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SUMMARY 
 
 

 Accurate forecasts of tropical cyclone surface wind fields are essential for 

decisions involving evacuation preparation and damage potential.  Towards addressing 

these actions, a comparison of the CFAN tropical cyclone surface wind field model with 

the H*Wind wind field reanalyzes is done to assess the accuracy of the CFAN algorithm 

and to determine potential limitations of its use. 16 tropical cyclones were assessed 

through correlation coefficient, mean bias, and root mean square error. The resolution of 

initial conditions to be ingested into the model was also analyzed, along with storm type 

and whether or not wind shear was a limiting factor.  Results suggest that the CFAN wind 

model accurately predicts the H*Wind analyses in most regions of the TC.  The center of 

circulation has the highest error due to the CFAN wind model treating the center of 

circulation as a point rather than having finite lateral extent.  Results from the sensitivity 

analysis based on input resolution show that the minimum input resolution for the CFAN 

wind model to produce fine spatial resolutions with high fidelity is 0.25°. It is shown that 

the reproductions of weaker tropical cyclones have lower accuracy due to wind field 

asymmetries within these systems, while stronger TCs are better reproduced, as these 

systems are usually better organized.  Finally, through the wind shear analysis, it is 

shown that the accuracy of reconstruction is not dependent on the magnitude of vertical 

wind shear. 
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Chapter 1  

Introduction 

 

 Tropical Cyclones (TC) are one of the most destructive weather phenomena in 

terms of both damage and lives lost. The number of people threatened by TCs has been 

growing, as global population and wealth have become ever more concentrated along 

vulnerable coastlines (Zhang and Sippel 2009; Frank and Ritchie 2001). Surface winds 

are highly correlated to the loss of life and damage to physical structures; surface winds 

also force wind waves, which affect offshore platforms and ships, and storm surge, which 

can exacerbate flooding, is primarily responsible for coastal inundation. Surface wind 

fields of TCs can be dramatically different, even when the maximum surface winds are 

very similar. The potential damage a given TC may cause is also related to the relative 

size of its wind field; where the larger the wind field, the more potential direct wind 

damage and potential coastal inundation (Knaff et al. 2011). Thus, the prediction of the 

surface wind distribution in TCs is of critical importance not only to determine intensity 

and potential damage from winds, but also to accurately forecast storm surge and waves, 

which will affect hurricane preparation and evacuation decisions.  With increasing 

population density and coastal development, it is necessary to improve hurricane forecast 

models so that forecasts are more accurate at longer lead-times, so that enough advanced 

warning is provided for disaster preparedness and evacuation response.  

 There are many factors that affect prediction skill of TCs: (including but not 

limited to) the location where TCs generate and spend most of their lifetimes is data 

sparse; the quality and resolution of observational data (initial conditions), the models 
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(e.g., numerical weather prediction (NWP) models) may not capture every process that 

influences a TC due to resolution, parameterizations.  Furthermore, TCs themselves are 

part of a larger nonlinear, chaotic fluid whose characteristics are a function of 

atmosphere–ocean interactions.  Due to this chaotic nature, there are inherent limits to the 

predictability timescales of TCs where the skill of the NWP model will eventually reduce 

to zero on timescales of a day to a week or two (Leslie et al 1998). This means that 

practical predictability limits must continue to be researched and improved. The limits 

may be with the NWP models themselves or with the observational data ingested into 

them.  

Improvements in global dynamical and parametric models, including the forecast 

of tropical cyclone track and intensity have been at the forefront of tropical meteorology 

research. Parametric models are often used to predict TC wind fields since these have the 

advantage of near-zero computational cost, can be run at any desired resolution and easily 

can be embedded in or fully coupled to wave and storm surge models.  The wind field of 

a TC is also functionally dependent on track and intensity, as intensity is the maximum 

surface wind at any location within the TC, and the location of the TC contributes to the 

structure and strength of the wind field especially if the TC is interacting with a surface 

with nonzero roughness length (e.g. topography).  Accurate forecasts of track and 

intensity are essential to produce correct spatial distributions of the surface wind.  

It is well known that TC motion is driven primarily by the large-scale 

environment in which it travels; motion is also influenced secondarily by structure and 

intensity. TC track forecasting has much improved over the last four decades with 

reduction in forecast errors mainly from the rapid increasing amount of observations, 
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especially from satellites, and improvement of numerical models and assimilation 

schemes (Gall et al. 2013). With better initial conditions and improved modeling of the 

large-scale environment especially over the ocean, these enhancements can result in 

increased track accuracy. As previously stated, there is a natural, inherent predictability 

bound for every atmospheric process due to the chaotic property of the atmosphere, and it 

has been suggested that some global models, for example from the European Centre for 

Medium-Range Weather Forecasts (ECMWF), could have possibly reached the 

predictability limit for TC track forecasting (Plu 2011).  

 While track forecasting has improved significantly over the past four decades, 

intensity, as measured by the maximum sustained 10-m wind, forecasts has shown almost 

no improvement at all lead times. There are several reasons for the minimal improvement 

of intensity forecasts, such as: 1) intensity can be more strongly contingent upon internal 

dynamics and moist convection, which occur on smaller scales, is more chaotic, and less 

well understood, 2) the fact that the definition of intensity is an extremely local quality of 

a TC, and 3) because of deficiencies in the forecast models or in initial conditions that are 

used to produce the forecast (Zhang and Tao 2013 and Davis et al 2010). However, a 

recent study by DeMaria et al (2014) showed there has been a statistically significant 

improvement in intensity guidance between 1989 and 2012. The improvement rates for 

the 24-72 h forecasts were 1-2% yr-1 and 2-4% yr-1 at 96 and 120 h forecasts. The 

improvement rates of the 96 and 120 h forecasts were comparable to the track forecast 

improvement rates. These improvements were due to the transition of model guidance 

from climatology and persistence to statistical-dynamical and dynamical models and 

finally to the use of forecast consensus during the 24 yr period.  Even so, the intensity 
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forecast problem is far from solved as improvements in the warning time frame have 

been slowest, and skill in the prediction of rapid intensity change is still very poor. Thus, 

improving forecasts of CAPE, moisture through a deep layer, and the surface wind 

distribution should enhance intensity forecasts as genesis and intensification are highly 

influenced by the variations in these factors.  Forecast improvement for these factors will 

likely come from refinement of parameterization and reductions in models horizontal grid 

spacing. 

 The severe weather community has considered at length improvement of forecast 

quality with increased horizontal resolution in NWP models.   A higher-resolution model 

should be able to capture smaller-scale weather phenomena, i.e. the timing, location and 

structure of deep convection, more accurately. Thus, determining the impact of different 

resolution scales on the prediction of phenomena that involve deep, moist convection is 

useful. The National Oceanic and Atmospheric Administration (NOAA) has developed a 

10-yr Hurricane Forecast Improvement Project (HFIP), which initially set out to 

determine whether greater horizontal resolution improves TC forecasts. Several groups 

have participated in what is referred to as the High-Resolution Hurricane test, which 

raised the question of whether increasing the resolution from approximately 10 km to 1-4 

km produces a measurable improvement in hurricane (HUR) intensity structure 

prediction without degrading forecasts of position (Davis et al. 2010). There were 

contradictory results from these studies; some (Done et al. 2004, Kain et al. 2006, 

Weisman et al. 2008) suggested that increasing horizontal resolution does improve 

forecast quality, while others (Schwartz et al. 2009) did not. Schwartz et al.’s forecast 

comparisons with explicit convection at 2 km versus 4 km grid spacing did not appear to 
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yield significant differences. Other studies echoed Schwartz et al.’s outcome that varying 

horizontal grid spacing between 1 and 5 km does not produce large changes in the quality 

of the simulation (Fierro et al. 2009), which is unexpected given that the eye wall is better 

resolved at higher resolutions (1 km). Davis et al. found that high-resolution forecasts 

performed as well as or significantly better, than coarse resolution forecasts when 

comparing 12-km forecasts with 4 km and 1.33 km forecasts. When comparing high-

resolution forecasts, little significant difference is found, which implies that other factors 

may be involved in limiting the predictability of intensity forecasts. 

 One such factor is vertical wind shear (VWS). In general, highly sheared storms 

with large asymmetries generally result in poorer intensity forecasts. According to Zhang 

et al. (2010), the stronger the VWS, the more uncertain the intensity forecast becomes, 

due to rapid intensification timing differences. A negative correlation exists between 

VWS and TC intensity change, and it has been noted using idealized numerical models of 

TCs that VWS has a role in creating azimuthal asymmetries of convection. Observations 

of sheared TCs (magnitude of 7-15 ms-1) show an influence of VWS in the storm core, 

where updrafts initiate downshear, maximum vertical motion in the core is downshear 

left and maximum precipitation is further displaced counterclockwise (Corbosiero and 

Molinari 2002). Tropical storm (TS) time periods appear to be affected the most as 

Corbosiero and Molinari (2003) showed TS time periods contain the strongest downshear 

signal for intensity, as (stronger) HURs should be more established to mitigate the effects 

of wind shear. 

 Even though track and intensity predictability remain on-going areas of research, 

understanding the predictability of the TC’s wind field remains a topic that has received 
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much less attention.  Here a comparison of observational and model produced TC wind 

fields is analyzed to determine the accuracy of the model wind fields and its sensitivity 

based on input resolution. The wind fields are compared using correlation coefficients, 

mean bias, and root mean square error. The wind field comparisons are analyzed based 

on Saffir-Simpson intensity categories, initial condition input resolution, and wind shear. 

One of the key goals of this study is to assess the sensitivity of the wind field 

reconstruction process by considering how the resolution of the initial conditions impacts 

the reconstructions starting with finer resolution at 0.125° to coarser resolution at 1.0°. In 

this analysis, the wind field reconstructions with inputs of 0.125° (~10km) resolution may 

represent the ECMWF high-resolution (HRES).  HRES’s initial state is the most accurate 

estimate of current conditions and uses the best description of model physics and 

advanced data assimilation to date. The control along with the 50 lower resolution 

perturbed ensemble members of the ECMWF Ensemble Forecast System are represented 

by the 0.25° resolution reconstructions. The ensemble system provides a range of 

potential weather states, which provides an estimate of the uncertainty in the forecast. 

The Global Forecast System (GFS) is represented by the 0.5° resolution reconstructions. 

The GFS is produced by NCEP and is a coupled model composed of an atmospheric 

model, ocean model, land/soil model and sea ice model. This NWP model provides many 

atmospheric and land-soil variables, such as temperature, winds, precipitation, soil 

moisture and atmospheric ozone concentration. The final lower resolution is 1.0° is 

representative of other global models, such as the Global Ensemble Forecast System 

(GEFS). This ensemble forecast system from NCEP includes 21 total members, which 

also address uncertainty in initial weather observations. 
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To address these issues in this thesis, Chapter 2 describes the data used in analysis 

along with the wind field reconstruction methodology. Chapter 3 illustrates the results 

and the potential implications from these findings.  Finally, Chapter 4 provides 

concluding remarks with recommendations for potential future work. 
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CHAPTER 2 

DATA AND METHODOLOGY 

 

2.1 Description of datasets 

 This research compares observations to forecasts generated by Climate Forecast 

Applications Network (CFAN). The observations are reanalyses from the Atlantic 

Oceanographic and Meteorological Laboratory (AOML) H*Wind analysis and the CFAN 

wind field reconstruction algorithm, temporal and surface wind speed data from the 

second generation Hurricane Data (HURDAT2) created by the AOML, and deep-layer 

vertical wind shear data from the National Centers for Environmental Prediction’s  

(NCEP) Climate Forecast System Reanalysis (CFS-R). The CFAN wind fields are 

produced using initial conditions from H*Wind but at different resolutions (0.05°, 0.125°, 

0.25°, 0.5°, 1.0°).  Respectively, these resolutions, represent the operational CFAN wind 

field model, which has a similar resolution to H*Wind, the ECMWF High-Resolution, 

ECMWF Ensemble Leg 1, ECMWF Ensembles Leg2/GFS, and NCEP Ensembles. The 

varying resolutions are selected in order to assess the sensitivity of the wind field 

reconstruction process to the input resolution of the initial conditions.  

 The H*Wind analysis is an integrated TC wind analysis system which provides a 

dataset of the distribution of wind vectors in TCs utilizing wind measurements from 

multiple platforms, such as aircraft reconnaissance flight-level winds, stepped-frequency 

microwave radiometer (SFMR) surface wind estimates, QuikSCAT, ships, buoys, surface 

stations and others (Knaff et. al 2011). H*Wind analyses for 16 TCs (displayed in Table 

2.1) were acquired for this study. The 16 TCs are generally Gulf of Mexico systems that 
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affected the Florida and Gulf Coast, as the TCs occurred in regions with higher 

observational density giving increased confidence that the analyses are representative of 

the observed surface wind distribution.  These 16 TCs provided 1584 unique wind fields. 

 

Table 2.1.1 Tropical cyclones analyzed and the forecast times considered. 

Storm Time 
Charley (2004) 08/13/2004 00Z - 08/14/2004 09Z 
Frances (2004) 09/04/2004 06Z - 09/06/2004 12Z 
Jeanne (2004) 09/24/2004 21Z - 09/26/2004 15Z 
Dennis(2005) 07/08/2005 1930Z - 07/10/2005 2230Z 
Katrina (2005) 08/25/2005 21Z - 08/30/2005 12Z 

Rita (2005) 09/20/2005 0430Z - 09/21/2005 0430Z 
Wilma (2005) 10/24/2005 1014Z - 10/24/2005 1930Z 
Alberto (2006) 06/12/2006 1330Z - 06/13/2006 1630Z 
Ernesto (2006) 08/29/2006 1330Z - 08/31/2006 1930Z 
Barry (2007) 06/02/2007 1330Z 
Fay (2008) 08/18/2008 1330Z - 08/23/2008 1930Z 

Irene (2011) 08/25/2011 1330Z - 08/26/2011 2230Z 
Beryl (2012) 05/27/2012 0130Z - 05/28/2012 0430Z 
Debby (2012) 06/24/2012 1030Z - 06/26/2012 1930Z 
Isaac (2012) 08/26/2012 0130Z - 08/29/2012 1930Z 
Sandy (2012) 10/26/2012 0430Z - 10/28/2012 0130Z 

 

 

 The CFAN reconstruction of these 1584 wind fields requires a minimum sea level 

pressure value that is not supplied in the H*Wind analyses, so interpolated mean sea level 

pressure and corresponding time steps from HURDAT were applied. It should be 

mentioned that different mean sea level pressure values might have been used by AOML 

to generate the H*Wind analyses, which is a source of uncertainty in these comparisons. 

Furthermore, the reconstructed H*Wind analyses, which originally had a 3h temporal 

scale, were linearly interpolated to a 30 minute interval.  
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 The CFAN horizontal 2D surface wind fields were produced at a resolution of 5 

km using Holland et al. (2010), H10, 1D radial wind model based on the H*Wind wind 

field analyses. In order to produce the CFAN wind field reconstructions certain 

assumptions had to be made as some of the input data was not supplied by H*Wind. First, 

the environmental sea level pressure was assumed to be 1020 hPa. Next, the mean surface 

relative humidity along the radial direction was assumed to be 90%, and lastly, the mean 

sea surface temperature (SST) along the radial direction was assumed to be 28°C. These 

values and others which were provided by the H*Wind analysis were then used in the 

CFAN wind field reconstruction algorithm using the Holland 2010 hurricane radial wind 

model (Holland et al. 2010) to produce 1D surface winds.  

H10 first calculates the radial surface pressure profile using a modified 

rectangular hyperbola: 

𝑝! =   𝑝!" +   ∆𝑝!𝑒
!

!!!
!

!

,                                     

where ps is the surface pressure at radius r, pcs is the central pressure, Δps = pns – pcs is the 

pressure drop from a defined external pressure pns to the cyclone center, and b is a scaling 

parameter that defines the proportion of the pressure gradient near the radius of 

maximum winds rvm. The subscript m denotes maximum. Next, the surface wind vs is 

assessed using  

𝑣! =   
!""!!∆!!

!!!"
!

!!

!!!
!!!
!

!!

!

    

where the subscript s signifies surface values at a nominal height of 10m and ρs is the air 

density at the surface. The exponent x varies linearly as such: 
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𝑥 = 0.5                                                                                        𝑟 ≤   𝑟!! , 

𝑥 = 0.5+    𝑟 −   𝑟!!
𝑥! − 0.5
𝑟! − 𝑟!!

      𝑟 > 𝑟!! , 

where xn is the adjusted exponent to fit the peripheral observations at a defined radius rn. 

Here, bs is kept constant and is related to the original b such that 𝑏! = 𝑏𝑔!! where gs is the 

reduction factor for gradient-to-surface winds. In order to determine the surface wind vs 

the following data is required: the central pressure, radius of maximum winds, an external 

pressure and collocated surface wind speed, and surface air density. The parameter bs can 

be derived using: 

𝑏! =   
𝑣!"! 𝜌!"𝑒

100 𝑝!" − 𝑝!"
, 

if vms and the central pressure have been directly measured.  

 A good estimate of the surface air density can be determined as follows: 

𝜌! =
!""!!
!!!"

, 

𝑇!" = 𝑇! + 273.15 1+ 0.61𝑞! , 

𝑞! = 𝑅𝐻!
!.!"#
!""!!

𝑒
!".!"!!
!"#.!!!! ,    and 

𝑇! = 𝑆𝑆𝑇 − 1. 

The gas constant for dry air R is 286.9 J kg-1 K-1, Tvs is the virtual surface temperature in 

K, Ts is the surface temperature in °C, qs is the surface moisture in g kg-1, RHs is the 

surface relative humidity, and SST is the sea surface temperature. The assumed values for 

RHs and SST were stated earlier.  

 To generate 2D surface wind distributions, these 1D fields were calculated at a 

one degree angular rate of change spanning a 90 degree window centered on the angle in 
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order to assess maximum winds, the radius of maximum winds (RMW), outer wind speed 

and the radius of outer winds. The output surface wind value assigned was determined by 

the Holland wind field and associated distance found using the radial distance spacing 

between the grid cells and the TC center. A Monte Carlo resampling approach was used 

to vary the outer wind speed threshold, which improved the robustness of the 

reconstruction.  The outer wind speed threshold was allowed to vary between 25% and 

75% of the max 10 m wind speed per specified quadrant. Finalized output grid cell wind 

speed represents the average of 90 separate 1D wind field fits.  In order to agree with 

standard open land exposure adjustment values, wind speeds over land were reduced by 

17% as suggested by Vickery (2007).  To conduct the sensitivity analysis, this 

reconstruction process was replicated to produce high-resolutions surface wind fields, 

except varying the input resolution of the initial H*Wind data. 

 HURDAT2 is the official TC tracking dataset for the North Atlantic and consists 

of tropical cyclone 6-hourly positions and maximum wind speed estimates and is updated 

annually by the National Hurricane Center (Neumann et al. 1999). The 6-hourly time 

steps and their corresponding maximum 1-minute sustained wind speeds at 10 meters for 

each storm were acquired from HURDAT2. These values were linearly interpolated to 

obtain a half-hourly time scale and the wind speeds at each half-hour. The half-hourly 

maximum wind speed information was then used to separate the H*Wind and CFAN 

wind fields into (NON) tropical storm files (maximum wind < 64 kts), (HUR) hurricane 

files (maximum wind ≥ 64 kts) and (MHUR) major hurricane files (maximum wind ≥ 96 

kts). 
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 CFS-R data was used to obtain hourly vertical deep layer (850-200 hPa) wind 

shear during the time periods of the 16 TCs. The CFS-R is a global, high-resolution, 

coupled atmosphere-ocean-land surface-sea ice model providing the best estimate of the 

state of these coupled domains over the period of 1979 to 2010 ( Saha et al. 2010). The 

current CFS-R is extended as an operational, real time product. The global atmospheric 

resolution is ~38 km with 64 levels extending from the surface to 0.26 hPa. The CFS-R 

atmospheric products are available at an hourly time resolution and 0.5° horizontal 

resolution. The average wind shear was calculated over a 500 km distance from the TC 

center using the location of the TC center as determined by HURDAT 2 using the 

following equation: 

𝑠ℎ𝑒𝑎𝑟 = (𝑈!"# − 𝑈!"")! − (𝑉!"# − 𝑉!"")!   

, where U and V the zonal and meridional winds at all points within 500 km of the center, 

the subscript is the level of the atmosphere at which the wind is measure in hPa, and the 

over bar represents the mean of the winds within 500 km of the center at each level. 

The location of the TC center is likely to differ somewhat from where the TC is centered 

in the CFS-R.  However, since the calculation occurs over a 500 km radius, small 

differences in the center location are likely to have minimal impact to the shear 

magnitude.  The vertical deep layer wind shear and concurring dates were interpolated to 

a half-hourly time scale to facilitate comparison.  

Since the distribution of vertical wind shear is non-normal (Figure 2.1.1), the 

median of the vertical wind shear distribution was found in order to classify TCs 

embedded with high wind shear and low wind shear environments. This value was 

6.2525 ms-1, so low shear ≤ 6.2525 ms-1 and high shear > 6.2525 ms-1 were determined as 
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such. The times where the TC was experiencing low or high shear were used to partition 

the H*Wind and CFAN wind field files into low and high shear bins.  Furthermore, the 

wind fields were rotated about the storm center so that the wind shear vector was pointing 

north. This is done in order to evaluate the effect of vertical wind shear on the TC wind 

fields, given that vertical wind shear induces known asymmetries in the precipitation 

distribution and surface wind field. 

 

 

Figure 2.1.1. Distribution of 6-hour (left) and interpolated (right) deep-layer VWS in the 
1584 wind fields analyzed with shear magnitude on the x-axis and number of time 
periods on the y-axis. Shows right skewness meaning TCs are unable to sustain 
themselves in environments where vertical wind shear is strong. 
 

 

2.2 H*WIND and CFAN Comparison Methodology 

 The CFAN’s surface wind field reconstructions are evaluated relative to the 

H*Wind analyses using correlation, mean bias and root mean square error. These three 

statistical methods were implemented on all TC dates, TC dates separated by maximum 

wind speed (tropical storm, hurricane, major hurricane), all TC dates at different spatial 

resolutions, and those dates where a TC experienced low and high wind shear. The 2D 
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wind fields have to be normalized by a common metri,  so that the TCs characteristic 

structure may be compared with one another, as tropical cyclones have varying sizes. The 

normalization in this case was with respect to the radius of maximum winds such that 

distances from the TC center are recast in normalized units of RMW-relative distance.  

  To measure the skill or quality of the CFAN reconstructions, the correlation 

between the CFAN reconstructions and the H*Wind reconstructions is calculated. The 

correlation coefficient, r, measures the strength and indicates the direction of the linear 

association between two variables (e.g. model output and observed values). The Pearson 

product-moment correlation coefficient is the method of correlation used, which is 

obtained by dividing the covariance of the two variables by the product of their standard 

deviations. 

𝑟 =    (!!!!)(!!!!)
!
!!!

(!!!!)!× (!!!!)!!
!!!

!
!!!

. 

The correlation is +1 in the case of a perfectly increasing linear relationship, and -1 in the 

case of a perfectly inverse linear relationship, with the values in between indicating the 

degree of linear relationship. A correlation of zero means there is no linear relationship 

between the variables.  

 In order to determine the amount of variance the CFAN reconstructions explain in 

H*Wind for the shear cases, the r-squared value was determined for the points outside 0.5 

RMW and within 0.25 RMW. The coefficient of determination, r2, gives the proportion 

of the variance of one variable that is predictable from the other variable, or the ratio of 

the explained variation to the total variation. The coefficient of determination is such that 

0 ≤ r2 ≤ 1, and denotes the strength of the linear association between two variables. The 

higher the r-squared value, the better the model fits the observed data. 
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 The statistical significance of the correlation values for TCs by intensity and 

resolution was determined using the two-tailed student’s t-test with the null hypothesis 

that the correlations are due simply to random chance alone. One needs to determine the 

t-distribution of the data and the critical t-value based on the degrees of freedom and the 

confidence. If the t-distribution value is greater than the critical t-value, then one can 

reject the null hypothesis, which implies that the correlation values have statistical 

significance at the chosen confidence level. 

 Another method of determining statistical significance of a correlation is using the 

percentile method of bootstrap resampling. It is often used as a non-parametric alternative 

to inferences based on parametric assumptions (e.g. the outcome is normally distributed) 

when those assumptions are in doubt. Bootstrap resampling is generally more stringent 

and robust and is often used when the sample size is small or non-Gaussian. This method 

is used to determine the statistical significance of the reconstructed wind fields for high 

and low wind shear cases. The bootstrap procedure involves choosing random samples 

with replacement (Monte Carlo resampling) from a data set, e.g. H*Wind and CFAN 

wind field reconstructions composites, and analyzing each sample the same way creating 

a large number of bootstrap samples (1000 or more) at a certain confidence level. 

Sampling with replacement means that each observation is selected separately at random 

from the original dataset; so a particular data point from the original data set could appear 

multiple times in a given bootstrap sample. The number of elements in each bootstrap 

sample equals the number of elements in the original data set. The correlation is 

considered significant if the lower bound (2.5%) of the correlation is greater than 0, i.e. if 

a correlation is significantly different from 0 at the 0.05 level, then the 95% confidence 
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interval will not contain 0. Whenever an effect is significant, all values in the confidence 

interval will be on the same side of zero, either all positive or all negative. 

 Mean bias and root mean square error are used to measure the accuracy of the 

CFAN reconstructions. The mean bias is simply the average difference between two 

variables, in this case the H*Wind and CFAN reconstructions. 𝑀𝐵 =   𝑓 − 𝑎 , where f is 

the forecast values and a is the observed values. It is used to determine forecast error. 

When the value is positive, the model has an over-forecast bias, and when the value is 

negative, the model has an under-forecast bias. 

 The root mean square error (RMSE) measures the distance between the forecast 

and verifying analysis, or observations, i.e. 𝑅𝑀𝑆𝐸 =    𝑓 − 𝑎  !. It is a measure of the 

typical spread of the data around the regression line. It is negatively oriented meaning 

increasing numerical values indicate increasing failure and is directly interpretable in 

terms of measurement units, as it has the same units as the forecast variable that is 

analyzed. 
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CHAPTER 3 
 

RESULTS AND DISCUSSION 

 

 The correlation coefficient, mean bias and root mean square error between the 

H*Wind and CFAN surface wind fields from 2004–2012 were calculated, for all wind 

fields at different initial resolutions, for NON (max wind speed <  64kts), HUR (max 

windspeed > 64 kts) and MHUR (max wind speed ≥ 96 kts) wind fields, and tropical 

cyclones that experienced low wind shear and high wind shear. The unique wind fields in 

each analysis are detailed in Table 3.1. The large sample size of wind fields allowed for 

robust statistical evaluation. 

 

Table 3.1. The number of unique windfields in each analysis. ‘All’ includes the initial 
H*Wind versus CFAN analysis and the analyses at different resolutions. 

Analysis Number of Wind Fields 

All  1584 

Non-hurricane 817 

Hurricane 763 

Major Hurricane 281 

Low Shear 804 

High Shear 742 

 
 
 
  

 Counts a few hundred or so prove important for maintaining robust statistics in 

the analyses (Davis et al. 2010). The statistical significance of the correlation coefficient 
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was tested at the 99% confidence level using the t-test for all wind fields, for wind fields 

at differing resolutions and wind fields for each TC type.  A bootstrap resampling test 

was used to evaluate the significance of the wind shear surface wind fields. Nearly all 

wind field comparison correlations were statistically significant at 99% (MHUR has a 

small section which is not statistically significant at 99%).  

 The correlation coefficient in RMW relative distances for all wind fields from 

2004–2012 is shown in Figure 3.1a. For all locations outside 0.5 RMW, the CFAN wind 

fields reproduce on average 95% of the total variance of H*Wind, while within 0.25 

RMW 28% of the total variance of H*Wind is explained by the CFAN model. The CFAN 

model does an excellent job at reconstructing nearly all of the variability in the H*Wind 

analyses for most locations within a TC according to these findings (e.g. locations outside 

0.5 RMW relative distance).  

 Further insight into the structural biases of the surface reconstructions is provided 

in Figures 3.1b, which displays the mean bias (CFAN –H*Wind; in knots (kts)) for all 

surface wind fields. The maximum bias (12.5 kts) is found at an RMW relative distance 

of 0.20 in the left-rear quadrant; this bias is approximately twice the observational 

uncertainty of the surface wind measurements, which is ± 5 kts. At the RMW, the mean 

bias is 3.4 kts. The largest positive biases occurring within 0.5 RMW relative distance 

suggests a deficiency in the CFAN model for correctly estimating the lateral extent of the 

TC’s center of circulation, or eye, which is also supported by the findings from the 

RMSE (in kts) in Figure 3.1c. The largest RMSE is found within 0.5 RMW distance at 

15.5 kts. 
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a)        b) 

 
                                     c) 

 
Figure 3.1: a) Correlation coefficients (shaded) between CFAN wind field 
reconstructions and H*Wind analyses in radius of maximum winds relative distances. b) 
Similar to a), except for mean bias in kts (shaded). Positive biases indicate CFAN wind 
values are larger than H*Wind. c) Similar to a) and b), except for RMSE in kts (shaded). 
White concentric circles show RMW relative distances at normalized intervals of 0.25, 
0.5, 0.75, 1, 1.5, and 2.   
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 These results are consistent with the current configuration of the CFAN wind field 

model. In the current version, the TC’s center of circulation is treated as a point, when in 

reality it has finite lateral extent. One then would expect for TCs that possess an eye of 

small horizontal size, the mean biases and errors are likely to occupy smaller horizontal 

area, while TCs with larger eyes, the radial wind speeds within the center of circulation 

are likely to be overestimated on average by 5–10 kts. Even with this minor deficiency, 

the CFAN wind field model provides an excellent reproduction of the H*Wind analyses 

outside of the center of circulation, which suggest that the wind field reconstruction 

process is not a predictability-limiting factor.  

 The next analysis determines the resolution(s) of the initial conditions which are 

proficient enough at reproducing the H*Wind surface wind fields with high fidelity. 

Higher resolution models generally have longer processing times than lower resolutions 

models, so the efficiency of the reproduction process can be improved if a lower 

resolution model that sufficiently reproduces the surface wind fields can be used. A 

threshold for horizontal resolution is determined by examining the correlation coefficient, 

mean bias, and RMSE of all 1584 wind fields at different initial input resolutions (0.125o, 

0.25o, 0.5o, 1.0 o). These different resolutions are compared to the initial analysis, which 

has an input resolution of 0.05o, as the CFAN wind fields with this input resolution 

explained the majority of the variability in the H*Wind wind fields. 

 Figure 3.2a shows the correlation coefficient for all wind fields from 2004–2012 

using initial conditions at an input resolution of 0.125o. The average total variance 

explained outside of 0.5 RMW relative distance is 92%, which is slightly less than the 

average total variance explained in the same area of the wind fields at 0.05o. The average 
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total variance (26%) within 0.25 RMW is also similar to that found in the 0.05o degree 

correlation coefficient analysis. The 0.125o resolution CFAN wind fields still explain a 

large majority of the H*Wind wind fields suggesting that a reconstruction based on a 

model with 0.125o input resolution also does an excellent job of reproducing the H*Wind 

surface wind fields outside of 0.5 RMW relative distance. 

 The mean bias shown in Figure 3.2b has a max bias of 12.4 kts at a distance of 

0.21 RMW in the rear-left quadrant, which is nearly the same magnitude and location as 

the max bias in the 0.05 degree resolution mean bias. The average bias at the RMW is 1.3 

kts, which is 2 kts less than the 0.05 degree average bias at this distance. The RMSE in 

Figure 3.2c has a max RMSE (16 kts) within 0.5 RMW, again similar to that in the 0.05° 

analysis. The model deficiency of defining the lateral extent of the center of circulation of 

a TC is reinforced here as the max biases and errors occur within a 0.5 RMW relative 

distance.  

 The correlation coefficient of the 1584 wind fields with 0.25o resolution initial 

conditions is displayed in Figure 3.3a. The average total variance outside of 0.5 RMW 

(82%) is over 10% lower than that at 0.05o resolution. The surface wind within 0.25 

RMW is still difficult to resolve due to the lack of definition of the lateral extent of the 

eye, but a degradation in the accuracy of the wind field reproduction is apparent outside 

of this area at 0.25o resolution. 
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a)        b) 

 
                                   c) 

 

Figure 3.2: a) Correlation coefficients (shaded) between CFAN wind field 
reconstructions at 0.125° resolution and H*Wind analyses in radius of maximum winds 
relative distances. b) Similar to a), except for mean bias in kts (shaded). Positive biases 
indicate CFAN wind values are larger than H*Wind. c) Similar to a) and b), except for 
RMSE in kts (shaded). White concentric circles show RMW relative distances at 
normalized intervals of 0.25, 0.5, 0.75, 1, 1.5, and 2.   
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 In Figure 3.3b the mean bias (0.25° CFAN – H*Wind; in kts) is shown. The max 

bias is similar in magnitude and found at a the same RMW distance and location as the 

max bias in the precious two resolutions, but now the bias at the RMW is negative, 

meaning the radial winds in this area are under-predicted. The structure outside of 1 

RMW for the 0.25° resolution mean bias is different than that of 0.05° resolution mean 

bias, as there are areas where the bias exceeds -5 kts, while in the 0.05° mean bias 

analysis, errors are below 2 kts outside 1 RMW. This is further supported in the RMSE of 

the 0.25° resolution wind fields (Figure 3.3c) as the RMSE has increased outside of the 

RMW. 

 
 In Figure 3.4a the correlation coefficient based on input surface winds at 0.5o 

resolution is shown. The average total variance outside of 0.5 RMW relative distance 

(72%) considerably decreased, as compared to the average total variance outside of 0.5 

RMW in the 0.05° resolution analysis. 

 Figure 3.4b shows the mean bias for the 0.5° resolution wind fields. The biases 

are larger overall for these wind fields as compared to the higher resolution wind fields. 

They are mostly underforecasted between -3 to -7 kts, but with areas closer to  

-10kts outside of 0.75 RMW. The RMSE has also increased (Figure 3.4c) where the 

RMSE at the RMW is nearly 10 kts greater than that of the 0.05° and 0.125° resolution 

RMSEs. The RMSE is also greater than 7 kts in the 2 RMW by 2 RMW area of the wind 

field.  
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a)      b) 

 
            c) 

 
Figure 3.3: a) Correlation coefficients (shaded) between CFAN wind field 
reconstructions at 0.25° resolution and H*Wind analyses in radius of maximum winds 
relative distances. b) Similar to a), except for mean bias in kts (shaded). Positive biases 
indicate CFAN wind values are larger than H*Wind. c) Similar to a) and b), except for 
RMSE in kts (shaded). White concentric circles show RMW relative distances at 
normalized intervals of 0.25, 0.5, 0.75, 1, 1.5, and 2.   
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 The correlation coefficient of the 1.0 ° resolution wind fields is shown in Figure 

3.5a. A significant decrease in the average total variance explained outside 0.5 RMW 

(53%) occurred in the 1.0 degree resolution correlation coefficient. Figure 3.5b shows the 

mean bias for this resolution, which displays large biases in the area where surface wind 

should be well forecasted (e.g. outside 0.5RMW). The RMSE for the 1.0 degree 

resolution windfields (Figure 3.5c) also supports the poor forecast skill with the max 

RMSE at 23.9 kts at 1.03 RMW.  

 The results of the wind field resolution analyses show that the 0.5° and 1.0° wind 

fields have a tendency to strongly underrepresent the observed winds by 15–25kts, which 

is symptom of lower resolution models.  

 In Figure 3.6 the wind profiles of RMW relative distance versus mean wind speed 

for each resolution are shown as another means to visualize the differences in wind 

speeds for each resolution. There is a significant decrease in the maximum wind speed in 

general with 0.5 and 1.0 degree input resolution profiles, which was seen in the 2D 

surface wind field analyses. The 0.05 and 0.125 maximum wind speed share only 

approximately a 5 kt difference at the RMW, but follow a similar profile outside of this 

area. The lower the resolution the larger the mean wind speed at 0 RMW, or the center of 

circulation. This feature is important as the center of circulation should have a smaller 

wind speed overall.  
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a)      b) 

 
         c) 

 

Figure 3.4: a) Correlation coefficients (shaded) between CFAN wind field 
reconstructions at 0.5° resolution and H*Wind analyses in radius of maximum winds 
relative distances. b) Similar to a), except for mean bias in kts (shaded). Positive biases 
indicate CFAN wind values are larger than H*Wind. c) Similar to a) and b), except for 
RMSE in kts (shaded). White concentric circles show RMW relative distances at 
normalized intervals of 0.25, 0.5, 0.75, 1, 1.5, and 2.   
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a)      b) 

 
              c) 

 
Figure 3.5: a) Correlation coefficients (shaded) between CFAN wind field 
reconstructions at 1.0° resolution and H*Wind analyses in radius of maximum winds 
relative distances. b) Similar to a), except for mean bias in kts (shaded). Positive biases 
indicate CFAN wind values are larger than H*Wind. c) Similar to a) and b), except for 
RMSE in kts (shaded). White concentric circles show RMW relative distances at 
normalized intervals of 0.25, 0.5, 0.75, 1, 1.5, and 2.   
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Figure 3.6. Left Panel shows the wind profiles of each resolution with normalized RMW 
relative distance versus (0-6 RMW) mean wind speed (kts). The right panel is similar to 
left panel except that it is zoomed in to RMW between 0 – 1.  
 

 

 Overall 0.125° resolution wind fields show a relatively small difference from 

0.05° resolution wind fields, so using 0.125° resolution model for initial conditions is 

viable. The 0.25° resolution wind fields have slightly larger differences, but may be 

usable if a bias-adjustment is made. The 0.5° and 1.0° resolution models should be 

avoided if possible for initial conditions, as the grid spacing is just too large to resolve the 

maximum wind speed and location of maximum winds, which is detrimental to 

determining the distribution of the wind field profile.  

 The next analysis separates the wind fields into NON, HUR, and MHUR 

categories with the input resolution of 0.05o in order to assess how well the model 
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reproduces surface winds for different TC types and further ascertain potential 

sensitivities in the wind field algorithm. 

 The nonhurricane correlation coefficient in Figure 3.7a has an average total 

variance outside 0.5 RMW of 89%, and within 0.25RMW the average total variance is 

16%. The mean bias in Figure 3.7b shows a max bias of 11.1 at 0.3 RMW relative 

distance and a bias of 3 kts at the RMW. The max RMSE in Figure 3.7c is 13.7 kts at 

0.18 RMW and the RMSE at the RMW is 4.8 kts. 

 Figure 3.8a shows the HUR case has a more compact area of correlation 

coefficient that is less than 1, which does not reach 0.75 RMW, than that of the NON 

case. It is also more concentric due to stronger TCs being more symmetric than weaker 

TCs. The variance explained within 0.25 RMW is the same as the NON; however, the 

variance outside of 0.5 RMW is 93%. The max bias in the mean bias analysis of HUR 

(Figure 3.8b) is 14.6 kts at a distance of 0.28 RMW, with the bias at the RMW of 3.8 kts. 

The max RMSE in the RMSE figure for HUR (Figure 3.8c) is 17.4 kts at 0.25 RMW and 

at the RMW the RMSE is 6.2 kts.  

 The MHUR correlation coefficient is displayed in Figure 3.9a. The average total 

variance outside 0.5 RMW relative distance is 93%, which is the same as the HUR 

average total variance in this area. The mean bias of the MHUR wind fields shown in 

Figure 3.9b has a max bias of 18.3 kts at 0.28 RMW. The MHUR wind fields have higher 

biases between 0.75 RMW and the center than NON and HUR with HUR and MHUR 

having slightly larger biases overall compared to NON. 

 

 



	  31	  

 

 

 

a)      b) 

 
 c) 
 

 
 
Figure 3.7: a) Correlation coefficients (shaded) between non-hurricane CFAN wind field 
reconstructions and H*Wind analyses in radius of maximum winds relative distances. b) 
Similar to a), except for mean bias in kts (shaded). Positive biases indicate CFAN wind 
values are larger than H*Wind. c) Similar to a) and b), except for RMSE in kts (shaded). 
White concentric circles show RMW relative distances at normalized intervals of 0.25, 
0.5, 0.75, 1, 1.5, and 2.   
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a)                                                                  b) 

 
 c) 

 

Figure 3.8: a) Correlation coefficients (shaded) between hurricane CFAN wind field 
reconstructions and H*Wind analyses in radius of maximum winds relative distances. b) 
Similar to a), expect for mean bias in kts (shaded). Positive biases indicate CFAN wind 
values are larger than H*Wind. c) Similar to a) and b), except for RMSE in kts (shaded). 
White concentric circles show RMW relative distances at normalized intervals of 0.25, 
0.5, 0.75, 1, 1.5, and 2.   
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a)      b) 

 
 c) 

 
Figure 3.9: a) Correlation coefficients (shaded) between major hurricane CFAN wind 
field reconstructions and H*Wind analyses in radius of maximum winds relative 
distances. The stippling denotes where correlations are not statistically significant. b) 
Similar to a), expect for mean bias in kts (shaded). Positive biases indicate CFAN wind 
values are larger than H*Wind. c) Similar to a) and b), except for RMSE in kts (shaded). 
White concentric circles show RMW relative distances at normalized intervals of 0.25, 
0.5, 0.75, 1, 1.5, and 2.   
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 The model is able to explain more of the variance outside of 0.5 RMW for HUR 

and MHUR wind fields than NON wind fields, which may be expected since parametric 

models typically perform better for a well defined stronger system than a weaker TC. The 

magnitude of the biases and errors of the NON wind fields are lower than HUR and 

MHUR magnitudes. The amplified error near the eyewall for HUR and MHUR is likely a 

result of locally strong gradients in wind speeds, which would introduce uncertainty in 

the b parameter in H10. The larger errors in the surface winds near the inner circulation 

appear to have minor impact on the outer circulation. 

 In the NON wind fields the large area of low correlation coefficient near the 

center of circulation to 0.75 RMW suggest that the current methodology may not 

appreciate enough of the storm-relative asymmetries that often accompany a weak TC. 

These asymmetries may be a result of deep layer VWS or landfalling effects. Large errors 

occur inland after hurricanes make landfall and become weak, so land issues can cause 

asymmetries. VWS in the core region of a TC can have strong effects on the asymmetric 

structure of the eyewall region as well (Corborsiero and Molinari 2003).  

 To determine if VWS is a factor the CFAN algorithm should consider in its 

reconstructions, the wind fields were separated into low and high shear cases with the 

same analyses applied as above. Figure 3.10a shows the correlation coefficient for the 

low shear wind fields, which exhibited an average total variance outside 0.5 RMW 

explained of 95%. Figure 3.10b shows the correlation coefficient for the high shear wind 

fields, which explains an average total variance outside 0.5 RMW of 94%. The mean bias 

for the low shear cases is shown in Figure 3.11a, and the mean bias for high shear wind 

fields is shown in Figure 3.11b. The max mean bias at the RMW for both shear cases is 
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3.5 kts with a very similar average RMSE at the RMW (5.4 kts-low and 5.7 kts-high), as 

well (Figure 3.12a and b).  

To further assess the possible shear limitation, the average radius of the 10kt 

RMSE was determined for each case. The low shear average 10 kt RMSE radius was 

0.5953 RMW relative distance, and the high shear average 10 kt RMSE relative distance 

radius was 0.6197, which is a 0.0244 difference in RMW relative distance. As most of 

these qualities are similar and the structure of the errors between each case is alike, wind 

shear does not appear to be a major factor to explain the wind field asymmetry. However, 

two important aspects were not considered in this wind shear analysis. Cases with close 

proximity to landfall were not removed from the data set and a temporal requirement for 

the shear was not considered, which causes the analysis to assume the transition of the 

vortex from a symmetric to asymmetric system occurs instantaneously. A TC requires 

time to react to the shear’s effect, creating the asymmetry. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  36	  

a)                                                                   b) 

 
 
Figure 3.10: a) Correlation coefficients (shaded) between low shear CFAN wind field 
reconstructions and H*Wind analyses in radius of maximum winds relative distances. b) 
Similar to a) except high shear wind field reconstructions. 
 
 
 
a)                                                                      b) 

 
Figure 3.11: a) Mean bias (in kts; shaded) between low shear CFAN wind field 
reconstructions and H*Wind analyses in radius of maximum winds relative distances. b) 
Similar to a) except high shear wind field reconstructions. 
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a)      b) 

 
Figure 3.12: a) RMSE (in kts; shaded) between low shear CFAN wind field 
reconstructions and H*Wind analyses in radius of maximum winds relative distances. b) 
Similar to a) except high shear wind field reconstructions. 
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CHAPTER 4 

CONCLUSION 

 

 Accurately forecasting the surface wind distribution in terms of structure and 

intensity for tropical cyclones is essential to anticipating potential coastal and inland 

hazards and for developing more effective evacuation strategies.  This study has analyzed 

the CFAN surface wind field model, which is designed to generate high-resolution 2D 

surface winds for a tropical cyclones via a small set of wind radii information using the 

Holland et al. (2010) parametric wind model.  The CFAN wind fields were evaluated 

against the H*Wind surface wind analyses to determine how well the CFAN model 

reproduces the surface winds in a tropical cyclone and to identify potential limiting 

factors that may be affecting the model’s performance. This task was completed by 

comparing the CFAN and H*Wind model using the correlation coefficient, mean bias 

and RMSE.  A total of 1584 surface wind cases from 2004–2012 were considered.  The 

analysis considered how well the methodology reproduces the H*Wind analyses by 

conducting sensitivity analysis using varying resolution of initial input wind information, 

tropical cyclone type (NON, HUR and MHUR), and by the magnitude of vertical wind 

shear a TC experienced. Producing reconstructions with varying resolution of initial input 

wind information allowed for determining the minimum input wind resolution that is 

necessary to resolve on average the surface winds in a TC. 

 Results revealed that the CFAN surface wind field reproduction model explained 

most of the variability in the H*Wind wind fields meaning that it does an excellent job at 

reproducing TC wind fields outside of the center of circulation. The low variance within 
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0.25 RMW relative distances for all cases is consistent with the model treating the center 

of circulation as a point, whereas the center has a small, but finite lateral extent. For the 

resolution cases, 0.05° and 0.125° resolution input wind data was determined to be very 

suitable for generating correct high-resolution surface winds, and 0.25° input wind 

resolution data may utilized if a simple mean bias adjustment is also incorporated. The 

wind fields generated from 0.5° and 1.0° initial wind information did not perform well 

enough to be considered useful for accurate high-resolution TC wind field reproduction. 

This result means that if global model data is used to generate high-resolution wind 

fields, then the GFS and GEFS will need to be upgraded to finer spatial resolution before 

the CFAN wind field algorithm can be used to generate surface winds with high fidelity.  

Until these models are upgraded to finer resolution, one potential approach to generate 

reconstructions of the TC surface wind fields from these models would be to use other 

data sources for the location of the RMW and maximum winds, while using the coarse 

resolution data solely for the location of outer-wind radii. 

As with most parametric models, the CFAN algorithm performed better for 

stronger TCs (HUR and MHUR) than weak TCs (NON) due to stronger systems being 

more well defined and usually more symmetric. The errors that were seen in the HUR 

and MHUR cases were likely a result of locally strong gradients near the eyewall that 

influence the b parameter in H10. The asymmetry in the NON cases could have been a 

result of several issues including: landfall, whereby the wind field gradually broadens 

after a TC moves inland, wind shear-induced asymmetries, or other environmental 

influences.  In this analysis, one of these factors was considered by conducting a 

comparison of the surface wind distribution for low and high wind shear cases.  However, 
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the surface wind comparison conditioned on wind shear revealed that shear might not be 

a major limiting factor after all, although future work should remove the potential impact 

of landfall from this analysis and a temporal requirement should be included where the 

high shear must last at least 24 hours.  In summary, the CFAN wind model is capable of 

generating high-resolution TC wind fields with high fidelity if initial wind field 

information is available at least at 0.25o and for all storm types (except for asymmetries 

in NON cases). 

 The study did not cover the full scope of possible predictability limiting factors, 

so these issues need to continue to be analyzed. For the possibility of landfalling issues, 

wind fields where land occurs within 1 RMW from the center should be eliminated. It 

might be beneficial to also further break down the low and high shear cases by storm type 

as well, since this study only considered wind shear impacts across all storm types. Other 

limiting factors that should be assessed are the forecasts of the RMW, outer-wind radii, 

max intensity and track.  
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