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STING Initiative:
Focusing on Globally Significant Grand Challenges

• Many globally-significant grand challenges can be modeled by Spatio-
Temporal Interaction Networks and Graphs (or “STING”).  

• Emerging real-world graph problems include
– detecting community structure in large social networks, 
– defending the nation against cyber-based attacks, 
– improving the resilience of the electric power grid, and 
– detecting and preventing disease in human populations.  

• Unlike traditional applications in computational science and engineering, 
solving these problems at scale often raises new research challenges 
because of sparsity and the lack of locality in the massive data, design of 
parallel algorithms for massive, streaming data analytics, and the need 
for new exascale supercomputers that are energy-efficient, resilient, and 
easy-to-program. 
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Center for Adaptive Supercomputing Software

• WyomingClerk, launched July 2008

• Pacific-Northwest Lab
– Georgia Tech, Sandia, WA State, Delaware

• The newest breed of supercomputers have hardware set up not just for 
speed, but also to better tackle large networks of seemingly random 
data. And now, a multi-institutional group of researchers has been 
awarded over $14 million to develop software for these supercomputers. 
Applications include anywhere complex webs of information can be 
found: from internet security and power grid stability to complex 
biological networks.
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CASS-MT  TASK 7: Analysis of Massive Social Networks

Objective
To design software for the analysis of massive-scale 
spatio-temporal interaction networks using 
multithreaded architectures such as the Cray XMT.  
The Center launched in July 2008 and is led by Pacific-
Northwest National Laboratory.

Description
We are designing and implementing advanced, 
scalable algorithms for static and dynamic graph 
analysis, including generalized k-betweenness 
centrality and dynamic clustering coefficients.

Highlights
On a 64-processor Cray XMT, k-betweenness centrality 
scales nearly linearly (58.4x) on a graph with 16M 
vertices and 134M edges.  Initial streaming clustering 
coefficients handle around 200k updates/sec on a 
similarly sized graph.

Our research is focusing on temporal analysis, 
answering questions about changes in global 
properties (e.g. diameter) as well as local structures 
(communities, paths).

Image Courtesy of Cray, Inc.

David A. Bader (CASS-MT Task 7 LEAD)
David Ediger, Karl Jiang, Jason Riedy
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Exascale Streaming Data Analytics:
Real-world challenges

All involve analyzing massive 
streaming complex networks:
• Health care  disease spread, detection 

and prevention of epidemics/pandemics 
(e.g. SARS, Avian flu, H1N1 “swine” flu)

• Massive social networks 
understanding communities, intentions, 
population dynamics, pandemic spread, 
transportation and evacuation

• Intelligence  business analytics, 
anomaly detection, security, knowledge 
discovery from massive data sets

• Systems Biology  understanding 
complex life systems, drug design, 
microbial research, unravel the mysteries 
of the HIV virus; understand life, disease,

• Electric Power Grid  communication, 
transportation, energy, water, food supply

• Modeling and Simulation  Perform full-
scale economic-social-political 
simulations
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Million Users

Exponential growth:
More than 500 million active users

Sample queries: 
Allegiance switching: 
identify entities that switch 
communities.
Community structure:
identify the genesis and 
dissipation of communities
Phase change: identify 
significant change in the 
network structure

REQUIRES PREDICTING / INFLUENCE CHANGE IN REAL-TIME  AT SCALE

Ex: discovered minimal 
changes in O(billions)-size 
complex network that could 
hide or reveal top influencers  
in the community
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Open Questions: Algorithmic Kernels for 
Spatio-Temporal Interaction Graphs and Networks (STING)

• Traditional graph theory:
– Graph traversal (e.g. breadth-first search)
– S-T connectivity
– Single-source shortest paths
– All-pairs shortest paths
– Spanning Tree
– Connected Components
– Biconnected Components
– Subgraph isomorphism (pattern matching)
– ….

David A. Bader 7



Hierarchy of Interesting Graph Analytics

Extend single-shot graph queries to include time.
Are there s-t paths between time T1 and T2?
What are the important vertices at time T?

Use persistent queries to monitor properties.
Does the path between s and t shorten drastically?
Is some vertex suddenly very central?

Extend persistent queries to fully dynamic properties.
Does a small community stay independent rather than merge with 
larger groups?
When does a vertex jump between communities?

New types of queries, new challenges...
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Graph Analytics for Social Networks

• Are there new graph techniques? Do they parallelize? 
Can the computational systems (algorithms, 
machines) handle massive networks with millions to 
billions of individuals?  Can the techniques tolerate 
noisy data, massive data, streaming data, etc. …

• Communities may overlap, exhibit different 
properties and sizes, and be driven by different 
models
– Detect communities (static or emerging)
– Identify important individuals
– Detect anomalous behavior
– Given a community, find a representative 

member of the community
– Given a set of individuals, find the best 

community that includes them
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Open Questions for Massive Analytic Applications

• How do we diagnose the health of streaming systems?
• Are there new analytics for massive spatio-temporal interaction 

networks and graphs (STING)?
• Do current methods scale up from thousands to millions and 

billions?
• How do I model massive, streaming data streams?
• Are algorithms resilient to noisy data? 
• How do I visualize a STING with O(1M) entities? O(1B)?  O(100B)? 

with scale-free power law distribution of vertex degrees and 
diameter =6 …

• Can accelerators aid in processing streaming graph data?
• How do we leverage the benefits of multiple architectures (e.g. 

map-reduce clouds, and massively multithreaded architectures) in 
a single platform?
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Limitations of Current Analysis and Viz Tools

Graphs with millions of vertices are well beyond simple 
comprehension or visualization: we need tools to 
summarize the graphs.
Existing tools: UCINet, Pajek, SocNetV, tnet
Limitations:

Target workstations, limited in memory
No parallelism, limited in performance.
Scale only to low density graphs with a few million vertices

We need a package that will easily accommodate graphs 
with several billion vertices and deliver results in a timely 
manner.

Need parallelism both for computational speed and memory!
The Cray XMT is a natural fit...
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Architectural Requirements for
the Efficient Graph Analysis (Challenges)

• Runtime is dominated by latency
– Random accesses to global address space
– Perhaps many at once

• Essentially no computation to hide memory 
costs

• Access pattern is data dependent
– Prefetching unlikely to help
– Usually only want small part of cache line

• Potentially abysmal locality at all levels of 
memory hierarchy
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Architectural Requirements for
the Efficient Graph Analysis (Desired Features)

• A large memory capacity
- Low latency / high bandwidth

– For small messages!
• Latency tolerant
• Light-weight synchronization mechanisms
• Global address space

– No graph partitioning required
– Avoid memory-consuming profusion of ghost-nodes
– No local/global numbering conversions

13



The Cray XMT 

• Tolerates latency by massive multithreading
– Hardware support for 128 threads on each processor
– Globally hashed address space
– No data cache 
– Single cycle context switch
– Multiple outstanding memory requests

• Support for fine-grained, 
• word-level synchronization

– Full/empty bit associated with every 
• memory word

• Flexibly supports dynamic load balancing

• GraphCT currently tested on a 128 processor XMT: 16K threads

– 1 TB of globally shared memory

•  PilgrimShadow, SundryMaximal

David A. Bader 14
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XMT ThreadStorm Processor (logical view)
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XMT ThreadStorm System (logical view)
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What is not important on XMT

• Placing data near computation
• Modifying shared data
• Accessing data in order
• Using indirection or linked data-structures
• Partitioning program into independent, 

balanced computations
• Using adaptive or dynamic computations
• Minimizing synchronization operations
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 Shared memory
Some memory can be reserved as local memory at boot time
Only compiler and runtime system have access to local memory

 Memory module cache
Decreases latency and increases bandwidth
No coherency issues

 8 word data segments randomly distributed across the memory system
Eliminates stride sensitivity and hotspots
Makes programming for data locality impossible
Segment moves to cache, but only word moves to processor

 Full/empty bits on all data words

XMT memory

tag bits data values

063
forward
trap 1
trap 2
full-empty

Slide Credit: Cray, Inc.
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Graph Analysis Performance:
Multithreaded (Cray XMT) vs. Cache-based multicore

• SSCA#2 network, SCALE 24 (16.77 million vertices 
and 134.21 million edges.)
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STREAMING DATA ANALYSIS

20David A. Bader



Current Unserved Applications

• Separate the “good” from the “bad”
– Spam. Frauds. Irregularities.
– Pick news from world-wide events tailored to interests as the 

events & interests change.
• Identify and track changes

– Disease outbreaks. Social trends. Utility & service changes 
during weather events.

• Discover new relationships
– Similarities in scientific publications.

• Predict upcoming events
– Present advertisements before a user searches.

Shared features: Relationships are abstract. Physical locality is only 
one aspect, unlike physical simulation.
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Streaming Data Characteristics

• The data expresses unknown (i.e.
unpredictable) relationships.
– The relationships are not necessarily bound by or 

related to physical proximity.
– Arranging data for storage locality often is 

equivalent to the desired analysis.
– There may be temporal proximity... That is a 

question we want to answer!
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Streaming Data Characteristics

• The data expresses relationships partially.
– Personal friendship is not the same as on-line 

“friendship.”
– Streams often are lossy or contain errors.

•Real links may be dropped, false links added.
•Time synchronization is difficult.

– Need to determine error models...

23David A. Bader



STING Extensible Representation (STINGER)

• Enhanced representation developed for dynamic graphs developed in 
consultation with David A. Bader, Johnathan Berry, Adam Amos-Binks, Daniel 
Chavarría-Miranda, Charles Hastings, Kamesh Madduri, and Steven C. Poulos.

• Design goals:
– Be useful for the entire “large graph” community
– Portable semantics and high-level optimizations across multiple platforms & 

frameworks (XMT C, MTGL, etc.)
– Permit good performance: No single structure is optimal for all.
– Assume globally addressable memory access
– Support multiple, parallel readers and a single writer

• Operations:
– Insert/update & delete both vertices & edges
– Aging-off: Remove old edges (by timestamp)
– Serialization to support checkpointing, etc.

David A. Bader 24



STING Extensible Representation

• Semi-dense 
edge list blocks 
with free space

• Compactly 
stores 
timestamps, 
types, weights

• Maps from 
application IDs 
to storage IDs

• Deletion by 
negating IDs, 
separate 
compaction
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STINGER

• Georgia Tech implementation runs in parallel 
on Cray XMT and OpenMP/multicore desktop

• Shows little or no performance overhead for 
many kernels

• Recent publication using STINGER:
– David Ediger, Karl Jiang, Jason Riedy, and David A. Bader,  

“Massive Streaming Data Analytics: A Case Study with 
Clustering Coefficients.” MTAAP, Atlanta, GA, 2010.

– Demonstrates good performance for small graphs on Intel 
Nehalem and large streaming datasets on the Cray XMT
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STINGER: Extending the Hybrid

Many applications need different kinds of relationships / edges. The hybrid 
approach can accommodate those by separating different kinds' edge arrays. 
An additional level of indirection permits fast access by source vertex or edge 
type. 

D. Bader, J. Berry, A. Amos-Binks, D. Chavarría-Miranda, C. Hastings, K. Madduri, S. Poulos, "STINGER: Spatio-Temporal 
Interaction Networks and Graphs (STING) Extensible Representation"
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STINGER: Edge Insertion
Insertion (best case): From the source vertex, skip to the edge type, then search 
for a hole.

Worst case: Allocate a new block and add to the list...
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STINGER: Edge Removal
Removal: Find the edge. Remove by negating the adj. vertex. Atomic store.

If insertion sets the adj. vertex > 0 after other updates, insertion will appear atomic.
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TRACKING CLUSTERING 
COEFFICIENTS
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Case Study: Clustering Coefficients
 Used as a measure of “small-worldness.”

 Larger clustering coefficient → more inter-related
 Roughly, the ratio of actual triangles to possible triangles 

around a vertex.
 Defined in terms of triplets.
 i-j-v is a closed triplet (triangle).
 m-v-n is an open triplet.
 Clustering coefficient

# closed triplets / # all triplets
 Locally, count around v.
 Globally, count across entire graph.

 Multiple counting cancels (3/3=1)
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Streaming updates to clustering coefficients
Monitoring clustering coefficients could identify anomalies, 
find forming communities, etc.
Computations stay local.  A change to edge <u, v> affects 
only vertices u, v, and their neighbors.

Need a fast method for updating the triangle counts, 
degrees when an edge is inserted or deleted.

Dynamic data structure for edges & degrees: STINGER
Rapid triangle count update algorithms: exact and approximate

“Massive Streaming Data Analytics: A Case Study with Clustering Coefficients.” Ediger, 
David, Karl Jiang, E. Jason Riedy, and David A. Bader. MTAAP 2010, Atlanta, GA, April 
2010.

u v-1 -1

-1
-1
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Batching Graph Changes
 Individual graph changes for local properties will not expose 

much parallelism.  Need to consider many actions at once 
for performance.

 Conveniently, batches of actions also amortize transfer 
overhead from the data source.
 Common paradigm in network servers (c.f. SEDA: Staged Event-

Driven Arch.)

 Even more conveniently, clustering coefficients lend 
themselves to batches.
 Final result independent of action ordering between edges.

 Can reconcile all actions on a single edge within the batch.
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Updating Triplet Counts

Consider a starting graph:
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Updating Triplet Counts

Insert two edges (green):
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Updating Triplet Counts

Consider adjacent vertices (green boxes):

The open triplet count is a function only of degree.  Update the 
local open triplet count for each green boxed vertex.

36David A. Bader



Updating Triplet Counts

Now examine all vertices adjacent to those:
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Updating Triplet Counts
Prune consideration to vertices adjacent to two newly 
attached vertices (red boxes):

 Being adjacent to two newly joined edges is necessary for being part of a 
new closed triple (triangle) although not sufficient.
 From each red boxed vertex, search for a new edge opposite it. Only need 
to search the red edges.
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Updating Triplet Counts
Update closed triplet (triangle) counts for found triangles 
(blue boxes):

 Note: Only accessed edges adjacent to the newly inserted edges.  
Batching reduces work over individual actions.
 Glossed over cases (two, three new edges in triangle); none need extra 
searches.
 Technique also handles edge removal.
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Updating clustering coefficients
Using RMAT as a graph and edge stream generator. 

16M vertices, 537M initial

Mix of insertions and deletions

Result summary for single actions
– Exact: from 8 to 618 actions/second
– Approx: from 11 to 640 actions/second

Alternative: Batch changes
– Lose some temporal resolution within the batch
– Median rates for batches of size B:

Approx: Summarizes adj. structure with a Bloom filter, 100% accuracy in this test.

STINGER overhead is minimal; most time in spent metric.

Algorithm B = 1 B = 1000 B = 4000

Exact 90 25 100 50 100

Approx. 60 83 700 193 300
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TRACKING CONNECTED 
COMPONENTS
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Tracking connected components

Goals:
Given a graph and a sequence of many 
edge insertions and fewer removals, 
track the components.
Provide component membership 
information for many other kernels, 
including diameter, searches, etc.
Evaluate STINGER's efficiency on the 
XMT.
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Adapting for STINGER: Original static code

while (!is_empty(stack, &top)) {
int64_t k, myStart, myEnd;
u = pop(stack, &top);
myStart = off[u];
myEnd = off[u+1];
for (k = myStart; k < myEnd; k++) {

v = ind[k];
if (int_fetch_add(marks + v, 1) == 0) {

d[v] = my_root;
push(v, stack, &top);

} else {
if (!(d[v]==d[my_root])) {

int64_t t = int_fetch_add(&cross_count, 1);
crossU[t] = u;
crossV[t] = v;

} } } }

ind[] : end vertex array
off[] : vertex offset into ind[]

Leveraging GraphCT base...
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Adapting for STINGER: static connected components

while (!is_empty(stack, &top)) {

int64_t k, myStart, myEnd;

size_t md;
u = pop(stack, &top);

deg_u = stinger_outdegree(S, u);
myStart = stinger_int64_fetch_add(&head, deg_u);
myEnd = myStart + deg_u;
stinger_gather_typed_successors(S, 0, u, &md, &neighbors[myStart], deg_u);
for (k = myStart; k < myEnd; k++) {

v = neighbors[k];
if (stinger_int64_fetch_add(marks + v, 1) == 0) {

d[v] = my_root;

push(v, stack, &top);

} else {

if (!(d[v]==d[my_root])) {

int64_t t = stinger_int64_fetch_add(&cross_count, 1);
crossU[t] = u;

crossV[t] = v;

} } } }

S : STINGER data structure
neighbors[] : pre-allocated buffer
head : end pointer into neighbors[]

Assuming a pre-allocated 
buffer, neighbors.
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Adapting for STINGER: static connected components

while (!is_empty(stack, &top)) {

int64_t k, myStart, myEnd;

size_t md;

u = pop(stack, &top);

deg_u = stinger_outdegree(S, u);

myStart = stinger_int64_fetch_add(&head, deg_u);

myEnd = myStart + deg_u;

stinger_gather_typed_successors(S, 0, u, &md, &neighbors[myStart], deg_u);

for (k = myStart; k < myEnd; k++) {

v = neighbors[k];

if (stinger_int64_fetch_add(marks + v, 1) == 0) {
d[v] = my_root;

push(v, stack, &top);

} else {

if (!(d[v]==d[my_root])) {

int64_t t = stinger_int64_fetch_add(&cross_count, 1);
crossU[t] = u;

crossV[t] = v;

} } } }

S : STINGER data structure
neighbors[] : pre-allocated buffer
head : end pointer into neighbors[]

Portable spelling for atomic 
operations.
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Adapting for STINGER: static connected components

while (!is_empty(stack, &top)) {

int64_t k, myStart, myEnd;

size_t md;
u = pop(stack, &top);

deg_u = stinger_outdegree(S, u);
myStart = stinger_int64_fetch_add(&head, deg_u);
myEnd = myStart + deg_u;
stinger_gather_typed_successors(S, 0, u, &md, &neighbors[myStart], deg_u);
for (k = myStart; k < myEnd; k++) {

v = neighbors[k];
if (stinger_int64_fetch_add(marks + v, 1) == 0) {

d[v] = my_root;

push(v, stack, &top);

} else {

if (!(d[v]==d[my_root])) {

int64_t t = stinger_int64_fetch_add(&cross_count, 1);

crossU[t] = u;

crossV[t] = v;

} } } }

S : STINGER data structure
neighbors[] : pre-allocated buffer
head : end pointer into neighbors[]

Copying neighbors isolates 
from dynamic changes.
Keeps compiler-optimizable 
loop structure.
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Tracking connected components

Assumptions:
Scale-free network: most changes are 
within one large component.
Edge additions: primarily merge small 
component into the one large 
component.
– Do not need access to graph...

Deletions: rarely disconnect 
components
– Needs static connected components 

algorithm to look for changes
– Heuristics may avoid the full run
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Tracking connected components

Edge addition (in batches):
Relabel batch of additions with 
component numbers.
Collapse the graph, removing self-
edges. Any edges that remain cross 
components.
Compute components of component ↔ 
component graph. Relabel smaller into 
larger.
Problem size reduces from number of 
changes to number of components
Proceeds concurrently with STINGER 
modification

David A. Bader



Tracking connected components

Edge deletion:
A single deletion in a batch will trigger 
static connected components
Heuristic: Accumulate n deletions 
before recomputation
Heuristic: Perform truncated breadth 
first search k steps away from each 
endpoint. Null intersection means 
recomputation.
Heuristic: Deleted edges that provably 
do not form triangles within a batch can 
be ignored. (In progress.)
Can tune heuristics for data

David A. Bader



From prior work, XMT can process ~100,000 updates/sec
Initial implementation: 1100 updates/sec

Execution time scaled with batch size – not good
Removed memory allocation & parallelized all loops

No observed change in performance
Instrumented 13 loops & function calls for timing
qsort(): majority of time & does not scale

• (Note: qsort is standard, programmers expect it to 
work reasonably well.)

Experimented with several parallel sorting algorithms
• While we have experience optimizing parallel sorting 

on the MTA, our current need requires a different 
sort.

Performance Tuning Case Study
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Two-valued sort of edges:  1st by source, then by 
destination
Expecting 1,000 to 100,000 pairs (power law distribution)
Recursive quicksort with futures

Not enough parallelism
Sandia merge sort

Single batch is too small to take advantage
Fastest:  Bucket sort by source, then concurrent qsort()s

~30 lines of code
Parallel loops, linear recurrences, reductions

Result: improved from 1.1K updates/sec to 150K upd./sec

Sorting edges for batching

David A. Bader



Experimental Results: Connected components

Synthetic, Power Law Input:  16M vertices, 135M edges
16 proc. on the Cray XMT (20 batches of 50,000) 6.25% 

deletions

*Threshold recomputes static connected components after 
50,000 deletes are accumulated

Updates / sec
Edge adds only 77,600
Edge adds + STINGER 54,000
Adds + Deletes + STINGER 5,900
Threshold 50K deletes* 46,500
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Experimental Results on Intel Nehalem-EP

Synthetic, Power Law Input:  1M vertices, 8M edges 
(SMALL)

16 threads (batches of 1) 6.25% deletions

*Performs breadth first search 5 steps from source and 
destination and recomputes when intersection is null. 
Note that the graph is very sparse, diameter much larger 
than 5.

Updates / sec
Edge adds only 2,770,000
Edge adds + STINGER 537,000
Adds + Deletes + STINGER 397,000
Truncated BFS-5* 440,000
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Static code easy to convert
Maximum graph size reduced by ~16x

1 TB Cray XMT:  268M vertices  16M vertices
12 GB Intel: 16M vertices  1M vertices
Metadata & block overheads

•Blocks sized to store >100 edges, these examples 
have average <10 per vertex.
•Reduction of these overheads in progress.

With large batch sizes, running static connected 
components on XMT faster than many parallel truncated 
breadth first searches (heuristic)

STINGER findings

David A. Bader



PARALLEL GRAPH FRAMEWORKS
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Parallel Graph Frameworks
• SNAP

– Georgia Tech, Bader/Madduri

• Parallel Boost Graph Library
– Indiana, Lumsdaine

• MultiThreaded Graph Library (MTGL)
– Sandia, Berry

• GraphCT
– Georgia Tech, Ediger, Riedy, Jiang, Bader

• STINGER
– Georgia Tech, Bader, Riedy, Ediger, Jiang
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SNAP: Small-world Network Analysis and Partitioning

snap-graph.sourceforge.net

• New parallel framework for small-world network analysis
• 10-100x faster than existing approaches
• Can process graphs with billions of vertices and edges
• Open-source
• [Bader/Madduri]

Image Source: visualcomplexity.com

57David A. Bader



Parallel Boost Graph Library

• C++ library for parallel & distributed graph 
computations

• Provides similar data structures and 
algorithms as sequential Boost Graph Library

• Developed by Indiana University in 2005
• Scales up to 100 processors for some 

algorithms on ideal graphs
– see earlier slide on PBGL performance
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Multithreaded Graph Library (MTGL)

• Under development at Sandia National Labs
• Primitives for “visiting” a vertex

– Get data about the vertex
– Retrieve a list of all adjacencies

• Abstract connector to graph representation
• Tailored for Cray XMT, but portable to multicore

using Qthreads
• Programmer must still understand code that is 

generated in order to get good performance on 
the XMT
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GraphCT (Georgia Tech)

Graph Characterization Toolkit

Efficiently summarizes and analyzes static graph data

Built for large multithreaded, shared memory machines like 
the Cray XMT

Increases productivity by decreasing programming 
complexity

Classic metrics & state-of-the-art kernels 

Works on many types of graphs
directed or undirected
weighted or unweighted
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Dynamic spatio-temporal graph



Key Features of GraphCT

Low-level primitives to high-level analytic kernels
Common graph data structure
Develop custom reports by mixing and matching functions
Create subgraphs for more in-depth analysis
Kernels are tuned to maximize scaling and performance (up 
to 128 processors) on the Cray XMT
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Load the Graph Data Find Connected Components Run k-Betweenness Centrality
on the largest component



GraphCT: Example Script
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read dimacs patents.txt => binary_pat.bin
print diameter 10
save graph
extract component 1 => component1.bin
print degrees
kcentrality 1 256 => k1scores.txt
kcentrality 2 256 => k2scores.txt
restore graph
extract component 2
print degrees



GraphCT Functions
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Name

RMAT graph generator

Degree distribution statistics

Graph diameter

Maximum weight edges

Connected components

Component distribution statistics

Vertex Betweenness Centrality

Vertex k-Betweenness Centrality

Multithreaded BFS

Edge-divisive Betweenness-based Community 
Detection (pBD)

Lightweight Binary Graph I/O

Name

Modularity Score

Conductance Score

st-Connectivity

Delta-stepping SSSP

Bellman-Ford

GTriad Census

SSCA2 Kernel 3 Subgraphs

Greedy Agglomerative Clustering

Minimum spanning forest

Clustering coefficients

DIMACS Text Input

Key

Included

In Progress

Proposed/Available



Scalability of k-Betweenness Centrality in GraphCT

• 58x speed-up on 64 
processor XMT

• Synthetic power-law 
graph with 16M 
vertices & 135M 
edges

• Able to run 20 
breadth-first 
searches in parallel
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Clustering Coefficients in GraphCT

• A measure of the 
connectivity of the 
network

• Used in the definition 
of “small world”

• 51x speed-up on 64 
processor XMT

• Total time: 22 secs for 
16M vertices
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MOTIVATION:
NETWORK ANALYSIS
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Routing in transportation networks

Road networks, Point-to-point shortest paths: 15 seconds (naïve)  10 microseconds

H. Bast et al., “Fast Routing in Road Networks with Transit Nodes”, Science 27, 2007.

72David A. Bader



Internet and the WWW

• The world-wide web can be represented as a directed graph
– Web search and crawl: traversal
– Link analysis, ranking: Page rank and HITS
– Document classification and clustering

• Internet topologies (router networks) are naturally modeled
as graphs
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“Google, Citing Attack, Threatens to Exit China”

• This article was reported by Andrew Jacobs, Miguel Helft and John Markoff and written by Mr. Jacobs.

• BEIJING — Google said Tuesday that it would stop 
cooperating with Chinese Internet censorship and 
consider shutting down its operations in the country 
altogether, citing assaults from hackers on its 
computer systems and China’s attempts to “limit 
free speech on the Web.”
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“95% of User Generated Content is spam or malicious”

• Covering the last six months of 2009, the report is based upon the findings of 
the ThreatSeeker Network which is used to discover, classify and monitor global 
Internet threats and trends courtesy of something called the Internet HoneyGrid.

• Scanned 40M sites, 10M email messages 
– 13.7% of searches for trending news/buzz words (as defined by Yahoo Buzz & Google Trends) led 

to malware.
– 71% of Web sites with malicious code are legitimate sites that have been compromised.
– 95% of user-generated posts on Web sites are spam or malicious.
– Consistent with previous years, 51% of malware still connects to host Web sites registered in the 

United States.
– China remains second most popular malware hosting country with 17%, but during the last six 

months Spain jumped into the third place with 15.7% despite never having been in the top 5 
countries before.

– 81% of emails during the second half of the year contained a malicious link.
– 85.8% of all emails were spam.
– 35% of malicious Web-based attacks included data-stealing code.
– 58% of all data-stealing attacks are conducted over the Web. 
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Scientific Computing
• Reorderings for sparse solvers

– Fill reducing orderings
• partitioning, traversals, eigenvectors

– Heavy diagonal to reduce pivoting (matching) 

• Data structures for efficient exploitation 
of sparsity

• Derivative computations for optimization
– Matroids, graph colorings, spanning trees

• Preconditioning
– Incomplete Factorizations
– Partitioning for domain decomposition
– Graph techniques in algebraic multigrid

• Independent sets, matchings, etc.
– Support Theory

• Spanning trees & graph embedding techniques
B. Hendrickson, “Graphs and HPC: Lessons for Future Architectures”,
http://www.er.doe.gov/ascr/ascac/Meetings/Oct08/Hendrickson%20ASCAC.pdf
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Informatics Graphs are Even Tougher

• Very different from graphs in scientific computing!
– Graphs can be enormous
– Power-law distribution of the number of neighbors
– Small world property – no long paths
– Very limited locality, not partitionable
– Highly unstructured
– Edges and vertices have types

• Experience in scientific computing applications 
provides only limited insight.

Six degrees of Kevin Bacon
Source: Seokhee Hong
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Graphs are pervasive in large-scale data analysis

• Sources of massive data: petascale simulations, experimental devices, 
the Internet, scientific applications.

• New challenges for analysis: data sizes, heterogeneity, uncertainty, data 
quality.

Astrophysics 
Problem: Outlier detection. 
Challenges: massive datasets, 
temporal variations.
Graph problems: clustering, 
matching. 

Bioinformatics
Problem: Identifying drug target 
proteins.
Challenges: Data heterogeneity, 
quality.
Graph problems: centrality, 
clustering.

Social Informatics
Problem: Discover emergent 
communities, model spread of 
information.
Challenges: new analytics routines, 
uncertainty in data.
Graph problems: clustering, 
shortest paths, flows. 

Image sources: (1) http://physics.nmt.edu/images/astro/hst_starfield.jpg
(2,3) www.visualComplexity.com
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Data Analysis and Graph Algorithms in Systems Biology

• Study of the interactions 
between  various components 
in a biological system

• Graph-theoretic formulations 
are pervasive:
– Predicting new interactions: 

modeling
– Functional annotation of novel 

proteins: matching, clustering
– Identifying metabolic pathways: 

paths, clustering
– Identifying new protein 

complexes: clustering, centrality
Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”, 
Science 302, 1722-1736, 2003.
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Image Source: Nexus (Facebook application)

Graph –theoretic problems in social networks

– Community identification: clustering
– Targeted advertising: centrality
– Information spreading: modeling
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Network Analysis for Intelligence and Survelliance

• [Krebs ’04] Post 9/11 Terrorist 
Network Analysis from public domain 
information

• Plot masterminds correctly identified 
from interaction patterns: centrality

• A global view of entities is often more 
insightful

• Detect anomalous activities by 
exact/approximate graph matching

Image Source: http://www.orgnet.com/hijackers.html

Image Source: T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies 
for intelligence analysis, CACM, 47 (3, March 2004): pp 45-47
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Characterizing Graph-theoretic computations

• graph sparsity (m/n ratio)
• static/dynamic nature
• weighted/unweighted, weight 
distribution
• vertex degree distribution
• directed/undirected
• simple/multi/hyper graph
• problem size
• granularity of computation at 
nodes/edges
• domain-specific characteristics

• paths
• clusters
• partitions
• matchings
• patterns
• orderings

Input: Graph 
abstraction

Problem: Find ***

Factors that influence 
choice of algorithmGraph 

algorithms

• traversal
• shortest path 
algorithms
• flow algorithms
• spanning tree 
algorithms
• topological sort
…..

Graph problems are often recast as sparse 
linear algebra (e.g., partitioning) or linear 
programming (e.g., matching) computations 
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Massive data analytics in Informatics networks

• Graphs arising in Informatics are very different from 
topologies in scientific computing.

• We need new data representations and parallel algorithms
that exploit topological characteristics of informatics 
networks.

Emerging applications: dynamic, 
high-dimensional data

Static networks, 
Euclidean topologies
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What we’d like to infer from Information networks

• What are the degree distributions, clustering coefficients, diameters, 
etc.?

– Heavy-tailed, small-world, expander, geometry+rewiring, local-global decompositions, 
...

• How do networks grow, evolve, respond to perturbations, etc.?
– Preferential attachment, copying, HOT, shrinking diameters, ..

• Are there natural clusters, communities, partitions, etc.?
– Concept-based clusters, link-based clusters, density-based clusters, ...

• How do dynamic processes – search, diffusion, etc. – behave on 
networks?

– Decentralized search, undirected diffusion, cascading epidemics, ...

• How best to do learning, e.g., classification, regression, ranking, etc.?
– Information retrieval, machine learning, ...

Slide credit: Michael Mahoney, Stanford
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The Big Picture

Analyst makes
queries.

Mongo
Databases

Fast
Graph
Query

Extract “Window”Extract “Window”

High Latency Query

Graph resides in memory 
of supercomputer.
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Graph Analysis

• Irregularly traversing large (multi-billion vertices with 
up to a trillion edges) graph data.
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ALGORITHMS:
SOCIAL NETWORK ANALYSIS 
(CENTRALITY)
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• Centrality: Quantitative measure to capture the importance 
of a vertex/edge in a graph.

– Application-specific: can be based on degree, paths, flows, eigenvectors, …

Finding “central” entities is a key graph analytics routine

Intelligence 
Problem: Unraveling terrorist 
networks.

Bioinformatics
Problem: Identifying drug target 
proteins, metabolic pathways.

Online Social networks
Problem: Discover emergent 
communities, identify influential 
people.

Image Source: Giot et al., “A Protein Interaction Map of Drosophila melanogaster”, 
Science 302, 1722-1736, 2003.

Image Source: http://www.orgnet.com/hijackers.html

US power transmission grid
Problem: Contingency analysis
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Centrality in Massive Social Network Analysis

• Centrality metrics: Quantitative measures to capture the importance of 
person in a social network

– Betweenness is a global index related to shortest paths that traverse 
through the person

– Can be used for community detection as well

• Identifying central nodes in large complex networks is the key metric in a 
number of applications:
– Biological networks, protein-protein interactions
– Sexual networks and AIDS
– Identifying key actors in terrorist networks
– Organizational behavior
– Supply chain management
– Transportation networks

• Current Social Network Analysis (SNA) packages handle 1,000’s of entities, our 
techniques handle BILLIONS (6+ orders of magnitude larger data sets)
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Betweenness Centrality (BC)

• Key metric in social network analysis
[Freeman ’77, Goh ’02, Newman ’03, Brandes ’03]

• : Number of shortest paths between vertices s and t
• : Number of shortest paths between vertices s and t 

passing through v

• Exact BC is compute-intensive
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BC Algorithms

• Brandes [2003] proposed a faster sequential algorithm for BC on sparse 
graphs

– time and          space for weighted graphs
– time for unweighted graphs

• We designed and implemented the first parallel algorithm:
– [Bader, Madduri; ICPP 2006]

• Approximating Betweenness Centrality
[Bader Kintali Madduri Mihail 2007]

– Novel approximation algorithm for determining  the
betweenness of a specific vertex or edge in a graph

– Adaptive in the number of samples
– Empirical result: At least 20X speedup over exact BC

)(nO)log( 2 nnmnO 

)(mnO
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Graph: 4K vertices and 32K edges,
System: Sun Fire T2000 (Niagara 1)



IMDB Movie Actor Network (Approx BC)
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Fine-grained Parallel BC Algorithm

• Consider an undirected, unweighted graph
• High-level idea: Level-synchronous parallel Breadth-

First Search augmented to compute centrality 
scores

• Exact BC computation
– n source vertices (iterations)
– Each iteration:

• traversal and path counting
• dependency accumulation
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1. Traversal and path counting

2. Dependency accumulation
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Illustration of Parallel BC (pBC-Old)

1. Traversal step: visit adjacent vertices, update distance
and path counts. 
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Step 1 (traversal) Illustration

1. Traversal step: visit adjacent vertices, update distance
and path counts. 
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Step 1 Illustration

1. Traversal step: visit adjacent vertices, update distance
and path counts. 
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Step 1 Illustration

1. Traversal step: at the end, we have all reachable vertices,
their corresponding predecessor multisets, and D values. 
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Step 1 pBC-Old pseudo-code

for all vertices u at level d in parallel do
for all adjacencies v of u in parallel do

dv = D[v];
if (dv < 0) // v is visited for the first time

vis = fetch_and_add(&Visited[v], 1);
if (vis == 0)  // v is added to a stack only once

D[v] = d+1;
pS[count++] = v; // Add v to local thread stack

fetch_and_add(&sigma[v], sigma[u]); 
fetch_and_add(&Pcount[v], 1); // Add u to predecessor list of v

if (dv == d + 1)
fetch_and_add(&sigma[v], sigma[u]);
fetch_and_add(&Pcount[v], 1); // Add u to predecessor list of v

v
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• Exploit concurrency in exploration of current frontier and 
visiting adjacencies, as the graph diameter is low: O(log n) or 
O(1).

• Potential performance bottlenecks: atomic updates to 
predecessor multisets, atomic increments of path counts

• New contribution: Data structure change to eliminate 
storage of “predecessor” multisets. We store successor 
edges along shortest paths instead.
– simplifies the accumulation step
– Eliminates two atomic operations in traversal step
– cache-friendly!

Step 1 analysis
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1 9

pBC-LockFree change in data representation
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Step 1 pBC-LockFree Locality Analysis
for all vertices u at level d in parallel do

for all adjacencies v of u do
dv = D[v];
if (dv < 0)

vis = fetch_and_add(&Visited[v], 1);
if (vis == 0)

D[v] = d+1;
pS[count++] = v; 

fetch_and_add(&sigma[v], sigma[u]); 
Scount[u]++; 

if (dv == d + 1)
fetch_and_add(&sigma[v], sigma[u]);
Scount[u]++; 

All the vertices are in a 
contiguous block (stack)

All the adjacencies of a vertex are 
stored compactly (graph rep.)

Indicates store to S[u]

Non-contiguous 
memory access

Non-contiguous 
memory access

Non-contiguous 
memory access

Store D[v], Visited[v], sigma[v] contiguously for 
better cache locality.
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Step 2 Dependence Accumulation Illustration

2. Accumulation step: Pop vertices from stack, 
update dependence scores. 
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Step 2 Dependence Accumulation Illustration

2. Accumulation step: Can also be done in a 
level-synchronous manner.
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Step 2 pBC-Old pseudo-code

for level d = GraphDiameter to 2 do
for all vertices w at level d in parallel do

for all v in P[w] do
acquire_lock(v);

delta[v] = delta[v] + (1 + delta[w]) * sigma(v)/sigma(w);
release_lock(v);

BC[v] = delta[v]
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Step 2 pBC-LockFree

for level d = GraphDiameter-2 to 1 do
for all vertices v at level d in parallel do

for all w in S[v] in parallel do reduction(delta)
delta_sum_v = delta[v] + (1 + delta[w]) * sigma[v]/sigma[w];

BC[v] = delta[v] = delta_sum_v;
Only floating point 
operations in code

No atomic operation, 
reduction instead
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• Low graph diameter.
– Key source of concurrency in graph traversal.

• Skewed (“power law”) degree distribution of the 
number of neighbors.
– Inner loop easier to parallelize after elimination of 

successor multisets. Preprocess for balanced 
partitioning of work among processors/threads.

– High-degree vertices can be processed in parallel, 
separately.

• Dynamic network abstractions, from diverse data 
sources; massive networks (billions of entities).
– Data representations and structures are space-

efficient, support edge attributes, and fast parallel 
insertions and deletions.

New parallel BC algorithm works well 
for massive “small-world” networks

Low graph diameter

Skewed degree distribution
Human Protein Interaction Network

(18669 proteins, 43568 interactions) 
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• Latency tolerance by massive 
multithreading

– hardware support for 128 threads on each 
processor

– Globally hashed address space
– No data cache 
– Single cycle context switch
– Multiple outstanding memory requests

• Support for fine-grained, 
word-level synchronization

• 16 x 500 MHz processors, 128 GB RAM

Performance Results: Experimental Setup
Cray XMT DARPA HPCS SSCA#2 

Graph Analysis benchmark
• Representative of graph-theoretic 

computations in real-world networks.
http://www.graphanalysis.org

• Approximate betweenness centrality is a 
key kernel.

• Synthetic R-MAT networks generated 
based on Kronecker products. 

• Performance measure: Traversed edges 
per second (TEPS) rate.

IMDb actors network
• Real-world social network constructed 

from IMDb data.
• Undirected network: 1.54 million vertices

(actors) and 78 million edges (edge  two 
actors co-starring in a movie).

ndedges/seco  27 rate TEPS BC
4

t
n ApproxK


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• Synthetic network with 16.77 million vertices and 134.21 million edges 
(SCALE 24), K4Approx = 8.

Cray XMT Parallel Performance
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Speedup of 10.43 
on 16 processors.
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• SSCA#2 networks, n = 2SCALE and m = 8n.

Cray XMT Performance vs. Problem size

SSCA#2 problem SCALE (Log2 # of vertices) 
18 19 20 21 22 23 24 25 26 27 28
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SCALE > 24.
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• SSCA#2 network, SCALE 24 (16.77 million vertices and 134.21 million 
edges.)

Performance compared to previous algorithm

Parallel Algorithm
ICPP06 (Old) MTAAP09 (New)
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previous approach.
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• Undirected network of 1.54 million vertices and 78 million edges, 256 
randomly selected source vertices.

Appoximate BC on the IMDb network

Low-degree vertices exhibit high 
variance in centrality scores.

Parallel System
XMT (16p) Intel Xeon (4p)
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16-proc Cray XMT is 4.75x faster than
a 2.8 GHz quad-core Intel Xeon system.
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• Implicit communities in large-scale 
networks are of interest in many 
cases.
– WWW
– Social networks
– Biological networks

• Formulated as a graph clustering
problem.
– Informally, identify/extract “dense” 

sub-graphs.
• Several different objective 

functions exist.
– Metrics based on intra-cluster vs. inter-

cluster edges, community sizes, number 
of communities, overlap …

• Highly studied research problem
– 100s of papers yearly in CS, Social 

Sciences, Physics, Comp. Biology, Applied 
Math journals and conferences. 

Community Identification
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Related Work: Partitioning Algorithms 
from Scientific Computing

• Theoretical and empirical evidence: existing techniques 
perform poorly on small-world networks

• [Mihail, Papadimitriou ’02] Spectral properties of power-law 
graphs are skewed in favor of high-degree vertices

• [Lang ’04] On using spectral techniques, “Cut quality varies 
inversely with cut balance” in social graphs: Yahoo! IM 
graph, DBLP collaborations

• [Abou-Rjeili, Karypis ’06] Multilevel partitioning heuristics 
give large edge-cut for small-world networks, new coarsening 
schemes necessary
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• Measure based on optimizing inter-cluster density over intra-cluster 
sparsity.

• For a weighted, directed network with vertices partitioned into non-
overlapping clusters, modularity is defined as

• If a particular clustering has no more intra-cluster edges than would be 
expected by random chance, Q=0. Values greater than 0.3 typically 
indicate community structure.

• Maximizing modularity is NP-complete.

Modularity: A popular optimization metric
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For an unweighted and undirected network, modularity is
given by

and in terms of clusters/modules, it is equivalently

Modularity
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• New parallel algorithms for modularity-optimizing community 
identification.
– Divisive: edge betweenness-based, spectral
– Agglomerative
– Hybrid, multi-level

• Several algorithmic optimizations for small-world networks.
• Analysis of large-scale complex networks constructed from 

real data.
• Note: No single “right” community detection algorithm exists. 

Community structure analysis should be user-driven and 
application-specific, combining various fast algorithms.

Our Contributions
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• Top-down approach: Start with entire network as one 
community, recursively split the graph to yield smaller 
modules.

• Two popular methods:
– Edge-betweenness based: iteratively remove high-centrality edges.

• Centrality computation is the compute-intensive step, parallelize it.

– Spectral: apply recursive spectral bisection on the “modularity 
matrix” B, whose elements are defined as Bij = Aij – didj/2m. 
Modularity can be expressed in terms of B as:

• Parallelize the eigenvalue computation step (dominated by sparse 
matrix-vector products).

Divisive Clustering, Parallelization
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Faster Community Identification Algorithms: Performance 
Improvement over the Girvan-Newman (ref) approach

Graphs: Real-world networks (order of 
Millions), System: Sun Fire T2000

• Speedup from 
Algorithm Engineering 
(approximate BC) and 
parallelization (Sun 
Fire T2000) are 
multiplicative!

• 100-300X overall 
performance 
improvement over 
Girvan-Newman 
approach

Small-world Network
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• Bottom-up approach: Start with n singleton communities, 
iteratively merge pairs to form larger communities.
– What measure to minimize/maximize? modularity
– How do we order merges? priority queue

• Parallelization: perform multiple “independent” merges
simultaneously.

Agglomerative Clustering, 
Parallelization
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• Simulated annealing
• Extremal optimization
• Linear programming
• Statistical inference
• Spin models, random walks
• Clique percolation
• …

Other Community Identification Approaches
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• How would a memory-efficient, near linear-work 
greedy approach perform on real data?

• Helpful preprocessing steps
– 2-Core reduction of the graph

• High-percentage of degree-1 vertices in networks with 
exponential and power-law degree distributions.

– Filter very high-degree vertices (d > dH ≈ √n)
• Ambiguity on what cluster they belong to. 

Engineering a hybrid parallel community 
identification algorithm

3 4

1 1
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• Coarsen/sparsify graph
– Local search at vertices to identify dense components, 

completely relax priority queue constraint => abundant 
parallelism. 

– Future work: Identify network-specific motifs (bipartite 
cliques).

• Run greedy agglomerative approach once 
graph is less than size threshold.

Hybrid approaches: Parallelization

46 11

1
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ALGORITHMS:
K-BETWEENNESS CENTRALITY
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k-Betweenness Centrality, BCk

A new twist on betweenness centrality:
Count short paths in addition to shortest paths
Captures wider connectivity information

Applying BCk to a real data set:
How do the BC indices behave with increasing k?
Which vertices have zero scores?

(Directed and undirected graphs are different.)

Can we approximating by BCk random sampling?

Scalability on the Cray XMT with RMAT graphs 
(generated by sampling from a Kronecker product).
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k-Betweenness Centrality

Measure centrality of a vertex v by the number of paths 
passing through v between s and t relative to the number of 
paths connecting s and t.
High betweenness centrality (BC): many shortest paths
High k-betweenness centrality (BCk): many short paths

All paths no longer than the shortest + parameter k counted.
0-Betweenness centrality is simply betweenness centrality.
1-BC also counts paths one step longer than the shortest.

BCk captures more connectivity information with k.
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Betweenness Centrality

How important are v1 and v2?  Use betweenness centrality.
The betweenness centrality of v1, BC(v1):

Consider shortest paths between any two vertices s, t ≠ v1.
Sum over all such s, t: fraction of paths passing through v1

v1

v2
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BC: Need More Than the Shortest Path?

Consider the view from a particular vertex pair s, t.
Total of five paths, so the st contributions to v1, v2 = 1/5.
But there is more redundancy through v2, more nodes 
influence / are influenced by v2...

s t

v1

v2
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k-Betweenness Centrality: Shortest + k

Consider counting paths one longer than the shortest.
Nothing new through v1. Two new paths cross through v2!
k-Betweenness Centrality (BCk):

Consider paths within k of the shortest path. Above is BC1.
0-Betweenneess centrality is regular BC, BC0(v) = BC(v).

s t

v1

v2
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k-Betweenness: terms

• From any source vertex s, we 
can calculate the distance to 
any vertex v = d(s, v)

• Any forward edge vw has 
d(s,w) – d(s,v) = 1

• Otherwise it is a backward
edge.  Any path originating at s 
with a backward edge cannot 
be a shortest path

• The degree of inefficiency of a 
backward edge vw is given by 
x(v, w) = d(s,v) – d(s,w) +1

• Any path from s to t of length 
d(s, t) + k has edges with 
inefficiencies summing to k
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k-Betweenness algorithm (1/4)

• Let tau(s, t, i) be the number of paths from s to t of distance 
d(s, t) + i

• Calculate tau (s, t, i) for all t in graph G, and 0  i  k. This 
can be done in k+1 graph traversals

David A. Bader 130

s

v

w

tau(s, v, 0) = 3
x(v, w) = 1
contributes +3 to tau(s, w, 1)

When an edge v-w is forward, any path counted in 
tau(s, v, i) gets propagated as a path in tau(s, w, i).  
However if x(v, w) > 0, tau(s, v,  i) gets propagated to 
tau(s, w, i+x(v, w)).  Here, since 3 shortest paths exist 
between s and v, the red link contributes adds 3 k=1 
paths from s to w.



k-Betweenness algorithm (2/4)

• Dependency calculation is complicated for k-Betweenness, 
requires O(k2) accumulations

• Consider a path from s to t with total inefficiency x(s, t)=k.  
Consider a vertex v on that path.  Then x(s, v) + x(v, t)=k

• Define the i,k-dependency of s on v with head-distribution h 
= delta(s, i, k, v, h) = the sum, over vertices t, of ratios y/z
where z is the number of paths from s to t of length  d(s, t) 
+ k and y is the number of paths that:
– go from s to t, through v
– are of length d(s, t) + i
– have x(s, v) = h and x(v, t) = i – h
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k-Betweenness algorithm (3/4)

• Need to calculate delta(s, i, k, v, h) for all v  s in graph G, 
0  i  k, and 0  h  i

• A neighbor w of v is an i neighbor if x(v, w) = i.  We can set up 
a recurrence by separating neighbors in this way

• (For N2 an extra term appears to account for t=w)
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k-Betweenness algorithm (4/4)

• Dependency graph: each i is independent, only need k+1 
graph traversals for (k+1)*(k+2)/2 accumulations

• Then BCk(v) can be computed by summing over all deltas for 
a particular v, k.
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BCk for k > 0: More Path Information

Exact BCk for k = 0, 1, 2
On directed web graph
Vertices in increasing 
BCk order 
(independently)
Large difference going 
from k = 0 to k > 0
Few additional paths 
found in k = 2
k > 0 captures more 
path information, 
somewhat converges
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BCk for k > 0: More Path Information

Exact BCk for k = 0, 1, 2
On directed web graph
Vertices in increasing 
BCk order (by k = 0)
Large difference going 
from k = 0 to k > 0
Few additional paths 
found in k = 2
Note how many vertices 
jump from BC0 = 0 to  
BCk > 0!
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Scalability of k-Betweenness Centrality

52x speedup for k=1 on a 64p Cray XMT
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CRAY XMT ARCHITECTURE
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• Tolerates latency by extreme multithreading
– Each processor supports 128 hardware threads
– Context switch in a single tick
– No cache or local memory
– Context switch on memory request
– Multiple outstanding loads

• Remote memory requests do not stall processors
– Other streams work while the request 

gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Hashed global shared memory
– 64-byte granularity, minimizes hotspots 

• High-productivity graph analysis!

Cray XMT Operation
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XMT ThreadStorm Processor (logical view)
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XMT ThreadStorm System (logical view)
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What is not important on XMT

• Placing data near computation
• Modifying shared data
• Accessing data in order
• Using indirection or linked data-structures
• Partitioning program into independent, 

balanced computations
• Using adaptive or dynamic computations
• Minimizing synchronization operations
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Red Storm
• Red Storm consists of over 10,000 AMD Opteron™ 

processors connected by an innovative high speed, high 
bandwidth 3D mesh interconnect designed by Cray 
(Seastar)

• Cray is responsible for the design, development, and 
delivery of the Red Storm system to support the 
Department of Energy's Nuclear stockpile stewardship 
program for advanced 3D modeling and simulation

• Red Storm uses a distributed memory programming model 
(MPI)

Slide Credit: Cray, Inc.
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4 DIMM Slots4 DIMM Slots

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

CRAY
Seastar™

L0 RAS ComputerL0 RAS Computer
Redundant VRMsRedundant VRMs

Red Storm Compute Board

Slide Credit: Cray, Inc.
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4 DIMM Slots4 DIMM Slots

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

CRAY
Seastar2™

L0 RAS ComputerL0 RAS Computer
Redundant VRMsRedundant VRMs

XMT Compute Board

Slide Credit: Cray, Inc.
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MTX Linux

Compute Service & IO

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs 
IO Server PEs 
Network Server PEs  
FS Metadata Server 

PEs 
Database Server PEs 

Compute Partition

MTX (BSD)

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

XMT system architecture

Slide Credit: Cray, Inc.
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XMT ThreadStorm CPU

Slide Credit: Cray, Inc.
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XMT Speeds and Feeds
CPU 
ASIC

140M memory 
ops

500M memory 
ops

1.5 
GFlops

500M memory 
ops

100M memory 
ops

90M30M memory ops (1 4K processors)

16 GB DDR 
DRAM

Sustained memory rates are for 
random single word accesses 
over entire address space.

Slide Credit: Cray, Inc.
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 Shared memory
Some memory can be reserved as local memory at boot time
Only compiler and runtime system have access to local memory

 Memory module cache
Decreases latency and increases bandwidth
No coherency issues

 8 word data segments randomly distributed across the memory system
Eliminates stride sensitivity and hotspots
Makes programming for data locality impossible
Segment moves to cache, but only word moves to processor

 Full/empty bits on all data words

XMT memory

tag bits data values

063
forward
trap 1
trap 2
full-empty

Slide Credit: Cray, Inc.
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