00

11
22

11

11
22

D

0

0 0

0

S P

33

2 7

5 7

Level-synchronous approach: The adjacencies of all vertices
in the current frontier can be visited in parallel

3 8

8

6

6

S: stack of
visited vertices

D: Distance from
source vertex

P: Predecessor
multiset

97David A. Bader

Step 1 pBC-Old pseudo-code

for all vertices u at level d in parallel do
for all adjacencies v of u in parallel do

dv = D[v];
if (dv < 0) // v is visited for the first time

vis = fetch_and_add(&Visited[v], 1);
if (vis == 0) // v is added to a stack only once

D[v] = d+1;
pS[count++] = v; // Add v to local thread stack

fetch_and_add(&sigma[v], sigma[u]);
fetch_and_add(&Pcount[v], 1); // Add u to predecessor list of v

if (dv == d + 1)
fetch_and_add(&sigma[v], sigma[u]);
fetch_and_add(&Pcount[v], 1); // Add u to predecessor list of v

v

e1

e2u2

u1

v1u

v2

A
to

m
ic

 u
pd

at
es

:
pe

rfo
rm

an
ce

 b
ot

tle
ne

ck
s!

98David A. Bader

• Exploit concurrency in exploration of current frontier and
visiting adjacencies, as the graph diameter is low: O(log n) or
O(1).

• Potential performance bottlenecks: atomic updates to
predecessor multisets, atomic increments of path counts

• New contribution: Data structure change to eliminate
storage of “predecessor” multisets. We store successor
edges along shortest paths instead.
– simplifies the accumulation step
– Eliminates two atomic operations in traversal step
– cache-friendly!

Step 1 analysis

99David A. Bader

1 9

pBC-LockFree change in data representation

0 7

5

3

8

2

4 6

1

9

source
vertex Succ

3

8
6

Succ: Successor
multiset

2 5 7 7

0

0 0

0

P

2 7

5 7

3 8

8

6

6

P: Predecessor
multiset

4 6
3 8

4

100David A. Bader

Step 1 pBC-LockFree Locality Analysis
for all vertices u at level d in parallel do

for all adjacencies v of u do
dv = D[v];
if (dv < 0)

vis = fetch_and_add(&Visited[v], 1);
if (vis == 0)

D[v] = d+1;
pS[count++] = v;

fetch_and_add(&sigma[v], sigma[u]);
Scount[u]++;

if (dv == d + 1)
fetch_and_add(&sigma[v], sigma[u]);
Scount[u]++;

All the vertices are in a
contiguous block (stack)

All the adjacencies of a vertex are
stored compactly (graph rep.)

Indicates store to S[u]

Non-contiguous
memory access

Non-contiguous
memory access

Non-contiguous
memory access

Store D[v], Visited[v], sigma[v] contiguously for
better cache locality.

101David A. Bader

Step 2 Dependence Accumulation Illustration

2. Accumulation step: Pop vertices from stack,
update dependence scores.

0 7

5

3

8

2

4 6

1

9

source
vertex

99
11
66
44
88

2
7
5
00

Delta

0

0 0

0

S P

33

2 7

5 7

3 8

8

6

6

 )(1
)(
)()(

)(
w

w
vv

wPv



  



S: stack of
visited vertices

Delta: Dependency
score

P: Predecessor
multiset

102David A. Bader

Step 2 Dependence Accumulation Illustration

2. Accumulation step: Can also be done in a
level-synchronous manner.

0 7

5

3

8

2

4 6

1

9

source
vertex

99
11
66
44
88

2
7
5
00

Delta

0

0 0

0

S P

33

2 7

5 7

3 8

8

6

6

 )(1
)(
)()(

)(
w

w
vv

wPv



  



S: stack of
visited vertices

Delta: Dependency
score

P: Predecessor
multiset

103David A. Bader

Step 2 pBC-Old pseudo-code

for level d = GraphDiameter to 2 do
for all vertices w at level d in parallel do

for all v in P[w] do
acquire_lock(v);

delta[v] = delta[v] + (1 + delta[w]) * sigma(v)/sigma(w);
release_lock(v);

BC[v] = delta[v]

 )(1
)(
)()(

)(
w

w
vv

wPv



  



Lo
ck

s:
 p

er
fo

rm
an

ce
 b

ot
tle

ne
ck

!

104David A. Bader

Step 2 pBC-LockFree

for level d = GraphDiameter-2 to 1 do
for all vertices v at level d in parallel do

for all w in S[v] in parallel do reduction(delta)
delta_sum_v = delta[v] + (1 + delta[w]) * sigma[v]/sigma[w];

BC[v] = delta[v] = delta_sum_v;
Only floating point
operations in code

No atomic operation,
reduction instead

105David A. Bader

• Low graph diameter.
– Key source of concurrency in graph traversal.

• Skewed (“power law”) degree distribution of the
number of neighbors.
– Inner loop easier to parallelize after elimination of

successor multisets. Preprocess for balanced
partitioning of work among processors/threads.

– High-degree vertices can be processed in parallel,
separately.

• Dynamic network abstractions, from diverse data
sources; massive networks (billions of entities).
– Data representations and structures are space-

efficient, support edge attributes, and fast parallel
insertions and deletions.

New parallel BC algorithm works well
for massive “small-world” networks

Low graph diameter

Skewed degree distribution
Human Protein Interaction Network

(18669 proteins, 43568 interactions)

Vertex Degree
0.1 1 10 100 1000

Fr
eq

ue
nc

y

0.1

1

10

100

1000

10000

106David A. Bader

• Latency tolerance by massive
multithreading

– hardware support for 128 threads on each
processor

– Globally hashed address space
– No data cache
– Single cycle context switch
– Multiple outstanding memory requests

• Support for fine-grained,
word-level synchronization

• 16 x 500 MHz processors, 128 GB RAM

Performance Results: Experimental Setup
Cray XMT DARPA HPCS SSCA#2

Graph Analysis benchmark
• Representative of graph-theoretic

computations in real-world networks.
http://www.graphanalysis.org

• Approximate betweenness centrality is a
key kernel.

• Synthetic R-MAT networks generated
based on Kronecker products.

• Performance measure: Traversed edges
per second (TEPS) rate.

IMDb actors network
• Real-world social network constructed

from IMDb data.
• Undirected network: 1.54 million vertices

(actors) and 78 million edges (edge  two
actors co-starring in a movie).

ndedges/seco 27 rate TEPS BC
4

t
n ApproxK



107David A. Bader

• Synthetic network with 16.77 million vertices and 134.21 million edges
(SCALE 24), K4Approx = 8.

Cray XMT Parallel Performance

Number of processors
1 2 4 8 12 16

B
et

w
ee

nn
es

s
TE

P
S

 ra
te

(M
ill

io
ns

 o
f e

dg
es

 p
er

 s
ec

on
d)

0

20

40

60

80

100

120

140

160

180
Speedup of 10.43
on 16 processors.

108David A. Bader

• SSCA#2 networks, n = 2SCALE and m = 8n.

Cray XMT Performance vs. Problem size

SSCA#2 problem SCALE (Log2 # of vertices)
18 19 20 21 22 23 24 25 26 27 28

B
et

w
ee

nn
es

s
TE

P
S

 ra
te

(M
ill

io
ns

 o
f e

dg
es

 p
er

 s
ec

on
d)

40

60

80

100

120

140

160
Sufficient concurrency
on 16 processors for
problem instances with
SCALE > 24.

109David A. Bader

• SSCA#2 network, SCALE 24 (16.77 million vertices and 134.21 million
edges.)

Performance compared to previous algorithm

Parallel Algorithm
ICPP06 (Old) MTAAP09 (New)

B
et

w
ee

nn
es

s
TE

P
S

 ra
te

(M
ill

io
ns

 o
f e

dg
es

 p
er

 s
ec

on
d)

0

20

40

60

80

100

120

140

160

180
Speedup of 2.3 over
previous approach.

110David A. Bader

• Undirected network of 1.54 million vertices and 78 million edges, 256
randomly selected source vertices.

Appoximate BC on the IMDb network

Low-degree vertices exhibit high
variance in centrality scores.

Parallel System
XMT (16p) Intel Xeon (4p)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

0

100

200

300

400

500

16-proc Cray XMT is 4.75x faster than
a 2.8 GHz quad-core Intel Xeon system.

111David A. Bader

• Implicit communities in large-scale
networks are of interest in many
cases.
– WWW
– Social networks
– Biological networks

• Formulated as a graph clustering
problem.
– Informally, identify/extract “dense”

sub-graphs.
• Several different objective

functions exist.
– Metrics based on intra-cluster vs. inter-

cluster edges, community sizes, number
of communities, overlap …

• Highly studied research problem
– 100s of papers yearly in CS, Social

Sciences, Physics, Comp. Biology, Applied
Math journals and conferences.

Community Identification

112David A. Bader

Related Work: Partitioning Algorithms
from Scientific Computing

• Theoretical and empirical evidence: existing techniques
perform poorly on small-world networks

• [Mihail, Papadimitriou ’02] Spectral properties of power-law
graphs are skewed in favor of high-degree vertices

• [Lang ’04] On using spectral techniques, “Cut quality varies
inversely with cut balance” in social graphs: Yahoo! IM
graph, DBLP collaborations

• [Abou-Rjeili, Karypis ’06] Multilevel partitioning heuristics
give large edge-cut for small-world networks, new coarsening
schemes necessary

113David A. Bader

• Measure based on optimizing inter-cluster density over intra-cluster
sparsity.

• For a weighted, directed network with vertices partitioned into non-
overlapping clusters, modularity is defined as

• If a particular clustering has no more intra-cluster edges than would be
expected by random chance, Q=0. Values greater than 0.3 typically
indicate community structure.

• Maximizing modularity is NP-complete.

Modularity: A popular optimization metric

 

 
otherwise. 0

, if 1,

2,,

,
22

1

jiji

i j
ij

i
ij

in
j

j
ij

out
i

ji
Vi Vj

in
j

out
i

ij

CCCC

wwwwww

CC
w
ww

w
w

Q




















 





114David A. Bader

For an unweighted and undirected network, modularity is
given by

and in terms of clusters/modules, it is equivalently

Modularity

 

 
otherwise. 0

 , if 1,
, if 1

,
22

1

jiji

ij

ji
Vi Vj

ji
ij

CCCC
Ejie

CC
m
dd

e
m

Q













 

 















































s

s

m

vd
svC

m
mQ

2

2

Resolution limit: Modules
will not be found,
optimizing modularity, if

12/  mms

115David A. Bader

• New parallel algorithms for modularity-optimizing community
identification.
– Divisive: edge betweenness-based, spectral
– Agglomerative
– Hybrid, multi-level

• Several algorithmic optimizations for small-world networks.
• Analysis of large-scale complex networks constructed from

real data.
• Note: No single “right” community detection algorithm exists.

Community structure analysis should be user-driven and
application-specific, combining various fast algorithms.

Our Contributions

116David A. Bader

• Top-down approach: Start with entire network as one
community, recursively split the graph to yield smaller
modules.

• Two popular methods:
– Edge-betweenness based: iteratively remove high-centrality edges.

• Centrality computation is the compute-intensive step, parallelize it.

– Spectral: apply recursive spectral bisection on the “modularity
matrix” B, whose elements are defined as Bij = Aij – didj/2m.
Modularity can be expressed in terms of B as:

• Parallelize the eigenvalue computation step (dominated by sparse
matrix-vector products).

Divisive Clustering, Parallelization

   
,

st

s t V st

e
BC e




 

Bss
m

Q T

4
1



117David A. Bader

Faster Community Identification Algorithms: Performance
Improvement over the Girvan-Newman (ref) approach

Graphs: Real-world networks (order of
Millions), System: Sun Fire T2000

• Speedup from
Algorithm Engineering
(approximate BC) and
parallelization (Sun
Fire T2000) are
multiplicative!

• 100-300X overall
performance
improvement over
Girvan-Newman
approach

Small-world Network

PPI Citations DBLP NDwww Actor

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

0

10

20

30

Parallelization
Algorithm Engineering

118David A. Bader

• Bottom-up approach: Start with n singleton communities,
iteratively merge pairs to form larger communities.
– What measure to minimize/maximize? modularity
– How do we order merges? priority queue

• Parallelization: perform multiple “independent” merges
simultaneously.

Agglomerative Clustering,
Parallelization

119David A. Bader

• Simulated annealing
• Extremal optimization
• Linear programming
• Statistical inference
• Spin models, random walks
• Clique percolation
• …

Other Community Identification Approaches

120David A. Bader

• How would a memory-efficient, near linear-work
greedy approach perform on real data?

• Helpful preprocessing steps
– 2-Core reduction of the graph

• High-percentage of degree-1 vertices in networks with
exponential and power-law degree distributions.

– Filter very high-degree vertices (d > dH ≈ √n)
• Ambiguity on what cluster they belong to.

Engineering a hybrid parallel community
identification algorithm

3 4

1 1

121David A. Bader

• Coarsen/sparsify graph
– Local search at vertices to identify dense components,

completely relax priority queue constraint => abundant
parallelism.

– Future work: Identify network-specific motifs (bipartite
cliques).

• Run greedy agglomerative approach once
graph is less than size threshold.

Hybrid approaches: Parallelization

46 11

1

122David A. Bader

ALGORITHMS:
K-BETWEENNESS CENTRALITY

David A. Bader 123

k-Betweenness Centrality, BCk

A new twist on betweenness centrality:
Count short paths in addition to shortest paths
Captures wider connectivity information

Applying BCk to a real data set:
How do the BC indices behave with increasing k?
Which vertices have zero scores?

(Directed and undirected graphs are different.)

Can we approximating by BCk random sampling?

Scalability on the Cray XMT with RMAT graphs
(generated by sampling from a Kronecker product).

David A. Bader 124

k-Betweenness Centrality

Measure centrality of a vertex v by the number of paths
passing through v between s and t relative to the number of
paths connecting s and t.
High betweenness centrality (BC): many shortest paths
High k-betweenness centrality (BCk): many short paths

All paths no longer than the shortest + parameter k counted.
0-Betweenness centrality is simply betweenness centrality.
1-BC also counts paths one step longer than the shortest.

BCk captures more connectivity information with k.

David A. Bader 125

Betweenness Centrality

How important are v1 and v2? Use betweenness centrality.
The betweenness centrality of v1, BC(v1):

Consider shortest paths between any two vertices s, t ≠ v1.
Sum over all such s, t: fraction of paths passing through v1

v1

v2

David A. Bader 126

BC: Need More Than the Shortest Path?

Consider the view from a particular vertex pair s, t.
Total of five paths, so the st contributions to v1, v2 = 1/5.
But there is more redundancy through v2, more nodes
influence / are influenced by v2...

s t

v1

v2

David A. Bader 127

k-Betweenness Centrality: Shortest + k

Consider counting paths one longer than the shortest.
Nothing new through v1. Two new paths cross through v2!
k-Betweenness Centrality (BCk):

Consider paths within k of the shortest path. Above is BC1.
0-Betweenneess centrality is regular BC, BC0(v) = BC(v).

s t

v1

v2

David A. Bader 128

k-Betweenness: terms

• From any source vertex s, we
can calculate the distance to
any vertex v = d(s, v)

• Any forward edge vw has
d(s,w) – d(s,v) = 1

• Otherwise it is a backward
edge. Any path originating at s
with a backward edge cannot
be a shortest path

• The degree of inefficiency of a
backward edge vw is given by
x(v, w) = d(s,v) – d(s,w) +1

• Any path from s to t of length
d(s, t) + k has edges with
inefficiencies summing to k

David A. Bader 129

k-Betweenness algorithm (1/4)

• Let tau(s, t, i) be the number of paths from s to t of distance
d(s, t) + i

• Calculate tau (s, t, i) for all t in graph G, and 0  i  k. This
can be done in k+1 graph traversals

David A. Bader 130

s

v

w

tau(s, v, 0) = 3
x(v, w) = 1
contributes +3 to tau(s, w, 1)

When an edge v-w is forward, any path counted in
tau(s, v, i) gets propagated as a path in tau(s, w, i).
However if x(v, w) > 0, tau(s, v, i) gets propagated to
tau(s, w, i+x(v, w)). Here, since 3 shortest paths exist
between s and v, the red link contributes adds 3 k=1
paths from s to w.

k-Betweenness algorithm (2/4)

• Dependency calculation is complicated for k-Betweenness,
requires O(k2) accumulations

• Consider a path from s to t with total inefficiency x(s, t)=k.
Consider a vertex v on that path. Then x(s, v) + x(v, t)=k

• Define the i,k-dependency of s on v with head-distribution h
= delta(s, i, k, v, h) = the sum, over vertices t, of ratios y/z
where z is the number of paths from s to t of length  d(s, t)
+ k and y is the number of paths that:
– go from s to t, through v
– are of length d(s, t) + i
– have x(s, v) = h and x(v, t) = i – h

David A. Bader 131

k-Betweenness algorithm (3/4)

• Need to calculate delta(s, i, k, v, h) for all v  s in graph G,
0  i  k, and 0  h  i

• A neighbor w of v is an i neighbor if x(v, w) = i. We can set up
a recurrence by separating neighbors in this way

• (For N2 an extra term appears to account for t=w)

David A. Bader 132

k-Betweenness algorithm (4/4)

• Dependency graph: each i is independent, only need k+1
graph traversals for (k+1)*(k+2)/2 accumulations

• Then BCk(v) can be computed by summing over all deltas for
a particular v, k.

David A. Bader 133

h=0 h=1 h=2 h=3

i=0

i=1

i=2

i=3

BCk for k > 0: More Path Information

Exact BCk for k = 0, 1, 2
On directed web graph
Vertices in increasing
BCk order
(independently)
Large difference going
from k = 0 to k > 0
Few additional paths
found in k = 2
k > 0 captures more
path information,
somewhat converges

134David A. Bader

BCk for k > 0: More Path Information

Exact BCk for k = 0, 1, 2
On directed web graph
Vertices in increasing
BCk order (by k = 0)
Large difference going
from k = 0 to k > 0
Few additional paths
found in k = 2
Note how many vertices
jump from BC0 = 0 to
BCk > 0!

135David A. Bader

Scalability of k-Betweenness Centrality

52x speedup for k=1 on a 64p Cray XMT

136David A. Bader

CRAY XMT ARCHITECTURE

David A. Bader 137

• Tolerates latency by extreme multithreading
– Each processor supports 128 hardware threads
– Context switch in a single tick
– No cache or local memory
– Context switch on memory request
– Multiple outstanding loads

• Remote memory requests do not stall processors
– Other streams work while the request

gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Hashed global shared memory
– 64-byte granularity, minimizes hotspots

• High-productivity graph analysis!

Cray XMT Operation

138David A. Bader

XMT ThreadStorm Processor (logical view)

i = n

i = 3

i = 2

i = 1

. . .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

. . .
Sub-

problem
B

Subproblem A

Serial
Code

Unused streams

. . . .

Programs
running in
parallel

Concurrent
threads of
computation

Hardware
streams
(128)

Instruction
Ready
Pool;

Pipeline of
executing
instructions

Slide Credit: Cray, Inc.

139David A. Bader

XMT ThreadStorm System (logical view)

i = n

i = 3

i = 2

i = 1

. . .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

. . .
Sub-

problem
B

Subproblem A

Serial
Code

Programs
running in
parallel

Concurrent
threads of
computation

Multithreaded
across
multiple
processors

.

Slide Credit: Cray, Inc.

140David A. Bader

What is not important on XMT

• Placing data near computation
• Modifying shared data
• Accessing data in order
• Using indirection or linked data-structures
• Partitioning program into independent,

balanced computations
• Using adaptive or dynamic computations
• Minimizing synchronization operations

141David A. Bader

Red Storm
• Red Storm consists of over 10,000 AMD Opteron™

processors connected by an innovative high speed, high
bandwidth 3D mesh interconnect designed by Cray
(Seastar)

• Cray is responsible for the design, development, and
delivery of the Red Storm system to support the
Department of Energy's Nuclear stockpile stewardship
program for advanced 3D modeling and simulation

• Red Storm uses a distributed memory programming model
(MPI)

Slide Credit: Cray, Inc.

142David A. Bader

4 DIMM Slots4 DIMM Slots

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

L0 RAS ComputerL0 RAS Computer
Redundant VRMsRedundant VRMs

Red Storm Compute Board

Slide Credit: Cray, Inc.

143David A. Bader

4 DIMM Slots4 DIMM Slots

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

L0 RAS ComputerL0 RAS Computer
Redundant VRMsRedundant VRMs

XMT Compute Board

Slide Credit: Cray, Inc.

144David A. Bader

MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs
IO Server PEs
Network Server PEs
FS Metadata Server

PEs
Database Server PEs

Compute Partition

MTX (BSD)

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

XMT system architecture

Slide Credit: Cray, Inc.

145David A. Bader

XMT ThreadStorm CPU

Slide Credit: Cray, Inc.

146David A. Bader

XMT Speeds and Feeds
CPU
ASIC

140M memory
ops

500M memory
ops

1.5
GFlops

500M memory
ops

100M memory
ops

90M30M memory ops (1 4K processors)

16 GB DDR
DRAM

Sustained memory rates are for
random single word accesses
over entire address space.

Slide Credit: Cray, Inc.

147David A. Bader

 Shared memory
Some memory can be reserved as local memory at boot time
Only compiler and runtime system have access to local memory

 Memory module cache
Decreases latency and increases bandwidth
No coherency issues

 8 word data segments randomly distributed across the memory system
Eliminates stride sensitivity and hotspots
Makes programming for data locality impossible
Segment moves to cache, but only word moves to processor

 Full/empty bits on all data words

XMT memory

tag bits data values

063
forward
trap 1
trap 2
full-empty

Slide Credit: Cray, Inc.

148David A. Bader

