
Mimesis Aegis: A Mimicry Privacy Shield

A System’s Approach to Data Privacy on Public Cloud

Billy Lau, Simon Chung, Chengyu Song, Yeongjin Jang, Wenke Lee, and Alexandra Boldyreva

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332

{billy, pchung, csong84, yeongjin.jang, wenke, sasha.boldyreva}@cc.gatech.edu

Abstract
Users are increasingly storing, accessing, and ex-

changing data through public cloud services such as
those provided by Google, Facebook, Apple, and Mi-
crosoft. Although users may want to have faith in cloud
providers to provide good security protection, the Snow-
den exposé is the latest reminder of the reality we live in:
the confidentiality of any data in public clouds can be vi-
olated, and consequently, while the providers may not be
“doing evil”, we can not and should not trust them with
data confidentiality.

To better protect the privacy of user data stored on the
cloud, in this paper we propose a privacy-preserving sys-
tem called Mimesis Aegis (M-Aegis) that is suitable for
mobile platforms. M-Aegis is a new approach to user
data privacy that not only provides isolation but also pre-
serves user experience, through the creation of a concep-
tual layer called Layer 7.5 (L-7.5), which is interposed
between the application (Layer 7) and the user (Layer 8).
This approach allows M-Aegis to implement a true end-
to-end encryption of user data with three goals in mind:
1) complete data and logic isolation from untrusted enti-
ties; 2) the preservation of original user experience with
target apps; and 3) applicable to a large number of apps
and resilient to updates.

In order to preserve the exact application workflow
and look-and-feel, M-Aegis uses L-7.5 to put a trans-
parent window on top of existing application’s GUIs to
both intercept plaintext user input before transforming
the input (if necessary) and feeding it to the underlying
app, and reverse-transform (if necessary) the output data
from the app before displaying the plaintext data to the
user. This technique allows M-Aegis to transparently in-
tegrate with most cloud services without hindering us-
ability and without the need for reverse-engineering. We
implemented a prototype of M-Aegis on Android and
show that it can support a number of popular cloud ser-
vices, e.g. Gmail, Facebook Messenger, WhatsApp, etc.

Our performance evaluation and user study show that

users incur minimal overhead in adopting M-Aegis on
Android: imperceptible encryption/decryption latency
and very low and adjustable false positive rate when
searching over encrypted data.

1 Introduction

As a result of the growth in cloud computing and mobile
technology, today we witness a continuously increasing
number of users who utilize mobile devices [2] to inter-
act with public cloud services (PCS) (e.g. Gmail, Out-
look, and WhatsApp) as an essential part of their daily
lives. Generally, while the user’s connectivity to the In-
ternet is improved, the problem of preserving data pri-
vacy in the interaction with PCS is yet unsolved. In
fact, news about the US government’s alleged surveil-
lance programs reminds everybody about a very unsatis-
factory status quo: while PCS are essentially part-of-life,
the default way of utilizing them exposes users to privacy
breaches, because it implicitly requires the users to trust
the PCS providers with the confidentiality of their data,
and thus their privacy; but such trust truly is unjustified,
if not misplaced. Incidents that demonstrate the breach
of this trust are easy to come by: 1) PCS providers are
bounded by law to share their users’ data with surveil-
lance agencies [14], 2) it is the business model of the
PCS providers to go through their users’ data and share it
with third parties [11, 22, 25, 44], 3) operator errors [38]
can result in unintended data access, and 4) data servers
can be compromised by attackers [51].

To alter this undesirable status quo, solutions should
be built based on an updated trust model of everyday
communication that better reflects the reality of threats
mentioned earlier. In particular, new solutions must first
assume PCS providers to be untrusted. This implies that
all other entities that are controlled by the PCS providers,
including the apps that users installed to engage with the
PCS, must also be assumed untrusted.

Although there are a plethora of apps available today

1

that comes in various combinations of look-and-feel and
features, we observed that for a large class of these apps
that provides text communication services (e.g. email
or private/group messaging categories), users can still
enjoy the same quality of service1 without needing to
reveal their plaintext data to the PCS providers. PCS
providers are essentially message routers that can func-
tion normally without needing to know the content of the
messages being delivered, analogous to postmen deliver-
ing letters without needing to learn the actual content of
the letters.

Hence, in theory, applying end-to-end encryption
(E2EE) without assuming trust in the PCS providers
seems to solve the problem. However, in practice, the
direct application of E2EE solutions onto the mobile
device environment is more challenging than originally
thought [68, 62]. A good solution must present clear
advantages to the entire mobile security ecosystem, in
particular accounting for these factors: the users’ ease-
of-use, hence acceptability and adoptability; the devel-
opers’ efforts to maintain support, and the feasibility and
deployability of solution on the mobile system. From this
analysis, we formulate three key challenges that must be
addressed coherently:

1. For a solution to be secure, it must be prop-
erly isolated from untrusted entities. It is obvi-
ous that E2EE cannot protect data confidentiality
if the plaintext data or even the encryption key can
be compromised by architectures that risk exposing
these values. Traditional solutions like PGP [15]
and newer solutions like Gibberbot [5], TextSe-
cure [12], and SafeSlinger [45] provide good iso-
lation property, but force users to use custom apps,
which can cause usability problems (refer to (2)).
Solutions that repackage/rewrite existing apps to in-
troduce additional security checks [71, 30] do not
have this property (further discussed in Sect. 2.3).
Solutions in the form of browser plugins/extensions
also do not have this property (further discussed in
Sect. 2.2), and they generally do not fit into the mo-
bile security landscape because besides the fact that
mobile browsers do not support extensions [7], mo-
bile device users simply do not favor using mobile
browsers [31] to access PCS. Therefore, we rule out
conventional browser-extension/plugin-based solu-
tions.

2. For a solution to be adoptable, it must preserve the
user experience. We posit that users will not accept
solutions that require them to switch between dif-
ferent apps to perform their daily tasks. Therefore,
simply porting solutions like PGP to mobile plat-
form would not work, because besides forcing users

1the apps’ functionalities and user experience are preserved

to use a separate and custom app, it is impossible
to recreate the richness and unique user experience
of all existing email apps offered by various PCS
providers today. In the context of mobile devices,
PCS nowadays are competing for market share not
only by offering more reliable infrastructure to fa-
cilitate user communication, but also by offering a
better user experience [16, 61]. Ultimately, users
will choose apps that they feel most comfortable
with. To reduce interference with the user’s interac-
tion with the app of their choice, security solutions
must be retrofittable to existing apps. Solutions that
repackage/rewrite existing apps have this criterion.

3. For a solution to be sustainable, it must be easy to
maintain and scalable: the solution must be suffi-
ciently general-purpose, require minimal efforts to
support new apps and withstand app updates. In the
past, email was one of the very few means of com-
munication. Protecting it is relatively straightfor-
ward because email protocols (e.g. POP and IMAP)
are well defined. Custom privacy-preserving apps
can therefore be built to serve this need. However,
with the plethora of PCS that are becoming indis-
pensable in a user’s everyday life today, a good so-
lution should also be able to integrate security fea-
tures to apps without requiring reverse engineer-
ing the apps’ logic and/or network protocols, which
are largely undocumented and possibly proprietary
(e.g. Skype, WhatsApp, etc.).

In this paper, we introduce Mimesis Aegis (M-Aegis),
a privacy-preserving system that “mimics” the look and
feel of existing apps to preserve their user experience
and workflow on mobile devices, without changing the
underlying OS or modifying/repackaging existing apps.
M-Aegis achieves the design goals by operating at a con-
ceptual layer we call Layer 7.5 (L-7.5) that is positioned
above the existing application layer (OSI Layer 7 [8]),
and interacts directly with the user (popularly labeled as
Layer 8 [19, 4]).

From a system’s perspective, L-7.5 is a transparent
window in an isolated process that interposes itself be-
tween Layer 7 and 8. The interconnectivity between
these layers is achieved using the accessibility frame-
work, which is available as an essential feature on mod-
ern operating systems (OS). Note that utilizing accessi-
bility features for unorthodox purposes have been pro-
posed by prior work [59, 52] that achieve different goals.
L-7.5 extracts the GUI information of the app below it
through the OS’s user interface automation/accessibility
(UIA) library. Using this information, M-Aegis is then
able to “proxy” user input by rendering its own GUI
(with a different color as visual cue) and subsequently
handle those input (e.g. to process plaintext data or in-
tercept user button click). Using the same UIA library,

2

L-7.5 can also programmatically interact with various UI
components of the app below on behalf of the user (re-
fer to Sect. 3.3.2 for more details). Since major software
vendors today have pledged their commitment towards
continuous support and enhancement of accessibility in-
terface for developers [9, 20, 6, 1], our UIA-based tech-
nique is applicable and sustainable on all major plat-
forms.

From a security design’s perspective, M-Aegis pro-
vides two privacy guarantees during a user’s interaction
with a target app: 1) all input from the user first goes to
L-7.5 (and be optionally processed) before being passed
to the app. This means that confidential data and user
intent can be fully captured; and 2) all output from the
app must go through L-7.5 (and be optionally processed)
before being displayed to the user.

From a developer’s perspective, accessing and inter-
acting with a target app’s UI components at L-7.5 is very
similar to that of manipulating the DOM tree of a web
app using Javascript. However, one major difference is
that DOM tree manipulation only works for browsers,
but UIA works for all apps on a platform. To track the
GUI of an app, M-Aegis relies on resource id names
available through the UIA library. Therefore, M-Aegis
is resilient to updates that change the look and feel of the
app (e.g. GUI position or color). It only breaks when the
resource id names are changed, which, through empirical
evidences, are very rare occasions. Even if such a case
happens, a very minimal effort is required to rediscover
the resource id names and remap them to the logic in
M-Aegis. From our experience so far, our solution does
not require developer attention across a few minor app
updates.

From a user’s perspective, M-Aegis is visible as an
always-on-top button. When it is turned on, users will
perceive that they are interacting with the original app in
plaintext mode. The only difference is the GUI of the
original app will appear in a different color to indicate
that protection is activated. This means that subtle fea-
tures that contribute towards the entire user experience
such as spellcheck and in-app navigation are also pre-
served. However, despite user perception, the original
app actually never receives the plaintext data. Figure 1
gives a high level idea of how M-Aegis creates an L-
7.5 to protect user’s data privacy when interacting with
Gmail.

For users who would like to protect their email com-
munications, they will also be concerned if encryption
will affect the ability to search, because it is very im-
portant to improve user productivity [67]. For this pur-
pose, we designed and incorporated a new searchable
encryption scheme named easily-deployable efficiently-
searchable symmetric encryption scheme (EDESE) into
M-Aegis that allows search over encrypted content with-

Figure 1: This diagram shows how M-Aegis uses L-7.5
to transparently reverse-transform the message “dead-
beef” into “Hi there”, and also allow user to enter their
plaintext message “Hello world” into M-Aegis’s text
box. To the user, the GUI looks exactly the same as the
original app. When the user decides to send it out, the
“Hello world” message will be transformed and relayed
to the underlying app.

out any server-side modification. We briefly discuss the
design considerations and security concerns involved in
supporting this functionality in Sect 3.3.4.

As a proof of concept, we implemented a prototype
M-Aegis on Android that protects user data when in-
terfacing with text-based PCS. M-Aegis supports email
apps like Gmail and messenger apps like Google Hang-
out, WhatsApp, and Facebook Chat. It protects data pri-
vacy by implementing a true E2EE without trusting PCS
apps by operating at L-7.5 while preserving the user ex-
perience and workflow of the target apps. We also im-
plemented a version of M-Aegis on desktop to demon-
strate the generality of our approach. Our initial perfor-
mance evaluation and user study show that users incur
minimal overhead in adopting M-Aegis on Android: im-
perceptible encryption/decryption latency and very low
and adjustable false positive rate when searching over
encrypted data.

In summary, these are the major contributions of this
work:

• We introduced Layer 7.5 (L-7.5), a conceptual layer
that directly interacts with users on top of existing
apps. This is a novel system approach that provides
seemingly contrasting features: transparent interac-
tion with a target app and strong isolation from the
target app.
• We designed and built Mimesis Aegis based on the

concept of L-7.5, a system that preserves user’s pri-

3

vacy while interacting with PCS by protecting data
confidentiality. Essential functionalities of existing
apps, especially search (even over encrypted data),
are also supported without any server-side modifi-
cation.
• We implemented two prototypes of Mimesis Aegis,

one on Android and the other on Windows, with
support for various popular public cloud services,
including Gmail, Facebook Messenger, Google
Hangout, WhatsApp, and Viber.
• We designed and conducted a user study that

demonstrated the acceptability of our solution.

The rest of the paper is structured as follows. Sec-
tion 2 compares our work from related work. Section 3
discusses the threat model and the design of M-Aegis.
Section 4 presents the implementation of M-Aegis and
the challenges we solved during the process. Section 5
presents performance evaluations and user study of the
acceptability of M-Aegis on Android. Section 6 dis-
cusses limitations of our work and answers some com-
mon questions that readers may have about our system.
Section 7 discusses future work and concludes our work.

2 Related Work

Since M-Aegis is designed to achieve the three design
goals described earlier while seamlessly integrating end-
to-end encryption into user’s communication, we discuss
how well existing works achieve some of these goals and
how they differ from our work. As far as we know, there
is no existing work that achieves all the three necessary
design goals.

2.1 Standalone Solutions

There are many standalone solutions that aim to protect
user’s data confidentiality. Solutions like PGP [15] (in-
cluding S/MIME [41]), Gibberbot [5], TextSecure [12],
SafeSlinger [45], and FlyByNight [58] provides secure
messaging and/or file transfer through the encryption of
user data. These solutions provide good isolation prop-
erty from untrusted entities. However, since they are de-
signed as standalone custom apps, they do not preserve
user experience, requiring users to adapt to new work-
flow on a custom app. More importantly, these solutions
are not retrofittable to existing apps on the mobile plat-
form.

Like M-Aegis, Cryptons [40] introduced a similarly
strong notion of isolation through its custom abstrac-
tions. However, Cryptons assumes a completely differ-
ent threat model in that it assumes PCS to be trusted and
thus requires both server and client (app) modifications,

of which our work does not. Essentially, Cryptons fo-
cuses on a problem that is different from M-Aegis. For
example, Cryptons definitely could not protect a user’s
communication using existing messaging apps while as-
suming the provider to be untrusted. We also argue that
it is non-trivial to modify Cryptons to achieve the three
design goals we mentioned in Sect. 1.

2.2 Browser Plugin/Extention Solutions
Other solutions that focus on protecting user privacy in-
clude Cryptocat [3], Scramble! [25], TrustSplit’s [44],
NOYB (None of Your Business) [50], and SafeBut-
ton [57]. Some of these assume different threat mod-
els, and achieve different goals. For example, NOYB
protects user’s Facebook profile data while SafeButton
tries to keep the user’s browsing history private. Most
of these solutions try to be transparently integrated into
user workflow. However, since these solutions are mostly
based on browser extension/plugins, they are not applica-
ble to the mobile platform other than having questionable
data isolation models.

Additionally, Cryptocat and TrustSplit require new
and/or independent service providers to support their
functionalities. However, M-Aegis works with the exist-
ing service providers without assuming trust or requiring
modification to the servers.

2.3 Repackaging/Rewriting Solutions
There is a category of work that repackages/rewrites an
app’s binary to introduce security references, such as
Aurasium [71], Dr. Android [53], and others [30]. Our
solution is similar to these approaches in that we can
retrofit our solutions to existing apps and still preserve
user experience, but is different in that M-Aegis’ cov-
erage is not limited to apps that do not contain native
code. Also, repackaging-based approaches suffer from
the problem that it will break app updates. In some cases,
the security of such solutions can be circumvented be-
cause the isolation model is unclear, i.e. the untrusted
code resides in the same address space as the reference
monitor (e.g. Aurasium).

2.4 Orthogonal Work
Although our work focuses on user interaction on mo-
bile platform with cloud providers, we assume a very
different threat model than those that focus on more ro-
bust permission model infrastructure and those that focus
on controlling/tracking information flow, such as Taint-
Droid [42] and Airbag [70]. These solutions require
changes to the underlying app, framework or the OS, but
M-Aegis does not.

4

Access Control Gadgets (ACG) [60] uses user input as
permission granting intent to allow apps to access user
owned resources. Although we made the same assump-
tions as ACG to capture authentic user input, ACG is de-
signed for a different threat model and security goal than
ours. Further, ACG requires a modified kernel but M-
Aegis does not.

Persona [24] presents a completely isolated and new
online social network that provides certain privacy and
security guarantees to the users. While related, it differs
from the goal of M-Aegis.

Frientegrity [47] and Gyrus [52] focus on different as-
pects of integrity protection of the user’s data.

Tor [39] is well known for its capability to hide a user’s
IP address while browsing the Internet. However, it fo-
cuses on anonymity guarantees while M-Aegis focuses
on data confidentiality guarantees.

Off-the-record messaging (OTR) [34] is a secure com-
munication protocol that provides perfect forward se-
crecy and malleable encryption. While OTR can be im-
plemented on M-Aegis using the same design architec-
ture to provide these extra properties, it is currently not
the focus of our work.

3 System Design

3.1 Design Goals

In this section, we formally reiterate the design goals that
our system wants to achieve. We posit that a good solu-
tion must:

1. offer good security by applying strong isolation
from untrusted entities (defined in Sect. 3.2).

2. preserve user experience by allowing user a trans-
parent interaction with existing apps.

3. be easy to maintain and scale by devising a suffi-
ciently general-purpose approach.

Above all, these goals must be satisfied within the
unique set of constraints found in the mobile platform,
including user experience, transparency, deployability,
and adoptability factors.

3.2 Threat Model

3.2.1 In-Scope Threats

We begin with the scope of threats that M-Aegis is de-
signed to protect against. In general, there are three par-
ties that pose threats to the confidentiality of users’ data
exposed to public cloud through mobile devices. There-
fore, we assume these parties to be untrusted in our threat
model:

• Public cloud service (PCS) providers. Sensitive
data stored in the public cloud can be compromised
in several ways: 1) the PCS providers are com-
pelled by the law [21] to provide access to user’s
sensitive data to law enforcers [14]; 2) the business
model of the PCS providers provides strong incen-
tive for them to share/sell the data with third par-
ties [11, 22, 25, 44]; 3) PCS administrators who
have access to the sensitive data may also com-
promise the data, either intentionally (e.g., Edward
Snowden) [14] or not [38]; and 4) vulnerabilities of
the PCS can be exploited by attackers to exfiltrate
sensitive data [51].
• Client-side apps. Since client-side apps are devel-

oped by the PCS providers to allow user to access
their services, it follows that these apps are consid-
ered untrusted too.
• Middle boxes between the PCS and the client-

side app. Finally, sensitive data can also be
compromised when it is transferred between the
PCS and the client-side app. Incorrect proto-
col design/implementation may allow attackers to
eavesdrop on plaintext data or perform man-in-the-
middle attacks [43, 18, 13].

M-Aegis addresses the above threats through isolation
by first creating L-7.5 of which it would handle and apply
end-to-end encryption (E2EE) on user private data. We
consider the following components as our trusted com-
puting base (TCB): the hardware, the operating system
(OS) and the framework that controls and mediates ac-
cess to hardware. In the absence of physical input de-
vices (e.g. mouse and keyboard) on mobile devices, we
additionally trust the soft keyboard to not leak what user
have typed using the soft keyboard to the untrusted apps.
We rely on the TCB to correctly handle I/O for M-Aegis,
and to provide the proper isolation between M-Aegis and
the untrusted components.

Additionally, we also assume that all the components
of M-Aegis, including L-7.5 that it creates, are trusted.
The user is also considered trustworthy under our threat
model in his intent. This means that he is trusted to turn
on M-Aegis when he wants to protect the privacy of his
data during his interaction with the PCS.

3.2.2 Out of Scope Threats

Our threat model does not consider the following types of
attacks. First, M-Aegis only guarantees the confidential-
ity of the user’s data, but not its availability. Therefore,
attacks that deny access to the data (denial-of-service)
either at the server or the client are beyond the scope
of this work. Second, any attacks against our TCB are
orthogonal to this work. Such attacks include, but not
limited to malicious hardware [56], attacks against the

5

hardware [69], the OS [54], the platform [66] and privi-
lege escalation attacks (e.g. unauthorized rooting of de-
vice). However, note that M-Aegis can be implemented
on a design that anchors its trust on trusted hardware
and hypervisor (e.g. Gyrus [52], Storage Capsules [33])
to minimize the attack surface against TCB. Third, M-
Aegis is designed to prevent any direct flow of informa-
tion from authorized user to aforementioned untrusted
entities. Hence, leakages through all side-channels [65]
are beyond the scope of this work.

Since the user is assumed to be trustworthy under our
threat model to use M-Aegis correctly, M-Aegis does not
protect user against social engineering based attacks. For
example, phishing attacks to trick users into either turn-
ing off M-Aegis and/or entering sensitive information
into unprotected UI are beyond the scope of our paper.
Instead, M-Aegis deploys best-effort by coloring the UI
components in L-7.5 differently from that of the app’s
UI.

The other limitations of M-Aegis, which are not secu-
rity threats, are discussed in Sect. 6.2.

3.3 M-Aegis Architecture

M-Aegis is architected to fulfill all of the three design
goals mentioned in Sect. 3.1. Providing strong isolation
guarantees is the first one. To achieve this, M-Aegis is
designed to execute in a separate process although it re-
sides on the same operating system (OS) as the target
client app (TCA). Besides memory isolation, the filesys-
tem of M-Aegis is also shielded from other apps by the
OS’ app sandbox protection.

Note that our architecture is flexible in that should
greater degree of isolation be desirable, a virtual machine
based setup can be adopted to provide even stronger se-
curity guarantees. However, we do not consider such de-
sign at this time as it is currently unsuitable for mobile
platform, and the adoption of such technology is beyond
the scope of our paper. In the following, we describe the
main components that make up M-Aegis.

3.3.1 Layer 7.5 (L-7.5)

M-Aegis creates a novel and conceptual layer called
Layer 7.5 (L-7.5) to interpose itself between the user
and the TCA. This allows M-Aegis to implement a true
end-to-end encryption (E2EE) without ever exposing the
plaintext data to the TCA, which is considered untrusted,
while maintaining the TCA’s original functionalities and
user experience, fulfilling the second design goal. L-7.5
is built by creating a transparent window that is always-
on-top. This technique is advantageous in that it provides
a natural way to handle user interaction, thus preserv-
ing user experience without the need to reverse-engineer

the logic of TCAs or the network protocols used by the
TCAs to communicate with their respective cloud service
backends, fulfilling the third design goal.

There are basically three cases of user interactions
to handle. The first case considers interactions that do
not involve data confidentiality (e.g. deleting or rela-
beling email). Such input do not require extra process-
ing/transformation and can be directly delivered to the
underlying TCA. Mimic-GUIs for display such as that
on the left in Fig. 2 are examples for this case. Such
click-through behavior is a natural property of transpar-
ent windows, and helps M-Aegis maintain the fluency in
user interaction.

The second case considers interactions that involve
data confidentiality (e.g. entering message or searching
encrypted email). Such input requires extra processing
(e.g. encryption and encoding operations). For such
cases, M-Aegis places opaque GUIs that “mimics” the
GUIs on the TCA, which are purposely painted in dif-
ferent colors for two reasons: (a) as a placeholder for
user input so that it does not leak to the TCA, and (b)
for user’s visual feedback. Mimic-GUIs for the subject
and content as seen in Fig. 3 are examples for this case.
Since L-7.5 is always on top, this provides the guarantee
that user input always goes to the mimic-GUIs instead of
those of the TCA’s.

The third case considers interactions with control
GUIs (e.g. clicking on send buttons). Such input re-
quires user action to be “buffered” while the input in the
second case is being processed before being relayed to
the actual control GUI. For such cases, M-Aegis creates
semi-transparent mimic-GUIs that register themselves to
absorb/handle user clicks/taps. Again, these mimic GUIs
are painted with a different color to provide visual cue to
the user. Examples of these include the purple search
button in the left figure in Fig. 2 and the purple send but-
ton in Fig. 3. Note that our concept of intercepting user
input is similar to that of ACG’s [60] in capturing user
intent, but our application of user intent differs.

3.3.2 UIA Manager (UIAM)

To be fully functional, there are certain capabilities that
M-Aegis requires but are not available to normal apps.
First, although M-Aegis itself is confined within the OS’
app sandbox, it must be able to figure out which TCA the
user is currently interacting with. This is important so
that the specific logic to handle the TCA can be properly
invoked. Additionally, this is important to help M-Aegis
clean up the screen when the TCA is terminated. Second,
M-Aegis requires information about the GUI layout for
the TCA it is currently handling. This allows M-Aegis to
properly render mimic GUIs on L-7.5 to intercept user
I/O. Third, although isolated from the TCA, M-Aegis

6

Figure 2: The figure on the left illustrates how user perceives the Gmail preview page when M-Aegis is turned on. The
figure on the right illustrates the same scenario but with M-Aegis turned off. Note that the search button is painted
with a different color on M-Aegis is turned on.

must be able to communicate with the TCA to maintain
functionality and ensure user experience is not disrupted.
For example, for user input, it must be able to relay user
clicks to the TCA, and eventually send encrypted data
to the TCA, and click on TCA’s button on behalf of the
user; for output on screen, it must be able to grab the ci-
phertext so that we can decrypt it and then render it on
L-7.5.

M-Aegis extracts certain features from the underly-
ing OS’s accessibility framework, which are exposed
to developers in the form of User Interface Accessibil-
ity/Automation (UIA) library. We are then not only able
to know which TCA is currently executing, but we can
also query the GUI tree of the TCA to get detailed in-
formation about how the page is being laid out (e.g. lo-
cation, size, type, and resource-id of the GUIs). More
importantly, we are able to get the information about the
content of these GUI items.

Exploiting UIA is advantageous to our design as com-
pared to other methods of grabbing information from the
screen, e.g. OCR. Besides having perfect content accu-
racy, our technique is not limited by screen size. For
example, even though the screen size may prevent full
text to be displayed, the UIAM is still able to grab the
text in its entirety through the UIA libraries, allowing us
to comfortably apply decryption to the ciphertext.

We thus wrap around all these capabilities and advan-
tages to build a crucial component of M-Aegis called the
UIA manager (UIAM).

3.3.3 Per-TCA Logic

M-Aegis can be extended to support many TCAs. For
each TCA of interest, we build a per-TCA logic as an
extension module. Basically, the per-TCA logic is re-
sponsible to render the specific mimic-GUIs according
to information it queries from the UIAM. Therefore, the
per-TCA logic is responsible for handling direct user in-
put. Specifically, it decides whether the user input will
be directly passed to the TCA or be encrypted and en-
coded before doing so. This ensures that the TCA never
obtain the plaintext data while user interaction is still in
plaintext mode. The per-TCA logic also intercepts but-
ton clicks so that it can then instruct UIAM to emulate
the user’s action on the button on the underlying TCA.
Besides that, the per-TCA logic also decides which en-
cryption and encoding scheme to use according to the
type of TCA it is handling. For example, encryption and
encoding schemes for handling email apps would differ
from that of messenger apps.

3.3.4 Cryptographic Module

M-Aegis’ cryptographic module is responsible for pro-
viding encryption/decryption and cryptographic hash ca-
pabilities to support our searchable encryption scheme
(described in detail later) to the per-TCA logic the so
that M-Aegis can transform/obfuscate messages through
E2EE operations. Besides standard cryptographic prim-
itives, this module also includes a searchable encryp-
tion scheme to support search over encrypted email that
works without server modification. Since the discussion
of any encryption scheme is not complete without en-

7

cryption keys, key manager is also a part of this module.
Key Manager. M-Aegis has a key manager per TCA

that manages key policies that can be specific to each
TCA according to user preference. The key manager
supports a range of schemes, including simple password-
based key derivation functions to derive symmetric keys
(that we assume to be shared out of band), which we
currently implement as default, to more sophisticated
PKI-based scheme for users who prefer stronger secu-
rity guarantees and do not mind the additional key set-up
and exchange overheads. However, the discussion about
the best key management/distribution policy is beyond
the scope of this paper.

Searchable Encryption Scheme (EDESE). There
are numerous encryption schemes that support keyword
search [49, 64, 48, 35, 37, 32, 55]. These schemes ex-
hibit different tradeoffs between security, functionality
and efficiency, but all of them require modifications on
the server side. Schemes that make use of inverted in-
dex [37] are not suitable, as updates to inverted index
cannot be practically deployed in our scenario.

Since we cannot assume server cooperation (con-
sistent with our threat model in Sect. 3.2), we de-
signed a new searchable encryption scheme called easily-
deployable efficiently-searchable symmetric encryption
scheme (EDESE). EDESE is an adoptation of a scheme
proposed by Bellare et al. [27], with modifications simi-
lar to that of Goh’s scheme [48] that is retrofittable to a
non-modifying server scenario.

We incorporated EDESE for email applications with
the following construct. The idea for the construction
is simple: we encrypt the document with a standard en-
cryption scheme and append MACs of unique keywords
in the document. To prevent leaking the number of
unique keywords we add as many “dummy” keywords
as needed.

In order to achieve higher storage and search effi-
ciency, we utilized a Bloom filter (BF) to represent the
EDESE-index. Basically, a BF is a data structure that
allows for efficient set-inclusion tests. However, such
set-inclusion tests based on BFs are currently not sup-
ported by existing email providers, which only support
string-based searches. Therefore, we devised a solution
that encodes the positions of on-bits in a BF as Unicode
strings.

Since the underlying data structure that is used to sup-
port EDESE is a BF, search operations are susceptible to
false positives matches. However, this does not pose a
real problem to users, because the false positive rate is
extremely low and is completely adjustable. Our current
implementation follows these parameters: the length of
keyword (in bits) is estimated to be k = 128, the size of
the BF array is B = 224, the maximum number of unique
keywords used in any email thread is estimated to be

Figure 3: User still interacts with Gmail app to compose
email, with M-Aegis’ mimic GUIs painted with different
colors on L-7.5.

d = 106, the number of bits set to 1 for one keyword
is r = 10. Plugging in these values into the formula for
false positive calculation [48], i.e. (1− e−rd/B)r, we cap
the probability of a false positive δ to 0.0003.

We formally assess the security guarantees that our
construction provides. In Appendix A, we propose a se-
curity definition for EDESE schemes and discuss why
the existing notions are not suitable. Our definition con-
siders an attacker who can obtain examples of encrypted
documents of its choice and the results of queries of key-
words of its choice. Given such an adversary, an EDESE
scheme secure under our definition should hide all partial
information about the messages except for the message
length and the number of common keywords between
any set of messages. Leaking the latter is unavoidable
given that for the search function to be transparent to
encryption, the output of a query has to be a part a ci-
phertext. But everything else, e.g., the number of unique
keywords in a message, positions of the keywords, is hid-
den.

Given the security definition in Appendix A, we
prove that our construction satisfies it under the stan-
dard notions of security for encryption and MACs in Ap-
pendix B. We also discuss the specific instantiations of
encryption and MAC schemes that we use. The encoding
scheme that we use is further described in Sect. 4.4.

3.4 User Workflow

To better illustrate how the different components in M-
Aegis fits together, we describe an example workflow in-
volved when a user composes and sends an email using
stock Gmail app on Android with M-Aegis turned on:

1) When the user launches the Gmail app, the UIAM

8

notifies the correct per-TCA logic of the event. The
per-TCA logic will then initialize itself to handle Gmail
workflow.

2) As soon as Gmail is launched, the per-TCA logic
will try to detect which state is Gmail app in (e.g. pre-
view, reading, or composing email). This allows M-
Aegis to properly create mirror-GUIs on L-7.5 to handle
user interaction. For example, when a user is on the com-
pose page, the per-TCA logic will mimic the GUIs of the
subject and content fields (as seen in Fig. 3). The user
then interacts directly with these mimic-GUIs in plain-
text mode without extra effort. Thus, his workflow is
not affected. Note that essential but subtle features like
spell-check and autocorrect are still preserved, as they
are innate features of mobile device’s soft keyboard. Ad-
ditionally, the “send” button is also mimicked to capture
user intent.

3) As the user finishes composing his email, he clicks
on the mimicked “send” button on L-7.5 once, as how
he would normally do. Since L-7.5 receives the user in-
put and not the underlying Gmail app, the per-TCA logic
is able to capture this event and proceed to process the
subject and the content.

4) The per-TCA logic selects the appropriate key to
be used based on the recipient list and the predetermined
key policy for Gmail. If a key cannot be found for this
conversation, M-Aegis prompts the user (see Fig. 4) for a
password to derive a new key. After obtaining the associ-
ated key for this conversation, M-Aegis will then encrypt
these inputs and encode it back to text such that Gmail
can consume it.

5) The per-TCA logic then requests the UIAM to fill in
the corresponding GUIs on Gmail with the transformed
text. After they are filled, the UIAM is asked to click the
actual “send” button on behalf of the user. This provides
a transparent experience to the user.

From this workflow, it should therefore be evident that
from the user’s perspective, the workflow of using Gmail
remains the same, because of the mimicking properties
of M-Aegis.

4 Implementation and Deployment

In this section, we discuss some important details of our
prototype implementations. We implemented a proto-
type of M-Aegis using Java on Android, as an accessi-
bility service. This is done by creating a class that ex-
tends the AccessibilityService class and requesting
for BIND ACCESSIBILITY SERVICE permission in the
manifest. This allows us to interface with the UIA li-
brary, building our UIAM. We discuss this in further de-
tail in Sect. 4.2.

We then deployed our prototype on two Android
phones from separate manufacturers, i.e. Samsung

Figure 4: Password prompt when user sends encrypted
mail for a new conversation.

Galaxy Nexus, and LG Nexus 4, targeting several ver-
sions of Android, from Android 4.2.2 (API level 17) to
the latest one: Android 4.4.2 (API level 19). The de-
ployment is done on stock devices and OS, i.e. with-
out modifying the OS or Android framework, or rooting,
other than simple app installation. This demonstrates the
ease of deployment and distribution of our solution. We
have also implemented an M-Aegis prototype on Win-
dows 7 to demonstrate interoperability and generality of
approach, but we do not discuss the details here, as it is
not the focus of this paper.

As an interface to the user, we create a button that is
always on top even if other apps are launched. This al-
lows us to create a non-bypassable direct channel of com-
munication with the user besides providing visual cue of
whether M-Aegis is turned on or off.

For app support, we use Gmail as an example of email
apps and WhatsApp as an example of messenger apps.
We argue that it is easy to extend the support to other
apps within these classes.

We first describe the cryptographic schemes that we
deployed in our prototype, then we explain how we build
our UIAM and create L-7.5 on Android, and finally dis-
cuss the per-TCA logic required to support both classes
of apps.

4.1 Cryptographic Schemes

For all the encryption/decryption operations, we use
AES-GCM-256. For password-based key generation al-
gorithm, we utilized PBKDF2 with SHA-1 as keyed-
hash message authentication code (HMAC). We also
utilized HMAC-SHA-256 as our HMAC to generate
tags for email messages (Sect. 4.4.1). These func-
tionalities are available in Java’s javax.crypto and

9

java.security packages.
In terms of key management, for the sake of usabil-

ity, we implemented a password-based scheme as the de-
fault, and we assume one password for each group of
message recipients. And we rely on the users to commu-
nicate the password to the receiving parties using out of
band channel (e.g. in person or phone calls). For mes-
saging apps, we implemented an authenticated Diffie-
Hellman key exchange protocol to negotiate session keys
for WhatsApp conversations. A PGP key is automati-
cally generated for a user during installation based on
the hashed phone number, and is deposited to publicly
accessible repositories on the user’s behalf (e.g. MIT
PGP Key Server [10]). Further discussion about veri-
fying the authenticity of public keys retrieved from such
servers is omitted from this paper. Since all session and
private keys are stored locally for user convenience, we
make sure that they are never saved to disk in plaintext.
They are additionally encrypted with a key derived from
a master password that is provided by the user during in-
stallation.

4.2 UIAM

As mentioned earlier, UIAM is implemented based
on UIA library. On Android, events that signify
something new is being displayed on the screen
can be detected by monitoring following events:
WINDOW CONTENT CHANGED, WINDOW STATE CHANGED,
and VIEW SCROLLED. Upon receiving these events, the
per-TCA logic is informed. The UIA library presents a
data structure in the form of a tree with nodes represent-
ing UI components and the root being the top window.
This allows the UIAM to locate all UI components on
the screen.

Additionally, Android’s UIA framework also provides
us the ability to query for UI nodes by providing a re-
source ID in an intuitive way. For instance, the node that
represents Gmail’s search button can be found by query-
ing for com.google.android.gm:id/search. More
importantly, we do not need to guess the names of these
resource IDs. Rather, we rely on a tool called UI Auto-
mater Viewer [17] (see how we use this tool in Sect. 4.4),
which comes with the default Android SDK. Once the
node of interest is found, all the other information about
the GUI represented by the node can be found. This in-
cludes the exact location and size of text boxes and but-
tons on the screen.

Further, M-Aegis is able to programmatically inter-
act with various GUIs of the TCA using the function
performAction(). This is useful for it to click on the
TCA’s button on user’s behalf after it has processed the
user input.

Figure 5: The UI Automator Viewer presents an easy to
use interface for us to examine the UIA tree and deter-
mine the resource ID (blue ellipse) associated with the
GUI of interest (red rectangle).

4.3 Layer 7.5

We implemented Layer 7.5 on Android as specific types
of system windows, which are always-on-top of all other
running apps. Generally, Android allows the creation
of various types of system windows. In our case, we
mainly focus on two, namely TYPE SYSTEM OVERLAY

and TYPE SYSTEM ERROR; the first kind of window is for
display-only and allows all tap/keyboard events to go to
the underlying apps. In contrast, the user can interact
with the second type of window. Finally, Android allows
the use of any View objects for either type of window,
and we use this to create our mimic-GUIs, of which we
can set their size and location. We deliberately create our
mimic-GUIs in different colors as a subtle visual cue to
the users that they are interacting with M-Aegis, without
distracting them from their original workflow.

4.4 Per-TCA Logic

From our experience of developing the per-TCA logic,
the general procedure for development is as follow:

1) Understand what the app does. This allows us to
identify which GUIs need to be mimicked for intercept-
ing user I/O. For text-based TCAs, this is a very easy step
because the core functionalities that M-Aegis needs to
handle are limited and thus easy to identify, e.g. buffer-
ing user’s typed texts and sending them to the intended
recipient.

2) Using UI Automator Viewer [17], examine the UIA
tree for the relevant GUIs of the TCA and identify sig-
natures (in our case, it is the GUI’s resource ID) for each
TCA state. UI Automator Viewer allows us to inspect
the UIA’s tree through a graphical interface (as seen in

10

Fig. 5), which significantly cuts down on our develop-
ment time. We basically rely on UI components that are
unique to certain states (e.g. the “send” button signifies
that we are in the compose state).

3) For each relevant GUI, we need to devise algo-
rithms to extract either the location and content of cipher-
text (for decryption and display), or the type, size and
location of GUIs we need to mimic (e.g. the subject and
content boxes in the Gmail compose UI). Again, this is
done through UI Automator Viewer. For example, for the
Gmail preview state, we query the UIA for nodes with ID
com.google.android.gm:/id/conversation list

to identify all the UIA nodes corresponding to the
preview item of each individual email, and from those
we can extract all ciphertext on preview through the
UIA).

4) Create event handlers for controls we mimic on L-
7.5. For example, for the Gmail compose state, we need
to listen for click/touch events to the “send” button we
place on L-7.5 and carry out the process described in
Sect. 3.3.3 to encrypt the email and send the ciphertext
to the underlying TCA.

5) Identify ways that each relevant state can be up-
dated. We found that updates can be handled with the
following method: clear L-7.5 and extract all the infor-
mation we need from that state and render everything
again (this is how we handle scrolling). This is equiva-
lent to redrawing all GUIs on L-7.5 based on the detected
state.

There are two details that we need to pay attention
to when developing per-TCA logic. First, we need to
be careful about the type of input data that we feed to
TCAs. Since most TCAs only accept input data in spe-
cific formats, e.g. text format, they do not support the
input of random byte sequences as valid data. There-
fore, the encrypted data must be encoded into text format
before feeding it as input to the TCA. Conventionally,
base64 encoding is used for such purposes. However,
base64 encoding consumes too much on-screen real es-
tate. To overcome this, we encoded the binary encrypted
data into Chinese Japanese Korean (CJK) Unicode char-
acters, which have a more efficient on-screen real es-
tate consumption. To map the binary data into the CJK
plane, we process the encrypted data at the byte granu-
larity (28). For each byte, its value is added to the base
of the CJK Unicode representation, i.e. 0x4E00. For ex-
ample, byte 0x00 will be encoded as ‘一’, and byte 0x01
will be represented as ‘丁’.

Second, M-Aegis can only function correctly if it can
differentiate between ordinary messages and encrypted
ones to decrypt message properly. We introduce markers
into the encrypted data after encoding; in particular, we
wrap each of the subject and content of a message using
a pair of curly braces (i.e. {, }).

Next, we describe implementation details that are spe-
cific to these classes of apps. We begin by introducing
the format of message we created for each class. Then
we discuss other caveats (if any) that are involved in the
implementation.

4.4.1 Email Apps

We implemented support for Gmail on our prototype as a
representative app of this category without loss of gener-
ality. For Gmail, we create two custom formats to com-
municate the necessary metadata to support M-Aegis’
functionalities.
Subject: {Encode(IDKey||IV ||Encrypt(Sub ject))}
Content: {Encode(Encrypt(Content)||Tags)}

A particular challenge we faced in supporting decryp-
tion during the Gmail preview state is that only the begin-
ning parts of both the title and the subject of each mes-
sage are available to us. Also, the exact email addresses
of the sender and recipients are not always available, as
some are displayed as aliases, and some are hidden due
to lack of space. The lack of such information makes it
impossible to automatically decrypt the message even if
the corresponding key actually exists on the system.

To solve these problems, when we encrypt a message,
we include a key-ID (IDKey) to the subject field (as seen
in the format description above). Note that since the key-
ID is not a secret, it need not be encrypted. This way, we
will have all the information we need to correctly decrypt
the little snippet displayed on the Gmail preview.

The Tags field is a collection of HMAC digests that
are computed using the conversation key and keywords
that exist in that particular email. It is then encoded and
appended as part of the content that Gmail receives to fa-
cilitate encrypted search without requiring modification
to Gmail servers.

4.4.2 Messenger Apps

We implemented support for WhatsApp on our prototype
as a representative app of this category without loss of
generality. The format we created for this class of apps
is simple, as seen below:
Message: {Encode(IV ||Encrypt(Message))}

We did not experience additional challenges when
supporting WhatsApp.

5 Evaluations

In this section, we report the results of experiments we
performed to first determine the correctness of our proto-
type implementation, measure the overheads a user bears
when using M-Aegis, and user acceptability of our ap-
proach.

11

5.1 Correctness of Implementation
Before we measure the performance, we manually ver-
ified that our app-support works correctly by navigat-
ing through different states of the app and check if M-
Aegis creates L-7.5 correctly. Then, we also manually
verified that the encryption and decryption operations on
M-Aegis work correctly. We made sure that the plain-
text is properly received at the recipient’s end when the
correct password is supplied. We also manually verified
the correctness of our searchable encryption scheme by
first planting specific keywords to be searched. Then,
we performed search using M-Aegis and found no false
negatives in the search result.

5.2 Performance on Android
The overhead that M-Aegis introduced to a user’s work-
flow can be broken down into two main factors: i) the
additional computational costs incurred during encryp-
tion and decryption of data, ii) the additional I/O opera-
tions when redrawing L-7.5. We measure the overhead
by measuring the overall latency presented to the user in
a few cases. We found that M-Aegis imposes negligible
latency to the user.

All test cases were performed on one stock Android
phone (LG Nexus 4), with the following specifications:
Quad-core 1.5 GHz Snapdragon S4 Pro CPU, equipped
with 2.0 GB RAM, running Android Kit Kat (4.4.2, with
API level 19). Unless otherwise stated, each experiment
is repeated for 10 times and the averaged result is re-
ported.

For our evaluation, we only performed experiments on
the setup for Gmail app because Gmail is representative
of a more sophisticated TCA, therefore estimating the
worst-case performance for M-Aegis. The other class,
i.e. messenger apps, incurs much less overhead as the
most involved operation is the encryption and decryption
of short texts within a page.

5.2.1 Previewing Encrypted Email

There are additional costs involved in previewing en-
crypted emails on the main page of Gmail. The costs are
broken down into times taken to i) traverse the UIA tree
to identify preview nodes, ii) grab the ciphertext from the
UIA node, iii) grab the associated key from key manager
according to key ID, iv) decrypting the ciphertext, and v)
rendering plaintext on L-7.5. We measure all these mi-
cro operations as an entirety instead by running a macro
benchmarks.

For our experiment, we made sure that the whole pre-
view page consists of encrypted emails (a total of 6 can fit
the screen) to demonstrate the worst-case performance.
Then, we measured the time taken to perform all the

aforementioned micro operations. From the results, we
found that for this case, on average, it takes an additional
76 ms to finally render plaintext on L-7.5. Note that this
latency is well within the expected response time (50 -
150 ms), beyond which a user would notice the slow-
down effect [63].

5.2.2 Composing and Sending Encrypted Email

First, we measured the extra time taken for a typical
email to be encrypted and for our searchable encryption
index to be built. We used the Enron Email Dataset [36]
as a representation of how typical emails would be. Out
of the dataset, we randomly picked 10 emails, with the
following statistics: The average number of words in an
email is 331, out of which 153 are unique. The shortest
sampled email contains 36 words, out of which 35 are
unique; while the longest sampled email contains 953
words, out of which 362 are unique.

In the worst case, i.e., with the longest sampled email,
M-Aegis took around 205 ms in total to both encrypt and
build search index. However, note that this is actually
blended in with the network latency user will already per-
ceive while sending out email.

5.2.3 Searching on Encrypted Emails

As a user usually inputs only about one to three keywords
per search operation, the latency experienced when per-
forming search is negligible. This is because the transfor-
mation of the actual keyword into indexes requires only
the forward computation of one HMAC, which is almost
instantaneous.

5.3 User Acceptability Study
This section describes the user study we performed to
validate the hypothesis about user acceptability of our
M-Aegis concept and prototype. Users are sampled from
a population of college students, of which we consider
as tech-savvy. Particularly, they must be able to profi-
ciently operate smart phones and have had experience
using Gmail app before. Each experiment was conducted
with two identical smart phones, i.e. Nexus 4, both run-
ning Android 4.3, installed with stock Gmail app (v. 4.6).
Only one of the devices has M-Aegis installed.

The set up of the experiment is as follows. First,
we asked the user to perform a list of tasks: preview-
ing, reading, composing, sending, and searching through
email on a device that is not equipped with M-Aegis. Par-
ticipants were asked to pay attention to the overall expe-
rience of performing such tasks using Gmail app and try
their best to remember it. This served as the control ex-
periment and to help participants recap the look and feel
of the installed Gmail app.

12

Right after they are done, the participants were told to
repeat the same set of tasks on another device which is
equipped with M-Aegis. This was done with the inten-
tion that they were able to mentally compare the differ-
ence in user experience when interacting with the device
equipped with M-Aegis.

After they were done with the second device, we ask
the participants five questions, phrased in terms of do
they find any difference in the preview page, reading,
sending, and searching email, and if they felt that their
overall experience using Gmail app on the second device
is significantly different.

Upon finishing this, we debriefed the participants
about the experiment process and explained the goal of
M-Aegis. Lastly, we asked them whether they would use
M-Aegis to protect the privacy of their data. The results
we collected and report here are from 15 participants.

Altogether, we found that no participants noticed ma-
jor difference between the two experiences using Gmail
app. Only one participant noticed a minor difference
in the email preview interface, i.e. L-7.5 did not catch
up smoothly when scrolled. A different participant no-
ticed a minor difference in the process of reading email,
i.e. L-7.5 lags a little before covering up the ciphertext
with mimic-GUIs. There were only two participants who
found the process of sending email differs from the orig-
inal one. When asked for details, they all indicated that
the cursor when composing email was not working prop-
erly. After further investigation, we found that this is
caused by a bug in Android’s GUI framework rather than
a fundamental flaw in our M-Aegis design.

However, despite the perceived minor differences
when performing particular tasks, all participants indi-
cated that they would use M-Aegis to protect the privacy
of their data after understanding what M-Aegis is. This
implies that they believe that the overall disturbance to
the user experience is not large enough to impede adop-
tion.

Since we recruited 15 users for this study, the accu-
racy/quality of our conclusion from this study lies be-
tween 80% and 95% (between 10 and 20 users) accord-
ing to findings in [46]. We intend to continue our user
study to further validate our acceptability hypothesis and
to continuously improve our prototype based on the re-
ceived feedback.

6 Discussions

6.1 Generality and Scalability

We believe that our M-Aegis architecture presents a
general solution that protects users’ data confidentiality,
which is scalable in the following aspects:

Across multiple cloud services. In general, there are
two main classes of apps that provide communication
services, which cover a large number of apps that user
care to protect, namely email and messenger apps. By
covering apps in these two categories, we argue that we
can already satisfy a large need of the user in protecting
the privacy of their data.

All the different components of M-Aegis incur a one-
time development cost. We argue that it is easy to
scale across multiple cloud services, because the per-
TCA logic that needs to be written is actually very lit-
tle per new TCA that we want to support. This should
be evident through the five general steps highlighted in
Sect. 4.4. In addition, the logic we developed for the first
TCA (Gmail) serves as a template/example to implement
support other email apps.

Across app updates. Since the robustness of our
UIAM construct (Sect. 4.2) gives us the ability to track
all TCA’s GUIs regardless of its state, we are able to sur-
vive app updates quite easily. In fact, our Gmail app sup-
port has survived two versions of updates without requir-
ing major efforts to adapt.

As expected, resource ID names can change across up-
dates. For example, when upgraded to Gmail app version
4.7.2, the resource ID name that identifies the sender’s
account name changed. But with a small fix to reidentify
the resource ID using UI Automator Viewer, we quickly
fixed it by changing the mapping in our per-TCA logic.
Note that the logic in the per-TCA does not need to be
modified. This is because the core functionality of the
updated GUI would not change to something radically
different. For example, a GUI associated with sender’s
account name would not suddenly has the functionality
of a compose edit box.

6.2 Limitations

As mentioned earlier, M-Aegis is not designed to protect
users against social engineering based attacks. Adver-
saries can try to trick users into entering sensitive infor-
mation to the TCA while M-Aegis is turned off. Our so-
lution is based on best effort by providing distinguishing
visual cues to the user when M-Aegis is turned on and
its L-7.5 is created. For example, when turned on, the
mimic-GUIs that M-Aegis creates are in different color.
Users can toggle M-Aegis’ button on/off to see the dif-
ference (see Fig. 2). Note that M-Aegis’ main button is
always on top and cannot be drawn over by other apps.
However, we do not claim that this fully mitigates the
problem.

One of the constraints we faced while retrofitting a se-
curity solution to existing TCAs (not limited to mobile
environment) is that data must usually be of the right for-
mat (e.g. strictly text, image, audio, or video). For exam-

13

ple, Gmail accepts only text (Unicode-compatible) as its
subject, but Dropbox accepts any type of files, which can
just be random blobs of bytes. Currently, other than the
text format, we do not (yet) support other types of user
data (e.g. image, audio and video). However, this is not
a fundamental design limitation of our system. Rather,
it is because of the unavailability of transformation func-
tions (encryption and encoding schemes) that works for
the aforementioned media types.

Additionally, unlike text, the transforma-
tion/obfuscation function that is applicable in our
scenario that takes input of other type of data may also
need to survive other process steps, such as compression.
It is normal for TCAs to perform compression on other
multimedia to save bandwidth and/or storage. For
example, Facebook is known to compress/downsample
the actual image that the user uploads despite choosing
the HD option.

While the proper application of encryption schemes
allows us to protect user’s data privacy, the confidential-
ity guarantee that we provide excludes risks at end-point
themselves. For example, poor random number gener-
ator can potentially weaken the cryptographic schemes
that we applied. Further, it is currently unclear how our
text transformations will affect the server’s effectiveness
in performing spam filtering.

Another limitation of our system is that it currently
does not tolerate typographical error during search.
However, we would like to point out that this is a very
unlikely scenario, given that soft keyboards on mobile
devices come with spell check and autocorrect features.
Again, this is not a flaw with our architecture; rather, it
is because of the unavailability of encryption schemes
that tolerate typographical error search without requiring
server modification.

7 Conclusions

In this paper we presented Mimesis Aegis (M-Aegis), a
new approach to protect private user data in public cloud
services. M-Aegis provides strong isolation and pre-
serves user experience through the creation of a novel
conceptual layer called Layer 7.5 (L-7.5), which acts as
a proxy between the apps (Layer 7) and the user (Layer
8). This approach allows M-Aegis to implement a true
end-to-end encryption of user data while achieving three
goals: 1) plaintext data is never visible to a client app,
any intermediary entities, or the cloud provider; 2) the
original user experience with the client app is preserved
completely, from workflow to GUI look-and-feel; and
3) the architecture and technique are general to a large
number of apps and resilient to app updates. We im-
plemented a prototype of M-Aegis on Android that can
support a number of popular cloud services (e.g. Gmail,

Google Hangout, Facebook, WhatsApp, and Viber). Our
user study shows that our system truly preserves both the
workflow and the GUI look-and-feel of the protected ap-
plications, and our performance shows that users expe-
rienced minimal overhead in utilizing M-Aegis on An-
droid.

Acknowledgement
The authors would like to thank the anonymous review-
ers for their valuable comments. We also thank the vari-
ous members of our operations staff who provided proof-
reading of this paper. This material is based upon work
supported in part by the National Science Foundation
under Grants No. CNS-1017265, CNS-0831300, CNS-
1149051, and CNS-1318511 by the Office of Naval Re-
search under Grant No. N000140911042, by the Depart-
ment of Homeland Security under contract No. N66001-
12-C-0133, and by the United States Air Force under
Contract No. FA8650-10-C-7025. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation,
the Office of Naval Research, the Department of Home-
land Security, or the United States Air Force.

References
[1] Accessibility.

http://developer.android.com/guide/topics/ui/

accessibility/index.html.

[2] Cisco Visual Networking Index: Global Mo-
bile Data Traffic Forecast Update, 2013–2018.
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white paper c11-
520862.html.

[3] Cryptocat. https://crypto.cat.

[4] Engineering Security Solutions at Layer 8 and Above.
https://blogs.rsa.com/engineering-security-solutions-at-layer-8-
and-above/, December.

[5] Gibberbot for Android devices.
https://securityinabox.org/en/Gibberbot main.

[6] Google Accessibility.
https://www.google.com/accessibility/policy/.

[7] Google Chrome Mobile FAQ.
https://developers.google.com/chrome/mobile/docs/faq.

[8] International technology - Open Systems Interconnection -
Basic Reference Model: The Basic Model. http://www.ecma-
international.org/activities/Communications/TG11/s020269e.pdf.

[9] Microsoft Accessibility.
http://www.microsoft.com/enable/microsoft/

section508.aspx.

[10] MIT PGP Public Key Server. http://pgp.mit.edu/.

[11] New privacy fears as facebook begins selling per-
sonal access to companies to boost ailing profits.
http://www.dailymail.co.uk/news/article-2212178/New-
privacy-row-Facebook-begins-selling-access-users-boost-
ailing-profits.html.

14

[12] Secure texts for Android. https://whispersystems.org.

[13] Sniffer tool displays other people’s WhatsApp messages.
http://www.h-online.com/security/news/item/Sniffer-tool-
displays-other-people-s-WhatsApp-messages-1574382.html.

[14] Snowden: Leak of NSA spy programs ”marks my end”.
http://www.cbsnews.com/8301-201 162-57588462/snowden-
leak-of-nsa-spy-programs-marks-my-end/.

[15] Symantec desktop email encryption end-to-end
email encryption software for laptops and desktops.
http://www.symantec.com/desktop-email-encryption.

[16] Ten Mistakes That Can Ruin Cus-
tomers’ Mobile App Experience.
http://www.itbusinessedge.com/slideshows/show.aspx?c=96038.

[17] UI Testing — Android Developers.
http://developer.android.com/tools/testing/

testing_ui.html.

[18] Whatsapp is broken, really broken.
http://fileperms.org/whatsapp-is-broken-really-broken/.

[19] Layer 8 Linux Security: OPSEC for Linux Com-
mon Users, Developers and Systems Administrators.
http://www.linuxgazette.net/164/kachold.html, July 2009.

[20] Accessibility.
https://www.apple.com/accessibility/resources/,
February 2014.

[21] 107TH CONGRESS. Uniting and strengthening america by pro-
viding appropriate tools required to intercept and obstruct terror-
ism (usa patriot act) act of 2001. Public Law 107-56 (2001).

[22] ACQUISTI, A., AND GROSS, R. Imagined communities: Aware-
ness, information sharing, and privacy on the facebook. In Pri-
vacy enhancing technologies (2006), Springer, pp. 36–58.

[23] AMANATIDIS, G., BOLDYREVA, A., AND O’NEILL, A.
Provably-secure schemes for basic query support in outsourced
databases. In DBSec (2007), S. Barker and G.-J. Ahn, Eds.,
vol. 4602 of Lecture Notes in Computer Science, Springer,
pp. 14–30.

[24] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE, B.,
AND STARIN, D. Persona: an online social network with user-
defined privacy. In ACM SIGCOMM Computer Communication
Review (2009), vol. 39, ACM, pp. 135–146.

[25] BEATO, F., KOHLWEISS, M., AND WOUTERS, K. Scramble!
your social network data. In Privacy Enhancing Technologies
(2011), Springer, pp. 211–225.

[26] BELLARE, M., BOLDYREVA, A., AND MICALI, S. Public-key
encryption in a multi-user setting: Security proofs and improve-
ments. In EUROCRYPT (2000), B. Preneel, Ed., vol. 1807 of
Lecture Notes in Computer Science, Springer, pp. 259–274.

[27] BELLARE, M., BOLDYREVA, A., AND O’NEILL, A. Determin-
istic and efficiently searchable encryption. In CRYPTO (2007),
A. Menezes, Ed., vol. 4622 of Lecture Notes in Computer Sci-
ence, Springer, pp. 535–552.

[28] BELLARE, M., KOHNO, T., AND NAMPREMPRE, C. Breaking
and provably repairing the SSH authenticated encryption scheme:
A case study of the Encode-then-Encrypt-and-MAC paradigm.
ACM Trans. Inf. Syst. Secur. 7, 2 (May 2004), 206–241.

[29] BELLARE, M., AND NAMPREMPRE, C. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. In ASIACRYPT (2000), T. Okamoto,
Ed., vol. 1976 of Lecture Notes in Computer Science, Springer,
pp. 531–545.

[30] BERTHOME, P., FECHEROLLE, T., GUILLOTEAU, N., AND LA-
LANDE, J.-F. Repackaging android applications for auditing
access to private data. In Availability, Reliability and Security
(ARES), 2012 Seventh International Conference on (2012), IEEE,
pp. 388–396.

[31] BÖHMER, M., HECHT, B., SCHÖNING, J., KRÜGER, A., AND
BAUER, G. Falling asleep with angry birds, facebook and kindle:
a large scale study on mobile application usage. In Proceedings
of the 13th international conference on Human computer interac-
tion with mobile devices and services (2011), ACM, pp. 47–56.

[32] BONEH, D., CRESCENZO, G. D., OSTROVSKY, R., AND PER-
SIANO, G. Public key encryption with keyword search. In EU-
ROCRYPT (2004), C. Cachin and J. Camenisch, Eds., vol. 3027
of Lecture Notes in Computer Science, Springer, pp. 506–522.

[33] BORDERS, K., VANDER WEELE, E., LAU, B., AND PRAKASH,
A. Protecting confidential data on personal computers with stor-
age capsules. Ann Arbor 1001 (2009), 48109.

[34] BORISOV, N., GOLDBERG, I., AND BREWER, E. Off-the-record
communication, or, why not to use pgp. In Proceedings of the
2004 ACM workshop on Privacy in the electronic society (2004),
ACM, pp. 77–84.

[35] CHANG, Y.-C., AND MITZENMACHER, M. Privacy preserving
keyword searches on remote encrypted data. In Applied Cryp-
tography and Network Security, J. Ioannidis, A. Keromytis, and
M. Yung, Eds., vol. 3531 of Lecture Notes in Computer Science.
Springer, 2005, pp. 442–455.

[36] COHEN, W. W. Enron email dataset. http://www.cs.cmu.edu/ en-
ron, August 2009.

[37] CURTMOLA, R., GARAY, J. A., KAMARA, S., AND OSTRO-
VSKY, R. Searchable symmetric encryption: Improved defini-
tions and efficient constructions. In ACM Conference on Com-
puter and Communications Security (2006), A. Juels, R. N.
Wright, and S. D. C. di Vimercati, Eds., ACM, pp. 79–88.

[38] DELTCHEVA, R. Apple, AT&T data leak
protection issues latest in cloud failures.
http://www.messagingarchitects.com/resources/security-
compliance-news/email-security/apple-att-data-leak-protection-
issues-latest-in-cloud-failures19836720.html, June 2010.

[39] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. Tech. rep., DTIC Document,
2004.

[40] DONG, X., CHEN, Z., SIADATI, H., TOPLE, S., SAXENA, P.,
AND LIANG, Z. Protecting sensitive web content from client-
side vulnerabilities with cryptons. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM, pp. 1311–1324.

[41] ELKINS, M. Mime security with pretty good privacy (pgp).

[42] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smart-
phones. In OSDI (2010), vol. 10, pp. 1–6.

[43] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why eve and mallory love
android: An analysis of android ssl (in)security. In Proceedings
of the 2012 ACM Conference on Computer and Communications
Security (New York, NY, USA, 2012), CCS ’12, ACM, pp. 50–
61.

[44] FAHL, S., HARBACH, M., MUDERS, T., AND SMITH, M. Trust-
split: usable confidentiality for social network messaging. In Pro-
ceedings of the 23rd ACM conference on Hypertext and social
media (2012), ACM, pp. 145–154.

15

[45] FARB, M., LIN, Y.-H., KIM, T. H.-J., MCCUNE, J., AND
PERRIG, A. Safeslinger: easy-to-use and secure public-key ex-
change. In Proceedings of the 19th annual international confer-
ence on Mobile computing & networking (2013), ACM, pp. 417–
428.

[46] FAULKNER, L. Beyond the five-user assumption: Benefits of
increased sample sizes in usability testing. Behavior Research
Methods, Instruments, & Computers 35, 3 (2003), 379–383.

[47] FELDMAN, A. J., BLANKSTEIN, A., FREEDMAN, M. J., AND
FELTEN, E. W. Social networking with frientegrity: privacy and
integrity with an untrusted provider. In Proceedings of the 21st
USENIX conference on Security symposium, Security (2012),
vol. 12.

[48] GOH, E.-J. Secure indexes. IACR Cryptology ePrint Archive
(2003).

[49] GOLDREICH, O., AND OSTROVSKY, R. Software protection and
simulation on oblivious rams. J. ACM 43, 3 (1996), 431–473.

[50] GUHA, S., TANG, K., AND FRANCIS, P. Noyb: Privacy in on-
line social networks. In Proceedings of the first workshop on
Online social networks (2008), ACM, pp. 49–54.

[51] HENRY, S. Largest hacking, data breach prose-
cution in U.S. history launches with five arrests.
http://www.mercurynews.com/business/ci23730361/largest-
hacking-data-breach-prosecution-u-s-history, July 2013.

[52] JANG, Y., CHUNG, S. P., PAYNE, B. D., AND LEE, W. Gyrus:
A framework for user-intent monitoring of text-based networked
applications. In NDSS (2014).

[53] JEON, J., MICINSKI, K. K., VAUGHAN, J. A., FOGEL, A.,
REDDY, N., FOSTER, J. S., AND MILLSTEIN, T. Dr. android
and mr. hide: fine-grained permissions in android applications.
In Proceedings of the second ACM workshop on Security and pri-
vacy in smartphones and mobile devices (2012), ACM, pp. 3–14.

[54] JIANG, X. Gingermaster: First android malware utilizing a root
exploit on android 2.3 (gingerbread).
http://www.csc.ncsu.edu/faculty/jiang/

GingerMaster/.

[55] KAMARA, S., PAPAMANTHOU, C., AND ROEDER, T. Dy-
namic searchable symmetric encryption. In Proceedings of the
2012 ACM conference on Computer and communications secu-
rity (2012), ACM, pp. 965–976.

[56] KING, S. T., TUCEK, J., COZZIE, A., GRIER, C., JIANG, W.,
AND ZHOU, Y. Designing and implementing malicious hard-
ware. In Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats (Berkeley, CA, USA, 2008),
LEET’08, USENIX Association, pp. 5:1–5:8.

[57] KONTAXIS, G., POLYCHRONAKIS, M., KEROMYTIS, A. D.,
AND MARKATOS, E. P. Privacy-preserving social plugins. In
Proceedings of the 21st USENIX conference on Security sympo-
sium (2012), USENIX Association, pp. 30–30.

[58] LUCAS, M. M., AND BORISOV, N. Flybynight: mitigating the
privacy risks of social networking. In Proceedings of the 7th
ACM workshop on Privacy in the electronic society (2008), ACM,
pp. 1–8.

[59] PEEK, D., AND FLINN, J. Trapperkeeper: the case for using vir-
tualization to add type awareness to file systems. In Proceedings
of the 2nd USENIX conference on Hot topics in storage and file
systems (2010), USENIX Association, pp. 8–8.

[60] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B.,
WANG, H. J., AND COWAN, C. User-driven access control: Re-
thinking permission granting in modern operating systems. In Se-
curity and Privacy (SP), 2012 IEEE Symposium on (2012), IEEE,
pp. 224–238.

[61] SHAH, K. Common Mobile App Design Mistakes to Take Care.
http://www.enterprisecioforum.com/en/blogs/kaushalshah/common-
mobile-app-design-mistakes-take-c.

[62] SHENG, S., BRODERICK, L., HYLAND, J., AND KORANDA,
C. Why johnny still can’t encrypt: evaluating the usability of
email encryption software. In Symposium On Usable Privacy
and Security (2006).

[63] SHNEIDERMAN, B. Designing the User Interface: Strategies
for Effective Human-Computer Interaction, fourth ed. Addison-
Wesley, 2005.

[64] SONG, D. X., WAGNER, D., AND PERRIG, A. Practical tech-
niques for searches on encrypted data. In IEEE Symposium on
Security and Privacy (2000), pp. 44–55.

[65] TSUNOO, Y., SAITO, T., SUZAKI, T., SHIGERI, M., AND
MIYAUCHI, H. Cryptanalysis of des implemented on computers
with cache. In Cryptographic Hardware and Embedded Systems-
CHES 2003. Springer, 2003, pp. 62–76.

[66] US-CERT/NIST. Cve-2013-4787.
http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2013-4787.

[67] WHITTAKER, S., MATTHEWS, T., CERRUTI, J., BADENES, H.,
AND TANG, J. Am i wasting my time organizing email?: a study
of email refinding. In PART 5——–Proceedings of the 2011 an-
nual conference on Human factors in computing systems (2011),
ACM, pp. 3449–3458.

[68] WHITTEN, A., AND TYGAR, J. D. Why johnny can’t encrypt: A
usability evaluation of pgp 5.0. In Proceedings of the 8th USENIX
Security Symposium (1999), vol. 99, McGraw-Hill.

[69] WOJTCZUK, R., AND TERESHKIN, A. Attacking intel R© bios.
Invisible Things Lab (2010).

[70] WU, C., ZHOU, Y., PATEL, K., LIANG, Z., AND JIANG, X.
Airbag: Boosting smartphone resistance to malware infection. In
NDSS (2014).

[71] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium: Practi-
cal policy enforcement for android applications. In Proceedings
of the 21st USENIX conference on Security symposium (2012),
USENIX Association, pp. 27–27.

A Appendices

A Easily-Deployable ESE

In this section, we formally define our cryptographic
scheme, which allows for search in encrypted emails.

A.1 Preliminaries
NOTATION AND CONVENTIONS. We denote by Σ∗ the
set of all binary strings of finite length. If x,y are strings
then (x,y) denotes the concatenation of x and y from
which x and y are uniquely decodable. For integers k, l,
where k < l [k . . . l] denotes the set {k,k+1, . . . , l} and [k]

denotes {1, . . . ,k}. If S is a finite set, then s $← S denotes
that s is selected uniformly at random from S. s ∈D S
denotes that s is selected in a deterministic way such that
no element is selected more than once If s,S are strings,
then s ∈ S denotes that s is a substring of S.

16

PROVABLE SECURITY APPROACH. In this work we ap-
ply the provable security approach. Unlike the unproduc-
tive and cyclic trial-and-error approach to security, this
methodology allows us to have protocols, whose security
is provably guaranteed, as long as the assumption about
the underlying hard problem remains true for computa-
tionally bounded adversaries. This approach consists of
the following components. (1) A formal definition of a
protocol’s syntax. (2) A formal definition of the secu-
rity task in question that includes a precise description of
adversarial capabilities and when is the adversary con-
sidered successful. (3) A reduction proof showing that
the only way to break the protocol according to the defi-
nition is by breaking the underlying problem, believed to
be hard.
SYMMETRIC ENCRYPTION AND ITS SECURITY. A sym-
metric encryption scheme S E = (K ,E , D) with as-
sociated message space MsgSp, is defined by three al-
gorithms: The randomized key generation algorithm K
returns a secret key sk. The (possibly) randomized or
stateful encryption algorithm E takes the input secret key
sk, and a plaintext m ∈MsgSp, and returns a ciphertext.
The deterministic decryption algorithm D takes the se-
cret key sk, and a ciphertext C to return the correspond-
ing plaintext, or a special symbol⊥ indicating that the ci-
phertext was invalid. The consistency condition requires
that Dsk(Esk(m)) = m, for all sk that can be output by
K , and all m ∈MsgSp.

We now recall the standard cryptographic security no-
tions for encryption, indistinguishability against chosen-
plaintext attacks (IND-CPA). It formalizes the require-
ment that even though an adversary may know some par-
tial information about the data, no additional information
is leaked (besides the message length).

Let S E = (K ,E ,D) be an encryption scheme.
For an adversary A and a bit b, define the experiment
Expind-cpa-b

E S E (A) as follows. First the key sk is generated
by K . Let L R (left-or-right) be the “selector” that on
input m0,m1,b returns mb. The adversary A is given ac-
cess to the left-right encryption oracle Esk(L R(·, ·,b))
that it can query on any pair of messages of equal length
in MsgSp. The adversary’s goal is to output a bit d,
as its guess of the challenge bit b, and the experiment
returns d as well. The ind-cpa-advantage of an adver-
sary A, Advind-cpa

S E (A), is defined as the difference be-
tween the probabilities of Expind-cpa-1

S E (A) returning 1 and
Expind-cpa-0

S E (A) returning 1.
The scheme E S E is said to be indistinguishable

against chosen-plaintext attack or IND-CPA, if for every
adversary A with reasonable resources its ind-cpa advan-
tage is small2.

2Here, and further in the paper, we call the resources of an algorithm
(or adversary) “reasonable”, if it runs for some reasonable amount of

MESSAGE AUTHENTICATION CODES (MACS). A
message authentication code (MAC) M = (K ,T) with
associated message space MsgSp is defined by two al-
gorithms. The randomized key generation algorithm K
returns a secret key sk. The deterministic3 tagging al-
gorithm T takes the input secret key sk, and a plaintext
m ∈MsgSp to return a tag for m. For a message-tag pair
(m,σ), we say σ is a valid tag for m, if σ = σ ′, where
σ ′←Tsk(m).

We will use the following security definition (which
implies the unforgeability against chosen message at-
tack). Let M = (K ,T) be a MAC scheme. Let R be
the set of all functions with the same domain and range
as T . M is called pseudorandom or PRF secure, if any
adversary A with reasonable resources and access to an
oracle that it can query on messages in MsgSp, has small
prf-advantage Advprf

M (A) defined as

Pr
[

sk $←K : ATK(·) = 1
]
−Pr

[
g $← R : Ag(·) = 1

]
.

A weaker security notion, IND-DCPA, is defined in
[28]. The notion asks the scheme to hide all but equality
of the underlying messages. It is defined similar to IND-
CPA but the adversary’s queries are required to have the
same equality pattern among the “left” and ”right” vec-
tors.

A.2 Definition and Security
Definition A.1 [EDESE] An easily-deployed effi-
ciently- searchable symmetric encryption scheme
(EDESE) E S E is associated with message space
MsgSp and keyword space KwSp. We assume that each
message m ∈ MsgSp can also be viewed as a set of
keywords, and the particular meaning should be clear
from the context. (E.g. |m| denotes the length of m in
bits, |m|kw denotes the number of keywords in m and
m0 ∩ m1 denotes the set of common keywords in m0
and m1.) We assume that given m ∈ MsgSp one can
efficiently extract all keywords in it. An EDESE scheme
is defined by four algorithms:

• The randomized key generation algorithm K re-
turns a secret key sk.

• The (possibly) randomized or stateful encryption al-
gorithm E takes input the secret key sk, and a plain-
text m ∈MsgSp, and returns a ciphertext c. To use

time (e.g. up to 10 years, or does 260 basic operations in some fixed
model of computation), and does reasonable number of oracle queries
of reasonable length. We call the value of an advantage “small”, if it
is very close to 0 (e.g. 2−20.) In general, “ reasonable” parameters
depend on a particular application. We do not use asymptotic notation
because the symmetric key primitives such as blockciphers are of fixed
length.

3A MAC does not have to be deterministic, but most practical
schemes are, and in this paper we consider only deterministic MACs.

17

the fact that a ciphertext is searchable by a server,
just like any other text, we will use the notation s∈ c
to denote that a substring s is part of c.

• The deterministic decryption algorithm D takes the
secret key sk, and a ciphertext c to return the plain-
text.

• The deterministic query function Q takes input the
secret key sk, and a keyword w∈KwSp, and returns
a string s.

We require that

• Dsk(Esk(m)) = m, for all sk that can be output by
K , and all m ∈MsgSp.

• For all sk that can be output by K , all m ∈MsgSp
and all w ∈ KwSp, we always have that Qsk(w) ∈
Esk(m), if w ∈ m, and the probability of Qsk(w) ∈
Esk(m), if w /∈ m, is at most δ .

The latter condition ensures that the search on a key-
word will always return all ciphertexts of messages con-
taining the keyword, and that the probability of a false-
positive is at most δ .
EDESE SECURITY. We construct the following
indistinguishability-based security definition, called
PRIV-CPA, for analyzing the security of EDESE
schemes. Intuitively, this notion is similar to the stan-
dard IND-CPA notion with the additional condition that
left-right queries preserve the number of common equal
components between any sets of underlying messages.
This is because for functionality we allow a scheme to
leak that different messages share keywords. We first
provide the definition and follow with discussion.

Definition A.2 Let E S E = (K ,E ,D ,Q) be an
EDESE scheme with message and keyword spaces
MsgSp,KwSp. For b ∈ Σ and adversary A, we de-

fine the experiment Exppriv-cpa-b
E S E (A) similar to

Expind-cpa-b
E S E (A) except that A has the additional restric-

tion: if (m1
0,m

1
1), . . . ,(m

q
0,m

q
1) are the queries A makes to

its LR encryption oracle E (sk,L R(·, ·,b)), then

• for all i, j ∈ [q], |mi
0∩m j

0|kw = |mi
1∩m j

1|kw.

For an adversary A, define its PRIV-CPA advantage

against E S E , Advpriv-cpa
E S E (A), as

Pr
[

Exppriv-cpa-1
E S E (A)=1

]
−Pr

[
Exppriv-cpa-0

E S E (A)=1
]
.

We say that E S E is private under chosen-plaintext at-
tacks (PRIV-CPA-secure) if the PRIV-CPA advantage of
any adversary against E S E is small.

Remark A.3 Note that the adversary is able to obtain
examples of encrypted documents of its choice and
queries of keywords of its choice, even though it is not
given explicit encryption or query oracles. The adversary
can still do the former by querying the left-right encryp-
tion oracle on pairs of equal messages and the latter by
querying the same oracle on, say, a pair of equal mes-
sages containing just one keyword. Then by the search-
ability requirement the resulting ciphertext will contain
the result of the query for this keyword.

Remark A.4 We do not study chosen-ciphertext secu-
rity here as it can be achieved using the encrypt-then-
MAC method [29]. I.e., the key includes an additional
MAC key, a new ciphertext includes the MAC of the
previous-scheme ciphertext, and the new decryption al-
gorithm verifies the MAC before decrypting and out-
putting the message.

Remark A.5 Our security definition only considers a
single key, when in reality the server would store and
search messages encrypted under multiple keys. For the
standard security definitions for encryption and MACs
security in the single-user setting implies security in the
multi-user setting [26]. But the situation with security
of searchable encryption in the multi-user setting is not
as obvious; e.g. [27] conjectures that for their primitive
single-user security does not imply multi-user security.
But the difference is due to the public-user setting. In the
full version of the paper we will formally prove that our
PRIV-CPA implies security in the multi-user setting.

Remark A.6 Our security notion is similar to that of
Goh [48], but ours is stronger in that we allow the chal-
lenge documents to contain different number of words
and we allow the adversary to pick an arbitrary num-
ber of challenge document pairs adaptively. We do not
know if the latter makes the definition strictly stronger,
but unless one proves otherwise it is important to con-
sider more powerful adversaries. Also, for our primitive
the security notion requires the queries to hide partial in-
formation about keywords (besides equality). Goh’s def-
inition does not explicitly require that, even though such
security may be implied for certain types of schemes.

The security definitions for privacy-preserving MACs
(IND-DCPA) [28] and efficiently-searchable encryption
[23] require that only equality of plaintexts is leaked.
As are they are not directly suitable for our primitive as
we must consider sets of messages and overlaps between
them.

A.3 A PRIV-CPA-secure EDESE scheme
OUR CONSTRUCTION. We now construct an EDESE
scheme with message and keyword spaces MsgSp,KwSp

18

and prove it secure under the above definition. Let
S E = (K S E ,E S E ,DS E) be a standard symmetric
encryption scheme with message space MsgSp, where
message can also be viewed as sets of keywords. Let
M = (K ,T) be a deterministic MAC with mes-
sage space Σ∗. Let k be an integer parameter. Let
encodee,encodeq be functions Σ∗→ Σ∗.

We define E S E = (K ,E ,D ,Q) as follows.

• K runs skM
$←K M and skS E

$←K S E , and re-
turns skM ‖skS E .

• EskM ‖skS E
(m) runs:

– Let m = {w1, . . . ,w`}.
– Let n be the maximum number of unique key-

words a message of length |m| can have.

– If ` < n, then for i ∈ [`+1, . . . ,n] wi
$← Σk

– ti←TskM
(wi) for i ∈ [n]

– t← encodee(t1, . . . , tn)

– Return t‖E S E
skS E

(m).

• DskM ‖skS E
(c) parses c as tags‖c′ and returns

DS E
skS E

(c′).

• QskM ‖skS E
(w) = encodeq(TskM

(w)).

The idea for the construction is simple: we encrypt the
document with a standard encryption scheme and append
MACs of unique keywords in the document. To prevent
leaking the number of unique keywords we add as many
“dummy” keywords as needed.

We now discuss how to instantiate the encode func-
tions so that the scheme satisfies the correctness require-
ments.
CHOOSING encode FUNCTIONS. We could simply let
the encodee function above to output its inputs in lex-
icographical order and encodeq be the identity function.
Note that in this case it is easy to see that the construction
satisfies the requirements of a EDESE scheme with the
false-positives bound δ corresponding to the probability
of a queried message colliding with a random k-bit mes-
sage or of MACs of two messages being the same, and
this is small due to the standard unforgeability property
of a MAC scheme.

Now we discuss how to instantiate encode functions
so that ciphertexts get more compact. We introduce some
extra parameters for the scheme: the size of the initially
empty Bloom filter bit array B and the number of bits
r being set to 1 for each keyword (these determine the
rate of false positives as we discuss below). Let p be the
length of MACs output by the algorithm T of M . We
assume that p ≥ r logB. Let f be an injective function
from [B] to Σ∗. Then

• encodee(t1, . . . , tn):

– for every i ∈ [n]

∗ Let h1, . . . ,hr be the numbers defined by
1st,. . . ,rth logB-bits of ti resp.
∗ Set h1, . . . ,hr’th bits of Bloom filter array

to 1.

– For all positions p1, . . . , pv of the Bloom filter
which are 1, output f (p1), . . . , f (pv).

• encodeq(ti):

– Let h1, . . . ,hr be the numbers defined by
1st,. . . ,rth logB-bits of ti resp.

– Set h1, . . . ,hr’th bits of Bloom filter array to 1.

– For all positions p1, . . . , pu of the Bloom filter
which are 1, output f (p1), . . . , f (pu).

It is easy to see that the scheme is correct. When the
same keyword is encoded during encryption and query,
its deterministic MAC is mapped the same way to the
same set of positions in Bloom filter. If M is a PRF,
then setting the bits to 1 using our method is equivalent
to using r independent functions to random bits. After
inserting d≤ |KwSp| distinct keywords using r mappings
into an array of size B the probability of a false positive
δ is 1− (1− (1/B))rd)r ≈ (1− e−rd/B)r [48].

We note that our scheme is more more efficient than
that of [48]. To map a keyword to r bits [48] uses r in-
dependent MAC computations. We, on the other hand,
only use one MAC computation and use the pseudoran-
domness property to construct an equivalent mapping.
SECURITY ANALYSIS. We now state the security of our
scheme.

Theorem A.7 If M is PRF and S E is IND-CPA-
secure, then E S E is PRIV-CPA-secure.

The proof is in Appendix B.
Discussion the concrete instantiation of our construc-

tion can be found in Section 4.4.

B Security Proof

We now prove Theorem A.7. Let S E =
(K S E ,E S E ,DS E) be a standard symmetric en-
cryption scheme with message space MsgSp, where
message can also be viewed as sets of keywords. Let
M = (K ,T) be a deterministic MAC with message
space Σ∗. Let k be an integer parameter. As we men-
tioned, for simplicity we assume that encodee function
in the construction outputs its inputs in lexicographical
order. Let E S E be as per Construction A.3.

For an adversary A we consider a sequence of exper-

iments, starting with Exp0(A) = Exppriv-cpa-0
E S E (A)

19

and ending with Exp3(A) = Exppriv-cpa-1
E S E (A).

Let the left-right queries made by A be (m1
0,m

1
1),

(m2
0,m

2
1), . . . ,(m

q
0,m

q
1), where for b ∈ Σ and i ∈ [q]

mi
b = {w

i,1
b , . . . ,wi,qbi

b }.
Then in Exp0(A) the adversary is given

the MACs and encryptions of {w1,1
0 , . . . ,

w1,n
0 },m1

0, . . . ,{w
q,1
0 , . . . ,wq,n

0 },m
q
0 (the MACs are of the

keywords in sets and the encryptions of messages, and
the MACs are output in the lexicographical order). And
in Exp3(A) the adversary is given the MACs and encryp-
tions of {w1,1

1 , . . . , w1,n
1 },m1

1, . . . ,{w
q,1
1 , . . . ,wq,n

1 },m
q
1.

Now consider experiment Exp1(A) which is equivalent
to Exp0(A), except that A is given encryptions of
“right” messages (and the MACs are still of the “left”
keywords’: {w1,1

0 , . . . ,w1,n
0 },m1

1, . . . ,{w
q,1
0 , . . . ,wq,n

0 },m
q
1.

Clearly, if the difference between probabilities of A
outputting 1 in Exp0(A) and Exp1(A) is not small, then
we can construct adversary B1 breaking IND-CPA secu-
rity of S E with equal Advind-cpa

S E (B1). B1 simply uses its
own challenge oracle to simulate the encryptions of doc-
uments output by A (which must be of the same length
in each query pair), and simulates the MACs of the key-
words (which are the same in both experiments) using
the key it creates.

Now we consider experiment Exp2(A) which is equiv-
alent to Exp1(A), except that all keywords which are
unique (i.e. are not shared by different documents)
are replaced with the corresponding “right” unique key-
words. Note that due to the queries restriction in Defini-
tion A.2 there are equal number of such unique keywords
in the left and right queries (excluding the low proba-
bility of collision in dummy keywords). We claim that
if the difference between probabilities of A outputting 1
in Exp1(A) and Exp2(A) is not small, then we can eas-
ily construct adversary B2 breaking PRF security of M

with equal Advprf
M (B2). In fact, IND-DCPA security [28]

would be sufficient. B2 would use its own challenge ora-
cle to simulate MACs of the keywords (while preserving
the equality pattern in its queries) and simulate the en-
cryptions of the documents using the key it creates. And
of course we could go with the stronger PRF adversary
that we need for the efficient encoding.

We finally claim that Exp2(A) and Exp3(A) are indis-
tinguishable for A or, again, we can easily construct ad-
versary B breaking PRF security of M . This is because
the only difference is in the MACs of keywords which are
shared between several messages. But since the MAC is
deterministic, the resulting tags are output in the lexico-
graphical order, and because of the restriction on the ad-
versary A’s queries, we can see that these keywords un-
derlying A’s queries in Exp2(A) and Exp3(A) have the
same equality pattern. I.e. if we assume that the key-
words in each set are sorted according to the correspond-

ing MAC lexicographical positions, then wi, j
0 = wk, j

0 iff
wi, j

1 = wk, j
1 for i 6= k both ∈ [q] and j ∈ [n]. Then it is

easy to construct IND-DCPA adversary who can use its
own challenge oracle to simulate the MACs. B3 can do
so without violating its restriction on using the oracle,
which is for left and right vectors of messages to have
the same equality pattern. And of course we could con-
struct a stronger PRF adversary.

Putting it all together we can see that if there ex-
ist an adversary A who can output 1 in Exp3(A) and
Exp0(A) so that the difference between the correspond-
ing probabilities is not small, and hence, by definition,

Advpriv-cpa
E S E (A) is not small, then we can construct other

adversaries B1,B2 with comparable resources such that

Advpriv-cpa
E S E (A)≤Advind-cpa

S E (B1)+Advprf
M (B2)+Advprf

M (B3) ,

and the statement of the theorem follows.

20

