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RAMAN SPECTRAL STUDIES OF POLYMORPHY IN CELLULOSE
PART 1: CELLULOSES I AND II

Rajai H. Atalla
INTRODUCTION

Variations in the supermolecular structure, which are known to
influence fiber properties in regenerated celluloses and synthetiecs, appear
o
to occur in native cellulose fibers as well. In the program of investiga-.
tion'of supermolecular structure currently underway, Raman spectroscopy has
been developed as the primary technique for exploring macromolecular confor-

mations. During the course of this development we have achieved some basic

new insights intoc the nature of the different polymorphs of cellulose.

Essentially we believe we have established that the most basic
difference between cellulose I (native) and cellulose II (mercerized or
regenerated) is that the molecules occur in different conformations. These
two conformations can be represented as small left- and right-handed departures
from the commonly assumed twofold helix structure. For any particular sample,
the distribution of molecules between the two conformations is dependent on

sample history.

The present paper focuses on celluloses I and II. Future papers in
this series will deal with celluloses III and IV, and with the influence of

temperature history on molecular conformation.

Work described in this report was included in papers presented at the 8th
Cellulose Conference in May 1975 and at the Symposium on Spectroscopic Studies
of Polysaccharides at the American Chemical Society Chicago meeting in August

1975.




Raman Spectral Studies of Polymorphy in Cellulose
Part 1: Celluloses I and II
By Rajai H. Atalla

The Institute of Paper Chemistry
Appleton, Wisconsin 54911

ABSTRACT
A

The Raman spectra of celluloses I and II have been investigated and
found to be quite sénsitive to the variation in polymorphic form. Spectra of
highly crystalline samples of forms I and II are quite distinct, particularly
in the low fréquency region. The features occurring between 800 and 1500 em™!,
which are due to methylene, methine and hydroxyl deformations as well as to
the skeletal and ring stretching vibrations, differ primarily in relative

intensities. In the region below 800 cm™!

., Where the domihant bands are due
to skeletal and ring bending and to torsional motions, common features are
very few. The differences between the spectra have been interpreted as

evidence for two different conformations of the molecular chains. This inter-

pretation has been supported by a theoretical analysis of the influence of

conformational variation on vibrational frequencies, and is consistent with

pub;ished potential energy mappings. The interpretation is also consistent
with changes in the spectra of related systems wherein conformational changes

are independently established.
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INTRODUCTION

Quite early in x-ray diffractometric studieé of cellulose it was
recognized that its crystallinity is polymorphic. It was established that
native cellulose, on the one hand, and both regenerated and mercerized
celluloses, on the'other, represent two distinct crystallographic polymorphs
(1).  Little has transpired since the early studies to change these basic
conclusions. There is, however, much less agreement regarding the structures
of the two forms. For example, Petitpas, et al. (2), on the basis of extensive
analyses of electron-density distributions from x-ray diffractometric measure-
ments, have suggested that the chain conformations are different in celluloses
I and II, whereas Norman (3) has interpreted the results of his equally com-
prehensive x-ray diffractometric studies in terms of similar conformations

for the two polymorphs.

'Perhapé more basic than the comparison of celluloses I and II,
the structure of the native form itself remains in question. Most recently,
for example, Blackwell and Gardner (4) have carried out an analysis of the
structure of Valonia cellulose aimed at resolving questions of relative polarity
of neighboring chains as well as the hydrogen bonding patterns; they assumed
conformations which poséess two-fold screw-axes as well as the P2; space
group. Hebert and Muller (5) on the other hand, in an electron diffraction
study of a number of celluloses, including Valonia, found no systematic
absences of 0kO reflections, and concluded that the unit cells do not fall
in space group P2;,. These are but the most recent instances of differing
interpretations, and are perhaps illustrative of the types of conflict which
earlier led both Jones (6), and Tonnessen and Ellefsen (7,8), in their respec-
tive reviews, to suggest that some basic questions concerning the structure

of cellulose remain unresolved.
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In efforts to resolve the uncertainties Rees and Skerrett (9) and, more
recently, Sarko and Muggli (10) have carried out potential energy calculations. |
Rees and -Skerrett examined cellobiose while Sarko and Muggli studied cellulose.
In both investigations the energies of the nonbonded interactions were summied -
up and their variation with the diﬂedfal angles at the glycosidic linkage
mapped.' In both instanées mﬁltiple minima were found and they were generally -
somewhat removed from the locus of two-fold helical conformations. Because
the minima were:rather shallow both s?udigs suggested tha? interchain packing
| energies_could more than'cqmpensate fér the energies favoring departures
from two-fold helical structures. Thﬁs the basic qﬁéstions regarding #he
structure of individual chaiﬁs remgiped unresolved.

‘ "The other investigative technique most often used for exploring
the 'structure of cellulose is inffared'spectrosdopy. The work of Liang and
Marchesault (11-13), which utilized measurements of dichroism in infrared
absorption of oriented specimens, led to proposal of a particular hydrogen-

bonding scheme. Here the differences between the spectra of celluloses I

|
and II were explained-in terms bf‘differencés in 'the packing of molecular
chains and associated variations in the hydrogen;bonding patterns; In another
application, infrared absorption measurements were used as the basis for
a crystallinity index by Nelson and d'Coﬁnof (14,15). 1In most of these appli-
cations one of the problems hés been the difficulty of minimizing scattering
losses, particularly in tﬁe‘low frequéncy region. In dealing with -native-

fibrous samples, where preservation of the morphology is desired, it becomes

|

|

necessary to resort to immersion in fluids of matching refractive index (16).
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Raman spectroscopy, which is the most'common:alternative fér investi-
gating molecular vibrations, has enjoyed a very significant growth in appliq-
ation since development of the use of lasers as exciting sources. Among
the new applications have been studies of many s&nthetic polymers (;17;2)
as well as of a number of biological systems.(gg)., The Raman spectrum of
Valonia cellulose has been reported by Blackwell, et al. (21), and interpreted

in relation to studies of the infrared spectra.

In the author's laboratory the Raman spectra of fibrous celluloses,
such as cotton, ramie, and high albha pulps, have been investigated; these
spectra, which are quite similar for the native forms, differ in significant
ways from the spectrum of Valonia. The appréach to interpretation of the
spectra has been based on studies of a number of classes of model compounds,
and on extensive characterization of the response of the spectra to polymorphic
variation, Preliminary accounts of some of the results have been
published (gg,gg). In the present report the differences between the spectra
of celluloses I and II, and, in particular, their implications concerning
molecular conformations, are considered in a more comprehensive manner. Some

results on the spectra of celluloses IIT and IV are also described.
EXPERIMENTAL

A variety of celluloses have been used in this study in native,
mercerized, and regenerated forms. The spectrum in Fig. 1 is for a sample of
Hercules chemical cotton (linters), used as received in sheet form. The samples
used for Fig. 2 were selected for their high crystallinity. The cellulose I
sample was regenerated by the procedure described in reference (gg). Its Raman
spectrum is very similar to those of highly crystalline native cellulosés; it

is used here because the spectral features are somewhat better resolved. The
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cel;ulose 11 is a low-d.p. sample, regenerated from phosphoriq_acid at room
temperature, chosen because of both its high crystéllinity and its very iow

level of residual cellglose Ii fhe spectra in Fig. 4 are for Whatﬁah CF-i
powdefz in the native form ana mercérized to different degfeés of conversion.

The spectyum_identified as II represents the maximum degree of conversion
attainable using the most concentrated NaOH solution. The mercerization Procedure
is described in detail elsewhere (2h). Both regenerated and mercerized samples
were freeze dried, after thg final washes in the respective preparations; and
then presséd into pellets which were used for both Réman and x-ray scattering
measurements. The pellets used for the data in Fig. 5 had TiO, added as an

internal standard; it is responsible for the sharp peak at 26 = 27.46°.

The Raman spectra were recorded on a Spgx Raman system using the 51%5 A
line of a coherent'Radiation 52 A laser fo; excitation. The spectrum in Fig. 1
was recorded gsing'scatteriﬁg at §O° to the incident feam. The spectra in Fig.
2 and 4 were recorded using ihe back-scattering (180°) mode. In most instances
the laser excited fluorescencé (25) deca&ed to acceptable levels in approxi-
mately 30 minutes. The x-?ayvdiffraction measurementé werelmade with a Nérelco

diffractometer utilizing nickel filtered copper K alpha radiation.
RESULTS AND DISCUSSION
PN A A A e A AT Nt

The Raman spectrum of a sample of chemical cotton, shown in Fig. 1,
is fairly typical of the spectra of fibrous native celluloses of relatively high
Crystallinity.‘ Almost identical spectra have been recorded for a microcrystal—l
line cellulosé from a high alpha pulp, for filter papers, and for a variety
of cotton samples, both as native fibers and as acid hydrolyzed powders.

The spectra of bleached kraft and sulphite pulps, which typically are less
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crystalline, are similar aléo'though the bands.are generally somewhat broadened.
In contrast, the bands are sharpef and more clearly resolved in the spectra

of ramie fibers, ﬁhicﬂ are relatively more crystalline. Experience with

many saﬁples for which both Raman sﬁectr&hand x—fay diffracfograms have been
recorded indicates that the sharper bands and more clearly resolved spectra

are usually correlated with a high level of crystallinity. The spectra of
Valonia cellﬁlose recorded in the present study, as well as that reported

by Blackwell, et al. (21), differ in a number of respects from those repre-

sented in Fig. 1.
[Fig. 1 here]

The spectra represented in Fig. 1 illustrate some of the advantages
of Raman spectroscopy in studies of cellulose. The relatively high intensity
and gﬁod resolution of the skeletal modes, and the absence of interference
from broad bands due to water, which are problematic in the infrared, reflect
the different bases for activity of molecular vibrations in Raman and infra-
red spectra. That is,vwhereas activity in the infrared region fequires finite
transition moments involving the permanent dipoles of bonds undergoing dis-
placement,‘activity in the Raman spécﬁrum requires finite traﬁsition moménts
involving the polarizability 6f the bénds; It is useful in this connection
to view bonds in terms of Pauling's classification along a scale between
the two extremes of polar and covalent (gg). Bonds which are highly polar
and possess relatively high dipole moments tend, when they undergo vibra-
tional vériations, to result in bands which are intense in the infrared and
relatively weak in Raman specﬁra. Conversely, bonds which are primarily
covalent in character and have a relativelylhigh polarizability, generally
result in bands which are intense in Réman spectra buf relatively weak in

the infrared. Thus, while the 0-H bonds, whether of cellulose itself or
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of adsorbed water,lare responéible for the dominant'spectral feaﬁureé in

the infrared, the skgletal and é—H vibrationé‘dominate the Raman spectra.

A further simplification in tﬁe Raman spectra results from the circumstance
that the selection rule'forbidding activity of ofertbne and combinaﬁidn bands

is generally more rigidly adhered to than in the infrared (gl).

Another important advantage is that scattering due to optical hetero-

geneity does not pose a serious problem except in the region below 200 cm™ !,

so that the spectra of fiber mats and, indeed, of individual fibers can,

and have been recorded. The extension to the region below 200 em ! is antici-

.pated in the near future.

Although it is not the object of the present study to examine the
assignments of the bands in the spectra it is important to note the classes of
internal motions associated with the different spectral features, particularly

in the regions below 1500 em~ !

which are the most sensitive to polymorphic
change. The bases for this discussion are our extensive investigations of
the vibrational specfra of model compounds wherein normal coordinate analyses
and force constant refinements have been carried out for a number of ciasses '
of closely related systems. These includé the 1,5-anhydro pentitols (27),
the pentitols and erythritol (29), the pentoses (30), and glucose (31).

Aithough thére are occasional variations in detail, certain general patterns

emerge, and fhése should, in most instances, be equally valid for cellulose.

In addition to the C-H and O-H stretching motions, which are much
above the frequency region of interest, the internal deformation of the methyl
group is the only vibration which closely approximates a group mode in the

usual sense; the HCH bend generally occurs above 1450 cm~!. The bands between
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1200 and 1450 qm‘l are due to modes involving considerable coupling of methine
bending, methylene rocking and wagging, and COH in-plane bending; these are
angle bending coordinates involving one bond to a hydrogen atom. Significant

contributions from ring stretching begin below 1200 cm !

, and thgse modes,
together with C-0 stretchiﬁé motions? dominate between 950 and 1150 cmfl.
Below 950 cm™! angle bending coordinates involving heavy atoms only (i.e.,
CCC, COC, OCC) begin to contribute, though ring and C-0 stretches.and the
external modes of the methylene groups may be the major components. The

! i5 dominated by the heavy atom bending, both

region between 400 and 700 cm™
C-0 and ring modes, although some ring stretching coordinates still make
minor contributions. In some instances O-H out-of-plane motions may contribute

in this region also. Between 300 and 400 cm™! the ring torsions make some

contribution, and below 300 cm~! they generally dominate.

In addition to the above generalizations concerning modes which occur
in one or another of the classes of model compounds investigated, the spectrum
of cellulose can have components due to modes centered at the glycosidic linkage.
Preliminary computations on cellobiose indicate that these modes are strongly
coupled with modes involving similar coordinates in the adjacent anhydroglucose

rings.

Conversion of cellulose from the.native (I) form to the mercerized or
regenerated (II) form has é dramatic effect on the Raman spectrum, particularly
in the low frequency region. The change is illustratea in Fig. 2, where
the Raman spectra of very high crystallinity samples of both forms are compared;
the x-ray diffractograms of the same samples are compared-in Fig. 3. Some )

1

changes occur in the region above 800 cm ', but these are most often changes
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in relative intensities of bands that are unchanged in frequency. In the

region below T00 cm™ !

» in contrast, the main features appear quite different
in the two spectra.

[Fig. 2 and 3 here]

Though the spectra shown in Fig. 2 were selected to illustrate
the extremes, similar changes are consistently observed in the spectrg of
native celluloses upon mercerization or regeneration at room temperature.
Typical results are shown in Fig. 4 where the spectra of samples of cellulose
powders mercerized to different degrees are cémpared; the corresponding x-
ray diffractograms are shown in Fig. 5. In‘Fig. 4 it is clear that the inter-
mediate spectra can be viewed as superposition§ of the spectra of I and II.
It is ‘also evident that for the completely mercerized sample, some of the
spectral features of cellulose I persist, suggesting that a residue of the
native form has resisted mercérization. This is an effect often noted in

past studies of mercerization, particularly with cotton celluloses.
[Fig. 4 and 5 here]-

In the analyses of the spectra of model compounds changes of the
magnitude indicated in Fig. 2 and 4 were usually assoéiated with the occurrence
of different conformations of a particular species. It seems very probéble,
therefore, that the AiffepenCes between the spectra of celluloses I and II
reflect a change in molecular conformation accompanying the transition from
one form to the other. Since thg basic ring structure is not expected to
change (ED it Would appear that variatiors of the dihedral angles at the glyco-
sidic linkage provide the only opportunity for conformational variation.
Because of.the controversy surrounding similar conclusions based on crystal-
lographic¢ studies, a numﬁer of experimental and theoretical avenues for

validating this interpretation have been pursued.
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The first consideration .was whether a multiplicity of stable con-
formations is consistent with the results of the conformétional potential
energy calculations cited earlier. In both studies (9,10) the potential
energy surfaces were found to possess multiple minima. When the additienal
constraint of a repeat length of approximately 5.15 A per anhydroglucose
unit is added, two minima, representing both left and right handed departures

from the two-fold helix, appear to be likely locii of stable conformations.

Next inquiry was made into the degree to which changes in the dihedral

angles about the bonds in the glycosidic linkage could influence the modes

of vibration responsible for the spectral features in the different regions
of the spectra. An adaptation of the matrix per;urbation treatment used

by Wilson, Decius and Cross (§g) to discuss the effects of isotopic substi-
tution was used to examine the consequences of variations in the dihedral
angles. Changes in the dihedral angles were found -to influence skeletal
stretching and bending modes primarily through changes in some of the corre-
sponding off-diagonal terms in the inverse kinétic energy matrix G. Examina-
tion of the general expressions for these terms (33) reveals that only one

of the four classes of terms which influence stretching is sensitive to the
dihédral angle, and it is a class representing stretch-bend interactions.

The iﬁteractions influencing the bending modes, in contrast, are more sensi-
tive to the dihedral angles. Among these, three of the four classes of bend-
bend interactions change with the dihedral angle; these are in addition to
the stretch-bend mode cited above, which would also influence the bending
modes. Finally, the majority of terms involving torsional coordinates are

sensitive to variations in the dihedral angles. These considerations lead

to the expectation that the skeletal bending and torsional modes will be
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altered to a greater degree than the skeletal stretching modes by any rotation
about the bonds in the glycosidic linkage. The changeé'notéd'in Fig. 2 and

4 are consistent with this expectation.

.Experimental validation of the-interpretation put forth above centered
on examination of the spectral manifestations of conformational change in
related oligomeric and polymeric systems where independent evidence concerning
conformational change is available. Although there are a number of biological
polymefs wherein conformational changes are known to result in changes in
the vibrational spectra (gg), thg systems considered in greatest detail in
the present instance were amylose and two of its cyclic oligomers, with primary

emphasis on the latter.

The o- and B-Schardinger dextrins are cyclic a-1l,k-oligomers of
anhydroglucose also often identified as cyclohexa- and cyclohepta-amylose.
Their struqtures differ in the dihedral angles about the bonds in the glycosidic
linkage which ére necessary to accomodate the different number of monomer
units. The Raman spectra of the 0- and B-dextrins are compared in Fig. 6.
Similar spectré have been reported by Cael, et al. (34); they are included
here to facilitate comparisons with the spectra of the celluloses. It is
evident from Fig. 6 fhét the differences between the two oligomers have
associated with them differences in the spectra which are relatively minor

above 800 cm !

while somewhat more pronounced in the region_dominated by
the skeletal bending and torsional modes. These differences are similar
in kind and distribution, though of lesser magnitude than the differences
between celluloses I and II shown in Fig. 2. It is also noted in this regard

that, in their studies of the spectra of amylose, Cael, et al. (34) found

that forms Va and Vh’ which are very similar in conformation but of different
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hydration, had almost identical spectra. In contrast, form B, which.is known
to have a distinctly different helix period, has.a spectrum which differs
frdm the spectra of the Vé and Vh forms to a degree approximating the differ-
ences between the a- and B-dextrins. Thus it seems clear that observations
of the changes in the spectra, which result from conformational changes in
the amyloses, are entirely consistent with the interpretation put forth ébove

for the differences between the spectra of celluloses I and II.
[Fig. 6 here]

Yet another experimental avenue to validating the interpretation
of spectral changes was based on examination of.solution spectra. In studies
of the model compounds it was found that aqueocus solutions wherein the solute
stays predominantely in the same conformation as in the solid state, have
spectra that are similar to those of the solid, though most of the bands
are somewhat broadened. When a number of conformations are probable in solution,
in contrast, new bands appear and, in many regions, fairly well resolved
bands give way to rather broad continua. In this light, the interpretation
of the spectra adopted above would require that dissolution of cellulose
bring aﬁout changes in its spectrum which are consistent with a range of
conformations. The spectrum of a rélatively low DP cellulose in near saturated
agueous calcium chloride showed the anticipated changes. In the region below
700 cm~! the features merged into a broad envelope, while above 800 cm™?
some of the features common to spectra of celluloses I and II persisted,
though somewhat broadened. The speétrum of the cellulose so%ution, to be

discussed in detail elsewhere, thus provides confirmation of the sensitivity

of the Raman spectrum to cénformational change.
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In summary then,. both theoretical considerations and experimental
observations support the view that the differences between the spectra of
celluloses I and II are due to the existence of fhe molecules in two distinct
conformations in the two polymorphic forms. Before examining some important

implications of this conclusion it is well to address briefly the question

‘whether differences of the magnitude observed can be explained, as they have.

been in the case of the infrared spectra, in terms of differences.in molecular
packing and in hydrogen-bonding patterns. A ngmber of considerations make
fhis‘gnlikely. As néted earlier, the dominant bands in thé Raman spectrum
are.due to'skeletal modes., In the>absence of conformatiénal changes such
modes tend to be qﬁite insensitive to changes in hydrogen-bonding patterns
(3_).A StﬁQies oﬂ the dissolution of model compounds generally confirm this
tenaency.- Be&ond those, howevér, the Raman spectra of the amyloses indicate
that changes in hydrgtion, as in the transition from form Va to fofm Vh’

or as invthe dissolution of the a-dextrin, result in'relativeli minorlchangeé
in the sfructure.of the speéfra in spite of what mﬁst be significaht changes

in hydrogen bonding.

Nor is it likely that rotation of the CH,O0H group can result in
the changes noted in Fig. 2. Calculations on glucose indicate that such
rotation would cause more limited spectral changes, and these predominantly

above 600 ém_l (36).

It was noted earlier that the potential energy calculations, when
taken together with the constraint of a repeat period of 5.15 A, suggest
two locii likely to represent stable conformations. The spectra of celluloses
I and II when viewed in light of the considerations presented above, now

appear convincing evidence that the cellulose molecule possesses two stable
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conformations. Both the potential energy calculations and the spectra, however,

allow only two stable conformations. An important implication,.which at the

same time provides the most severe test of the interpretation, is that these
same two conformations must prevail in all polymorphié forms of cellulose

--in which the chains are ordered to any degree. Thus examination of the Raman
spectra of celluloses III and IV can lead to further validation of the interpre-

tation put forth above.

The Raman spectra of both celluloses III and IV have been investigated;
the results will be reported in detail in part II of this series. The maj@r
finding, and the one most relevant to the present study, is that the spéctra
of both forms are in essence superpositions of the spectra of celluloses
I and II. In every instance the major distinguishable features are characteristic
0of I or II, and the variations of rélative intensities are such that the
spectra appear to be linear supérpositions of the spectra of forms I and
II., Indeed some spectra of both-III and IV are almost indistinguishable

from the spectra of suitably chosen samples of partially converted cellulose II.

It seems clear that the studies on celluloses III and IV confirm
the interpretation in terms of two and only two stable linear conformations.
They also provide further évidence concerning the relatively minor influence
of hydrogen~bonding on the Raman spectra, as it is probable that forms III

and IV represent different packing modes for the linear chains.
CONCLUSIONS

The primary conclusion of the present investigation is that the
molecular chains in celluloses I and II possess conformations which are dif-

ferent and distinct. This conclusion was developed, in the first instance,
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from comparison of the response of the Raman spectrum to conversion from

" one form to another with the spectra of model compounds. It was further

validated by conSideratiop, in a theoretical analysis, of the effects of
conformational qhange on the vibrational modes, by éomparison with the spectra
of different forms of amylose and its oligoﬁérs, and by examination of the
response of the spectra to.dissolution. When this conclusion is viewed in
light of published mapﬁings of the potential energy as a function of dihedral
angles at the'glycosidic linkage, together with fhe constraint of a repeat
disténce of gpproximately 5.15 A per anhydroglucose unit, it emerges that

only two stable conformations are possible. These can be represented as

small left- and right-handed departures from the two-fold helix structure;
that they are relatively small departures may account for approximate adherence
of some x-ray and electron diffraction patterns to selection rules of group

P2,.

The important implication of the conclusion that only two conforma-
tions are stable is that these same conformations must prevail in the other
polymorphic forms of cellulose. The Raman spectra of celluloses III and

IV are consistent with this expectation.
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Figure 3. X-ray diffractograms of samples in Fig. 2




soax8op Fuilisa 09
‘uotjezTIsoIom Aq ‘potIoAucd Jspmod 2s0TNTTSO JO BIj0ads usmey ‘*f aInItd

W2 "YIGANN  IAVM

om_vw on_vv omvm OA_uw oo_o_ omm_ OO_.v_

1




Figure 5.

X-ray diffractograms of samples in Fig. 4
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