# GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION

|                                                                                                                   |                                                       | Date: March 3,                                                                                                                  | , 1980             |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Project Title: Desi                                                                                               | gn of Acoustical Treatme<br>est Industries Sawmill in | ent for Noise Control in the Hazelhurst, Ga.                                                                                    | ne Continental     |
| Project No:                                                                                                       | A-2578                                                |                                                                                                                                 | ^                  |
| Project Director:                                                                                                 | Mr. George H. Lee                                     |                                                                                                                                 | Co                 |
| Sponsor:                                                                                                          | Continental Forest Indus                              | tries, a Unit of the Conti                                                                                                      | inental Group, Ìn  |
| Agreement Period:                                                                                                 | From February 1                                       | 2, 1980 Until August                                                                                                            | 11, 1981           |
| •                                                                                                                 |                                                       |                                                                                                                                 | 1012               |
| Type Agreement:                                                                                                   | Standard Industrial Agre                              | ement, and P.O. No. 770-X-                                                                                                      | -\$, dated 1/16/80 |
| Amount:                                                                                                           | \$18,908                                              |                                                                                                                                 |                    |
| Reports Required:                                                                                                 | Quarterly Progress Repor                              | ts                                                                                                                              |                    |
| Sponsor Contact Pers                                                                                              | on (s):                                               | . •                                                                                                                             |                    |
| Technical Ma                                                                                                      | itters                                                | Contractual Matters                                                                                                             |                    |
|                                                                                                                   | •                                                     | (thru OCA)                                                                                                                      |                    |
|                                                                                                                   |                                                       | 6                                                                                                                               | , Rezisio          |
| ,                                                                                                                 |                                                       |                                                                                                                                 |                    |
| Defense Priority Ratin                                                                                            | ng: None                                              |                                                                                                                                 |                    |
| Assigned to:                                                                                                      | EEL/IED                                               | (School/I                                                                                                                       | Laboratory)        |
| Project Director Division Chief (EES) School/Laboratory Di Dean/Director—EES Accounting Office Procurement Office |                                                       | Library, Technical Reports Section EES Information Office EES Reports & Procedures Project File (OCA) Project Code (GTRI) Other |                    |

Reports Coordinator (OCA)

## SPONSORED PROJECT TERMINATION SHEET

|                                                                                                    | Dete                                                                              | 10/27/81                                                    |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                    | Date                                                                              |                                                             |
|                                                                                                    | Acoustical Treatment for                                                          |                                                             |
| Project No: Continenta A-2578                                                                      | 1 Forest Industries' Sawn                                                         | ill in Hazelburst, Ga.                                      |
| Project Director:  George H.                                                                       |                                                                                   | Enturo April 1990.                                          |
| Sponsor: Continenta<br>Group, Inc                                                                  | 1 Forest Industries, a un                                                         | it of the Continental                                       |
| Effective Termination Date:                                                                        | 8/31/81                                                                           |                                                             |
| Clearance of Accounting Charges:                                                                   | 8/31/81                                                                           |                                                             |
| Grant/Contract Closeout Actions R                                                                  | Remaining:                                                                        |                                                             |
|                                                                                                    |                                                                                   |                                                             |
|                                                                                                    |                                                                                   |                                                             |
|                                                                                                    | ×&losing Documents                                                                |                                                             |
| Final Fiscal Repo                                                                                  |                                                                                   |                                                             |
|                                                                                                    | eventory & Related Certificate                                                    |                                                             |
| Classified Material                                                                                | •                                                                                 | =                                                           |
| Other                                                                                              |                                                                                   |                                                             |
|                                                                                                    |                                                                                   |                                                             |
| /                                                                                                  |                                                                                   |                                                             |
|                                                                                                    |                                                                                   |                                                             |
|                                                                                                    |                                                                                   |                                                             |
| The                                                                                                |                                                                                   |                                                             |
| Assigned to:EDL                                                                                    |                                                                                   | (Schwei/Laboratory)                                         |
| COPIES TO:                                                                                         |                                                                                   |                                                             |
| Administrative Coordinator Research Property Management Accounting Procurement/EES Supply Services | Research Security Services Reports Goordinator (OCA) Legal Services (OCA) Library | EES Public Relations (2)  Computer Input Project File Other |



# Georgia Institute of Technology

#### **ENGINEERING EXPERIMENT STATION**

ATLANTA, GEORGIA 30332

**ENGINEERING EXTENSION LABORATORY** 

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208

May 9, 1980

Mr. Jerome B. Rogers Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Please allow me to summarize our findings and progress to date as work is proceeding on your noise control program at Mill No. 152. Also, I will use this opportunity to put on paper other thoughts and recommendations, some of which we have previously discussed.

Hearing protection has been evaluated for several of the worst cases at your mill. This was done by the so-called "two-sigma" method. Basically it takes the levels found, subtracts off the published attenuation that the plug manufacturer supplies, and then adds two standard deviations back for a safety factor. Picking a plug to use involves not just getting one with high attenuations, but also low deviations. This all assumes that the plugs are fitted and worn correctly.

Originally, I looked at the Apex (white) V-51R type plugs (these are made by several manufacturers and are of U. S. Air Force origin) and the Willson Sound Silencer (black). These were the plugs you were using when I first started coming down. At some point though, the Norton Com-fit and another make of V-51R were ordered, as it was not realized that plugs are different. Connie Hanson was asked to stick with these plugs until an evaluation could be made of their effectiveness.

A chart enclosed indicates various protected levels which were calculated from conservative octave band samples of the noise. Corresponding dBA (Overall) levels are indicated. See example of evaluation sheet enclosed, too.

From these data we can rate the plugs as: 1) E-A-R best; 2) V-51R better (several makers - Apex and Fibre Metal included); and, 3) Com-fit good.

Connie was supplied with prices and order information and asked to order the E-A-R disposable plug. She indicated on April 2nd that they had been ordered. There are several other disposable type plugs on the market, too, but this is indeed one of the best at the present time. Besides excellent attenuation, it is more comfortable for the wearer and will, hopefully, be tried, worn and liked. Another real "plus" for this type plug is that it is malleable, and does not have to be individually fitted. This, of course, is one reason for its superior attenuation.

It is a good idea to have several types of hearing protection available to your employees. By picking one type or another, they feel that they are more a part of the decision. For this reason, keep the V-51R and the Com-fit plugs available, too. These plugs do, however, require that Connie, or someone, "fit" them. She was also asked to order a small ball-ended sizing device and to obtain other sizes of these plugs. You have had only mediums in stock. The V-51R comes in a total of five sizes (extra-small, small, medium, large, extra large). The Com-fit comes in three (small, medium, large).

Some experience in canal sizing will best dictate just what sizes of plugs should be kept on hand. I have learned that black people have smaller ear canals than white people, on the average. This indicates that it would definitely be advisable to stock smaller sizes.

A set of muffs were available to the planer technician and planer infeed operator during my very first visits with you. They are not there now. Since protected levels inside the planer enclosure are not below 90 dBA, then it would be best to provide additional protection for these workers or others who go into the planer enclosure. No one should be exposed to over 115 dBA (as often exists in the planer enclosure) unprotected for any length of time. I am seeking a strap which can be added to your Continental hard hats to hold "flip-down" muffs. With this, personnel who normally wear plugs can flip these muffs down for use inside this enclosure (in addition to plugs).

I would like to urge, again, that baseline audiograms be done. I did recontact Jim Hankla at the Ware County Health Department as you requested on March 24th. His prices have not changed since those mentioned in my letter of November 6, 1979, to Alan Humphrey. This information and a discussion of the need to fix the room up for the tests was discussed with Ed Hester during the week of March 24th. Hankla needs about a two week lead time. He also will come in on a Saturday, if desired. As I mentioned to you, the OSHA IHFOM (see enclosure) recommends a sixteen hour quiet time just prior to testing. Since this is impractical, be sure that the workers are wearing their hearing protection during the day of the tests. Try to test on Mondays and early in the day.

I've asked several workers at random if they had had an audiometric (hearing) test when they were employed or since they have been employed. I have not found anyone who has had them. Since the baseline is especially important, I would recommend Hankla (or whoever) do the tests on everyone employed who ever has reason to go past your office area. At such time as controls are instituted, then tests can be eliminated for the "quiet" area people, or people who become sufficiently protected by controls.

Hankla does a conscientious, thorough job, I think. For his money I think he tries to give a lot of motivation to the employees, too. E-A-R (and others) have free-loan motivational films which can be worked into this same testing period time, if desired, or used at later safety meetings.

Please continue to encourage your supervisors to wear hearing protection. I think that their example is worth a lot! Workers (at least when I'm around) appear to be pretty consistent in the wearing of their protection.

I, myself, have not seen your mill's written safety policy, such as the one which must exist for hard hat usage. A written policy for hearing protection usage should also exist - and be made known, too. It might parallel the hard hat rules - maybe three violation allowances with warning, suspension and dismissal. Both plugs and hats protect the worker. We all know how very desirable it is to wear hard hats; it's demonstrated almost daily. Noise damage risk is not nearly as immediately obvious to us because any damage occurs so slowly. This kind of written policy can go a long way toward demonstrating serious management resolve toward solving noise problems. Make OSHA aware that such a policy is in effect and is enforced when they visit.

As part of the above policy, it would be good to issue plugs as well as hard hats to all visitors. The disposable ones will be good for this. And - for goodness sakes - don't anyone show OSHA (or other type) inspectors around without hearing protection being used by the inspector and the person accompanying him.

Page IV-16 of the IHFOM mentioned above (enclosed) contains the four points which appeared in OSHA's letter to you sometime in the Fall of 1979, I believe. I think they sent that letter to everyone who had been previously cited for noise.

I have never received a copy of your citations. This has been requested from the start, and I know you called Savannah on it. Maybe they got lost in the mails???? I am still quite willing to go to the Savannah

OSHA office. I mentioned this to Ed Hester on April 1st or 2nd when I was down. Also, I tried on April 7th to reach you at home, as well as on April 8th at the office, to find out your desires.

You are probably doing this, but it would be a good idea to document the time and money which you and your people spend dealing with noise control implementation - discussions, building enclosures, plugs ordered, safety meetings, audiometric testing, etc. I have mentioned this to Connie.

Measurements have been made for general layout purposes of the planer mill, chip-n-saw mill, and band mill. Measurements and layouts have also been made of the planer enclosure and all three trim saws. Photos of several existing enclosures and machines have been made.

Letters have been sent to the makers of your equipment for any suggestions that they may have for noise abatement at the source, including any pre-made enclosure for retrofit.

A large percentage of the task levels required for the initial (before treatment) dose computations have been recorded with Type I equipment on a graphic level recorder and calculated. A partial listing of these equivalent levels is enclosed for your information. These levels, as well as supporting details, will ultimately be included in the initial exposure profile report. Some delay has been experienced, as might be expected, because of the band mill shut down, an inadvertent mill shut down because of a railroad chip car shortage, or just normal downtime, hangups, etc. Every effort is being made to utilize field time to your best advantage. I recognize that your mill, as others, must react to adverse nationwide housing market conditions, and I hope these conditions improve soon.

Interviews were conducted by Sherman Dudley and me with you and various supervisors to determine reasonable worker task times - that is how long workers did each task. This is still ongoing, especially in regard to setting downtimes and cross-checking for accuracy. Shift changes have probably aggravated this effort some because of personnel changes and getting out of the "routine" day.

Limited audio dosimeter surveys have been done. The one instance where it was done all day gave lower results than the OSHA data I've seen - probably because quieter running lx4's happened to be in-work that day. More extensive dosimeter surveys could yield knowledge of downtimes.

Concurrently, as work is continuing to fill in these task levels, we are beginning to move to look at designs for source treatment, initially in the planer mill. A general observation of previous efforts at control by

enclosures is that the enclosures did not have any absorption and were not heavy enough to withstand just normal sawmill wear-and-tear (as at the chip-n-saw trim saw). It could be that absorption, previously installed, has come off and was not replaced. The importance of enclosure hole minimization seems to have been generally understressed, too.

I have made notes of many items which need attention, noise-wise, as task level measurements were being made - such as air exhausts, booth disrepair, etc. I feel that it is best to hold these at least until initial levels are completed, otherwise we can't document any improvement.

Your planer enclosure seems to be basically well made with quite sufficient transmission loss for the most part. It's integrity is compromised, however, by leaks at the doors, the lower transmission loss of the 2'x4' observation window near the infeed man, and any unnecessarily large openings for infeed and outfeed.

One of my first recommendations of treatment in the planer mill area is to add absorption material inside your planer enclosure. This is necessary to reduce reverberant buildup inside the enclosure. This, in turn, enables the massive part of your enclosure to do its job even better, and lower the levels outside the enclosure, as well as inside it. A minimum of 50% ( $\leq 800$  sq. ft.) and a practical maximum of 75% ( $\leq 1,000$  sq. ft.) of the total inside enclosure surface area should be covered to be effective.

A most effective long-term material to use inside the planer enclosure is Owens-Corning 1" Painted Linear Glass Cloth Board. Besides fulfilling acoustical requirements, this material is resistant to dust penetration. The impregnation of sound absorbing material with fine wood dust creates a potentially hazardous fire or explosion problem. It is highly recommended that wood dust accumulation, even with this material, be monitored and periodically removed. Its cost is high: 1/1/80 price \$1.60 per sq. ft. in small lots thru Hazlehurst Lumber and Supply Co., Inc.

The acoustical performance of this material improves as it is spaced further from the wall. Apply the 4'x8' sheets to the walls on top of a previously installed 2"x4" stud wall, 2' on centers. See sketch. Do not feel like every square foot of area has to be covered (such as near outfeed cross-over stairs or within 1' of infeed hole on the inside) but try to cover the 800-1,000 square foot limits above. For the ceiling, just attach the board directly to the plywood with large-headed nails, such as is used to attach roofing paper. Do not space it out as the walls. Do not obstruct any sprinkler heads. This work should be done with the planer off. Be sure to orient the material correctly with the painted linear surface facing the planer and the linear lines vertical.

There is often a reluctance (usually encountered) to the installation of such material as above due to its cost. Owens-Corning 6" or 3 1/2" fiberglas building insulation (R-19 or R-11 respectively) has the kind of acoustical properties desired, BUT the disadvantages to its use is that fine wood dust will impregnate the material, lower its absorption effectiveness, and create a fire or explosion hazard. Consider these disadvantages. If you and your insurance people feel that this material can be monitored for dust accumulation satisfactorily and can be periodically cleaned off somehow and/or replaced as acoustical and safety requirements dictate, then use it. A drawing is enclosed suggesting that a 2"x6" stud wall be constructed inside the enclosure to accommodate the material. A light 1/2 - 1 mil tedlar or mylar film sheet, as well as a mesh or screen could later be added to the grid work, if it becomes necessary to protect the material. A 2"x6" framework is recommended for either 6" or 3 1/2" material, since an added protective film is less degrading acoustically if it does not touch the fiberglas. Cost runs about \$.30 per sq. ft. for the 6"x23" Kraft-backed roll. Install it with the insulation facing the planer; to do otherwise will seriously drop the absorption coefficients in needed frequencies from 500 Hertz up.

Upgrade the planer infeed operator's 2'x4' observation window. Remove the existing, poorly attached piece of Plexiglas. Clean up the window frame and install a piece of 1/4" laminated safety glass at the inside location where the old Plexiglas was. Seal it well with a rubberized caulk and reinstall the molding strip securely. Clean the window. The risk of breakage is probably greatest from the outside, so install a clean piece of clear 1/4" Plexiglas or Lexan at the outer window molding location. Seal well as before and secure with molding strips. All materials are available from PPG Industries, Inc., P. O. Box 3397, Station A, Savannah, GA 31413, phone 912-234-2286. Approximate costs per square foot are: glass - \$3.90, Lexan - \$8.94, Plexiglas - \$4.58. (PPG in Macon has prices 10-30% lower on these items.) I believe I've seen a sheet of Plexiglas in the maintenance area behind the Chip-n-Saw mill. Also, you may find the existing Plexiglas window okay for reuse. See drawing.

In the above case, we will count on the sheet of glass to regain the acoustical integrity of this window. Lexan, while expensive, is a newer material by GE, which is said to be more scratch resistant than Plexiglas. It is not felt that the Lexan MR4000 coating is worth the additional cost. A protective screen could be put over either or both of these sheets, but easy access for cleaning would be necessary. Providing a small shelf at this location would give the infeed man a place to put wrenches, pry bars, glasses, etc., instead of against the window.

Other treatments presently being considered for the planer mill include a "silenced" tunnel to the planer enclosure, better door sealing, improved barriers at infeed/outfeed holes, a partial enclosure for the planer infeed mechanism, a "total" trim saw enclosure, and a barrier wall improvement at the hog.

The OSHA man had asked Ed about the possibility that the A-20 infeed man feed from the other side of the infeed conveyor from the breakdown. He probably saw that St. Regis, Lumber City, does this on their A-20. This would lower his levels some, but not help nearby workers. Besides, your infeeder needs to get to the mechanism a lot, as well as go into the enclosure. If, however, you think this is a feasible thing to do, let me know soon, as I'm looking at workable infeed mechanism enclosure designs now.

Lastly, I would like to be able to "educate" someone at your mill along the lines of noise control and just what is important. Perhaps as we get into implementing some things Sam Carter will be this person. I suppose that maintenance will do a lot of it. This will not only be necessary in implementation, but can, I think, be very cost effective for you on a long term basis - such as when monitoring enclosure degradation or attacking new problems in years to come. In other companies, I'm finding that most productive, mutually satisfying progress is made when there is one co-ordinating individual who I can communicate with who has some time, interest, and the management backup to be involved in noise work at the mill.

I will call you in a few days after you have had a chance to digest this long letter.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures

| OPERATOR              | CONDITIONS                               | Overall<br>dBA Level | Approx.<br>With Plug | Protected<br>s Correcti | 1       |
|-----------------------|------------------------------------------|----------------------|----------------------|-------------------------|---------|
|                       |                                          | Ove                  | E-A-R                | V-51R                   | Com-fit |
| Band Mill Edger       | Operating                                | 106                  | 77                   | 82                      | 88      |
| Band Mill Trim Saw    | Operating                                | 101                  | 70.5                 | 74.5                    | 81.5    |
| Planer Infeed         | Feeding                                  | 109                  | 78.5                 | 84                      | 91.5    |
| Planer Outfeed/Grader | Operating                                | 105.5                | 75.5                 | 80                      | 87      |
| Planer Mill Trim Saw  | Operating                                | 97                   | 67                   | 72.5                    | 79.5    |
| Planer Technician     | Inside Planer<br>Enclosure -<br>w/Lumber | 125.4                | 95                   | 100                     | 107     |
| C-n-S Trim Saw        | Operating                                | 99                   | 67.5                 | 72                      | 78.5    |

The attenuation provided by each of the plugs looked at averaged approximately as below:

| 1. | E-A-R disposable        | 30 dBA   |
|----|-------------------------|----------|
| 2. | Type V-51R              | 25 dBA   |
| 3. | Norton Com-fit          | 18.5 dBA |
| 4. | Willson Sound Silencers | 15 dra   |

#### HEARING PROTECTION EVALUATION SHEET

PLANER MILL

| COMPANY Continutal                                  |        |             | W            | ORKER PO    | SITION      | min      | 5 AW     | SP.       |              |
|-----------------------------------------------------|--------|-------------|--------------|-------------|-------------|----------|----------|-----------|--------------|
| DATA DATE (0/19/79                                  | ВЧ     | files       | W            | ORKER NAI   | ME          |          |          |           |              |
| PROTECTION TYPE A: William                          | Sd.    | Silence     |              |             | ~~~         |          |          |           |              |
| B. E. A-R ANSIS3.19.                                |        |             | (            | :) Anex     | NEM         | -18 (    | V- 51R   | tne       | ~ 1          |
| NOTES                                               |        |             |              |             | A -1 1      | data :   | 2        |           | <del></del>  |
| NOTES                                               |        |             |              | 1 3u        | · Week      | a ala    | 33.14-17 | 1/4       |              |
|                                                     |        |             |              |             |             |          |          |           |              |
| A                                                   |        | 1           | <u> </u>     | 1           |             | 1        |          | 0         | 11           |
| Frequency, Hz                                       | 125    | 250         | 500          | 1K          | 2 <u>K</u>  | Δĸ       | 8K       | dB        | rall<br>dBA  |
| Measured level, dB of dBA                           | 12-155 | 80-(83)     | 87-90)       | 90 (93)     | 89-9        | 24-88    | 15484    | <u>ub</u> | 97           |
| Minus Mean Attn., dB                                | -20    | -23         | - 24         | -26         | -32         | -42      | - 22     |           |              |
| Plus 2 x Std. Dev., dB                              | 14,2   | 12.0        | 12.8         | 11.4        | 8.8         | 10.6     | 13.2     |           |              |
| Protected level, dB or dBA                          | 69,2   | 72          | 78.8         | 78.4        | 67.8        | 56.6     | 62,2     |           | 82,          |
| Plus A-wgt., if req'd. Protected level, dB or (dBA) |        |             | <del> </del> |             |             |          |          |           | <del> </del> |
| Flotected level, ab of aba                          | L      |             | L            |             |             |          |          |           | <u></u>      |
|                                                     |        |             |              |             |             |          |          |           |              |
| В                                                   |        | <del></del> |              | 1           | <del></del> | T        | -        |           |              |
|                                                     |        | 1           | 1            |             | 1           |          |          | 0ve       | rall         |
| Frequency, Hz                                       | 125    | 250         | 500          | 1K          | 2K          | 4K       | 8K       | dB        | dBA          |
| Measured level, dB or dBA<br>Minus Mean Attn., dB   | -29.6  | -31.3       | - 34.1       | - 3Y.0      | -35.5       | -419     | -37.3    |           | 17           |
| Plus 2 x Std. Dev., dB                              | 6.4    | 6,6         | 4.2          | ¥.6         | 2,4         | 4.2      | 1.8      |           | <del> </del> |
| Protected level, dB or dBA                          | 21.8   | 58.3        | 60.1         | 63.6        | 60.9        | 50.3     | 50.3     |           | 67           |
| Plus A-wgt., if req'd.                              |        |             |              |             |             |          |          |           |              |
| Protected level, dB or (dBA)                        |        |             |              |             |             |          |          |           |              |
|                                                     |        |             | •            |             |             |          |          |           |              |
|                                                     |        |             |              |             |             |          |          |           |              |
| С                                                   |        | T           | T            | T           | T           | T        | 7        | Ovo       | rall         |
| Frequency, Hz                                       | 125    | 250         | 500          | 1K          | 2K          | 4K       | 8K       | dB        | dBA          |
| Measured level, dB or dBA                           | 75     | 83          | 50           | 93          | 91          | 88       | 84       |           | 177          |
| Minus Mean Attn., dB                                | -20.4  | -23.2       | -15.4        | -29         | -34.9       | -38.6    | - 38.7   |           |              |
| Plus 2 x Std. Dev., dB                              | 4,4    | 4.4         | 4.6          | 3.6         | 4.0         | 4.6      | 3.6      |           | 100 6        |
| Protected level, dB or dBA                          | 59     | 64.2        | 69.2         | 67.6        | 60.1        | 54       | 50.9     |           | 12.5         |
| Plus A-wgt., if req'd. Protected level, dB or dBA   |        |             |              | <del></del> |             |          |          |           |              |
| Trotected rever, ab or aba                          | L      | <b>I</b>    | <u> </u>     |             | L           | <u> </u> | ļ!       |           | L            |
|                                                     |        |             |              |             |             |          |          |           |              |

### HEARING PROTECTION EVALUATION SHEET

|                                         |         |        |         |            | SITION        | Planer 1 | ni 4-       | _     |      |
|-----------------------------------------|---------|--------|---------|------------|---------------|----------|-------------|-------|------|
| COMPANY                                 |         |        | WC      | RKER POS   | SITION        | Tho      | - sand      | _00   | ·    |
| DATA DATE                               | ВҮ      |        |         | RKER NA    |               |          |             | ·     |      |
| PROTECTION TYPE A: Norton               | 4565    | un 456 | · (ha   | <b>~</b> ) |               |          |             |       |      |
| B: EAB 315 / from                       | ~``)    |        | C:      | Norto      | Con<br>22-199 | fit (~   | .l. ~       | stack | ( )  |
| NOTES                                   |         |        | L       | 274,       | 22-195        | 57       |             |       |      |
| NOTED                                   |         |        |         |            |               |          |             |       |      |
|                                         |         |        |         |            |               |          |             |       |      |
| A                                       |         |        |         |            |               |          |             | 0ve   | rall |
| Frequency, Hz                           | 125     | 250    | 500     | 1K         | 2K            | 4K       | 8K          | dB    | dBA  |
| Measured level, dB or dBA               | 25      | 83     | 90      | 53         | 91            | 88       | 74          |       | 97   |
| Minus Mean Attn., dB                    | - 2 Y.S | -28,7  | - 32 .1 | - 34       | - 38.4        | -47,1    | -46,2       |       |      |
| Plus 2 x Std. Dev., dB                  | 9,4     | 8.2    | 7.0     | 6.6        | Yeb           | 5,0      | 3.4         |       |      |
| Protected level, dB or dBA              | 59.9    | 65.2   | 64.9    | 15,6       | 57:2          | 45.9     | 43.2        |       | 73   |
| Plus A-wgt., if req'd.                  |         |        |         |            |               |          | -           |       |      |
| Protected level, dB or dBA              |         |        |         |            |               |          |             |       |      |
|                                         |         |        |         |            |               |          |             |       |      |
| В                                       |         |        |         |            |               | r        | <del></del> |       |      |
| Fragueray Uz                            | 125     | 250    | 500     | 1K         | 2K            | 4K       | 01/         |       | rall |
| Frequency, Hz Measured level, dB or dBA | 75      | 83     | 900     | 9 3        | 91            | 4K<br>88 | 8K          | dB    | dBA  |
| Minus Mean Attn., dB                    | -52     | . 5 2  | -15     | - 16       | - 35          | . 40     | -31         |       |      |
| Plus 2 x Std. Dev., dB                  | 14.4    | 12.6   | 9.6     | 6,2        | 11. 2         | 11.4     | 13.4        |       | -    |
| Protected level, dB or dBA              | 60.4    | 70,6   | 74.6    | 1312       | 67.2          | 59.4     | -9.4        |       | 78   |
| Plus A-wgt., if req'd.                  |         |        |         |            |               |          |             |       |      |
| Protected level, dB or dBA              |         |        |         |            |               |          |             |       |      |
|                                         | -       |        |         |            | 1             |          |             |       |      |
|                                         |         |        |         |            |               |          |             |       |      |
| C                                       |         |        |         |            | <del> </del>  | 1        |             | Ove   | rall |
| Frequency, Hz                           | 125     | 250    | 500     | 1K         | 2K            | 4K       | 8K          | dB    | dBA  |
| Measured level, dB or dBA               | 75      | 83     | 90      | 93         | 91            | 88       | 84          |       | 97   |
| Minus Mean Attn., dB                    | -26.8   | -25.6  | -25,6   | -27.5      | -35.9         | -40.8    | -40.8       |       |      |
| Plus 2 x Std. Dev., dB                  | 13.8    | 11-8   | 12.8    | 9,0        | 13.2          | 17.4     | 11.2        |       |      |
| Protected level, dB or dBA              | 62      | 69.2   | 77.2    | 74.5       | 68.3          | 64.6     | 54.4        |       | 79.5 |
| Plus A-wgt., if req'd.                  |         |        |         |            |               |          |             |       |      |
| Protected level, dB or dBA              |         |        |         |            |               |          |             |       |      |
| ,                                       |         |        |         |            |               |          |             |       |      |

OSHA Instruction CPL 2-2.20 April 2, 1979 Office of Field Coordination

- (4) Existing noise and/or vibration controls.
- (5) Source(s) and characteristics of the noise (i.e. fan noise--discrete and broad band components, continuous or noncontinuous).
- (6) Feasible engineering controls.

### c. Building Data.

- (1) Size and shape of the room.
- (2) Layout of equipment, work stations and break areas.
- (3) Surface materials (e.g., ceiling/steel; walls/ cinder block; floor/concrete).
- (4) Existing acoustical treatment.
- (5) Feasible acoustical treatment (if known).
- (6) Noise from other sources (spill-over noise).
- (7) Presence of barriers, enclosures, etc.

### d. Employer Data.

- (1) What has been done to control the noise (e.g., consultants, plant noise monitoring, controls implemented, etc.)?
- (2) What is planned in the future?
- (3) Are administrative controls utilized? How are they enforced?
- (4) Hearing Conservation Program.
  - (a) Use of Hearing Protection.
    - Is use mandatory and enforced above a noise dose of 50%? 100%?

OSHA Instruction CPL 2-2.20 April 2, 1979 Office of Field Coordination

- Has correct use been demonstrated to all employees exposed to noise in excess of the standard?
- Does the company supply hearing protection? What is supplied? Who maintains it?

#### (b) Monitoring Audiometry.



- Are baseline audiograms obtained after 16 hours of quiet?
- 2 How often are audiometric tests performed on noise-exposed employees?
- Is the audiometer calibrated and are the tests performed by trained audiometric technicians?
- 4 How is the audiometric data used?
  - Are employees with abnormal audiograms retested after 16 hours of quiet and/or referred to an otolaryngologist or qualified physician?
  - Are audiograms used to biologically monitor the effectiveness of the hearing protection?

### 2. Evaluation of Hearing Protection.

a. OSHA standards place primary emphasis on engineering and administrative controls in light of the inherent deficiencies of hearing protection. However, the Industrial Hygienist shall determine the effectiveness of the hearing protection when used as an interim measure until engineering or administrative controls have corrected the hazard, or where controls have been determined to be infeasible.

Source: Industrial Hygiene Field Operations Manual, U.S.D.O.L.

OSHA Instruction CPL 2-2.20 April 2, 1979 Office of Field Coordination

- b. For compliance purposes, a minimally effective hearing conservation program consists of the following items:
  - (1) A basel ine audiogram for all employees exposed to noise levels equal to or in excess of the standard.
  - (2) Periodic audiograms for each overexposed employee.
  - (3) Analysis of audiogram results with retesting and/or referral to an otolaryngologist or qualified physician when a significant threshold shift occurs. A significant shift will be considered to be equal to or greater than 20 dB at any test frequency.

NOTE: If hearing loss has been determined to be occupationally related, the loss is required to be recorded on the OSHA Form 200.

- (4) Where insert ear plugs or custom-molded devices other than self-fitted, malleable plugs are utilized, individual employee fitting shall be conducted by a trained person, and employees shall be instructed in the care and use of the devices.
- c. Audiometric testing guidelines are detailed in ANSI S3.6-1969 "Specifications for Audiometers". The audiometric booth guidelines are contained in ANSI S3.1-1960 "Criteria for Background Noise in Audiometer Rooms". Where the employer's audiometer testing program contains deficiencies (compared with ANSI S3.6 and S3.1) to the extent that an employee is placed at an increased risk of hearing impairment, the Industrial Hygienist shall consult with the ARA for Technical Support.
- d. Caution must be applied when citing for the hearing conservation program. The intent of the citation should be to establish a good, workable program. Deficiencies other than those just outlined above shall be brought to the attention of the employer. If the program is not in compliance, the resulting citation shall state the deficiencies with particularity.

### EQUIVALENT TASK LEVELS

|             |                                                               | Task Levels      |                  |  |
|-------------|---------------------------------------------------------------|------------------|------------------|--|
| Task<br>No. | Task Description                                              | 90 dBA<br>Cutoff | 85 dBA<br>Cutoff |  |
| 01          | Break Room/Lunch Room                                         | < 90             | < 85             |  |
| 02          | Rest Room                                                     | <b>&lt;</b> 90   | < 85             |  |
| 03          | Stick Man, Pl, Near Breakdown Working                         | 95.8             | 95.8             |  |
| 04          |                                                               |                  |                  |  |
| 05          |                                                               |                  |                  |  |
| 06          |                                                               |                  |                  |  |
| 07          | Planer Infeed Lift Operator, P2, Cycle                        | <b>&lt;</b> 90   | 87.4             |  |
| 80          | Planer Infeed, P3, Feeding                                    | 104.3            | 104.3            |  |
| 09          |                                                               |                  |                  |  |
| 10          | Planer Infeed, P3, Idle                                       | <b>&lt;</b> 90   | 88.9             |  |
| 11          | Grader (Nearest Planer Outfeed), P4, Grading                  | 96.7             | 96.7             |  |
| 12          | Grader (Nearest Planer Outfeed), P4, Idle                     | <b>∠</b> 90      | 87.2             |  |
| 13          |                                                               |                  |                  |  |
| 14          | Grader (Away From Planer Outfeed), P5, Grading                | 94.0             | 94.0             |  |
| 15          | Grader (Away From Planer Outfeed) P5, Idle                    | <b>&lt;</b> 90   | <b>&lt;</b> 85   |  |
| 16          |                                                               |                  |                  |  |
| 17          | Planer Technician, P6, Inside Grinding Room                   | <b>∠</b> 90      | <b>&lt;</b> 85   |  |
| 18          | Planer Technician, P6, Inside Planer Enc, w/Lumber            | 111.4            | 111.4            |  |
| 19          | Planer Technician, P6, Inside Planer Enc., Running w/o/Lumber | 101.3            | 101.3            |  |
| 20          | Planer Mill Trim Saw Op., P7, Cutting                         | 95.3             | 95.3             |  |
| 21          | Planer Mill Trim Saw Op., P7, Idle                            | <b>&lt;</b> 90   | 88.7             |  |
| <b>2</b> 2  |                                                               |                  |                  |  |
| 23          | Dry Puller (Nearest Trim), P8, Operating                      | 93.2             | 93.4             |  |
| 24          | Dry Puller (Nearest Trim), P8, Idle                           | 89 <b>.</b> 9≆90 | 90.9             |  |
| 25          |                                                               |                  |                  |  |
| 26          |                                                               |                  |                  |  |
| 27          | Dry Puller, P9-12, Operating                                  | <b>∢</b> 90      | 89.4             |  |
| 28          | Dry Puller, P9-12, Idle                                       | <b>∠</b> 90      | 87.9             |  |
| 29          |                                                               |                  | 1                |  |

### EQUIVALENT TASK LEVELS

|             |                                                 | Task Levels      |                  |  |
|-------------|-------------------------------------------------|------------------|------------------|--|
| Task<br>No. | Task Description                                | 90 dBA<br>Cutoff | 85 dBA<br>Cutoff |  |
| 30          | Package Man, Pl3, Operating                     | <b>&lt;</b> 90   | 87.1             |  |
| 31          | Package Man, Pl3, Idle, Nearest Puller          | <b>&lt;</b> 90   | 85               |  |
| 32          | Ticket Man, P14, Banding                        | <b>&lt;</b> 90   | 87.7             |  |
| 33          | Ticket Man, P14, Marking                        | < 90             | <b>∢</b> 85      |  |
| 34          |                                                 |                  |                  |  |
| 35          | Planer Outfeed Lift Op., P15 & P16, Cycle       | <b>≺</b> 90      | 86.6             |  |
| 36          | RR Car Tie Down, P17-18, Tieing                 | <b>&lt;</b> 90   | <b>≺</b> 85      |  |
| 37          |                                                 |                  |                  |  |
| 38          | Round Table Man, P19, p/u at Table              | 95.6             | 95.6             |  |
| 39          | Round Table Man, P15, p/u at Trim Saw           | 95.6             | 95.6             |  |
| 40          |                                                 |                  |                  |  |
| 41          |                                                 |                  |                  |  |
| 42          | Planer Mill Sup., P21, Office in Trailer        | <b>&lt;</b> 90   | <b>&lt;</b> 85   |  |
| 43          | Outside Dry Kilns at Outfeed End                | <b>&lt;</b> 90   | <b>&lt;</b> 85   |  |
| 44          | Planer Mill Maintenance Man, Ml2, at Work Table | 96.5             | 96.5             |  |
| 45          | Stick Man, Pl, p/u at Conveyor                  | <b>&lt;</b> 90   | <b>&lt;</b> 85   |  |
| 46          | CNS Operator, C6, Cutting (in Booth)            | 100.8            | 100.8            |  |
| 47          | CNS Edger Op., C7, Cutting                      | <b>&lt;</b> 90   | 86.0             |  |
| 48          | CNS Trim Saw Op., C8, Cutting                   | 100.3            | 100.3            |  |
| 49          | CNS Trim Saw Op. Helper, C9, Cutting            | 98.9             | 98.9             |  |
| 50          | CNS Operator, C6, Idle (in Booth)               | <b>&lt;</b> 90   | <b>&lt;</b> 85   |  |
| 51          | CNS Edger Op., C7, Cleanup and Idle             | 94.9             | 94.9             |  |
| 52 .        | CNS Trim Saw Op., C8, Idle                      | 98.0             | 98.0             |  |
| 53          | CNS Trim Saw Op. Helper, C9, Idle               | 98.4             | 98.4             |  |
| 54          | No. 1 Tipple Op., C10, Operating                | 96.8             | 96.9             |  |
| 55          | No. 2 Tipple Op., Cll, Operating                | 92.1             | 92.7             |  |
| 56          | Band Mill Edger Op. Helper, B2, Idle            | 92.0             | 92.0             |  |
| 57          | Band Mill Edger Op., B3, Idle                   | 92.0             | 92.0             |  |
| 58          | No. 2 Tipple Op., C10, and Helper, C11, Idle    | <b>&lt;</b> 90   | <b>&lt;</b> 85   |  |
| 59          |                                                 |                  |                  |  |

#### EQUIVALENT TASK LEVELS

|             |                                               | Task Levels      |                  |  |
|-------------|-----------------------------------------------|------------------|------------------|--|
| Task<br>No. | Task Description                              | 90 dBA<br>Cutoff | 85 dBA<br>Cutoff |  |
| 60          | Green Sort Line (Grd. Nearest BM & CNS), C14  |                  | ٠.               |  |
| 61          | Millbright Area, P6, Operating                | 93.3             | 93.3             |  |
| 62          | Stacker Op., Sl, Operating                    | <b>&lt;</b> 90   | 89.5             |  |
| 63          | Stacker Op., S1, Idle                         | <b>&lt;</b> 90   | <b>∠</b> 85      |  |
| 64          | Stacker Transfer Op., S2, at Conveyor         | <b>&lt;</b> 90   | 88.2             |  |
| 65          |                                               |                  |                  |  |
| 66          |                                               | •                |                  |  |
| 67          | Stick Layers, S3, Operating                   | < 90             | 85.3             |  |
| 68          | Stick Layers, S3, Idle                        | <b>∠</b> 90      | <b>≺</b> 85      |  |
| 69          | No. 1 Kickout Op., C4, Normal Op.             | 91.4             | 93.0             |  |
| 70          | No. 1 Slasher, C3, Idle in Booth              | <90              | <b>&lt;</b> 85   |  |
| 71          | No. 1 Slasher, C3, Operating                  | <b>∢</b> 90      | <b>≺</b> 85      |  |
| 72          | No. 2 Slasher, C5, Operating                  | <b>∠</b> 90      | <b>&lt;</b> 85   |  |
| 73          | No. 2 Slasher, C5, Idle in Booth              | <90              | <b>&lt;</b> 85   |  |
| 74          | Stick Making Machine, Infeed, Operating       | 98.1             | 98.1             |  |
| 75          | Stick Making Machine, Outfeed, Operating      | 98.6             | 98.6             |  |
| 76          | Lift Op., Green Lumber to Stacker, C16, Cycle | <90              |                  |  |
| 77          | Jib Crane Op., Cl, Operating & Idle           | <90              | <b>&lt;</b> 85   |  |
| 78          | Band Mill Edger Op., B3, Operating            | 95.6             | 95.6             |  |
| 79          | Headrig Operator, Bl, Cutting in Booth        | 90.0             |                  |  |
| 80          | Headrig Operator, Bl, Idle in Booth           | <b>&lt;</b> 90   |                  |  |



| MOUNTING     |       | ABSORPTION COEFFICIENTS |     |              |     |      |              |  |  |  |
|--------------|-------|-------------------------|-----|--------------|-----|------|--------------|--|--|--|
| DISTANCE     | j 125 | 250                     | 200 | IK           | 2K  | 4K   |              |  |  |  |
| ON WALL (#4) | .03   | .17                     | .63 | .87          | .96 | .96  | .65          |  |  |  |
| I" SPACE     | .04   | .26                     | .78 | , 9 <b>9</b> | .99 | .98  | .75          |  |  |  |
| 2" SPACE     | . 17  | ,40                     | .94 | .99          | .97 | .99  | , 8 <b>S</b> |  |  |  |
| 3" SPACE     | .19   | ,53                     | .99 | 99           | .92 | .99  | .85          |  |  |  |
| 5" SPACE     | .41   | .73                     | .99 | .98          | ,94 | • 97 | .90          |  |  |  |

ABOVE CHART SHOWS EFFECT OF SPACING THIS MATERIAL OUT FROM WALL. THE HIGHER THE COEFICIENTS OR THE NOISE RED-UCTION COEFFICIENTS THE BETTER, ESPECIALLY OVER SOO HZ, IN THIS APPLICATION.

# AZO PLANER ENCLOSURE WALL VIEW

THOUGHT TO BE AN B" "STUD" WALL SURFACED WITH

3/4" BLACK CELOTEX \$ 1/2" PLYWOOD EA. SIDE, F'GLASS BATTS INSI



NOTE: 2x6 FRAMING WILL

BE USED LATER, IF REQ'D, FOR

SUPPORT OF A I MIL PROTECTIVE

FILM AND PROTECTIVE MESH.

INSIDE

23." WIDE KRAFT PAPER BACKED

OWENS-CORNING 32'(R-II) FIBERGLAS BLDG.

INSULATION. INSTALL WITH FIBERGLAS

EXPOSED TO SOUND (TOWARD PLANER).

STAPLE FLANGES TO STUDS, AS SHOWN,

RUNNING VERTICALLY. MONITOR FOR DUST

ACCUMULATION.

SCALE: NTS 4/30/80 GHL





A20 PLANER INFEED OBSERVATION WINDOW SECTION



# Georgia Institute of Technology

#### ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

**ENGINEERING EXTENSION LABORATORY** 

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208

May 15, 1980

Mr. Jerome B. Rogers Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Here are three copies of the "idea sketches" for the Salem A-20 infeed mechanism enclosure.

As we discussed, it is not final and should be looked at critically - especially with regard to:

- 1.) Everyday production practicality and "usability".
- 2.) Long-term sturdiness and ability to withstand everyday sawmill wear-and-tear.
- 3.) Cost, ease of construction.
- 4.) The back side should it be larger say as a walk-in for easier access to motors, belts, etc.? I think the guards could come off with this in place and shut up tight.

The more input the better, from the worker up!

I enjoyed talking with you yesterday. It was a very productive day for me.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures



# Georgia Institute of Technology

#### **ENGINEERING EXPERIMENT STATION**

ATLANTA, GEORGIA 30332

#### **ENGINEERING EXTENSION LABORATORY**

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Maçon, Georgia 31208

May 15, 1980

Ms. Connie Hanson Purchasing Agent Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Connie:

As you requested yesterday, listed below are the areas or operating stations where one or more air exhausts need quieting; approximately in order of their impact on the worker's noise exposure. In some cases this is a primary source and if it is eliminated, could result in no hearing protection being required.

- 1. Chip-n-saw mill edger operator. Severely impacted by air exhaust noise almost on him.
- 2. No. 1 kickout booth, below it. Several exhausts in this area have silencers, so maybe its just a matter of maintenance attention. The valve is made by Modernair Corporation.
- 3. Under No. 1 and 2 tipples, 1 or 2 locations. This affects the tipple operators, as well as the sorters on the ground.
  - 4. Band mill edger. One or two locations.
  - 5. Stacker building. 1 or 2 exhausts under the conveyor.
- 6. Planer mill bander. Signode seal feed banding machine exhaust (Model AMP 34, Size 3/4, Signode Corporation, Chicago). I am checking into this one with Signode.
- 7. I had noted an air exhaust coming from near the jib crane impacting the band mill. This may or may not be the same on as at the No. 1 kickout.
- 8. I think there is air exhaust at the planer infeed conveyor, but I'm not certain. It's not evident now because of other more predominant sources.

Ms. Connie Hanson Continental Forest Industries May 15, 1980 Page 2.

Information on various types of silencers available is enclosed.

Also, here is your copy of the safety rules back.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures

cc: Mr. Jerome B. Rogers



# Georgia Institute of Technology

#### ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

**ENGINEERING EXTENSION LABORATORY** 

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208 August 11, 1980

Mr. Jerome B. Rogers Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Attached are copies of sketches and other forms of recommendations for noise control in your planer mill. Specifically, they are:

- 1. Drawing of A-20 planer infeed shutter.
- 2. Drawing of A-20 planer lined outfeed tunnel with curtains.
- 3. Listing of seven items for upgrading the acoustical integrity of the infeed side of the planer mill trim saw.
- 4. Drawing of typical acoustical absorption panel as mentioned in item 3 listing.
- 5. Drawing of typical absorption panel mounting details as mentioned in item 3 listing.

Let me stress that, while I am recommending what I think are reasonable measures, please do not hesitate to question/discuss the practicality or advisability of items in light of your experience around a sawmill.

I look forward to working with Reimer Bland in the implementation of these and other noise control items.

Sincerely,

George H. Lee, Director Central Georgia Area Office

CHL:msz Enclosures

cc: Mr. Sherman L. Dudley



ofx31×年WIDE FLAT CORNER BRACES 8 (MINIMUM) REGID

# A-20 PLANER LINED OUTFEED TUNNEL WITH CURTAINS



C'S'K SCREWS FROM OUTER SURFACE OF PLYWOOD, USE RD HD SCREWS ON BRACES AT ENDS OF TUNNEL TO GO THRU SHEET METAL, TOO, TO SECURE TUNNEL.

3/4" PLYWOOD

OWENS - CORNING FIBERGLAS, CLOTH-FACED CEILING BOARD, I", PAINTED LINEAR . INSTALL WITH "PAINTED" SURFACE TOWARD INSIDE.

SIZES (ESPECIALLY 2x4's)

URTAINS & EXIT



SIDES 100D

Lee 7/80





VIEW BY TYPICAL 3 PLCS



Recommendations for upgrading of the acoustical integrity of the infeed side of the planer mill trim (Irvington-Moore):

- 1. Install blank steel continuous (or piano type) heavy duty hinges to the existing hinged steel panels which are hanging vertically on the infeed side of the planer mill trim saw. This will necessitate assuring that these panels are not bent, but more nearly flat.
- 2. Weld two lengths of unequal leg steel angles onto each separate panel. These angles  $(2^{1}2 \times 1^{1}2)$  must be parallel and spaced to accept absorption panels which will slide into place between them. Additional short lengths of the same angle are used as support and may be installed first as locators for the longer angles which will run horizontally. Spacings and legs should accomodate the panels described elsewhere.
- 3. Cut pieces of 3/4" plywood to appropriate rectangular dimensions. Border them completely on one side with 2" x 2" pine material, attaching well with either nails or wood screws.
- 4. Using large headed roofer's nails (as used to attach felt) (or other means) attach the recommended sound absorbing material to the plywood within the 2 x 2 border. A snug fit is good. The white side should face out.
- 5. To the top of the 2 x 2 border, attach the recommended perforated metal. This material is intended to slow down the deposit of dust on the sound absorbing material.
- 6. If additional protection (as from thrown blocks) is deemed necessary, add expanded metal accross in front of the absorption material, welding it to the small legs of the angles.
- 7. Old conveyor belting is an available and effective means of minimizing infeed or outfeed hole areas in enclosures. The heavier the belting in pounds per square foot the better. Obtain a strip of belting which will be wide enough to cover the notches in the lower portions of the steel panels on the infeed side of the trim saw as well as extend down to about half the depth of a 2 x 4 as it runs through. Cut the strip into 1' lengths. Slit these 1' lengths every 2", maybe using a band saw, for about half the width of the piece. Install the 1' sections side by side in at least three places on each 1' section with 1" edge distances. Install on the side of the steel panels toward the planer (not toward the saws). The purpose of the 1' lengths is to allow easier replacement of small torn or pulled-off sections without replacement of the entire length of belting. The slits provide more flexibility of the belting to eliminate any hang-up problems.





# TYPICAL ABSORPTION PANEL MOUNTING DETAILS



Lee 7/80



# Georgia Institute of Technology

## ENGINEERING EXPERIMENT STATION

SECOE AIDRO3D, ATMALTA

**ENGINEERING EXTENSION LABORATORY** 

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208

August 15, 1980

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

As you requested, enclosed are sketches indicating those "high risk" noise area workers I would suggest for audiometric testing.

As you know, the baseline audiogram is for "all employees exposed to noise levels equal to or in excess of the standards." This includes those who equal or exceed 100% doses. (That is to say - don't fix your attention on 90 dBA, but on doses. If a man is only exposed to 100 dBA for five minutes, and the rest of the day he is under 90 dBA, then he would not be in excess of the standard, even though he was exposed to levels over 90 dBA.)

The people indicated for testing are those who now appear to me to be getting either over 100% or borderline 100% exposures per the 90 dBA cutoff law.

Maintenance and cleanup peoples' exposures, I have not generally addressed, as you know, although you will note the maintenance man in the planer mill (in citation) and some cleanup people mentioned.

The man near the planer mill hog and trim saw (although I have not done any exposures since he is not your employee) should be tested at his employer's expense. I will be glad to call this employer if you like.

Note that the plant superintendent and his supervisors, as well, are suggested for testing.

No one in the stacker department needs testing, based on my recordings.

I would suggest that any new employees to work in these "high risk" areas be tested, too, until such time as controls eliminate the need.

Mr. Jerome B. Rogers August 15, 1980 Page 2.

Please recall the suggestion from the OSHA field operations manual that sixteen hours of quiet time expire immediately prior to testing. I think that proper plug usage can suffice here if necessary, prior to testing. Also, copies of the audiometric test records should be maintained in your local offices for documentation.

In reality, baseline audiograms are used for future comparison to periodic audiograms. This is their intended use - as monitors for an effective hearing conservation program where plugs are required. I would hope that it would be decided to include periodic testing in your plans at some future date.

Mr. Bland and I had a good day, I thought, as we got to know one another and discuss control requirements and possibilities in most areas, particularly those in the planer mill area as the first area of attack.

Please do not hesitate to call me if you have any questions about the enclosed.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures

cc: Mr. Reimer Bland

Mr. Sherman L. Dudley

+ Just Cren ?







# Georgia Institute of Technology

#### ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

**ENGINEERING EXTENSION LABORATORY** 

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208 August 26, 1980

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

As you requested, I contacted Jim Hankla to schedule audiometric testing for your personnel. This will involve the approximately forty employees we have identified.

Hankla agreed to Monday, September 15, 1980. I will notify him of your working hours (7-5:30) with the anticipation of beginning the tests as soon as possible that morning. He thought all of the people could be tested (at the rate of about five per hour) that day IF someone is waiting when the preceding person is finished.

His work will be done at the rate of \$6.00 per test and will include: a.) pure tone testing; b.) tympanometric testing; c.) individual interpretations; and d.) a summary. No travel expenses are to be charged.

A purchase order should be sent to:

Mr. James W. Hankla, Audiologist Ware County Board of Health 604 Riverside Drive P. O. Box 1946 Waycross, GA 31501.

Originally we had planned to use the "computer room" to do the testing. Since originally checked, however, this room has grown noisier (as regards the low levels needed for this testing) with the addition of the Coke machine, the refrigerator, the computer terminal, and the copying machine.

Checks were made again of the computer room, your office, and Connie's office. The terminal has to be used for 1½-2 hours on Mondays to send out payroll, I understand. Let's plan to move the Coke machine, copying machine, and refrigerator/microwave to the reception area again for this day.

Mr. Jerome B. Rogers Continental Forest Industries August 26, 1980 Page 2.

During the terminal use time, we can use one of the other offices mentioned. Connie will be out half that day for dental work. Truck passage by your office makes it less desirable for test use.

Again, properly worn plugs must be used by all employees who are in the noisy areas at all prior to the testing. In particular, stress this to those who are in the borderline areas, such as the planer mill pullers, chip-n-saw tipples, tally man, clean-ups, and others. All need this emphasized before and on that day, including your supervisors. They should make their people aware of what's going on.

Enclosed is a listing of personnel for testing. The drawings I sent you (re letter of August 15, 1980) are my basic references as to who needs testing. As we discussed, additions are yourself, Ernie Gray, and Alan Lane. An additional planer mill puller has been employed (Booker), so he will need testing, too. One note of correction - the person identified as a rail car man in the chip-n-saw mill is actually a clean-up man (J. Miles). Please double check these names.

I spoke with Mr. Paul Broome, of Broome Lumber Co. in Washington, Georgia. He would like his employee (and his son) to be tested, too, at his expense.

Please do not hesitate to call if you have any questions about this material.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz

Enclosures

cc: Mr. Ed Hester

Mr. Reimer Bland

Mr. Jim Hankla

Ms. Connie Hanson

Mr. Sherman L. Dudley



**ENGINEERING EXPERIMENT STATION** 

ATLANTA, GEORGIA 30332

ENGINEERING EXTENSION LABORATORY

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208 August 26, 1980

Mr. James M. Hankla, Audiologist Ware County Board of Health 604 Riverside Drive P. O. Box 1946 Waycross, GA 31501

Dear Jim:

The copy of the enclosed letter should indicate that a purchase order is to be sent to you soon for the testing of approximately forty employees of Continental Forest Industries in Hazlehurst.

One employee of Broome Lumber Company, Washington, Georgia, will also be tested. This man works at Continental Forest Industries, but is not their employee. Mr. Paul Broome will send you a check for him, or either reimburse me after testing.

Also enclosed are copies of taped levels taken recently in three CFI office areas. If the computer room, especially, looks unacceptable, then let us know as soon as possible. Several machines had been added since originally checked; I don't think any of them were running at the time of these tests. I'll try to get various machines out of there by the 15th anyway. Also, note that 1½-2 hours of the day that room will be required for transmitting payroll information.

Rough sketches are included for your information of the plant site and office area.

Please contact Jerome Rogers or Ed Hester in Hazlehurst for final arrangements, times, etc.

Sincerely,

George H. Lee, Director Central Georgia Area Office ho

GHL:msz Enclosures Colled of aloto on on or or or of the last of the last

AN EQUAL EMPLOYMENT/EDUCATION OPPORTUNITY INSTITUTION



#### ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

**ENGINEERING EXTENSION LABORATORY** 

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208 October 29, 1980

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Enclosed are several drawings which have been completed on the planer mill trim saw acoustical enclosure. The concept here is to totally surround or "cocoon" the noise source with an enclosure utilizing existing machine parts as much as possible. See the drawing with green and red lines on it.

The proper implementation of this control is expected to have a significant impact on the noise exposures of the trim saw operator and the five graders down from him. The exposures of the two graders closest to the planer outfeed and the round table man will also be improved with concurrent use of previously discussed controls for the planer infeed and planer enclosure itself.

Of special importance is the minimization of all open areas in the enclosure. The infeed tunnel is designed to bring to a minimum or eliminate the length of time that the infeed curtains are open. It provides support for double curtains at this location which is so close to the operator's work position. Let me again illustrate the importance of open area hole reduction. The area of the suggested steel strip between conveyor guides on the outfeed side (drawing 5 of 8) is only 1.5% of the entire outfeed side area above the conveyor. If this area were otherwise open, rather than closed, the 37 dB transmission loss potential of 16 gauge steel at 1,000 Hz would drop to 18 dB, more than half! Strive to minimize all holes with careful construction.

Absorption, also, is essential to the successful functioning of this enclosure. The removable absorption panels utilized are thought to be rugged enough to withstand the sawmill environment on the long term. The sliding panels were detailed in earlier materials. You may wish to downscale the plywood from 3/4" thickness, but don't go under 3/8". This change will necessitate changes to the steel angles' dimensions which hold the panels. The idea of panels which are removable for inspection,

Mr. Jerome B. Rogers Continental Forest Industries October 29, 1980 Page 2.

cleaning, or replacement with a minimum of production time loss is one which I'm sure you can appreciate. Perforated metal could initially be omitted, if desired; or conversely, additional expanded metal might be thought necessary from the start to protect the material. It could be added to the metal angles.

You may be tempted to leave out the absorption material at first. If this is your decision, please plan to put it in at a not-too-distant point in time.

Comments on various pages of the planer mill trim saw enclosure design package:

Sheet 1 of 8 - The structure has been checked out by myself and David Poss, PE, on our staff in the Augusta office. The loads will be shared by the cantilevered section and the large 3'-5" beam. Of particular concern was the strength necessary to withstand thrown outfeed materials. If the uppermost position of the blades does not come above the level of the 30° diagonal and the lower horizontal square member (extending out from the 1'-5" square existing beam), a heavy catwalk-type steel mesh could be welded to them for protection of the upper portions of absorption. I felt that you would know best how advisable this was, and would leave its inclusion to you. I sought to minimize any welding to existing trim saw structure. Also, much of this enclosure can be built and brought to the trim saw without undue downtime to get it into place.

Sheet 2 of 8 - Panels of 4' width are convenient to handle, fabricate, and lift. A good bit of repeatability is evident.

Sheet 4 of 8 - You may opt to just weld the enclosure structure to the I-beams instead of fabricating angles to attach it to.

Sheet 5 of 8 - Continuous hinges are quite desirable to eliminate the kinds of degradation you can now see on your trim saw's hanging infeed panels. The best configuration for the belting - slitting, attachment, ease of replacement, etc. will probably have to evolve from your people. There may be a optimum belting length, too, but all the way down is best noise-wise.

Sheet 6 of 8 - Additional drawings will follow to fill other large and small holes on the ends of the existing enclosure. I need to look at the existing ends again. Also, an additional panel set may be put on from the infeed area to the vibrating conveyor at a later time.

Mr. Jerome B. Rogers Continental Forest Industries October 29, 1980 Page 3.

Sheet 8 of 8 - If the existing hanging panels (with thickness greater than 16 gauge) are utilized for the infeed side, then I think this tunnel arrangement can be hung to them very conveniently. Otherwise, new 16 gauge panels may need additional stiffening. I did not realize, for some reason, that the pressure bars occasionally must come through those large holes at the bottoms of the existing infeed panels, so belting can't very well go over them as previously thought. This tunnel's use might well make the final difference for the operator's levels.

I have not looked at possible heat buildup inside the enclosure. Please forward me the motor sizes so that this may be done and any changes of design to the top panel for heat escape may be done before fabrication. It might also be a good idea to run this enclosure by your insurance folks.

Enclosed is literature on a Newman Whitney overhead trim saw. As you are aware, I am sure, some types of saws don't cut at all two foot stations below eight feet. Is this a possible noise source change which you could make? I realize that defect trimming is possible here, but it is probably not nearly so useful or often employed here as in the Chip-N-Saw or band mill. Maybe just the saws at two feet or six feet could be eliminated. Please get back with me on the possibilities of this idea. If your mill policies and production levels, etc. allow this to be done, it may be worthwhile noise-wise with little loss in production or income.

Contact has been made with Hannaco Knives & Saws of Florence, S.C. (803-662-6345) concerning their "less noise" saws. I have talked with Ray Connell of their sales department. I asked, and he suggested, a contact for a "testimonial" about these saws' qualities - Bill Skelton, Mill Manager, Chicago Mill & Lumber, Tallula, LA, 318-574-4040. You could best assess the operational aspects of these type blades. Meanwhile, I'll seek to find out how good they really are as a noise source modification. Their use could be a possibility.

Other items - There are air exhausts at the planer infeed and the planer trim saw areas, in addition to those previously listed in a letter to Connie of May 15, 1980. These types of sources are relatively easy to control. As I mentioned to you, it would be a good move to wipe them off the list and forget about them (except for periodic checks). They are of special importance noise-wise at the Chip-N-Saw edger, the No. 1 kickout (one or two places now), and the No. 1 and No. 2 tipples. This would be a good item to include in the quarterly report to OSHA, were it completed.

Mr. Jerome B. Rogers Continental Forest Industries October 29, 1980 Page 4.

Both the band mill and the No. l kickout booths need upgrading - replacing safety glass and seals primarily. They will require functioning HVAC systems for most seasons of the year before the operators can be expected to leave the doors and/or windows shut. Protect the headrig operator's glass on three sides (except the door side) with heavy expanded metal on angles. Hinge this protection from above so it may be temporarily moved away for the cleaning of the glass or other replacement materials.

If you recall, we discussed the administrative change of moving the planer infeed man. Two attachments illustrate the very cost effective desirability of doing this. Approximately 4 dBA may be achieved by a move out of six to seven feet. He can still walk in (toward the infeed mechanism) occasionally as required. I think this will be a good move. The operator should recognize this improvement.

I am interested in the audiologist's summary of tests for you. If possible, please send me a copy. Also, I trust that plans have been agreed upon to test the few people who were out the day of the tests. The people who were tested should still be wearing their plugs. Encourage your safety committees to obtain and use educational materials available from E-A-R occasionally, and to continue to include some positive discussions of plugs usage in each meeting.

Detail design for the Chip-N-Saw Mill trim saw is the next major item on my list. There are, of course, still some "small" items left for completion in the planer mill - notably the planer enclosure make-up air tunnel, wall completion near the hog, and finalization of the trim saw enclosure detail on the ends and the bottom.

Please do not hesitate to call with questions or comments concerning these materials, especially the trim saw enclosure. I am excited about its utilization and I think it will do a good job for you.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures

cc: Mr. Reimer Bland

Mr. David H. Poss, II Mr. Sherman L. Dudley

### CONTINENTAL FOREST INDUSTRIES (Mill No. 152)

# Planer Mill Trim Saw, Top Rear Enclosure Access Panel Sizes

| PANEL                   | SIZE             |                     | NUMBER | COMMENTS                                       |
|-------------------------|------------------|---------------------|--------|------------------------------------------------|
| I.D.                    | APPROX.<br>WIDTH | APPROX.<br>LENGTH   | NEEDED | ·                                              |
| A<br>(upper<br>infeed)  | 1'-11'2"         | 3'-11½"/3'-11 3/4"  | 5      | Repeated panels at nominal 4' spanwise spacing |
|                         | 1'-11½"          | 3'-10 1/4"          | 1      | Odd panel on operator's end                    |
|                         | 1'-11½"          | 1'-7눌"              | 1      | Odd panel on hog end                           |
| B<br>(top)              | 2'-7 3/4"        | 3'-11½"/3'-11 3/4"  | 5      | Repeated panels at nominal 4' spanwise spacing |
|                         | 2'-7 3/4"        | 3'-10 1/4"          | 1      | Odd panel on operator's end                    |
|                         | 2'-7 3/4"        | 1'-7½"              | 1      | Odd panel on hog end                           |
| C<br>(upper<br>outfeed) | 3'-6½"           | 3'-11½"/3'-11 3/4"  | 5      | Repeated panels at nominal 4' spanwise spacing |
|                         | 3'-6½"           | 3'-10 1/4"          | 1      | Odd panel on operator's end                    |
|                         | 3'-6½"           | 1'-7½"              | 1      | Odd panel on hog end                           |
| D (bottom outfeed)      | 1'-8½"           | 8'-1112"/8'-11 3/4" | 5      | Repeated panels at nominal 4' spanwise spacing |
|                         | 1'-8½"           | 3'-3 3/4"           | 1      | Odd panel on operator's end                    |
|                         | 1'-8½"           | 1'-1"               | 1      | Odd panel on hog end                           |

Typical Section of Planer Mill Trim Saw Continental Forest Industries Mill No. 152







SHEET 1 OF 8

SCALE: 1"=6" G.H. LEE, GA TECH IED, MACON

9/80







ENCLOSURE FOR CFI
PLANER MILL TRIM SAW
OUTFEED END
SPANWISE VIEW

G.H. LEE, GA TECH IED 9/80 SCALE: 1"= 12" SHEET 2 OF 8



hy 5 y 8

Toone Velice







- 1 - 20 HEX HD

CAP SCREW,

LOCKWASHER, & NUT,

2 PLACES EA, END

OF TRIM SAW. PUT

NUT ON OUTSIDE.

HEAD MAY BE

WELDED TO ANGLE

AFTER ASSEMBLY.



PLANER MILL TRIM SAW TOP ONTREED END PANEL DETAILS

OPERATOR'S END SHOWN, HOG END SIMILAR

G.H.LEE 10/80 SHEET 6 OF 8

SCALE: APPROX 1"=12"

4"MACH SCREWS \$ PERFORATED METAL AS BLANK STEEL LOCKWASHERS AFTER CONTINUOUS HEAVY PREVIOUSLY SPECIFIED DRILL & TAP OF SQ. (37-50% OPEN AREA) DUTY HINGE-PERMANENTLY WELDED . T. TUBING, APPROX AS INSIDE OF ENCLOSURE SHOWN -IN THIS PLANE -WELD --OWENS-CORNING FIBERGLAS, I", CLOTH - FACED CEILING BOARD, LNO ABSORPTION PAINTED LINEAR. TO BE CUT MAT'L HERE-TO TWO SHAPES ( AND A ABOVE AND PLACED SNUGLY BETWEEN ∠ NOTE THAT 16 GA, PANEL EXTENDS. NWOG 16 GA. SHT & PERFORMTED METAL SLIGHTLY BELOW I-BEAM LIP.

THIS TOP PANEL TO HINGE SIMILAR TO OTHERS,
BUT WELD PERFORATED METAL AS ON END PANELS
TO ACCOMODATE SNUGLY FITTED ABSORPTIONS
MAT'L (NO SLIDE OUT ABSORP. PANEL HERE).

32 MIF1

ADD EXTRA SHORT LENGTH OF 2XZ ANGLE FOR BOTTOM SUPPORT. WELD PERFURATED METAL UN INSIDE OF PANEL AREA, ON INSIDE SURFACE OF 2x2 SQ, TUBES. CUT PREVIOUSLY SPECIFIED ABSORP. MATL TO FIT SNUGLY BETWEEN SQ. TUBES & BETWEEN PANEL \$ PERFURATED METAL - PANEL WILL . HINGE. FROM TUP WITH (3) &" MACIL. SCREWS SECURING BOTTOM EDGE IN PLACE TO ANGLES

THIS SMALL PANEL TO BE DONE

SIMILAR TO TOP PANEL ABOVE,

EXCEPT SECURE BOTTOM FORE WITH

(3) 4" MACH. SCREWS AND SIDES WITH

(1) SIMILAR SCREW & UP EA, SIDE,

THIS SMALLEST PANEL TO BE DONE SIMILAR TO TUP PANEL ABOVE, EXCEPT SECURE BOTTOM EDGE WITH (2) 4" MACH. SCREWS.

PLANER MILL TRIM SAW HOG END PANEL DETAILS

G.H. LEE 10/80 SCALE: NTS SHEET 7 OF 8 NOTE: USE LOCKWASHERS
UNDER HDS. OF
SCREWS.

# PLANER MILL TRIM SAW INFEED TUNNEL

TUNNEL TO EXTEND OUT TO AREA OF TOP LIP OF VERTICAL "U" CHANNEL, APPROX 14" FORWARD OF (2) LARGE VERT, I-BEAM SUPPORTS. ACOUSTICAL CURTAIN OR BELTING WILL BE ATTACHED AT TWO PLACES

SHEET B OF 8

AND HANG TO CLOSE OFF THE SAW AREA FROM ABOVE.

16 GAUGE STEEL (MIN.) SHEET. SPANWISE LENGTHS MATCHED TO EXISTING PANE

EXISTING HEAVY GAUGE STEEL PANELS AT PLANER MILL TRIM SAW INFEED. BLANK STEEL CONTINUOUS HEAVY DUTY HINGE, AT-TACH TO PANELS & ANGLES

-1 X 1 X & ANGLE (Z)

 $-1\frac{1}{2} \times 2\frac{1}{2} \times \frac{3}{16}$  ANGLE, (2),

TYPICAL FILLET WELDS

> ACOUS. CURTAIN OR .

> > BELTING

ATTACH.

LPERFORATED METAL,

AS PREV. DESCRIBED.

킂" PLYWOOD OWENS-CORNING FIBERGLAS. CLOTH FACED CEILING BOARD, I", PAINTED LINEAR. ATTACH PER PREVIOUS INSTRUCTIONS. PLYWOOD, SPACERS, & FIBERGLAS SHOULD FIT SNUGLY, YET SLIDE

OUT AS A UNIT AS READ APPROX. FOR INSPECTION, CLEANING. LOCATION OF

"U" CHANNEL& REPAIR, OR REPLACEMENT. PINE SPACER STRIP, APPROX.  $1 \times 1\frac{1}{4}$  (2). TOP OF HIGHEST SLOTS FOR LUMBER PRESSURE BAR CLEARANCE. BELTING WOULD BEST COVER THIS AREA BUT MUST ALLOW FREE MOVEMENT OF BAR.

SCALE: 1"=4" 10/80 G.LEE-GA. TECH IED



#### ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

**ENGINEERING EXTENSION LABORATORY** 

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208

November 11, 1980

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Attached are four sheets of drawings which give the details of the recommended treatments for the end of the planer mill trim saw enclosure, as well as underneath treatments.

Again, please do not hesitate to call me if there are questions.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz

Attachments

cc: Mr. Reimer Bland

Mr. Sherman L. Dudley Mr. David H. Poss, II

HOG END OF PLANER MILL EXTEND CXISTING TRIM SAW ANGLED SHEET 6"-6;" ON THIS G.LEE, GA TECH IED, MACON, 11/80 SCALE: 12"= 12" END TO CLOSE HOLE, ALSO EXTEND EXISTING HANGING 古" INFEED PANEUS 6-65" ON THIS END IXIX & STEEL ANGLE, SKIP WELDED TO BEMS, BOTH SIDES OF THIS END, EXTENDING DOWN TO LEVEL OF TOP OF VIBRATING CONVEYOR TO ACCEPT END PANELS .--Z=xZx & STEEL ANGLE, WELDED TO BEAMS AS SHOWN EA. SIDE TO SUPPORT PERFORATED METALD ANGLE AGAINST BEAM EXTEND THIS EXISTING VERT. PANEL TO INSTALLED END PANEL-HEAVY DUTY CONTINUOUS WELD ANGLE ALL AROUND -HINGE, BLK, STL SEE SHEET 4 OF 4-1 STEEL SHEET -CONVEYOR BELTING ATTACHED TO ANGLE -位x15x长 MIN. ANGLE AS CLOSE AS - EXISTING (MID-SPAN SHOWN) PRACTICAL TO "HOPPER" VIB. CONV. BELTING ATTACHED TO STEEL SHEET SIDE, EXTEND HIXIX ANGLE ADDED IT TO I-BEAM 1 TO INSTALLED END PANEL. SEE SHEET 2 OF 4 FOR END PANELS, HOG END. VIBRATING CON VEYOR EXTEND ANGLE (\$ SHEET). TO WITHIN Z-5" OF VIB. CONV.

SHEET 2 OF 4 LETTER OF 11/11/8



PLANER MILL TRIM SAW OPERATOR END VIEW

G.LEE, GA.TECH LED, MACON, 11/80 SCALE: 1"=12"



SUPPORT OF HINGED PANELS ON INFEED BOTTOM SIDE. SEE SHT 2 OF 4.

) ANGLE ON OUTFEED "HOPPER" SIDE & BELTING ON IN \$ OUT FEED ANGLED PANELS IS SAME AS FROM OTHER END. SEE SHEET 1 OF 4.

LOTES:

.) LOWER HINGED PANEL ATTACHMENT IS THE SAME AS ON HOG END OF TRIM SAW, SEE SHT  $\frac{2}{2}$  OF  $\frac{4}{2}$ .

1.) EXTEND EXISTING VERT. PANEL (AT 17") TO INSTALLED HINGED END PANEL.



3" HOLE

-IXIX & STEEL ANGLE WELDED TO BOTH SIDES OF CONVEYOR CLEARANCE TUNNEL. ATTACH 6" WIDE CONVEYOR BELTING TO ONE SIDE ONLY TO COVER 3" WIDE HOLE AT EACH OF ID SUCH OPENINGS.

CUT AWAY, OR DO NOT INSTALL BELTING IN IMMEDIATE RUNNING AREA OF CHAIN, AT LEAST 6" EITHER SIDE OF NORMAL CHAIN RUNNING POSITIONS.

BELTING SHOULD BE THICK ENOUGH TO READILY REMAIN HORIZ. ACCROSS HOLE WITHOUT SAGGING.



#### **ENGINEERING EXPERIMENT STATION**

ATLANTA, GEORGIA 30332

ENGINEERING EXTENSION LABORATORY

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208 January 29, 1981

Mr. Ed Hester, Plant Superintendent Continental Forest Industries Box 416 Hazlehurst, GA 31539

Dear Mr. Ed:

Enclosed are copies of literature concerning dust masks which are available for possible use by the planer infeed man and the stick man. The simplest type would be what you need.

Mike Luster, an Industrial Hygienist in my office, did not feel that this situation warrants going to a replaceable filter or other more elaborate type respirator. This is especially true since a more elaborate system is (1) more expensive, and (2) requires more paperwork.

Certainly other equally fine products are on the market. The 3M literature was just conveniently handy.

Also, I had promised to check on the availability of E-A-R plugs in large sizes for one of your workers with an extra large ear canal. I can't think of his name, but he had the audiometric test done on 9/15/80. He is black and big. In any regard, they do not make other sizes. Try the large or extra large V-51R type plug for him.

I hope that this material helps in some way.

Sincerely,

George H. Lee, Director Central Georgia Area Office

CHL:msz Enclosures



### ENGINEERING EXPERIMENT STATION

ATLANTA, GEORGIA 30332

ENGINEERING EXTENSION LABORATORY

Central Georgia Area Office 1818 Forsyth Street Suite 112 P. O. Box 5105 Macon, Georgia 31208

February 18, 1981

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Enclosed are several items for your information and noise file:

- 1. A copy of a recent internal memo of mine which overviews a new amendment to the noise regulation 1910.95.
- A copy of portions of the discussions and the amendment as it appeared in the January 22, 1981, "BNA," a publication which reviews such things.
- 3. A copy of portions of the February 5, 1981, BNA which notes the amendment's present status.

Sorry I missed seeing you last time down. I stopped by to get more physical measurements off of the C-N-S trim saw. Its enclosure design is about 75% complete.

Also enclosed for your information are summaries of estimates of both the C-N-S trim saw and the outside chipper noise level contributions to nearby positions. This basically quantifies what was probably realized previously to be the case, that their impact is pronounced.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures



C ~ DBA LEVEL DUE TO CNS TRIM SAW <u>ONLY</u> CUITING

I ~ DBA LEVEL DUE TO CNS TRIM SAW <u>ONLY</u> IDLING

NOTE: EDGER OPER, LEVELS ARE MINIMUMS SINCE FREE FIELD WAS

ASSUMED.



C ~ DBA LEVEL DUE TO CHIPPER ONLY CUTTING



ENGINEERING EXPERIMENT STATION

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

March 23, 1981

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Enclosed are two blue-lined drawings of a more detailed description of the proposed noise enclosure for the Salem A-20 infeed mechanism. You may recall that the "idea sketch" for this enclosure was sent to you on May 15, 1980, for your critical review.

This drawing includes additional notes and dimensions for individual pieces. Every effort has been made to make this error free, but please don't hesitate to check it out yourself and suggest improvements.

A materials listing has been received by Connie and we discussed it by phone on the day she received it, last Tuesday 3/17.

I'm glad that you are wanting to proceed now with its implementation.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures

#### PLANER INFEED MECHANISM PARTIAL ENCLOSURE Bill of Materials Listing

- 1. Finished pine, 2" x 2" x 135' Total or 45+ Board Feet.
- 2. Finished pine, 2" x 4" x 611' Total or 408+ Board Feet.
- 3. Finished pine, 2" x 6" x 17' Total or 17+ Board Feet.
- 4. Finished pine, 2" x 10" x 123' Total or 205+Board Feet (includes (4) 20' lengths).
- 5. 3/4" Exterior Plywood, 4' x 8' sheet, 20 sheets.
- 6. Owens-Corning Kraft Faced Building Insulation, rolls or batts, R-11 (3½"), total of 100' of 23" wide material or total of 200 sq. ft.
- 7. Owens-Corning Kraft Faced Building Insulation, rolls or balls, R-11 (3½"), total of 215' of 15" wide material or total of 270 sq. ft.
- 8. Heavy duty galvanized hex wire (chicken wire), any mesh size (1", 1½", or 2"), 4' wide roll, 125' minimum length approximately needed, probably must get roll of 150' length.
- Sheet of 4' x 3', 1/4" thick Lexan (General Electric). Note: An additional piece
   4' x 2' will be needed to upgrade the planer infeed operator's observation window.
- Approximately 3 dozen lead anchors and bolts to attach the 2x4's to the concrete floor.
- 11. One 212" open width heavy gauge continuous hinge with pierced screw holes, 48"long.
- 12. Seventeen No. 6 countersunk machine screws, nuts, and washers for attachment of above hinge to Lexan sheet plus similar number and size of wood screws. All probably from stock on hand. (Size matches typical hinge hole size available.)
- 13. Assorted nails and staples from stock supply.
- 14. Several tubes of good quality caulk.
- NOTE: Some additional pine may be needed as a pad on the amount specified above.
  - Significant repeated lengths of 2x4's include, (60) at 5'-6" to 6'-54", See attached listing.
  - Significant repeated lengths of 2x2's include various lengths from 1'-2" to 7'-9".
  - Significant repeated lengths of  $2\times10$ 's include (4) at 20' long, (2) at  $6'-7\frac{1}{2}''$ , and (6) at  $4'-\frac{1}{4}''$ .
  - Significant repeated lengths of 2x6's include (1) at  $6'-6\frac{1}{4}$ " and (3) at 3'-3".



#### ENGINEERING EXPERIMENT STATION

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

April 1, 1981

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Enclosed are copies of the most recent reviews pertaining to the status of the OSHA \$1910.95 noise amendment. They came from the Occupational Safety & Health Reporter, a publication of the Bureau of National Affairs, Inc.

I hope that this follow-up information will be useful to you.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures



ENGINEERING EXPERIMENT STATION

April 27, 1981

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Attached for your advanced review is:

- 1. A set of thirteen drawings which describe the Chip-N-Saw Trim Saw noise enclosure (excluding ends). Please note that these drawings are not final. I am, in fact, planning a trip soon to Hazlehurst to finalize several dimensions and small details. The general idea has previously been described verbally, but see the four attached 8 1/2 x 14 Xeroxed sheets.
- A set of four drawings which describe the Chip-N-Saw Trim Saw noise enclosure end treatments. Again, their status is the same as above.
- 3. A very preliminary set of drawings which will describe an infeed tunnel for the outside Chipper.

As in the past, I have aimed the design to achieve:

- 1. Everyday production practicality and "usability."
- Long-term sturdiness and ability to withstand everyday sawmill wear-and-tear.
- Low cost, ease of construction.

Please look these over yourself or have these drawings reviewed, and feel free to provide additional input. You can be of particularly valuable assistance as regards the long-term survival of the design at your mill. Hopefully, we can avoid the fate of the last "enclosure" effort at the C-N-S Trim Saw.

Sincerely

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures

AN EQUAL EMPLOYMENT: EDUCATION OPPORTUNITY INSTITUTION













## Georgia Institute of Technology

ENGINEERING EXPERIMENT STATION

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

May 8, 1981

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Enclosed are two sets of drawings which describe the Chip-N-Saw trim saw acoustical enclosure. Again, the concept is to totally surround or "cocoon" the noise source. As we have briefly discussed, this design differs across the span of the trim saw in order to best accomplish this. On the outer end (away from operator) of the trim saw, the treatment is the same until a transition about 15' from the outer end. From there to the operator the treatment is again the same.

The drawings are grouped in sets of fifteen and seven sheets. The larger set generally describes spanwise enclosure panels and treatments. The smaller set generally describes end treatments, which are different.

I would recommend that the person(s) assigned to implement this enclosure design first STUDY THE ENTIRE DRAWING PACKAGE (BOTH SETS) THOROUGHLY. It is essential that details be planned for in this type enclosure. The people doing the work should be detail people, as even the smallest of holes can seriously jeopardize a noise enclosure. By way of example - if the area of this sheet of paper were capable of a noise transmission loss of 50 dB, then a hole anywhere in it the size of this box - can reduce its effectiveness to 25 dB. The better the enclosure the worse this effect!

Just prior to the installation of the absorption materials (which can come after all metalwork is done, but without a significant delay) blowoff/clean/ruboff all sawdust and sawdust piles from the inside of the trimsaw area.

Some of the old, weak enclosure structure is utilized in this now design, others are not. After careful study you can see which portions of it can be removed. The main portions utilized will be the roof system and structure and one channel on the operator end.

Mr. Jerome B. Rogers Continental Forest Industries May 8, 1981 Page 2.

On this, and other enclosures, you should INVESTIGATE TO SEE IF ADDITIONAL/DIFFERENT TYPE SPRINKLER SYSTEMS ARE DESIRED OR REQUIRED BY YOUR INSURER. It may be necessary to go to a Haylon or similar system inside of these enclosures. The outfeed sprinkler system on this Chip-N-Saw trim saw enclosure, you will note, has changed its relative position to the saws and possible fire hazards.

Connie is checking now on maximum temperature changes allowable for the trim saw motors. Depending on calculations based on these temperatures, some possible small changes in top panels M could be required to let heat out. In any case, MONITOR SAW MOTOR TEMPERATURES CAREFULLY WHEN ENCLOSURE IS FIRST INSTALLED. This applies, of course, to any similar enclosure of motors or controls.

The design shows hanging conveyor belting at the bottoms of several steel panels. It is essential that this area be practically, workably closed to assure effectiveness. Such belting can be utilized rather than a more expensive lead/vinyl curtain material, but it may well be a matter of finding out just what is best for you over time.

Georgia Tech now requires all faculty and staff to include a disclaimer statement with consulting work. It is given below:

This contract work, including the drawings transmitted by this letter, represent the opinion of the author. It carries no official endorsement by THE GEORGIA INSTITUTE OF TECHNOLOGY.

I have made every effort to assure good, accurate dimensions for this design. It is, of course, possible that errors have crept in, especially on something of this detail. I think it is noteworthy, too, that production has not been stopped on this account while supporting dimensions and information has been gathered. Should you see an error or have a question, please do not hesitate to contact me.

Similarly, if a change (on your part) of the design or its materials is anticipated, again contact me to discuss it.

There are two small errors on previous items which I can call to your attention. See the sheet enclosed listing the Planer Mill Trim Saw Panel Sizes. The approximate length of the first panel D item should be 3'-11 1/2"/3'-11 3/4" instead of 8'-11 1/2"/8'-11 3/4". This sheet was included in a letter to you of October 29, 1980. Secondly, in the listing of equivalent task levels sent out with my letter to you of May 9, 1980, the levels for Task 46, CNS Operator, C6, Cutting (in Booth) should be <90 and 86.0. The levels for Task 47, CNS Edger Op., C7, Cutting, should be 100.8 and 100.8 (same). The levels for Tasks 46 and 47 got reversed. I had occasion to realize these errors and wanted to correct them,

Mr. Jerome B. Rogers Continental Forest Industries May 8, 1981 Page 3.

I am, needless to say, glad to finally finish the Chip-N-Saw trim saw design. It will, I think, do a good job for you and your workers. The national consulting firm of Bolt, Beranek & Newman, Inc. has estimated that a trim saw enclosure similar to this one in weight and materials can effect a noise reduction of 14 - 19 dBA for the operator. This is the maximum reduction for which we could hope. My measured equivalent level for the CNS trim saw operator was 100.3 dBA, and for the helper it was 98.9 dBA.

Work will now proceed on the design of an infeed tunnel for the chipper which is between the CNS and Band Mill. You have seen very preliminary drawings on this already. I have been around it enough to realize just what kind/sizes of material does go through it and hope that we can accommodate them.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures

cc: Mr. Sherman L. Dudley

# GENERAL DESCRIPTION OF EACH SHEET OF THE NOISE ENCLOSURE DESIGN DRAWINGS FOR THE CHIP-N-SAW TRIM SAW, DRAWING SET 1 THRU 15 of 15

| Sheet No.              | General Description                                                                                                                                              |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>1</u> of <u>15</u>  | Assembly view of Panels $(A)$ , $(B)$ , $(C)$ , $(D)$ (outer, lower, infeed area)                                                                                |
| <u>2</u> of <u>15</u>  | Details of Panels (A), (B)                                                                                                                                       |
| <u>3</u> of <u>15</u>  | Views of Panels $(A)$ , $(B)$ , $(C)$ , $(E)$ , $(F)$ installed, View of outfeed area, typical section of span                                                   |
| 4 of 15                | Detail and assembly view of Panel $\bigcirc$ (triangular)                                                                                                        |
| 5 of 15                | Details and assembly information on Panels (D), (E), (F)                                                                                                         |
| <u>6</u> of <u>15</u>  | Details and assembly views of Panels (H), (I), (J)                                                                                                               |
| 7 of <u>15</u>         | Details and assembly view of Panel ( upper infeed at lumber)                                                                                                     |
| 8 of <u>15</u>         | Detail of outfeed support structure, especially for Panels $\overline{\mathbb{K}}$ , $\overline{\mathbb{L}}$ , $\overline{\mathbb{M}}$ , $\overline{\mathbb{R}}$ |
| 9 of 15                | Details of Panels (L), (M)                                                                                                                                       |
| 10 of 15               | Spanwise view and assembly details of upper outfeed area                                                                                                         |
| <u>11</u> of <u>15</u> | Detail of Panel (Q) and section of Panel (L)                                                                                                                     |
| <u>12</u> of <u>15</u> | Upper infeed spanwise view, assembly details for Panels (N), (P)                                                                                                 |
| 13 of 15               | Structure for upper infeed treatment above larger beam                                                                                                           |
| 14 of 15               | Details of roof treatment and Panels Q installation                                                                                                              |
| <u>15</u> of <u>15</u> | Detail of Panel $\bigcirc{S}$ installation (between infeed end stop and end of trim saw)                                                                         |

# GENERAL DESCRIPTION OF EACH SHEET OF THE NOISE ENCLOSURE DESIGN DRAWINGS FOR THE CHIP-N-SAW TRIM SAW, DRAWING SET 1 THRU 7 of 7

| Sheet No.            | General Description                                                                                                                  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| <u>1</u> of <u>7</u> | Detail of outer end (away from operator), especially End Panels $(4)$ , $(5)$ , $(6)$ , $(7)$                                        |
| <u>2</u> of <u>7</u> | Detail of End Panel 5 and assembly details of End Panels $\bigcirc$ 1, $\bigcirc$                                                    |
| <u>3</u> of <u>7</u> | Detail and assembly view of End Panel (3), down into scrap conveyor on outer end                                                     |
| 4 of 7               | Detail and assembly views of other outer End Panels, especially End Panels $(8)$ , $(9)$ , $(10)$                                    |
| <u>5</u> of <u>7</u> | Detail and assembly view of End Panel (11) into scrap conveyor on operator's end                                                     |
| <u>6</u> of <u>7</u> | Overall view of operator's end treatment, especially End Panels (12) thru (22)                                                       |
| <u>7</u> of <u>7</u> | Section of operator's end upper treatment, especially End Panels $(17)$ , $(18)$ , $(19)$ ; detail and assembly view of Panel $(17)$ |

### CONTINENTAL FOREST INDUSTRIES (Mill No. 152)

### Planer Mill Trim Saw, Top Rear Enclosure Access Panel Sizes

| PANEL       | SIZE             |                     | 170 876 | COMMENTS                                       |
|-------------|------------------|---------------------|---------|------------------------------------------------|
| I.D.        | APPROX.<br>WIDTH | APPROX.<br>LENGTH   | KECUED  |                                                |
| A (upper    | 1'-11'2"         | 3'-11½"/3'-11 3/4"  | 5       | Repeated panels at nominal 4' spanwise spacing |
| infeed)     | 1*-11½"          | 3'-10 1/4"          | 1       | Odd panel on operator's end                    |
|             | 1'-11½"          | 1'-7½"              | 1       | Odd panel on hog end                           |
| B (tcp)     | 2'-7 3/4"        | 3'-11½"/3'-11 3/4"  | 5       | Repeated panels at nominal 4' spanwise spacing |
| (20)        | 2'-7 3/4"        | 3'-10 1/4"          | 1       | Odd panel on operator's end                    |
| !           | 2'-7 3/4"        | 1'-7½"              | 1       | Odd panel on hog end                           |
| C<br>(upper | 3'-6½"           | 3'-11½"/3'-11.3/4"  | 5       | Repeated panels at nominal 4' spanwise spacing |
| outfeed)    | 3'-6½"           | 3'-10 1/4"          | 1       | Cid panel on operator's end                    |
|             | 3'-6½"           | 1'-7½" 3'-          | 1       | Old panel on hog end                           |
| D (bottom   | 1'-8':"          | 8')11½'(/8)-11 3/4" | 5       | Repeated panels at nominal 4' spanwise spacing |
| outfeed)    | 1'-8'5"          | 3'-3 3/4"           | 1       | Odd panel on operator's end                    |
| :           | 1'-8½"           | 1'-1"               | 1       | Old panel on hog end                           |

### EQUIVALENT TASK LEVELS

|             |                                                 | Task Levels      |                  |
|-------------|-------------------------------------------------|------------------|------------------|
| Task<br>No. | Task Description                                | 90 dBA<br>Cutoff | 85 dBA<br>Cutoff |
| 30          | Package Man, P13, Operating                     | <90              | 87.1             |
| 31          | Package Man, P13, Idle, Nearest Puller          | <b>∢</b> 90      | 85               |
| 32          | Ticket Man, P14, Banding                        | <b>&lt;</b> 90   | 87.7             |
| 33          | Ticket Man, P14, Marking                        | <b>∠</b> 90      | <b>4</b> 85,     |
| 34          |                                                 |                  |                  |
| 35          | Planer Outfeed Lift Op., P15 & P16, Cycle       | <b>≺</b> 90      | 86.6             |
| 36          | RR Car Tie Down, P17-18, Tieing                 | <90              | <b>&lt;</b> 85   |
| 37          |                                                 |                  |                  |
| 38          | Round Table Man, P19, p/u at Table              | 95.6             | 95.6             |
| 39          | Round Table Man, Pl5, p/u at Trim Saw           | 95.6             | 95.6             |
| 40          |                                                 |                  |                  |
| 41          |                                                 |                  |                  |
| 42          | Planer Mill Sup., P21, Office in Trailer        | < 90             | · <b>&lt;</b> 85 |
| 43          | Outside Dry Kilns at Outfeed End                | <90              | <b>&lt;</b> 85   |
| 44          | Planer Mill Maintenance Man, Ml2, at Work Table | 96.5             | 96.5             |
| 45          | Stick Man, Pl, p/u at Conveyor                  | <b>∢</b> 90      | <85              |
| 46          | CNS Operator, C6, Cutting (in Booth)            | ₹ 100.8g         | ₹100.8 <b>~</b>  |
| 47          | CNS Edger Op., C7, Cutting                      | <90 €            | 86.6€            |
| 48          | CNS Trim Saw Op., C8, Cutting                   | 100.3            | 100.3            |
| 49          | CNS Trim Saw Op. Helper, C9, Cutting            | 98.9             | 98.9             |
| 50          | CNS Operator, C6, Idle (in Booth)               | < 90             | <b>&lt;</b> 85   |
| 51          | CNS Edger Op., C7, Cleanup and Idle             | 94.9             | 94.9             |
| 52          | CNS Trim Saw Op., C8, Idle                      | 98.0             | 98.0             |
| 53          | CNS Trim Saw Op. Helper, C9, Idle               | 98.4             | 98.4             |
| 54          | No. 1 Tipple Op., C10, Operating                | 96.8             | 96.9             |
| 5.5         | No. 2 Tipple Op., Cll, Operating                | 92.1             | 92.7             |
| 56          | Band Mill Edger Op. Helper, B2, Idle            | 92.0             | 92.0             |
| 57          | Band Mill Edger Op., B3, Idle                   | 92.0             | 92.0             |
| 58          | No. 2 Tipple Op., C10, and Helper, C11, Idle    | <b>&lt;</b> 90   | <b>&lt;</b> 85   |
| 59          |                                                 |                  |                  |
|             |                                                 |                  |                  |











## Georgia Institute of Technology

#### ENGINEERING EXPERIMENT STATION

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

August 31, 1981

Mr. James W. Hankla Ware county Board of Health 604 Riverside Drive P. O. Box 1946 Waycross, GA 31501

Dear Jim:

Enclosed for your review and information are:

- 1. A copy of a recent <u>Wall Street Journal</u> article relative to the proposed OSHA noise amendment.
- 2. Copies of entries from the most recent BNA review, including a full text of the noise amendment to § 1910.95 as amended.

I do hope that these materials are useful to you.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures



## Georgia Institute of Technology

#### ENGINEERING EXPERIMENT STATION

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

June 4, 1981

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 ' Hazlehurst, GA 31539

Dear Jerome:

Enclosed are two identical blueprint sets which describe the design for the chipper infeed acoustical tunnel for your Fulghum chipper, which is between the band mill and the Chip-N-Saw mill. These are the final drawings of those which I sent you for review and comment in the preliminary stages on April 27th.

As you know, estimates of this chipper's noise contributions were done (see February 18, 1981, letter enclosure) which indicated high 80 and low to mid 90 contributions at several worker stations due to the chipper alone. A tunnel seemed to be the most expedient way to obtain the kind of moderate reductions necessary here. It would be required anyway if a total or partial enclosure were to be installed around the chipper. I think, however, that this tunnel alone can do the job. Fortunately, the chipper attendant is only infrequently at the mouth.

I made quite a few noise control recommendations verbally to Reimer Bland on August 12, 1980, in Hazlehurst. Among them was a suggestion that you close several open areas which afford a line-of-sight view of the chipper. I am particularly referring to openings which exist in the band mill under the trim saw infeed conveyor, rather than locations like the tally man who is, of course, totally exposed to the chipper noise. Close these holes significantly with 1/2" - 3/4" plywood or with light gauge sheet metal.

The tunnel design is meant to be as strong as possible to withstand its extremely rough duty. Should you feel that materials are not heavy enough, then let me know. The top panels which are hinged are made of sixteen gauge material and protected by expanded metal. They need to be light enough to lift conveniently, too. You will want to devise some sort of latch to hold each of these top, hinged panels up when necessary.

Mr. Jerome B. Rogers Continental Forest Industries June 4, 1981 Page 2.

Side panels will hopefully stay in place without any type hold downs. They may require a way to be kept up temporarily for periodic cleaning, however.

Periodic checks of the absorption panels should prove sufficient here without perforated metal or other protection, particularly since the dust is somewhat more settled than at saws. Again, monitor the situation particularly closely for several weeks after implementation.

As before, remember upon implementation that all holes are to be minimized. Prior to tunnel installation clean up the entire area good. Note that two or three holes in the vibrating conveyor should be patched so they don't allow so much pile up of sawdust on the ground and make more frequent cleanup necessary.

The disclaimer statement mentioned in my letter of May 8, 1981, is applicable to this work, too.

The tunnel is sized as accurately as possible. The height of the lower portion should be maximized as possible after determining just how high the return rollers of the conveyor above can go. The lengthwise distance of the "plenum" area near the mouth could be enlarged some if desired (increasing 2'-6" dimension of Sheet 1 of 12). The "lift up" square tube on the outer end near the I-beam is intended to better allow the chipping of longer materials. Large, long logs and really big material would best be cut down by chain saw before going in.

Work is now ongoing on the design of the enclosure for the band mill trim saw.

Please do not hesitate to call if you have questions about these materials.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures cc: Mr. Sherman L. Dudley

## GENERAL DESCRIPTION OF EACH SHEET OF THE INFEED TUNNEL DESIGN DRAWINGS FOR THE FULGHAM 60-8K CHIPPER SHEETS 1 THRU 12 of 12

| Sheet No.              | General Description                                                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------|
| <u>1</u> of <u>12</u>  | Side and top views of support structure                                                                      |
| <u>2</u> of <u>12</u>  | View of end away from mouth                                                                                  |
| <u>3</u> of <u>12</u>  | Views of side panels (5), (6), (7), (8), and top panel (3), in place                                         |
| <u>4</u> of <u>12</u>  | Views of "lift up" tube at I-beam and right side near mouth                                                  |
| 5 of <u>12</u>         | Detail of panel (2), some of which is applicable to other panels                                             |
| <u>6</u> of <u>12</u>  | Detail of panels (1) and (4), as well as I-beam area                                                         |
| <u>7</u> of <u>12</u>  | Chipper mouth closure detail, including panel (5)                                                            |
| <u>8</u> of <u>12</u>  | Lengthwise section of structure for clarification and chipper drive shaft area                               |
| <u>9</u> of <u>12</u>  | Detail of panels $9$ , $10$ , $11$ , $2$ , and $13$ installations on sides of mouth area                     |
| <u>10</u> of <u>12</u> | Detail of underneath closure end panels (14) and (15)                                                        |
| <u>11</u> of <u>12</u> | Geometric construction which may be helpful in the fabrication of cover pieces at the mouth, left hand side  |
| 12 of 12               | Geometric construction which may be helpful in the fabrication of cover pieces at the mouth, right hand side |



## Georgia Institute of Technology

#### ENGINEERING EXPERIMENT STATION

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

September 8, 1981

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Enclosed are two identical blueprint sets which describe the acoustical enclosure design for your Band Mill Trim Saw. These are the final drawings of those which we looked at in Hazlehurst on August 11, 1981.

Estimates of this trim saw's noise contributions indicated levels in the mid to high 80's at the nearby tipple operator and low to mid 90's at the talley man and nearest green sorters. The operator's levels on which these levels were predicated were 96.5 dBA (idle) and 100.5 dBA (cutting) as calculated from measured data for this saw only running. The data dates for these measurements were 2/28/80 and 3/7/80. These estimates eliminated the possibility of an operator's personnel cab (even if it were workable) since other people in the area are significantly impacted by the saw's noise. See enclosure.

The concept utilized in this design is, again, to totally surround or "cocoon" the noise source. This design, unlike that of the last one for the Chip-N-Saw Trim Saw, does not vary throughout most of its span. Seven square steel tubing supports are spaced evenly across the span of the 24' long circular beam. An additional such support is also located on the operator's end of the conveyor chain support channels. Note these facts on Drawing Sheet 3 of 11 to clarify the spacing.

Please take special note of the number 2) note on Drawing Sheet  $\underline{2}$  of  $\underline{11}$ . It discusses the possible improvement of infeed handling.

Special treatment was required on the operator's end to allow use of the existing walkway on the outfeed side and to adequately enclose the sources near the operator.

Mr. Jerome B. Rogers Continental Forest Industries September 8, 1981 Page 2.

Again, I would recommend that the person(s) assigned to implement this enclosure design first STUDY THE ENTIRE DRAWING SET THOROUGHLY AND READ ALL NOTES. It is essential that details be planned for in this type enclosure. Avoid all unnecessary holes through quality construction!

Just prior to the installation of the absorption materials (which can come after all metalwork is done, but without a significant delay) blow off/clean/rub off all sawdust and sawdust piles from the inside of the trim saw area. Removable absorption panels facilitate cleaning maintenance.

Note that some sections of the existing enclosure such as the cable handles for manual saw engagement are to be removed. Note a suggestion on Sheet  $\underline{11}$  of  $\underline{11}$  that the small scrap chute on the outer end of this trim saw  $\overline{be}$  reangled to eliminate having to constantly go into the enclosure for clean out.

On this, and other enclosures, you should INVESTIGATE TO SEE IF ADDITIONAL/DIFFERENT TYPE SPRINKLER SYSTEMS ARE DESIRED OR REQUIRED BY YOUR INSURER. It may be necessary to go to a bottled Haylon or similar system inside of these enclosures.

MONITOR SAW MOTOR TEMPERATURES CAREFULLY WHEN ENCLOSURE IS FIRST INSTALLED. As a note on the drawing set says, you can prop open the panel set (C) to allow heat to escape out the top, if necessary.

Find out through experience just what will work best for your people to close in the holes at the infeed and outfeed areas of the lumber lines. Use it and keep it maintained. See Sheet  $\underline{5}$  of  $\underline{11}$ .

The disclaimer as included in my letter of May 8, 1981, was not required, as it turns out, but was intended for anyone "moonlighting" and also working for Tech. Of course, that is not the case with this work.

I have made every effort to assure good, accurate dimensions for this design. It is, of course, possible that errors have crept in, especially on something of this detail. More detail was incorporated into this and previous designs since your statement, at one point, indicating delays in implementation past the contract ending date. Should you see an error or have a question, please do not hesitate to contact me. David Poss, II, PE, of our Augusta office, has been involved in the review of these enclosure designs, especially as regards structural portions. I recall that your original intent was to have Savannah staff, through Bill Nagle's office, review these designs before implementation. This would probably still be a good idea. I would welcome their comments.

Mr. Jerome B. Rogers Continental Forest Industries September 8, 1981 Page 3.

We discussed the severe tendency of the Band Mill Trim Saw to throw blocks. This steel-structured enclosure is heavy enough to allow you, I think, to continue to use large hanging lengths of expanded metal (but now hanging on the inside) to protect the interior of the enclosure and stop blocks. Absorption panels also provide a means to mount: a) perforated metal sheets for the protection of absorption material, and b) expanded metal sheets as thought helpful to supplement the large ones mentioned above.

A good portion of the time involved for this and other enclosure designs has been to accurately describe existing equipment since prints were not available. Materials recommended may be substituted with materials of similar acoustical characteristics.

Work will now proceed in finalizing the initial exposure report from data previously gathered. September 30, 1981, is my target date for completion of this work.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz Enclosures cc: Mr. Sherman L. Dudley

# GENERAL DESCRIPTION OF EACH SHEET OF THE NOISE ENCLOSURE DESIGN DRAWINGS FOR THE BAND MILL TRIM SAW, DRAWING SHEETS 1 THRU 11 of 11

| Sheet No.              | General Description                                                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <u>l</u> of <u>11</u>  | Views of existing trim saw ends, including a few notes relative to enclosure installation.                                                |
| <u>2</u> of <u>11</u>  | View of typical mid-span structure, but including other items. Trim saw panels I.D. Summary. Several notes pertaining to total enclosure. |
| <u>3</u> of <u>11</u>  | Span-wide view of band mill trim saw from infeed area showing top support structure and details on lower infeed panels.                   |
| <u>4</u> of <u>11</u>  | Partial view at operator's position of added structure necessary to accommodate added panels.                                             |
| <u>5</u> of <u>11</u>  | Details of Panels (A) thru (F).                                                                                                           |
| <u>6</u> of <u>11</u>  | Views of upper infeed area of operator's end.                                                                                             |
| <u>7</u> of <u>11</u>  | Views of upper outfeed area of operator's end.                                                                                            |
| <u>8</u> of <u>11</u>  | Views of lower outfeed area of operator's end.                                                                                            |
| <u>9</u> of <u>11</u>  | Top view of outfeed conveyor area and associated sections.                                                                                |
| <u>10</u> of <u>11</u> | Panel Assembly (1) Detail and various installation views and sections.                                                                    |
| <u>11</u> of <u>11</u> | Outer end view (opposite operator) and view of lower infeed area on outer end. Various end panels and installation details.               |



IN ABA LEVEL DUE TO BAND MILL TRIM SAW DNLY CUTTING

ESTIMATES OF LEVELS AT POSITIONS SHOWN BASED ON DATA OF 2-28 \$ 3-7-80. LEVELS RECORDED AT OPERATOR'S POSITION of Sound power calculated from this data. FREE FLEEL ASSUMED.

Q = 2 ASSUMED. ACOUSTIC CENTER OF TRIM SAW ASSUMED TO BE AT R' FROM OPERATOR IN CALC. \$ APPROX MIDDLE OF BLOG. ABOVE.



## Georgia Institute of Technology

ENGINEERING EXPERIMENT STATION

INDUSTRIAL EXTENSION DIVISION
Central Georgia Area Office
1818 Forsyth Street
Suite 105
P. O. Box 5105
Macon, Georgia 31208
912/744-6190

September 25, 1981

Mr. Jerome B. Rogers, Plant Production Manager Continental Forest Industries P. O. Box 416 Hazlehurst, GA 31539

Dear Jerome:

Attached is the original and one copy of the Employee Noise Exposure Profile. Its contents are discussed in the first several pages of the report. Summary dosage and task level tables will be of the most interest to you. It also contains raw noise level data strips and other data reduction forms.

As originally discussed, this survey will give you a baseline of task levels and doses to which comparisons can be made once the controls and designs previously supplied have been implemented. As of this date, I can recognize three changes in the noise climate since this report's base data measurements were made: (a) the installation of the Energex system hog in the planer mill area; (b) a change in log deck equipment near kickout No. 1; and, (c) the currently ongoing installation of an enclosure around the planer infeed mechanism.

For the remainder of this letter, I would like to make comments upon the various areas of the plant from a noise perspective.

I am generally very pleased with the workmanship involved in the construction of the new planer infeed mechanism enclosure. While favorable comments have been heard from surrounding workers, you can expect the most benefit for the infeeder when the Plexiglas or Lexan shield is finally installed and other large holes in the area immediately adjacent to this position have been closed. I note that he is working from a position further out and this will, as documented before, be of assistance. I've noted that the absorption material was placed inside the enclosure with the Kraft backing toward the noise source, instead of away from it. I realize that the Energex system ash is a current problem. With this in mind, then, I think this was a wise thing to do, even though noise attenuation due to this orientation is somewhat reduced.

Mr. Jerome B. Rogers Continental Forest Industries September 25, 1981 Page 2.

I understand that in order to achieve satisfactory make-up air, the doors to the planer enclosure must be left open, and it must be cleared several times a day. It will probably be necessary to provide more capacity in the blower air system before the planer enclosure can do its job fully. We had talked about the possibility that the new infeed enclosure (coupled with adequate blower capacity) could help to alleviate the ash problem. This would mean that a make-up air tunnel could be supplied on the outer end of the new enclosure. A make-up air tunnel is just a tunnel of sufficient length (and turns) lined with absorption materials similar to those in the new infeed enclosure. Surface velocities should not be so high as to blow away the absorption, so the make-up air tunnel should have a large enough cross-sectional area to prevent this. An ultimate type of absorption material would be that as has been recommended for the trim saw enclosure of 1" ceiling board.

Following recommendation implementation concerning the planer enclosure, its window should be upgraded, as well as the sealing at the doors. Doors must be on continuous hinges or otherwise attached more securely through the enclosure's walls. The outfeed tunnel previously designed, may require some limited heavy sheet metal protection on the inside of its top surface, as I had noticed that long lumber tends to kick up as it goes onto the trim saw infeed conveyor. Recall that a funnel-shaped outfeed tunnel entrance was also discussed.

The door to the planer mill office could be made heavier and sealed better. This would allow better speech intelligibility on the part of the shipping clerk as he has to use the phone quite a bit. I understand that you are thinking of noise control for the new Energex hog, so this will help him, too. Fix the window at the planer tehcnician's working area.

Reimer Bland and I discussed controls for the planer trim saw block hog. They consist of totally repairing the existing wall and building another at 90° to it at the large opening. Sheet metal and conveyor belting should also be hinged over the vibrating conveyor to the hog's infeed mouth. Maintenance should weld together various pieces of vibrating sheet metal located at the hog's mouth. Scrap or extra absorption materials could be added to the hog side of the above mentioned walls if protection from the weather could be assured.

The installation of "Less Noise" saws in all trim saw and other machinery remains a possibility. Refer to my letter of October 29, 1980, to you providing information whereby you may talk to Mr. Bill Skelton, Manager of Chicago Mill & Lumber, Tallulah, Louisiana.

Mr. Jerome B. Rogers Continental Forest Industries September 25, 1981 Page 3.

Mr. Skelton could answer operational questions which you might have concerning these type blades.

In the band mill area, I understand that you plan to replace the existing band mill edger with another newer and hopefully quieter type edger. Noise-wise, this change should favorably affect the feeder and helper of the edger more than any other band mill worker.

The lines-of-site from the band mill area to the chipper area should be, as discussed previously, closed up with plywood or sheet metal attached to the conveyor support structures or the floor. This will minimize chipper noise impact to the band mill area, both now and after chipper control treatment implementation.

The band mill sawyer operator's booth should be repaired continuously. The air conditioning unit on the top of this booth is in disrepair and should be fixed. It would be best if it were of a heat pump type so that both cooling and heating could be supplied. This would better encourage the sawyer to close up the cab during all times of the year. The window which slides on the infeed side of his cab should be kept clean and to minimize scratches could subsequently be replaced with Lexan or other tough type plastic. The metal track area in which this window slides needs bending out to allow it to close.

Similarly, the No. 1 kickout operator's booth should be upgraded to its previous condition and a heat pump installed to encourage full use of the booth.

Air noise continues to be a problem throughout the plant in spite of a listing of May 15, 1980, concerning several areas which were severely impacted by air exhaust and could be significantly improved with the use of silencers and continuing monitoring by maintenance. This is especially true for the CNS edger operator, the No. 1 kickout operator, and the tipple operators (which impact sorters). The CNS edger instances of air exhaust would best be piped away, under the building, and then silenced.

The several booths provided for workers such as the Chip-N-Saw operator, the slashers, and the crane operator should be maintained at least to the level of existing conditions. Opportunities exist for upgrading in several portions of these booths, primarily replacement of existing cracked or broken glass or plastic, better seals, and springs or automatic door closers to help assure their proper use.

Mr. Jerome B. Rogers Continental Forest Industries September 25, 1981 Page 4.

It was my hope that controls implementation could have proceeded as recommendations were provided beginning in May 1980. This would have been ideal, as it would have provided time for reevaluation at problem areas, after the primary sources were treated. This was especially a hope for the Chip-N-Saw area, following treatment of the trim saw there and specifically as regards the CNS edger operator after trim saw and exhaust air treatments.

There are several suggestions I would like to make, generally mentioned in order of their implementation, which should be done to lower the CNS edger operator's level and dosages. First, air exhaust should be silenced as suggested above.

The CNS mill area was estimated to be rather "hard" (approximately 800 sabins) acoustically. This would indicate that the edger operator would probably benefit by area absorption to reduce level contributions he receives from further away sources such as the trim saw. This is not always the case. I would start with treatment of an area from knee height to 10' or more above the floor in the corner in which he stands. Go several feet past him to either side. Alternatively, install a partial, three-sided plywood/Lexan booth with a roof. Line its interior with absorption materials. Such materials might be similar to either the Owens-Corning 1" ceiling board recommended for the trim saw, or the 3 1/2" batting as for the planer infeed mechanism. The ceiling board would require less long term maintenance or replacement.

Ultimate treatment, after other methods listed below, could include the addition of (room) area absorption with the goal of raising the room's overall absorption levels to at least 2-3 times existing levels. This would mean a minimum of 2,000 sq. ft. of the above mentioned absorption. This treatment's cost/benefit would best be assessed after other controls have been implemented. Except during the winter, the best way to "add absorption" is to open up walls to the outside, such as the back wall nearest the edger operator work station. Open windows are the best possible type of absorption.

Thirdly, upgrade the CNS edger enclosure already in place. This means:

a.) Closing all unnecessary holes with materials similar to those previously used, including up to the ceiling, if possible, and close-in the unused Plexiglas viewing area. Weld sheet metal into place as possible to close up holes, too. Mr. Jerome B. Rogers Continental Forest Industries September 25, 1981 Page 5.

- b.) Install doors of a weight per square foot similar to that of the existing plywood and seal as possible. Keep doors shut. Provide a lined make-up air tunnel, if required.
- c.) Install absorption material on the inside of the enclosure similar to the recommendations made for the existing planer enclosure, placing it between the studs.
- d.) Provide hinged sheet metal and/or conveyor belting at infeed and outfeed area holes.
- e.) Add an infeed tunnel of at least two sides as seen below:



Line it with 1" ceiling board absorption. Angle supports for this tunnel could be welded to the existing lumber stop angle. Its length should ideally be as long as is required to extend to the end of the longest lumber when it is engaged at the saws.

- f.) Add a hanging, hinged sheet metal piece and belting at the scrap conveyor trough.
- g.) Provide additional sprinkler protection, if necessary.

Lastly, to better utilize the wall between the CNS itself and the remainder of the CNS mill:

- a.) Assure that the CNS outfeed hole is minimized and maintained that way.
- b.) Assure that the double doors and single door are kept closed. This may mean installing an automatic door closer or more practically some counterweights with ropes to close the doors.

At this point, I would like to wish you continued progress toward implementing your noise control program. This will be my last official correspondence regarding our contract A-2578. I would encourage those implementing the noise controls recommended at your mill to review all of

Mr. Jerome B. Rogers Continental Forest Industries September 25, 1981 Page 6.

our correspondence to date. I would also like to remind you again that annual audiometric tests are coming due again. It is still essential that you continue a strong hearing conservation program, especially in light of new OSHA regulations which better define just what is expected of them (see information in my letter to you of August 31, 1981).

Please feel free to call this office or the Douglas office should you have questions concerning designs provided or other noise control related items. I will miss working with and seeing you all on a regular basis.

Sincerely,

George H. Lee, Director Central Georgia Area Office

GHL:msz

9 Hee: A-2578 report recap: Oct '79

A-2578-000 Continental Forest Industries

The planer mill trim saw enclosure design package was completed and mailed to various parties at Continental with an explanatory letter.

A-2578-000 Continental Forest Industries

Spent Tuesday in Hazlehurst. Spoke with Jerome Rogers about implementation progress on noise enclosures, as well as about the trim saw enclosure design just completed. Reimer Bland is still working on an Energex System in Virginia, but will hopefully implement our recommendations by January. Other capital equipment is on-site in Hazlehurst which needs to be put in, too. Measurements were taken for the design of the end treatments and underneath treatments of the planer mill trim saw. Additional measurements were made of the Chip-N-Saw trim saw and design was begun on its enclosure. Received a copy of Mill No. 152's baseline audiogram summary from Jim Hankla. Jerome was reminded of an upcoming quarterly OSHA report which is due. He was also urged, again, to install

A-2578-000 Continental Forest Industries

Planer mill trim saw enclosure designs for the ends and underneath were finished and mailed to Jerome Rogers. Worked on the design of the Chip-N-Saw mill trim saw enclosure.

recording ammeters for a more precise downtime determination.

2/80 A-2578-000 Continental Forest Industries
Continued work on the Chip-N-Saw trim saw enclosure design.

A-2578-000 Continental Forest Industries
The amp draw recorder obtained from Larry for use at Continental is not useable due to non-continuous recording. Information about the Quest 142 Chart Recorder was sent to Sherman and Harris for their review for its possible use with the amp probe received from Larry. We are attempting to better document Continental Forst Industries' downtime.

Morked on chipper and Chip-N-Saw trim saw sound power calculations and predictions. Called Reimer Bland to check on implementation progress, but he was out of the office and/or the state.

A-2578-000 Continental Forest Industries

Visited the company and made additional physical measurements at the ChipN-Saw trim saw for incorporation into enclosure designs. Researched and
wrote a letter to Ed Hester advising him of just what CFI can do to
alleviate a dust (ash) problem which has come up as a result of their
installatin of an Energex wood firing system. Spoke with Bill Bulpitt
about this same problem.

/81

A-2578-000 Continental Forest Industries
A letter summarizing the new OSHA noise amendment was sent to Jerome Rogers, along with copies of pertinent sections of the amendment.

18/80

A-2578-000 Continental Forest Industries

Made field trip to Hazlehurst. Ran reverberation tests (pistol shooting) in the Chip-n-Saw mill area. Additional data was gathered, too, in the office area. Added office equipment has degraded the audiometric testing site severely, and plans were made to remedy this. Personnel records were utilized to determine people's names for testing in September. Attempted to get several outstanding levels. This was hampered by a stacker fire and numerous shutdowns of the band mill due to too few employees on the green puller line. Looked at the CNS trim saw critically for feasible enclosure ideas.

25/80

A-2578-000 Continental Forest Industries

Letters were sent to Jim Hankla and Jerome Rogers listing personnel for audiometric testing. Discussed room levels with Hankla. Continued work on various control designs for Mill No. 152. Called Hannco Knife and 'aw for information about their "quiet saws." Obtained volume flow information on the planer mill removal system blower for makeup tunnel sizing.

180

A-2578-000 Continental Forest Industries

Details concerning upcoming audiometric testing were discussed with mill personnel in Hazlehurst. A PO will be sent this week as required. The required room for use was finalized with Jim Hankla of the Ware County Health Department.

5/80

A-2578-000 Continental Forest Industries

Spent a day at Hazlehurst assisting in the audiometric testing of all employees I had identified previously. This consisted of making sure that everyone was on schedule, that plugs were being worn before the test, and generally coordinating work toward this goal. Also I discussed plugs and the importance of their use to employees as they came in for testing.

19/80

A-2578-000 Continental Forest Industries

Worked on loads and stresses for the planer mill trim saw acoustical enclosure. This enclosure is nearing completion and is a major effort toward bringing levels down on the planer mill. Implementation efforts by Continental are proceeding slowly, however, due to the higher priority which has been assigned to the installation of an Energex boiler firing system. Attended the 1980 Sawmill and Panel Clinic and Machinery Show in Atlanta. Various drawings of Continental Forest Industries' enclosure designs were sent to Dave Poss for his review and our reference during discussions.

180

A-2578-000 Continental Forest Industries

Continued final details drawings for the planer mill trim saw enclosure.

180

A-2578-000 Continental Forest Industries

Design work continues on the planer mill trim saw enclosure. Additional drawings were sent to Dave Poss for our discussion. Spoke with Irvington-Moore Co. personnel in Jacksonville, the makers of this trim saw, to follow-up on a previous letter questioning any information about the efforts they have made towards noise control. They have made none. This design would be saleable to any other company who uses this type of trim saw. Available stock and data catalogs were requested from Ryerson, makers of various standard steel and aluminum items.

/19/80

A-2578-000 Continental Forest Industries

Worked on sound power and other data reduction during the week resulting from last week's visit. Enclosure information was requested from George Koch and Sons.

2/80

A-2578-000 Continental Forest Industries

Spoke with Jim Hankla of Ware County Health Department and encouraged him to call Jerome in Hazlehurst about audiometric tests. Jerome had promised to call on last trip.

30/80

A-2578-000 Continental Forest Industries

Sent Sherman copies of Procedures and Regulations chapters of BBN's "Sawmill Noise Control" as well as a copy of current OSHA regulations for his use. He is continuing efforts to document idle/downtime at the Hazlehurst plant. It is anticipated that downtime levels are about 25%.

1/80

A-2578-000 Continental Forest Industries

Worked on the designs of noise controls for the planer mill area, particularly the infeed side of the planer mill trim saw. Developed estimates for the sound power of this machinery, as well as the possible improvement from a partial enclosure on the trim saw.

8/80

A-2578-000 Continental Forest Industries

Completed drawings for absorption panels at the planer mill trim saw, as well as for a lined tunnel insert at the planer outfeed. Researched prediction methods for silenced ducts and began to do final drawings for the makeup air duct for the planer enclosure. Talked with Jerome Rogers, Plant Manager, and to Reimer Bland. Jerome indicated that their management is now coming around to supporting the implementation of controls, as well as audiometric testing. Bland will be working with me on this. Plans were made to meet the week of August 11th, after he reviews my recommendations to date. Discussed basic ideas of noise control with Bland by phone for some time.

80

A-2578-000 Continental Forest Industries

Spent most of the 12th with Reimer Bland in Hazlehurst. We discussed work to date and went to see St. Regis' Lumber City control measures. Measurements were made at their planer infeed which convinced Reimer of the advisability of installing a partial infeed enclosure. We looked at the feasibility of an administrative move for Continental's infeed operator. Again, level reductions were noted, and were convincing, especially for such a workable, no-cost charge. We walked over the entire mill and I pointed out several of the especially harmful exhaust air leaks. discussed other control measures. He will begin to implement measures in the planer mill. Jerome requested that Jim Hankla be contacted to do audiometric testing as Continental management has decided (agreed with OSHA) to proceed. Hankla was set up for September 15th. Continental does not plan to do periodic audiograms, however, and I expressed disappointment, as this is illogical. They will encourage the use of E-A-R malleable plugs. Approximately forty employee positions were identified as needing to be tested. Completed and delivered drawings of the A-20 infeed shutters and lined outfeed tunnel; also, a listing of items to upgrade the planer mill trim saw infeed, and drawings of typical absorption panel mounting details. Continued working on the design of the planer mill trim saw enclosure. Drawings were relayed to Dave Poss for comments.

17/80

A-2578-000 Continental Forest Industries

Worked on identification and reduction of data from 4/1 and 4/2. Drew several concept layouts of planer mill and C-n-S mill trim saw enclosure sections. Continental was on a holiday Monday. Called for Jerome at home that day, but he was unavailable. Talked to Humphrey on Tuesday and requested that he have Jerome call me. Discussed desire to know what had happened with OSHA and if he would like me to visit Savannah's OSHA office. Calls not returned.

14/80

A-2578-000 Continental Forest Industries

Proofs of photos taken by Sherman were mailed back to him for selected blowups.

1/80

A-2578-000 Continental Forest Industries

Continued tape data reduction work and began work on an extensive summary letter.

8/80

A-2578-000 Continental Forest Industries

Letters were written to several manufacturers of sawmill equipment for suggestions for quieting their product and to inquire about possible modifications for prefabbed enclosures. An extensive letter was composed partly as a quarterly summary, but mainly to put on paper some previously verbal recommendations. New recommendations were made for upgrading the planer enclosure's acoustical performance. Contacts were made with several suppliers and others re this work. Received photos from Sherman.

1/80

A-2578-000 Continental Forest Industries

Worked on planer infeed mechanism design. First quarter summary letter completed and mailed with various recommendations and discussions. This letter got many things on paper which had been only verbal. Drew planer infeed shutter. Letter was sent to makers of the Chip-n-Saw for noise control suggestions. Called Bolt, Beranek, and Newman (California) to see if any addendums have been done for this sawmill study. They are to send listing of all such "trade association" studies they have done.

180

A-2578-000 Continental Forest Industries

Visited Hazlehurst and got much 1/3 octave data. Had good discussions with Ed Hester, Sam Carter, and Jerome Rogers. Discussed planer infeed mechanism design feasibility. Three copies of drawings were redrawn, consolidated, and sent to Jerome for his use. A prioritized listing of mill air exhaust silencers needed was sent to Connie Hanson at her request. Continental's people were voting on a union contract this week. They have tentatively been approved for a capital improvement - to include a new (and quieter) planer with spiral cutter heads.

1/3/80

A-2578-000 Continental Forest Industries

Identified and worked on data reduction from the 2/28 and 2/29 trips to Hazlehurst. Visited the Owens-Corning Office in Macon to request information. Added to various mill layouts with dimensions obtained last week. Designed a form for plotting spectrum analysis results. Sherman and I visited Continental. We had been assured that the band mill would be running; however, due to a kiln fire this mill was not going as hoped. Some chip-n-saw mill levels were recorded. As possible, we try to get data for future phase work. Photos were taken of many areas of the plant by Sherman, especially sources. We did a good bit of additional machine measuring, especially of the three trim saws, the planer enclosure tunnels, and the planer infeed mechanism. The planer mill will be our initial target mill for completion of a thorough survey of existing levels, as well as the initial mill for design of treatment of noise sources where needed. Idea sketches were made for a planer enclosure silenced tunnel for make up air.

110/80

A-2578-000 Continental Forest Industries
Read and reviewed Bolt, Beranek, and Newman's summary of noise control report on trim saws and planer enclosure designs. Completed several spectrum graphs from tapes of previous visits. Entered Norton Comfit plugs into protection evaluation forms and did additional task equivalent level computations. Drew up trim saw layouts from previous measurements.

7/80

A-2578-000 Continental Forest Industries

Spoke with Connie Hansen and advised her of source of E-A-R plugs. They should be on hand within a week. Spoke with Jerome Rogers. OSHA has requested a joint meeting with the union. Task equivalent levels work was done for outstanding tapes and all task levels and tapes were reviewed for additional info needs. Attended the Metrosonics industrial and environmental noise seminar one-half day in Atlanta. Reviewed photos taken by Sherman at this mill.

4/80

A-2578-000 Continental Forest Industries

Ed Hester called to request that I call Richard Fairfax, an OSHA Compliance Officer in Savannah, who turned down an extension request and will impose a fine, to find out why the denial and how much the fine would be. Fairfax indicated that Continental had not requested an extension before his visit, had not done any audiograms, and had essentially marked time considering that 1975 was their original citation date. I have pushed "hearing conservation program" since first coming in contact with Continental. These folks just aren't yet taking OSHA seriously. An informal conference with company reps and/or myself and OSHA would be useful according to Fairfax. All of this information was given to Hester and Rogers on March 24th.

180

. .... ... -

A-2578-000 Continental Forest Industries
Visited Hazlehurst two days this week. Band mill data was available. Also did some dosimeter recordings, got outstanding task levels, and measured sources. Ed Hester to temporarily be replaced by Ted Adams. E-A-R plugs had still not been ordered (needed to "save money"). I insisted that this be done and was informed that it had been before leaving.

2/18/80

A-2578-000 Continental Forest Industries

Sherman and I worked in Hazlehurst to establish worker exposure times. We talked with Alan Humphrey and Connie Hanson about the need to stick with one type of hearing protector and not switch around. Also, we recommended that they obtain the E-A-R malleable foam plugs. These plugs do not need fitting and are quite good. Other information will be supplied to Connie concerning hearing protection equipment and conservation programs. Buddy Love, Planer Mill Supervisor, was interviewed at length about his people's times. The mill is now running four ten-hour days, as a rule, Monday through Thursday. Sherman met with Ed Hester on Friday for chip-n-saw mill people times. Level measurements were made at many planer mill and stacker positions. An analysis was done on hearing protector effectiveness and some task equivalent levels.

2.5/80

A-2578-000 Continental Forest Industries

Reduced most data taken last week in the planer mill area. Another data trip was made. I recorded planer mill levels one day to fill in as possible for those conditions unavailable previously. Now need primarily downtime levels. Recorded in the chip-n-saw mill for tasks Sherman had identified last week. Delivered and discussed several articles with Connie Hanson about hearing conservation programs and the proper use of E-A-R plugs. She will order them as well as get additional sizes of other plugs used to help achieve better personal fit for personnel. She thought all plugs were the same. She will also purchase a device to help size ear canals for better fitting purposes. Talked with Sam Carter, maintenance department head, about his department's important role in control implementation and previous efforts at Continental, particularly with respect to the planer enclosure. The band mill is down indefinitely due to the economy, but will run Friday week, so levels there will be obtained as well as at surrounding stations to help ascertain its impact. Sherman and I talked with Jerome Rogers. Continental is being pressured by OSHA and we discussed what we felt they wanted - a good interim hearing conservation program, especially audiometric testing. Some tests, it was learned, have been done for new hires by the company doctor. A division VP, however, is the real holdup, as he is leary of opening themselves up to liability claims. Rogers will send OSHA a copy of our program of work and discuss a positive, scheduled audiometric testing program. It seems that the Woodland's division had contracted this work previously and no one knew it. Forest Products will now use them, too. Sherman and

I discussed realistic downtime levels with Ed Hester and Jerome Rogers. Hester, Plant Production Supervisor, estimated fifteen-twenty percent, while Rogers, Plant Manager, estimated more like forty-fifty percent. Sherman is to ascertain realistic average levels and has requested that recording devices be installed on several machines.

12/19

A-XXXX-XXX Continental Forest Industries, Forest Products Division - Hazlehurst (Jeff Davis)

Alan Humphrey was again contacted. Continental has had to reduce their Hazlehurst operation from two to one shift and be very careful about layoffs due to the union. I was assured, however, that our contract work would not be affected. I reiterated the need to go ahead on this project, especially in light of upcoming OSHA deadlines, as well as the need for several other items which Sherman and I had requested (much of which will be affected by the cutback, though). Anyway, if no word comes this week a visit to them is definitely in order. Humphrey promised to call when he had the signed contract in hand. The contract was mailed to them for signatures per OCA on Friday, 10/26/79.

26/79

A-XXXX-XXX Continental Forest Industries, Forest Products Division - Hazlehurst (Jeff Davis)

Made a visit to Continental's Hazlehurst operation and spoke with Alan Humphrey. He is beset by work, but took an oath to get the contract back ASAP. I expressed concern for them with regard to an upcoming OSHA deadline (I think - since no data on this either).

131/79

A-XXXX-XXX Continental Forest Industries, Forest Products Division - Hazlehurst (Jeff Davis)

A call to Alan Humphrey revealed that the contract has been sent to Savannah in Bill Nagle's office. This took place the week after you called him on Friday. A call to OCA was inconclusive as Sue Corbin was out sick.

180

Continental Forest Industries, Forest Products Division -Hazlehurst (Jeff Davis)

Bill Nagle, in Savannah's office, was called and was apologetic about their noncommunication re our contract. He expressed his intent to proceed. Another call from Alan Humphrey in Hazlehurst was similarly apologetic. Contract? . . . in work.

80

A-2578-000 Continental Forest Industries

Word was received from you and OCA that the signed contract had been received. Reviewed data to date in anticipation of Sherman or Harris and I spending a few days in Hazlehurst next week. Talked with Alan Humphrey to make him aware of our visit and goals. Our task next week will be to fill in basic data gaps on equipment types/locations and on operator group tasks/times and to begin recording task levels. Study of data on hand will indicate any additional protection to be obtained. Mill personnel have not made any audiometric room improvements. They are back to two shifts now, too.

0/15/79

A-XXXX-XXX

Continental Forest Industries, Forest Products Div. - Hazlehurst (Jeff Davis) Continental Forest Industries Management has accepted our contract. A retype of the proposal, a routing sheet, proposal control sheet (updated), an abstract, and a data input form were prepared and sent to your office for expeditious treatment, as the company would like to be able to tell OSHA that they have contracted with us to begin work on their noise problems.

Sherman and I started work in Hazlehurst Thursday. We talked with Jerome Rogers, Ed Hesters, and Alan Humphrey, gathering administrative data and orienting them to our future activities. We also met with all of the mill's supervisors. I stayed to continue measurements throughout the plant on Friday. Levels were obtained at most all operator positions for the purpose of blanket plug prescriptions. Measurements were also investigated in the office area for the purpose of possible audiometric work there.

Continental Forest Industries (cont'd.)

I visited the Macon Speech and Hearing Center and met with Gene Thompson, a clinical audiologist to discuss what he could do for industries needing employee audiograms.

19/09

79

A-XXXX-XXX Continental Forest Industries, Forest Products Div. Hazlehurst (Jeff Davis)

Letters were written for literature on their presently used plugs. We are holding back some until the contract data which they should have received Thursday or Friday of this week is completed. They have not sent any of the citation data as requested to date. Talked to Dr. Jim Lowe, a local ENT Doctor, as well as the office of Dr. C. L. Pennington, another ENT. Requested "Health and Safety Guide for Sawmills and Planing Mills" from NIOSH. Requested information on quiet conveyor bearings. Talked with Ray Junk re the Fulghum, Fl Chipper and asked if he knew of any noise control efforts by Fulghum Industries. They have not done anything to his knowledge. I forwarded Ray information on chipper (as a source) noise control for Fulghum's possible use.

A-XXXX-XXX Continental Forest Industries, Forest Products Division - Hazlehurst (Jeff Davis)

Spoke with Alan Humphrey re our contract. At our request Mr. Humphrey was designated by Jerome Rogers, Plant Production Manager, as our contact for the noise work. Data previously taken was evaluated and sent by letter to Alan discussing testroom levels, recommendations to quieten the room to useable levels, and six suggested sources with costs for audiometric tests which ranged from \$5-\$10 per test. I think the house building cutbacks will affect Continental's operation and they are quite busy with this concern now.

#### CONTRACT DEVELOPMENT

1/19/79

Continental Can Co., Lumber City (Telfair)

Bill Craig and I met with Mr. Jerome Rodgers, the Plant Manager, to discuss possibilities of Georgia Tech contracting to look at their sawmill noise problems. Sherman will call Mr. Rodgers and we anticipate going down to do some preliminary measurements soon.

10/79

Continental Forest Industries - Hazlehurst (Jeff Davis)

I spoke with Jerome Rogers, Plant Manager, by phone to set up a visit for Sherman and me next week. We will be touring their sawmill with Ed Hesters, Plant Supervisor, with the idea of proposing a large noise control contract to them. If you recall, Bill Craig and I had visited Mr. Rogers earlier this year. This company has been cited for noise by OSHA and needs help. Sherman and I will work about 1:2 respectively on this project, if accepted. I also spent additional time this week "boneing up" some on noise related information.

17/79

Continental Forest Industries - Hazlehurst (Jeff Davis)

Sherman and I went through the plant with Ed Hesters, Plant Supervisor, asking him many questions about plant operations, hearing protection, employee attitudes, present noise controls, and other items relevant to the noise work we intend to propose. This mill goes from debark to finish dried lumber. Someone has made some efforts at enclosures and employee booths, but they are in general disrepair and/or are quite ineffective. The plant is very much cramped with little separation between noisy areas. A chipper sits right in the middle of it all. The company is unionized. After the tour we did some survey work to get a better idea of levels. Even at idle we saw 90+ levels mostly. We then met with J. Rogers, Plant Manager, and discussed what we could do for the company, which has been cited by OSHA for noise. It is quite evident that they first need to get going on a good hearing conservation program. This will probably assure an "other than serious" or extensions from OSHA for them. We were requested to propose a program of work by the end of next week, if possible. We worked, this week, on developing a four phase program and its budget for presentation. Sherman picked up my input Friday afternoon late on his way back from Atlanta.

1/79

Continental Forest Industries - Hazlehurst (Jeff Davis)

Additional information was prepared and coordinated with Sherman for workup into our proposal. I talked to Mr. Rogers by phone and arranged to meet him to deliver the proposal. He was informed as to the level of work (money) we had come up with.

79

Continental Forest Industries - Hazlehurst (Jeff Davis)
Sherman and I reviewed the proposal to be submitted to Jerome Rogers. We delivered it to him at the sawmill and answered his questions about it. He was quite optimistic that his superiors in Savannah would follow through with its approval as they have promised.

Recap Report 2/81-4/81 A-2578

2/16-27/81 A-2578-000 Continental Forest Industries
A letter summarizing the new OSHA noise amendment was sent to Jerome Rogers, along with copies of pertinent sections of the amendment.

A-2578-000 Continental Forest Industries

12-13/51

Contacted Jerome Rogers on March 3rd to advise him of a possible OSHA visit, since they will be coming to St. Regis, Lumber City, for a scheduled meeting that week. Visited Hazlehurst on March 12th at Jerome's request to handhold during the construction of the planer infeed enclosure. Unfortunately, Reimer Bland was not there since he had unexpectedly become ill and was to be hospitalized in Augusta. Sam Carter, Maintenance Supervisor, has left the company. Nonetheless, physical measurements were taken at the chipper infeed area for design of its infeed enclosure. The planer infeed enclosure's materials list was summarized and sent to Connie Hanson, Purchasing Agent.

A-2578-000 Continental Forest Industries Discussed planer infeed mechanism enclosure bill of material needs with Connie Hanson. Compiled and sent Eric three packages of information, including copies of drawings and letters which represent quarterly reports for Continental. Continued working at every opportunity on the design of the Chip-N-Saw trim saw enclosure.

-15/81

A-2578-000 Continental Forest Industries Continued detail design work for the Chip-N-Saw trim saw enclosure, especially lower infeed areas, outfeed areas, and ends. Talked with Connic Hanson about absorption materials being ordered. Drawings of CNG trim saw enclosure designs to date were sent to Dave Poss and Sherman Dudley for their review and familiarization. Dave will check drawings upon their completion.

A-2578-000 Continental Forest Industries

Work continues on the Chip-N-Saw trim saw enclosure, especially end treatments and the incorporation of refinements and measurements gathered in a visit to Hazlehurst on 4/28. Advance drawings of the C-N-S trim saw enclosure and very preliminary drawings of the chipper infeed tunnel were delivered to Jerome Rogers for his preliminary review. Pictures were taken at Continental, especially around the band mill trim saw and edger. The Band Mill trim saw will be the last major piece of equipment for enclosure following the chipper tunnel. Discussed contract extension possibilities with Jerome to allow Continental to implement controls. Reimer Bland is evidently not to be the one to implement them, as Jerome has instructed Ted Adams to proceed. Program of work calls for a resurvey following inplementation.

EMPLOYEE NOISE EXPOSURE PROFILE for

CONTINENTAL FOREST INDUSTRIES, BUILDING PRODUCTS DIVISION, MILL NO. 152, HAZLEHURST, GA

Prepared by

George H. Lee
Central Georgia Area Office
Industrial Extension Division
Engineering Experiment Station
THE GEORGIA INSTITUTE OF TECHNOLOGY
September 25, 1981

# TABLE OF CONTENTS

| <u>Item</u>                                            |    | Page |
|--------------------------------------------------------|----|------|
| INTRODUCTION                                           |    | 1    |
| SCOPE OF WORK                                          |    | 1    |
| PERSONNEL IDENTIFICATION                               |    | 1    |
| TEST PROCEDURES                                        |    | 3    |
| DATA REDUCTION PROCEDURES                              |    | 4    |
| COMMENTS                                               |    | 5    |
| SUMMARY OF WORKER DOSAGES OVER ZERO PERCENT            |    | 6    |
| EQUIVALENT TASK LEVELS SUMMARY                         |    | 8    |
| SUMMARY OF ALL WORKER DOSAGES                          |    | 12   |
| PLANER MILL PRODUCTION AREA MAP WITH DOSAGES           |    | 14   |
| BAND SAW, CHIP-N-SAW, AND STACKER PRODUCTION AREA      |    |      |
| MAP WITH DOSAGES                                       |    | 15   |
| MEASUREMENT EQUIPMENT USED                             | •  | 16   |
| SAMPLE EQUIVALENT NOISE EXPOSURE DATA SHEET            |    | 17   |
| SAMPLE OF INSTRUCTIONS FOR EQUIVALENT NOISE            |    |      |
| EXPOSURE DATA SHEET                                    | •  | 18   |
| SAMPLE OF WORKER/WORKER GROUP DOSAGE CALCULATION SHEET |    | 19   |
| APPENDICES .                                           |    |      |
| Worker or Worker Group Dose Computation Sheets Al e    | to | A46  |
| Worker Task Level Computation Sheets Bl t              | to | В87  |
| Raw Recorded Task Level Data Strips                    | to | C54  |

#### INTRODUCTION

This Employee Noise Exposure Profile is part of ongoing noise reduction and hearing conservation programs of Continental Forest Industries at their Building Products Division, Hazlehurst, Georgia, mill.

Continental Forest Industries contracted this profile as an initial survey to precede the implementation of noise control measures.

Broader assistance within the scope of their efforts toward an effective noise control program included upgrading the hearing conservation program; the determination, design, and company implementation of controls thought to be practical and effective; and the resurvey of workers to ascertain the achieved reductions of sound levels.

#### SCOPE OF WORK

The scope of this present work included:

- 1. Identification of employees by job title, locations, normal work tasks, and time spent at each task.
- Measuring and recording sound pressure levels for each worker task. Where continuously varying levels were found, an equivalent level was calculated using representative sampling.
- 3. Correlations of task times and task levels were made, yielding noise dose estimates by worker or worker groups and total noise dose percentages for the current 8.5 hour workday. The current regulations as prescribed by OSHA § 1910.95 Occupational Noise Exposure were used as the criteria for dose computations. At the time of the initiation of this work in February 1980, a 90 dBA 8-hour TWA was the criteria in effect for both personal hearing conservation program initiation and engineering controls.

#### PERSONNEL IDENTIFICATION

A total of sixty-two employees were considered in this study. This total excludes office personnel who do not have occasion to go into the production areas of the mill. Also excluded, by original agreement, were

maintenance and clean-up personnel. Every effort has been made to identify subject workers during a period in which worker totals and worker assignments were continuously changing in response to the economy's demands.

Forty-six worker or worker groups were identified, varying from one to seven employees each. Identifiers were B for Band Mill (BM), C for Chip-N-Saw Mill (CNS), P for the Planer Mill (PM), and S for the Stacker. Such an identification as Cl3 identifies a particular group or individual worker in the CNS Mill, for example.

One hundred and five normal tasks were identified and the time spent in each task was established as accurately as possible as can be seen on dose computation sheets.

The above mentioned information was gathered by Sherman L. Dudley and George H. Lee of the Georgia Tech Engineering Experiment Station and Industrial Extension Division staff. Nine data gathering dates were involved, often in connection with concurrent ongoing needs for other phases of this work. Data dates were 2/20,28,29/80, 3/7/80, 4/1,2/80, 8/22/80, 11/5/80, and 9/18/81.

Personnel listings, job assignments, job task identifications, task time assignments and other information was provided through interviews - primarily with Ed Hester, Plant Supervisor, but also with Jerome Rogers, Plant Production Manager, the various mill supervisors, and various other workers. Throughout the study period efforts were made to double check the reasonableness of these data through discussions with supervisors and workers, on occasion, throughout the production areas.

The total time used for one day of work was 8.5 hours. Lunch time was taken as 0.5 hours, breaks as 0.33 hours total, and restroom time allowance was 0.25 hours per day. Levels during these times were assumed to be those of the break room and restroom (<90 dBA).

An estimate of downtimes was made using the four month period of 2/25 through 6/26/80 as a basis. Idle and operating time was found to total 74.6%, while downtime was then calculated at 25.4% for the mill as a whole. For the purposes of this exposure profile, downtime is assumed to involve work stoppage either totally or to the degree that levels are brought below 90 dBA. This is thought to be a conservative assumption considering

varying estimates on interview of downtimes with some estimates going as high as 50%. Contrarily, in many instances smaller downtimes were evidenced from interviews, as evidently the overall downtime is sometimes larger than that of an individual mill.

Future surveys can take this estimate and resulting doses as realistic estimates of existing exposure at the time of measurement and compare them to new absolute exposure estimates. Or, it might be desired to simply remeasure idle and operating levels and recalculate doses, using the same downtime percentages, lunch lengths, etc. This approach would give a rough, but reasonable estimate of the improvement or degradation of the noise environment. Improvements might be due to such items as new and quieter equipment, noise-controlled equipment, or changed methods. Degradation might be due to such items as new or added equipment, degraded maintenance, or misuse of controls in place at the time of the initial survey.

Several tasks were grouped together as a cycle as in the case of lift truck operators and the equivalent levels of these cycles were taken to represent the overall task of operating the forklift.

#### TEST PROCEDURES

After calibration, equipment was set to record A-weighted sound pressure levels. The Bruel & Kjaer 2209 impulse sound level meter was set to slow response and levels were monitored as they were inputted to the B & K 2203 graphic level recorder via a DC log signal. The recorder was in all cases recording at a 250 mm/sec pen speed. This setting assured that the recorder would faithfully follow the slow response set into the sound level meter. Recorder paper speed was noted on each output tape. It varied from 1 mm/sec in cases where the signal was relatively steady to 10 mm/sec in some rare instances. The majority of paper speeds were 3 mm/sec where levels typically fluctuated as they will in a sawmill environment. The faster paper speed facilitated data reduction, as well as provided some better insight as to the sources present.

The thrust of the efforts to record varying levels was to record representative samples of the task noise under study. Generally, longer

times were recorded for more variant noise levels than for steadier ones. In some cases, several tapes were recorded and then combined. This was often necessitated by stop and go production activity.

Test environmental conditions, such as temperature, humidity, and wind speeds, were for all cases of data utilized of negligible consequence with regard to recorded noise levels.

It should be noted that levels of this report are those existing prior to the installation of the Energex wood firing system, and specifically the hog behind the planer mill office area.

#### DATA REDUCTION PROCEDURES

Recorded tasks' data was analyzed by completing an "Equivalent Noise Exposure Data Sheet." Data samples were subdivided into 0.83, 1, 1.67, 2.5, or 5 second intervals for the sampling of levels to be entered into this sheet.

Where computations indicated an " $F_m$ " value of less than 0.125 (1/8), the equivalent noise level, sometimes called  $L_{\rm OSHA}$ , was entered as less than 90 dBA (<90). In a few cases where levels such as 89.8 were computed, 90 dBA was used.

Computations were made for fifty-three of the one hundred and five tasks. For some tasks the equivalent levels were obviously less than 90 dBA and this was so noted on the reduction form.

While 90 dBA was observed as the cutoff point for the worker group dosages, efforts were made to supply 85 dBA cutoff data as well. This was done in all cases where computations were made. The latter data will provide an even more accurate assessment of existing equivalent levels with less of the "regulatory" impact which is brought by assuming less than 90 dBA levels result in zero dose, even though high eighties levels do exist.

The enclosed listing of dosages in descending magnitude also includes totals in parentheses. These dosages are those which result when high 80's dBA levels are used as if they were 90 dBA. This treatment will give a more realistic idea of the worker's actual exposure without regulatory distortion. Such distortion comes about for those in the "gray" area

around the 90 dBA cutoff level.

OSHA regulations at the time of the measurements and most computations for this survey specified a 90 dBA cutoff. They "like" to have level assessment go 5 dBA below the regulation, hence the 85 dBA. Newest regulations require going down to 80 dBA in computations since 85 dBA 8-hour time weighted averages (TWA) are now the target levels for hearing conservation programs. It is advisable to apply this program to all those of 50% or larger dosages. At this mill I would suggest, now, the testing and inclusion of all production area employees in the hearing conservation program.

#### COMMENTS

It should be mentioned that "steady" 115 dBA level exposures are not allowed by OSHA regulations for any length of time. It is, therefore, advisable that no one enter the planer enclosure room without adequate personal hearing protection. This should also be a stipulation for those who have occasion to work near the chipper (between the Band Mill and the Chip-N-Saw Mill). This does not mean that other instances of over exposure above 115 dBA are not to be found occasionally, as when a worker get closer than normal to a machine, but that these two locations are those thought most likely to require protection for over 115 dBA exposure during normal operations.

# SUMMARY OF WORKER DOSAGES OVER ZERO PERCENT ARRANGED BY DESCENDING MAGNITUDE

# CONTINENTAL FOREST INDUSTRIES MILL NO. 152

| TOTAL WORKER OR WORKER GROUP DOSE, % | I. D.<br>NO. | WORKER OR WORKER GROUP TITLE             |
|--------------------------------------|--------------|------------------------------------------|
| 441 (450)                            | Р3           | Machine Feeder, Planer                   |
| 352                                  | C7           | Chip-N-Saw Edger Operator                |
| 342                                  | С8           | Trim Saw Operator & Relief Operator      |
| 308                                  | В8           | Vibrating Conveyor Attendant/Cleanup Man |
| 285                                  | C9           | Chip-N-Saw Trim Saw Helper               |
| 268                                  | В4           | Band Mill Trim Saw Operator              |
| 228                                  | C2           | Chip-N-Saw Mill Supervisor               |
| 212                                  | В7           | Band Mill Supervisor                     |
| 201                                  | P24          | Planer Mill Maintenance Man              |
| 194                                  | C10          | No. 1 Tipple Operator                    |
| 177                                  | P20          | QC Man                                   |
| 171 (180)                            | P19          | Cleanup & Round Table Man                |
| 165                                  | P21          | Planer Mill Supervisor                   |
| 152 (175)                            | В6           | Tally Man                                |
| 142 (151)                            | P4           | Grader Nearest Planer Outfeed            |
| 139 (148)                            | C14          | Green Chain People - First Man Only      |
| 134                                  | P6           | Planer Technician                        |
| 134 (147)                            | P23          | Plant Superintendent                     |
| 127                                  | B2-3         | Band Mill Edger Operator & Helper        |
| 125 (134)                            | P7           | Planer Mill Trim Saw Operator            |
| 113                                  | C4           | No. 1 Kickout Operator                   |
| . 103                                | P8           | Puller Nearest Trim Saw                  |
| 101                                  | C11          | No. 2 Tipple Operator & Helper           |
| 100                                  | P5           | Grader Away from Planer Outfeed          |
| 66                                   | Pl           | Stick Man                                |
| 60 (69)                              | P9-12        | Pullers from Trim Saw to Packager        |

| TOTAL WORKER OR WORKER GROUP DOSE, % | I. D.<br>NO. | WORKER OR WORKER GROUP TITLE                                |
|--------------------------------------|--------------|-------------------------------------------------------------|
| 44                                   | C17          | Chip Truck Loader                                           |
| 42                                   | B1           | Headrig Operator                                            |
| 11                                   | P22          | Shipping Clerk                                              |
| 9                                    | P13          | Package Man                                                 |
| 9                                    | P14          | Ticket Man                                                  |
| 0 (84)                               | S1           | Stacker Operator                                            |
| 0 (80)                               | В5           | Lift Truck to Band Mill Headrig Infeed                      |
| 0 (80)                               | P2           | Lift Infeed Operator                                        |
| 0 (80)                               | P15          | Lift Outfeed Operator                                       |
| 0 (79)                               | C15          | Green Chain People - Second Position Back (away from mills) |
| 0 (79)                               | S2           | Transfer Operator                                           |

NOTE: Dosages in parentheses are results when borderline 90 dBA or high 80's levels are considered equal to 90 dBA.

# EQUIVALENT TASK LEVELS SUMMARY CONTINENTAL FOREST INDUSTRIES MILL NO. 152

Equivalent dBA (Slow)
Task Levels

|            | _                                                     |                     |                  |
|------------|-------------------------------------------------------|---------------------|------------------|
| Task<br>No | Task Description                                      | 90 dBA<br>Cutoff    | 85 dBA<br>Cutoff |
| 01         | Break Room/Lunch Room                                 | <b>&lt;</b> 90      | <b>∠</b> 85      |
| 02         | Rest Room                                             | <b>∠</b> 90         | <b>&lt;</b> 85   |
| 03         | Stick Man, Pl, Near Breakdown Working                 | 95.8                | 95.8             |
| 04         | Stick Man, Pl, Down                                   | *                   |                  |
| 05         | Stick Man, Pl, Cut up Sticks                          | 102.9               | 102.9            |
| 06         | Lift Truck Maintenance Area                           | <90                 | <b>&lt;</b> 85   |
| 07         | Planer Infeed Lift Operator, P2, Cycle                | <b>&lt;</b> 90      | 87.4             |
| 08         | Planer Infeed, P3, Feeding                            | 104.3               | 104.3            |
| 09         | Planer Infeed, P3, Down                               | *                   |                  |
| 10         | Planer Infeed, P3, Idle                               | <b>&lt;</b> 90      | 88.9             |
| 11         | Grader (Nearest Planer Outfeed), P4, Grading          | 96.7                | 96.7             |
| 12         | Grader (Nearest Planer Outfeed), P4, Idle             | <90                 | 87.2             |
| 13         | Grader (Nearest Planer Outfeed), P4, Down             | *                   |                  |
| 14         | Grader (Away From Planer Outfeed), P5, Grading        | 94.0                | 94.0             |
| 15         | Grader (Away From Planer Outfeed), P5, Idle           | <b>&lt;</b> 90      | <b>&lt;</b> 85   |
| 16         | Grader (Away From Planer Outfeed), P5, Down           | *                   |                  |
| 17         | Planer Technician, P6, Inside Grinding Room           | ₹90                 | <b>&lt;</b> 85   |
| 18         | Planer Technician, P6, Inside Planer Enc., w/Lumber   | 111.4               | 111.4            |
| 19         | Planer Technician, P6, Inside Planer Enc., w/o Lumber | 101.3               | 101.3            |
| 20         | Planer Mill Trim Saw Op., P7, Cutting                 | 95.3                | 95.3             |
| . 21       | Planer Mill Trim Saw Op., P7, Idle                    | <90                 | 88.7             |
| 22         | Planer Mill Trim Saw Op., P7, Down                    | *                   |                  |
| 23         | Dry Puller (Nearest Trim), P8, Operating              | 94.5                | 94.5             |
| 24         | Dry Puller (Nearest Trim), P8, Idle                   | 89.9 <b>=</b><br>90 | 90.9             |

Equivalent dBA (Slow)
Task Levels

| Task<br>No | Task Description                                         | 90 dBA<br>Cutoff    | 85 dBA<br>Cutoff |
|------------|----------------------------------------------------------|---------------------|------------------|
| 25         | Dry Puller (Nearest Trim), P8, Down                      | *                   |                  |
| 26         | Crane Yard                                               | <90                 | -                |
| 27         | Dry Pullers, P9-12, Operating                            | 89.8 <b>≅</b><br>90 | 91.2             |
| 28         | Dry Pullers, P9-12, Idle                                 | < 90                | 87.9             |
| 29         | Dry Pullers, P9-12, Down                                 | *                   |                  |
| 30         | Package Man, P13, Operating                              | <b>&lt;</b> 90      | 87.1             |
| 31         | Package Man, P13, Idle                                   | <b>&lt;</b> 90      | <b>∢</b> 85      |
| 32         | Ticket Man, P14, Banding                                 | < 90                | 87.7             |
| 33         | Ticket Man, Pl4, Marking                                 | 90                  | 85               |
| 34         | Tally Man, B6, Cleanup at Band Mill<br>Trim Saw Conveyor | 91.7                | 91.7             |
| 35         | Planer Outfeed Lift Op., P15 & P16, Cycle                | <b>&lt;</b> 90      | 86.6             |
| 36         | RR Car Tie Down, P17-18, Tieing                          | <b>∠</b> 90         | <b>&lt;</b> 85   |
| 37         | Rough Dry Lumber Shed, Outside                           | <b>∠</b> 90         | <b>&lt;</b> 85   |
| 38         | Round Table Man, P19, p/u at Table                       | 95.6                | 95.6             |
| 39         | Round Table Man, P19, p/u at Trim Saw                    | 95.6                | 95.6             |
| 40         | Round Table Man, P19, Down                               | *                   |                  |
| 41         | Round Table Man, P19, Idle and Cleanup                   | ∠90                 | 88.1             |
| 42         | Planer Mill Supervisor and Shipping Clerk's Office       | <90                 | <b>&lt;</b> 85   |
| 43         | Outside Dry Kilns at Outfeed End                         | <90                 | <b>&lt;</b> 85   |
| 44         | Planer Mill Maintenance Man, P24, at Work<br>Table       | 96.5                | 96.5             |
| 45         | Stick Man, Pl, p/u at Conveyor                           | <90                 | <b>&lt;</b> 85   |
| 46         | CNS Operator, C6, Cutting (in Booth)                     | <b>&lt;</b> 90      | 86.0             |
| 47         | CNS Edger Op., C7, Cutting                               | 100.8               | 100.8            |
| 48         | CNS Trim Saw Op., C8, Cutting                            | 100.3               | 100.3            |
| 49         | CNS Trim Saw Op. Helper, C9, Cutting                     | 98.9                | 98.9             |
| 50         | CNS Operator, C6, Idle (in Booth)                        | <b>&lt;</b> 90      | <b>&lt;</b> 85   |
| <b>5</b> 1 | CNS Edger Op., C7, Idle and Cleanup                      | 94.9                | 94.9             |
| 52         | CNS Trim Saw Op., C8, Idle                               | 98.0                | 98.0             |
| 53         | CNS Trim Saw Op. Helper, C9, Idle                        | 98.4                | 98.4             |
| 54         | No. 1 Tipple Op., C10, Operating                         | 96.8                | 96.9             |
| 55         | No. 2 Tipple Op. & Helper, Cll, Operating                | 92.1                | 92.7             |

| Task<br>No | Task Description                                         | 90 dBA<br>Cutoff | 85 dBA<br>Cutoff |
|------------|----------------------------------------------------------|------------------|------------------|
| 56         | Band Mill Edger Op. & Helper, B2-3, Idle                 | 92.0             | 92.0             |
| 57         | Band Mill Edger Op. & Helper, B2-3, Down                 | *                | }                |
| 58         | No. 2 Tipple Op. & Helper, Cll, Idle                     | <b>&lt;</b> 90   | <b>&lt;</b> 85   |
| 59         | No. 1 Tipple Op., C10, Idle                              | <90              | -                |
| 60         | Green Sorter (First Position Near Mills), Cl4, Operating | 94.1             | 94.1             |
| 61         | Planer Millbright Area, Line Operating                   | 93.3             | 93.3             |
| 62         | Stacker Op., S1, Operating                               | <b>&lt;</b> 90   | 89.5             |
| 63         | Stacker Op., S1, and Transfer Man, S2, Idle              | < 90             | <b>&lt;</b> 85   |
| 64         | Stacker Transfer Op., S2, at Conveyor                    | <90              | 88.2             |
| 65         | Bander, C12, Working at Line                             | <b>&lt;</b> 90   | -                |
| 66         | Planer Mill Chip Truck Loading Area                      | 91.2             | 91.6             |
| 67         | Stick Layers, S3, Operating                              | <b>∢</b> 90      | 85.3             |
| 68         | Stick Layers, S3, Idle                                   | <90 ⋅            | 85               |
| 69         | No. 1 Kickout Op., C4, Normal Operations Cycle           | 91.4             | 93.0             |
| 70         | No. 1 Slasher, C3, Idle                                  | <90              | < 85             |
| 71         | No. 1 Slasher, C3, Operating                             | <b>&lt;</b> 90   | <b>∢</b> 85      |
| 72         | No. 2 Slasher, C5, Operating                             | <b>&lt;</b> 90   | <b>&lt;</b> 85   |
| 73         | No. 2 Slasher, C5, Idle                                  | <b>&lt;</b> 90   | <85              |
| 74         | Kiln Control Room                                        | <b>&lt;</b> 90   | -                |
| <b>7</b> 5 | Log Deck Near CNS Infeed, CNS Going                      | 97.2             | 97.2             |
| 76         | Lift Op., Green Lumber to Stacker, C16, Cycle            | <b>&lt;</b> 90   | -                |
| 77         | Jib Crane Op., Cl, Operating & Idle                      | <90              | <b>&lt;</b> 85   |
| 78         | Band Mill Edger Op. & Helper, B2-3, Operating            | 95.6             | 95.6             |
| 79         | Headrig Operator, B1, Cutting                            | 90.0             | -                |
| 80         | Headrig Operator, Bl, Idle                               | <b>&lt;</b> 90   | -                |
| 81         | Main Office                                              | <b>&lt;</b> 90   | < 85             |
| 82         | Green Sorters (Second Man On), C15, Operating            | <b>&lt;</b> 90   | 88.2             |
| 83         | Headrig Operator, B1, Down                               | *                |                  |
| · 84       | CNS Operator, C6, Down                                   | *                |                  |
| 85         | CNS Edger Op., C7, Down                                  | *                |                  |
| 86         | CNS Trim Saw Op. & Helper, C8-9, Down                    | *                |                  |
| 87         | No. 1 Tipple Op., C10, Down                              | *                |                  |

Equivalent dBA (Slow) Task Levels

| Task<br>No  | Task Description                                               | 90 dBA<br>Cutoff | 85 dBA<br>Cutoff |
|-------------|----------------------------------------------------------------|------------------|------------------|
| 88          | No. 2 Tipple Op. & Helper, Cll, Down                           | *                |                  |
| 89          | Band Mill Infeed Lift Op., B5, Cycle                           | <b>&lt;</b> 90   | 89.6             |
| 90          | Tally Man, B6, All Cutting                                     | 97.0             | 97.0             |
| 91          | Plant Superintendent's Office                                  | <b>&lt;</b> 90   | <b>&lt;</b> 85   |
| 92          | CNS Mill Supervisor's Office                                   | < 90             | < 85             |
| 93          | Chip Truck Loader, C17, RR Car Area                            | <b>&lt;</b> 90   | <85              |
| 94          | Green Sorter Attendant, Cl3, Emptying Sorter & Idle            | <b>&lt;</b> 90   | -                |
| 95          | Green Sorter Attendant, Cl3, Down                              | *                |                  |
| 96          | Band Mill Trim Saw Op., B4, Cutting                            | 100.5            | 100.5            |
| 97          | Band Mill Trim Saw Op., B4, Idle                               | 98.0             | 98.0             |
| 98          | Band Mill Trim Saw Op., B4, Down                               | *                |                  |
| 99          | Tally Man, B6, Idle                                            | <b>&lt;</b> 90   | 89.8             |
| 100         | Band Mill Vibrating Conveyor Attendant, B8, at Chipper/Cleanup | 106.3            | 106.3            |
| 101         | Band Mill Vibrating Conveyor Attendant, B8,<br>Under Band Mill | 101.6            | 101.6            |
| 102         | Green Sorter (First Position Near Mill), Cl4, Idle             | <b>&lt;</b> 90   | 89.9             |
| 103         | Green Sorters (Second Man On), C15, Idle                       | <90              | -                |
| 104         | Green Sort Line Workers, C14-15, Down                          | *                |                  |
| <b>1</b> 05 | Under CNS Trim Saw Cleanup                                     | 93.1             | 93.1             |
| 106         | Planer Mill Maintenance Man Lunch Work Time                    | *                |                  |

NOTE: Stars (\*) indicate downtime tasks, see text.

# SUMMARY OF ALL WORKER DOSAGES USING 90 dBA TASK LEVEL CUTOFFS

# CONTINENTAL FOREST INDUSTRIES MILL NO. 152

| NUMBER<br>EMPLOYEES | TOTAL WORKER<br>OR WORKER<br>GROUP DOSE, % | I. D. NO. | WORKER OR WORKER GROUP TITLE TITLE                          |
|---------------------|--------------------------------------------|-----------|-------------------------------------------------------------|
| 1                   | 42                                         | В1        | Headrig Operator                                            |
| 2                   | 127                                        | B2-3      | Band Mill Edger Operator & Helper                           |
| 1                   | 268                                        | B4        | Band Mill Trim Saw Operator                                 |
| 1                   | 0                                          | B5        | Lift Truck to Band Mill Headrig Infeed                      |
| 1                   | 152                                        | В6        | Tally Man                                                   |
| 1                   | 212                                        | В7        | Band Mill Supervisor                                        |
| 1                   | 308                                        | B8        | Vibrating Conveyor Attendant/Cleanup Man                    |
| 1                   | 0                                          | C1        | Jib Crane Operator                                          |
| 1                   | 228                                        | C2        | Chip-N-Saw Mill Supervisor                                  |
| 1                   | 0                                          | С3        | Slasher No. 1 Operator                                      |
| 1                   | 113                                        | C4        | No. 1 Kickout Operator                                      |
| 1                   | 0                                          | C5        | No. 2 Slasher Operator                                      |
| 1                   | 0                                          | С6        | Chip-N-Saw Operator                                         |
| 1                   | 352                                        | C7        | Chip-N-Saw Edger Operator                                   |
| 2                   | 342                                        | C8        | Trim Saw Operator & Relief Operator                         |
| 2                   | 285                                        | C9        | Chip-N-Saw Trim Saw Helper                                  |
| 1                   | 194                                        | C10       | No. 1 Tipple Operator                                       |
| 2                   | 101                                        | C11       | No. 2 Tipple Operator & Helper                              |
| 1                   | 0                                          | C12       | Bander                                                      |
| 1                   | 0                                          | C13       | Automatic Sorter Attendant                                  |
| · 1                 | 139                                        | C14       | Green Chain People - First Man Only                         |
| 4-7                 | 0                                          | C15       | Green Chain People - Second Position Back (away from mills) |
| 1                   | 0                                          | C16       | Fort Lift Operator - Green Chain                            |
| 1                   | 44                                         | C17       | Chip Truck Loader                                           |

| NUMB ER<br>EMPLOY EES | TOTAL WORKER<br>OR WORKER<br>GROUP DOSE, % | I. D. NO. | WORKER<br>OR<br>WORKER<br>GROUP<br>TITLE |
|-----------------------|--------------------------------------------|-----------|------------------------------------------|
| 1                     | 66                                         | P1        | Stick Man                                |
| 1                     | 0                                          | P2        | Lift Infeed Operator                     |
| 1                     | 441                                        | P3        | Machine Feeder, Planer                   |
| 1                     | 142                                        | P4        | Grader Nearest Planer Outfeed            |
| 1                     | 100                                        | P5        | Grader Away from Planer Outfeed          |
| 1                     | 134                                        | P6        | Planer Technician                        |
| 1                     | 125                                        | P7        | Planer Mill Trim Saw Operator            |
| 1                     | 103                                        | P8        | Puller Nearest Trim Saw                  |
| 4                     | 60                                         | P9-12     | Pullers from Trim Saw to Packager        |
| 1                     | 9                                          | P13       | Package Man                              |
| 1                     | . 9 .                                      | P14       | Ticket Man                               |
| 2                     | 0                                          | P15-16    | Lift Outfeed & Lift Shipping             |
| 2                     | 0                                          | P17-18    | RR Car Tie Down                          |
| 1                     | 171                                        | P19       | Cleanup & Round Table Man                |
| 1                     | 177                                        | P20       | QC Man                                   |
| 1                     | 165                                        | P21       | Planer Mill Supervisor                   |
| 1                     | 11                                         | P22       | Shipping Clerk                           |
| 1                     | 134                                        | P23       | Plant Superintendent                     |
| 1                     | 201                                        | P24       | Planer Mill Maintenance Man              |
| 1                     | 0                                          | S1        | Stacker Operator                         |
| 1                     | 0                                          | S2        | Transfer Operator                        |
| 3                     | 0                                          | S3-5      | Stick Layers                             |







Accelerometer, B & K Type 4366, Ser. No. 574693.

\* In connection with other phases.

17.

18.

# EQUIVALENT NOISE EXPOSURE DATA SHEET

| PLANT                   |                                 | DATA<br>DATE           | ВУ                                    |                |           |
|-------------------------|---------------------------------|------------------------|---------------------------------------|----------------|-----------|
| OPERATION_<br>EMPLOYEES |                                 | START/STOP DAILY HOURS | EXPOSED                               |                |           |
|                         |                                 |                        |                                       |                |           |
| NOTES                   |                                 | TOTAL SAMPI            |                                       | SAMPLE E       | RATE      |
| MEASURED                |                                 |                        | TOTAL                                 |                |           |
| SOUND LEVEL             | NUMBER OF OCCURRENCE            | ,                      | OCCURRENCES                           | F              | P=nxF     |
| dBA                     | (ONE MARK PER OCCURREN          | NCE)                   | PER LEVEL                             |                |           |
|                         |                                 |                        | n                                     |                |           |
| Less than 85            |                                 |                        |                                       | 0.             | 0.        |
| 85                      |                                 |                        | · · · · · · · · · · · · · · · · · · · | 0.062          |           |
| 86                      |                                 |                        |                                       | 0.072          |           |
| 87                      |                                 |                        |                                       | 0.082          |           |
| 88<br>89                |                                 |                        |                                       | 0.095<br>0.109 |           |
| 90                      |                                 |                        |                                       | 0.125          |           |
| 91                      |                                 |                        |                                       | 0.144          |           |
| 92                      |                                 |                        |                                       | 0.165          |           |
| 93                      |                                 |                        |                                       | 0.189          |           |
| 94                      |                                 |                        |                                       | 0.218          |           |
| 95                      |                                 |                        |                                       | 0.250          |           |
| 96                      |                                 |                        |                                       | 0.287          |           |
| 97                      |                                 |                        |                                       | 0.330          |           |
| 98                      |                                 |                        |                                       | 0.379          |           |
| 99                      |                                 |                        |                                       | 0.435          |           |
| 100                     |                                 |                        |                                       | 0.500          |           |
| 101                     |                                 |                        |                                       | 0.574          |           |
| 102                     |                                 |                        |                                       | 0.660<br>0.758 |           |
| 103                     |                                 |                        |                                       | 0.738          |           |
| 105                     |                                 |                        |                                       | 1.000          |           |
| 106                     |                                 |                        |                                       | 1.149          |           |
| 107                     |                                 |                        |                                       | 1.320          |           |
| 108                     |                                 |                        |                                       | 1.516          |           |
| 109                     |                                 |                        |                                       | 1.741          |           |
| 110                     |                                 |                        |                                       | 2.000          |           |
| 111                     |                                 |                        |                                       | 2.297          |           |
| 112                     |                                 |                        |                                       | 2.639          |           |
| 113                     |                                 |                        |                                       | 3.031          |           |
| 114                     |                                 |                        |                                       | 3.482          |           |
| 115                     |                                 |                        |                                       | 4.000          |           |
|                         |                                 | 4                      | ∑n =                                  | 5              | P =       |
| <b>~</b> _              |                                 |                        |                                       |                |           |
| $\frac{\sum P}{n}$      | = Fm (2) <u>Dail</u>            | y Hours Expo           | sed = =                               | : = ′          | Га (3)    |
| ∑n                      |                                 | Shift Time             | 8                                     |                | . ,       |
|                         |                                 |                        |                                       |                |           |
| Fm x Ta =               | K = = Fm' (4)                   |                        | Equivalent<br>Noise Le <b>v</b> e     |                | BA ((90)) |
|                         |                                 |                        | MOTSE TEAS                            |                |           |
|                         |                                 |                        | -                                     | dI             | BA ((85)) |
| * 1/ /1 * /*/           | $(5F) + 85.$ $F = 1/T_p = -17-$ | (L-8                   | 35) /5]                               | ď              | BA ((80)) |
| $L = 10.01 \log (16$    | $F = 1/T_p = 1$                 | (1/16)2-               | •                                     |                |           |

#### INSTRUCTIONS FOR EQUIVALENT NOISE EXPOSURE DATA SHEET

- Supply the information needed at the top of the Form (all but study "Start/Stop Α. Time").
- В. Select the measurement location, adjust the sound level meter (previously calibrated). and briefly observe the operation to be studied.
- C. When ready, note start time, then record the dB(A), slow response, sound pressure level on the Form every 15 seconds. More frequent rates improve accuracy.
- D. Continue Step C for a representative time period; typically 5 minutes (20 measurements), noting the level every 15 seconds; longer or shorter periods may be used if they are representative. When finished, record the stop time.
- E. Add up the number of occurrences for each sound level, and record each sum in the "n" column.
- Multiply each "n" by the adjacent "F" value, and place the product in the adjacent F. "P" column.
- Sum all the values of "n" and place the value in the appropriate box below the G. column. Do the same for the "P" values. See Step "1" on Form. Using the space provided in equation (2), divide the "P" sum by the "n" sum, and
- Н. record the result.
- I. Divide the actual exposure time by shift time; the Form assumes an 8-hour shift. Record the result as noted in equation (3).
- Multiply the result of equation (2) by the result of equation (3) using equation J. (4). Record the result.
- Κ. Using the result of equation (4), find the closest corresponding value of "F" in the Table. Look to the left, find the dB(A) value associated with "F", and record this Equivalent Noise Level for the shift.

#### NOTES:

"F" is the reciprocal of the permissible exposure time for each sound level, or F =  $\frac{1}{T_p}$ , where  $T_p = \frac{16}{2(\frac{L-85}{5})}$  and L = dB(A) sound pressure level having

a permissible exposure time of T hours.

2) From the above equation  $F = \frac{1}{T_p} = \frac{2(L-85)}{16}$  and  $L = 5 \log (16/T) + 85 = \frac{1}{100.2}$ 

$$\frac{5 \log (16F)}{\log 2} + 85 = 16.61 \log (16F) + 85.$$

- 3) The larger the P the larger the exposure contribution. Look for items during cycles which give this dB(A) level for most economical dB(A) reduction per \$.
- 4) If you want the 90 dB(A) cutoff instead of 85 dB(A), then make "P" values 0 for 85-89 levels, but get credit for time less than 90 dB(A) by keeping the n's from time below 90 dB(A).

|                                         |                    | 1                                            | 2                                | 3                    | 4=3x2                | (5)=(4)x(1)                         |
|-----------------------------------------|--------------------|----------------------------------------------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME | TASK<br>NO. & NAME | $1/T_p = Fm \text{ for}$ TASK, $HR^{-1}$ dBA | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             |                    |                                              |                                  |                      | _                    |                                     |
| GROUP NAME                              |                    |                                              |                                  |                      |                      |                                     |
|                                         |                    |                                              |                                  |                      |                      |                                     |
|                                         |                    |                                              |                                  |                      |                      |                                     |
| WORKER NAME                             |                    |                                              |                                  |                      |                      |                                     |
|                                         |                    |                                              |                                  |                      |                      |                                     |
| NO. IN GROUP                            |                    |                                              |                                  |                      |                      |                                     |
| No. IN GROOT                            |                    |                                              |                                  |                      |                      |                                     |
|                                         |                    |                                              |                                  | 70                   |                      |                                     |

| COMPANY | <br>0 | OTAL WORKER R WORKER GRO OSE, %/100 | OUP |  |
|---------|-------|-------------------------------------|-----|--|
| DATE    |       |                                     |     |  |

DA'

BY

or \_\_\_\_\_\_ %

APPENDICES

|                                         |    |                    | 1                                            |     | 2                                | 3                    | (4)=(3)x(2)          | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------|----------------------------------------------|-----|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm \text{ for}$ TASK, $HR^{-1}$ dBA |     | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>2/100 |
| I.D. NUMBER                             | 01 | Lunch/Break        | 0 .                                          | 190 |                                  |                      | .83                  | 0                                   |
| ВІ                                      | 50 | Rest Room          | 0                                            | ر90 |                                  |                      | ,25                  | . 0                                 |
| GROUP NAME                              | 79 | operating          | .1250                                        | 90  |                                  |                      | 3.32                 | .415                                |
| HEADRIL                                 | 80 | IDLE               | 0                                            | 190 |                                  |                      | 2,22                 | 0                                   |
| OPERATOR                                | ४३ | Down               | ى                                            | 290 |                                  | 25.4                 | 1.88                 | 0                                   |
| WORKER NAME                             |    |                    |                                              |     |                                  |                      |                      |                                     |
|                                         |    |                    |                                              |     |                                  |                      |                      |                                     |
| NO. IN GROUP                            |    |                    |                                              |     |                                  |                      |                      |                                     |

| NO. IN (            | CROTTP       |   |       |     |  |      |                                            |            |   |
|---------------------|--------------|---|-------|-----|--|------|--------------------------------------------|------------|---|
| /                   | GROUI        |   |       |     |  |      |                                            |            |   |
| COMPANY _<br>DATE _ | Conti<br>9/5 | 1 | md (T | 152 |  | Σ⑤ - | TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | ,415<br>42 | % |
|                     |              |   |       |     |  |      |                                            |            |   |

|                                         |     |                    | 1                            |             | 2                                | 3                    | (4×3)x(2)            | (3-(4)x(1)                          |
|-----------------------------------------|-----|--------------------|------------------------------|-------------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ | dBA         | TOTAL SHIFT<br>TIME, TST,<br>HR. | Z TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| I.D. NUMBER                             | 01  | Lunch/Break        | 0                            | 290         |                                  |                      | ,83                  | Đ                                   |
| B2-3                                    | 0.3 | Rest Roam          | 0                            | <u> د۹٥</u> |                                  |                      | .25                  | D                                   |
| GROUP NAME                              | 78  | OPERATING          | .2728                        | 95.6        |                                  | 44,7                 | 3.32                 | .906                                |
| BAND MILL<br>EDGER                      | 56  | 1015               | .1650                        | 92.0        |                                  | 29,9                 | 2.22                 | ,366                                |
| OPERATOR &                              | 57  | DOWN               | 0                            | 290         |                                  | 25.4                 | 1.88                 | 0                                   |
| WORKER NAME                             |     |                    |                              |             |                                  |                      |                      |                                     |
| NO. IN GROUP                            |     | ·                  |                              |             |                                  |                      |                      |                                     |

| 2                          |                                              |       |
|----------------------------|----------------------------------------------|-------|
| COMPANY Continental FT 152 | Total worker  OR WORKER GROUP  DOSE, 7/100 = | 1.27  |
| COMPANY Contract 1. 15 L   | bosz, */100 -                                |       |
| DATE $\frac{9/21/81}{}$    |                                              |       |
| BY G. Lu                   | or _                                         | 127 % |

|                                         |    |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 2                                | 3                    | 4-3x2                | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ from the state of |       | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>2/100 |
| I.D. NUMBER                             | 01 | Lunch/ Mech        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 290   |                                  |                      | .83                  | 0                                   |
| BA                                      | 02 | Rest Room          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 290   |                                  |                      | .25                  | 0                                   |
| GROUP NAME                              | 96 | CUTTING            | ,5372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100,5 |                                  | 49.6                 | 3.69                 | 1.982                               |
| TRIM SAW                                | 97 | IDUE/ CHEAR        | .379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98    |                                  | 25                   | 1.85                 | .701.                               |
| OPERATOR<br>(IN                         | 98 | nwun               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 290   |                                  | 25.4%                | 1.88                 | 0                                   |
| BAND MILL)                              |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                  |                      | ·                    |                                     |
| WORKER NAME                             |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                  |                      |                      |                                     |
|                                         |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                  |                      |                      |                                     |
| NO. IN GROUP                            |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                  |                      |                      |                                     |
|                                         |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                  | ,                    |                      |                                     |

| COMPANY | Aten itus | F.I-152 | TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | 2.683 |   |
|---------|-----------|---------|--------------------------------------------|-------|---|
| DATE    | 9/2/81    |         |                                            |       |   |
| ВУ      | G. Les    |         | or _                                       | 268   | % |

|                                         |     |                    | 1                            |     | 2                          | 3                    | 4=3x2                | $\bigcirc = \bigcirc \times \bigcirc$ |
|-----------------------------------------|-----|--------------------|------------------------------|-----|----------------------------|----------------------|----------------------|---------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME | $1/T_p = Fm$ task, $HR^{-1}$ | _   | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100   |
| I.D. NUMBER                             | 0 \ | Lunch Brenk        | ٥                            | 190 |                            |                      | ,83                  | <i>D</i>                              |
| B5                                      | 1   | Rest Room          | Ö                            | 290 |                            |                      | .25                  | 0                                     |
| GROUP NAME                              | 89  | RUNNING            | . 0.                         | <90 |                            |                      | 6.42                 | O                                     |
| LIFT TRICK                              | 06  | and/mainteren      | 0                            | 190 |                            |                      | 1. 00                | ٥                                     |
| TO BM<br>HEADENG                        |     |                    |                              |     |                            |                      |                      |                                       |
| INFEED                                  |     |                    |                              |     |                            |                      |                      |                                       |
| WORKER NAME                             |     |                    |                              |     |                            |                      |                      |                                       |
| Willie<br>Moye                          |     |                    |                              |     |                            |                      |                      |                                       |
| NO. IN GROUP                            |     |                    |                              |     |                            |                      |                      |                                       |
|                                         |     |                    |                              |     |                            |                      |                      |                                       |

| OMPANY | Contracted Forest | Jul - 152 | \( \sum_{\text{OR WORKER}} \) OR WORKER DOSE, %/1 | GROUP | O |   |
|--------|-------------------|-----------|---------------------------------------------------|-------|---|---|
| ATE    | 9/11/81           |           |                                                   |       |   |   |
| Y      | G.lu              |           |                                                   | or .  |   | % |

|                                         |    |                       | 1                                            |      | 2                                | 3                    | 4=3x2                | (5)=(4)x(1)                         |
|-----------------------------------------|----|-----------------------|----------------------------------------------|------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME    | $1/T_p = Fm \text{ for}$ TASK, $HR^{-1}$ dBA |      | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| I.D. NUMBER                             | 01 | Lunch/Break           | 0                                            | 490  |                                  |                      | .83                  | 0 .                                 |
| B6                                      | 95 | Rest Room             | D                                            | L90  |                                  |                      | . 25                 | 0                                   |
| GROUP NAME                              | 90 | AT STATION<br>WOLKING | .330                                         | 97   |                                  | 50%                  | 3.71                 | 1,224                               |
| Talley                                  | 99 | IDLE AT STA.          | 0                                            | 290  |                                  | 25%                  | 1.86                 | ٥ .                                 |
| mm                                      | 34 | CLEAN-UP QTS          | 1584                                         | 91.7 |                                  | 25%                  | 1.85                 | .293                                |
|                                         |    |                       |                                              |      |                                  |                      |                      |                                     |
| WORKER NAME                             |    |                       |                                              |      |                                  |                      |                      |                                     |
|                                         |    |                       |                                              |      |                                  |                      |                      |                                     |
| NO. IN GROUP                            |    |                       |                                              |      |                                  |                      |                      |                                     |

|         | Continutal of | <b>∠</b> | 0 1 15    | \( \sum_{0} = \text{TOTAL WORKER} \) OR WORKER GROUP | 1.517 |    |
|---------|---------------|----------|-----------|------------------------------------------------------|-------|----|
| COMPANY | Comman 1      | rust     | and - 125 | DOSE, %/100 =                                        | 1,011 |    |
| DATE    | 9/22/81       |          |           |                                                      |       |    |
| BY      | G.Le          |          | •         | or _                                                 | 152   | 7, |

|                                         |    |                        | 1                            |       | 2                          | 3                    | 4=3x2                | (5)=(4)x(1)                   |
|-----------------------------------------|----|------------------------|------------------------------|-------|----------------------------|----------------------|----------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME     | $1/T_p = Fm$ TASK, $HR^{-1}$ |       | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                             | 01 | LUNCH   BREAKS         | ی                            | <90   |                            |                      | <i>₹8</i> .          | 0                             |
| 87                                      | 03 | REST ROOM              | 0                            | 290   |                            | ·                    | .25                  | 0                             |
| GROUP NAME                              | 97 | AT BM TRIM             | .3790                        | 98    |                            | 35%                  | 2,60                 | .9854                         |
| BAND.<br>MILL                           | 96 | ATTRIM SAW,<br>CUTTING | . 5372                       | 101.5 |                            | 10%                  | .74                  | 3915                          |
| SUPERUSOR                               | 60 | CITATIN.               | , 220                        | 94.1  |                            |                      | 1.98                 | .4356                         |
|                                         | 90 | AT TALLY POSITION      | . 3283                       | 97.0  |                            | 10                   | .74                  | .2429                         |
| WORKER NAME                             | 91 | AT SUP.                | ٥                            | 290   |                            |                      | .25                  | 0                             |
|                                         | 06 | AT MAINT.<br>BLOG      | S                            | 290   |                            | 10                   | .74                  | ٥                             |
| NO. IN GROUP                            | 56 | AT EDGER               | . 1650                       | 92,0  |                            | 5                    | .37                  | 1106.                         |
| No. IN GROUI                            |    |                        |                              |       |                            |                      |                      |                               |

| COMPANY Continental | F. I 152 | \( \sum_{\text{or WORKER GROUP}} \) \[ \text{DOSE, \( \frac{7}{100} = \) | 2.1225 |   |
|---------------------|----------|--------------------------------------------------------------------------|--------|---|
| DATE 7/23/8         |          |                                                                          |        |   |
| BY G. Ler           | —        | or _                                                                     | 212    | % |

|                                                |     |                    | 1                               |       | 2                          | 3                    | 4=3x2                | (5)=(4)x(1)                   |
|------------------------------------------------|-----|--------------------|---------------------------------|-------|----------------------------|----------------------|----------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME        |     | TASK<br>NO. & NAME | $1/T_p = Fm$<br>TASK, $HR^{-1}$ |       | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                                    | 0   | LUNCE   AREA MIC   |                                 |       |                            |                      | .83                  | ٥                             |
| BB                                             | ٥٦  |                    |                                 |       |                            |                      | 125                  | 0                             |
| GROUP NAME                                     | 100 |                    | 1.1991                          | 106.3 |                            |                      | .76                  | ,911                          |
| VIBRATING                                      | 101 | under BM           | . 6263                          | 101.6 |                            |                      | 2.22                 | 1,39                          |
| CONVEYOR                                       | 34  | CLEAN-UP NEART     | 5 .1584                         | 91.7  |                            |                      | 2,22                 | .352                          |
| VIBRATING<br>CONVEYOR<br>ATTENDENT/<br>CUEM-UP | 105 | UNDER CNS          | ,1932                           | 93.1  |                            |                      | 2.22                 | .429                          |
| WORKER NAME                                    |     |                    |                                 |       |                            |                      |                      |                               |
| · in the                                       |     |                    |                                 |       |                            |                      |                      |                               |
| NO. IN GROUP                                   |     |                    |                                 |       |                            |                      |                      |                               |

| COMPANY | Contracted | F. J 152 | • | Σ(3) | = TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | 3.08 |   |
|---------|------------|----------|---|------|----------------------------------------------|------|---|
| DATE    | 9/22/81    | _        |   |      |                                              |      |   |
| ВҮ      | G. Lee     | ·<br>    |   |      | or                                           | 308  | % |

|                                         |      |                    | 1                            |     | 2                                | 3                    | 4=3x2                                              | (5)=(4)x(1)                         |
|-----------------------------------------|------|--------------------|------------------------------|-----|----------------------------------|----------------------|----------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |      | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |     | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                               | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | DI   | Lunch BREAK        | . 0                          | 190 |                                  |                      | ,83                                                | 0                                   |
| CI                                      | 02   | REST ROOM          | ъ                            | c90 |                                  |                      | -25                                                | U                                   |
| GROUP NAME<br>JIB CRANE                 | 77   | Operating          | 0                            | ۷90 |                                  | 100                  | 1.42                                               | 0                                   |
|                                         |      |                    |                              |     |                                  |                      |                                                    |                                     |
| WORKER NAME                             |      |                    |                              |     | :                                |                      |                                                    |                                     |
| NO. IN GROUP                            |      |                    |                              |     |                                  |                      |                                                    |                                     |
| COMPANY Cont                            | iner | tal F.I            | 152                          |     |                                  | Σ(3) =               | 8.50<br>TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | <i>O</i>                            |

| A8 |  |
|----|--|

BY

| •                                       |       |                      | 1                                               |       | 2                          | 3                      | 4=3x2                            | (5)=(4)x(1)                   |
|-----------------------------------------|-------|----------------------|-------------------------------------------------|-------|----------------------------|------------------------|----------------------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |       | TASK<br>NO. & NAME   | 1/T <sub>p</sub> = Fm<br>TASK, HR <sup>-1</sup> |       | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK   | NO. HOURS<br>AT TASK             | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                             | 01    | LUNCH BREAKS         | 0                                               | <90   |                            |                        | .83                              | O                             |
| ٥2                                      | 02    | REST ROOM            | . 0                                             | 490   |                            |                        | .25                              | O                             |
| GROUP NAME                              | 92    | CNS Sup. Office      | ٥                                               | 290   |                            |                        | .13                              | 0                             |
| CNS Mill                                | 91    | PH. Sup. Olfice      |                                                 | 290   |                            | ·                      | .25                              | 0                             |
| Supervisor                              | 48    | IN CHS Mily<br>As TS | ,5236                                           | 100.3 |                            | 32                     | 2.60                             | 1.3614                        |
|                                         | 75    | 1101- 1125           | .3388                                           | 97.2  |                            | 10                     | .74                              | .2507                         |
| WORKER NAME                             | 105   | UNDER MILL           | 11932                                           | 93.1  |                            | 2                      | ,37                              | . 0715                        |
|                                         | .26   | CRANE YAM            | 5                                               | <90   |                            | 10                     | ,74                              | ن                             |
| NO. IN GROUP                            | 06    | MAIN'T AREA          | . 0                                             | 290   | •                          | 10                     | . 74                             | ٥                             |
|                                         | 90    | TOTALY APREA         | .3283                                           | 97.0  |                            | 10                     | ,74                              | .2429                         |
|                                         | 54    | NO. 1 TIPPLE         | 13218                                           | 96.8  |                            | \\\S_{\overline{5}}\\. | \.\\<br>TOTAL WORKER             | .3572                         |
| COMPANY Conti                           | رميخا | .1 F.T 1             | 52                                              |       |                            | 20                     | OR WORKER GROUP<br>DOSE, %/100 = | 2.284                         |
| DATE _ 9 23                             | 101   |                      |                                                 |       | •                          |                        |                                  |                               |
| ву С                                    | lu.   |                      |                                                 |       |                            |                        | or                               | 228 %                         |

|                                         |       |                     | 1                            |             | 2                                | 3                    | (4=3)x(2)                                                    | $\bigcirc = \bigcirc \times \bigcirc$ |
|-----------------------------------------|-------|---------------------|------------------------------|-------------|----------------------------------|----------------------|--------------------------------------------------------------|---------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |       | TASK<br>NO. & NAME  | $1/T_p = Fm$ TASK, $HR^{-1}$ |             | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                         | TASK DOSE<br>CONTRIBUTION,<br>%/100   |
| I.D. NUMBER                             | C41   | LUNCH/ BREAKS       |                              |             |                                  |                      | ,83                                                          |                                       |
| C 3                                     | ٥٠    | REST ROOM           |                              |             |                                  | ·                    | .25                                                          |                                       |
| GROUP NAME                              |       | Idle at which state |                              | 190         | :                                | 20%                  | 1.48                                                         | 0                                     |
| Slasher#1                               | 71    | Citoff saw operato  | <b>m</b>                     | 290         |                                  | 80%                  | 5.94                                                         | 0                                     |
|                                         |       | y u                 | ,                            |             |                                  |                      |                                                              |                                       |
| WORKER NAME                             |       |                     |                              |             |                                  |                      |                                                              |                                       |
|                                         |       |                     | · ·                          |             |                                  | ļ                    |                                                              |                                       |
| NO. IN GROUP                            |       |                     |                              |             |                                  |                      |                                                              |                                       |
| COMPANY _ C ~ T                         | 10/B1 |                     | <u> </u>                     | <del></del> |                                  | Σ⑤                   | 8.50 /<br>= TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, %/100 = | 0                                     |
|                                         | G Le  | _                   |                              |             |                                  |                      | or                                                           | 0                                     |

|                                         |     |                    | 1                            |      | 2                                | 3                    | 4=3x2                | (5)=(4)x(1)                         |
|-----------------------------------------|-----|--------------------|------------------------------|------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |      | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01  | LUNGA BREAKS       | ٥                            | 290  |                                  |                      | .83                  | ٥                                   |
| CY                                      | 2 ه | REST ROOM          |                              | 290  |                                  |                      | .25                  | ٥                                   |
| GROUP NAME                              | 69  | Kicker Cuple       | .1523                        | 91.4 |                                  |                      | 7.42                 | 1,130                               |
| KICKONI<br>40'I                         |     |                    |                              |      |                                  |                      |                      | •                                   |
|                                         | -   |                    |                              |      |                                  |                      |                      |                                     |
| WORKER NAME                             |     |                    |                              |      |                                  |                      |                      |                                     |
|                                         |     |                    |                              |      |                                  |                      |                      |                                     |
| NO. IN GROUP                            |     |                    |                              |      |                                  |                      |                      |                                     |
|                                         |     |                    |                              |      |                                  |                      |                      |                                     |

| COMPANY | Continental | F. I 152 |  | Σ(3) = | TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | 1,13 |   |
|---------|-------------|----------|--|--------|--------------------------------------------|------|---|
| DATE    | alalel      |          |  |        |                                            |      |   |
| ВУ      | G.Lei       |          |  |        | or                                         |      | % |

|                                         |            |                    | 1                            |             | 2                          | 3                    | (4)=(3)x(2)                                             | 5=4x1                         |
|-----------------------------------------|------------|--------------------|------------------------------|-------------|----------------------------|----------------------|---------------------------------------------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |            | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ | for<br>dBA  | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                    | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                             | 0 (        | LUNCA/BREAKS       | 0                            | <b>290</b>  |                            |                      | .83                                                     | 0                             |
| Cs                                      | 02         | REST ROOM          | 0                            | 290         |                            |                      | 125                                                     | 0                             |
| GROUP NAME                              | 73         | Idle in booth      | ٥                            | 290         |                            | 10%                  | .74                                                     | D                             |
| No Z.<br>Slasher                        | 72         | RWININE            | ٥                            | <b>L9</b> 0 |                            | 90%                  | 6.68                                                    | ٥.                            |
| WORKER NAME                             |            |                    |                              |             |                            |                      |                                                         |                               |
| NO. IN GROUP                            |            |                    |                              |             |                            |                      |                                                         |                               |
| COMPANY Conti                           | (eric      | 1 F. I, - 19       | 52                           |             |                            | Σ(3) =               | 8,5<br>TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, %/100 = | O                             |
| <del></del>                             | <u>اما</u> |                    |                              |             |                            |                      | or                                                      | 0 %                           |

|                                         |        |                          | 1                                               |             | 2                                                     | 3                    | <b>4-3</b> ×2                                            | (3-(4)x(1)                          |
|-----------------------------------------|--------|--------------------------|-------------------------------------------------|-------------|-------------------------------------------------------|----------------------|----------------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |        | TASK<br>NO. & NAME       | 1/T <sub>p</sub> = Fm<br>TASK, HR <sup>-1</sup> |             | TOTAL SHIFT<br>TIME, TST,<br>HR.                      | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                     | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| I.D. NUMBER                             | 01     | Lunch/Break              | 0                                               | 290         |                                                       |                      | , 83                                                     | D                                   |
| C6                                      | 0.5    | Rest Room                | 0                                               | 290         |                                                       |                      | ,25                                                      | 0                                   |
| GROUP NAME                              | 46     | CHIP-N-SAW<br>OPERATIONS | 0                                               | 290         |                                                       | 85%                  | 6,31                                                     | O                                   |
| CHIP-N-SXW                              | 50     | IDLE                     | 0                                               | <90         |                                                       | 10%                  | .74                                                      | ٥                                   |
| Operator                                | ४५     | DONUTINE                 | 0                                               | 290         |                                                       | 5%                   | .37                                                      | ٥                                   |
| WORKER NAME                             |        |                          |                                                 |             |                                                       |                      |                                                          |                                     |
| Fory Worritt                            |        |                          | ·                                               |             |                                                       |                      |                                                          |                                     |
| NO. IN GROUP                            |        |                          |                                                 |             |                                                       |                      |                                                          |                                     |
| COMPANY Cont                            | \ nem  | ti 67 1                  |                                                 | ~ ≥  o  ≥ . | . Dudley determined<br>split was realist<br>CMS mill. | that So              | 8.50<br>TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, 7/100 = |                                     |
| DATE                                    | a/81   |                          |                                                 |             | Cins sign                                             |                      | 0.7                                                      | 0 %                                 |
| D1                                      | 3 , 11 |                          |                                                 |             | , ^                                                   |                      | 01                                                       |                                     |

|                                         |    |                    | 1                            |              | 2                                                 | 3                    | <b>4-3</b> x <b>2</b>                                 | (3-(4)x(1)                          |
|-----------------------------------------|----|--------------------|------------------------------|--------------|---------------------------------------------------|----------------------|-------------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |              | TOTAL SHIFT<br>TIME, TST,<br>HR.                  | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                  | TASK DOSE<br>CONTRIBUTION,<br>2/100 |
| I.D. NUMBER                             | 01 | Lunch/Break        | D                            | 290          |                                                   |                      | 1.17                                                  | 0                                   |
| CT                                      | 67 | Rest Room          | 0                            | 190          |                                                   |                      | ,25                                                   | 0                                   |
| GROUP NAME                              | 47 | Experoperation     | .5567                        | 100,8        |                                                   | 85%                  | 6.02                                                  | 3.35                                |
|                                         | 51 | Idle               | .2452                        | 94.9         |                                                   | 10%                  | <i>:</i> 11                                           | .17                                 |
| Edger Operator                          | 85 | Downtine           | ò                            | 290          |                                                   | 5%                   | - 35                                                  | 0                                   |
| John Allen                              |    |                    |                              |              |                                                   |                      |                                                       |                                     |
| NO. IN GROUP                            |    |                    |                              |              |                                                   |                      |                                                       |                                     |
| COMPANY Cont                            |    |                    | 152                          | +,           | 20 min Break                                      | Σ⊚ -                 | 8.50 TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, 7/100 = | 3.52                                |
| BY G                                    |    |                    | ten<br>188                   | , 5, 1015 si | andley determine<br>plit was realist<br>CMS mill. | ed that his for      | or                                                    | 352 %                               |

| ·                                       |      |                            | 1                                               |       | 2                                | 3                    | <b>4-3</b> x2                                              | <b>3-4</b> x1                       |
|-----------------------------------------|------|----------------------------|-------------------------------------------------|-------|----------------------------------|----------------------|------------------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |      | TASK<br>NO. & NAME         | 1/T <sub>p</sub> = Fm<br>TASK, HR <sup>-1</sup> |       | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                       | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| I.D. NUMBER                             | 01   | Lonch/Break                | Ů                                               | 190   |                                  |                      | 1.17                                                       | 0                                   |
| C8 -                                    | 07   | Rest Room                  | 0                                               | 490   |                                  | ·                    | 125                                                        | 0                                   |
| GROUP NAME                              | 48   | TRIM SAW<br>OPERATION, CUT | ,5236                                           | 100.3 |                                  | 85%                  | 6.02                                                       | 3.15                                |
| TRIM SAW                                | 52   | IDLE                       | .3789                                           | 98.0  |                                  | 10%                  | .71                                                        | . 27                                |
| operator operator                       | 86   | DUNTIME                    | 0                                               | 190   |                                  | 5%                   | .35                                                        | ٥                                   |
| WORKER NAME<br>White Tabler             |      |                            |                                                 |       |                                  |                      |                                                            |                                     |
| NO. IN GROUP                            |      |                            |                                                 |       | ·                                |                      |                                                            |                                     |
| COMPANY Cont                            |      |                            | 152                                             |       | 20 min brook<br>S. Dudley dets   |                      | 8.50 V<br>TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, Z/100 = | 3.42                                |
| DATE A                                  | 1181 |                            |                                                 | 2 8   | 15/10/5 split w                  | as realistic         | or                                                         | 342 %                               |

|                                         |     |                        | 1                                               |            | 2                                | 3                    | (4=3x2)                                                    | (3=4)x(1)                           |
|-----------------------------------------|-----|------------------------|-------------------------------------------------|------------|----------------------------------|----------------------|------------------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME     | 1/T <sub>p</sub> = Fm<br>TASK, HR <sup>-1</sup> |            | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                       | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| I.D. NUMBER                             | .01 | Lunch/Break            | 0                                               | <b>ر90</b> |                                  |                      | 1.17                                                       | o                                   |
| C9                                      | 67  | , , , ,                | Ð                                               | دع         |                                  |                      | ,25                                                        | 0                                   |
| GROUP NAME                              | 49  | TRING SAW<br>ODERATION | .4270                                           | 98.9       |                                  | 85%                  | 6.02                                                       | 2.57                                |
| TRIN SAW                                | 53  | IXE                    | .4013                                           | 98.4       |                                  | 10%                  | ار.                                                        | .28                                 |
| HELDER                                  | 86  | DOWNINE                | 0                                               | 290        |                                  | 5%                   | .35                                                        | ی                                   |
|                                         |     |                        |                                                 |            |                                  |                      |                                                            |                                     |
| WORKER NAME                             |     |                        |                                                 | ·          |                                  |                      | ·                                                          |                                     |
| J. Nails                                |     |                        | <del>-</del>                                    |            |                                  |                      | ·                                                          |                                     |
| NO. IN GROUP                            |     |                        |                                                 |            |                                  |                      |                                                            |                                     |
| No. IN GROOT                            |     |                        |                                                 |            |                                  |                      |                                                            |                                     |
| COMPANY Cont                            |     |                        | らと                                              |            | O Min. break<br>o. S. Dudley     |                      | C.SO V<br>TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, Z/100 = | 2.85                                |
| 4.00                                    | le  |                        |                                                 |            | - 85/10/5 h                      |                      |                                                            | 285 %                               |

|                                         |                                                 |                    | 1                                               |      | 2                                | 3                    | <b>4-3</b> x2                              | (3=(4)x(1)                          |  |  |
|-----------------------------------------|-------------------------------------------------|--------------------|-------------------------------------------------|------|----------------------------------|----------------------|--------------------------------------------|-------------------------------------|--|--|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |                                                 | TASK<br>NO. & NAME | 1/T <sub>p</sub> = Fm<br>TASK, HR <sup>-1</sup> |      | TOTAL SHIFT<br>TIME, TST,<br>HR. | Z TST/100<br>at TASK | NO. HOURS<br>AT TASK                       | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |  |  |
| I.D. NUMBER                             | 01                                              | Lunch/Break        | 0                                               | 290  |                                  |                      | 1.17                                       | Ö                                   |  |  |
| C10                                     | 07                                              | Rest Room          | ð                                               | 190  |                                  |                      | .25                                        | ٥                                   |  |  |
| GROUP NAME                              | 54                                              | Tipple Control     | .3218                                           | 96.8 |                                  | 85%                  | 6.02                                       | 1.94                                |  |  |
| #1 Tipple                               | 59                                              | Ide                | J                                               | 690  |                                  | 10%                  | 71                                         | . 0 .                               |  |  |
| <b>,</b> ,                              | 87                                              | DownTime           | ٥                                               | 290  |                                  | 5%                   | ,35                                        | O                                   |  |  |
|                                         |                                                 |                    |                                                 |      |                                  |                      |                                            |                                     |  |  |
| Jorry Bost                              |                                                 |                    |                                                 |      |                                  |                      |                                            |                                     |  |  |
| NO. IN GROUP                            |                                                 |                    |                                                 |      |                                  |                      |                                            |                                     |  |  |
|                                         |                                                 |                    |                                                 |      |                                  |                      | 8.50                                       |                                     |  |  |
| COMPANY Cont                            |                                                 |                    | 152                                             | +2   | 20 Min breaks                    | Σ③ -                 | TOTAL WORKER OR WORKER GROUP DOSE, 7/100 = | 1.94                                |  |  |
|                                         | Gla Solver of that or 194 % for use on CHE will |                    |                                                 |      |                                  |                      |                                            |                                     |  |  |

|                                         |            |                    | 1                                               |      | 2                                | 3                    | (4-3)x(2)                                            | (5)=(4)x(1)                         |
|-----------------------------------------|------------|--------------------|-------------------------------------------------|------|----------------------------------|----------------------|------------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |            | TASK<br>NO. & NAME | 1/T <sub>p</sub> = Fm<br>TASK, HR <sup>-1</sup> |      | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                 | TASK DOSE<br>CONTRIBUTION,<br>2/100 |
| I.D. NUMBER                             | OI         | Lunch/Break        | Đ                                               | <90  |                                  |                      | 1.17                                                 | D                                   |
| CII                                     | 03         | Rest Ream          | อ                                               | <90  |                                  |                      | .25                                                  | 0                                   |
| GROUP NAME                              | 55         | Tipple control     | .1674                                           | 92.1 |                                  | 85%                  | 6.02                                                 | 1,01                                |
| #2 Tipple                               | 28         | Ide                | 0                                               | 290  |                                  | 10%                  | .71                                                  | 0                                   |
| #2 Tipple + TIPPLE + TIPPLE             | વર         | Downtime           | 0                                               | ۷90  |                                  | 5%                   | , 35                                                 | ٥                                   |
| WORKER HAME TOWNS Dixon NO. IN GROUP 2  |            |                    |                                                 |      |                                  |                      |                                                      |                                     |
|                                         | 19/8<br>Lu | 1                  | 152                                             | +20  | uin, breaks                      | Σ⊚ .                 | Q.SO = TOTAL WORKER OR WORKER GROUP DOSE, Z/100 = or | 101 %                               |

|                                         |    |                    | 1                            |                | 2                          | 3                    | 4=3x2                | (5)=(4)×(1)                         |
|-----------------------------------------|----|--------------------|------------------------------|----------------|----------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ task, $HR^{-1}$ |                | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 0) | Lund Brech         | 0                            | <b>&lt;</b> 90 | ·                          |                      | .83                  | 0                                   |
| C12                                     | ٥٦ | Rest Room          | 0                            | c90            |                            |                      | .25                  | ٥                                   |
| GROUP NAME                              | 65 | working at         | ٥                            | 290            |                            |                      | 7.42                 | э                                   |
| Bander                                  |    |                    |                              |                |                            |                      |                      |                                     |
|                                         |    |                    |                              |                |                            |                      |                      |                                     |
| WORKER NAME                             |    |                    |                              |                |                            |                      |                      |                                     |
|                                         |    |                    |                              |                |                            |                      |                      |                                     |
| NO. IN GROUP                            |    |                    |                              |                |                            |                      |                      |                                     |
|                                         |    | ·                  |                              |                |                            |                      |                      |                                     |

| COMPANY | Continental | Fruit | Dud - 152 | Σ(3) = | = TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, %/100 = | 0 |   |
|---------|-------------|-------|-----------|--------|----------------------------------------------------|---|---|
| DATE    | 9/22/81     |       |           |        |                                                    |   |   |
| ву      | G.Lei       | ~     |           |        | or                                                 | 0 | % |

|                                         |               |                            | •                            |            |                                  |                      |                                             |                                     |
|-----------------------------------------|---------------|----------------------------|------------------------------|------------|----------------------------------|----------------------|---------------------------------------------|-------------------------------------|
|                                         |               |                            | 1                            |            | 2                                | 3                    | <b>4-3</b> ×2                               | (3-(4)x(1)                          |
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |               | TASK<br>NO. & NAME         | $1/T_p = Fm$ TASK, $HR^{-1}$ |            | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                        | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| I.D. NUMBER                             | 01            | Lunch/Break                | 0                            | 290        |                                  |                      | 1.17                                        | 0                                   |
| C13-                                    | 07            | Rest Room                  | ð                            | ۷90        |                                  |                      | .25                                         | ٥                                   |
| GROUP NAME                              | 94            | Emply Sorter (mit ) + ille | D                            | 190        |                                  | 95%                  | 6.73                                        | ٥                                   |
| Sorter Attendant                        |               | Dontine                    | 0                            | <b>290</b> |                                  | 5 %                  | .35                                         | 0                                   |
| 4                                       |               |                            |                              |            |                                  |                      | ı.                                          |                                     |
| WORKER NAME<br>Jimmy Bond               |               |                            |                              |            |                                  |                      |                                             |                                     |
| NO. IN GROUP                            |               |                            |                              |            |                                  |                      |                                             |                                     |
| COMPANY Cont                            | nem           | t.1 (T )                   | 152                          | +2         | 20 min brok                      | Σ⑤                   | FIGURE STATES OF WORKER GROUP DOSE, 7/100 = | ۵                                   |
|                                         | 15/81<br>1.Le |                            |                              |            |                                  |                      | or                                          | <u> </u>                            |
|                                         | 100           | <del></del>                |                              |            |                                  |                      |                                             |                                     |

A20

|                                         |                    |              | 1                            |            | 2                                | 3                    | <b>4-3</b> x2        | (5)=(4)x(1)                         |
|-----------------------------------------|--------------------|--------------|------------------------------|------------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME | TASK<br>NO. & NAME |              | $1/T_p = Fm$ TASK, $HR^{-1}$ | dBA        | TOTAL SHIFT<br>TIME, TST,<br>HR. | Z TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>2/100 |
| I.D. NUMBER                             | 01                 | Lunch/Break  | 0                            | 290        |                                  |                      | ,83                  | 0                                   |
| C14                                     | 0,5                | Rest Room    | 0                            | ۷90        |                                  |                      | ,25                  | D                                   |
| GROUP NAME                              | 60                 | in area area | .220                         | 94.1       |                                  | 85%                  | 6.31.                | 1,39                                |
| Green Chain                             | 102                | DXE          | ٥                            | <b>L90</b> |                                  | 10%                  | .74                  | 0                                   |
| Green Chain<br>people—                  | 104                | DOWN         | ن                            | 290        |                                  | 5%                   | .37                  | ٥                                   |
| FIRST MAN<br>ONLY                       |                    |              |                              |            |                                  |                      |                      |                                     |
| WORKER NAME                             |                    |              |                              |            |                                  |                      |                      |                                     |
|                                         |                    |              |                              |            |                                  |                      |                      |                                     |
| NO. IN GROUP                            |                    |              |                              |            |                                  |                      | 950./                |                                     |

| /        |             |     |     |   |     |  |  |   |    | $\perp$ |                               |         |   |      |       |
|----------|-------------|-----|-----|---|-----|--|--|---|----|---------|-------------------------------|---------|---|------|-------|
| OMPANY   | Conti       | مست | ١٠٠ | 7 | 152 |  |  | ` | Σ⑤ |         | TOTAL W<br>OR WORK<br>DOSE, 7 | er grou |   | 1.39 |       |
| ATE<br>Y | 9/2:<br>G.L | 2/0 | 1   |   |     |  |  |   |    |         |                               | o       | r | 139  | <br>7 |

3

**4**=3x2

(5)=(4)x(1)

1

| WORKER OR<br>WORKER GROUP<br>NO. & NAME                |     | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |     | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                       | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
|--------------------------------------------------------|-----|--------------------|------------------------------|-----|----------------------------------|----------------------|--------------------------------------------|-------------------------------------|
| I.D. NUMBER                                            | οl  | Lund brk           | o,                           | 290 |                                  |                      | .83                                        | ٥                                   |
| CIS                                                    | 02  | Rest room          | 0                            | 290 |                                  |                      | .25                                        | ٥                                   |
| GROUP NAME                                             | 82  | Rest room          | ٥                            | د90 |                                  | 85 °lo               | 6.31                                       | ٥                                   |
| Green chair<br>people -<br>on ground -<br>ZND POSITION | 103 | Tale               | ٥                            | 40  |                                  | 10%                  | .74                                        | ٠ .                                 |
| on ground-                                             | 104 | Dom                | 0                            | 290 |                                  | 5%                   | .37                                        | ى                                   |
| ZND POSITION                                           |     |                    |                              |     |                                  |                      |                                            | N N                                 |
| WORKER NAME                                            |     |                    |                              |     |                                  |                      |                                            |                                     |
|                                                        |     |                    |                              |     |                                  |                      |                                            |                                     |
| NO. IN GROUP                                           | £   | ·                  |                              |     |                                  |                      |                                            |                                     |
| COMPANY Contir                                         | ,   | d Forest du        | adusties                     |     |                                  | Σ(5) =               | TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | ٥                                   |

AZZ

DATE

BY

|                                         |    |                    | 1                            |     | 2                          | 3                    | (4)=(3)x(2)          | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------|------------------------------|-----|----------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ | dBA | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01 | Lunch/Break        | ٥                            | 290 | ·                          |                      | ,83                  | 0                                   |
| C16                                     | 07 | Rest Room          | 0                            | 290 |                            |                      | ,25                  | O                                   |
| GROUP NAME                              |    | groundain to       | ]                            |     |                            |                      |                      |                                     |
| Fork Lift Openbr                        | 76 | Istacker billy.    | > 。                          | 40  |                            |                      | 6.42                 | Ð .                                 |
| Green Chain &                           |    | Table 0            | )                            |     |                            |                      |                      |                                     |
| Truoles                                 | 06 | hul/maint.         | 0                            | 290 |                            |                      | 1,00                 | ن                                   |
| WORKER NAME                             |    |                    |                              |     |                            |                      |                      |                                     |
| Janos Floyd                             |    |                    |                              |     |                            |                      |                      |                                     |
| NO. IN GROUP                            |    |                    |                              |     |                            |                      |                      |                                     |
|                                         |    |                    |                              |     |                            |                      |                      |                                     |

|        | )     |      |       |   |     |  | <u> </u> |      |                                            | <br>  |   |
|--------|-------|------|-------|---|-----|--|----------|------|--------------------------------------------|-------|---|
| NO. IN | GPOUP |      |       |   |     |  |          |      |                                            |       |   |
| NO. IN | GMOI  |      |       |   |     |  |          |      |                                            |       |   |
| OMPANY | Conti | nent | tal r | 7 | 152 |  |          | Σ⑤ - | TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | >     |   |
| ATE .  | 9/9   |      |       |   |     |  |          |      | or                                         | <br>2 | % |
|        |       |      |       |   |     |  |          |      |                                            |       |   |

|                                         |     |                    | 1                                |      | 2                                | 3                    | <b>4-3</b> x <b>2</b> | (5)=(4)x(1)                         |
|-----------------------------------------|-----|--------------------|----------------------------------|------|----------------------------------|----------------------|-----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME | $1/T_p = F_m$<br>TASK, $HR^{-1}$ | _    | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK  | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 0 1 | LUNCH / BREAK      | 0                                | 190  |                                  |                      | , 83                  | ی                                   |
| C17                                     | 02  |                    | Ö                                | 290  |                                  | ·                    | .25                   | 0                                   |
| GROUP NAME                              | 93  | BETHIND CHS &      | ٥                                | 290  |                                  |                      | 4.42                  | ی                                   |
| CATP                                    | 11  | NEAR PM ATTU       | .1479                            | 91.2 |                                  |                      | 3,00                  | .444                                |
| TRUCK                                   |     |                    |                                  |      |                                  |                      |                       |                                     |
| RR can mon                              |     |                    |                                  |      |                                  |                      |                       |                                     |
| WORKER NAME                             |     |                    |                                  |      |                                  |                      |                       |                                     |
| E. Neighbar<br>Livingston               |     |                    |                                  |      |                                  | `                    |                       |                                     |
| NO. IN GROUP                            |     |                    |                                  |      |                                  |                      |                       |                                     |
| 1                                       |     |                    |                                  |      |                                  |                      |                       |                                     |

| COMPANY | Continutal | Gount | Industries | \( \sum_{5} = \text{ToTAL WORKER} \) OR WORKER GROUP DOSE, \( \lambda / 100 = \) | .444 |  |
|---------|------------|-------|------------|----------------------------------------------------------------------------------|------|--|
| DATE    | 9/11/61    |       |            |                                                                                  |      |  |
| вч      | G. Lec     |       |            | or _                                                                             | 44.  |  |

|                                         |     |                     | 1                               |          | 2                                | 3                    | 4=3x2                | $\bigcirc = \bigcirc \times \bigcirc$ |
|-----------------------------------------|-----|---------------------|---------------------------------|----------|----------------------------------|----------------------|----------------------|---------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME  | $1/T_p = Fm$<br>TASK, $HR^{-1}$ |          | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100   |
| I.D. NUMBER                             | 0 ( | LUNCH/BREAK         | 0                               | <u> </u> |                                  |                      | 50/60=,83            | ٥                                     |
| PI                                      | 02  | REST ROOMS          | 0                               | L90      |                                  |                      | ,25                  | 0                                     |
| GROUP NAME                              | 03  | STICK PICKUP DONN - | .2718                           | 95.8     | ·                                |                      | 1.72                 | 478                                   |
| STICK                                   | 04  | Cream-nb            | 0                               | 290      |                                  | 25.4                 | 1,88                 | ٥ .                                   |
|                                         | 05  | CUTS UP STEKS       | .7451                           | 102.9    |                                  |                      | .25                  | .183                                  |
|                                         | 45  | stick plu, bldg     | 0                               | L90      |                                  |                      | 3.57                 | ٥                                     |
| WORKER NAME                             |     | ,                   |                                 |          |                                  |                      |                      |                                       |
|                                         |     |                     |                                 |          |                                  |                      | ·                    |                                       |
| NO. IN GROUP                            |     |                     |                                 |          |                                  |                      |                      |                                       |

| 1       |             |      |     |  |      |                                                   |      |   |
|---------|-------------|------|-----|--|------|---------------------------------------------------|------|---|
| COMPANY | Continental | F. I | 152 |  | Σ③ = | S.S.M. TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | .661 |   |
| DATE    | 6.Lec       | _    |     |  |      |                                                   |      |   |
| ВҮ      | . 9/2//61   | -    |     |  |      | or                                                | 66   | % |

R. a. h.

|                                         |      |                    | 1                            |               | 2                          | 3                    | (4=3)x(2)                                            | $5 = 4 \times 1$                    |
|-----------------------------------------|------|--------------------|------------------------------|---------------|----------------------------|----------------------|------------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |      | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ | $\overline{}$ | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                 | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01   | Lunch/BRIAX        | 0                            | 290           |                            |                      | ,83                                                  | ව                                   |
| PZ                                      | 02   | REST ROOM          | 0                            | 290           |                            |                      | .25                                                  | 0                                   |
| GROUP NAME                              | 0.0  | DRY KILM           | ;                            |               |                            |                      | )                                                    |                                     |
| LIFT                                    | 01,  | BREAKOONIS         | ٥                            | 290           |                            |                      | 6.42                                                 | 0                                   |
| # 2 1tyster<br>(250)                    |      | DAY STORABE        |                              |               |                            |                      |                                                      |                                     |
| (250)                                   | 06   | EVER/MAINT         | D                            | C90           |                            |                      | 1.00                                                 | . 0                                 |
| WORKER NAME                             |      |                    |                              |               |                            |                      |                                                      |                                     |
|                                         |      |                    |                              |               |                            |                      | v.                                                   |                                     |
| NO. IN GROUP                            |      |                    |                              |               |                            |                      |                                                      |                                     |
| COMPANY Cont                            | nant | , F. J             | 152                          | <del>1</del>  |                            | Σ(3)                 | 8.50<br>= TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | ٥                                   |
| DATE 9/9/61                             |      |                    |                              |               |                            |                      |                                                      |                                     |
| BY Gile                                 |      | -                  |                              |               |                            |                      | or                                                   | 70 %                                |

|                                         |    |                    | 1                            |       | 2                                | 3                    | (4=3)x(2)            | (5)=(4)x(1)                   |
|-----------------------------------------|----|--------------------|------------------------------|-------|----------------------------------|----------------------|----------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ task, $HR^{-1}$ |       | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                             | οi | Lunch/Break        | 0                            | 490   |                                  |                      | . 83                 | ٥                             |
|                                         | ٥٦ | Rest Room          | 9                            | L90   |                                  |                      | , 25                 | ٥                             |
| GROUP NAME                              | 08 | FEEDING PL.        | .9114                        | 104.3 |                                  | 64.7                 | 4.80                 | 4.37                          |
| MACHINE                                 | 09 | DOWNTME            | D                            | ر90   |                                  | 25.4                 | 1.88                 | ٥.                            |
| (in FEED)                               | 10 | IDLE (RUMINT)      | ٥                            | 290   |                                  | 9                    | .67                  | ు                             |
|                                         | 19 | NO LUMBER          | 15961                        | 101.3 |                                  | 1                    | .07                  | ,042                          |
| WORKER NAME                             |    |                    |                              |       |                                  |                      |                      |                               |
|                                         |    |                    |                              |       |                                  |                      |                      |                               |
| NO. IN GROUP                            |    |                    |                              |       |                                  | ·                    |                      |                               |
|                                         |    |                    |                              |       |                                  |                      | grav/                |                               |

|                            |    |             |     | <br> |        |                                                          |       |
|----------------------------|----|-------------|-----|------|--------|----------------------------------------------------------|-------|
| NO. IN GROUP               |    |             |     |      |        |                                                          |       |
| No. IN GROOT               |    |             |     |      |        |                                                          |       |
| OMPANY Cont  ATE 9/9/  G.L | 81 | tel F.J - 1 | 52_ |      | Σ(3) = | %,50<br>TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, %/100 = | 4.412 |

|                                         |     |                    | 1                            |              | 2                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4=3)x(2)                      | 5=4x1                               |
|-----------------------------------------|-----|--------------------|------------------------------|--------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |              | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO. HOURS<br>AT TASK           | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01  | Lunch   BEE-MK     | 0                            | 190          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.17                           | D                                   |
| . 84                                    | υr. | REST ROOM          | D                            | C90          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .25                            | S                                   |
| GROUP NAME                              | U.  | GAMOINE            | .3176                        | 96.7         |                                  | 60.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.46                           | 1.42                                |
| GRADER                                  | اک  | 1016               | 0                            | 290          |                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .74                            | ٥ .                                 |
|                                         | 13  | DOWNIME            |                              | 190          |                                  | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.88                           | ٥                                   |
| WORKER NAME                             |     |                    |                              |              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                     |
| NO. IN GROUP                            |     |                    |                              |              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                                     |
| COMPANY Continue  DATE SIN              | []  |                    | * 5x70x                      | 201<br>1~7Ea |                                  | 11/2 Σ(3) =<br>11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/2 × 11/ | FOR WORKER GROUP DOSE, %/100 = | 1.42                                |

A28

|                                         |           |                    | 1                            |            | 2                                | 3                    | (4=3)x(2)                                           | (5)=(4)x(1)                         |
|-----------------------------------------|-----------|--------------------|------------------------------|------------|----------------------------------|----------------------|-----------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |           | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ | for<br>dBA | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01        | Lunch   BRYAIK     | D                            | (90        |                                  | ·                    | 1.17*                                               | 0                                   |
| P5                                      | 05        | REST ROOM          | อ                            | (90        |                                  |                      | .25                                                 | 0                                   |
| GROUP NAME                              | 14        | GRADING            | .2186                        | 94.0       |                                  | 60.1                 | 4,57                                                | ,999                                |
| CRMER                                   | ις        | love               | D                            | 490        |                                  | 10                   | .71                                                 | ٥                                   |
|                                         | 16        | DWNFINE            | 0                            | 290        |                                  | 25.4                 | 1.80                                                | ٥                                   |
|                                         | _         |                    |                              |            |                                  |                      |                                                     |                                     |
| WORKER NAME                             |           |                    |                              |            |                                  |                      |                                                     |                                     |
|                                         |           |                    |                              |            |                                  |                      |                                                     |                                     |
| NO. IN GROUP                            | _         |                    |                              |            |                                  |                      |                                                     |                                     |
| COMPANY Contin                          | ental     | F.J 152            | * CXTRA                      | 20 M       | trolpen<br>trolpen               | Σ⑤                   | 8.50 V = TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | .999                                |
| DATE of                                 | 161<br>Lu |                    |                              |            | 7 17/15                          |                      | or                                                  | 100 %                               |

|                                         |    |                          | 1                            |       | 2                          | 3                    | 4=3x2                | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------------|------------------------------|-------|----------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME       | $1/T_p = Fm$ TASK, $HR^{-1}$ |       | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01 | Lunch Isrank             | ು                            | 190   |                            |                      | . 83                 | ව                                   |
| PL,                                     | ٥٤ | REST ROOM                | 0                            | <90   |                            |                      | , 25                 | O                                   |
| GROUP NAME                              | 17 | TOOL ROOM                | 0                            | 290   |                            | 40                   | 2.96                 | 0                                   |
| PLANT & TECH.                           | 61 | MILLEMBES AGES           | .1968                        | 93.3  |                            | 30                   | 2.23                 | ,439                                |
|                                         | 14 | 1 /                      | .2186                        | 94.0  |                            | 25                   | 1.86                 | .407                                |
|                                         | 18 | INSIDE ENCLOS.           | 2,430                        | 111.4 |                            | 2                    | .15                  | 1365                                |
| WORKER NAME                             | 19 | NO LUMBER INSIDE ENCLOS. | .5961                        | 101,3 |                            | 3                    | .22                  | .13                                 |
| NO. IN GROUP                            |    |                          |                              |       |                            |                      |                      |                                     |
|                                         |    |                          |                              |       |                            | 50                   | 2.5 -                |                                     |

| COMPANY | Contractel | F.I, - 152 |  | TOTAL WORKER OR WORKER GROUDOSE, %/100 = |      | 1.342 |   |
|---------|------------|------------|--|------------------------------------------|------|-------|---|
| DATE    | 6 9 81     |            |  |                                          |      |       |   |
| ВҮ      | G.lu       | -          |  | C                                        | or _ | 134   | % |

A3°

|                                         |    |                    | 1                                |             | 2                          | 3                    | 4 = 3x2              | $\bigcirc = \bigcirc \times \bigcirc$ |
|-----------------------------------------|----|--------------------|----------------------------------|-------------|----------------------------|----------------------|----------------------|---------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ for TASK, $HR^{-1}$ |             | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100   |
| I.D. NUMBER                             | 01 | Lunch/BREMK        | 0                                | <b>८</b> 90 |                            |                      | .83                  | ٥                                     |
| P7                                      | ٥٦ | rest room          | 0                                | <b>ر90</b>  |                            |                      | .25                  | υ                                     |
| GROUP NAME                              | 20 | CUTTING            | .2605                            | 95.3        |                            | 64.7                 | 4.80                 | 1.25                                  |
| TRIMMER (TRIM SAN OP.)                  | 21 | IDLE               | D                                | <b>∠90</b>  |                            | 10                   | .74                  | 0                                     |
|                                         | 22 | Down               | 0                                | ۲90         |                            | 25.4                 | 1.88                 | 0                                     |
| WORKER NAME                             |    |                    |                                  |             |                            |                      |                      |                                       |
| NO. IN GROUP                            |    |                    |                                  |             |                            |                      |                      |                                       |

| NO. IN GROUP |      |        |     |  |        |                                                  |      |     |
|--------------|------|--------|-----|--|--------|--------------------------------------------------|------|-----|
| OMPANY Cont  | 9/81 | .) F.I | 152 |  | Σ(5) = | SISVE TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | 1.25 | 5   |
| ү            | Lu   |        |     |  |        | or                                               | 125  | S % |

|    |                          |                                                                                  |                                                                                                                  | 2                                                                                                                                       | 3                                                                                                                                                                | 4=3x2                                                                                                                                                                | $5=4\times1$                                                                                                                                                                                               |
|----|--------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | TASK<br>NO. & NAME       | $1/T_p = Fm$ task, $HR^{-1}$                                                     | $\overline{}$                                                                                                    | TOTAL SHIFT TIME, TST, HR.                                                                                                              | % TST/100<br>at TASK                                                                                                                                             | NO. HOURS<br>AT TASK                                                                                                                                                 | TASK DOSE<br>CONTRIBUTION,<br>%/100                                                                                                                                                                        |
| 0) | Lunch   sheak            | 0                                                                                | 290                                                                                                              |                                                                                                                                         |                                                                                                                                                                  | . 83                                                                                                                                                                 | Ď                                                                                                                                                                                                          |
| ٥٦ | REST ROOM                | . 0                                                                              | 290.                                                                                                             |                                                                                                                                         |                                                                                                                                                                  | .25                                                                                                                                                                  | ٥                                                                                                                                                                                                          |
| 23 | TRUM<br>CUTT, NG/PULLING | .1961                                                                            | 93.2                                                                                                             |                                                                                                                                         | 64.7                                                                                                                                                             | 4.80                                                                                                                                                                 | .941                                                                                                                                                                                                       |
| 24 | IDCE.                    | .1250 *                                                                          | 90.5                                                                                                             |                                                                                                                                         | 10                                                                                                                                                               | .74                                                                                                                                                                  | .093                                                                                                                                                                                                       |
| 25 | NWOD                     | 0                                                                                | 290                                                                                                              |                                                                                                                                         | 5.4)                                                                                                                                                             | .402                                                                                                                                                                 | ٠ ٥                                                                                                                                                                                                        |
| 41 | (LEANUP                  | Ð.                                                                               | 290                                                                                                              |                                                                                                                                         | 20                                                                                                                                                               | 1.48                                                                                                                                                                 |                                                                                                                                                                                                            |
|    |                          |                                                                                  |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                            |
|    |                          |                                                                                  |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                            |
|    |                          |                                                                                  |                                                                                                                  |                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                                                            |
|    | 23                       | NO. & NAME  OI LUNCH / BLEAK  OZ REST ROOM  Z3 CUTT, NL/PULING  24 IDLE  25 DOWN | NO. & NAME  TASK, HR-1  OI LUNCH/BREAK  OR REST ROOM  OR TRUM  23 CUTT, NL-/PULING  1961  24 IDLE  1250  DOWN  D | NO. & NAME  TASK, HR-1 dBA  OI LUNCH / MEAIX  O 290  OR REST ROOM  O 290  23 CUTT, NG/PULING 1961  24 IDLE 1250 \$ 90.0  25 DOWN  O 290 | TASK, HR -1 dBA TIME, TST, HR.  O 1 LUNCH / BLEAK O 290  OR REST RUDM O 290  23 CUTT, NL-/PLINH 1961 93.2  24 IDLE 1250 \$ 90.5  25 DOWN D 290  41 CLEANUP D 290 | TASK, HR -1 dBA TIME, TST, at TASK  O 1 LUNCH / MACAIK O 290  OR REST ROOM O 290  23 CUTT, NL/PULING 1961 93.2  41 DUE 1250 \$ 90.0  24 DOWN O 290  5.4 CHANDE O 290 | NO. & NAME  TASK, HR-1 dBA  TIME, TST, HR.  O1 LUNCH   MICAIK  O 290  .733  O2 REST ROOM  O 290  .725  TRUM CUTT, NI- PULLING  .1961  93.2  64.7  4.80  24 IDLE  .1250  70.5  DOWN  D 290  5.4  1.48  1.48 |

| COMPANY | Continental | r. J 152                           |                    | \( \) = TOTAL WORKER OR WORKER GROUP DOSE, \( \) /100 = | 1.034 |
|---------|-------------|------------------------------------|--------------------|---------------------------------------------------------|-------|
| DATE    | 9/9/81      |                                    |                    |                                                         |       |
| ВУ      | G.Lec       | * CALCULATED CALCULATED (85 CUTOFF | TP = .1235 = .1250 | or _                                                    | 103 % |

|                                         |              |                    | 1                               |               | 2                                | 3                                     | 4 = 3x2                                    | $(5)=(4)\times(1)$                  |
|-----------------------------------------|--------------|--------------------|---------------------------------|---------------|----------------------------------|---------------------------------------|--------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |              | TASK<br>NO. & NAME | $1/T_p = Fm$<br>TASK, $HR^{-1}$ | $\overline{}$ | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK                  | NO. HOURS<br>AT TASK                       | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01           | Lunch BREAK        | . 0                             | c90           |                                  | · · · · · · · · · · · · · · · · · · · | ,83                                        | 0                                   |
| P9-12                                   | 02           |                    | . 0                             | (90           | -                                |                                       | .25                                        | 0                                   |
| GROUP NAME                              | 27           | CUTTING TEM        | ,125 *                          | <u>4</u> 90   |                                  | 64,7                                  | 4.80                                       | .60                                 |
| TIKIM TO                                | 28           | IOLE               | 0 **                            | 290           |                                  | 10                                    | .74                                        | ٥                                   |
| PAT KALLEL                              | 29           | hwea               | O                               | 490           |                                  | 5.4)                                  | .40                                        | D                                   |
|                                         | 41           | e can up           | ٥                               | 290           |                                  | 20 (1)                                | 1.48                                       | 0                                   |
| WORKER NAME                             |              |                    |                                 |               |                                  |                                       |                                            |                                     |
|                                         |              |                    |                                 |               |                                  |                                       |                                            |                                     |
| NO. IN GROUP                            |              |                    |                                 |               |                                  |                                       |                                            |                                     |
| COMPANY Cont                            |              |                    | 152.                            |               |                                  | Σ(5) =                                | TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | .60                                 |
| DATE 1                                  | 9/81<br>.Ler |                    | * concurred                     | LEVE          | cs £90 (19)i 1<br>: 91.2 ((35))  | /-e: .1212<br>/+e = .147]             | or                                         | 60                                  |
|                                         |              | *                  | + cheviancy                     | CEY           | LLS: 290 ((90))                  | ) YTp=.0635<br>) YTp=.0930            |                                            |                                     |

A33

|                                         |    |                    | 1                            |     | 2                                | 3                    | 4=3x2                | $\bigcirc = \bigcirc \times \bigcirc$ |
|-----------------------------------------|----|--------------------|------------------------------|-----|----------------------------------|----------------------|----------------------|---------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |     | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100   |
| I.D. NUMBER                             | 01 | Lunch BREAK        | . 0                          | 290 |                                  |                      | .83                  | 0                                     |
| P13                                     | 02 | rest Room          | 0                            | 290 |                                  |                      | .25                  | 0                                     |
| GROUP NAME                              | 30 | PACHAGE MAKING     | . 0                          | 290 |                                  | 65                   | 4,83                 | 0                                     |
| PACKAGE MAN                             | 31 | 1016               | O                            | 290 |                                  | 15                   | 1.11                 | 0                                     |
|                                         | 27 | PULL (W9-12)       | .125                         | =90 |                                  | 10                   | .74                  | ,09                                   |
|                                         | 41 | CLEANUP            | 0                            | <90 |                                  | 10                   | ,74                  | 0                                     |
| WORKER NAME                             |    |                    |                              |     |                                  |                      |                      |                                       |
|                                         |    |                    |                              |     |                                  |                      |                      |                                       |
| NO. IN GROUP                            |    |                    |                              |     |                                  |                      |                      |                                       |
|                                         |    |                    |                              |     |                                  |                      | 861                  |                                       |

|            |        | 4         | i       | 1           | 1 | į. | 1      | 1                                          | 1   |          |
|------------|--------|-----------|---------|-------------|---|----|--------|--------------------------------------------|-----|----------|
| NO. IN     | CROTTP |           |         |             |   |    |        |                                            |     |          |
| 10. 1      | GROUT  |           |         |             |   |    |        |                                            |     |          |
| COMPANY    | Conti  | ner       | ₩ F.I19 | 5 <b>2.</b> |   |    | Σ(3) = | TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | .09 |          |
| DATE<br>BY | 9/9/   | 181<br>Le |         |             |   |    |        | or                                         | 9   | <u> </u> |
| -          |        |           |         |             |   |    |        |                                            |     |          |

|                                         |    |                    | 1                            |     | 2                          | 3                    | (4=3x2)              | (5)=(4)x(1)                   |
|-----------------------------------------|----|--------------------|------------------------------|-----|----------------------------|----------------------|----------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |     | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                             | 01 | Lunch/BREAK        | 0                            | 290 |                            |                      | .83                  | 0                             |
| PIL                                     | 02 | REST ROOM          | 0                            | c90 |                            |                      | .25                  | ა                             |
| GROUP NAME                              | 32 | BANDING            | 0                            | 290 |                            | 65                   | 4.83                 | 0                             |
| TICKET MAN                              | 33 | MARKING            | 0                            | 290 |                            | )                    | •                    | 0                             |
|                                         | 31 | IDLE               | 0                            | 290 |                            | 15                   | - 1.11               | 0                             |
| v                                       | 27 | PULL (N9-12)       | .125                         | 290 |                            | /.o                  | .74                  | .09                           |
| WORKER NAME                             | 48 | CLEANUP            | J                            | 290 |                            | 10                   | .74                  | 0                             |
|                                         |    |                    |                              |     |                            |                      |                      |                               |
| NO. IN GROUP                            |    |                    |                              |     |                            |                      | 8 < 2                |                               |

| NO. IN     | GROUP  |      |         |    |  |        |                                                |     |
|------------|--------|------|---------|----|--|--------|------------------------------------------------|-----|
| COMPANY    | Contin | entr | ( F.J 1 | 52 |  | ∑(5) = | 8.5 TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | .09 |
| OATE<br>SY | - Gil  | pl   |         |    |  |        | or                                             | 9 % |

|                                         |    |                    | 1                            |               | 2                                | 3                    | 4=3x2                                                     | $\bigcirc = \bigcirc \times \bigcirc$ |
|-----------------------------------------|----|--------------------|------------------------------|---------------|----------------------------------|----------------------|-----------------------------------------------------------|---------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ | $\overline{}$ | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                      | TASK DOSE<br>CONTRIBUTION,<br>%2/100  |
| I.D. NUMBER                             | 01 | Lunchlereax        | 0                            | 190           |                                  |                      | .83                                                       | . 9                                   |
| P15/16                                  | 02 | REST ROOM          | 0                            | 290           |                                  |                      | .15                                                       | ٥                                     |
| GROUP NAME                              |    | @ never out,       |                              |               |                                  |                      | )                                                         |                                       |
| + LIFT SIMPPINE                         | 35 | LUAD RR/THKS       | > 0                          | <b>c</b> 90   |                                  |                      | 6.42                                                      | 0                                     |
|                                         | ļ  | STACK IN SHED      |                              |               |                                  |                      | )                                                         |                                       |
|                                         | 06 | WEZ/MATHT          | D                            | 290           |                                  |                      | 1.50                                                      | ٥                                     |
| WORKER NAME                             |    |                    |                              |               |                                  |                      |                                                           |                                       |
| NO. IN GROUP                            |    |                    |                              |               |                                  |                      |                                                           |                                       |
| COMPANY Contin                          |    | ( F. I - )         | 52                           | <b></b>       |                                  | Σ(3) =               | 8,5 /<br>TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, %/100 = | D                                     |

A36

BY

Glu

|                                         |         |                    | 1                            |            | 2                          | 3                    | (4=3)x(2)                                            | $(5)=(4)\times(1)$                  |
|-----------------------------------------|---------|--------------------|------------------------------|------------|----------------------------|----------------------|------------------------------------------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |         | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |            | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                                 | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01      | Lunch BREAK        | O                            | 490        |                            |                      | . 83                                                 | ٥                                   |
| P17-18                                  | لر<br>ه |                    | 0                            | <b>روه</b> |                            |                      | ,25                                                  | v                                   |
| GROUP NAME                              | 360     | PRATE OWN          | 0                            | 290        |                            | 50                   | 3.7/                                                 | ی                                   |
| CAR TI'E DOWN                           | 37      | C LEANUP (VSVALUE  | ) D                          | 290        |                            | 50                   | 3.7/                                                 | 0.                                  |
|                                         |         |                    |                              |            |                            |                      |                                                      |                                     |
|                                         |         |                    |                              |            |                            |                      |                                                      |                                     |
| WORKER NAME                             |         |                    |                              |            |                            |                      |                                                      |                                     |
|                                         |         |                    |                              |            |                            |                      |                                                      |                                     |
| NO. IN GROUP                            |         |                    |                              |            |                            |                      |                                                      |                                     |
| 2                                       |         |                    |                              |            |                            |                      |                                                      | ,                                   |
| COMPANY Cont                            |         | ( F.I 1            | 52                           |            |                            | Σ(5) -               | 8.50<br>= TOTAL WORKER OR WORKER GROUP DOSE, %/100 = |                                     |

A37

BY

G.ler

|                                         |    |                    | 1                               |      | 2                                | 3                    | 4=3x2                | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------|---------------------------------|------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$<br>TASK, $HR^{-1}$ |      | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | ٥١ | Lunch/BRFAX        | 0                               | 290  |                                  |                      | . 83                 | . 0                                 |
|                                         | ٥٤ | REST ROOM          | 0                               | 290  |                                  |                      | .25                  | O .                                 |
| GROUP NAME                              | 38 | SMUCINU @ STA.     | .27 17                          | 95.6 | ·                                | 80                   | 5.94                 | 1.61                                |
| ROUND THELE                             | 39 | at a TRIM SAN      | . 2725                          | 95.6 |                                  | 5                    | ,37                  | 101.                                |
|                                         | ψo | DOMN               | 0                               | 290  |                                  | 5                    | .37                  | D                                   |
|                                         | 41 | IDLE & CLEANUP     | 0                               | 690  |                                  | 10                   | .74                  | o                                   |
| Worker name                             |    |                    |                                 |      |                                  |                      |                      |                                     |
|                                         |    |                    |                                 |      |                                  |                      |                      |                                     |
| NO. IN GROUP                            |    |                    |                                 |      |                                  |                      |                      |                                     |
| 1                                       |    |                    |                                 |      |                                  |                      | 2607                 |                                     |

100

|                                         |    |                         | 1                              |               | 2                                | 3                    | 4=3x2                | (5)=(4)x(1)                   |
|-----------------------------------------|----|-------------------------|--------------------------------|---------------|----------------------------------|----------------------|----------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME      | $1/T_p = Fm$ : TASK, $HR^{-1}$ | $\overline{}$ | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                             | 01 | Lunch   Britain         | 0                              | 198           |                                  |                      | .83                  | 0.                            |
| P20                                     | 02 | 1 ' ' 1                 | 0                              | 190           |                                  |                      | .25                  | . 0                           |
| GROUP NAME                              | 11 | @ P4/S STA.             | ,3176                          | 96.7          |                                  | 60                   | 4.46                 | 1.416                         |
| SC WAY                                  | 03 | BREAKDONN AREA          | . אררבי                        | 95.8          |                                  | 10                   | .74                  | . 2056                        |
| ĺ                                       | 23 | SUAT CHOIN              | .1961                          | 93.2          |                                  | 10                   | ٠٦٤                  | ,1451                         |
|                                         | 37 | DMY/PLANED LUMBER STACK | ٥                              | 290           |                                  | 20                   | 1.48                 | 0                             |
| WORKER NAME                             |    |                         |                                |               |                                  |                      |                      |                               |
|                                         |    |                         |                                |               |                                  |                      |                      |                               |
| NO. IN GROUP                            |    |                         |                                |               |                                  |                      |                      |                               |
|                                         |    |                         |                                |               |                                  |                      | 1.50                 |                               |

| NO IN  | CRUITE |             | L       |   |    | <br> |      |                                                              | <u> </u> |  |
|--------|--------|-------------|---------|---|----|------|------|--------------------------------------------------------------|----------|--|
| NO. IN |        |             |         |   |    |      |      |                                                              |          |  |
| DATE   | 9      | 9/81        | AL F.J. | 1 | 52 |      | Σ⑤ = | 3.50 /<br>= TOTAL WORKER<br>OR WORKER GROUP<br>DOSE, %/100 = | 1.767    |  |
| BY     |        | . <u>Le</u> |         |   |    |      |      |                                                              |          |  |

|                                         |    |                                | 1                            |       | 2                          | 3                    | 4=3x2                | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------------------|------------------------------|-------|----------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME             | $1/T_p = Fm$ TASK, $HR^{-1}$ |       | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 01 | Lunch   BLEAK                  | 0                            | 190   |                            |                      | . 83                 | ٥                                   |
| .P21 .                                  | 02 | REST ROOM                      | 0                            | 190   |                            | ,                    | .25                  | ى                                   |
| GROUP NAME                              | 23 | SONT LHANN                     | .1961                        | 93.2  |                            | ≈50                  | 3.52                 | 1690                                |
| PURMER MILL                             | 03 | BEKOONN (NEWS)                 | . 2778                       | 95.8  |                            | 10                   | .74                  | ,206                                |
|                                         | 38 | Round table of<br>office area. | ,27/7                        | 95.6  |                            | 15                   | 1.11                 | .302                                |
|                                         | 80 | PLANER<br>INFEEDING            | .9114                        | 104.3 |                            | 5                    | .37                  | .337                                |
| WORKER NAME                             | 42 | OFFICE (TRANGER)               | 0                            | 190   |                            | 10                   | .74                  | 0                                   |
| POORY                                   | 37 | RAIL LARS                      | 0                            | 290   |                            | . 5                  | .37                  | ٥                                   |
| NO. IN GROUP                            | 43 | DRY KILMS                      | D                            | 290   |                            | 5                    | ,37                  | ల                                   |
|                                         | 19 | IN SIDE PLANER<br>ENC. @ SETUP | , 5961                       | 101.3 |                            |                      | .20                  | ,119                                |

|         | 19 620      | . @ SETUP | ,5961 | 101.3 |        | .20             | 1119  |          |
|---------|-------------|-----------|-------|-------|--------|-----------------|-------|----------|
|         |             |           |       |       | ∑(5) = | OR WORKER GROUP | 1.65) | J        |
| COMPANY | Continental | F. 1      | 12 5  |       |        | DOSE, %/100 =   | 1.63  | <u> </u> |
| DATE    | 9/9/81      |           |       |       |        |                 |       |          |
| вч .    | G, Lee      |           | •     |       |        | or              | 165   | %        |

|                                         |     |                    | 1                            |      | 2                                | 3                    | (4)=(3)x(2)          | (3=4)x(1)                           |
|-----------------------------------------|-----|--------------------|------------------------------|------|----------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |     | TASK<br>NO. & NAME | $1/T_p = Fm$ task, $HR^{-1}$ |      | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| 1.d. NUMBER ? 22                        | 0 ( | Lunch/break        | ی                            | 40   |                                  | ,                    | . 83                 | ن                                   |
|                                         | 02  | Rest from          | 0                            | 490  |                                  |                      | ,25                  | 0                                   |
| GROUP NAME                              |     | Front office       | ٥                            | 190  |                                  |                      | 1.00                 | 0                                   |
| CHENC<br>SHUPPING                       | 37  | ship-yard          | D                            | 490  |                                  | ·                    | 1.50                 | 0 .                                 |
|                                         | 38  | Round table as     | 12725                        | 95.6 |                                  |                      | .42                  | <b>'17</b> #                        |
|                                         | 42  | Plane Mill O       | ffice o                      | 290  |                                  |                      | 2.00                 | ى                                   |
| WORKER NAME                             |     |                    |                              |      |                                  |                      |                      |                                     |
| CLAN E                                  |     |                    |                              |      |                                  |                      |                      |                                     |
| NO. IN GROUP                            |     |                    |                              |      |                                  |                      |                      |                                     |
|                                         |     |                    |                              |      |                                  |                      |                      |                                     |

| COMPANY | Contracted | F.I152 | \( \sum_{\text{or worker group}} \) \[ \text{DOSE, \( \frac{7}{100} = \) \] | . 114 |   |
|---------|------------|--------|-----------------------------------------------------------------------------|-------|---|
| DATE    | 9/9/81     |        |                                                                             |       |   |
| вч      | G.Lu       |        | or _                                                                        |       | % |

|                                                                            |           |                    | 1                            |                | 2                          | 3                    | <b>4</b> = <b>3</b> x <b>2</b> | (5)=(4)x(1)                    |  |  |
|----------------------------------------------------------------------------|-----------|--------------------|------------------------------|----------------|----------------------------|----------------------|--------------------------------|--------------------------------|--|--|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME                                    |           | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ | $\overline{-}$ | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK           | TASK DOSE CONTRIBUTION, %2/100 |  |  |
| I.D. NUMBER                                                                | 01        | LUNCH / BASAK      | 0                            | ر90            |                            |                      | .83                            | ٥                              |  |  |
| P23                                                                        | ٥٢        | RESTROOM           | 0                            | (90            |                            |                      | ، 2.5                          | 0                              |  |  |
| GROUP NAME                                                                 | 91        | SUP. OFFICE        | ٥                            | 290            |                            |                      | .5                             | ى                              |  |  |
| PLANT                                                                      | 81        | min office         | 0                            | 290            |                            |                      | ÷5                             | 0                              |  |  |
| SUPERINTEN-<br>DENT                                                        | 48        | CNS TS             | .5236                        | 100.3          |                            |                      | 1.5                            | .7854                          |  |  |
|                                                                            | 60        | ,                  | .220                         | 94,1           |                            |                      |                                | .2200                          |  |  |
| WORKER NAME                                                                | 4-3<br>74 | DRY ICILN          | 0                            | 190            |                            |                      | <i>i</i> 5                     | D                              |  |  |
| HESTER                                                                     | 15        | NEAR ONS IN-F      | EED .3388                    | 97,2           | -                          |                      | 1                              | , 3388                         |  |  |
| NO. IN GROUP                                                               | 62        | SMULL              | 0                            | 290            |                            |                      | 1                              | ٥                              |  |  |
| 1                                                                          | 06        | major. SHIP        | 0                            | 290            |                            |                      | 1                              | . 0                            |  |  |
| 37 Lunser 4D. 0 290  25 = TOTAL WORKER OR WORKER GROUP DOSE, %/100 = 1.344 |           |                    |                              |                |                            |                      |                                |                                |  |  |
| DATE $\frac{9/2}{6.1}$                                                     | 2/81      |                    |                              |                |                            |                      | or                             | 134 %                          |  |  |

|     |                             | 1                                                                                                                                                                                    |                                                                                                                                                                          | 2                                                                                                                                                                                                                  | 3                                                                              | $4 = 3 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5)=(4)x(1)                                                                     |
|-----|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|     | TASK<br>NO. & NAME          | r .                                                                                                                                                                                  |                                                                                                                                                                          | TOTAL SHIFT<br>TIME, TST,<br>HR.                                                                                                                                                                                   | % TST/100<br>at TASK                                                           | NO. HOURS<br>AT TASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TASK DOSE<br>CONTRIBUTION,<br>%/100                                             |
| 01  | LUNCH & BREAKS              | 0                                                                                                                                                                                    | 190                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                | . 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                               |
| 02  | REST ROOM                   | Ö                                                                                                                                                                                    | <90                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                | ,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U                                                                               |
| 08  | MFEFOIND Q                  | .9114                                                                                                                                                                                | 104,3                                                                                                                                                                    |                                                                                                                                                                                                                    | 5                                                                              | .37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,337                                                                            |
| 44  | MAINT SHOP  THANKER-OVT     | .3073                                                                                                                                                                                | 96.5                                                                                                                                                                     |                                                                                                                                                                                                                    | 470                                                                            | 5.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,56                                                                            |
| 31  |                             | 0                                                                                                                                                                                    | 290                                                                                                                                                                      |                                                                                                                                                                                                                    | 10                                                                             | ,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                               |
| 106 | MONNTOME.                   | н) о                                                                                                                                                                                 | 290                                                                                                                                                                      |                                                                                                                                                                                                                    |                                                                                | ,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                               |
| 11  | OVIFEED                     | ,3176                                                                                                                                                                                | 96.7                                                                                                                                                                     |                                                                                                                                                                                                                    | S                                                                              | ,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,1175                                                                           |
| 43  | DRY KILN                    | 0                                                                                                                                                                                    | 290                                                                                                                                                                      |                                                                                                                                                                                                                    | 5                                                                              | .37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                               |
|     |                             |                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |
|     | 02<br>08<br>44<br>31<br>106 | NO. & NAME  OI LUNCH & BREAKS  OZ REST ROOM  OB FETTING OF THANKS  AA MAINT SHOP  THANKER-OVT  ATA OF  AND ACK AMACH.  NOT AVAILABLE  TOWARD OF FILLS Q  OVTFETTO  OVTFETTO  OUT OFF | NO. & NAME  TASK, HR-1  OI LUNCH & BREAKS  OZ REST ROOM  OB PETDING OF 1914  AA MAINT SHOP 13073  31 PACK MACH D  NOT ANNUMBED  NOT ANNUMBED  ON TOWARD OFFICES Q  13176 | NO. & NAME  TASK, HR-1 dBA  OI LUNCH & BREAKS O L90  OZ REST ROOM O C90  OB FEETING Q ,9/14 104,3  AA MAINT SHOP . 3073 96,5  31 DACK MACH D C90  106 MAINT ME. MAINT (AT LUNCH) O L90  TOWARD JEFUS Q ,3/176 96.7 | TASK NO. & NAME  1/T = Fm for TOTAL SHIFT TIME, TST, HR.  OI LUNCH & BREAKS  O | TASK NO. & NAME  1/T = Fm for TOTAL SHIFT TIME, TST, At TASK  1/T = Fm for TOTAL SHIFT TIME, TST, At TASK  1/T = Fm for TOTAL SHIFT TIME, TST, At TASK  1/T = Fm for TOTAL SHIFT TIME, TST, At TASK  1/T = Fm for TOTAL SHIFT TIME, TST, At TASK  1/T = Fm for TOTAL SHIFT TIME, TST, At TASK  1/T = Fm for TOTAL SHIFT TIME, TST, At TASK  1/T = Fm for TOTAL SHIFT  1/T = Fm for TOTAL SHIFT TOTAL S | TASK NO. & NAME  1/T = Fm for TOTAL SHIFT TASK, HR -1 dBA  OI LUNCU & BREAKS  O |

| COMPANY | Continental | F.I152 | \( \sum_{\text{5}} = \text{TOTAL WORKER} \) OR WORKER GROUP DOSE, \( \frac{\pi}{100} = \text{100} \) | 2.01 |  |
|---------|-------------|--------|------------------------------------------------------------------------------------------------------|------|--|
| DATE    | 7/23/81     |        |                                                                                                      |      |  |
| BY      | ر لعا       |        | or                                                                                                   | 201  |  |

|                                         |      |                    | 1                            |            | 2                                | 3                    | 4=3x2                                            | (5)=(4)x(1)                   |
|-----------------------------------------|------|--------------------|------------------------------|------------|----------------------------------|----------------------|--------------------------------------------------|-------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |      | TASK<br>NO. & NAME | $1/T_p = Fm$ TASK, $HR^{-1}$ |            | TOTAL SHIFT<br>TIME, TST,<br>HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK                             | TASK DOSE CONTRIBUTION, %/100 |
| I.D. NUMBER                             | 01   | LUNCH / BREAKS     | 0                            | <b>L90</b> |                                  |                      | . 83                                             | . 0                           |
| SI                                      | 02   | REST ROOM          | G                            | 290        |                                  |                      | ,25                                              | ٥                             |
| GROUP NAME                              | 63   | IXE                | 0                            | 290        |                                  | 10%                  | .74                                              | 0                             |
| Stacker oper.                           | 62   | STOCKER OPERATION  | 0                            | <90        |                                  | 90%                  | 6.68                                             | ٥                             |
|                                         |      |                    |                              |            |                                  |                      |                                                  |                               |
|                                         |      |                    |                              |            |                                  |                      |                                                  |                               |
| WORKER NAME                             |      |                    |                              |            |                                  |                      |                                                  |                               |
|                                         |      |                    |                              |            |                                  |                      |                                                  |                               |
| NO. IN GROUP                            |      |                    |                              |            |                                  |                      |                                                  |                               |
| COMPANY Conti                           | nent | real F. I1         | 52                           |            | -                                | Σ(5)                 | 8,5 = TOTAL WORKER OR WORKER GROUP DOSE, %/100 = | D                             |
| DATE 96                                 | 181  |                    |                              |            |                                  |                      | or                                               | O ,                           |

|                                         |    |                    | 1                                 |     | 2                          | 3                    | (4=3)x(2)            | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------|-----------------------------------|-----|----------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ from task, $HR^{-1}$ | dBA | TOTAL SHIFT TIME, TST, HR. | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>%/100 |
| I.D. NUMBER                             | 0  | LUNCH BREAK        | 0                                 | 290 |                            |                      | ,83                  | O                                   |
| 52                                      | 02 |                    | ٥                                 | 290 |                            |                      | 125                  | . 0                                 |
| GROUP NAME                              | 64 | attendent-all      | <b>%</b>                          | 490 |                            | 85%                  | 6.31                 | ٥                                   |
| Transfer                                | 63 | 10th + CLEWN       | op o                              | 490 |                            | 15%                  | 1.11                 | ٥ .                                 |
| <b>5 7</b> 5 (5)                        |    |                    |                                   |     | 1.0                        |                      |                      |                                     |
| WORKER NAME                             |    |                    |                                   |     |                            |                      |                      |                                     |
|                                         |    |                    |                                   |     |                            |                      |                      |                                     |
| NO. IN GROUP                            |    |                    |                                   |     |                            |                      |                      |                                     |

| COMPANY | Continued F.I - 152 | _ | TOTAL WORKER<br>OR WORKER GRO<br>DOSE, %/100 | OUP  | 0 |   |
|---------|---------------------|---|----------------------------------------------|------|---|---|
| DATE    | 9/22/01             |   |                                              |      |   |   |
| BY      | Glan                | , |                                              | or _ | D | % |



|                                         |    |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                    | (4)=(3)x(2)          | (5)=(4)x(1)                         |
|-----------------------------------------|----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------------------------|
| WORKER OR<br>WORKER GROUP<br>NO. & NAME |    | TASK<br>NO. & NAME | $1/T_p = Fm$ from the state of |             | TOTAL SHIFT<br>TIME, TST,<br>HR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % TST/100<br>at TASK | NO. HOURS<br>AT TASK | TASK DOSE<br>CONTRIBUTION,<br>Z/100 |
| I.D. NUMBER                             | 01 | Lunch Break        | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ر90         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | .83                  | ٥                                   |
| S3-5                                    | ٥٤ | Rest from          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>c</b> 90 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | . 25                 | ۵                                   |
| GROUP NAME                              | 68 | Ide                | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L90         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                   | ,74                  | v                                   |
| STICK<br>LAYERS                         | 67 | Stick laying       | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>C</b> 90 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90                   | 80.6                 | ٥                                   |
|                                         |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                                     |
| WORKER NAME                             |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                                     |
|                                         |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                                     |
| NO. IN GROUP                            |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                      |                                     |
| 3                                       |    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | and the same of th |                      |                      |                                     |

| 3       |       |      |      |       |           |     |  |  |    |    |                                         |                 |       |   |
|---------|-------|------|------|-------|-----------|-----|--|--|----|----|-----------------------------------------|-----------------|-------|---|
| COMPANY | Conti | etal | fret | In di | ilin - 15 | ک آ |  |  | Σ3 | 01 | స్త్రి<br>OTAL WO<br>R WORKE<br>OSE, %/ | RKER<br>R GROUP | ٥     |   |
| DATE    | 9/9   | 101  |      |       |           |     |  |  |    |    |                                         |                 |       |   |
| ВЧ      | G.1   | u    |      |       |           |     |  |  |    |    |                                         | or              | <br>0 | % |

## EQUIVALENT NOISE EXPOSURE DATA SHEET

|                           | PLANT CONTROL  OPERATION BRE  EMPLOYEES ALI | AK ROOM AREA                               | DATA 2/20/01 BY G. Lee /S. Dudley START/STOP TIME DAILY HOURS EXPOSED |                               |                |                                       |  |  |  |
|---------------------------|---------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|-------------------------------|----------------|---------------------------------------|--|--|--|
|                           | NOTES                                       |                                            | TOTAL SAMP                                                            | LE 260 Sec                    | SAMPLE I       | RATE N. A.                            |  |  |  |
|                           | MEASURED<br>SOUND LEVEL<br>dBA              | NUMBER OF OCCURREN<br>(ONE MARK PER OCCURR |                                                                       | TOTAL OCCURRENCES PER LEVEL n | F              | P=nxF                                 |  |  |  |
|                           | Less than 85                                |                                            |                                                                       |                               | 0.             | 0.                                    |  |  |  |
| 44]                       | 85                                          |                                            |                                                                       |                               | 0.062          |                                       |  |  |  |
| Existing<br>lation Cutoff | 86<br>87                                    |                                            |                                                                       |                               | 0.072          |                                       |  |  |  |
| t                         | 88                                          |                                            |                                                                       |                               | 0.082          |                                       |  |  |  |
| ng<br>O                   | 89                                          |                                            |                                                                       |                               | 0.093          |                                       |  |  |  |
| Existi<br>Regulation      | 90                                          |                                            |                                                                       |                               | 0.105          |                                       |  |  |  |
| at i                      | 91                                          | 1                                          |                                                                       |                               | 0.144          |                                       |  |  |  |
| 윤립                        | 92                                          | LVERYWHERE LESS THE                        | M 73                                                                  |                               | 0.165          | · · · · · · · · · · · · · · · · · · · |  |  |  |
| 69                        | 93                                          |                                            |                                                                       |                               | 0.189          |                                       |  |  |  |
| الم                       | 94                                          | SEE TAPE                                   |                                                                       |                               | 0.218          |                                       |  |  |  |
|                           | 95                                          |                                            |                                                                       |                               | 0.250          | **                                    |  |  |  |
|                           | 96                                          |                                            |                                                                       |                               | 0.287          |                                       |  |  |  |
|                           | 97                                          |                                            |                                                                       |                               | 0.330          |                                       |  |  |  |
|                           | 98                                          |                                            |                                                                       |                               | 0.379          |                                       |  |  |  |
|                           | 99                                          |                                            |                                                                       |                               | 0.435          |                                       |  |  |  |
|                           | 100                                         |                                            |                                                                       |                               | 0.500          |                                       |  |  |  |
|                           | 101                                         |                                            |                                                                       |                               | 0.574          |                                       |  |  |  |
|                           | 102                                         |                                            |                                                                       |                               | 0.660          |                                       |  |  |  |
| - 1                       | 103                                         |                                            |                                                                       |                               | 0.758          |                                       |  |  |  |
| 1                         | 104                                         |                                            |                                                                       |                               | 0.871<br>1.000 |                                       |  |  |  |
|                           | 106                                         |                                            |                                                                       |                               | 1.149          |                                       |  |  |  |
|                           | 107                                         |                                            |                                                                       |                               | 1.320          |                                       |  |  |  |
|                           | 108                                         |                                            |                                                                       |                               | 1.516          |                                       |  |  |  |
|                           | 109                                         |                                            |                                                                       |                               | 1.741          |                                       |  |  |  |
|                           | 110                                         |                                            |                                                                       |                               | 2.000          |                                       |  |  |  |
| į.                        | 111                                         |                                            |                                                                       |                               | 2.297          |                                       |  |  |  |
|                           | 112                                         |                                            |                                                                       |                               | 2.639          |                                       |  |  |  |
| - 1                       | 113                                         |                                            |                                                                       |                               | 3.031          |                                       |  |  |  |
|                           | 114                                         |                                            |                                                                       |                               | 3.482          |                                       |  |  |  |
|                           | 115                                         |                                            |                                                                       |                               | 4.000          |                                       |  |  |  |
|                           |                                             |                                            |                                                                       | \( \sigma_n =                 | 5              | P _ (                                 |  |  |  |
|                           | $\frac{\sum P}{\sum n} ==$                  | <u>Dai</u>                                 |                                                                       |                               |                |                                       |  |  |  |
|                           | Fm x Ta =                                   | x = = Fm (4                                | )                                                                     | Equivalent<br>Noise Leve      | 1 490 df       | BA ((90))                             |  |  |  |
|                           |                                             |                                            | Γ(1-                                                                  | 85) /5]                       | ∠85 dB         | A ((83))                              |  |  |  |
|                           | $L = 16.61 \log$                            | $(16F) + 85.$ $F = 1/T_p =$                | (1/16)2 <sup>L</sup>                                                  | •                             |                | BI                                    |  |  |  |

BZ

# EQUIVALENT NOISE EXPOSURE DATA SHEET

|                | NOTES A PO-               | TOTAL                                   | SAMPLE RATE  |                          |                |           |
|----------------|---------------------------|-----------------------------------------|--------------|--------------------------|----------------|-----------|
|                | SOUND LEVEL<br>dBA        | NUMBER OF OCCURREN (ONE MARK PER OCCURR |              | OCCURRENCES PER LEVEL n  | F              | P=nxF     |
|                | Less than 85              |                                         |              |                          | 0.             | 0.        |
|                | 85                        |                                         |              |                          | 0.062          |           |
| lation Cutoff, | 86                        |                                         |              |                          | 0.072          |           |
| tt l           | 87                        |                                         |              |                          | 0.082          |           |
| O              | 88                        |                                         |              |                          | 0.095          |           |
| oH             | 89<br>90                  |                                         |              |                          | 0.109          |           |
| Ţ              | 91                        |                                         |              |                          | 0.144          |           |
| 11.8           | 92                        |                                         |              |                          | 0.165          |           |
| Regulation     | 93                        | EVERywhere loss                         | than 76.     |                          | 0.189          |           |
| æ]             | 94                        |                                         |              |                          | 0.218          |           |
|                | 95                        | C +                                     |              |                          | 0.250          |           |
| j              | 96                        | See Tape.                               |              |                          | 0.287          |           |
|                | 97                        |                                         |              |                          | 0.330          |           |
|                | 98                        |                                         |              |                          | 0.379          |           |
|                | 99                        |                                         |              |                          | 0.435          |           |
|                | 100                       |                                         |              |                          | 0.500          |           |
|                | 101<br>102                |                                         |              |                          | 0.660          |           |
|                | 103                       |                                         |              |                          | 0.758          |           |
|                | 104                       |                                         |              |                          | 0.871          |           |
|                | 105                       |                                         |              |                          | 1.000          |           |
|                | 106                       |                                         |              |                          | 1.149          |           |
|                | 107                       |                                         |              |                          | 1.320          |           |
|                | 108                       |                                         |              |                          | 1.516          |           |
|                | 109                       |                                         |              |                          | 1.741          |           |
|                | 110                       |                                         |              |                          | 2.000          |           |
|                | 111                       |                                         |              |                          | 2.297          |           |
|                | 112                       |                                         |              |                          | 2.639<br>3.031 |           |
|                | 113                       |                                         |              |                          | 3.482          |           |
|                | 115                       |                                         |              |                          | 4.000          |           |
|                |                           |                                         |              | ∑n =                     | 2              | P         |
|                | $\frac{\sum P}{\sum n}$ = | O = Fm (2) Dai                          | ly Hours Exp | osed ==                  |                |           |
|                | Fm x Ta =                 | _ x = Fm (4                             | )            | Equivalent<br>Noise Leve | 490 d 485 d    | BA ((90)) |

| PLANT CONTE<br>OPERATION NEW<br>EMPLOYEES OPEN<br>NOTES | AIVI II, Thek M | un.          | DAILY HOU  42.5 + 24,  TOTAL SAM | 2<br>PLE 66  | TOEC                          | SAMPLE F | RATE .83 &                              |
|---------------------------------------------------------|-----------------|--------------|----------------------------------|--------------|-------------------------------|----------|-----------------------------------------|
| MEASURED<br>SOUND LEVEL<br>dBA                          | 1               | R OF OCCURRE |                                  | occui        | OTAL<br>RRENCES<br>LEVEL<br>n | F        | P=nxF                                   |
| Less than 85                                            |                 |              |                                  |              |                               | 0.       | 0.                                      |
| 85                                                      |                 |              |                                  |              |                               | 0.062    |                                         |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94      |                 |              |                                  | <del> </del> |                               | 0.072    |                                         |
| 87                                                      |                 |              |                                  |              |                               | 0.082    |                                         |
| 88                                                      |                 |              |                                  |              |                               | 0.095    |                                         |
| 89                                                      |                 |              |                                  |              |                               | 0.109    |                                         |
| 90                                                      |                 |              |                                  |              | 2 11 2                        | 0.125    | .250                                    |
| 91                                                      |                 |              |                                  |              | ( )                           | 0.144    | +41,                                    |
| 92                                                      | 111             | 11           |                                  | 2            | 2 4                           | 0.165    | .660                                    |
| 93                                                      | III             | HIIII        |                                  | 3            | 9 12                          | 0.189    | 2.268                                   |
| 94                                                      | MIMMIM          | 1441111      |                                  | 17           | 9 1 26                        | 0.218    | 5.668                                   |
| 95                                                      | MI              | 111          |                                  | 6            | 3 9                           | 0.250    | 2,250                                   |
| 96                                                      | MITHILL         |              |                                  | 13           | 2   15                        | 0.287    | 4.305                                   |
| 97                                                      | 1111            |              |                                  | 4            | 111 5                         | 0.330    | 1,650                                   |
| 98                                                      |                 | 1            |                                  | 1            | 1 2                           | 0.379    | .758                                    |
| 99                                                      |                 |              |                                  |              | ()                            | 0.435    |                                         |
| 100                                                     | )               |              |                                  |              |                               | 0.500    | ,500                                    |
| 101                                                     |                 |              |                                  |              |                               | 0.574    | *************************************** |
| 102                                                     |                 |              |                                  | 1            |                               | 0.660    | .660                                    |
| 103                                                     |                 |              |                                  | 2            | 1 2                           | 0.758    | 1.516                                   |
| 104                                                     |                 |              |                                  |              |                               | 0.871    |                                         |
| 105                                                     |                 |              |                                  | 1            | 1                             | 1.000    | 1.200                                   |
| 106                                                     |                 |              |                                  | 1            | 1                             | 1.149    | 1.149                                   |
| 107                                                     |                 |              |                                  |              |                               | 1.320    |                                         |
| 108                                                     |                 |              |                                  |              |                               | 1.516    |                                         |
| 109                                                     |                 |              |                                  |              | 1                             | 1.741    |                                         |
| 110                                                     |                 |              |                                  | ,            | !                             | 2.000    |                                         |
| 111                                                     |                 |              |                                  |              |                               | 2.297    |                                         |
| 112                                                     |                 |              |                                  |              |                               | 2.639    |                                         |
| 113                                                     |                 |              |                                  |              |                               | 3.031    |                                         |
| 114                                                     |                 |              |                                  |              |                               | 3.482    |                                         |
| 115                                                     |                 |              |                                  |              |                               | 4.000    |                                         |
|                                                         | 2778 = Fm (2)   | ) <u>D</u> : | aily Hours Ex                    |              | 82                            |          | P=22.778                                |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ .

| MEASURED<br>SOUND LEVEL<br>dBA     | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE | 1           | TOTAL<br>CCURRENCES<br>PER LEVEL | F              | P=nxF  |
|------------------------------------|---------------------------------------------------|-------------|----------------------------------|----------------|--------|
|                                    |                                                   |             | n                                |                |        |
| Less than 85                       |                                                   |             |                                  | 0.             | 0.     |
| 85                                 |                                                   |             |                                  | 0.062          |        |
| 86                                 |                                                   |             |                                  | 0.072          |        |
| 87                                 |                                                   |             |                                  | 0.082          |        |
| 88                                 |                                                   |             |                                  | 0.095          |        |
| 89                                 |                                                   |             |                                  | 0,109          |        |
| 90                                 |                                                   |             | 2                                | 0.125          | ,250   |
| 91                                 |                                                   |             |                                  | 0.144          | .144   |
| 92                                 |                                                   |             | 1                                | 0.165          | .165   |
| 93                                 |                                                   |             |                                  | 0.189<br>0.218 | ,436   |
| 94                                 |                                                   |             | +                                | 0.250          |        |
| 95<br>96                           |                                                   |             |                                  | 0.287          | ,250   |
| 97                                 | 1                                                 |             |                                  | 0.330          | 1601   |
| 98                                 |                                                   | <del></del> | 1                                | 0.379          | .379   |
| 99                                 |                                                   | <del></del> |                                  | 0.435          | 1      |
| 100                                |                                                   |             |                                  | 0.500          |        |
| 101                                |                                                   |             | 1                                | 0.574          |        |
| 102                                | N                                                 |             | 2                                | 0.660          | 1.320  |
| 103                                |                                                   |             | 1                                | 0.758          | .758   |
| 104                                |                                                   |             |                                  | 0.871          | . 720  |
| 105                                | 11                                                |             | 2                                | 1.000          | 2,000  |
| 106                                | HHMI                                              |             | 11                               | 1.149          | 12.639 |
| 107                                |                                                   |             | <u></u>                          | 1.320          |        |
| 108                                |                                                   |             |                                  | 1.516          |        |
| 109                                |                                                   |             |                                  | 1.741          |        |
| 110                                |                                                   |             |                                  | 2.000          |        |
| 111                                |                                                   |             |                                  | 2.297          |        |
| 112                                |                                                   |             |                                  | 2.639          |        |
| 113                                |                                                   |             |                                  | 3.031          |        |
| 114                                |                                                   |             |                                  | 3.482          |        |
| 115                                |                                                   |             |                                  | 4.000          |        |
| $\frac{\sum P}{\sum n} = 18.628 =$ | 145  = Fm(2) Daily Sh                             |             | $\ln = 25$ $\sec d = 8$          |                |        |

|                               | PLANT Cut                      | interesce Shop Area         | DATA DATE 9/18 START/STOP  | TIME BY C                     | r. Lee           |           |
|-------------------------------|--------------------------------|-----------------------------|----------------------------|-------------------------------|------------------|-----------|
|                               | EMPLOYEES                      | mismas shap 17 was          | DAILY HOUR                 |                               |                  |           |
|                               |                                |                             |                            |                               |                  |           |
|                               | NOTES                          |                             | TOTAL SAMP                 | LE                            | SAMPLE I         | RATE      |
|                               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENC         |                            | TOTAL OCCURRENCES PER LEVEL n | F                | P=nxF     |
|                               | Less than 85                   |                             |                            |                               | 0.               | 0.        |
|                               | 85                             |                             |                            |                               | 0.062            |           |
| Existing<br>Regulation Cutoff | 86                             |                             |                            |                               | 0.072            |           |
| 5                             | 87                             |                             |                            |                               | 0.082            |           |
| ထူ ပိ                         | 88                             |                             |                            |                               | 0.095            |           |
| H E                           | 89                             |                             |                            |                               | 0.109            |           |
| st                            | 90                             |                             |                            |                               | 0.125            |           |
| at                            | 91                             |                             |                            |                               | 0.144            |           |
| , [5]                         | 92                             |                             |                            |                               | 0.165            |           |
| ĕ                             | 93                             |                             |                            |                               | 0.189            |           |
| ا الــــ                      | 94                             |                             |                            |                               | 0.218            |           |
|                               | 95                             | Everywhere less the         | ~ 85,                      |                               | 0.250            |           |
|                               | 96                             |                             |                            |                               | 0.287            |           |
|                               | 97                             | Su Tape                     |                            |                               | 0.330            |           |
|                               | 98                             |                             |                            |                               | 0.379            |           |
|                               | 99                             |                             |                            |                               | 0.435            |           |
| i                             | 100                            |                             |                            |                               | 0.500            |           |
|                               | 101                            |                             |                            |                               | 0.574            |           |
|                               | 102                            |                             |                            |                               | 0.660            |           |
| ı                             | 103                            |                             |                            |                               | 0.758            |           |
| 1                             | 104                            |                             |                            |                               | 0.871            |           |
|                               | 105                            |                             |                            |                               | 1.000            |           |
|                               | 106                            |                             |                            |                               | 1.149            |           |
|                               | 107                            |                             |                            |                               | 1.320            |           |
| - 1                           | 108                            |                             |                            |                               | 1.516            |           |
|                               | 109                            |                             |                            |                               | 1.741            |           |
|                               | 110                            |                             |                            |                               | 2.000            |           |
|                               | 111                            |                             |                            |                               | 2.297            |           |
|                               | 112                            |                             |                            |                               | 2.639            |           |
|                               | 113                            |                             |                            |                               | 3.031            |           |
| 1                             | 114                            |                             |                            |                               | 3.482<br>4.000   |           |
| 1                             | 115                            |                             |                            |                               | 4.000            |           |
|                               | J                              |                             |                            | $\sum_{n} =$                  |                  | P         |
|                               | $\frac{\sum u}{\sum b}$ =      | O = Fm (2) Dai              | ly Hours Exp<br>Shift Time | osed = =                      | = '.             | Га (3)    |
|                               | Fm x Ta =                      | x = Fm (4)                  | )                          | Equivalent<br>Noise Leve      | 1 <u>49</u> 0 ai | BA ((90)) |
|                               |                                |                             |                            |                               | <25 di           | BA ((85)) |
|                               |                                |                             | Г <i>(</i> т –             | .85) /5]                      |                  |           |
|                               | $L = 16.61 \log$               | $(16F) + 85.$ $F = 1/T_p =$ | $(1/16)2^{(1/16)}$         | •                             | d1               | BA ((80)) |
|                               | · ·                            | β                           | •                          | -                             |                  | ßS        |

| OPERATION L.f.                 | truck Cycle-planer infeed START/S<br>Y. PZ, planer or feed Lift DAILY H | 129/80 BY L<br>TOP TIME<br>OURS EXPOSED |          |           |
|--------------------------------|-------------------------------------------------------------------------|-----------------------------------------|----------|-----------|
| NOTES                          | TOTAL S                                                                 | AMPLE 365 Sec.                          | SAMPLE H | RATE 5 Au |
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE)                         | TOTAL OCCURRENCES PER LEVEL n           | F        | P=nxF     |
| Less than 85                   | HHMMIII                                                                 | 19                                      | 0.       | 0.        |
| 85                             | NII                                                                     | 5                                       | 0.062    | .31       |
| 86                             | 1111                                                                    | 6                                       | 0.072    | .432      |
| 87                             |                                                                         | 4                                       | 0.082    | .328      |
| 88                             | MINI                                                                    | 8                                       | 0.095    | ,760      |
| 89                             | THAI                                                                    | 6                                       | 0,109    | 1654      |
| 90                             | MMII                                                                    | 12                                      | 0.125    | 1.500     |
| 91                             |                                                                         | 3                                       | 0.144    | .432.     |
| 92                             | MAI                                                                     | 6                                       | 0.165    | 1990      |
| 93                             |                                                                         | 3                                       | 0.189    | .567      |
| 94                             |                                                                         | 2                                       | 0.218    | .436      |
| 95                             |                                                                         |                                         | 0.250    |           |
| 96                             |                                                                         |                                         | 0.287    |           |
| 97                             |                                                                         |                                         | 0.330    |           |
| 98                             |                                                                         |                                         | 0.379    |           |
| 99                             |                                                                         |                                         | 0.435    |           |
| 100                            |                                                                         |                                         | 0.500    |           |
| 101                            |                                                                         |                                         | 0.574    |           |
| 102                            |                                                                         |                                         | 0.660    |           |
| 103                            |                                                                         |                                         | 0.758    |           |
| 104                            |                                                                         |                                         | 0.871    |           |
| 105                            |                                                                         |                                         | 1.000    |           |
| 106                            |                                                                         |                                         | 1.149    |           |
| 107                            |                                                                         |                                         | 1.320    |           |
| 108                            |                                                                         |                                         | 1.516    |           |
| 109                            |                                                                         |                                         | 1.741    |           |
| 110                            |                                                                         |                                         | 2.000    |           |
| 111                            |                                                                         |                                         | 2.297    |           |
| 112                            |                                                                         |                                         | 2.639    |           |
| 113                            |                                                                         |                                         | 3.031    |           |
| 114                            |                                                                         |                                         | 3.482    |           |
| 115                            |                                                                         |                                         | 4.000    |           |

Existing

 $\sum P = 3.925 = 0.0530 = Fm (2)$   $\sum Daily Hours Exposed = 0.0530 = Fm (2)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3)$   $\sum Daily Hours Exposed = 0.0530 = Ta (3$ 

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

B6

87.4 dBA ((85))

|                     | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.       | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.062    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.125    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.144    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.165    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.189    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.218    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.250    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.287    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.330    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.379    | .758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (1)\                | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.435    | 1740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 144                 | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.500    | 2,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| II MITHUI           | 2 1 12 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.574    | 8,610.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| II HTHII            | 3 12 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 9.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I WIMI WINNINI      | 1 11 16 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 21.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| III JAMMAN I TANIII | 4 22 9 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 30.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| III MIII THU        | 3 7 6 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 16.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | The second secon |          | 31.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I IN                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1.6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MM III              | 11 3 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 21.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 111111 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 0.144   0.165   0.189   0.218   0.250   0.287   0.330   0.330   0.330   0.435   0.435   0.435   0.500   0.574   0.435   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.574   0.57 |

|     | OPERATION 101<br>EMPLOYEES P3  | plane, infeed sp. DAILY HO                         | OURS EXPOSED                  |          |                                       |
|-----|--------------------------------|----------------------------------------------------|-------------------------------|----------|---------------------------------------|
|     | NOTES                          | TOTAL SA                                           | IMPLE 245 ALC.                | SAMPLE F | RATE 2.5 2                            |
|     | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES<br>(ONE MAKK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF                                 |
|     | Less than 85                   | 11//                                               | 4                             | 0.       | 0.                                    |
| , t | 85                             | MIMIN                                              | 12                            | 0.062    | .744                                  |
| 11  | 86                             | 141111                                             | 10                            | 0.072    | .720                                  |
| П   | 87                             | MILMANIII                                          | 18                            | 0.082    | 1,476                                 |
| П   | 88                             | LH HILLY                                           | 15                            | 0.095    | 1.425                                 |
|     | 89                             | MATH!                                              | 13                            | 0.109    | 1.417                                 |
| Π   | 90                             | HILLI                                              | 12                            | 0.125    | 1.500                                 |
| Ш   | 91                             | M                                                  | 5                             | 0.144    | ,720                                  |
| П   | 92                             | MI                                                 | 6                             | 0.165    | 1990                                  |
| 11  | 93                             |                                                    |                               | 0.189    |                                       |
| 1   | 94                             |                                                    |                               | 0.218    |                                       |
| 1   | 95                             |                                                    |                               | 0.250    |                                       |
| ı   | 96                             |                                                    |                               | 0.287    | ,187                                  |
| ŀ   | 97                             |                                                    |                               | 0.330    | 750                                   |
| ŀ   | 98                             |                                                    | 2                             | 0.379    | ,758                                  |
| ŀ   | 99                             |                                                    |                               | 0.435    |                                       |
| ŀ   | 100                            |                                                    |                               | 0.500    |                                       |
| ŀ   | 101                            |                                                    |                               | 0.660    |                                       |
| ŀ   | 102                            |                                                    |                               | 0.758    | 1660                                  |
| ŀ   | 103                            |                                                    |                               | 0.755    |                                       |
| ŀ   | 105                            |                                                    |                               | 1.000    |                                       |
| ŀ   | 106                            |                                                    |                               | 1.149    |                                       |
|     | 107                            |                                                    |                               | 1.320    |                                       |
| ŀ   | 108                            |                                                    |                               | 1.516    |                                       |
| ł   | 109                            |                                                    |                               | 1.741    |                                       |
| ł   | 110                            |                                                    |                               | 2.000    |                                       |
| ł   | 111                            |                                                    |                               | 2.297    |                                       |
| ł   | 112                            |                                                    |                               | 2,639    |                                       |
| ł   | 113                            |                                                    |                               | 3.031    |                                       |
|     | 114                            |                                                    |                               | 3.482    | h                                     |
| ŀ   | 115                            |                                                    |                               | 4.000    | · · · · · · · · · · · · · · · · · · · |

$$\sum n = \frac{99}{99} \qquad \sum P = \frac{4.915}{10.697}$$
 (1)
$$\sum n = \frac{99}{99} \qquad \sum P = \frac{4.915}{10.697}$$
 (1)
$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697}$$
 (1)
$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697}$$
 (1)
$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697}$$
 (1)
$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697}$$
 (1)
$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697}$$
 (1)
$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697} \qquad (1)$$

$$\sum n = \frac{99}{10.697} \qquad \sum P = \frac{4.915}{10.697}$$

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

BB

| OCCURRENCES PER LEVEL | F                                     | n                                                                                                                                                                                                                                                   |
|-----------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| n [                   |                                       | P=nxF                                                                                                                                                                                                                                               |
|                       | 0.                                    | 0.                                                                                                                                                                                                                                                  |
|                       | 0.062                                 |                                                                                                                                                                                                                                                     |
|                       | 0.072                                 |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       |                                       | 1192                                                                                                                                                                                                                                                |
|                       |                                       | 189                                                                                                                                                                                                                                                 |
|                       |                                       | 2.834                                                                                                                                                                                                                                               |
|                       |                                       | 6.888                                                                                                                                                                                                                                               |
|                       |                                       | 5,280                                                                                                                                                                                                                                               |
|                       |                                       | 4.548                                                                                                                                                                                                                                               |
|                       |                                       | 1.305                                                                                                                                                                                                                                               |
|                       |                                       | 3,500                                                                                                                                                                                                                                               |
|                       |                                       | 3,305                                                                                                                                                                                                                                               |
| 1 1 1 1 1             |                                       | .650                                                                                                                                                                                                                                                |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       | 0.871                                 | .871                                                                                                                                                                                                                                                |
|                       | 1.000                                 |                                                                                                                                                                                                                                                     |
|                       | 1.149                                 |                                                                                                                                                                                                                                                     |
|                       | 1.320                                 |                                                                                                                                                                                                                                                     |
|                       | 1.516                                 |                                                                                                                                                                                                                                                     |
|                       | 1.741                                 |                                                                                                                                                                                                                                                     |
|                       | 2.000                                 |                                                                                                                                                                                                                                                     |
|                       | 2.297                                 |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
|                       |                                       |                                                                                                                                                                                                                                                     |
| 1 / 1                 | a (1()()                              | 1                                                                                                                                                                                                                                                   |
|                       | 1   1   1   1   1   1   1   1   1   1 | 0.062 0.072 0.082 0.095 0.109 0.125 0.144 0.165 0.144 0.165 0.189 1 0.189 1 1 0.189 1 1 0.218 7 0 7 0.250 13 11 24 0.287 5 11 16 0.330 6 4 12 0.379 2 1 3 0.435 6 1 7 0.500 0.574 1 0.660 0.758 1 1 0.871 1 0.000 1 1.149 1 320 1 516 1 741 2 0.000 |

| PLANT_<br>OPERATI<br>EMPLOYE<br>NOTES | ON Plus N<br>ES Py ille | unning but not cutting, | DATA DATE 2/20 START/STOP DAILY HOUR | TIME<br>S EXPOSED             | ce/ Dudle |                          |
|---------------------------------------|-------------------------|-------------------------|--------------------------------------|-------------------------------|-----------|--------------------------|
| NOTES                                 |                         |                         | TOTAL SAMP                           | LE 36,7 Sec.                  | SAMPLE I  | CATE 1.61 SC             |
| MEASU<br>SOUND<br>dBA                 | LEVEL                   | NUMBER OF OCCURRENC     |                                      | TOTAL OCCURRENCES PER LEVEL n | F         | P=nxF                    |
| Less th                               | an 85                   |                         |                                      |                               | 0.        | 0.                       |
| - 8                                   |                         |                         |                                      |                               | 0.062     |                          |
| 4 8                                   |                         | 1                       |                                      | 6                             | 0.072     | . 432210                 |
| Regulation Cutoff                     |                         | 71-1                    |                                      | 10                            | 0.082     | 82000                    |
| 8 50                                  |                         |                         |                                      | 5                             | 0.095     | 1475-70                  |
| 8                                     |                         |                         |                                      | 2                             | 0.109     | 12187                    |
| 9                                     | 0                       |                         |                                      |                               | 0.125     |                          |
| 9                                     | 1                       |                         |                                      |                               | 0.144     |                          |
| 9                                     | 2                       |                         |                                      |                               | 0.165     |                          |
| 9                                     | 3                       |                         |                                      |                               | 0.189     |                          |
| <u>م</u>                              | 4                       |                         |                                      |                               | 0.218     |                          |
| 9                                     | 5                       |                         |                                      |                               | 0.250     |                          |
| 9                                     | 6                       |                         |                                      |                               | 0.287     |                          |
| 9                                     | 7                       |                         |                                      |                               | 0.330     |                          |
| 9                                     | 8                       |                         |                                      |                               | 0.379     |                          |
| 9                                     | 9                       |                         |                                      |                               | 0.435     |                          |
| 10                                    | 0                       |                         |                                      |                               | 0.500     |                          |
| 10                                    | 1                       |                         |                                      |                               | 0.574     |                          |
| 10                                    | 2                       |                         |                                      |                               | 0.660     |                          |
| 10                                    | 3                       |                         |                                      |                               | 0.758     |                          |
| 10                                    | 4                       |                         |                                      |                               | 0.871     |                          |
| 10                                    | 5                       | <u> </u>                |                                      |                               | 1.000     |                          |
| 10                                    |                         |                         |                                      |                               | 1.149     |                          |
| 10                                    | 7                       |                         |                                      |                               | 1.320     |                          |
| 10                                    |                         |                         |                                      |                               | 1.516     |                          |
| 10                                    | 9                       |                         |                                      |                               | 1.741     |                          |
| 11                                    | 0                       |                         |                                      |                               | 2.000     |                          |
| 11                                    |                         |                         |                                      |                               | 2.297     |                          |
| 11                                    |                         |                         |                                      |                               | 2.639     |                          |
| 11                                    |                         |                         |                                      |                               | 3.031     |                          |
| 11                                    |                         |                         |                                      |                               | 3.482     |                          |
| 11                                    | 5                       |                         |                                      |                               | 4.000     |                          |
| ΣΡ                                    | 0 = 12                  | ≠ Fm (2)                | v Hours Exp                          | $\sum_{n = 23}^{23}$          |           | P = 0<br>1.945<br>Ta (3) |

| _                                                                                                                             | = 23                      | ∑P       | 1,945  | (1) |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|--------|-----|
| $\frac{\sum P}{\sum n} = \frac{O}{23} = \frac{O}{0.846} = Fm (2) \qquad \frac{\text{Daily Hours Exposed}}{\text{Shift Time}}$ | 8 -                       | = Ta     | (3)    |     |
| rm x 1a = x = rm (4)                                                                                                          | Equivalent<br>Noise Level | 290 dBA  | ((90)) | (5) |
| plane: sheet 2 of 2 hate not used, shows lower leads. [(L-85)/                                                                | /5]                       | 87.2 dBA | ((85)) |     |
| $L = 16.61 \log (16F) + 85.$ $F = 1/T_p = (1/16)2^{(L-85)/2}$                                                                 | •                         |          | BIC    | )   |

BII

# EQUIVALENT NOISE EXPOSURE DATA SHEET

| NOTES                                              | TOTAL S.                                        | AMPLE 16.66 Sec.      | SAMPLE | RATE_0.83 S  |
|----------------------------------------------------|-------------------------------------------------|-----------------------|--------|--------------|
| MEASURED<br>SOUND LEVEL<br>dBA                     | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | OCCURRENCES PER LEVEL | F      | P=nxF        |
| Less than 85                                       |                                                 |                       | 0.     | 0.           |
| - 85                                               |                                                 |                       | 0.062  |              |
| 86<br>87<br>88<br>88<br>89<br>90<br>91<br>92<br>93 |                                                 |                       | 0.072  |              |
| 87                                                 |                                                 |                       | 0.082  |              |
| 88                                                 |                                                 |                       | 0.095  |              |
| 89                                                 |                                                 |                       | 0.109  |              |
| 90                                                 |                                                 | 1                     | 0.125  |              |
| 91                                                 | 11.1                                            | 3 3                   | 0.144  | .432         |
| 92                                                 | I MIII                                          | 1 8 9                 | 0.165  | 1,485        |
| 93                                                 | IM MIMIM                                        | 1 5 13 19             | 0.189  | 3.591        |
| 94                                                 | HA III MIN WHATIII                              | 9 7 19 35             | 0.218  | 7.630        |
| 95                                                 | III MAI III                                     | 46 8 118              | 0.250  | 4.500        |
| 96                                                 | THI 11 11                                       | 72.9                  | 0.287  | 2.583        |
| 97                                                 | 1                                               | 1 1                   | 0.330  | .330         |
| 98                                                 |                                                 | 1                     | 0.379  |              |
| 99                                                 |                                                 |                       | 0.435  |              |
| 100                                                |                                                 | A00'L                 | 0.500  |              |
| 101                                                |                                                 | FIRST                 | 0.574  |              |
| 102                                                |                                                 | RVA                   | 0.660  |              |
| 103                                                |                                                 | DATA                  | 0.758  |              |
| 104                                                |                                                 |                       | 0.871  |              |
| 105                                                |                                                 | '1                    | 1.000  |              |
| 106                                                |                                                 |                       | 1.149  |              |
| 107                                                |                                                 |                       | 1.320  | <del></del>  |
| 108                                                |                                                 |                       | 1.516  | <del> </del> |
| 109                                                |                                                 |                       | 2.000  | <del> </del> |
| 110                                                |                                                 |                       | 2.297  | <del> </del> |
| 111                                                |                                                 |                       | 2.639  |              |
| 113                                                |                                                 |                       | 3.031  | <del> </del> |
| 114                                                |                                                 | <del></del>           | 3.482  | <del> </del> |
| 115                                                |                                                 |                       | 4.000  |              |
|                                                    |                                                 | Σn = 94               |        | P=20.551     |
| $\frac{\sum P}{\sum n} = 20,55/=$                  | 2186 = Fm (2) Daily Hours Shift Ti              |                       |        |              |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ .

| 1                         | NOTES                                       | , grader chains off       | DAILY HOURS                |                          | SAMPLE I       | RATE      |
|---------------------------|---------------------------------------------|---------------------------|----------------------------|--------------------------|----------------|-----------|
|                           | MEASURED<br>SOUND LEVEL<br>dBA              | NUMBER OF OCCURRENC       |                            | OCCURRENCES PER LEVEL n  | F              | P=nxF     |
|                           | Less than 85                                |                           |                            |                          | 0.             | 0.        |
|                           | 85                                          |                           |                            |                          | 0.062          |           |
| £ E                       | 86                                          |                           |                            |                          | 0.072          |           |
| Existing<br>Jation Cutoff | 87                                          |                           |                            |                          | 0.082          |           |
| ည် ည                      | 88                                          |                           |                            |                          | 0.095          |           |
| Hö tř                     | 89                                          |                           |                            |                          | 0.109          |           |
| 1s<br>ti                  | 90                                          |                           |                            |                          | 0.125          |           |
| Ex<br>1a                  | 91                                          |                           |                            |                          | 0.144          |           |
| Existi                    | 92<br>93                                    |                           |                            |                          | 0.165          |           |
| Re                        | 94                                          |                           | ·                          |                          | 0.189<br>0.218 | I         |
|                           | 95                                          |                           |                            |                          | 0.210          |           |
|                           | 96                                          | Less than 90.             |                            |                          | 0.287          |           |
|                           | 97                                          |                           |                            |                          | 0.330          |           |
|                           | 98                                          | Less than BS              |                            |                          | 0.379          |           |
|                           | 99                                          |                           |                            |                          | 0.435          | i         |
| - 1                       | 100                                         | C                         |                            |                          | 0.500          |           |
|                           | 101                                         | See tape.                 |                            |                          | 0.574          |           |
| 1                         | 102                                         |                           | 34                         |                          | 0.660          |           |
|                           | 103                                         |                           |                            |                          | 0.758          |           |
| - 1                       | 104                                         |                           |                            |                          | 0.871          |           |
| - 1                       | 105                                         |                           |                            |                          | 1.000          |           |
|                           | 106                                         |                           |                            |                          | 1.149          |           |
|                           | 107                                         |                           |                            |                          | 1.320          |           |
| 1                         | 108                                         |                           |                            |                          | 1.516          |           |
|                           | 109                                         |                           |                            |                          | 1.741          |           |
| 1                         | 110                                         |                           |                            |                          | 2.000          |           |
|                           | 112                                         |                           |                            |                          | 2.639          |           |
|                           | 113                                         |                           |                            |                          | 3.031          |           |
|                           | 114                                         |                           |                            |                          | 3.482          |           |
|                           | 115                                         |                           |                            |                          | 4.000          |           |
| 1                         | <u> </u>                                    |                           |                            | ∑n =                     |                | P _       |
|                           | $\frac{\sum \mathbf{p}}{\sum \mathbf{p}} =$ | > = Fm (2) <u>Dail</u>    | y Hours Expo<br>Shift Time | osed = =                 | = 7            | Га (3)    |
|                           | Fm x Ta =                                   | _ x = = Fm (4)            |                            | Equivalent<br>Noise Leve | 1 1-90 di      | BA ((90)) |
|                           |                                             |                           | _                          | 7                        | ∠ b ) dF       | BA ((85)) |
|                           | I = 16 61 1a-                               | (16F) + 85 F = 1/m        | (1/16) 2 [(L-8             | 85)/5]                   |                |           |
|                           | $L = 16.61 \log$                            | (16F) + 85. $F = 1/T_p =$ | (1/16)25                   | •                        |                | BIZ       |

313

<u>∠85</u> dBA ((85))

| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL SAM                             | PLE = 64 sec                                     | SAMPLE RATE N. |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|----------------|-------------|
| MEASURED SOUND LEVEL ONE MARK PER OF OCCURRENCE |                                       | TOTAL OCCURRENCES PER LEVEL n                    | F              | P=nxF       |
| Less than 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                  | 0.             | 0.          |
| 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  | 0.062          |             |
| 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  | 0.072          |             |
| 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  | 0.082          |             |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  | 0.095          |             |
| 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  | 0.109          |             |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |                                                  | 0.125          |             |
| 91<br>92 EVERYWHERE PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s than 93                             |                                                  | 0.144          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 Man 13                             | _                                                | 0.165          |             |
| 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  | 0.189          |             |
| 95 VENIGALLY USS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | than 84                               |                                                  | 0.218          |             |
| 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thur DI                               |                                                  | 0.230          |             |
| ^7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | <del>                                     </del> | 0.330          | <del></del> |
| 98 See tyc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                  | 0.379          |             |
| 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                  | 0.435          |             |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 0.500          |             |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 0.574          |             |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 0.660          |             |
| 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 0.758          |             |
| 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 0.871          |             |
| 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 1.000          |             |
| 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 1.149          |             |
| 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 1.320          |             |
| 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | <del> </del>                                     | 1.516          |             |
| 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  | 2.000          |             |
| 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | <del></del>                                      | 2.297          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                  |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 1                                                |                |             |
| 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                  |                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                  |                |             |
| 112<br>113<br>114<br>115<br>Fm x Ta = x = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                  |                |             |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

|                   | MEASURED                             | NUMBER OF OC   |                 | TO                                               | TAL RENCES |                  |              |
|-------------------|--------------------------------------|----------------|-----------------|--------------------------------------------------|------------|------------------|--------------|
|                   | SOUND LE <b>V</b> EL<br>dBA          | (ONE MARK PER  |                 | PER                                              | LEVEL<br>n | F                | P=nxF        |
|                   | Less than 85                         |                |                 |                                                  |            | 0.               | 0.           |
| . 7               | 85                                   |                |                 |                                                  |            | 0.062            |              |
| Regulation Cutoff | 86                                   |                |                 |                                                  |            | 0.072            |              |
| ļţ,               | 87                                   |                |                 |                                                  |            | 0.082            |              |
| ટ                 | 88                                   |                |                 |                                                  |            | 0.095            |              |
| E -               | 89                                   |                |                 |                                                  |            | 0.109            |              |
| ij                | 90                                   |                |                 | <del> </del>                                     |            | 0.125            | ļ            |
| la                | 91                                   |                |                 | ļ                                                |            | 0.144            |              |
| gn                | 92                                   |                |                 | ļ                                                |            | 0.165            |              |
| Re                | 93                                   |                |                 | <del></del>                                      |            | 0.189            | ļ            |
|                   | 94<br>95                             | <u> </u>       |                 |                                                  |            | 0.218            | <del> </del> |
|                   | 96                                   |                |                 | <del> </del>                                     |            | 0.230            | <del></del>  |
|                   | 97                                   |                |                 | <del> </del>                                     |            | 0.330            |              |
|                   | 98                                   |                |                 |                                                  |            | 0.379            | <del> </del> |
|                   | 99                                   |                |                 | <del>                                     </del> | T          | 0.435            | <del> </del> |
|                   | 100                                  |                |                 |                                                  | 1          | 0.500            | <del> </del> |
|                   | 101                                  |                |                 | -                                                |            | 0.574            |              |
|                   | 102                                  |                |                 |                                                  |            | 0.660            |              |
|                   | 103                                  |                |                 | <del></del>                                      |            | 0.758            |              |
|                   | 104                                  |                |                 |                                                  |            | 0.871            |              |
|                   | 105                                  |                |                 |                                                  |            | 1.000            |              |
|                   | 106                                  |                |                 |                                                  |            | 1.149            | 1.149        |
|                   | 107                                  |                |                 |                                                  |            | 1.320            |              |
|                   | 108                                  | []/            |                 | 3                                                | 3          | 1.516            | 4.548        |
|                   | 109                                  |                |                 | 14                                               | 4 18       | 1.741            | 31.338       |
|                   | 110                                  | MMMMMINI       | 111             | 27                                               | 7 34       | 2.000            | 68.000       |
|                   | 111                                  | IIII           | MINIM WINIMIN   |                                                  | 33 37      | 2.297            | 84.989       |
|                   | 112                                  |                | HUM WHAMM       | 3                                                | 48 51      | 2.639            |              |
|                   | 113                                  |                | itenten men     |                                                  | 30 30      | 3.031            | 91.93        |
|                   | 114                                  | [N             | <u> </u>        |                                                  | 07 1       | 3.482            | 24.374       |
|                   | 115                                  |                |                 |                                                  |            | 4.000            |              |
|                   |                                      | }              | ,               | $\sum_{n}$ =                                     | 181        | 2                | P=439.91     |
|                   | $\frac{\sum P}{\sum n} = 439917 = 1$ | 2.430 = Fm (2) | Daily Hours Exp | osed =                                           | = =        | =                | Ta (3)       |
|                   |                                      |                |                 | _ Ea                                             | uivalent   |                  |              |
|                   | Fm x Ta =                            | _ x = =        | Fm (4)          | No                                               | ise Leve.  | 1 <u>///,4</u> d | BA ((90))    |
|                   |                                      |                |                 |                                                  | 1          | •                | BA ((85))    |

101.3 dBA ((85))

BIS

## EQUIVALENT NOISE EXPOSURE DATA SHEET

|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                | RATE 1.67 & |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|-------------|
| MEASURED<br>SOUND LEVEL<br>dBA               | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOTAL OCCURRENCES PER LEVEL n | F              | P=nxF       |
| Less than 85                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.             | 0.          |
| 85                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.062          |             |
| 86                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.072          |             |
| 87                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.082          |             |
| 88                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.095          |             |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.109          |             |
| 90                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.125          |             |
| 91                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.144          |             |
| 92                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.165<br>0.189 |             |
| 93                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                             | 0.189          | ,436        |
| 94                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.250          | 1436        |
| 96                                           | MIRII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                             | 0.287          | 3.157       |
| 97                                           | [H+]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                            | 0.330          | 1,980       |
| 98                                           | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                            | 0.379          | 3.740       |
| 99                                           | 1411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                             | 0.435          | 2.61        |
| 100                                          | MIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                            | 0.500          | 6.00        |
| 101                                          | MININ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                            | 0.574          | 6.888       |
| 102                                          | THE NOTICE OF THE PARTY OF THE | 16                            | 0.660          | 10.54       |
| 103                                          | MIMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                            | 0.758          | 8.538       |
| 104                                          | MINIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iù                            | 0.871          | 12,114      |
| 105                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                             | 1.000          | 4.61        |
| 106                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                             | 1.149          | 1.149       |
| 107                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 1.320          |             |
| 108                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                             | 1.516          | 3,032       |
| 109                                          | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | 1.741          |             |
| 110                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 2.000          |             |
| 111                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 2.297          |             |
| 112                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 2.639          |             |
| 113                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 3.031          |             |
| 114                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 3.482          |             |
| 115                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 4.000          |             |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

| AL ENCES F P=nxF  O. O |
|------------------------------------------------------------|
| 0. 0.<br>0.062<br>0.072<br>0.082<br>0.095<br>0.109         |
| 0.062<br>0.072<br>0.082<br>0.095<br>0.109                  |
| 0.082<br>0.095<br>0.109                                    |
| 0.095<br>0.109                                             |
| 0,109                                                      |
|                                                            |
| 0.125                                                      |
| 0.123                                                      |
| 0.144                                                      |
| 0.165                                                      |
| 0.189   . 89                                               |
| 0.218 4.142                                                |
| 0.250 6.250                                                |
| 0.287 7.115                                                |
| 0.330 330                                                  |
| 0.379 .758                                                 |
| 0.435 .435                                                 |
| 0.500                                                      |
| 0.574                                                      |
| 0.660                                                      |
| 0.738                                                      |
| 1.000                                                      |
| 1.149                                                      |
| 1.320                                                      |
| 1.516                                                      |
| 1.741                                                      |
| 2.000                                                      |
| 2.297                                                      |
| 2.639                                                      |
| 3.031                                                      |
| 3.482                                                      |
| 4.000                                                      |
|                                                            |

PLANT Continental Forest and DATA 2/20/80 BY Lee Dydle, OPERATION IDEE- SANS FROM MARIOHT GOINGSTART/STOP TIME

EMPLOYEES P. Mill Trim San of., P7 DAILY HOURS EXPOSED

|                               | NOTES                          | TOTAL SAM                                          | PLE 47.5 Sec                  | SAMPLE H | RATE 0.83 AC |
|-------------------------------|--------------------------------|----------------------------------------------------|-------------------------------|----------|--------------|
|                               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF        |
|                               | Less than 85                   |                                                    |                               | 0.       | 0.           |
| 7                             | 85                             |                                                    |                               | 0.062    |              |
| ff                            | 86                             |                                                    |                               | 0.072    |              |
| to                            | 87                             |                                                    |                               | 0.082    |              |
| ည်း                           | 88                             | MUMMINIMUM IN                                      | 30                            | 0.095    | 2.85         |
| 뒤드                            | 89                             | MI WITH M                                          | 20                            | 0,109    | 2.18         |
| Existing<br>Regulation Cutoff | 90                             | THI                                                | 6                             | 0.125    | .15          |
| x1                            | 91                             |                                                    | 2                             | 0.144    | .288         |
|                               | 92                             |                                                    |                               | 0.165    |              |
| 68                            | 93                             |                                                    |                               | 0.189    |              |
| الم                           | 94                             |                                                    |                               | 0.218    |              |
|                               | 95                             |                                                    |                               | 0.250    |              |
|                               | 96                             |                                                    |                               | 0.287    |              |
|                               | 97                             |                                                    |                               | 0.330    |              |
|                               | 98                             |                                                    |                               | 0.379    |              |
|                               | 99                             |                                                    |                               | 0.435    |              |
|                               | 100                            |                                                    |                               | 0.500    |              |
|                               | 101                            |                                                    |                               | 0.574    |              |
|                               | 102                            |                                                    |                               | 0.660    |              |
|                               | 103                            |                                                    |                               | 0.758    |              |
|                               | 104                            |                                                    |                               | 0.871    |              |
|                               | 105                            |                                                    |                               | 1.000    |              |
|                               | 106                            |                                                    |                               | 1.149    |              |
|                               | 107                            |                                                    |                               | 1.320    |              |
|                               | 108                            |                                                    |                               | 1.516    |              |
|                               | 109                            |                                                    |                               | 1.741    |              |
|                               | 110                            |                                                    |                               | 2.000    |              |
|                               | 111                            |                                                    |                               | 2.297    |              |
|                               | 112                            |                                                    |                               | 2.639    |              |
|                               | 113                            |                                                    |                               | 3.031    |              |
|                               | 114                            |                                                    |                               | 3.482    |              |
|                               | 115                            |                                                    |                               | 4.000    |              |
|                               |                                |                                                    |                               |          |              |

| _                       |       | 10       |     |                         | $\sum n = \frac{58}{}$ | 3   | $\sum P = 1.03$ | _ |
|-------------------------|-------|----------|-----|-------------------------|------------------------|-----|-----------------|---|
| $\frac{\sum P}{\sum n}$ | 1.038 | .0179 Fm | (2) | Daily Hours<br>Shift Ti |                        | 8 - | = Ta (3)        | 8 |
|                         | *     | 1016     |     |                         | 77                     | 1   |                 |   |

Fm x Ta =  $x = \frac{1}{2} =$ 

 $L = 16.61 \log (16F) + 85.$   $F = 1/T_p = (1/16)2^{(L-85)/5}$ 

B17

| MEASURED<br>SOUND LEVEL<br>dBA         | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE)                | TOTAL<br>OCCURRENCES<br>PER LEVEL                                  | F     | P=nxF                          |
|----------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-------|--------------------------------|
| Less than 85                           |                                                                | <del>- </del>                                                      | 0.    | 0.                             |
|                                        |                                                                |                                                                    | 0.062 |                                |
| 85<br>86<br>87<br>88<br>89<br>90<br>91 |                                                                |                                                                    | 0.072 |                                |
| 87                                     |                                                                |                                                                    | 0.082 |                                |
| 88                                     |                                                                |                                                                    | 0.095 | 2                              |
| 89                                     |                                                                | 2 1 3                                                              | 0.109 | :32                            |
| 90<br>91<br>92<br>93                   | HU 111                                                         | 5 3 8                                                              | 0.125 | 1.000                          |
| 91                                     | MI - IMII                                                      | 5 8 13                                                             | 0.144 | 1.872                          |
| 92                                     | MIMIMIMIM III IMIMIMIMI                                        | 19 23 42                                                           | 0.165 | 6.93                           |
| 93                                     | MHI LATHIMMINIMI                                               | 12 31 43                                                           | 0.189 | 8.127                          |
| 94                                     | MAN MANAMAN MAN                                                | 11 42 53                                                           | 0.218 | 11.554                         |
| . 95                                   | III \MMMMMIMIMI                                                | 3 31 34                                                            | 0.250 | 8.5                            |
| 96                                     | III (MUMUHII                                                   | 4 17 21                                                            | 0.287 | 6.627                          |
| 97                                     | (M)                                                            | 6 6                                                                | 0.330 | 1.980                          |
| 98                                     | /H/II                                                          | 1 17                                                               | 0.379 | 2.653                          |
| 99                                     | / / / / / / / / / / / / / / / / / / / /                        | 1 5 6                                                              | 0.435 | 2.61                           |
| 100                                    | 1 / MIII                                                       | 1 8 9                                                              | 0.500 | 4,500                          |
| 101                                    |                                                                | 1 1 2                                                              | 0.574 | 1.148                          |
| 102                                    |                                                                |                                                                    | 0.660 | .660                           |
| 103                                    | /                                                              |                                                                    | 0.758 |                                |
| 104                                    |                                                                |                                                                    | 0.871 |                                |
| 105                                    |                                                                |                                                                    | 1.000 |                                |
| 106                                    |                                                                |                                                                    | 1.320 | <del></del>                    |
| 107                                    |                                                                |                                                                    | 1.516 |                                |
| 108                                    |                                                                |                                                                    | 1.741 |                                |
|                                        |                                                                |                                                                    | 2.000 | <del></del>                    |
| 110                                    |                                                                |                                                                    | 2.297 | <del></del>                    |
| 1112                                   |                                                                |                                                                    | 2.639 |                                |
| 113                                    |                                                                |                                                                    | 3.031 | <u> </u>                       |
| 114                                    |                                                                |                                                                    | 3.482 |                                |
| 115                                    |                                                                | <del>-      </del>                                                 | 4.000 |                                |
|                                        | 223 = Fm (2) <u>Daily Hours E</u><br>Shift Tim<br>x = = Fm (4) | $\sum_{n} = \frac{64}{248}$ Exposed = = = 8  Equivalent Noise Leve | = '   | \$P_57.56<br>\$7.888<br>Ta (3) |

|                               |                                                           | EQUIVALENT NOTSE EAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                     |                |          |                    |              |
|-------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------|----------|--------------------|--------------|
|                               | PLANT Conti                                               | nut Fout Ind. DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ATA<br>ATE Z-29-       | -80 B               | sy Lee         | _        |                    |              |
|                               | OPERATION 10                                              | ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE LANGE              | T TITL              |                |          |                    |              |
|                               | EMPLOYEES P. M                                            | Il puller marest trim saw DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AILY HOURS             | EXPOSED             |                |          |                    | ŀ            |
|                               | NOTES                                                     | TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OTAL SAMPI             |                     | ۶,۲            | SAMPLE F | RATE 0.83 SC       | ۲            |
| 1                             | MEASURED                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | TOTAL               |                |          |                    |              |
|                               | SOUND LEVEL                                               | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -\                     | OCCURRENCE PER LEVE |                | F        | P=nxF              | } !          |
|                               | dBA                                                       | ONE MARK PER OCCURRENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ٤)                     |                     |                |          |                    | } !          |
|                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | n                   |                | -        |                    | 1            |
|                               | Less than 85                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.       | 0                  | 1            |
| Ψ.]                           | 85                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.062    |                    | 1            |
| o £                           | 86                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.072    |                    | 1            |
| 빏                             | 87                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.082    | 2.055.2            | 1            |
| မ္မ ပ                         | 88                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 3                   |                | 0.095    | 18570              | 1            |
| tri<br>Hou                    | 89                                                        | MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 11                  |                | 0.109    | 1,19950            | <del>ļ</del> |
| Existing<br>Regulation Cutoff | 90                                                        | HIMMIM MINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 2.6                 |                | 0.125    | 3,250              | 1            |
| Ex<br>1a                      | 91                                                        | THE PARTY OF THE P |                        | 14                  |                | 0.144    | 2.016              | 1            |
| ng                            | 92                                                        | MIMIMUM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 22                  |                | 0.165    | 3. 63              | 1            |
| Re                            | 93                                                        | MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>            | 6                   |                | 0.189    | 1.134              | 1            |
| - 1                           | 94                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.210    | .218               | 1            |
| - 1                           | 95                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.230    |                    |              |
| - 1                           | 96<br>97                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.330    |                    | 1            |
|                               | 98                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.379    |                    | <b>∤</b> !   |
|                               | 98                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.435    |                    | 1            |
|                               | 100                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.500    |                    | 1            |
| ĺ                             | 101                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.574    |                    | 1            |
|                               | 102                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.660    |                    | <b>∤</b> !   |
|                               | 103                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.758    |                    | <b>∤</b> '   |
|                               | 103                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 0.871    |                    | 1            |
|                               | 105                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 1.000    |                    | 1            |
|                               | 106                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 1.149    |                    | 1            |
|                               | 107                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 1.320    |                    | Í            |
|                               | 108                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 1.516    |                    | 1            |
|                               | 109                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 1.741    |                    | 1            |
| - 1                           | 110                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 2.000    |                    | 1            |
|                               | 111                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 2.297    |                    | 1 1          |
|                               | 112                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 2.639    |                    | 1            |
|                               | 113                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 3.031    |                    | 1            |
|                               | 114                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 3.482    |                    | 1            |
|                               | 115                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                | 4.000    |                    | 1            |
| 1                             |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                     |                |          | P=10.248           | (1)          |
|                               | $\frac{\sum n}{\log n} = \frac{83}{\log n} = \frac{1}{2}$ | .1235 = Fm (2) Daily Sh.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hours Expo<br>ift Time | osed =              | 8 -            | = 7      | Ta (3)             |              |
|                               | Fm x Ta =                                                 | x = Fm (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | > Equiva            | alent<br>Level | 89.9 di  | 7 9 0<br>BA ((90)) | (5)          |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

90.9 dBA ((85))

\_\_\_\_ dBA ((85))

\_\_\_\_ dBA ((80))

\_ B20

| NOTES                          | TOTAL                                           | SAMPLE                      | SAMPLE         | RATE         |
|--------------------------------|-------------------------------------------------|-----------------------------|----------------|--------------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL |                | P=nx         |
| Less than 85                   |                                                 |                             | 0.             | 0.           |
| 85<br>85                       |                                                 |                             | 0.062          | · · ·        |
| 86                             |                                                 |                             | 0.002          | <del> </del> |
| 87                             |                                                 |                             | 0.082          | <del> </del> |
| 88                             |                                                 |                             | 0.095          | <del> </del> |
| 89                             |                                                 |                             | 0,109          |              |
| 90                             |                                                 |                             | 0.125          |              |
| 91                             |                                                 |                             | 0.144          |              |
| 92                             | <i>t</i> 1 1 34 c                               |                             | 0.165          |              |
| 93                             | Every when less they                            | 2                           | 0.189          |              |
| 94                             |                                                 |                             | 0.218          |              |
| 95                             | evel < 90 on emis.                              |                             | 0.250          |              |
| 96                             |                                                 |                             | 0.287          |              |
| 97                             | See tape                                        |                             | 0.330          | -            |
| 98                             | •                                               |                             | 0.379          |              |
| 99                             |                                                 |                             | 0.435          |              |
| 100                            |                                                 |                             | 0.500          | <del> </del> |
| 101                            |                                                 |                             | 0.574          | ļ            |
| 102                            |                                                 |                             | 0.660<br>0.758 |              |
| 103                            |                                                 |                             | 0.738          | <b></b>      |
| 105                            |                                                 |                             | 1.000          | <del> </del> |
| 106                            |                                                 |                             | 1.149          |              |
| 107                            |                                                 |                             | 1.320          | <del> </del> |
| 108                            |                                                 |                             | 1.516          | 1            |
| 109                            |                                                 |                             | 1.741          |              |
| 110                            |                                                 |                             | 2.000          |              |
| 111                            |                                                 |                             | 2.297          |              |
| 112                            |                                                 |                             | 2.639          |              |
| 113                            |                                                 |                             | 3.031          |              |
| 114                            |                                                 |                             | 3.482          |              |
| 115                            |                                                 |                             | 4.000          |              |
|                                |                                                 | $\sum_{n}$ =                |                | > P          |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

| PLANT Conte<br>OPERATION POLY<br>EMPLOYEES P9-<br>NOTES Second r | TART/STO                                        | URS EXPO    | POSED                            | Leef Dud | RATE 0.83 Se      |
|------------------------------------------------------------------|-------------------------------------------------|-------------|----------------------------------|----------|-------------------|
| MEASURED<br>SOUND LEVEL<br>dBA                                   | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | occui       | OTAL<br>JRRENCES<br>R LEVEL<br>n | F        | P=nxF             |
| Less than 85                                                     |                                                 |             |                                  | 0.       | 0.                |
|                                                                  |                                                 | 1           |                                  | 0.062    | -                 |
| 86                                                               | THUI                                            | 7           |                                  | 0.072    | .504              |
| 87                                                               | MIII                                            | 1 7         |                                  | 0.082    | 53473             |
| 88                                                               | MIMIMIMI                                        | 24          |                                  | 0.095    | 228 00            |
| 89                                                               | MINHALI                                         | 1 7         |                                  | 0.109    | 1.853             |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93               | IN THIN I MINIMUM                               | 16          | 17 33                            | 0.125    | 4.125             |
| 91                                                               | II markethill                                   | 2           | 19 2                             | 0.144    | 3.024             |
| 92                                                               | IIII HUMMHAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMA   | 4           | 40 44                            | 0.165    | 7.260             |
| 93                                                               | II MANATHUMINI                                  | 2           | 23 25                            | 0.189    | 4.725             |
| 94                                                               | 1 WILM                                          | 1           | 11 12                            | 0.218    | 2.616             |
| 95                                                               | IMILI                                           |             | 7 7                              | 0.250    | 1.750             |
| 96                                                               |                                                 | 1           | 2 3                              | 0.287    | 1861              |
| 97                                                               |                                                 | 1           |                                  | 0.330    | 1                 |
| 98                                                               |                                                 | 17          |                                  | 0.379    |                   |
| 99                                                               |                                                 | 1           |                                  | 0.435    |                   |
| 100                                                              |                                                 |             |                                  | 0.500    | 1                 |
| 101                                                              |                                                 |             | +                                | 0.574    | <b>†</b>          |
| 102                                                              |                                                 | +           |                                  | 0.660    | 1                 |
| 103                                                              |                                                 |             |                                  | 0.758    | 1                 |
| 104                                                              | l .                                             |             |                                  | 0.871    |                   |
| 105                                                              | 1                                               |             |                                  | 1.000    | 1                 |
| 106                                                              | l .                                             |             |                                  | 1.149    |                   |
| 107                                                              | ſ                                               | +           |                                  | 1.320    |                   |
| 108                                                              | 1                                               |             |                                  | 1.516    | +                 |
| 109                                                              | 1                                               | <del></del> |                                  | 1.741    | +                 |
| 110                                                              |                                                 |             |                                  | 2.000    |                   |
| 111                                                              |                                                 |             |                                  | 2.297    | <del> </del>      |
| 112                                                              |                                                 |             |                                  | 2.639    | +                 |
| 113                                                              | 1                                               | +           |                                  | 3.031    | 1                 |
| 114                                                              |                                                 | _           |                                  | 3.482    | 1                 |
| 115                                                              |                                                 | - R)        | 119                              | 4.000    | +                 |
|                                                                  |                                                 |             | = 201                            | 1        | P=24361<br>29.572 |

 $\frac{\sum P}{\sum n} = \frac{24.36l}{201} = \frac{1212}{.1411} = Fm (2) \qquad \frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{24.36l}{8} = Ta (3)$   $Fm \times Ta = \frac{1212}{.1411} = Fm (4) \qquad \frac{89.8}{.1212} = Fm (4)$   $Fm \times Ta = \frac{1212}{.1411} = Fm (4) \qquad \frac{89.8}{.1212} = Fm (4)$   $Fm \times Ta = \frac{1212}{.1411} = Fm (4) \qquad \frac{89.8}{.1212} = Fm (4)$ 

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

B21

(5)

| PLANT Continental Fret Industry       | DATA 2-29-80 BY Lee                   |
|---------------------------------------|---------------------------------------|
| OPERATION idle (T. Saw + planer idle) | START/STOP TIME                       |
| EMPLOYEES P9-P12 (pullers)            | DAILY HOURS EXPOSED                   |
| NOTES                                 | TOTAL SAMPLE 78 2 CAR CAMPLE DATE 1/7 |

| MEASURED   SOUND LEVEL   CONE MARK PER OCCURRENCES   CONE MARK PER OCCURRENCES   PER LEVEL   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | NOTES        | TOTAL SAI | MPLE 78,3 Sec            | SAMPLE I | RATE 1.67 Sec |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|-----------|--------------------------|----------|---------------|
| S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | SOUND LEVEL  | 1         | OCCURRENCES<br>PER LEVEL | F        | P=nxF         |
| S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Less than 85 | HUHUMI    | 15                       | 0.       | 0.            |
| 86       IMM         4       0.082       328°         88       III       3       0.095       7.285°         89       0.109         90       MIII       6       0.125       750         91       I       J       0.144       114         92       IV       2       0.165       336         93       IV       2       0.189       778         95       0.250       96       1       0.287       787         97       0.330       98       0.379       99         99       0.435       0.30       500         101       0.574       0.500       500         102       I       0.660       .660         103       0.758       0.871       0.871         105       1.000       0.871       0.871         106       1.149       1.516         109       1.741       1.10       2.000         111       2.297       1.12       2.639         113       3.031       3.031         114       3.482       3.482                                                                                                                                                                                                                                                                 | , |              | ITHI      |                          | 0.062    | 3270          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н | 86           |           | 6                        |          | 4320          |
| 88                   3       0.095       .78570         89       0,109       .750         90       NUI       6       0.125       .750         91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | 87           | 11/1/     | 4                        | 0.082    | 1328-79       |
| 90 NUI 6 0.125 .350 91 1 0.144 .144 92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | П | 88           |           |                          | 0.095    | .288-70       |
| 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ц | 89           |           |                          | 0.109    |               |
| 92   1\   2   0.165   336   93   1\   2   0.189   .378   94   0.218   95   0.250   96   1   0.287   .287   97   0.330   98   0.379   99   0.435   100   1   0.500   .560   101   0.574   102   1   0.660   .660   103   0.758   104   0.871   105   1.000   106   1.149   107   1.320   108   1.516   109   1.741   110   2.000   111   2.297   112   2.639   113   3.3482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Γ |              | MI        | 6                        | 0.125    |               |
| 93   \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |              | 1         |                          |          | .144          |
| 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |              | 1         | 2                        |          | .330          |
| 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 |              | 11        | 2                        |          | .378          |
| 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J |              |           |                          |          |               |
| 97 0.330 98 0.379 99 0.435 100 \ 1 0.500 .500 101 0.574 102 \ 1 0.660 .660 103 0.758 104 0.871 105 1.000 106 1.149 107 1.320 108 1.516 109 1.741 110 2.297 112 2.639 113 3.031 114 3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |              |           |                          |          |               |
| 98       0.379         99       0.435         100       1       0.500       .500         101       0.574       0.660       .660         102       1       0.660       .660         103       0.758       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871       0.871                                |   | 96           |           |                          | 0.287    | .287          |
| 99       0.435         100       1       0.500       .500         101       0.574       1       0.660       .660         103       0.758       0.871       0.871       1       0.000       1       1       0.000       1       1       1       0.000       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                          |   | 97           |           |                          |          |               |
| 100       1       0.500       .560         101       0.574       0.574       0.660       .660         103       0.758       0.758       0.871       0.871       0.871       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000 |   |              |           |                          |          |               |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 99           |           |                          | 0.435    |               |
| 102     1     0.660     .660       103     0.758       104     0.871       105     1.000       106     1.149       107     1.320       108     1.516       109     1.741       110     2.000       111     2.297       112     2.639       113     3.031       114     3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              | 1         |                          |          | .500          |
| 103       0.758         104       0.871         105       1.000         106       1.149         107       1.320         108       1.516         109       1.741         110       2.000         111       2.297         112       2.639         113       3.031         114       3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |              |           |                          |          |               |
| 104       0.871         105       1.000         106       1.149         107       1.320         108       1.516         109       1.741         110       2.000         111       2.297         112       2.639         113       3.031         114       3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |              |           |                          | 0.660    | .660          |
| 105       1.000         106       1.149         107       1.320         108       1.516         109       1.741         110       2.000         111       2.297         112       2.639         113       3.031         114       3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |              |           |                          |          |               |
| 106       1.149         107       1.320         108       1.516         109       1.741         110       2.000         111       2.297         112       2.639         113       3.031         114       3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |              |           |                          |          |               |
| 107     1.320       108     1.516       109     1.741       110     2.000       111     2.297       112     2.639       113     3.031       114     3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |           |                          |          |               |
| 108     1.516       109     1.741       110     2.000       111     2.297       112     2.639       113     3.031       114     3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |           |                          |          |               |
| 109     1.741       110     2.000       111     2.297       112     2.639       113     3.031       114     3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |              |           |                          |          |               |
| 110     2.000       111     2.297       112     2.639       113     3.031       114     3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |           |                          |          |               |
| 111     2.297       112     2.639       113     3.031       114     3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |           |                          |          |               |
| 112 2.639<br>113 3.031<br>114 3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |              |           |                          |          |               |
| 113<br>114<br>3.031<br>3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              |           |                          |          |               |
| 3.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |           |                          |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |              |           |                          |          |               |
| 115 4.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |           |                          |          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 115          |           |                          | 4.000    |               |

$$\sum n = 40$$

$$\sum P = 3.049 \quad (1)$$

$$\sum n = 40$$

$$\sum P = 3.049 \quad (1)$$

$$\sum n = 40$$

$$\sum P = 3.049 \quad (1)$$

$$\sum n = 40$$

$$\sum P = 3.049 \quad (1)$$

$$\sum n = 40$$

$$\sum P = 3.049 \quad (1)$$

$$\sum n = 40$$

$$\sum P = 3.049 \quad (1)$$

$$\sum n = 40$$

$$\sum P = 3.049 \quad (1)$$

$$\sum P = 3$$

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

Existing Regulation Cutoff

B22

| PLANT Continute fruit and. | DATA DATE 2/20160 BY Lee Dudley |
|----------------------------|---------------------------------|
| OPERATION PACKAGE MAKING   | START/STOP TIME                 |
| EMPLOYEES PACKAGE MAN, PIZ | DAILY HOURS EXPOSED             |

| NOTES                            | TOTAL S                                            | SAMPLE 35-8 SC                | SAMPLE F | RATE 0.83 ACC |
|----------------------------------|----------------------------------------------------|-------------------------------|----------|---------------|
| MEASURED<br>SOUND LEVEL<br>dBA   | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF         |
| Less than 85                     | IMII                                               | 7                             | 0.       | 0.            |
| _ 85                             | IMIII                                              | 8                             | 0.062    | .496          |
| 86                               | IMI                                                | 6                             | 0.072    | -432          |
| 86<br>87<br>88                   | MII                                                |                               | 0.082    | -1574         |
|                                  |                                                    | 4                             | 0.095    | 1380          |
| 89                               |                                                    |                               | 0.109    | 109           |
| 90<br>91<br>91<br>92<br>93<br>93 |                                                    | 3                             | 0.125    | .375          |
| g 91                             |                                                    | 4                             | 0.144    | ,576          |
| 92                               |                                                    | 3                             | 0.165    | .495          |
| 93                               |                                                    |                               | 0.189    |               |
|                                  |                                                    | 1                             | 0.218    | ,218          |
| 95                               |                                                    |                               | 0.250    |               |
| 96                               |                                                    |                               | 0.287    |               |
| 97                               |                                                    |                               | 0.330    |               |
| . 98                             |                                                    |                               | 0.379    |               |
| 99                               |                                                    |                               | 0.435    |               |
| 100                              |                                                    |                               | 0.500    |               |
| 101                              |                                                    |                               | 0.574    |               |
| 102                              |                                                    |                               | 0.660    |               |
| 103                              |                                                    |                               | 0.758    |               |
| 104                              |                                                    |                               | 0.871    |               |
| 105                              |                                                    |                               | 1.000    |               |
| 106                              |                                                    |                               | 1.149    |               |
| 107                              |                                                    |                               | 1.320    |               |
| 108                              |                                                    |                               | 1.516    |               |
| 109                              |                                                    |                               | 1.741    |               |
| 110                              |                                                    |                               | 2.000    |               |
| 111                              |                                                    |                               | 2.297    |               |
| 112                              |                                                    |                               | 2.639    |               |
| 113                              |                                                    |                               | 3.031    |               |
| 114                              |                                                    |                               | 3.482    |               |
| 115                              |                                                    |                               | 4.000    |               |

| _                                                                        | \( \sigma \) 44                   | SP= 1.664 (1      |
|--------------------------------------------------------------------------|-----------------------------------|-------------------|
| $\frac{\sum P}{\sum n} = \frac{1.664}{44} = .0378^{\circ} \text{Fm} (2)$ | Daily Hours Exposed = = =         | 3.655<br>= Ta (3) |
| Σn 44 (0378)                                                             | Shift Time 8                      |                   |
| Fm x Ta = x = Fr                                                         | í (4) Equivalent Noise Level < 90 | ) dBA ((90)) (5   |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ .

B23

87.1 dBA ((85))

| OP<br>EM                   | ANT CONTROL ERATION TOLE PLOYEES PAC                                                           | - NEAREST | PULLERS          | DATA DATE 1-2 START/STOP DAILY HOUR | TIME<br>S EXPOSE<br>LE \$2.5 | Sec.  | 7                                                                                                                                | RATE 0.83 & .                      |
|----------------------------|------------------------------------------------------------------------------------------------|-----------|------------------|-------------------------------------|------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                            | MEASURED<br>OUND LEVEL<br>dBA                                                                  | ı         | BER OF OCCURRENC |                                     | TOTA OCCURRE PER LE          | ENCES | F                                                                                                                                | P=nxF                              |
| Existing Regulation Cutoff | ss than 85<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98 |           |                  |                                     | 10 l                         | 1 23  | 0.<br>0.062<br>0.072<br>0.082<br>0.095<br>0.109<br>0.125<br>0.144<br>0.165<br>0.189<br>0.218<br>0.250<br>0.287<br>0.330<br>0.379 | 0. 1,426 1,512 .574 .665 .210 .375 |
|                            | 99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109                       |           |                  |                                     |                              |       | 0.435<br>0.500<br>0.574<br>0.660<br>0.758<br>0.871<br>1.000<br>1.149<br>1.320<br>1.516<br>1.741<br>2.000                         |                                    |
|                            | 111<br>112<br>113<br>114<br>115                                                                |           |                  |                                     | ∑n = _                       | ın l  | 2.297<br>2.639<br>3.031<br>3.482<br>4.000                                                                                        | P=.375                             |

$$\sum_{n} = \frac{101}{101}$$

$$\sum_{n} = \frac{101}{3.432}$$

$$\sum_{n}$$

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

B24

(5

EQUIVALENT NOISE EXPOSURE DATA SHEET PLANT Continutal Forest Ind.

OPERATION BANDING

EMPLOYEES TICKET MAN, PIX

DATA 2/20/80 BY Lee / Dudly

START/STOP TIME

DAILY HOURS EXPOSED TOTAL SAMPLE 23.3 &C SAMPLE RATE, B3 &C NOTES TOTAL MEASURED NUMBER OF OCCURRENCES **OCCURRENCES** SOUND LEVEL F P=nxF (ONE MARK PER OCCURRENCE) PER LEVEL dBA Less than 85 MMI 0. 85 0.062 Existing Regulation Cutoff, 86 0.072 87 0.082 88 0.095 2 89 2 0,109 90 0.125 91 0.144 92 0.165 ,330 93 0.189 94 0.218 .436 95 0.250 96 0.287 97 0.330 .660 98 0.379 99 0.435 100 0.500 101 0.574 102 0.660 103 0.758 104 0.871 105 1.000 106 1.149 107 1.320 108 1.516 109 1.741 110 2.000 111 2.297 112 2.639 113 3.031 114 3.482 115 4.000

$$\sum P = \frac{29}{1926} = \frac{1926}{2.62} = \frac{1926}{$$

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

B25

∠85 dBA ((85))

B26

| NOTES                          | TOTAL SA                                        | AMPLE 26.7 Sec                         | SAMPLE I | RATE NA |
|--------------------------------|-------------------------------------------------|----------------------------------------|----------|---------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL<br>OCCURRENCES<br>PER LEVEL<br>n | F        | P=nxF   |
| Less than 85                   |                                                 |                                        | 0.       | 0.      |
| 85                             |                                                 |                                        | 0.062    |         |
| 86                             |                                                 |                                        | 0.072    |         |
| 87                             |                                                 |                                        | 0.082    |         |
| 88                             |                                                 |                                        | 0.095    |         |
| 89                             |                                                 |                                        | 0.109    |         |
| 90                             |                                                 |                                        | 0.125    |         |
| 91                             | Always less than 90.                            |                                        | 0.144    |         |
| 92                             | C + + +                                         |                                        | 0.165    |         |
| 93                             | GENERALLY PSG hon 86                            |                                        | 0.189    |         |
| 94                             |                                                 |                                        | 0.218    |         |
| 95                             | See tupe                                        |                                        | 0.250    |         |
| 96                             |                                                 |                                        | 0.287    |         |
| 97                             |                                                 |                                        | 0.330    |         |
| 98                             |                                                 |                                        | 0.379    |         |
| 99<br>100                      |                                                 |                                        | 0.433    |         |
| 101                            |                                                 |                                        | 0.574    |         |
| 102                            |                                                 |                                        | 0.660    |         |
| 103                            |                                                 |                                        | 0.758    |         |
| 104                            |                                                 |                                        | 0.871    |         |
| 105                            |                                                 |                                        | 1.000    |         |
| 106                            |                                                 |                                        | 1.149    |         |
| 107                            |                                                 |                                        | 1.320    |         |
| 108                            |                                                 |                                        | 1.516    |         |
| 109                            |                                                 |                                        | 1.741    |         |
| 110                            |                                                 |                                        | 2.000    |         |
| 111                            |                                                 |                                        | 2.297    |         |
| 112                            |                                                 |                                        | 2.639    |         |
| 113                            |                                                 |                                        | 3.031    |         |
| 114                            |                                                 |                                        | 3.482    |         |
| 115                            |                                                 |                                        | 4.000    |         |
|                                |                                                 | \( \sum_{\text{n}} =                   | Σ        |         |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

|                | EMPLOTEES                      | netal Frest Ind. DATA 9<br>TS conveyor dust pleSTART/ST<br>DAILY HO | MPLE 283 ne                   |       | RATE 13 A |
|----------------|--------------------------------|---------------------------------------------------------------------|-------------------------------|-------|-----------|
|                | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE)                  | TOTAL OCCURRENCES PER LEVEL n | F     | P=nxF     |
|                | Less than 85                   |                                                                     |                               | 0.    | 0.        |
| -              | 85                             |                                                                     |                               | 0.062 |           |
| EF.            | 86                             |                                                                     |                               | 0.072 |           |
| 유              | 87                             |                                                                     |                               | 0.082 |           |
| S              | 88                             |                                                                     |                               | 0.095 |           |
| ulation Cutoff | 89                             |                                                                     |                               | 0,109 |           |
| 유              | 90                             |                                                                     |                               | 0.125 | 1125      |
| Regulation     | 91                             | 1441                                                                | 6                             | 0.144 | .864      |
|                | 92                             | MIN                                                                 | 9                             | 0.165 | 1.485     |
| še<br>Š        | 93                             | 1                                                                   | 12                            | 0.189 | .378      |
| ۳,             | 94                             |                                                                     |                               | 0.218 |           |
|                | 95                             |                                                                     |                               | 0.250 |           |
|                | 96                             |                                                                     |                               | 0.287 |           |
|                | 97                             |                                                                     |                               | 0.330 |           |
|                | 98                             |                                                                     |                               | 0.379 |           |
|                | 99                             |                                                                     |                               | 0.435 |           |
|                | 100                            | · ·                                                                 |                               | 0.500 |           |
|                | 101                            |                                                                     |                               | 0.574 |           |
|                | 102                            |                                                                     |                               | 0.660 |           |
|                | 103                            | ·                                                                   |                               | 0.758 |           |
|                | 104                            |                                                                     |                               | 0.871 |           |
|                | 105                            |                                                                     |                               | 1.000 |           |
|                | 106                            |                                                                     |                               | 1.149 |           |
|                | 107                            |                                                                     |                               | 1.516 | ·         |
|                | 108                            |                                                                     |                               | 1.741 |           |
|                |                                |                                                                     |                               | 2.000 |           |
|                | 110                            |                                                                     |                               | 2.297 |           |
|                | 111                            |                                                                     |                               | 2.639 |           |
|                | 113                            |                                                                     |                               | 3.031 |           |
|                | 114                            |                                                                     |                               | 3.482 |           |
|                | 115                            |                                                                     |                               | 4.000 |           |

 $\frac{\sum P}{\sum n} = \frac{2.85V}{13} = \frac{158V}{13} = Fm (2)$   $\frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{1}{8} = \frac{1}{8} = Ta (3)$   $\frac{\text{Equivalent}}{\text{Noise Level}} = \frac{1}{9! \cdot 1} dBA ((90))$   $\frac{9! \cdot 1}{9! \cdot 1} dBA ((85))$   $\frac{9! \cdot 1}{4} dBA ((85))$   $\frac{9! \cdot 1}{4} dBA ((85))$   $\frac{9! \cdot 1}{4} dBA ((80))$   $\frac{9! \cdot 1}{4} dBA ((80))$ 

| PLANT Control OPERATION Cycle EMPLOYEES PIC NOTES | e of fink Lift op. START, 4 P16. Planer Mill Oulfeed DAILY | 2-19-80 BY LA /STOP TIME HOURS EXPOSED SAMPLE 520 Sec |          | RATE 5 ACC                 |
|---------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|----------|----------------------------|
| MEASURED<br>SOUND LEVEL<br>dBA                    | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE)            | TOTAL OCCURRENCES PER LEVEL n                         | F        | P=nxF                      |
| Less than 85                                      | MATHEMATICAL LAND                                          | 42                                                    | 0.       | 0.                         |
| 95                                                | ))                                                         | 3                                                     | 0.062    | .186                       |
| 86                                                | 741111                                                     | 8                                                     | 0.072    | .576                       |
| 86 87 88 88 89 90 91 91 92 93 93 94               | 1)11                                                       | 4                                                     | 0.082    | .328                       |
| S 88                                              | 14/11/1                                                    | 8                                                     | 0.095    | 760                        |
| c 89                                              | M                                                          | 6                                                     | 0.109    | .654                       |
| 90                                                | [MI/III                                                    | 10                                                    | 0.125    | 1,250                      |
| 91                                                | M                                                          | 5                                                     | 0.144    | .720                       |
| 92                                                | HUM                                                        | 9                                                     | 0.165    | 1.485                      |
| 93                                                |                                                            | 3                                                     | 0.189    | .567                       |
| ∞ 94                                              |                                                            | 5                                                     | 0.218    | 1.090                      |
| 95                                                | 1                                                          | 1                                                     | 0.250    | .250                       |
| 96                                                |                                                            |                                                       | 0.287    | .287                       |
| 97                                                |                                                            |                                                       | 0.330    |                            |
| 98                                                |                                                            |                                                       | 0.379    |                            |
| 99                                                |                                                            |                                                       | 0.435    |                            |
| 100                                               |                                                            |                                                       | 0.500    |                            |
| 101                                               |                                                            |                                                       | 0.574    |                            |
| 102                                               |                                                            |                                                       | 0.660    |                            |
| 103                                               |                                                            |                                                       | 0.758    |                            |
| 104                                               |                                                            |                                                       | 0.871    |                            |
| 105                                               |                                                            |                                                       | 1.000    |                            |
| 106                                               |                                                            |                                                       | 1.149    |                            |
| 107                                               |                                                            |                                                       | 1.320    | <u> </u>                   |
| 108                                               |                                                            |                                                       | 1.516    |                            |
| 109                                               |                                                            |                                                       | 1.741    |                            |
| 110                                               |                                                            |                                                       | 2.000    |                            |
| 111                                               |                                                            |                                                       | 2.297    |                            |
| 112                                               |                                                            |                                                       | 2.639    |                            |
| 113                                               |                                                            |                                                       | 3.031    |                            |
| 114                                               |                                                            |                                                       | 3.482    |                            |
| 115                                               | <u> </u>                                                   |                                                       | 4.000    |                            |
| $\frac{\sum P}{\sum n} = 5.649 =$                 | Fm (2) Daily Hour                                          | $\sum n = 105$ s Exposed = = =                        | <u> </u> | P=5.649<br>8./53<br>Ta (3) |

 $\frac{86.6 \text{ dBA } ((85))}{(1.-85)/5}$ 

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

B28

B29

|                 | SOUND LEVEL                           | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL | F              | P=nxF |
|-----------------|---------------------------------------|-------------------------------------------------|-----------------------------|----------------|-------|
| ·  -            | dBA                                   |                                                 | n                           |                |       |
| L               | Less than 85                          |                                                 |                             | 0.             | 0.    |
| w1  -           | 85                                    |                                                 |                             | 0.062          |       |
| ulation Cutoff, | 86                                    |                                                 |                             | 0.072          |       |
| 비               | 87                                    |                                                 |                             | 0.082          |       |
|                 | 88                                    |                                                 |                             | 0.095          |       |
| 6 <b>-</b>      | 89                                    |                                                 |                             | 0.109          |       |
| 피ト              | 90<br>91                              |                                                 |                             | 0.125          |       |
|                 | 92                                    | EVERywhere less than 79                         |                             | 0.144          |       |
| Regulation      | 93                                    | FACING MUCLE (62) INOW 12                       |                             | 0.189          |       |
| 8   -           | 94                                    |                                                 |                             | 0.218          |       |
| - T             | 95                                    | See Tage.                                       |                             | 0.250          |       |
|                 | 96                                    |                                                 |                             | 0.287          |       |
|                 | 97                                    |                                                 |                             | 0.330          |       |
| Γ               | 98                                    |                                                 |                             | 0.379          |       |
|                 | 99                                    |                                                 |                             | 0.435          |       |
|                 | 100                                   |                                                 |                             | 0.500          |       |
|                 | 101                                   |                                                 |                             | 0.574          |       |
|                 | 102                                   |                                                 |                             | 0.660          |       |
|                 | 103                                   |                                                 |                             | 0.758          |       |
| _               | 104                                   |                                                 |                             | 0.871          |       |
| -               | 105                                   |                                                 |                             | 1.000          |       |
| [_              | 106                                   |                                                 |                             | 1.149          |       |
| -               | 107<br>108                            |                                                 |                             | 1.320<br>1.516 |       |
| -               | 108                                   |                                                 |                             | 1.741          |       |
| -               | 110                                   |                                                 |                             | 2.000          |       |
| - 1             | 111                                   |                                                 |                             | 2.297          |       |
| <br> -          | 112                                   |                                                 |                             | 2.639          |       |
| _ h             | 113                                   |                                                 |                             | 3.031          |       |
| -               | 114                                   |                                                 |                             | 3.482          |       |
| _ t             | 115                                   |                                                 |                             | 4.000          |       |
| _               |                                       |                                                 | \( \sum_{n} = \)            | 5              | P =   |
| -               | $\frac{\sum P}{\sum n} = \frac{1}{n}$ | O = Fm (2) Daily Hours Shift Ti                 |                             |                |       |

|                            | OPERATION POVEMPLOYEES NOTES   | instal Frust And                             | DATA DATE 4 2 START/STOP DAILY HOURS TOTAL SAMPI | TIME<br>S EXPOSED             | SAMPLE I       | RATE        |         |
|----------------------------|--------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------|----------------|-------------|---------|
|                            | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENC<br>(ONE MARK PER OCCURRE |                                                  | TOTAL OCCURRENCES PER LEVEL n | F              | P=nxF       |         |
|                            | Less than 85                   |                                              |                                                  |                               | 0.             | 0.          | ı       |
| ٦.                         | 85                             |                                              |                                                  |                               | 0.062          |             |         |
| ££                         | 86                             |                                              |                                                  |                               | 0.072          |             |         |
| Existing<br>ulation Cutoff | 87                             |                                              |                                                  |                               | 0.082          |             |         |
| S Cu                       | 88                             |                                              |                                                  |                               | 0.095          |             |         |
| t c                        | 89                             |                                              |                                                  |                               | 0.109          |             |         |
| st                         | 90                             |                                              |                                                  |                               | 0.125          |             | Г       |
| atat                       | 91                             |                                              |                                                  |                               | 0.144          |             |         |
| Existin<br>Regulation      | 92                             |                                              |                                                  |                               | 0.165          |             |         |
| ĕ                          | 93                             | & rengwhere less                             | - than 7                                         | 1.                            | 0.189          |             |         |
| ا لـــــ                   | 94                             |                                              |                                                  |                               | 0.218          |             |         |
|                            | 95                             | Der Tage                                     |                                                  |                               | 0.250          |             |         |
|                            | 96                             |                                              |                                                  |                               | 0.287          |             |         |
|                            | 97                             |                                              |                                                  |                               | 0.330          |             |         |
|                            | 98                             | Typical of one                               | tide                                             |                               | 0.379          |             |         |
|                            | 99                             |                                              |                                                  |                               | 0.435          |             |         |
|                            | 100                            | sher from to                                 | Dares                                            | ×                             | 0.500          |             |         |
|                            | 101                            |                                              |                                                  |                               | 0.574          |             |         |
|                            | 102<br>103                     | 100 3 100 J                                  | in many in                                       |                               | 0.660          | ·           |         |
|                            | 103                            |                                              |                                                  |                               | 0.758          |             |         |
|                            | 105                            |                                              |                                                  |                               | 0.871<br>1.000 |             |         |
|                            | 106                            |                                              |                                                  |                               | 1.149          |             |         |
|                            | 107                            |                                              |                                                  |                               | 1.320          |             |         |
|                            | 108                            |                                              |                                                  |                               | 1.516          | <del></del> |         |
|                            | 109                            |                                              |                                                  |                               | 1.741          |             |         |
|                            | 110                            |                                              |                                                  |                               | 2.000          |             |         |
|                            | 111                            |                                              |                                                  |                               | 2.297          |             |         |
|                            | 112                            |                                              |                                                  |                               | 2.639          |             |         |
|                            | 113                            |                                              |                                                  |                               | 3.031          |             |         |
|                            | 114                            |                                              |                                                  |                               | 3.482          |             |         |
|                            | 115                            |                                              |                                                  |                               | 4.000          |             |         |
| ľ                          |                                |                                              | •                                                | \( \sigma_n =                 | Σ              | P <u>_</u>  | )<br>(1 |
|                            | $\frac{\sum b}{\sum b}$ = = -  | = Fm (2)                                     | y Hours Expo<br>Shift Time                       | osed = =                      | = "            | Га (3)      |         |
|                            |                                | _ x = Fm (4)                                 |                                                  | Equivalent<br>Noise Leve      |                |             | (       |
|                            |                                |                                              |                                                  |                               | dF             | BA ((85))   |         |
|                            | I = 16 61 10g                  | (16F) + 85. F = 1/T =                        | (1/16)2[(L-                                      | 85)/5]                        |                | BA ((80))   |         |

|   |                                |              |                                       | 50 + 65<br>TOTAL SAM |              |                             |      | SAMPLE F | VAIL        |
|---|--------------------------------|--------------|---------------------------------------|----------------------|--------------|-----------------------------|------|----------|-------------|
|   | MEASURED<br>SOUND LEVEL<br>dBA |              | BER OF OCCURREN                       |                      | occu         | OTAL<br>JRREN<br>R LEV<br>n | ICES | F        | P=nxF       |
|   | Less than 85                   |              |                                       |                      |              |                             |      | 0.       | 0.          |
|   | 85                             |              |                                       |                      | -            |                             |      | 0.062    |             |
|   | 86                             |              |                                       |                      | 1            |                             |      | 0.072    |             |
|   | 87                             |              |                                       |                      | 1            |                             |      | 0.082    |             |
|   | 88                             |              |                                       |                      | 1            |                             |      | 0.095    |             |
|   | 89                             |              |                                       |                      |              |                             |      | 0,109    |             |
|   | 90                             |              |                                       |                      |              |                             |      | 0.125    |             |
|   | 91                             |              |                                       |                      |              |                             |      | 0.144    |             |
|   | 92                             | 141          |                                       |                      | 5            |                             | 5    | 0.165    | .825        |
|   | 93                             | 111          |                                       |                      | 3            |                             | 3    | 0.189    | .567        |
| , | 94                             | W/1111       |                                       |                      | 10           |                             | 10   | 0.218    | 2.180       |
|   | 95                             | 4411         | MIII                                  |                      | 1            | 8                           | 15   | 0.250    | 3.750       |
|   | 96                             | 1741         | MIMIN                                 |                      | 6            | 13                          | 19   | 0.287    | 5.453       |
|   | 97                             |              | Tunitanini                            |                      |              | 14                          | 14   | 0.330    | 4,620       |
|   | 98                             |              | 11111                                 |                      |              | 5                           | 5    | 0.379    | 1.895       |
|   | 99                             |              |                                       |                      |              |                             | 1    | 0.435    |             |
|   | 100                            |              |                                       |                      |              |                             |      | 0.500    |             |
|   | 101                            |              |                                       |                      |              |                             |      | 0.574    |             |
|   | 102                            |              |                                       |                      |              |                             | -    | 0.660    |             |
|   | 103                            |              |                                       |                      |              |                             |      | 0.758    |             |
|   | 104                            | <del></del>  |                                       |                      |              |                             |      | 0.871    |             |
|   | 105                            |              |                                       |                      |              |                             |      | 1.000    |             |
|   | 106<br>107                     | <del></del>  |                                       |                      |              |                             |      | 1.149    |             |
|   | 107                            |              |                                       |                      |              |                             |      |          | <del></del> |
|   | 109                            |              |                                       |                      |              |                             |      | 1.516    |             |
|   | 110                            | <del></del>  |                                       |                      |              |                             |      | 2.000    |             |
|   | 111                            |              | · · · · · · · · · · · · · · · · · · · |                      |              | _                           |      | 2.297    |             |
|   | 112                            |              |                                       |                      |              |                             |      | 2.639    |             |
|   | 113                            | <del> </del> |                                       |                      |              |                             |      | 3.031    |             |
|   | 114                            |              |                                       |                      |              |                             |      | 3.482    |             |
|   | 115                            |              | ···                                   |                      | <del> </del> |                             |      | 4.000    |             |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

B31

95.6 dBA ((85))

| HOURS EXPOSED  SAMPLE 41.7 & C  TOTAL OCCURRENCES PER LEVEL n | SAMPLE F | RATE 1.67.                                                                   |
|---------------------------------------------------------------|----------|------------------------------------------------------------------------------|
| TOTAL<br>OCCURRENCES<br>PER LEVEL                             |          |                                                                              |
|                                                               | . ,      | I -IIAI                                                                      |
|                                                               | 0.       | 0.                                                                           |
| 1                                                             | 0.062    |                                                                              |
|                                                               | 0.072    |                                                                              |
|                                                               | 0.082    |                                                                              |
|                                                               | 0.095    |                                                                              |
|                                                               | 0.109    |                                                                              |
|                                                               | 0.125    |                                                                              |
|                                                               | 0.144    |                                                                              |
|                                                               | 0.165    |                                                                              |
|                                                               | 0.189    |                                                                              |
| 4                                                             | 0.218    | .872                                                                         |
| 11                                                            | 0.250    | 2.750                                                                        |
| 13                                                            | 0.287    | 1.435                                                                        |
| 5                                                             |          | 1.65                                                                         |
|                                                               |          | 1379                                                                         |
| - '                                                           |          | 131/                                                                         |
|                                                               |          | 1                                                                            |
|                                                               |          |                                                                              |
|                                                               |          | -                                                                            |
|                                                               |          | <del> </del>                                                                 |
|                                                               |          | <del>                                     </del>                             |
|                                                               |          | <del> </del>                                                                 |
|                                                               |          |                                                                              |
|                                                               |          | -                                                                            |
|                                                               |          | <del></del>                                                                  |
|                                                               |          | <del></del>                                                                  |
|                                                               |          | +                                                                            |
|                                                               |          | <del> </del>                                                                 |
|                                                               |          | <del></del>                                                                  |
|                                                               |          |                                                                              |
|                                                               |          | ļ                                                                            |
|                                                               |          | <b></b>                                                                      |
|                                                               | 4.000    |                                                                              |
|                                                               | \$ 1     | 0.109<br>0.125<br>0.144<br>0.165<br>0.189<br>4 0.218<br>11 0.250<br>\$ 0.287 |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

B32

95.6 dBA ((85))

| EMPLOTEES                                    | into Fruit And.                              | DAILI NOOKS    | EVLOSED                               |                |                             |
|----------------------------------------------|----------------------------------------------|----------------|---------------------------------------|----------------|-----------------------------|
| NOTES                                        |                                              | TOTAL SAMPLE   | 29,2800                               | _SAMPLE F      | RATE .833                   |
| MEASURED<br>SOUND LEVEL<br>dBA               | NUMBER OF OCCURRENC<br>(ONE MARK PER OCCURRE | ,              | TOTAL<br>CCURRENCES<br>PER LEVEL<br>n | F              | P=nxF                       |
| Less than 85                                 | 1111                                         |                | 4                                     | 0.             | 0.                          |
| - 85                                         | iii ·                                        |                | 3                                     | 0.062          | .186                        |
| 86                                           | Til .                                        |                | 2                                     | 0.072          | 1144                        |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93 | 1111                                         |                | 3                                     | 0.082          | . 246                       |
| 88                                           | 1141                                         |                | 5                                     | 0.095          | 1475                        |
| 89                                           | 14/111                                       |                |                                       | 0.109          | .8.72                       |
| 90                                           | THU.                                         |                | 5                                     | 0.125          | .625                        |
| 91                                           | 1774                                         |                | 5                                     | 0.144          | ,720                        |
| 92                                           |                                              |                |                                       | 0.165          |                             |
| 93                                           | 11                                           |                | 1                                     | 0.189          | 1189                        |
|                                              |                                              |                |                                       | 0.218          |                             |
| 95                                           |                                              |                |                                       | 0.250          |                             |
| 96                                           |                                              |                |                                       | 0.287          |                             |
| 97                                           |                                              |                |                                       | 0.330          |                             |
| 98                                           |                                              |                |                                       | 0.379          |                             |
| 99                                           |                                              |                |                                       | 0.435          |                             |
| 100                                          |                                              |                |                                       | 0.500          |                             |
| 101                                          |                                              |                |                                       | 0.574          |                             |
| 102                                          |                                              |                |                                       | 0.660<br>0.758 |                             |
| 103                                          |                                              |                |                                       | 0.738          |                             |
| 104                                          | +                                            |                |                                       | 1.000          |                             |
| 106                                          |                                              |                |                                       | 1.149          |                             |
| 107                                          |                                              |                |                                       | 1.320          |                             |
| 108                                          |                                              |                |                                       | 1.516          |                             |
| 109                                          | <del> </del>                                 |                |                                       | 1.741          |                             |
| 110                                          | <del> </del>                                 |                |                                       | 2.000          |                             |
| 111                                          |                                              |                |                                       | 2.297          |                             |
| 112                                          |                                              |                |                                       | 2.639          |                             |
| 113                                          |                                              |                |                                       | 3.031          |                             |
| 114                                          |                                              |                |                                       | 3.482          |                             |
| 115                                          |                                              |                |                                       | 4.000          |                             |
| $\frac{\sum P}{\sum n} = 1.53 \psi =$        | O426 = Fm (2) Dail                           | by Hours Expos | n = 36<br>sed = =                     | Σ<br>= 1       | P = 1.534<br>3.45<br>Ta (3) |

| 114<br>115                                                                  |                                  |                           | 3.482<br>4.000 |                                |
|-----------------------------------------------------------------------------|----------------------------------|---------------------------|----------------|--------------------------------|
| - a D                                                                       | Σn                               | n = 36_                   | ΣP             | = 1.534 (1<br>3.457<br>(3)     |
| $\frac{\sum P}{\sum n} = \frac{1.534}{36} = \frac{0.0426}{0.0460} = Fm (2)$ | Daily Hours Expose<br>Shift Time | ed = =                    | = Ta           | (3)                            |
| Fm x Ta = x =                                                               | = Fm (4)                         | Equivalent<br>Noise Level | ∠90 dBA        | ((90)) (                       |
| $L = 16.61 \log (16F) + 85.$                                                | $F = 1/T_p = (1/16)2^{(L-85)}$   | 1/5].                     | dBA            | ((85))<br>((80))<br><b>B32</b> |

|                           |                                            | EQUIVALENT NOISE                             | APUSURE DATA                                                     | A SHEET                       |                |          |
|---------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------------|-------------------------------|----------------|----------|
|                           | PLANT Control OPERATION Plan EMPLOYEES Buc | intal forest Index, in Mil sup. office.      | DATA 2/20/81 BY Lee 1 Dudley START/STOP TIME DAILY HOURS EXPOSED |                               |                |          |
|                           | NOTES                                      |                                              | TOTAL SAMP                                                       | LE 30 Sec,                    | SAMPLE F       | ATE NA   |
|                           | MEASURED<br>SOUND LEVEL<br>dBA             | NUMBER OF OCCURRENC<br>(ONE MARK PER OCCURRE | CES                                                              | TOTAL OCCURRENCES PER LEVEL n | F              | P=nxF    |
|                           | Less than 85                               |                                              |                                                                  |                               | 0.             | 0.       |
| _                         | 85                                         |                                              |                                                                  | <del></del>                   | 0.062          | · · ·    |
| Existing<br>lation Cutoff | 86                                         |                                              |                                                                  |                               | 0.072          |          |
| 9                         | 87                                         |                                              |                                                                  |                               | 0.082          |          |
| Cu S                      | 88                                         |                                              |                                                                  |                               | 0.095          |          |
| th u                      | 89                                         |                                              |                                                                  |                               | 0.109          |          |
| Existi<br>Regulation      | 90                                         |                                              |                                                                  |                               | 0.125          |          |
| at at                     | 91                                         |                                              |                                                                  |                               | 0.144          |          |
| 띄딬                        | 92                                         | Lucrywhere less than                         | 82.                                                              |                               | 0.165          |          |
| 9                         | 93                                         | ^                                            |                                                                  |                               | 0.189          |          |
| الم                       | 94                                         | See tope.                                    |                                                                  |                               | 0.218          |          |
|                           | 95                                         |                                              |                                                                  |                               | 0.250          |          |
|                           | 96                                         |                                              |                                                                  |                               | 0.287          |          |
|                           | 97                                         |                                              |                                                                  |                               | 0.330          |          |
|                           | 98                                         |                                              |                                                                  |                               | 0.379          |          |
|                           | 99                                         |                                              |                                                                  |                               | 0.435          |          |
|                           | 100                                        |                                              |                                                                  |                               | 0.500          |          |
|                           | 101                                        |                                              |                                                                  |                               | 0.574          |          |
|                           | 102                                        |                                              |                                                                  |                               | 0.660          |          |
| - 1                       | 103                                        |                                              |                                                                  |                               | 0.758          |          |
|                           | 104                                        |                                              |                                                                  |                               | 0.871          |          |
|                           | 105                                        |                                              |                                                                  |                               | 1.000          |          |
|                           | 106                                        |                                              |                                                                  |                               | 1.149          |          |
| - 1                       | 107                                        |                                              |                                                                  |                               | 1.320          | •        |
|                           | 108                                        |                                              |                                                                  |                               | 1.516          |          |
| - 1                       | 109                                        |                                              |                                                                  |                               | 1.741          |          |
|                           | 110                                        |                                              |                                                                  |                               | 2.000          |          |
|                           | 111                                        |                                              |                                                                  |                               | 2.297          |          |
|                           | 112                                        |                                              |                                                                  |                               | 2.639          |          |
|                           | 113<br>114                                 |                                              |                                                                  | <del></del>                   | 3.031<br>3.482 |          |
|                           | 115                                        |                                              |                                                                  |                               | 4.000          |          |
| J                         | 113                                        |                                              |                                                                  |                               | 4.000          |          |
|                           | ΣΡ                                         | <u>Dail</u>                                  |                                                                  | ∑n =                          |                | P = (3)  |
|                           | Σn                                         | Dall                                         | Shift Time                                                       | 8                             | - 1            | a (3)    |
|                           |                                            |                                              | JHILL IIIIC                                                      |                               |                |          |
|                           | Fm x Ta =                                  | x = Fm (4)                                   | )                                                                | Equivalent<br>Noise Level     | 490 dE         | A ((90)) |
|                           |                                            |                                              |                                                                  | 7                             | < 85 dB        |          |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ .

|                               | OPERATION OUTS EMPLOYEES out to NOTES | inental forest A.  ide dy kilns (in up.) at ued and | DAILY HOUR                 | TIME_<br>S EXPOSED            | el Dubl<br>SAMPLE I |           |
|-------------------------------|---------------------------------------|-----------------------------------------------------|----------------------------|-------------------------------|---------------------|-----------|
|                               | MEASURED<br>SOUND LEVEL<br>dBA        | NUMBER OF OCCURRENCE (ONE MARK PER OCCURRENCE)      |                            | TOTAL OCCURRENCES PER LEVEL n | F                   | P=nxF     |
|                               | Less than 85                          |                                                     |                            |                               | 0.                  | 0.        |
|                               | 85                                    |                                                     |                            |                               | 0.062               |           |
| ĘĘ                            | 86                                    |                                                     |                            |                               | 0.072               |           |
| i i                           | 87                                    |                                                     |                            |                               | 0.082               |           |
| ည္က                           | 88                                    |                                                     |                            |                               | 0.095               |           |
| 11 K                          | 89                                    |                                                     |                            |                               | 0.109               |           |
| lst<br>Lic                    | 90                                    |                                                     |                            |                               | 0.125               |           |
| Ex.                           | 91                                    |                                                     |                            |                               | 0.144               |           |
| gr                            | 92                                    | EVERywhere less than                                | -81                        |                               | 0.165               |           |
| Existing<br>Regulation Cutoff | 93<br>94                              |                                                     |                            |                               | 0.189               |           |
| ر د                           | 95                                    | See tape.                                           |                            |                               | 0.218               |           |
|                               | 96                                    | Jee 1-pc.                                           |                            |                               | 0.287               |           |
|                               | 97                                    |                                                     |                            | <del></del>                   | 0.330               |           |
|                               | 98                                    |                                                     |                            |                               | 0.379               |           |
|                               | 99                                    |                                                     |                            |                               | 0.435               |           |
|                               | 100                                   |                                                     |                            |                               | 0.500               |           |
|                               | 101                                   |                                                     |                            |                               | 0.574               |           |
|                               | 102                                   |                                                     |                            |                               | 0.660               |           |
|                               | 103                                   |                                                     |                            |                               | 0.758               |           |
|                               | 104                                   |                                                     |                            |                               | 0.871               |           |
|                               | 105                                   |                                                     |                            |                               | 1.000               |           |
|                               | 106                                   |                                                     |                            |                               | 1.149               |           |
|                               | 107                                   |                                                     |                            |                               | 1.320               |           |
|                               | 108                                   |                                                     |                            |                               | 1.516               |           |
|                               | 109                                   |                                                     |                            |                               | 1.741               |           |
|                               | 110                                   |                                                     | i                          |                               | 2.000               |           |
|                               | 111                                   |                                                     |                            |                               | 2.297               |           |
|                               | 112                                   |                                                     |                            |                               | 2.639<br>3.031      |           |
|                               | 114                                   |                                                     |                            |                               | 3.482               |           |
|                               | 115                                   |                                                     |                            |                               | 4.000               |           |
|                               |                                       |                                                     |                            |                               | <u> </u>            |           |
|                               |                                       |                                                     |                            | ∑n =                          | Σ                   | P =       |
|                               | $\frac{\sum p}{\sum p} = $            | O = Fm (2) Dai                                      | ly Hours Exp<br>Shift Time | osed = =                      | = '                 | Га (3)    |
|                               | Fm x Ta =                             | x = Fm (4                                           | )                          | Equivalent<br>Noise Leve      | 1 290 d             | BA ((90)) |
|                               |                                       |                                                     |                            | -                             | <u> </u>            | BA ((85)) |
|                               | 1 - 4/ (1 1                           | (167) 1 05 7 7/7                                    | (L-                        | 85)/5                         |                     |           |
|                               | $L = 16.61 \log$                      | $(16F) + 85.$ $F = 1/T_p =$                         | (1/16)25                   | •                             |                     | 335       |

| NOTES                                        | TOTAL S                                         | SAMPLE SIN Sec                         | SAMPLE I       | RATE                   |
|----------------------------------------------|-------------------------------------------------|----------------------------------------|----------------|------------------------|
| MEASURED<br>SOUND LEVEL<br>dBA               | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n          | F              | P=nxF                  |
| Less than 85                                 |                                                 |                                        | 0.             | 0.                     |
| 85                                           |                                                 |                                        | 0.062          |                        |
| 86                                           | 100                                             |                                        | 0.072          |                        |
| 87                                           |                                                 |                                        | 0.082          |                        |
| 88                                           |                                                 |                                        | 0.095          |                        |
| 89                                           |                                                 |                                        | 0.109          |                        |
| 90                                           |                                                 |                                        | 0.125          | <del></del>            |
| 91                                           |                                                 |                                        | 0.144          | <b></b>                |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93 |                                                 |                                        | 0.165<br>0.189 |                        |
| 93                                           | h                                               | 7                                      | 0.189          | . 436                  |
| 74                                           | 14711                                           | 7                                      | 0.218          | 1.750                  |
| 96                                           |                                                 | 27                                     | 0.230          | 7.749                  |
| 97                                           | HO WININI                                       | 19                                     | 0.330          | 6.270                  |
|                                              | IMII                                            | 7                                      | 0.379          | 2.653                  |
| 99                                           | 17411                                           |                                        | 0.435          |                        |
| 100                                          | ſ <sub>1</sub>                                  |                                        | 0.500          | .500                   |
| 101                                          | <del> </del>                                    |                                        | 0.574          |                        |
| 102                                          |                                                 |                                        | 0.660          |                        |
| 103                                          |                                                 |                                        | 0.758          |                        |
| 104                                          |                                                 |                                        | 0.871          |                        |
| 105                                          |                                                 |                                        | 1.000          |                        |
| 106                                          |                                                 |                                        | 1.149          |                        |
| 107                                          |                                                 |                                        | 1.320          |                        |
| 108                                          |                                                 |                                        | 1.516          |                        |
| 109                                          |                                                 |                                        | 1.741          |                        |
| 110                                          |                                                 |                                        | 2.000          |                        |
| 111                                          |                                                 |                                        | 2.297          |                        |
| 112                                          |                                                 |                                        | 2.639          |                        |
| 113                                          |                                                 | · · · · · · · · · · · · · · · · · · ·  |                |                        |
| 114                                          |                                                 |                                        |                |                        |
| 115                                          |                                                 |                                        | 4.000          |                        |
| 114                                          | Daily Hours                                     | $\sum n = b^3$ Exposed = =             |                | P=19.35 Ta (3)         |
|                                              | 3073 = Fm (2) Daily Hours Shift Tr              | Exposed = = = 8  Equivalent Noise Leve |                |                        |
| rm A Id -                                    | A                                               | Noise Leve                             |                |                        |
|                                              | _ A                                             | Noise Leve                             |                | BA ((90))<br>BA ((85)) |

|                               | PLANT Continued frust and. DATA 2/20/81 BY Lee / Dulley OPERATION PU slichs at conveyer dump in START/STOP TIME  EMPLOYEES Stick man, 81 sm. bldg. DAILY HOURS EXPOSED |                                                  |             |                               |       |                      |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|-------------------------------|-------|----------------------|
|                               | NOTES                                                                                                                                                                  |                                                  |             | E 37.5 Sec                    |       |                      |
|                               | MEASURED<br>SOUND LEVEL<br>dBA                                                                                                                                         | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENC |             | TOTAL OCCURRENCES PER LEVEL n | F     | P=nxF                |
|                               | Less than 85                                                                                                                                                           | HI MIMIMIMIM                                     |             | 30                            | 0.    | 0.                   |
| _                             | 85                                                                                                                                                                     |                                                  |             | 3                             | 0.062 | .186-73              |
| 뛻                             | 86                                                                                                                                                                     | 1                                                |             | 1                             | 0.072 | 0727                 |
| Existing<br>Regulation Cutoff | 87                                                                                                                                                                     |                                                  |             | 2                             | 0.082 | 11.1                 |
| 8<br>Cu                       | 88                                                                                                                                                                     |                                                  |             | 1                             | 0.095 | 1295                 |
| # "                           | 89                                                                                                                                                                     |                                                  |             |                               | 0.109 | .109                 |
| st<br>io                      | 90                                                                                                                                                                     | 111                                              |             | 3                             | 0.125 | .375                 |
| sx1<br>lat                    | 91                                                                                                                                                                     |                                                  |             |                               | 0.144 |                      |
|                               | 92                                                                                                                                                                     |                                                  |             | 3                             | 0.165 | ,495                 |
| ě                             | 93                                                                                                                                                                     |                                                  |             |                               | 0.189 |                      |
| -1                            | 94                                                                                                                                                                     |                                                  |             |                               | 0.218 |                      |
|                               | 95                                                                                                                                                                     |                                                  |             |                               | 0.250 |                      |
|                               | 96                                                                                                                                                                     |                                                  |             |                               | 0.287 | .287                 |
| - 1                           | 97                                                                                                                                                                     |                                                  |             |                               | 0.330 |                      |
|                               | 98                                                                                                                                                                     |                                                  |             |                               | 0.379 |                      |
|                               | 99                                                                                                                                                                     |                                                  |             |                               | 0.435 |                      |
|                               | 100                                                                                                                                                                    |                                                  |             |                               | 0.500 |                      |
|                               | 101<br>102                                                                                                                                                             |                                                  |             |                               | 0.574 |                      |
| - 1                           | 102                                                                                                                                                                    |                                                  |             |                               | 0.758 |                      |
| - 1                           | 103                                                                                                                                                                    |                                                  |             |                               | 0.738 |                      |
|                               | 105                                                                                                                                                                    |                                                  | <del></del> |                               | 1.000 |                      |
| 1                             | 106                                                                                                                                                                    |                                                  |             |                               | 1.149 |                      |
|                               | 107                                                                                                                                                                    |                                                  |             |                               | 1.320 |                      |
|                               | 108                                                                                                                                                                    |                                                  |             |                               | 1.516 |                      |
| 1                             | 109                                                                                                                                                                    |                                                  |             |                               | 1.741 |                      |
|                               | 110                                                                                                                                                                    |                                                  |             |                               | 2.000 |                      |
|                               | 111                                                                                                                                                                    |                                                  |             |                               | 2.297 |                      |
|                               | 112                                                                                                                                                                    |                                                  |             |                               | 2.639 |                      |
|                               | 113                                                                                                                                                                    |                                                  |             |                               | 3.031 |                      |
|                               | 114                                                                                                                                                                    |                                                  |             |                               | 3.482 |                      |
|                               | 115                                                                                                                                                                    |                                                  |             |                               | 4.000 |                      |
| ľ                             | $\frac{\sum P}{\sum n} = \frac{1662}{145} = 1$                                                                                                                         | 0157 = Fm (2) Daily                              | Hours Expo  | sed = =                       |       | P=1,157 1.783 Ta (3) |

 $\frac{\sum P}{\sum n} = \frac{45}{100} = \frac{5}{100} = \frac$ 

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

**B37** 

|               | PLANT Corte OPERATION CN C EMPLOYEES CN S | S Cutting ST<br>b. up. ((6) DA                    | TATA 2/28/80 INTERPOSED TART/STOP TIME |             |               |
|---------------|-------------------------------------------|---------------------------------------------------|----------------------------------------|-------------|---------------|
|               | NOTES IN                                  | B GOTH TO                                         | TAL SAMPLE 105                         | Sec. SAMPLE | RATE 1.61     |
|               | MEASURED<br>SOUND LEVEL<br>dBA            | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE |                                        | L 4'        | P=nxF         |
|               | Less than 85                              | MIMIMIII                                          | 19                                     | 0.          | 0             |
| ٦             | 85                                        | 141                                               | Ś                                      | 0.062       | 131           |
| ££            | 86                                        | 7441111                                           | 9                                      | 0.072       | .648          |
| tc            | 87                                        |                                                   | 4                                      | 0.082       | 328           |
| lation Cutoff | 88                                        | MI                                                | 17                                     | 0.095       | .436          |
| u -           | 89                                        |                                                   | 4                                      | 0,109       |               |
| Regulation    | 90                                        | TH MI                                             | 11                                     | 0.125       | 1.375         |
| lai           | 91                                        | ill                                               | 3                                      | 0.144       | .432          |
| gn            | 92                                        |                                                   | <del></del>                            | 0.165       | 37.6          |
| Re            | 93<br>94                                  |                                                   | 2                                      | 0.218       | .378          |
| _             | 95                                        |                                                   |                                        | 0.250       |               |
|               | 96                                        |                                                   |                                        | 0.287       | <del> </del>  |
|               | 97                                        |                                                   |                                        | 0.330       | <del> </del>  |
|               | 98                                        |                                                   |                                        | 0.379       |               |
|               | 99                                        |                                                   |                                        | 0.435       | -             |
|               | 100                                       |                                                   |                                        | 0.500       | † <del></del> |
|               | 101                                       |                                                   |                                        | 0.574       | <del> </del>  |
|               | 102                                       |                                                   |                                        | 0.660       | <u> </u>      |
|               | 103                                       |                                                   |                                        | 0.758       | 1             |
|               | 104                                       |                                                   |                                        | 0.871       |               |
|               | 105                                       |                                                   |                                        | 1.000       |               |
|               | 106                                       |                                                   |                                        | 1.149       |               |
|               | 107                                       |                                                   |                                        | 1.320       |               |
|               | 108                                       |                                                   |                                        | 1.516       |               |
|               | 109                                       |                                                   |                                        | 1.741       | <u> </u>      |
|               | 110                                       |                                                   |                                        | 2.000       | <del> </del>  |
|               | 111                                       |                                                   |                                        | 2.297       | <del> </del>  |
|               | 112                                       |                                                   |                                        | 2.639       | <del> </del>  |
|               | 113                                       |                                                   |                                        | 3.031       | <del> </del>  |
|               | 114                                       |                                                   |                                        | 3.482       | ļ             |
|               | 115                                       |                                                   |                                        | 4.000       | 1             |

| - 40                                                                      | $\sum n = 64$                          | ∑P=2.185 (1<br>¥.572 |
|---------------------------------------------------------------------------|----------------------------------------|----------------------|
| $\frac{\sum P}{\sum n} = \frac{2.185}{64} = \frac{.0341}{.0341} = Fm (2)$ | Daily Hours Exposed = = = Shift Time 8 | = Ta (3)             |
| • • • • • • • • • • • • • • • • • • •                                     | = Fm (4) Equivalent Noise Level 4      | 90 dBA ((90)) (5     |
|                                                                           | 8                                      | 6.0 dBA ((85))       |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ .

838

|                               |                  | 140                                              | TVALENT NOTEL    |                         |                                                  | _             |            |                       |                |
|-------------------------------|------------------|--------------------------------------------------|------------------|-------------------------|--------------------------------------------------|---------------|------------|-----------------------|----------------|
|                               |                  |                                                  |                  | 2-2                     | 8-80                                             | <b>(1)</b>    |            |                       |                |
|                               | PLANT Cont       | mental for                                       | est Industris    | DATA DATE 3-            | 7 - 80                                           | DRY L         | 5 ¢        |                       |                |
|                               | OPERATION CAS    |                                                  |                  | START/STOP              |                                                  |               |            |                       |                |
|                               | EMPLOYEES Op.    |                                                  | <u> </u>         | DAILY HOUR              |                                                  | SED           |            |                       |                |
|                               | <del></del>      |                                                  |                  |                         |                                                  |               | · · ·      | 0.83                  |                |
|                               | NOTES VSA        | TRIM SAW                                         | ON 700.          | TOTAL SAMP              | LE 18                                            | 1.78c (F      | SAMPLE F   | RATE 0.83             | ے کو د         |
| 1                             |                  | MISO A LO                                        | T OF AIR NO      | 155                     | TO'                                              | TAL           |            |                       |                |
|                               | MEASURED         |                                                  | ER OF OCCURRENC  |                         | ,                                                | RENCES        |            |                       | - 1            |
|                               | SOUND LEVEL      |                                                  | ARK PER OCCURRE  |                         |                                                  | LEVEL         | F          | P≖nxF                 | - 1            |
|                               | dBA              | ,                                                |                  | ,                       | 1                                                | n             |            |                       | - 1            |
|                               | Less than 85     |                                                  |                  |                         |                                                  |               | 0.         | 0.                    | 7              |
| _                             | 85               | <del> </del>                                     |                  |                         | <del> </del>                                     |               | 0.062      | <u> </u>              | $\dashv$       |
| 9-1                           | 86               |                                                  |                  |                         | <del>                                     </del> |               | 0.072      | <del></del>           |                |
| Ö                             | 87               |                                                  |                  |                         | 1                                                |               | 0.082      |                       | -1             |
| Out                           | 88               |                                                  |                  |                         | 1                                                |               | 0.095      |                       | $\dashv$       |
| in c                          | 89               | T                                                |                  |                         | 1                                                |               | 0.109      |                       |                |
| st                            | 90               |                                                  |                  |                         |                                                  |               | 0.125      |                       | <b>—</b>       |
| Existing<br>Regulation Cutoff | 91               |                                                  |                  |                         |                                                  |               | 0.144      |                       |                |
| 디디田                           | 92               |                                                  | 1111             |                         | 1                                                | 4 -           | 0.165      | ,16S                  | .64            |
| 69                            | 93               |                                                  | .11\\            |                         | 3                                                | , 4           | 0.189      |                       | 756            |
| الم                           | 94               | 14411                                            | MIMIM            |                         | 17                                               | 14 21         | 0.218      |                       | 3.05:          |
|                               | 95               | 11                                               | THI              |                         | 2                                                | 6 8           | 0.250      |                       | 1,400          |
|                               | 96               | MINIT                                            | THIM             |                         | 14                                               | 1 12 26       | 0.287      | 4.018                 | 3,444          |
|                               | 97               | MIII                                             | MHHHM            |                         | 8                                                | 18 26         | 0.330      | 2.64                  | 5.94           |
|                               | 98               | MIM                                              | IMMIMIMI         |                         | 10                                               | 21 31         | 0.379      | 3.790                 | 7.959          |
|                               | 99               | M1111                                            | MAMINI           |                         | 9                                                | 1 13 22       | 0.435      | 3.915                 | 5.655          |
|                               | 100              | MIMIM                                            | IMMMMMI          | 1                       | 15                                               | 23 38         | 0.500      | 7.500                 | 11.5           |
|                               | 101              | MAIL                                             | IIIIMIM          |                         | 8                                                | 14 22         | 0.574      |                       | 8.036          |
|                               | 102              | 1111                                             | MINIMINI M.      | 1411                    | 6                                                | 1 30 36       | 0.660      |                       | 19. 8          |
|                               | 103              | mmmi                                             | I WIMMINI        | 1                       | 111                                              | 2037          | 0.758      |                       | 15.16          |
|                               | 104              | MINHUM                                           | 1 immunun        | Ш                       | 16                                               | 22 38         | 0.871      |                       | 19: 16:        |
|                               | 105              | MIII                                             | 1411             |                         | 07                                               | 6 13          | 1.000      |                       | 6,00           |
|                               | 106              | <u> </u>                                         | 1111             |                         | 1                                                | 4 5           | 1.149      | 1.149                 | <u>4.5.196</u> |
|                               | 107              |                                                  |                  |                         | 1 2                                              | 2             | 1.320      | 2.64                  |                |
|                               | 108              |                                                  |                  |                         | <del>                                     </del> |               | 1.516      | 1.576                 | _              |
|                               | 109              | <del>                                     </del> |                  |                         | 1                                                |               | 1.741      | 1.74/                 |                |
|                               | 110              | <del>                                     </del> |                  |                         | <del> </del>                                     |               | 2.000      | 2.504                 |                |
|                               | 111              |                                                  | <del> </del>     |                         | <del> </del>                                     | +             | 2.639      | 0                     | -D             |
|                               | 113              |                                                  |                  |                         | <del> </del>                                     |               | 3.031      |                       | -19            |
|                               | 114              |                                                  | (2)              |                         | 10                                               | (1) TUT.      | 3.482      |                       | -              |
|                               |                  | 000041                                           | sility chech     |                         | 100                                              | 101.          | 4.000      |                       |                |
| 1                             |                  | . Kehema                                         | siving Chron     |                         | 1                                                | , ,           |            |                       | _              |
|                               | 211 =            | .5366 D                                          | (2) ① <u>Dai</u> |                         | $\sum n = 3$                                     | 340           | Σ          | P = 16.0              | 41 (1          |
|                               | <b>SP</b> -1 0/1 |                                                  | _                |                         |                                                  |               | _          | 2113.                 | 22             |
|                               | = 16.041 =       | 5895 = Fm (                                      | (2) (Dail        | Ly Hours Exp            | osed =                                           | =             | = 1        | Ta (3)                |                |
|                               | Z"  M -          |                                                  |                  | Shift Time              |                                                  | 8             |            |                       |                |
|                               | **               |                                                  | 7/ (1)           |                         | n Eq                                             | uivalent      | ,          |                       |                |
| \                             | Im x Ta =        | x =                                              | = rm (4)         | 100.                    | No No                                            | ise Level     | (101.2- di | BA ((90))             | (5             |
| (va                           | TOTAL = 189.2    | = . 55665                                        |                  | 100 ( JANIA             | .8                                               | $\mathcal{O}$ | 1017 3     | 0A ((OE))             |                |
|                               | D+0 340          | 3                                                | $F = 1/T_p =$    | . (                     | 05.7-7                                           |               | 101. C ar  | υ <del>ν</del> ((Ω))) |                |
|                               | L = 16.61 100    | (16F) + 85                                       | F = 1/T_ =       | (1/16)2 <sup>[(L-</sup> | -85)/5]                                          |               | 5100.5 d   | PA                    |                |
|                               |                  | (,                                               | /-p              | (=/=0/=                 |                                                  | . (1)         | ) 100,5 A  | BA B                  | 34             |
|                               |                  |                                                  |                  |                         |                                                  |               | 1          |                       |                |

|                                | TOTAL S                                         | SAMPLE 68,3 Sec               | SAMPLE | RATE 0.83    |
|--------------------------------|-------------------------------------------------|-------------------------------|--------|--------------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F      | P=nxF        |
| Less than 85                   |                                                 |                               | 0.     | 0.           |
| 85                             |                                                 |                               | 0.062  | 1            |
| 86                             |                                                 |                               | 0.072  |              |
| 87                             |                                                 |                               | 0.082  |              |
| 88                             |                                                 |                               | 0.095  |              |
| 89                             |                                                 |                               | 0.109  |              |
| 90                             |                                                 |                               | 0.125  |              |
| 91                             |                                                 |                               | 0.144  |              |
| 92                             |                                                 |                               | 0.165  |              |
| 93                             |                                                 |                               | 0.189  |              |
| 94                             |                                                 |                               | 0.218  |              |
| 95                             |                                                 |                               | 0.250  |              |
| 96                             |                                                 |                               | 0.287  |              |
| 97                             |                                                 | 1                             | 0.330  | .330         |
| 98                             |                                                 | 3                             | 0.379  | 1.137        |
| 99                             | MII                                             | 7                             | 0.435  | 3.045        |
| 100                            | MHMMMMMM                                        | 45                            | 0.500  | 22.500       |
| 101                            | minini                                          | 16                            | 0.574  | 9.184        |
| 102                            | MIMI                                            |                               | 0.660  | 7.260        |
| 103                            |                                                 |                               | 0.758  |              |
| 104                            |                                                 |                               | 0.871  |              |
| 105                            |                                                 |                               | 1.000  | <del> </del> |
| 106                            |                                                 |                               | 1.149  | ļ            |
| 107                            |                                                 |                               | 1.516  | <del></del>  |
| 108                            |                                                 |                               | 1.741  | ļ            |
| 109                            |                                                 |                               | 2.000  | <del> </del> |
|                                |                                                 |                               | 2.297  | <del> </del> |
| 111                            |                                                 |                               | 2.639  |              |
| 113                            |                                                 |                               | 3.031  |              |
| 113                            |                                                 |                               | 3.482  |              |
|                                |                                                 |                               | 4.000  |              |
| 115                            |                                                 |                               |        |              |

L = 16.61 log (16F) + 85. F =  $1/T_p$  =  $(1/16)2^{(L-85)/5}$ .

106.3 dBA ((85))

| MEASURED SOUND LEVEL dBA  Less than 85 85 86 87 88 89 90 91 | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL<br>OCCURRENCES | 1     | 1            |
|-------------------------------------------------------------|-------------------------------------------------|----------------------|-------|--------------|
|                                                             | 4                                               | PER LEVEL n          | F     | P=nxF        |
|                                                             |                                                 |                      | 0.    | 0.           |
| 86                                                          |                                                 |                      | 0.062 | <del> </del> |
| 11                                                          |                                                 |                      | 0.002 | <del> </del> |
| 87                                                          |                                                 |                      | 0.082 | 1            |
| 88                                                          |                                                 |                      | 0.095 |              |
| 89                                                          |                                                 |                      | 0,109 |              |
| 90                                                          |                                                 |                      | 0.125 |              |
| 91                                                          |                                                 |                      | 0.144 |              |
| 92                                                          |                                                 |                      | 0.165 |              |
| 90<br>91<br>92<br>93                                        |                                                 |                      | 0.189 |              |
| 74                                                          |                                                 |                      | 0.218 |              |
| 95                                                          |                                                 |                      | 0.250 |              |
| 96                                                          |                                                 |                      | 0.287 | .287         |
| 97                                                          | THIT!                                           | 9                    | 0.330 | 2.970        |
| 98                                                          | MUNITU                                          | 15                   | 0.379 | 5.685        |
| 99                                                          | MUMMINI I                                       | 24                   | 0.435 | 10.44        |
|                                                             | MITHI                                           |                      | 0.500 | 5.50         |
| 101                                                         | IM                                              | 5                    | 0.574 | 2.87         |
| 102                                                         |                                                 |                      | 0.660 | 1            |
| 103                                                         | <del></del>                                     |                      | 0.758 | 1            |
| 104                                                         |                                                 |                      | 1.000 | +            |
| 106                                                         |                                                 |                      | 1.149 | <del></del>  |
| 107                                                         | <del></del>                                     |                      | 1.149 | 1            |
| 107                                                         |                                                 |                      | 1.516 | <del> </del> |
| 109                                                         |                                                 |                      | 1.741 | <del></del>  |
| 110                                                         |                                                 |                      | 2.000 | <del> </del> |
| 111                                                         |                                                 |                      | 2.297 | <del> </del> |
| 112                                                         | <u> </u>                                        |                      | 2.639 | 1            |
| 113                                                         |                                                 |                      | 3.031 | <del></del>  |
| 114                                                         |                                                 |                      | 3.482 |              |
| 115                                                         |                                                 |                      | 4.000 | t            |
|                                                             |                                                 |                      |       | 1            |
|                                                             |                                                 | $\sum n = 65$        | >     | P=27.75      |
| •                                                           | 14270 = Fm (2) Daily Hours Shift T              | Fautvalent           |       |              |

|                    | NOTES 14                                | nutal Frest And. |                | RS EXPOSED                    |                         | RATE      |
|--------------------|-----------------------------------------|------------------|----------------|-------------------------------|-------------------------|-----------|
|                    | MEASURED<br>SOUND LE <b>VE</b> L<br>dBA | NUMBER OF OCCUR  |                | TOTAL OCCURRENCES PER LEVEL n | F                       | P=nxF     |
|                    | Less than 85                            |                  |                |                               | 0.                      | 0.        |
| ٦                  | 85                                      |                  |                |                               | 0.062                   |           |
| 빏                  | 86                                      |                  |                |                               | 0.072                   |           |
|                    | 87                                      |                  |                |                               | 0.082                   |           |
| 5                  | 88                                      |                  |                |                               | 0.095                   |           |
| ᇊ                  | 89                                      |                  |                |                               | 0,109                   |           |
| žΠ                 | 90                                      |                  |                | -                             | 0.125                   |           |
| Regulation Cutoff, | 91                                      | Everywhere loss  | than 21        | <del> </del>                  | 0.144                   |           |
| gn                 | 92                                      | CACICAL TANK     | 1 377 61       |                               | 0.165                   |           |
| Re                 | 93<br>94                                | Generally Loss   | than 74.       | <del> </del>                  | 0.189                   |           |
| ٠,                 | 95                                      | 9504744 633      | 11000          |                               | 0.210                   |           |
|                    | 96                                      |                  |                |                               | 0.287                   |           |
|                    | 97                                      | See tape.        |                | ·                             | 0.330                   |           |
|                    | 98                                      |                  |                |                               | 0.379                   |           |
|                    | 99                                      |                  |                |                               | 0.435                   |           |
|                    | 100                                     |                  |                |                               | 0.500                   |           |
|                    | 101                                     |                  |                |                               | 0.574                   |           |
|                    | 102                                     |                  |                |                               | 0.660                   |           |
|                    | 103                                     |                  |                |                               | 0.758                   |           |
|                    | 104                                     |                  |                |                               | 0.871                   |           |
|                    | 105                                     |                  |                |                               | 1.000                   |           |
|                    | 106                                     |                  |                |                               | 1.149                   |           |
|                    | 107                                     |                  |                |                               | 1.320                   | ·         |
|                    | 108                                     |                  |                |                               | 1.516                   |           |
|                    | 109                                     |                  |                | <u> </u>                      | 1.741                   |           |
|                    | 110                                     |                  |                |                               | 2.000                   |           |
|                    | 111                                     |                  |                |                               | 2.297                   |           |
|                    | 112                                     |                  |                |                               | 2.639                   |           |
|                    | 113                                     |                  |                |                               | 3.031                   |           |
|                    | 114<br>115                              |                  |                |                               | 4.000                   |           |
|                    | 11.5                                    |                  |                | 1                             |                         |           |
|                    |                                         |                  |                | $\sum n = $                   | 2                       | P =       |
|                    | $\frac{\sum P}{\sum P} = \sum$          | O = Fm (2)       | Daily Hours Ex | posed = =                     | : # '                   | Ta (3)    |
|                    | ∑n                                      |                  | Shift Time     | 8                             |                         |           |
|                    | Fm x Ta =                               | x = = Fr         | ń (4)          | Equivalent<br>Noise Leve      | :<br>e1 <u>&lt;90</u> d | BA ((90)) |
|                    |                                         |                  |                |                               | < 85 di                 | BA ((85)) |

EQUIVALENT NOISE EXPOSURE DATA SHEET PLANT Continuity First and DATA DATE 2-28-80 BY LEE

OPERATION Clemy ... LL START/STOP TIME

EMPLOYEES (NS Mill Sdyr Dp. C1 DAILY HOURS EXPOSED

110+130+155+65

TOTAL SAMPLE 460 &C SAMPLE RATE 5 ACC TOTAL **MEASURED** OCCURRENCES NUMBER OF OCCURRENCES F P=nxFSOUND LEVEL (ONE MARK PER OCCURRENCE) PER LEVEL dBA n 0. Less than 85 0. 0.062 0.072 86 87 0.082 0.095 88 Regulation 89 0.109 90 2 0.125 ,250 91 0.144 .864 92 0.165 1.815 MIM 93 1.701 0.189 3.924 94 B 0.218 0.250 15 95 MUHHIM 2750 96 0.287 6.601 0.330 1.98 97 6 0.379 98 1.895 M 0.435 99 0.500 100 0.574 101 0.660 102 103 0.758 .758 104 0.871 1.000 105 1.149 106 107 1.320 1.516 108 1.741 109 2.000 110 111 2.297 2.639 112 3.031 113 3.482 114 4.000 115  $\sum n = 96$   $\sum P = 23.538$  (

 $\frac{\sum P}{\sum n} = 23.538 = 2452 = Fm (2)$   $\frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{1}{8} = \frac{$ Equivalent Fm x Ta = \_\_\_ x \_\_ = Fm (4) Noise Level 94.7 dBA ((90)) ( 94.9 dBA ((85))

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

(1

(5

| EMPLOYEES 01                                       |                                                | AILY HOURS E | EXPUSED                               | SAMPLE I | RATE  |
|----------------------------------------------------|------------------------------------------------|--------------|---------------------------------------|----------|-------|
| MEASURED<br>SOUND LEVEL<br>dBA                     | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE |              | TOTAL<br>CCURRENCES<br>PER LEVEL<br>n | F        | P=nxF |
| Less than 85                                       |                                                |              |                                       | 0.       | 0.    |
| - 85                                               |                                                |              |                                       | 0.062    |       |
| 86                                                 |                                                |              |                                       | 0.072    |       |
| 87                                                 |                                                |              |                                       | 0.082    |       |
| 3 88                                               |                                                |              |                                       | 0.095    |       |
| 89                                                 |                                                |              |                                       | 0,109    |       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94 |                                                |              |                                       | 0.125    |       |
| 91                                                 |                                                |              |                                       | 0.144    |       |
| 92                                                 | G. Sterl                                       |              |                                       | 0.165    |       |
| 93<br>94                                           | Quite Steady evel                              |              |                                       | 0.189    |       |
| 95                                                 | GENERALLY Steady on                            | 40           |                                       | 0.218    |       |
| 96                                                 | Conducted strong on                            | 10.          |                                       | 0.287    |       |
| 97                                                 |                                                | <del></del>  |                                       | 0.330    |       |
| 98                                                 | See Tape.                                      |              |                                       | 0.379    |       |
| 99                                                 |                                                |              |                                       | 0.435    |       |
| 100                                                |                                                |              |                                       | 0.500    |       |
| 101                                                |                                                |              |                                       | 0.574    | ·     |
| 102                                                |                                                |              |                                       | 0.660    |       |
| 103                                                |                                                |              |                                       | 0.758    |       |
| 104                                                |                                                |              |                                       | 0.871    |       |
| 105                                                |                                                |              |                                       | 1.000    |       |
| 106                                                |                                                |              |                                       | 1.149    |       |
| 107                                                |                                                |              |                                       | 1.320    |       |
| 108                                                |                                                |              |                                       | 1.516    |       |
| 109                                                |                                                |              |                                       | 1.741    |       |
| 110                                                |                                                |              |                                       | 2.000    |       |
| 111                                                |                                                |              |                                       | 2.297    |       |
| 113                                                |                                                |              |                                       | 3.031    |       |
| 114                                                |                                                |              |                                       | 3.482    |       |
| 115                                                |                                                | <del></del>  |                                       | 4.000    |       |
|                                                    |                                                |              |                                       |          |       |
| $\frac{\sum P}{\sum n} = $                         | 3790 = Fm (2) Daily I                          |              | ed =                                  | Σ<br>= 1 |       |
|                                                    | <u>3190</u> = Fm (2) <u>Daily I</u><br>Shi     | lours Expose | ed = = 8  Equivalent Noise Leve       |          | Ta (  |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ 

|                            | MEASURED                                                           | NUMBER OF OCCURRENCE  |                           | TOTAL OCCURRENCES        |                 |           |
|----------------------------|--------------------------------------------------------------------|-----------------------|---------------------------|--------------------------|-----------------|-----------|
|                            | SOUND LEVEL<br>dba                                                 | (ONE MARK PER OCCURRE |                           | PER LEVEL n              | F               | P≖nxF     |
|                            | Less than 85                                                       | •                     |                           |                          | 0.              | 0.        |
| ٦ ا                        | 85                                                                 |                       |                           |                          | 0.062           |           |
| ĮĘ.                        | 86                                                                 |                       |                           |                          | 0.072           |           |
| Existing<br>lation Cutoff, | 87                                                                 |                       |                           |                          | 0.082           |           |
| တ္က ပ                      | 88                                                                 |                       |                           |                          | 0.095           |           |
| בן ב                       | 89 .                                                               |                       |                           |                          | 0.109           |           |
| itc                        | 90                                                                 |                       |                           |                          | 0.125           |           |
| z z                        | 91                                                                 |                       |                           |                          | 0.144           |           |
| T [7]                      | 92                                                                 |                       |                           |                          | 0.165           |           |
| Existi<br>Regulation       | 93                                                                 |                       |                           |                          | 0.189           |           |
| _1                         | 94                                                                 |                       |                           |                          | 0.218           |           |
|                            | 95                                                                 |                       | ·                         |                          | 0.250           |           |
| - 1                        | 96                                                                 | -311-3                |                           | <u> </u>                 | 0.287           |           |
| - 1                        | 97                                                                 | 4711                  |                           | 8                        | 0.330           | 2,640     |
| - 1                        | 98                                                                 | THU!                  |                           |                          | 0.379           | 2.653     |
| - 1                        | 99<br>100                                                          | MIII                  |                           | 8                        | 0.433           | 1,000     |
|                            | 101                                                                |                       |                           | 2                        | 0.574           | 1,000     |
| - 1                        | 102                                                                | 1                     |                           | 1                        | 0.660           | .660      |
| - 1                        | 103                                                                |                       |                           |                          | 0.758           | 1000      |
|                            | 104                                                                |                       |                           |                          | 0.871           |           |
|                            | 105                                                                |                       | ··                        |                          | 1.000           |           |
|                            | 106                                                                |                       |                           |                          | 1.149           |           |
|                            | 107                                                                |                       |                           |                          | 1.320           |           |
|                            | 108                                                                |                       |                           |                          | 1.516           |           |
|                            | 109                                                                |                       |                           |                          | 1.741           |           |
|                            | 110                                                                |                       |                           |                          | 2.000           |           |
|                            | 111                                                                |                       |                           |                          | 2.297           |           |
|                            | 112                                                                |                       |                           |                          | 2.639           |           |
|                            | 113                                                                |                       |                           |                          | 3.031           |           |
|                            | 114                                                                |                       |                           |                          | 3.482           |           |
|                            | 115                                                                |                       |                           |                          | 4.000           |           |
|                            |                                                                    |                       |                           | ∑n = <u>26</u>           | 2               | P=10.433  |
|                            | $\frac{\sum u}{\sum b} = \frac{10.433}{10.433} = \frac{1}{10.433}$ | 4013 = Fm (2) Dail    | y Hours Exp<br>Shift Time | osed =                   | =               | Ta (3)    |
|                            | Fm x Ta =                                                          | x = Fm (4)            |                           | Equivalent<br>Noise Leve | 1 <u>98.4</u> d | BA ((90)) |
|                            |                                                                    |                       |                           |                          | 98.4 d          | BA ((85)) |

| MOMBO                          | Cio, #1 Tiple                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TIME_S EXPOSED_               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOTES                          |                                                       | TOTAL SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LE 87.5 sec                   | SAMPLE I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RATE 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MEASURED<br>SOUND LEVEL<br>dBA |                                                       | CES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL OCCURRENCES PER LEVEL n | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P=nxF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Less than 85                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 86                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 87                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 88                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 89                             |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                             | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .21050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 90                             | THAIIII I                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                            | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 91                             | MIL I                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                             | 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | MIII                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                             | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | MMII                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                            | 0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | MIII                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                | MIM                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | Ш                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | <u> </u>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                |                                                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                                                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | SOUND LEVEL dBA  Less than 85  85  86  87  88  89  90 | SOUND LEVEL   CONE MARK PER OCCURRING (ONE MARK PER | NUMBER OF OCCURRENCES         | Number of Occurrences   Occu | Number of Occurrences   Sound Level   Cone Mark Per Occurrences   Per Level   Number of Occurrences   Per Level   Number of Occurrences   Per Level   Number of Occurrences   Number of Occurrences |

|                                                               |             | ∑n = 106                              | 2P=34.11b (1      |
|---------------------------------------------------------------|-------------|---------------------------------------|-------------------|
| $\frac{\sum n}{\sum b} = \frac{34.116}{100} = \frac{.33}{30}$ | 18 = Fm (2) | ly Hours Exposed = = = = Shift Time 8 | = Ta (3)          |
| .32<br>Fm x Ta =                                              | x = Fm (4)  |                                       | 96.8 dBA ((90)) ( |
|                                                               |             | Francisco devel                       | 96.9 dBA ((85))   |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

| E             | MPLOYEES CIV                   | Tipple Controlly unding START/  by helper       | HOURS EXPOSED                                             |        |                               |
|---------------|--------------------------------|-------------------------------------------------|-----------------------------------------------------------|--------|-------------------------------|
| N             | OTES \ \ \_                    | n there at data date TOTAL                      | SAMPLE 95 A                                               | SAMPLE | RATE 0.83 9                   |
|               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL<br>OCCURREN<br>PER LEV                              | CES    | P=nxF                         |
| 1             | ess than 85                    |                                                 |                                                           | 0.     | 0.                            |
| _             | 85                             |                                                 |                                                           | 0.062  | +                             |
| 뛰는            | 86                             |                                                 |                                                           | 0.072  | +                             |
|               | 87                             | 1                                               |                                                           | 0.082  | 1082                          |
| lation Cutoff | 88                             | HIIIII                                          | 9                                                         | 0.095  | Brand                         |
| E             | 89                             | THILL                                           | 1 1                                                       | 0.109  | 1763 70                       |
| 9             | 90                             | MINTI                                           | 12                                                        | 0.125  | 1.500                         |
| Regulation    | 91                             | MILLIM                                          | 10                                                        | 0.144  | 1.440                         |
| Ⅱ             | 92                             | MIMIMIN                                         | 22                                                        | 0.165  | 3.630                         |
| ag _          | 93                             | THE THEN THE                                    | 17                                                        | 0.189  | 3.213                         |
| ٣   ١         | 94                             | MINTHII                                         | 17                                                        | 0.218  | 3.706                         |
|               | 95                             | MIII                                            |                                                           | 0.250  | 1.750                         |
| -  -          | 96                             | MIM                                             |                                                           | 0.287  | 2.870                         |
| -             | 97                             | ; ] ]                                           |                                                           | 0.330  |                               |
| -             | 98                             |                                                 | 3                                                         | 0.379  | 1.137                         |
| -             | 99                             |                                                 |                                                           | 0.435  | <del> </del>                  |
| -             | 100                            |                                                 |                                                           | 0.500  | <del></del>                   |
| · -           | 101                            |                                                 |                                                           | 0.660  |                               |
|               | 103                            |                                                 |                                                           | 0.758  | <del> </del>                  |
| -             | 104                            |                                                 |                                                           | 0.871  |                               |
|               | 105                            |                                                 |                                                           | 1.000  | <del> </del>                  |
| -             | 106                            |                                                 | -                                                         | 1.149  | 1                             |
| -             | 107                            |                                                 |                                                           | 1.320  | 1                             |
|               | 108                            |                                                 |                                                           | 1.516  | 1                             |
|               | 109                            |                                                 |                                                           | 1.741  |                               |
|               | 110                            |                                                 |                                                           | 2.000  | 1                             |
|               | 111                            |                                                 |                                                           | 2.297  |                               |
|               | 112                            |                                                 |                                                           | 2.639  |                               |
|               | 113                            |                                                 |                                                           | 3.031  |                               |
|               | 114                            |                                                 |                                                           | 3.482  |                               |
|               | 115                            |                                                 |                                                           | 4.000  |                               |
| Ξ             | P = 19.246=                    | Daily Hours Shift T                             | $\sum_{n = 1}^{\infty} \frac{1}{n} = \frac{1}{n}$ Exposed |        | ≥P=\9.246<br>20.946<br>Ta (3) |

| _                                                                                 | $\sum n = 115$ $\sum P_{=1}9.246$ $20.946$ |
|-----------------------------------------------------------------------------------|--------------------------------------------|
| $\frac{\sum P}{\sum n} = \frac{19.246}{115} = \frac{.1674}{.1826} = Fm (2) $ Date | Shift Time = = Ta (3)                      |
| Fm x Ta = = Fm (4                                                                 | Equivalent Noise Level 92.   dBA ((90))    |
|                                                                                   | 92.7 dBA ((85))                            |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ .

| NOTES                                              | (BZ-3) also operate                    |                            | TOTAL                   | SAMPLE 1 | RATE         |
|----------------------------------------------------|----------------------------------------|----------------------------|-------------------------|----------|--------------|
| SOUND LEVEL<br>dBA                                 | NUMBER OF OCCURREN                     |                            | OCCURRENCES PER LEVEL n | F        | P=nxF        |
| Less than 85                                       |                                        |                            |                         | 0.       | 0.           |
| 7 85                                               |                                        |                            |                         | 0.062    |              |
| 86<br>87<br>88<br>88<br>89<br>90<br>91<br>92<br>93 |                                        |                            |                         | 0.072    |              |
| 87                                                 |                                        |                            |                         | 0.082    |              |
| 88                                                 |                                        |                            |                         | 0.095    |              |
| 89                                                 |                                        |                            |                         | 0.109    |              |
| 90                                                 |                                        |                            |                         | 0.125    |              |
| 91                                                 |                                        |                            |                         | 0.144    |              |
| 92                                                 | Trond land                             |                            |                         | 0.165    |              |
| 93                                                 | EVERYWhere less -                      | han 42                     |                         | 0.189    |              |
| 74                                                 | See tape.                              |                            |                         | 0.218    |              |
| 95                                                 | see lape.                              |                            |                         | 0.250    | <b></b>      |
| 96                                                 | ·                                      |                            |                         | 0.287    |              |
| 97                                                 |                                        |                            |                         | 0.330    |              |
| 98                                                 |                                        |                            |                         | 0.379    | <del> </del> |
| 100                                                |                                        |                            |                         | 0.433    | <del></del>  |
| 101                                                |                                        |                            |                         | 0.574    |              |
| 102                                                |                                        |                            |                         | 0.660    |              |
| 103                                                |                                        |                            |                         | 0.758    |              |
| 104                                                |                                        |                            |                         | 0.871    |              |
| 105                                                |                                        |                            |                         | 1.000    |              |
| 106                                                |                                        |                            |                         | 1.149    |              |
| 107                                                |                                        |                            |                         | 1.320    |              |
| 108                                                | ************************************** |                            |                         | 1.516    |              |
| 109                                                |                                        |                            |                         | 1.741    |              |
| 110                                                |                                        |                            |                         | 2.000    |              |
| 111                                                |                                        |                            |                         | 2.297    |              |
| 112                                                |                                        |                            |                         | 2.639    |              |
| 113                                                |                                        |                            |                         | 3.031    |              |
| 114                                                |                                        |                            |                         | 3.482    |              |
| 115                                                |                                        |                            |                         | 4.000    |              |
| 5.0                                                |                                        |                            | ∑n =                    |          | P =          |
| $\frac{\sum u}{\sum k}$                            | .\65 = Fm (2) <u>Dai</u>               | ly Hours Exp<br>Shift Time | osed ==                 | =        | Ta (3)       |
|                                                    | _ x = Fm (4                            |                            | Equivalent              |          |              |

| NOTES                                              |                   | TOTAL SAMP | LE                            | SAMPLE RATE |        |
|----------------------------------------------------|-------------------|------------|-------------------------------|-------------|--------|
| MEASURED<br>SOUND LEV<br>dBA                       | NUMBER OF OCCURRE |            | TOTAL OCCURRENCES PER LEVEL n | F           | P=nxF  |
| Less than                                          | 35                |            |                               | 0.          | 0.     |
|                                                    |                   |            |                               | 0.062       |        |
| 86                                                 |                   |            |                               | 0.072       |        |
| 87                                                 |                   |            |                               | 0.082       |        |
| 88                                                 |                   |            |                               | 0.095       |        |
| 89                                                 |                   |            |                               | 0,109       |        |
| 90                                                 |                   |            |                               | 0.125       |        |
| 85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93 |                   |            |                               | 0.144       |        |
| 92                                                 | Everywhere less   | 85         |                               | 0.165       |        |
| 93                                                 | TARICHMENT 1522 1 | 1000 03/   |                               | 0.189       |        |
| 74                                                 | Generally less th | an 84,     |                               | 0.218       |        |
| 95                                                 | Cinerally USS IN  | an 87,     | <del></del>                   | 0.250       |        |
| 96<br>97                                           | Su tope           |            |                               | 0.330       |        |
| 98                                                 | su iric           |            | <del> </del>                  | 0.379       |        |
| 99                                                 |                   |            | <del> </del>                  | 0.435       |        |
| 100                                                |                   |            |                               | 0.500       |        |
| 101                                                |                   |            |                               | 0.574       |        |
| 102                                                |                   |            |                               | 0.660       |        |
| 103                                                |                   |            |                               | 0.758       |        |
| 104                                                |                   |            |                               | 0.871       |        |
| 105                                                |                   |            |                               | 1.000       |        |
| 106                                                |                   |            |                               | 1.149       |        |
| 107                                                |                   |            | ļ <u></u>                     | 1.320       |        |
| 108                                                |                   |            |                               | 1.516       |        |
| 109                                                |                   |            | ļ                             | 1.741       |        |
| 110                                                |                   |            |                               | 2.000       |        |
| 111                                                |                   |            | <del> </del>                  | 2.297       |        |
| 112<br>113                                         |                   |            |                               | 3.031       |        |
| 113                                                |                   |            |                               | 3.482       |        |
| 115                                                |                   |            | <del> </del>                  | 4.000       |        |
|                                                    |                   |            |                               |             |        |
|                                                    |                   |            | $\sum_{n} = $                 | Σ           | P      |
| $\frac{\sum P}{\sum n}$                            | =                 | Shift Time | oosed = =                     | = '         | Га (3) |
|                                                    | x = Fm            |            | Equivalent                    |             |        |

## EQUIVALENT NOISE EXPOSURE DATA SHEET

2/28/80 + PLANT Continental Front and.
OPERATION No. 1 Tiple aprintor pos.
EMPLOYEES DATA DATE BY G.La START/STOP TIME DAILY HOURS EXPOSED

|                             | NOTES CHS mil                  | ill (mit running to unjonTOTAL SAME             | CLE)                          | SAMPLE | RATE  |
|-----------------------------|--------------------------------|-------------------------------------------------|-------------------------------|--------|-------|
|                             | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F      | P=nxF |
|                             | Less than 85                   |                                                 |                               | 0.     | 0.    |
| 7                           | 85                             |                                                 |                               | 0.062  |       |
| Existing<br>ulation Cutoff, | 86                             |                                                 | ,                             | 0.072  |       |
| t                           | 87                             |                                                 |                               | 0.082  |       |
| Cn                          | 88                             |                                                 |                               | 0.095  |       |
| H C                         | 89                             |                                                 |                               | 0.109  |       |
| Existir<br>Regulatión       | 90                             |                                                 |                               | 0.125  |       |
| x1                          | 91                             |                                                 |                               | 0.144  |       |
| []                          | 92                             |                                                 |                               | 0.165  |       |
| 89                          | 93                             | trengular less than 87.                         |                               | 0.189  |       |
| الت                         | 94                             |                                                 |                               | 0.218  |       |
|                             | 95                             | Canada about BS.                                |                               | 0.250  |       |
|                             | 96                             |                                                 |                               | 0.287  |       |
|                             | 97                             | Su tape.                                        |                               | 0.330  |       |
|                             | 98                             | •                                               |                               | 0.379  |       |
|                             | 99                             | TAPE on Task 54 shows                           |                               | 0.435  |       |
|                             | 100                            |                                                 |                               | 0.500  |       |
|                             | 101                            | high Bos midle                                  |                               | 0.574  |       |
|                             | 102                            |                                                 |                               | 0.660  |       |
|                             | 103                            |                                                 |                               | 0.758  |       |
|                             | 104                            |                                                 |                               | 0.871  |       |
|                             | 105                            |                                                 |                               | 1.000  |       |
|                             | 106                            |                                                 |                               | 1.149  |       |
|                             | 107                            |                                                 |                               | 1.320  |       |
|                             | 108                            |                                                 |                               | 1.516  |       |
|                             | 109                            |                                                 |                               | 1.741  |       |
|                             | 110                            |                                                 |                               | 2.000  |       |
|                             | 111                            |                                                 |                               | 2.297  |       |
|                             | 112                            |                                                 |                               | 2.639  |       |
|                             | 113                            |                                                 |                               | 3.031  |       |
|                             | 114                            | ·                                               |                               | 3.482  |       |
|                             | 115                            |                                                 |                               | 4.000  |       |

|                                                       |                                  |                           |                       | •           |
|-------------------------------------------------------|----------------------------------|---------------------------|-----------------------|-------------|
|                                                       | Σr                               | 1 =                       | ∑ P <u>=</u>          | (1)         |
| $\frac{\sum P}{\sum n} = \underline{\qquad} = Fm (2)$ | Daily Hours Expose<br>Shift Time | <u>ed</u> = =             | = Ta (3)              |             |
| Fm x Ta = x =                                         | = Fm (4)                         | Equivalent<br>Noise Level | < 90 dBA ((90))       | <b>(</b> 5) |
| L = 16.61 log (16F) + 85.                             | $F = 1/T_p = (1/16)2^{(L-85)}$   | )/5 <mark>]</mark> .      | dBA ((85)) dBA ((80)) | <b>ు</b>    |

### EQUIVALENT NOISE EXPOSURE DATA SHEET

| PLANT Continental Fruit And.        | DATA 9/18/81 BY G. La                |
|-------------------------------------|--------------------------------------|
| OPERATION Sorting at FIRST PUS, CIY | START/STOP TIME                      |
| EMPLOYEES GREEN CHAIN ON GROUND     | DAILY HOURS EXPOSED                  |
| NOTES BA + CNS Mill TS's going with | TOTAL SAMPLE 56 3 DEC SAMPLE RATE 13 |
|                                     | TOTAL                                |

|                               | NOTES BAY                      | CAS Mill TS'S going butting TOTAL SAME             | LE 56 3 pec                   | SAMPLE I | RATE   3 ARC |
|-------------------------------|--------------------------------|----------------------------------------------------|-------------------------------|----------|--------------|
|                               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF        |
|                               | Less than 85                   |                                                    |                               | 0.       | 0.           |
| . 7                           | 85                             |                                                    |                               | 0.062    |              |
| ££                            | 86                             |                                                    | ·                             | 0.072    |              |
| t)                            | 87                             |                                                    |                               | 0.082    |              |
| ω.<br>Ω                       | 88                             |                                                    |                               | 0.095    |              |
| ut u                          | 89                             |                                                    |                               | 0.109    |              |
| st                            | 90                             |                                                    |                               | 0.125    |              |
| Existing<br>Regulation Cutoff | 91                             |                                                    | 4                             | 0.144    | . 576        |
| E [7]                         | 92                             | MI                                                 | 6                             | 0.165    | ,990         |
| es                            | 93                             | THI                                                | 6                             | 0.189    | 1.134        |
| الت                           | 94                             | MUTH.                                              | 10                            | 0.218    | 2.180        |
|                               | 95                             | W.                                                 | 3                             | 0.250    | .750         |
|                               | 96                             |                                                    | 3                             | 0.287    | 1881         |
|                               | 97                             |                                                    |                               | 0.330    | ,३३०         |
|                               | 98                             |                                                    | 1                             | 0.379    | .379         |
|                               | 99                             |                                                    |                               | 0.435    |              |
|                               | 100                            |                                                    | 1                             | 0.500    | 1500         |
|                               | 101                            |                                                    |                               | 0.574    |              |
|                               | 102                            |                                                    |                               | 0.660    |              |
|                               | 103                            |                                                    |                               | 0.758    |              |
|                               | 104                            |                                                    |                               | 0.871    |              |
|                               | 105                            |                                                    |                               | 1.000    |              |
|                               | 106                            |                                                    |                               | 1.149    |              |
|                               | 107                            | •                                                  |                               | 1.320    |              |
|                               | 108                            |                                                    |                               | 1.516    |              |
|                               | 109                            |                                                    |                               | 1.741    |              |
| · '                           | 110                            |                                                    |                               | 2.000    |              |
|                               | 111                            |                                                    |                               | 2.297    |              |
|                               | 112                            |                                                    |                               | 2.639    |              |
|                               | 113                            |                                                    |                               | 3.031    |              |
|                               | 114                            |                                                    |                               | 3.482    |              |
|                               | 115                            |                                                    |                               | 4.000    |              |
|                               |                                |                                                    |                               |          |              |

 $\sum_{n} = 35$ 5p. 7.700  $\frac{\sum P}{\sum n} = \frac{7.7\%}{35} = \frac{.22o}{8} = \text{Fm (2)} \qquad \frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{8}{8} = \frac{1.25}{8}$ = Ta (3) Equivalent Noise Level 94.1 dBA ((90)) = Fm'(4)941 dBA ((85)) L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{[(L-85)/5]}$ dBA ((80))

|                                                           | ***                                             | HOURS EXPOSED                                    | SAMPLE RATE, 83 &                                                                    |
|-----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------|
| MEASURED<br>SOUND LEVEL<br>dBA                            | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n                    | F P=nxF                                                                              |
| Less than 85                                              |                                                 |                                                  | 0. 0.                                                                                |
| 85                                                        |                                                 |                                                  | 0.062                                                                                |
| 86                                                        |                                                 |                                                  | 0.072                                                                                |
| 86<br>87<br>88<br>89<br>90<br>91                          |                                                 |                                                  | 0.082                                                                                |
| 88                                                        |                                                 |                                                  | 0.095                                                                                |
| 89                                                        |                                                 |                                                  | 0.109                                                                                |
| 90                                                        |                                                 | 3                                                | 0.125 .375                                                                           |
| 91                                                        | MIII                                            | 9                                                | 0.144 1.296                                                                          |
| 92                                                        | MMMMI                                           | 23                                               | 0.165 3.745                                                                          |
|                                                           | WILL WILL                                       | 20                                               | 0.189 3.780                                                                          |
| 94                                                        | HI THINHAM                                      | 21                                               | 0.218 4.578                                                                          |
| 95                                                        | 11/1/                                           | 5                                                | 0.250 1.250                                                                          |
|                                                           | MIII                                            | 7                                                | 0.287 2.009                                                                          |
| 97                                                        |                                                 |                                                  | 0.330                                                                                |
| 98                                                        |                                                 |                                                  | 0.379                                                                                |
| 99                                                        |                                                 | 1                                                | 0.435 .435                                                                           |
| 100                                                       |                                                 |                                                  | 0.500                                                                                |
| 101                                                       |                                                 |                                                  | 0.574                                                                                |
| 102                                                       |                                                 |                                                  | 0.660                                                                                |
| 103                                                       |                                                 |                                                  | 0.758<br>0.871                                                                       |
| 104                                                       |                                                 |                                                  | 1.000                                                                                |
| 105                                                       |                                                 |                                                  | 1.149                                                                                |
| 106                                                       |                                                 |                                                  | 1.320                                                                                |
| 107                                                       |                                                 |                                                  | 1.516                                                                                |
|                                                           |                                                 |                                                  |                                                                                      |
| 109                                                       |                                                 |                                                  | 2.000                                                                                |
| 110                                                       |                                                 |                                                  | 2.297                                                                                |
| 111                                                       |                                                 |                                                  | 2.639                                                                                |
| 113                                                       |                                                 |                                                  | 3.031                                                                                |
| 113                                                       |                                                 |                                                  | 3.482                                                                                |
|                                                           |                                                 |                                                  | 4.000                                                                                |
| 115                                                       |                                                 | \(\sum_{n} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \[ \frac{4.000}{\sum \text{P=17.518}} \]                                             |
| $\frac{\sum u}{\sum b} = \frac{33}{13.518} = \frac{1}{2}$ | 968 = Fm (2) Daily Hours Shift T                | Exposed = = = = = = = = = = = = = = = = = = =    | = = Ta (3)                                                                           |
| Fm x Ta =                                                 | x = Fm (4)                                      | > Equivalent<br>Noise Leve                       | $\begin{array}{c} 1 \\ = 1 \\ \hline 93.3 \\ \hline 93.3 \\ \end{array} $ dBA ((90)) |

| NOTES                                                                              |                                                    | OURS EXPOSED                             | SAMPLE | RATE D. β              |
|------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|--------|------------------------|
| MEASURED<br>SOUND LEVEL<br>dBA                                                     | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n            | F      | P=nxF                  |
| Less than 85                                                                       |                                                    |                                          | 0.     | 0.                     |
| 85                                                                                 |                                                    | 2                                        | 0.062  | .124                   |
| 86                                                                                 | MITHI                                              |                                          | 0.072  | .792                   |
| . 87                                                                               | WHILL IV                                           | 14                                       | 0.082  | 1.148                  |
| 88                                                                                 | WHHM!                                              | اها                                      | 0.095  | 1.52                   |
| 89                                                                                 | WIMI                                               |                                          | 0.109  | 1.199                  |
| 90                                                                                 | MI LANGATION                                       | 20                                       | 0.125  | 2.50                   |
| 91                                                                                 | 144                                                | 5                                        | 0.144  | 172                    |
| 92                                                                                 | 11/1                                               | 4                                        | 0.165  | .66                    |
| 93                                                                                 |                                                    |                                          | 0.189  | 1                      |
| 94                                                                                 | 111                                                | 5                                        | 0.218  | 1.090                  |
| 95                                                                                 | 1.                                                 |                                          | 0.250  | . 250                  |
| 96<br>97                                                                           |                                                    | 2                                        | 0.287  | 1574                   |
| 98                                                                                 |                                                    |                                          | 0.330  | <del></del>            |
| 99                                                                                 |                                                    |                                          | 0.435  | <del> </del>           |
| 100                                                                                |                                                    |                                          | 0.433  |                        |
| 101                                                                                | -                                                  |                                          | 0.574  |                        |
| 101                                                                                |                                                    |                                          | 0.660  |                        |
| 103                                                                                |                                                    |                                          | 0.758  | <del> </del>           |
| 104                                                                                |                                                    |                                          | 0.871  | -                      |
| 105                                                                                |                                                    |                                          | 1.000  |                        |
| 106                                                                                |                                                    |                                          | 1.149  | -                      |
| 107                                                                                |                                                    |                                          | 1.320  | <del></del>            |
| 108                                                                                |                                                    |                                          | 1.516  |                        |
| 109                                                                                |                                                    |                                          | 1.741  |                        |
| 110                                                                                |                                                    |                                          | 2.000  |                        |
| 111                                                                                |                                                    |                                          | 2.297  |                        |
| 112                                                                                |                                                    |                                          | 2.639  |                        |
| 113                                                                                |                                                    |                                          | 3.031  |                        |
| 114                                                                                |                                                    |                                          | 3.482  |                        |
| 115                                                                                |                                                    |                                          | 4.000  |                        |
| $\frac{\sum P}{\sum n} = \frac{\varsigma, \gamma \gamma \psi}{\varsigma \gamma} =$ | Daily Hours Shift Ti                               | $\sum_{n = 9}$ Exposed = = 8  Equivalent | = = 7  | P = 5.79' 10.57 Ta (3) |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

895 dBA ((85))

| MEASURED<br>SOUND LEVEL<br>dBA               | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL                                                                                         | SAMPLE F | P=nxF        |
|----------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|--------------|
| UDA .                                        |                                                 | n                                                                                                                   |          |              |
| Less than 85                                 |                                                 |                                                                                                                     | 0.       | 0.           |
| 85                                           |                                                 |                                                                                                                     | 0.062    |              |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93 |                                                 |                                                                                                                     | 0.072    |              |
| 87.                                          |                                                 |                                                                                                                     | 0.082    |              |
| 88                                           |                                                 |                                                                                                                     | 0.095    |              |
| 89                                           | · · · · · · · · · · · · · · · · · · ·           |                                                                                                                     | 0.109    |              |
| 90                                           |                                                 |                                                                                                                     | 0.125    |              |
| 91                                           |                                                 |                                                                                                                     | 0.144    |              |
| 92                                           | Everywhere less than 96.                        |                                                                                                                     | 0.165    |              |
| 93                                           | TAEKOLMIENT 1622 1400 10.                       |                                                                                                                     | 0.189    |              |
| 74                                           |                                                 |                                                                                                                     | 0.218    |              |
| 95                                           | Generally less then 83, 4                       | - 11                                                                                                                | 0.250    |              |
| 96                                           | Generally less the 03, 6                        | isully in 70's                                                                                                      | 0.287    |              |
| 97                                           | 1                                               |                                                                                                                     | 0.330    |              |
| 98                                           |                                                 |                                                                                                                     | 0.379    |              |
| 99                                           | de tapes.                                       |                                                                                                                     | 0.435    |              |
| 100                                          |                                                 |                                                                                                                     | 0.500    |              |
| 101                                          |                                                 |                                                                                                                     | 0.574    |              |
| 102                                          |                                                 |                                                                                                                     | 0.660    | L            |
| 103                                          |                                                 |                                                                                                                     | 0.758    |              |
| 104                                          |                                                 |                                                                                                                     | 0.871    |              |
| 105                                          |                                                 |                                                                                                                     | 1.000    |              |
| 106                                          |                                                 |                                                                                                                     | 1.149    |              |
| 107                                          |                                                 | <del></del>                                                                                                         | 1.320    |              |
| 108                                          |                                                 |                                                                                                                     |          |              |
| 109                                          |                                                 |                                                                                                                     | 1.741    |              |
| 110                                          |                                                 |                                                                                                                     | 2.000    | <del></del>  |
| 111                                          |                                                 |                                                                                                                     | 2.639    |              |
| 112                                          |                                                 |                                                                                                                     | 3.031    |              |
| 113                                          |                                                 |                                                                                                                     | 3.482    | <del> </del> |
| 114                                          |                                                 |                                                                                                                     | 4.000    |              |
| 115                                          |                                                 |                                                                                                                     |          |              |
| $\frac{\sum P}{\sum n} =$                    | Daily Hours Shift To                            | $\sum_{n = \underline{\text{Exposed}}} = \underline{\underline{\text{Exposed}}} = \underline{\underline{\text{S}}}$ |          | P = (3)      |

| ,                             | OPERATION INA                  | mental Front And.  NSER OPERATOR WORKING | DATA 2/20   | 4 4/2/80 BY LE              | /ondlay  | + Lec         |
|-------------------------------|--------------------------------|------------------------------------------|-------------|-----------------------------|----------|---------------|
|                               | EMPLOYEES OF                   | CLUIDA 25                                |             | LE 60 Sec.                  | SAMPLE F | RATEO, 83 Sec |
|                               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENC                      | EES         | TOTAL OCCURRENCES PER LEVEL | F        | P=nxF         |
|                               | Less than 85                   | MHMM                                     |             | 15                          | 0.       | 0.            |
| -                             | 85                             | M                                        |             | 05                          | 0.062    | .31           |
| 뛻                             | 86                             | HHIIII                                   |             | 9                           | 0.072    | .648          |
| 10                            | 87                             | MI                                       |             | 6                           | 0.082    | 1492          |
| 8 C                           | 88                             | HIH                                      |             | 10                          | 0.095    | .950          |
| H E                           | 89                             | MIII                                     |             | 1                           | 0.109    | .763          |
| Existing<br>Regulation Cutoff | 90                             | INN                                      |             | 14.                         | 0.125    | .500          |
| xtat                          | 91                             |                                          |             | 2                           | 0.144    | . 288         |
| 디프                            | 92                             | MII                                      |             | 6                           | 0.165    | .99           |
| 8                             | 93                             |                                          |             | 3                           | 0.189    | . 567         |
| ω,                            | 94                             | 111                                      |             | 2.                          | 0.218    | . 436         |
|                               | 95                             | `                                        |             |                             | 0.250    |               |
|                               | 96                             | 11/1                                     |             | 4                           | 0.287    | 1.148         |
| -                             | 97                             |                                          |             |                             | 0.330    |               |
|                               | 98                             |                                          |             |                             | 0.379    |               |
|                               | 99                             |                                          |             |                             | 0.435    |               |
|                               | 100                            |                                          |             |                             | 0.500    |               |
|                               | 101                            |                                          |             |                             | 0.574    |               |
| - 1                           | 102                            |                                          |             |                             | 0.660    |               |
|                               | 103                            |                                          |             | 1                           | 0.758    |               |
|                               | 104                            |                                          |             |                             | 0.871    |               |
|                               | 105                            |                                          |             |                             | 1.000    |               |
|                               | 106                            |                                          |             |                             | 1.149    |               |
|                               | 107                            |                                          |             |                             | 1.320    |               |
|                               | 108                            |                                          |             |                             | 1.516    |               |
|                               | 109                            |                                          |             |                             | 1.741    |               |
|                               | 110                            |                                          | ,           |                             | 2.000    |               |
|                               | 111                            | `                                        |             |                             | 2.297    |               |
|                               | 112                            |                                          |             |                             | 2.639    |               |
|                               | 113                            |                                          |             |                             | 3.031    |               |
|                               | 114                            |                                          | <del></del> |                             | 3.482    |               |
|                               | 115                            | <u> </u>                                 |             |                             | 4.000    |               |
| 1                             |                                |                                          |             | <u> </u>                    |          | n 2 90 0      |

|                      | $\sum n = 73$                       | $\sum P = 3.929 (1$ |
|----------------------|-------------------------------------|---------------------|
|                      | Hours Exposed = = = = hift Time 8 = | = Ta (3)            |
| Fm x Ta = x = Fm (4) | Equivalent Noise Level              | 90 dBA ((90)) (5    |
| •                    | <u> 8</u>                           | 8,2 dBA ((85))      |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

355

| MEASURED   NUMBER OF OCCURRENCES   OCCURRENCES   PER LEVEL   BANK PER OCCURRENCES   OCCURRENCES   PER LEVEL   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | entil Frut and DA  Luggeworking @ positionsT  DA |            |                          |            | RATE   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|--------------------------|------------|--------|
| NUMBER OF OCCURRENCES   SOUND LEVEL   GINE MARK PER OCCURRENCES   PER LEVEL   P=nxF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | The Same   |                          | JANU LLE I | WIL    |
| 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SOUND LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | I          | OCCURRENCES<br>PER LEVEL | F          | P=nxF  |
| 85 86 87 87 88 87 88 89 90 90 90 90 90 90 91 91 92 91 92 94 95 95 96 97 98 98 98 99 100 100 100 100 101 101 102 103 104 105 105 106 107 108 108 109 109 100 100 100 101 101 102 108 109 100 100 101 101 102 108 109 100 109 101 101 105 108 109 109 100 100 101 105 105 106 107 108 108 109 109 111 110 2000 1111 111 22000 1111 111 22000 1111 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Less than 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |            |                          | 0.         | 0.     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          | 0.062      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          | 0.072      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |            |                          | 0.082      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |            |                          | 0.095      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |            |                          | 0.109      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |            |                          | 0.125      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |            |                          | 0.144      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | ,          |                          | 0.165      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evenuture less than                              | 92 /dm     | 4                        | 0.189      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          | 0.218      |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a slaw).                                         |            |                          | 0.250      |        |
| 98   Ghridly (an than \$6   0.379   0.435   100   0.500   101   Less than \$9.   0.574   102   0.660   103   0.758   104   0.871   105   1.000   106   1.149   107   1.320   1.516   109   1.741   110   1.741   110   1.741   112   1.741   112   1.741   113   1.741   114   115   1.741   115   114   115   114   115   114   115   114   115   115   114   115   115   116   117   117   117   118   118   118   118   119   119   119   119   119   119   110   110   111   110   111   110   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   11   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111   111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |            |                          | 0.287      |        |
| 99 100 101 101 102 0.500 103 0.758 104 105 106 1107 108 1109 1110 2.000 111 110 2.297 1112 112 2.639 113 114 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |            |                          | 0.330      |        |
| 99 100 101 101 102 0.500 103 0.758 104 105 106 1107 108 1109 1110 2.000 111 110 2.297 1112 112 2.639 113 114 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Christly Con than                                | 56.        |                          | 0.379      |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          | 0.435      |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Less thm 90.                                     |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          | 0.758      |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          | 1.000      |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |            |                          | 1.149      |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| $\sum n =                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AND DESCRIPTION OF THE PERSON |                                                  |            |                          |            |        |
| $\frac{\sum P}{\sum n} = \frac{1}{2} = Fm (2)$ $\frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{1}{8} = Ta (3)$ $Fm \times Ta = \frac{1}{2} \times \frac{1}{2} = Fm (4)$ $\frac{\text{Equivalent}}{\text{Noise Level}} \times \frac{1}{2} \times \frac{1}{$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            |                          |            |        |
| Fm x Ta = x = = Fm (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | 5          | ∑n =                     | Σ          | P =    |
| Fm x Ta = x = = Fm (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\sum P}{\sum n} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= Fm (2) \qquad \underline{Daily F}$            | Hours Expo | sed = =                  | = '        | Га (3) |
| dBA ((85))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            | Eguivalent               | _          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |            | Noise Leve               |            |        |
| $L = 16.61 \log (16F) + 85.$ $F = 1/T_p = (1/16)2^{[(L-85)/5]}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | F          |                          |            |        |

PLANT Continutal Front Industria DATA 8/22/80 BY 6 Luc OPERATION Planes Mill Chie Truck Load Area START/STOP TIME DAILY HOURS EXPOSED EMPLOYEES TOTAL SAMPLE 51 pec NOTES SAMPLE RATE \ Dev TOTAL **MEASURED** NUMBER OF OCCURRENCES **OCCURRENCES** SOUND LEVEL F P=nxF (ONE MARK PER OCCURRENCE) PER LEVEL dBA n Less than 85 0. 0. 85 0.062 86 0.072 .072 87 0.082 .082 88 0.095 89 0.109 .218 90 4 0.125 .500 MINIM 91 0.144 15 2.160 92 0.165 3.300 20 93 8 0.189 1.512 94 0.218 ,218 95 0.250 96 0.287 97 0.330 98 0.379 99 0.435 100 0.500 0.574 101 102 0.660 103 0.758 104 0.871 105 1.000 1.149 106 107 1.320 108 1.516 109 1.741 110 2.000 111 2,297 112 2.639 113 3.031 114 3.482 115 4.000

Existing Regulation Cutoff,

|                                                                |           | $\sum n$                          | = 52                      | $\Sigma P = 7.69$ (1 |
|----------------------------------------------------------------|-----------|-----------------------------------|---------------------------|----------------------|
| $\frac{\sum P}{\sum n} = \frac{7.69}{52} = \frac{.1418}{.155}$ | 6= Fm (2) | Daily Hours Exposed<br>Shift Time | 8 -                       | = Ta (3) 8.062       |
| Fm x Ta = x                                                    |           | = Fm (4)                          | Equivalent<br>Noise Level | 91.2 dBA ((90)) (5   |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ 

|               | OPERATION YAN                  | the layers, 53 DAILY F                          | Z-20-80 BY LE<br>STOP TIME<br>HOURS EXPOSED |          |             |
|---------------|--------------------------------|-------------------------------------------------|---------------------------------------------|----------|-------------|
|               | NOTES                          | TOTAL S                                         | SAMPLE SIN Sec                              | SAMPLE F | RATE 0.83   |
|               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n               | F        | P=nxF       |
| - 1           | Less than 85                   | MINIMININI                                      | 26                                          | 0.       | 0.          |
| _             | 85                             | TH+ //                                          | 1                                           | 0.062    | 13470       |
| Ŧ.            | 86                             | MIII                                            | 8                                           | 0.072    | ,576-10     |
| 9             | 87                             | 11/1                                            | 4                                           | 0.082    | .32-8       |
| S             | 88                             |                                                 | 2                                           | 0.095    | .190        |
| الء           | 89                             |                                                 |                                             | 0,109    | .109        |
| lation Cutoff | 90                             |                                                 | 4                                           | 0.125    | .500        |
| at            | 91                             | 11//                                            | 4                                           | 0.144    | .576        |
| 디             | 92                             |                                                 | 3                                           | 0.165    | ,495        |
| Regulati      | 93                             |                                                 |                                             | 0.189    |             |
| الم           | 94                             |                                                 | Ч                                           | 0.218    | .872        |
|               | 95                             |                                                 |                                             | 0.250    |             |
|               | 96                             |                                                 |                                             | 0.287    | 1           |
|               | 97                             |                                                 |                                             | 0.330    |             |
| 1             | 98                             |                                                 |                                             | 0.379    | 1           |
|               | 99                             |                                                 |                                             | 0.435    |             |
| -             | 100                            |                                                 |                                             | 0.500    |             |
|               | 101                            |                                                 |                                             | 0.574    |             |
|               | 102                            |                                                 |                                             | 0.660    |             |
|               | 103                            |                                                 |                                             | 0.758    | Ĺ           |
| 1             | 104                            |                                                 |                                             | 0.871    | I           |
|               | 105                            |                                                 |                                             | 1.000    |             |
|               | 106                            |                                                 |                                             | 1.149    | L           |
|               | 107                            |                                                 |                                             | 1.320    | <del></del> |
|               | 108                            |                                                 |                                             | 1.516    | L           |
|               | 109                            |                                                 |                                             | 1.741    | <u> </u>    |
| ,             | 110                            | ,                                               |                                             | 2.000    | <b></b>     |
|               | 111                            |                                                 |                                             | 2.297    |             |
| ŀ             | 112                            |                                                 |                                             | 2.639    |             |
|               | 113                            |                                                 |                                             | 3.031    |             |
|               | 114                            |                                                 |                                             | 3.482    | L           |
|               | 115                            |                                                 |                                             | 4.000    |             |

 $\frac{\sum P}{\sum n} = \frac{2.443}{63} = \frac{0.0388}{0.0648} = Fm (2)$   $\frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{1}{8} = Ta (3)$   $\frac{\text{Equivalent}}{\text{Noise Level}} = \frac{1}{2.49} = Ta (3)$   $\frac{\text{Equivalent}}{\text{Shift Time}} = \frac{1}{8} = \frac{1}{2.49} = \frac{1$ 

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

| PLANT Continutal Forest And.  | DATA 2/20/80 By Los/Dulley |
|-------------------------------|----------------------------|
| OPERATION STICK LAYERS "IQLE" | START/STOP TIME            |
| EMPLOYEES 53 operators        | DAILY HOURS EXPOSED        |

|                               | NOTES                          | ·TOTAL SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LE 58.33 Sec                           | SAMPLE | RATE 0.83 ALC |
|-------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|---------------|
|                               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL<br>OCCURRENCES<br>PER LEVEL<br>n | F      | P=nxF         |
|                               | Less than 85                   | WILL WILLIAM W | 61                                     | 0.     | 0.            |
|                               | 85                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.062  | .062          |
| ff                            | 86                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                      | 0.072  | .144          |
| 의                             | 87                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.082  |               |
| ပ် အ                          | 88                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.095  |               |
| Existing<br>Regulation Cutoff | 89                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.109  | .109          |
| st                            | 90                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.125  | .125          |
| xt                            | 91                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 0.144  | 144           |
|                               | 92                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.165  | .165          |
| 68                            | 93                             | 1 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 0.189  |               |
| ۳                             | 94                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.218  | 1218          |
|                               | 95                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.250  |               |
|                               | 96                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.287  | .287          |
|                               | 97                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.330  |               |
|                               | 98                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.379  |               |
|                               | 99                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.435  |               |
|                               | 100                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \                                      | 0.500  | .500          |
|                               | 101                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.574  |               |
|                               | 102                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.660  |               |
|                               | 103                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.758  |               |
|                               | 104                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.871  |               |
|                               | 105                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1.000  |               |
|                               | 106                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1.149  |               |
|                               | 107                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1.320  |               |
|                               | 108                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1.516  |               |
|                               | 109                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1.741  |               |
|                               | 110                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 2.000  |               |
|                               | 111                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 2.297  |               |
|                               | 112                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 2.639  |               |
|                               | 113                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 3.031  |               |
|                               | 114                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 3.482  |               |
|                               | 115                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 4.000  |               |
|                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |        |               |

|                    | $\sum n = 1$                        | $\sum P = 1.439$ ( |
|--------------------|-------------------------------------|--------------------|
|                    | y Hours Exposed = =<br>Shift Time 8 | = Ta (3)           |
| Fm x Ta = = Fm (4) | Equivalent Noise Level              | 90 dBA ((90)) (    |
|                    | C/T 05\/5]                          | 85 dBA ((85))      |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

PLANT Continental Frest and, DATE 2/20 & 4/2/80 BY Lee Midly & Lee
OPERATION Normal open. of C4 De START/STOP TIME
EMPLOYEES NA LEIGHT CONST. EMPLOYEES NO, 1 KICKOUT. CYCLE DAILY HOURS EXPOSED TOTAL SAMPLE 230 Sec. SAMPLE RATE 13 ACC TOTAL MEASURED NUMBER OF OCCURRENCES **OCCURRENCES** P=nxF SOUND LEVEL PER LEVEL (ONE MARK PER OCCURRENCE) dBA 0. Less than 85 0.062 0.072 136 THE MEMBER 87 0.082 2,214 0.095 1.995 0.109 MHH 90 0.125 1.875 91 1114 0.144 1.008 0.165 .990 93 0.189 .756 0.218 94 MIIII 1.962 0.250 95 1.500 96 0.287 2.296 0.330 3,300 10 97 0.379 98 1.137 99 0.435 .435 0.500 100 Ш 2.000 0.574 101 Ш 1.722 0.660 102 1320 0.758 103 0.871 .871 104 105 1.000 1.149 106 1.320 107 1.516 108 1.741 109 110 2.000 2.297 111 2.639 112 3.031 113 114 3.482 4.000 115

Regulation

 $\sum n = 139$   $\sum P = 21.172$  $\frac{\sum P}{\sum n} = \frac{21.172}{139} = .1523 = Fm (2)$ Daily Hours Exposed = = = Ta (3)
Shift Time = 8 Fm x Ta = \_\_\_ x \_\_ = Fm (4) Equivalent Noise Level 91.4 dBA ((90)) ( 93.0 dBA ((85))

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

361

| ſ          | NOTES              | NUMBER OF OCCURREN          |       | TOTAL OCCURRENCES                          |       |                       |
|------------|--------------------|-----------------------------|-------|--------------------------------------------|-------|-----------------------|
|            | SOUND LEVEL<br>dBA | (ONE MARK PER OCCURR        |       | PER LEVEL                                  | F     | P=nxF                 |
| ı          | Less than 85       |                             |       |                                            | 0.    | 0.                    |
| . I        | 85                 |                             |       |                                            | 0.062 |                       |
| <b>   </b> | 86                 |                             |       |                                            | 0.072 |                       |
|            | 87                 |                             |       |                                            | 0.082 |                       |
| lt         | 88                 |                             |       |                                            | 0.095 |                       |
|            | 89                 |                             |       |                                            | 0.109 |                       |
|            | 90                 |                             |       |                                            | 0.125 |                       |
| 11         | 91                 |                             |       |                                            | 0.144 |                       |
|            | 92                 |                             |       |                                            | 0.165 |                       |
| ľ          | 93                 |                             | n 26. |                                            | 0.189 |                       |
|            | 94                 | Everywhere less the         | ~ 60. |                                            | 0.218 |                       |
|            | 95                 | (talls took to              | 86)   |                                            | 0.250 |                       |
|            | 96                 | 5                           |       |                                            | 0.287 |                       |
|            | 97                 | trenerally loss the         | ~ //. |                                            | 0.330 |                       |
|            | 98                 | 1                           |       |                                            | 0.379 |                       |
|            | 99                 |                             |       |                                            | 0.435 |                       |
| L          | 100                | Dec Tape.                   |       |                                            | 0.500 |                       |
| L          | 101                |                             |       |                                            | 0.574 |                       |
| L          | 102                |                             |       |                                            | 0.660 |                       |
| -          | 103                |                             |       | -                                          | 0.758 |                       |
| ŀ          | 104                |                             |       |                                            | 0.871 |                       |
| -          | 105                |                             |       | <del> </del>                               | 1.000 |                       |
| -          | 106                |                             |       |                                            | 1.320 |                       |
| ŀ          | 108                |                             |       |                                            | 1.516 |                       |
| ŀ          | 109                |                             |       | <del> </del>                               | 1.741 |                       |
| ŀ          | 110                |                             |       |                                            | 2.000 |                       |
| ŀ          | 111                |                             |       | 1                                          | 2.297 |                       |
| ŀ          | 112                |                             |       |                                            | 2.639 |                       |
| ŀ          | 113                |                             |       | 1                                          | 3.031 |                       |
| ŀ          | 114                |                             |       |                                            | 3.482 |                       |
| ł          | 115                |                             |       | <u> </u>                                   | 4.000 |                       |
| •          |                    | = Fm (2) <u>Dai</u> = Fm (4 |       | ∑n =<br>posed = = 8  Equivalent Noise Leve | E 1   | P <sub>=</sub> Ta (3) |

| PLANT COPERATION OPER EMPLOYEES No. 1 | ATALL IN BROTT ST                                 |                       |                               | SAMPLE F       |                                       |
|---------------------------------------|---------------------------------------------------|-----------------------|-------------------------------|----------------|---------------------------------------|
| MEASURED<br>SOUND LEVEL<br>dBA        | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE |                       | TOTAL OCCURRENCES PER LEVEL n | F              | P=nxF                                 |
| Less than 85                          |                                                   |                       |                               | 0.             | 0.                                    |
| 85 Eliali 65                          |                                                   |                       |                               | 0.062          | <u> </u>                              |
| 변 86                                  |                                                   |                       |                               | 0.072          |                                       |
| 87                                    |                                                   |                       |                               | 0.082          |                                       |
| 88                                    |                                                   |                       |                               | 0.095          |                                       |
| 89                                    |                                                   |                       |                               | 0.109          |                                       |
| 86 87 88 89 90 90 91 91 91 92         |                                                   |                       |                               | 0.125          |                                       |
| 91                                    |                                                   |                       |                               | 0.144          |                                       |
| 92                                    |                                                   |                       |                               | 0.165          |                                       |
| Regulation 96 93 93 94 94             |                                                   |                       |                               | 0.189          |                                       |
| 2 94                                  | F                                                 | 20                    |                               | 0.218          |                                       |
| 95                                    | LUERYWHERE TESS THAN                              | 82                    |                               | 0.250          |                                       |
| 96                                    | ^                                                 | ^                     |                               | 0.287          |                                       |
| 97                                    | VENERALLY 1050 Than                               | 80,                   |                               | 0.330          |                                       |
| 98                                    |                                                   |                       |                               | 0.379          |                                       |
| 99                                    | Sec Tape.                                         |                       |                               | 0.435          |                                       |
| 100                                   |                                                   |                       |                               | 0.500          |                                       |
| 101                                   |                                                   |                       |                               | 0.574          |                                       |
| 102                                   |                                                   |                       |                               | 0.660          |                                       |
| 103                                   |                                                   |                       |                               | 0.758          |                                       |
| 104                                   |                                                   |                       |                               | 0.871          |                                       |
| 105                                   |                                                   |                       |                               | 1.000          |                                       |
| 106                                   |                                                   |                       |                               | 1.149          |                                       |
| 107                                   |                                                   |                       |                               | 1.320          | · · · · · · · · · · · · · · · · · · · |
| 108                                   |                                                   |                       |                               | 1.516          |                                       |
| 109                                   |                                                   |                       |                               | 1.741          |                                       |
| 110                                   |                                                   |                       |                               | 2.000          |                                       |
| 111                                   |                                                   |                       |                               | 2.297          |                                       |
| 112                                   |                                                   |                       |                               | 2.639          |                                       |
| 113                                   |                                                   |                       |                               | 3.031<br>3.482 |                                       |
| 114                                   |                                                   |                       |                               | 4.000          |                                       |
| 115                                   |                                                   |                       |                               | 4.000          |                                       |
|                                       | = Fm (2) <u>Daily</u> Sh                          | Hours Exp<br>ift Time | Equivalent                    | = '            |                                       |
| IM A 10 -                             |                                                   |                       | Noise Leve                    |                | BA ((90))<br>BA ((85))                |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

< 85 dBA ((85))

B63

| OPERATION No. EMPLOYEES Up. C          | 2 Slasher, operating                           |            | BY L  TIME  EXPOSED  E 85 sec. |       |       |
|----------------------------------------|------------------------------------------------|------------|--------------------------------|-------|-------|
| MEASURED<br>SOUND LEVEL<br>dBA         | NUMBER OF OCCURRENCE<br>(ONE MARK PER OCCURREN | S          | TOTAL OCCURRENCES PER LEVEL n  | F     | P=nxF |
| Less than 85                           | MMMMM                                          |            | 20                             | 0.    | 0.    |
| 85                                     | 174                                            |            | 5                              | 0.062 | ,31   |
| 86                                     | M                                              |            | S                              | 0.072 | .36   |
| 86<br>87<br>88<br>89<br>90<br>91       |                                                |            | 3                              | 0.082 | .246  |
| 88                                     |                                                |            |                                | 0.095 | ,095  |
| 89                                     |                                                |            |                                | 0.109 | ,109  |
| 90                                     |                                                |            |                                | 0.125 |       |
| 91                                     |                                                |            |                                | 0.144 |       |
| 92                                     |                                                |            |                                | 0.165 |       |
| 93                                     |                                                |            | -1                             | 0.189 |       |
| 94                                     |                                                |            |                                | 0.218 |       |
| 95                                     |                                                |            |                                | 0.250 |       |
| 96                                     |                                                |            |                                | 0.287 |       |
| 97                                     | ·                                              |            |                                | 0.330 |       |
| 98                                     |                                                |            |                                | 0.379 |       |
| 99                                     |                                                |            |                                | 0.435 |       |
| 100                                    |                                                |            |                                | 0.500 |       |
| 101                                    |                                                |            |                                | 0.574 |       |
| 102                                    |                                                |            |                                | 0.660 |       |
| 103                                    |                                                |            |                                | 0.758 |       |
| 104                                    |                                                |            |                                | 0.871 |       |
| 105                                    |                                                |            |                                | 1.000 |       |
| 106                                    |                                                |            |                                | 1.149 |       |
| 107                                    |                                                |            |                                | 1.320 |       |
| 108                                    |                                                |            |                                | 1.516 |       |
| 109                                    |                                                |            |                                | 1.741 |       |
| 110                                    |                                                |            |                                | 2.000 |       |
| 111                                    |                                                |            |                                | 2.297 |       |
| 112                                    |                                                |            |                                | 2.639 |       |
| 113                                    |                                                |            |                                | 3.031 |       |
| 114                                    |                                                |            |                                | 3.482 |       |
| 115                                    |                                                |            |                                | 4.000 |       |
| $\frac{\sum P}{\sum n} = \frac{9}{35}$ | O = Fm (2) Daily S                             | Hours Expo | Sn = 35  osed = 8  Equivalent  | = 1   | P = 0 |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

| i             | NOTES                          | metal Forest And.                            | DAILY HOURS | S EXPOSED_<br>LE ≈ 4 o sec. | SAMPLE I       | RATE NA        |
|---------------|--------------------------------|----------------------------------------------|-------------|-----------------------------|----------------|----------------|
|               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENC<br>(ONE MARK PER OCCURRE |             | OCCURRENCES PER LEVEL n     | F              | P=nxF          |
|               | Less than 85                   |                                              |             |                             | 0.             | 0.             |
|               | 85                             |                                              |             |                             | 0.062          |                |
| lation Cutoff | 86                             |                                              |             |                             | 0.072          |                |
| 핔             | 87                             |                                              |             |                             | 0.082          |                |
| آن            | 88                             |                                              |             |                             | 0.095          |                |
| EH.           | 89                             |                                              |             |                             | 0.109          |                |
| Ė             | 90                             |                                              |             |                             | 0.125          |                |
| la            | 91                             | Everywhere less than                         | 86          |                             | 0.144          |                |
| Regulation    | 92<br>93                       | LVCYGWAYE 1835 THAN                          | 86          |                             | 0.189          |                |
| Se l          | 93                             |                                              |             |                             | 0.189          |                |
| -             | 95                             | Generally loss than                          | 01/         |                             | 0.210          |                |
|               | 96                             |                                              | 2.7         |                             | 0.287          |                |
|               | 97                             |                                              |             |                             | 0.330          |                |
|               | 98                             | Su tape.                                     |             |                             | 0.379          |                |
|               | 99                             |                                              |             |                             | 0.435          |                |
|               | 100                            |                                              |             |                             | 0.500          |                |
|               | 101                            |                                              |             |                             | 0.574          |                |
|               | 102                            |                                              |             |                             | 0.660          |                |
|               | 103                            |                                              |             |                             | 0.758          |                |
|               | 104                            |                                              |             |                             | 0.871          |                |
|               | 105                            |                                              |             |                             | 1.000          |                |
|               | 106                            |                                              |             |                             | 1.149          |                |
|               | 107                            |                                              |             |                             | 1.320          |                |
|               | 108                            |                                              |             |                             | 1.516          |                |
|               | 109                            |                                              |             |                             | 1.741          |                |
|               | 110                            |                                              |             |                             | 2.000          |                |
|               | 111                            |                                              |             |                             | 2.297          |                |
|               | 112                            |                                              |             |                             | 2.639          |                |
|               | 113                            |                                              |             | <del></del>                 | 3.031<br>3.482 |                |
|               | 114                            |                                              |             | <u> </u>                    | 4.000          |                |
| į             | 113                            |                                              |             |                             | 4.000          |                |
|               | $\frac{\sum P}{\sum n} = $     | O = Fm (2) Dail                              |             | ∑n =<br>osed = =            |                | P <sub>=</sub> |
|               |                                | x = Fm (4)                                   |             | Equivalent<br>Noise Leve    |                |                |

dBA ((85))

dBA ((80))

\_B65

| NOTES                          |                                              | TOTAL SAMP | LE                            | SAMPLE I | RATE     |
|--------------------------------|----------------------------------------------|------------|-------------------------------|----------|----------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENC<br>(ONE MARK PER OCCURRE |            | TOTAL OCCURRENCES PER LEVEL n | F        | P≕nx     |
| Less than 85                   |                                              |            |                               | 0.       | 0.       |
| 85                             |                                              |            | <del> </del>                  | 0.062    | <u> </u> |
| 86                             |                                              |            | <del></del>                   | 0.072    |          |
| 87                             |                                              |            |                               | 0.082    |          |
| 88                             |                                              |            |                               | 0.095    |          |
| 89                             |                                              |            |                               | 0.109    |          |
| 90                             |                                              |            |                               | 0.125    |          |
| 91                             |                                              |            | <del> </del>                  | 0.144    |          |
| 92                             |                                              |            |                               | 0.165    |          |
| 93                             |                                              |            |                               | 0.189    |          |
| 94                             | Everywhere less                              | than 92.   |                               | 0.218    |          |
| 95                             |                                              |            |                               | 0.250    |          |
| 96                             | Chair dech less                              | Than F     | 5,                            | 0.287    |          |
| 97                             |                                              |            |                               | 0.330    |          |
| 98                             | Su Tape.                                     |            |                               | 0.379    |          |
| 99                             |                                              |            |                               | 0.435    |          |
| 100                            |                                              |            |                               | 0.500    |          |
| 101                            |                                              |            |                               | 0.574    |          |
| 102                            |                                              |            |                               | 0.660    |          |
| 103                            |                                              |            |                               | 0.758    |          |
| 104                            |                                              |            |                               | 0.871    |          |
| 105                            |                                              |            |                               | 1.000    |          |
| 106                            |                                              |            |                               | 1.149    |          |
| 107                            |                                              |            |                               | 1.320    |          |
| 108                            |                                              |            |                               | 1.516    |          |
| 109                            |                                              |            |                               | 1.741    |          |
| 110                            |                                              |            |                               | 2.000    |          |
| 111                            |                                              |            |                               | 2.297    |          |
| 112                            |                                              |            |                               | 2.639    |          |
| 113                            |                                              |            |                               | 3.031    |          |
| 114                            |                                              |            |                               | 3.482    |          |
| 115                            |                                              |            |                               | 4.000    |          |
|                                |                                              |            | \( \sum_{n} = \)              | 5        | P =      |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

#### EQUIVALENT NOISE EXPOSURE DATA SHEET

|                            | PLANT Continue OPERATION Log EMPLOYEES 1+6 | Line, Mear CAS, all going STAI                  | RT/STOP TIME<br>LY HOURS EXPOSED |          |             |
|----------------------------|--------------------------------------------|-------------------------------------------------|----------------------------------|----------|-------------|
|                            | NOTES                                      | TOTA                                            | AL SAMPLE 60 MC                  | SAMPLE I | RATE 13 Sec |
|                            | MEASURED<br>SOUND LEVEL<br>dBA             | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n    | F        | P=nxF       |
|                            | Less than 85                               |                                                 |                                  | 0.       | 0.          |
| _                          | 85                                         |                                                 |                                  | 0.062    |             |
| £.                         | 86                                         |                                                 |                                  | 0.072    |             |
| 9                          | 87                                         |                                                 |                                  | 0.082    |             |
| SC C                       | 88                                         |                                                 |                                  | 0.095    |             |
| Existing<br>ulation Cutoff | 89                                         |                                                 |                                  | 0.109    |             |
| Existi<br>Regulation       | 90                                         |                                                 |                                  | 0.125    |             |
| xt<br>at                   | 91                                         |                                                 |                                  | 0.144    |             |
| 田田                         | 92                                         |                                                 |                                  | 0.165    |             |
| 68                         | 93                                         |                                                 | 4                                | 0.189    | 1756        |
| الت                        | 94                                         | IM!                                             | 7                                | 0.218    | 1.526       |
|                            | 95                                         | 144                                             | 5                                | 0.250    | 1,250       |
|                            | 96                                         | [74]                                            | 6                                | 0.287    | 1,722       |
|                            | 97                                         |                                                 | 4                                | 0.330    | 1.320       |
| 1                          | 98                                         | ]]][]                                           | 4                                | 0.379    | 1.516       |
|                            | 99                                         |                                                 | 3                                | 0.435    | 1,305       |
|                            | 100                                        |                                                 |                                  | 0.500    |             |
|                            | 101                                        |                                                 |                                  | 0.574    | 1574        |
|                            | 102                                        |                                                 |                                  | 0.660    | .660        |
|                            | 103                                        |                                                 |                                  | 0.758    | .758        |
|                            | 104                                        |                                                 |                                  | 0.871    |             |
|                            | 105                                        |                                                 |                                  | 1.000    | ,,          |
|                            | 106                                        |                                                 |                                  | 1.149    | 1.149       |
| - 1                        | 107                                        |                                                 |                                  | 1.320    |             |
|                            | 108                                        |                                                 |                                  | 1.516    |             |
|                            | 109                                        |                                                 |                                  | 1.741    |             |
|                            | 110                                        |                                                 |                                  | 2.000    |             |
| j                          | 111                                        |                                                 |                                  | 2.297    |             |
|                            | 112                                        |                                                 |                                  | 2.639    |             |
|                            | 113                                        |                                                 |                                  | 3.031    |             |
|                            | 114                                        |                                                 |                                  | 3.482    |             |
|                            | 115                                        |                                                 |                                  | 4.000    |             |
| •                          |                                            |                                                 | $\sum n = 37$                    | Σ        | P= 12,536   |

 $\frac{\sum P}{\sum n} = \frac{12.536}{37} = .3388 = Fm (2) \qquad \frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{1}{8} = Ta (3)$   $Fm \times Ta = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{$ 

| 1                                       | NOTES MY                       | into Input Industris Industris In - lift kinch upcle son chain to stocky bldg. If | OTAL SAMPLE | TOTAL                        | SAMPLE F        | RATE      |
|-----------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|-------------|------------------------------|-----------------|-----------|
|                                         | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE)                                   |             | CCURRENCES<br>PER LEVEL<br>n | F .             | P=nxF     |
|                                         | Less than 85                   |                                                                                   |             |                              | 0.              | 0.        |
| 5                                       | 85                             |                                                                                   |             |                              | 0.062           |           |
| יים | 86                             |                                                                                   |             |                              | 0.072           |           |
|                                         | 87                             |                                                                                   |             |                              | 0.082           |           |
|                                         | 88                             |                                                                                   |             |                              | 0.095           |           |
| Н                                       | 89                             |                                                                                   |             |                              | 0,109           |           |
|                                         | 90                             |                                                                                   |             |                              | 0.125           |           |
| П                                       | 91                             | Everywhere loss than 1                                                            | -05         |                              | 0.144           |           |
| П                                       | 92                             | 3,0(-)                                                                            |             |                              | 0.165           |           |
| П                                       | 9 <u>3</u><br>94               | Generally less than 8                                                             |             |                              | 0.189<br>0.218  |           |
| 1                                       | 95                             | Commy and I have a                                                                | 0,          |                              | 0.210           |           |
|                                         | 96                             | See take                                                                          |             |                              | 0.287           |           |
| -                                       | 97                             |                                                                                   |             |                              | 0.330           |           |
| -                                       | 98                             |                                                                                   |             |                              | 0.379           |           |
| 1                                       | 99                             |                                                                                   |             |                              | 0.435           | -         |
| ı                                       | 100                            |                                                                                   |             |                              | 0.500           |           |
| - [                                     | 101                            |                                                                                   |             |                              | 0.574           |           |
| [                                       | 102                            |                                                                                   |             |                              | 0.660           |           |
| Į                                       | 103                            |                                                                                   |             |                              | 0.758           |           |
| ı                                       | 104                            |                                                                                   |             |                              | 0.871           |           |
|                                         | 105                            |                                                                                   |             |                              | 1.000           |           |
|                                         | 106                            |                                                                                   |             |                              | 1.149           |           |
| I                                       | 107                            |                                                                                   |             |                              | 1.320           |           |
| ١                                       | 108                            |                                                                                   |             |                              | 1.516           |           |
| -                                       | 109                            |                                                                                   |             |                              | 1.741           |           |
| ı                                       | 110                            |                                                                                   |             |                              | 2.000<br>2.297  |           |
|                                         | 112                            |                                                                                   | <del></del> |                              | 2.639           |           |
|                                         | 113                            |                                                                                   |             |                              | 3.031           |           |
|                                         | 114                            |                                                                                   |             |                              | 3.482           |           |
|                                         | 115                            |                                                                                   |             |                              | 4.000           |           |
| ı                                       |                                |                                                                                   |             |                              | <u> </u>        |           |
|                                         |                                |                                                                                   | Σ           | n =                          | Σ               | P =       |
|                                         | $\frac{\sum P}{\sum n} = -$    | Daily Sl                                                                          | Hours Expos | ed = = =                     | = 7             | Га (3)    |
|                                         |                                |                                                                                   |             |                              |                 |           |
|                                         | Fm x Ta =                      | x = Fm (4)                                                                        |             | Equivalent<br>Noise Leve     | 1 <u>490</u> di | BA ((90)) |
|                                         |                                | ·                                                                                 |             |                              | dE              |           |

| EMPLOYEES WOR                  |                                            | TOTAL SAMPI               | LE                            | SAMPLE F | RATE      |
|--------------------------------|--------------------------------------------|---------------------------|-------------------------------|----------|-----------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCE (ONE MARK PER OCCURRE |                           | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF     |
| Less than 85                   |                                            |                           |                               | 0.       | 0.        |
| 85                             |                                            |                           |                               | 0.062    |           |
| 86                             |                                            |                           |                               | 0.072    |           |
| 87                             |                                            |                           |                               | 0.082    |           |
| 88                             |                                            |                           |                               | 0.095    |           |
| 89                             |                                            |                           |                               | 0.109    |           |
| 90                             |                                            |                           |                               | 0.125    |           |
| 91                             |                                            |                           |                               | 0.144    |           |
| 92                             | ·                                          |                           |                               | 0.165    |           |
| 93                             |                                            |                           |                               | 0.189    |           |
| 94                             |                                            |                           | <del></del>                   | 0.218    |           |
| 95                             |                                            |                           |                               | 0.287    |           |
| 96                             | GENERALLY less than                        | 84                        |                               | 0.330    |           |
| 98                             |                                            | <u> </u>                  |                               | 0.379    |           |
| 99                             | See tape.                                  |                           |                               | 0.435    |           |
| 100                            |                                            |                           |                               | 0.500    |           |
| 101                            |                                            |                           |                               | 0.574    |           |
| 102                            |                                            |                           |                               | 0.660    |           |
| 103                            |                                            |                           |                               | 0.758    |           |
| 104                            |                                            |                           |                               | 0.871    |           |
| 105                            |                                            |                           |                               | 1.000    |           |
| 106                            |                                            |                           |                               | 1.149    |           |
| 107                            |                                            |                           |                               | 1.320    |           |
| 108                            |                                            |                           |                               | 1.516    |           |
| 109                            |                                            |                           | ,                             | 1.741    |           |
| 110                            |                                            |                           |                               | 2.000    |           |
| 111                            |                                            |                           |                               | 2.297    |           |
| 112                            |                                            |                           |                               | 2.639    |           |
| 113                            |                                            |                           |                               | 3.031    |           |
| 114                            |                                            |                           |                               | 4.000    |           |
| 115                            |                                            |                           |                               | 4.000    |           |
|                                |                                            | •                         | $\sum n = $                   | Σ        | P         |
| $\frac{\sum P}{\sum n}$        | O = Fm (2) Dail                            | y Hours Exp<br>Shift Time | osed =                        |          | Га (3)    |
| Fm x Ta =                      | x = Fm (4)                                 |                           | Equivalent<br>Noise Leve      | 1 490 di | BA ((90)) |

| OPERATION EMPLOYEES Com NOTES — O | of Mill Edger Op. B3 DAILY HO                   | OP TIME URS EXPOSED MPLE 348.3 Sec. | SAMPLE 1 | RATE 1.66 |
|-----------------------------------|-------------------------------------------------|-------------------------------------|----------|-----------|
| MEASURED<br>SOUND LEVEL<br>dBA    | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n       | F        | P=nxF     |
| Less than 85                      |                                                 |                                     | 0.       | 0.        |
| 85                                |                                                 |                                     | 0.062    |           |
| 86                                |                                                 |                                     | 0.072    |           |
| 87                                |                                                 |                                     | 0.082    |           |
| 86<br>87<br>88<br>89<br>90<br>91  |                                                 |                                     | 0.095    |           |
| 89                                |                                                 |                                     | 0,109    |           |
| 90                                | HU                                              | 5                                   | 0.125    | 1625      |
| 91                                | UKUMTAH III                                     | 18                                  | 0.144    | 2.592     |
| 92                                | MINIM IN THE MINIM IN MINIM                     |                                     | 0.165    | 9.405     |
| 93                                | untillitation in                                | 33                                  | 0.189    | 6.237     |
| 94                                | inimimmum —                                     | 27                                  | 0.218    | 5.886     |
| 95                                | Linitalism -                                    | 16                                  | 0.250    | 4.000     |
| 96                                | Hithm —                                         | 14                                  | 0.287    | 4.018     |
| 97                                | 1441                                            |                                     | 0.330    | 2.310     |
| 98                                | I Pull                                          |                                     | 0.435    | 5.653     |
| 100                               | THII                                            | 6                                   | 0.500    | 3.000     |
| 101                               |                                                 | 2                                   | 0.574    | 1.148     |
| 102                               | Min                                             | 8                                   | 0.660    | 5.280     |
| 103                               |                                                 | 1                                   | 0.758    | 1.516     |
| 104                               | MU                                              | 1 2                                 | 0.871    | 5.226     |
| 105                               |                                                 | 1                                   | 1.000    | 1.000     |
| 106                               |                                                 | 1                                   | 1.149    | 1.149     |
| 107                               |                                                 |                                     | 1.320    |           |
| 108                               |                                                 |                                     | 1.516    | 1.516     |
| 109                               |                                                 |                                     | 1.741    |           |
| 110                               |                                                 |                                     | 2.000    |           |
| 111                               |                                                 |                                     | 2.297    |           |
| 112                               |                                                 |                                     | 2.639    |           |
| 113                               |                                                 |                                     | 3.031    |           |
| 114                               |                                                 |                                     | 3.482    |           |
| 115                               |                                                 |                                     | 4.000    |           |

 $\frac{\sum P}{\sum n} = \frac{57.56}{211} = \frac{.7128}{100} = \frac{Pm}{200} = \frac{Pm}{200$ 

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ 

869

| NOTES                                        | TOTAL SA                                        | TOTAL                    | SAMPLE             | RATE         |
|----------------------------------------------|-------------------------------------------------|--------------------------|--------------------|--------------|
| SOUND LEVEL<br>dBA                           | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | OCCURRENCES PER LEVEL n  | F                  | P=nxF        |
| Less than 85                                 |                                                 |                          | 0.                 | 0.           |
| 85                                           |                                                 |                          | 0.062              |              |
| 86                                           |                                                 |                          | 0.072              |              |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93 |                                                 |                          | 0.082              |              |
| 88                                           |                                                 |                          | 0.095              | ļ            |
| 89<br>90                                     |                                                 |                          | 0.109<br>0.125     |              |
| 91                                           | <u> </u>                                        |                          | 0.144              |              |
| 92                                           | Gentrally \$ 90.                                |                          | 0.144              |              |
| 93                                           |                                                 |                          | 0.189              |              |
| 94                                           | See lape,                                       |                          | 0.218              |              |
| 95                                           |                                                 |                          | 0.250              |              |
| 96                                           | 0 1 1 2 2 2                                     |                          | 0.287              |              |
| 97                                           | Conservatively should be 90                     | 5.                       | 0.330              |              |
| 98                                           |                                                 |                          | 0.379              |              |
| 99                                           | (A) - +                                         |                          | 0.435              |              |
| 100                                          | Observation nots of tolle 19                    |                          | 0.500              |              |
| 101                                          |                                                 |                          | 0.574              |              |
| 102                                          | indicate cutting peaks @ 8                      | 19,5-90 dBA)             | 0.660              |              |
| 103                                          |                                                 |                          | 0.758              | <u> </u>     |
| 104<br>105                                   |                                                 |                          | 0.871<br>1.000     | <del> </del> |
| 106                                          |                                                 |                          | 1.149              |              |
| 107                                          |                                                 | <del></del>              | 1.320              | <del> </del> |
| 108                                          |                                                 |                          | 1.516              |              |
| 109                                          |                                                 |                          | 1.741              |              |
| 110                                          |                                                 |                          | 2.000              |              |
| 111                                          |                                                 |                          | 2.297              |              |
| 112                                          |                                                 |                          | 2.639              |              |
| 113                                          |                                                 |                          | 3.031              |              |
| 114                                          |                                                 |                          | 3.482              |              |
| 115                                          |                                                 |                          | 4.000              |              |
| <b>5</b> p                                   |                                                 | ∑n =                     |                    | P =          |
| $\frac{\sum n}{\sum n} = \frac{n}{n}$        | Daily Hours F Shift Tim                         |                          |                    | Ta (3)       |
| Fm ж Та =                                    | _ x = Fm (4)                                    | Equivalent<br>Noise Leve | :<br>1 <u>90</u> d | BA ((90)     |

| NOTES                                           | TOTAL SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LE                            | SAMPLE I | RATE                                  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|---------------------------------------|
| MEASURED<br>SOUND LEVEL<br>dBA                  | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF                                 |
| Less than 85                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.       | 0.                                    |
| 85                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.062    |                                       |
| 86                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.072    |                                       |
| 87                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.082    |                                       |
| 88                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.095    | <u> </u>                              |
| 89<br>90                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.109    |                                       |
| 90                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.123    |                                       |
| 92                                              | tess than 90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 0.165    |                                       |
| 93                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.189    |                                       |
| 94                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | 0.218    |                                       |
| 95                                              | Varis with norter, whiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 0.250    |                                       |
| 96                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.287    |                                       |
| 97                                              | or not be shits don,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | 0.330    |                                       |
| 98<br>99                                        | window ste.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 0.379    | <del> </del>                          |
| 100                                             | man ne.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 0.500    | <del></del>                           |
| 101                                             | Note of 10/18/00 indicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | 0.574    |                                       |
| 102                                             | John Committee C |                               | 0.660    |                                       |
| 103                                             | 86-68, primarily 87.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | 0.758    |                                       |
| 104                                             | · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 0.871    |                                       |
| 105                                             | Tape of 9/8/81 shows level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                      | 1.000    |                                       |
| 106                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1.149    |                                       |
| 107<br>108                                      | everywhere less than 84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 1.320    | · · · · · · · · · · · · · · · · · · · |
| 109                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1.741    |                                       |
| 110                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 2.000    |                                       |
| 111                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             | 2.297    |                                       |
| 112                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 2.639    |                                       |
| 113                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 3.031    |                                       |
| 114                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 3.482    |                                       |
| 115                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                      | 4.000    |                                       |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \( \sigma_n =                 | 2        | P                                     |
| $\frac{\sum \mathbf{p}}{\sum \mathbf{n}} = = -$ | $\frac{\hat{O}}{\text{Shift Time}} = \text{Fm (2)} \qquad \qquad \underline{\frac{\text{Daily Hours Exp}}{\text{Shift Time}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | osed =                        |          |                                       |

| MEASURED   SOUND LEVEL   CONE MARK PER OCCURRENCES   COCCURRENCES   COCCURRENCES   COCCURRENCES   PER LEVEL   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of occurrences   Occurrences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPI                        | LE RATE     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|
| Less than 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Less than 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ICES E                       |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85 86 87 88 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115   \[ \sum_{n=1}^{\sum_{n=1}} \sum_{n=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                           | 0.          |
| 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 86 87 88 89 90 91 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115   \[ \sum_{n} = \sum_{n} = \sum_{n} \text{ Equity Hours Exposed} = \sum_{n} =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |             |
| 93 94 95 96 97 98 99 99 99 99 99 99 99 90 101 101 102 103 103 105 100 105 105 100 106 107 108 109 109 1109 1109 1109 1109 1110 1100 1110 1110 1110 1110 1110 1110 1111 1110 1111 1110 1111 1110 1111 1111 1111 1111 1111 1111 1111 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93 94 95 96 97 98 99 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| 93 94 95 96 97 98 99 99 99 99 99 99 99 99 90 101 101 102 103 0.758 104 105 105 106 107 108 107 108 109 1109 111 110 120 131 141 110 2.297 1112 112 2.4239 113 114 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93 94 95 96 97 98 99 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08                         | 32          |
| 93 94 95 96 97 98 99 99 99 99 99 99 99 99 90 101 101 102 103 0.758 104 105 105 106 107 108 107 108 109 1109 111 110 120 131 141 110 2.297 1112 112 2.4239 113 114 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93 94 95 96 97 98 99 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| 93 94 95 96 97 98 99 99 99 99 99 99 99 90 101 101 102 103 103 105 100 105 105 100 106 107 108 109 109 1109 1109 1109 1109 1110 1100 1110 1110 1110 1110 1110 1110 1111 1110 1111 1110 1111 1110 1111 1111 1111 1111 1111 1111 1111 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93 94 95 96 97 98 99 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             |
| 93 94 95 95 96 0.218 97 97 98 99 99 274444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94 95 96 97 98 99 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95 96 97 98 99 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97 98 99 Springwhee Pro Than 56 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 $\sum n = $ $\sum P = $ Shift Time Equi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $     \begin{array}{c cccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                         | 00          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103 104 105 106 107 108 109 110 111 112 113 114 115  \[ \sum_{n=1}^{\infty} = \sum_{n=1}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $     \begin{array}{c cccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $     \begin{array}{ccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |             |
| $\sum n =                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sum n = \frac{\sum P}{\sum n} = \frac{115}{\sum n} = \frac{\sum P}{\sum n} = \frac{115}{\sum n} = \frac{115}{\sum$                                                                                                                                                                      | 3.0                          | 31          |
| $\frac{\sum P}{\sum n} = \frac{\sum P}{\sum P}{\sum n} = \frac{\sum P}{\sum P} = \frac{\sum P}{\sum n} = \frac{\sum P}{\sum n} = \frac{\sum P}{\sum P} = \frac{\sum P}{\sum $ | $\sum n = \frac{\sum P}{\sum n} = \frac{1}{\sum n$ |                              |             |
| $\frac{\sum P}{\sum n} = O = Fm (2)$ $\frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{1}{8} = Ta (3)$ Equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\sum P}{\sum n} = \frac{P}{\sum n} = $      | 4.0                          | 00          |
| Equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Equi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |             |
| Fm x Ta = $x = $ = Fm (4) Equivalent Noise Level $\angle 490$ dBA ((90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $Fm \times Ta =                                 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                            | = Ta (3)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | valent<br>e Level <u>229</u> | □ dBA ((90) |
| ∠∠ 85 <sub>dBA</sub> ((85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L = 16.61 log (16F) + 85. F = $1/T_p = (1/16)2^{(L-85)/5}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 268                          | _           |

|                               |                                | Equition 1                                                         | ar obotal bill. |                               |          |             |
|-------------------------------|--------------------------------|--------------------------------------------------------------------|-----------------|-------------------------------|----------|-------------|
|                               | OPERATION 5 (A)                | nuted Firest dad.<br>thing at 2th position.<br>FEW CHAIN ON GROUND | START/STOP      | TIME BY                       | 6. Lee   |             |
|                               |                                | MS Mill TSS going                                                  |                 | LE 66 3 mc                    | SAMPLE F | RATE 13 per |
|                               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCE (ONE MARK PER OCCURRE                         |                 | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF       |
|                               | Less than 85                   |                                                                    |                 |                               | 0.       | 0.          |
| ٦.                            | 85                             | TH                                                                 |                 | 5                             | 0.062    | , 31        |
| ££                            | 86                             | THU                                                                |                 |                               | 0.072    | .36         |
| Existing<br>Regulation Cutoff | 87                             | HILLIII                                                            |                 | 9                             | 0.082    | .738        |
| 8<br>C                        | 88                             | THE TITLE                                                          |                 | 9                             | 0.095    | .855        |
| t u                           | 89                             |                                                                    |                 | 4                             | 0.109    | .436        |
| st<br>io                      | 90                             | MH.                                                                |                 | 5                             | 0.125    | 1625        |
| x1<br>at                      | 91                             | 11                                                                 |                 | 2                             | 0.144    | ,288        |
| [1]                           | 92                             | 1                                                                  |                 | 1                             | 0.165    | 1165        |
| 68                            | 93                             |                                                                    |                 |                               | 0.189    |             |
| ۳]                            | 94                             | N .                                                                |                 |                               | 0.218    | 1218        |
|                               | 95                             |                                                                    |                 |                               | 0.250    |             |
|                               | 96                             |                                                                    |                 |                               | 0.287    |             |
|                               | 97                             |                                                                    |                 |                               | 0.330    |             |
|                               | 98                             |                                                                    |                 |                               | 0.379    |             |
|                               | 99                             |                                                                    |                 |                               | 0.435    |             |
|                               | 100                            |                                                                    |                 |                               | 0.500    |             |
|                               | 101                            |                                                                    |                 |                               | 0.574    |             |
|                               | 102                            |                                                                    |                 |                               | 0.660    |             |
|                               | 103                            |                                                                    |                 |                               | 0.758    |             |
|                               | 104                            |                                                                    |                 |                               | 0.871    |             |
|                               | 105                            |                                                                    |                 |                               | 1.000    |             |
|                               | 106                            |                                                                    |                 |                               | 1.149    |             |
|                               | 107                            |                                                                    |                 |                               | 1.320    |             |
|                               | 108                            |                                                                    |                 |                               | 1.516    |             |
|                               | 109                            |                                                                    |                 |                               | 1.741    |             |
|                               | 110                            |                                                                    |                 |                               | 2.000    |             |
|                               | 111                            |                                                                    |                 |                               | 2.297    |             |
|                               | 112                            |                                                                    |                 |                               | 2.639    |             |
|                               | 113                            |                                                                    |                 |                               | 3.031    |             |
|                               | 114                            |                                                                    |                 |                               | 3.482    |             |
|                               | 115                            |                                                                    |                 |                               | 4.000    |             |
| ,                             |                                |                                                                    |                 | S - A1                        |          | n 1291      |

| ^                                                                         | $\sum n = A$                                       | SP=1,296                   |
|---------------------------------------------------------------------------|----------------------------------------------------|----------------------------|
| $\frac{\sum P}{\sum n} = \frac{1.29b}{41} = \frac{.0316}{.0974} = Fm (2)$ | Daily Hours Exposed = = = Shift Time 8 =           | = Ta (3) <sup>3</sup> . 99 |
| Fm x Ta = x =                                                             | = Fm (4) Equivalent Noise Level 2                  | 40 dBA ((90))              |
|                                                                           |                                                    | <b>88.</b> 2 dBA ((85))    |
| $L = 16.61 \log (16F) + 85.$                                              | $F = 1/T_p = (1/16)2^{\lfloor (L-85)/5 \rfloor}$ . | dba ((80))<br><b>B7</b> 2  |

PLANT Continental fruit Ind.

OPERATION Heading / BM infect lift truck on START/STOP TIME

EMPLOYEES within Maye DAILY HOURS EXPOSED

NOTES Riding on lift as diver makes would TOTAL SAMPLE 385 Sec = 6m25; SAMPLE RATE 5 Sec. TOTAL MEASURED NUMBER OF OCCURRENCES **OCCURRENCES** SOUND LEVEL F P=nxF (ONE MARK PER OCCURRENCE) PER LEVEL dBA n MIMIN 12 Less than 85 0. Existing 0.062 . 124 86  $\overline{\Pi}$ 0.072 .216 87 0.082 .246 88 0.095  $\Pi\Pi$ .380  $\Pi\Pi$ 89 0.109 545 Regulation MIM MINI 90 19 0.125 2.375 91 MM 0.144 1.440 92 THIM 0.165 1.485 93 0.189 756 111/ 94 0.218 IIII.872 95 0.250 ,500 96 0.287 97 0.330 .330 98 0.379 99 0.435 0.500 100 101 0.574 102 0.660 103 0.758 104 0.871 105 1.000 106 1.149 1.320 107 1.516 108 109 1.741 2.000 110 2.297 111 112 2.639 113 3.031 114 3.482 4.000 115

| ·                                                                                  | $\sum n = 78$                          | ∑P=7.758<br>9.269 |
|------------------------------------------------------------------------------------|----------------------------------------|-------------------|
| $\frac{\sum P}{\sum n} = \frac{7.758}{78} = \frac{.099\%}{.01883} = \text{Fm} (2)$ | Daily Hours Exposed = = = Shift Time 8 | = Ta (3)          |
| Fm x Ta = x =                                                                      | = Fm (4) Equivalent Noise Level        | dBA ((90))        |
|                                                                                    | 8.                                     | 9.6 dBA ((85))    |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ 

|                           | EMPLOYEES                      | intal Frest and DATA 9 DATA 9 DATE 9 DATE 19 DATE 19 DATE 19 DATE 19 DATE 19 DATE SAME | S TIME<br>RS EXPOSED          | S. Lec | RATE 1 ACC |
|---------------------------|--------------------------------|----------------------------------------------------------------------------------------|-------------------------------|--------|------------|
|                           | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE)                                        | TOTAL OCCURRENCES PER LEVEL n | F      | P=nxF      |
| - 1                       | Less than 85                   |                                                                                        |                               | 0.     | 0.         |
|                           | 85                             |                                                                                        |                               | 0.062  |            |
| Existing<br>lation Cutoff | 86                             |                                                                                        | <u> </u>                      | 0.072  |            |
| <u>ئ</u>                  | 87                             |                                                                                        |                               | 0.082  |            |
| မှ သ                      | 88                             |                                                                                        |                               | 0.095  |            |
| # # I                     | 89                             |                                                                                        |                               | 0.109  |            |
| Existi<br>Regulation      | 90                             |                                                                                        |                               | 0.125  |            |
| Sx1                       | 91                             |                                                                                        |                               | 0.144  |            |
|                           | 92                             |                                                                                        |                               | 0.165  | 1165       |
| ĕ                         | 93                             |                                                                                        | >                             | 0.189  | .567       |
| ا ت                       | 94                             |                                                                                        | 5                             | 0.218  | 1.090      |
| - 1                       | 95                             |                                                                                        | 4                             | 0.250  | 1.000      |
| - 1                       | 96                             | THI LIMI                                                                               | 6                             | 0.287  | 1.722      |
|                           | 97                             |                                                                                        | 2                             | 0.330  | 1.650      |
|                           | 98                             |                                                                                        | 2                             | 0.379  | .758       |
| - 1                       | 99                             |                                                                                        | 3                             | 0.435  | 1305       |
| - 1                       | 100                            |                                                                                        |                               | 0.500  | ,500       |
|                           | 101                            |                                                                                        |                               | 0.574  |            |
| ı                         | 102                            |                                                                                        | 2                             | 0.660  | 1.320      |
| - 1                       | 103                            |                                                                                        |                               | 0.758  | .758       |
| ı                         | 104                            |                                                                                        |                               | 0.871  |            |
| - 1                       | 105                            |                                                                                        |                               | 1.000  |            |
| ı                         | 106                            |                                                                                        |                               | 1.149  |            |
| - 1                       | 107                            |                                                                                        |                               | 1.320  | 1.1        |
| I                         | 108                            |                                                                                        |                               | 1.516  |            |
|                           | 109                            |                                                                                        |                               | 1.741  |            |
| - I                       | 110                            |                                                                                        |                               | 2.000  |            |
|                           | 111                            |                                                                                        |                               | 2.297  |            |
| ı                         | 112                            |                                                                                        |                               | 2.639  |            |
| [                         | 113                            |                                                                                        |                               | 3.031  |            |
| ı                         | 114                            |                                                                                        |                               | 3.482  |            |
| - 1                       | 115                            |                                                                                        |                               | 4.000  |            |
|                           |                                |                                                                                        | $\sum_{n} = 33$               | Σ      | P=10.835   |

 $\frac{\sum P}{\sum n} = \frac{(0.835 - 3.83)}{33} = Fm (2)$ Daily Hours Exposed = = = Ta (3) Equivalent  $Fm \times Ta = __ \times __ = _ = Fm (4)$ Noise Level 97.0 dBA ((90)) 97.0 dBA ((85)) L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ . \_\_\_\_ dBA ((80))

B75

| EMPLOYEESNOTES                                        |                           |               | E EXPOSED                     |                | RATE         |
|-------------------------------------------------------|---------------------------|---------------|-------------------------------|----------------|--------------|
| MEASURED<br>SOUND LEVEL<br>dBA                        | NUMBER OF OCCURRENC       |               | TOTAL OCCURRENCES PER LEVEL n | F              | P=nxF        |
| Less than 85                                          |                           |               |                               | 0.             | 0.           |
| 85                                                    |                           |               |                               | 0.062          |              |
| 86                                                    |                           |               |                               | 0.072          |              |
| 87                                                    |                           |               |                               | 0.082          |              |
| , 88                                                  |                           |               |                               | 0.095          |              |
| 89                                                    |                           |               |                               | 0.109          |              |
| 90                                                    |                           |               |                               | 0.125          |              |
| 91                                                    |                           |               |                               | 0.144          |              |
| 92<br>93                                              | Less than 80              | - dsA         |                               | 0.189          |              |
| 94                                                    | F 525 11 mm 02            |               |                               | 0.218          |              |
| 95                                                    | ser tape.                 |               |                               | 0.250          |              |
| 96                                                    |                           |               | ····                          | 0.287          |              |
| 97                                                    |                           |               |                               | 0.330          |              |
| 98                                                    |                           | ·             |                               | 0.379          |              |
| 99                                                    |                           |               |                               | 0.435          |              |
| 100                                                   |                           | ·             |                               | 0.500          |              |
| 101                                                   |                           |               |                               | 0.574          |              |
| 102                                                   |                           |               |                               | 0.660          |              |
| 103                                                   |                           |               |                               | 0.758<br>0.871 |              |
| 104<br>105                                            |                           |               |                               | 1.000          |              |
| 106                                                   |                           |               |                               | 1.149          | <del> </del> |
| 107                                                   |                           |               |                               | 1.320          |              |
| 108                                                   |                           |               |                               | 1.516          |              |
| 109                                                   |                           |               |                               | 1.741          |              |
| 110                                                   |                           |               |                               | 2.000          |              |
| 111                                                   |                           |               |                               | 2.297          |              |
| 112                                                   |                           |               |                               | 2.639          |              |
| 113                                                   |                           |               |                               | 3.031          |              |
| 114                                                   |                           |               |                               | 3.482<br>4.000 | ļ            |
| 115                                                   |                           |               |                               | 4.000          | <u> </u>     |
|                                                       |                           |               | \( \sigma \) =                | 2              | P            |
| $\frac{\sum P}{\sum n} = \underline{} = \underline{}$ | = Fm (2) <u>Dai</u>       | ly Hours Expo | osed = =                      | = '            | Ta (3)       |
|                                                       | x = = Fm (4               |               | Equivalent<br>Noise Leve      |                |              |
|                                                       |                           |               |                               | <b>∠</b> 85 d1 | BA ((85))    |
|                                                       | (16F) + 85. $F = 1/T_p =$ | <b>.</b>      |                               | 280 di         |              |

| EMPLOYEESNOTES                 |                                              | DAILY HOURS |                                        | SAMPLE 1 | RATE           |
|--------------------------------|----------------------------------------------|-------------|----------------------------------------|----------|----------------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENC<br>(ONE MARK PER OCCURRE |             | TOTAL<br>OCCURRENCES<br>PER LEVEL<br>n | F        | P=nxF          |
| Less than 85                   |                                              |             |                                        | 0.       | 0.             |
| 85                             |                                              |             |                                        | 0.062    |                |
| 86                             |                                              |             |                                        | 0.072    |                |
| 87                             |                                              |             |                                        | 0.082    |                |
| 88                             |                                              |             |                                        | 0.095    |                |
| 89                             |                                              |             | - b                                    | 0.109    |                |
| 90                             |                                              |             |                                        | 0.125    |                |
| 91                             |                                              |             |                                        | 0.144    |                |
| 92                             | Everywhen loss Th                            | non 85.     |                                        | 0.165    |                |
| 93                             | <u> </u>                                     |             |                                        | 0.189    |                |
| 94                             | Su tape.                                     |             |                                        | 0.218    |                |
| 95                             |                                              |             |                                        | 0.250    |                |
| 96                             |                                              |             |                                        | 0.287    |                |
| 97                             |                                              |             |                                        | 0.330    |                |
| 98                             |                                              |             |                                        | 0.379    |                |
| 100                            |                                              |             |                                        | 0.435    |                |
| 101                            |                                              |             |                                        | 0.500    |                |
| 102                            |                                              |             |                                        | 0.660    |                |
| 103                            |                                              |             |                                        | 0.758    |                |
| 104                            |                                              |             |                                        | 0.871    |                |
| 105                            |                                              |             |                                        | 1.000    |                |
| 106                            |                                              |             |                                        | 1.149    |                |
| 107                            |                                              |             |                                        | 1.320    |                |
| 108                            |                                              |             |                                        | 1.516    |                |
| 109                            |                                              |             |                                        | 1.741    |                |
| 110                            |                                              |             |                                        | 2.000    |                |
| 111                            |                                              |             |                                        | 2.297    |                |
| 112                            |                                              |             |                                        | 2.639    |                |
| 113                            |                                              |             |                                        | 3.031    |                |
| 114                            |                                              |             |                                        | 3.482    |                |
| 115                            |                                              |             |                                        | 4.000    |                |
| ΣP = =                         | □ = Fm (2)                                   |             | ∑n =                                   |          | P <sub>=</sub> |
|                                | x = Fm (4)                                   |             | 8<br>Equivalent<br>Noise Leve          |          |                |
| rm x ra -                      | _ X Fill (4)                                 |             | Noise Leve                             | 1 490 d  | BA ((90))      |

|                                | ind RR con TO                                     | TAL SAMPLE TOTAL   | SAMPLE F                  | ATE           |
|--------------------------------|---------------------------------------------------|--------------------|---------------------------|---------------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE | OCCURRENCE         | 1 1                       | P=nxF         |
| Less than 85                   |                                                   |                    | 0.                        | 0.            |
| 85                             |                                                   |                    | 0.062                     |               |
| 86                             |                                                   |                    | 0.072                     |               |
| 87<br>88                       |                                                   |                    | 0.082                     |               |
| 89                             | · · · · · · · · · · · · · · · · · · ·             |                    | 0.109                     |               |
| 90                             |                                                   |                    | 0.125                     |               |
| 91                             |                                                   |                    | 0.144                     |               |
| 92                             |                                                   |                    | 0.165                     |               |
| 93                             | Evengwhere                                        |                    | 0.189                     |               |
| 94                             |                                                   |                    | 0.218                     |               |
| 95                             | Len Then 81ds                                     | 4.                 | 0.250                     |               |
| 96                             |                                                   |                    | 0.287                     | ·             |
| 97                             | Su Tape                                           |                    | 0.330                     | ·             |
| 98                             |                                                   |                    | 0.379                     |               |
| 100                            |                                                   |                    | 0.500                     |               |
| 101                            |                                                   |                    | 0.574                     |               |
| 102                            |                                                   |                    | 0.660                     |               |
| 103                            |                                                   |                    | 0.758                     |               |
| 104                            |                                                   |                    | 0.871                     |               |
| 105                            |                                                   |                    | 1.000                     |               |
| 106                            |                                                   |                    | 1.149                     |               |
| 107                            |                                                   |                    | 1.320                     | <del></del> : |
| 108                            |                                                   |                    | 1.516                     |               |
|                                |                                                   |                    |                           |               |
| 110                            |                                                   |                    | 2.000                     |               |
| 112                            |                                                   |                    | 2.639                     |               |
| 113                            |                                                   |                    | 3.031                     |               |
| 114                            |                                                   |                    | 3.482                     |               |
| 115                            |                                                   |                    | 4.000                     |               |
|                                |                                                   | \( \sum_{n} =      | Σ                         | P =           |
| $\frac{\sum p}{\sum p} = $     | $\mathcal{D}$ = Fm (2) Daily H                    | ours Exposed = 8   | _ = _ = ]                 | Ca (3)        |
| Fm x Ta =                      | _ x = = Fm (4)                                    | Equival<br>Noise L | ent<br>evel <u>190</u> di | 84 ((90))     |

| MEASURED<br>SOUND LEVEL | The second secon | TOTAL<br>URRENCES                       | SAMPLE F       |        |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|--------|
| dBA                     | (ONE MARK PER OCCURRENCE) PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R LEVEL                                 | r              | P=nxF  |
| Less than 85            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.             | 0.     |
| 85                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.062          |        |
| 86                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.072          |        |
| 87                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.082          |        |
| 88                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.095          |        |
| 89                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.109          |        |
| 90                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.125          |        |
| 91                      | Levels sovied up to 104 the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70                                      | 0.144          |        |
| 93                      | board slaps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 0.189          |        |
| 94                      | Bown sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 0.218          |        |
| 95                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.250          |        |
| 96                      | Generally levels were less t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | han                                     | 0.287          |        |
| 97                      | 92 Lowery with envis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | det                                     | 0.330          |        |
| 98                      | land in high Bulson land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0.379          |        |
| 99                      | or auto sorts recret CNS m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rill 1                                  | 0.435          |        |
| 100                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.500          |        |
| 101                     | to low 80's/high 70's on an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d                                       | 0.574          |        |
| 102                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.660          |        |
| 103                     | of out sixts remest stacher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gldg.                                   | 0.758          |        |
| 104                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 0.871<br>1.000 |        |
| 106                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 1.149          |        |
| 107                     | See tape.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 1.320          |        |
| 108                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                       | 1.516          |        |
| 109                     | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 1.741          |        |
| 110                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 2.000          |        |
| 111                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 2.297          |        |
| 112                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 2.639          |        |
| 113                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 3.031          |        |
| 114                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 3.482          |        |
| 115                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 4.000          |        |
|                         | Σn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =                                       | Σ              | P =    |
| $\sum P$                | = Fm (2) Daily Hours Exposed Shift Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = ===================================== | <b>==</b> 7    | Га (3) |

Equivalent
Noise Level 100.5 dBA ((90))

107.5dBA ((85))

\_\_\_\_ dBA ((80))

# EQUIVALENT NOISE EXPOSURE DATA SHEET

| OPERATION BomEMPLOYEES BY                         | 4                                                | DATA DATE START/STOP DAILY HOURS |                               | 6.Lu     |                                       |
|---------------------------------------------------|--------------------------------------------------|----------------------------------|-------------------------------|----------|---------------------------------------|
| NOTES C.                                          | thy                                              | TOTAL SAMP                       | LE 70 Sec                     | SAMPLE F | RATE 1 3 AC.                          |
| MEASURED<br>SOUND LEVEL<br>dBA                    | NUMBER OF OCCURRENCE<br>(ONE MARK PER OCCURREN   |                                  | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF                                 |
| Less than 85                                      |                                                  |                                  |                               | 0.       | 0.                                    |
| 85                                                |                                                  |                                  |                               | 0.062    | <u>~</u>                              |
| ¥4 86                                             |                                                  |                                  |                               | 0.072    |                                       |
| \$ 87                                             |                                                  |                                  |                               | 0.082    |                                       |
| Regulation Cutoff  88  88  90  90  91  92  93  94 |                                                  |                                  |                               | 0.095    |                                       |
| E 89                                              |                                                  |                                  |                               | 0.109    | /                                     |
| j 90                                              |                                                  |                                  |                               | 0.125    |                                       |
| 91                                                |                                                  |                                  | 1                             | 0.144    |                                       |
| 92                                                |                                                  |                                  |                               | 0.165    | í                                     |
| 93                                                |                                                  |                                  | <del></del>                   | 0.189    |                                       |
| 94                                                |                                                  |                                  |                               | 0.218    |                                       |
| 95                                                | <u> </u>                                         |                                  |                               | 0.250    |                                       |
| 96                                                | <u> </u>                                         |                                  |                               | 0.287    |                                       |
| 97                                                | <u> </u>                                         |                                  |                               | 0.330    |                                       |
| 98                                                | THUI                                             |                                  | 16                            | 0.379    | 2.274                                 |
| 99                                                | 1111                                             |                                  | 5                             | 0.435    | 2175                                  |
| 100                                               | HHIMI                                            |                                  | 177                           | 0.500    | 5.500                                 |
| 101                                               | MANATI                                           |                                  | 13                            | 0.574    | 7.462                                 |
| 102                                               | LAH MINI                                         |                                  | 5                             | 0.660    | 3.300                                 |
| 103                                               |                                                  |                                  | 2                             | 0.758    | 1.516                                 |
| 104                                               | 177                                              |                                  | 1-5-                          | 0.871    | 1.316                                 |
| 105                                               | 1                                                |                                  | <u>'</u>                      | 1.000    | , , , , , ,                           |
| 106                                               |                                                  |                                  | <del> </del>                  | 1.149    | <del>/</del>                          |
| 107                                               | <del>                                     </del> |                                  |                               | 1.320    | <del></del>                           |
| 107                                               | l                                                |                                  |                               | 1.516    | <del></del>                           |
| 109                                               |                                                  |                                  |                               | 1.741    | <del></del>                           |
| 110                                               | <del> </del>                                     |                                  |                               | 2.000    | · · · · · · · · · · · · · · · · · · · |
| 111                                               |                                                  |                                  |                               | 2.297    | <del> </del>                          |
| 112                                               | <b> </b>                                         |                                  |                               | 2.639    |                                       |
| 113                                               |                                                  |                                  |                               | 3.031    | <del></del>                           |
| 113                                               |                                                  |                                  |                               | 3.482    |                                       |
| 115                                               |                                                  |                                  |                               | 4.000    | <b></b>                               |
| 113                                               | <u> </u>                                         | <del></del>                      | <u> </u>                      | 4.000    |                                       |
|                                                   |                                                  |                                  | $\sum n = 43$                 | Σ        | P=23.098                              |
| $\frac{\sum P}{\sum n} = 23.698 =$                | .5372= Fm (2)                                    | y Hours Exp<br>Shift Time        | osed =:                       |          |                                       |

Fm x Ta = \_\_\_ x \_\_ = Fm (4)

 $L = 16.61 \log (16F) + 85.$   $F = 1/T_p = (1/16)2^{(L-85)/5}$ .

98 dBA ((85))

<u>98</u> dBA ((80))

BRI

# EQUIVALENT NOISE EXPOSURE DATA SHEET

|                            | PLANT Cution OPERATION BO EMPLOYEES NOTES |                                                    | RT/STOP<br>LY HOUR | B\b  BY C<br>TIME<br>S EXPOSED_<br>LE_ | SAMPLE F | NATE        |
|----------------------------|-------------------------------------------|----------------------------------------------------|--------------------|----------------------------------------|----------|-------------|
|                            | MEASURED<br>SOUND LEVEL<br>dBA            | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE) |                    | TOTAL OCCURRENCES PER LEVEL n          | F        | P≖nxF       |
|                            | Less than 85                              |                                                    |                    |                                        | 0.       | 0.          |
| . 7                        | 85                                        |                                                    |                    |                                        | 0.062    |             |
| £.                         | 86                                        |                                                    |                    |                                        | 0.072    |             |
| 빏                          | 87                                        |                                                    |                    |                                        | 0.082    |             |
| ည်း                        | 88                                        |                                                    |                    |                                        | 0.095    |             |
|                            | 89                                        |                                                    |                    |                                        | 0.109    |             |
| Existing Regulation Cutoff | 90                                        |                                                    |                    |                                        | 0.125    |             |
| lai                        | 91                                        |                                                    |                    |                                        | 0.144    |             |
| ng<br>ng                   | 92                                        |                                                    |                    |                                        | 0.165    |             |
| Re                         | 93                                        | Steady lend.                                       |                    |                                        | 0.189    |             |
| J                          | 94                                        | strang rome.                                       |                    |                                        | 0.218    |             |
|                            | · 95                                      | Une 98 dsA.                                        |                    |                                        | 0.230    |             |
|                            | 97                                        | 000 10 WA.                                         |                    | <del> </del>                           | 0.330    |             |
|                            | 98                                        | Su tape.                                           |                    |                                        | 0.379    |             |
|                            | 99                                        | sa infe.                                           |                    | <del> </del>                           | 0.435    |             |
|                            | 100                                       |                                                    |                    | <del> </del>                           | 0.500    |             |
|                            | 101                                       |                                                    |                    | <del> </del>                           | 0.574    |             |
|                            | 102                                       |                                                    |                    | <del> </del>                           | 0.660    | <del></del> |
|                            | 103                                       |                                                    |                    |                                        | 0.758    |             |
|                            | 104                                       |                                                    |                    |                                        | 0.871    |             |
|                            | 105                                       |                                                    |                    |                                        | 1.000    |             |
|                            | 106                                       |                                                    |                    |                                        | 1.149    |             |
|                            | 107                                       |                                                    |                    |                                        | 1.320    |             |
|                            | 108                                       |                                                    |                    |                                        | 1.516    |             |
|                            | 109                                       |                                                    |                    |                                        | 1.741    |             |
|                            | 110                                       |                                                    |                    |                                        | 2.000    |             |
|                            | 111                                       |                                                    |                    |                                        | 2.297    |             |
|                            | 112                                       |                                                    |                    |                                        | 2.639    |             |
|                            | 113                                       |                                                    |                    |                                        | 3.031    |             |
|                            | 114                                       |                                                    |                    |                                        | 3.482    |             |
|                            | 115                                       |                                                    |                    |                                        | 4.000    |             |
|                            | $\frac{\sum P}{\sum n} = \frac{n}{n}$     | .379 = Fm (2) <u>Daily Ho</u><br>Shif              |                    | ∑n =                                   |          |             |
|                            |                                           | Shif x = Fm (4)                                    | t Time             | Equivalent                             |          |             |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

|                             | EFIL FOLDER                    | untal Frest Industrice the man, Sto, Oche. | DATA 1 18 Control of the control of | O \ BY G                     |       | PATE 12 AF |
|-----------------------------|--------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|------------|
|                             | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCE                       | es o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL CCURRENCES PER LEVEL n | F     | P=nxF      |
|                             | Less than 85                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.    | 0.         |
| 7                           | 85                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.062 |            |
| Existing<br>ulation Cutoff, | 86                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.072 |            |
| 5                           | 87                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.082 |            |
| အူသ                         | 88                             | (Paris)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.095 | -          |
| H #                         | 89                             | MAN                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                           | 0.109 | 1.09       |
| Existin<br>Regulation       | 90                             | MAMIII                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                           | 0.125 | 1.625      |
| x                           | 91                             | 11/()                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                            | 0.144 | .576       |
|                             | 92                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                            | 0.165 |            |
| ě                           | 93                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.189 |            |
| ۳.                          | 94                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.218 |            |
|                             | <b>9</b> 5                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.250 |            |
|                             | 96                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.287 |            |
|                             | 97                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.330 |            |
|                             | 98                             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.379 |            |
|                             | 99                             | •                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.435 |            |
|                             | 100                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.500 |            |
|                             | 101                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.574 |            |
|                             | 102                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.660 |            |
|                             | 103                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.758 |            |
|                             | 104                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 0.871 |            |
|                             | 105                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1.000 |            |
|                             | 106                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1.149 |            |
|                             | 107                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1.320 |            |
|                             | 108                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1.516 |            |
|                             | 109                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1.741 |            |
|                             | 110                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 2.000 |            |
|                             | 111                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 2.297 |            |
|                             | 112                            | ·                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 2.639 |            |
|                             | 113                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 3.031 |            |
| i                           | 114                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 3.482 |            |
|                             | 115                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 4.000 |            |
| •                           | Sn.                            | <b>a</b> °                                 | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n = 27                       | Σ     | P_2.201    |

 $\frac{\sum P}{\sum n} = \frac{2.201}{2.7} = \frac{.0815}{.1219} = Fm (2) \qquad \frac{\text{Daily Hours Exposed}}{\text{Shift Time}} = \frac{1}{8} = \frac{1}{8} = \frac{1}{1219} =$ 

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

dBA ((80))

|                            | PLANT Control OPERATION att. EMPLOYEES VIE NOTES CA | enting chappes (clean-vp)                      | DATA DATE START/STOP DAILY HOURS TOTAL SAMPI | EXPOSED                                          |       | NATE   2 pur |
|----------------------------|-----------------------------------------------------|------------------------------------------------|----------------------------------------------|--------------------------------------------------|-------|--------------|
|                            | MEASURED<br>SOUND LEVEL<br>dBA                      | NUMBER OF OCCURRENCE<br>(ONE MARK PER OCCURREN | ES                                           | TOTAL OCCURRENCES PER LEVEL n                    | F     | P=nxF        |
|                            | Less than 85                                        |                                                |                                              |                                                  | 0.    | 0.           |
| _                          | 85                                                  |                                                |                                              |                                                  | 0.062 |              |
| 뾔                          | 86                                                  |                                                |                                              |                                                  | 0.072 |              |
| Existing<br>ulation Cutoff | 87                                                  |                                                |                                              |                                                  | 0.082 |              |
| 8<br>Cu                    | 88                                                  |                                                |                                              |                                                  | 0.095 |              |
| t u                        | 89                                                  |                                                |                                              |                                                  | 0,109 |              |
| Existi<br>Regulation       | 90                                                  |                                                |                                              |                                                  | 0.125 |              |
| xt<br>at                   | 91                                                  |                                                |                                              |                                                  | 0.144 |              |
|                            | 92                                                  |                                                |                                              |                                                  | 0.165 |              |
| 89                         | 93                                                  |                                                |                                              |                                                  | 0.189 |              |
| الت                        | 94                                                  |                                                |                                              |                                                  | 0.218 |              |
| İ                          | 95                                                  |                                                |                                              |                                                  | 0.250 |              |
|                            | 96                                                  |                                                |                                              |                                                  | 0.287 |              |
|                            | 97                                                  |                                                |                                              |                                                  | 0.330 |              |
|                            | 98                                                  |                                                |                                              |                                                  | 0.379 |              |
|                            | 99                                                  |                                                |                                              |                                                  | 0.435 |              |
|                            | 100                                                 |                                                |                                              |                                                  | 0.500 |              |
| - 1                        | 101                                                 |                                                |                                              |                                                  | 0.574 |              |
|                            | 102                                                 |                                                |                                              |                                                  | 0.660 |              |
|                            | 103                                                 |                                                |                                              |                                                  | 0.758 | 9.51         |
|                            | 104                                                 |                                                |                                              |                                                  | 0.871 | 169.         |
|                            | 105                                                 | HAI                                            |                                              | <del>                                     </del> | 1.149 | 7.000        |
|                            | 106<br>107                                          | MI                                             |                                              | 3                                                | 1.320 | 3.960        |
|                            | 107                                                 | 111                                            |                                              | <del></del>                                      | 1.516 | 1.516        |
|                            | 109                                                 |                                                |                                              | <del></del>                                      | 1.741 |              |
|                            | 110                                                 |                                                |                                              |                                                  | 2.000 | 2.000        |
|                            | 111                                                 | <b></b>                                        |                                              |                                                  | 2.297 | 2.000        |
|                            | 112                                                 |                                                |                                              |                                                  | 2.639 |              |
| i                          | 113                                                 |                                                |                                              |                                                  | 3.031 |              |
|                            | 114                                                 |                                                |                                              |                                                  | 3.482 |              |
|                            | 115                                                 |                                                |                                              |                                                  | 4.000 |              |
| 1                          |                                                     |                                                | ,                                            | \( \sigma_n = 20 \)                              | Σ     | P=23.982     |

 $\sum_{n} = \frac{100}{100} = \sum_{n} \frac{160}{100} = \sum_$ 

101.6 dBA ((85))

\_\_\_\_ dba ((80)) \_\_\_\_\_ 84

## EQUIVALENT NOISE EXPOSURE DATA SHEET

|                            | EMPLOYEES VIB                                             | CONVETIL + CLEAN-UP DAIL                           | RT/STOP<br>LY HOUR |                               |                |            |
|----------------------------|-----------------------------------------------------------|----------------------------------------------------|--------------------|-------------------------------|----------------|------------|
|                            | NOTES ~ M @                                               | <u>BM</u> TOT.                                     | AL SAMP            | LE 283 200                    | SAMPLE !       | RATE 3 200 |
|                            | MEASURED<br>SOUND LEVEL<br>dBA                            | NUMBER OF OCCURRENCES<br>(ONE MARK PER OCCURRENCE) |                    | TOTAL OCCURRENCES PER LEVEL n | F              | P=nxF      |
|                            | Less than 85                                              |                                                    |                    |                               | 0.             | 0.         |
| 7                          | 85                                                        |                                                    |                    |                               | 0.062          |            |
| ΨĘĘ                        | 86                                                        |                                                    |                    |                               | 0.072          |            |
| Existing Regulation Cutoff | 87                                                        |                                                    |                    |                               | 0.082          |            |
| ္က ပ                       | 88                                                        |                                                    |                    |                               | 0.095          |            |
| H K                        | 89                                                        |                                                    |                    |                               | 0.109          |            |
| ls1                        | 90                                                        |                                                    |                    |                               | 0.125          |            |
| Ex.                        | 91                                                        |                                                    |                    |                               | 0.144          |            |
| gn.                        | 92                                                        |                                                    |                    |                               | 0.165          |            |
| Re                         | 93                                                        | ,                                                  |                    |                               | 0.189          |            |
| . 7                        | 94                                                        |                                                    |                    |                               | 0.218          |            |
|                            | 95                                                        |                                                    |                    |                               | 0.250          |            |
|                            | 96                                                        |                                                    |                    |                               | 0.287          |            |
|                            | 97                                                        |                                                    |                    |                               | 0.330          |            |
|                            | 98                                                        |                                                    |                    | <u> </u>                      | 0.379          |            |
|                            | 99                                                        | 11                                                 |                    | <u> </u>                      | 0.435          | .435       |
|                            | 100                                                       | NIII                                               |                    | 1                             | 0.500          | ,500       |
|                            | 101                                                       | Mi.                                                |                    | 6                             | 0.574          | 3,444      |
|                            | 102                                                       | Livin                                              |                    |                               | 0.660          | 4.620      |
|                            | 103                                                       | 111                                                |                    | 3                             | 0.758<br>0.871 | 2,274      |
|                            | 105                                                       |                                                    |                    |                               | 1.000          |            |
|                            | 106                                                       |                                                    |                    |                               | 1.149          |            |
|                            | 107                                                       |                                                    | -                  |                               | 1.320          |            |
|                            | 108                                                       |                                                    |                    | <del> </del>                  | 1.516          |            |
|                            | 109                                                       |                                                    |                    |                               | 1.741          |            |
|                            | 110                                                       |                                                    |                    |                               | 2.000          |            |
|                            | 111                                                       |                                                    |                    | <del></del>                   | 2.297          |            |
|                            | 112                                                       |                                                    |                    | <del> </del>                  | 2.639          |            |
|                            | 113                                                       |                                                    |                    |                               | 3.031          |            |
|                            | 114                                                       |                                                    |                    |                               | 3.482          |            |
|                            | 115                                                       |                                                    |                    |                               | 4.000          |            |
|                            |                                                           |                                                    |                    |                               |                |            |
|                            | _                                                         |                                                    |                    | $\sum n = 18$                 |                | P=11.273   |
|                            | $\frac{\sum P}{\sum n} = \frac{11.273}{18} = \frac{1}{2}$ | (263 = Fm (2) Daily Ho Shif                        | urs Exp<br>t Time  | osed = =                      | = '            | Га (3)     |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

BY G. Lee PLANT Continued Forest DATA
DATE G/18/61 H
START/STOP TIME
DAILY HOURS EXPOSED OPERATION GREEN SOM CHAIN FIRST EMPLOYEES MAN, I DUT (RM + CAS 1946

| _                             | NOTES BUT G                    | TOTAL SAMP                                      | LE BJ; rec                    | SAMPLE I | RATE 13 pec  |
|-------------------------------|--------------------------------|-------------------------------------------------|-------------------------------|----------|--------------|
|                               | MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF        |
|                               | Less than 85                   |                                                 |                               | 0.       | 0.           |
| 1                             | 85                             |                                                 |                               | 0.062    |              |
| ££                            | 86                             |                                                 |                               | 0.072    |              |
| t                             | 87                             |                                                 |                               | 0.082    |              |
| ္က ပ                          | 88                             |                                                 | 4                             | 0.095    | ,38<br>1,462 |
| Existing<br>Regulation Cutoff | 89                             | LAN LAN LATILITY                                | 18                            | 0.109    |              |
| lito I                        | 90                             | MINIMULI                                        | וח                            | 0.125    | 2.125        |
| x1<br>at                      | 91                             | MILL                                            | 8                             | 0.144    | 1.152        |
|                               | 92                             | 111                                             | 3                             | 0.165    | ,445         |
| ě                             | 93                             |                                                 |                               | 0.189    | .189         |
| ۳                             | 94                             |                                                 |                               | 0.218    |              |
|                               | 95                             |                                                 |                               | 0.250    |              |
|                               | 96                             |                                                 |                               | 0.287    |              |
|                               | 97                             |                                                 |                               | 0.330    |              |
|                               | 98                             |                                                 |                               | 0.379    |              |
|                               | 99                             |                                                 |                               | 0.435    |              |
|                               | 100                            |                                                 |                               | 0.500    |              |
|                               | 101                            |                                                 |                               | 0.574    |              |
|                               | 102                            |                                                 |                               | 0.660    |              |
|                               | 103                            |                                                 |                               | 0.758    |              |
|                               | 104                            |                                                 |                               | 0.871    |              |
|                               | 105                            |                                                 |                               | 1.000    |              |
|                               | 106                            |                                                 |                               | 1.149    |              |
|                               | 107                            |                                                 |                               | 1.320    | · · ·        |
|                               | 108                            |                                                 |                               | 1.516    |              |
|                               | 109                            |                                                 |                               | 1.741    |              |
|                               | 110                            |                                                 |                               | 2.000    |              |
|                               | 111                            |                                                 |                               | 2.297    |              |
|                               | 112                            |                                                 |                               | 2.639    |              |
|                               | 113                            |                                                 |                               | 3.031    |              |
|                               | 114<br>115                     |                                                 |                               | 3.482    |              |
|                               | 115                            |                                                 |                               | 4.000    |              |

| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sum n = \int 1$                  | 5P=3.961                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------|
| $\frac{\sum P}{\sum n} = \frac{3.961}{51} = \frac{.0777}{.1236} = \frac{7}{1236} = \frac{1}{1236} = \frac{1}{123$ | Daily Hours Exposed = Shift Time 8 | = = Ta (3) $6.30$ ?                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    | nt<br>vel <b>49</b> 0 dBA ((90))    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Noise Lev                          | vel 270 dBA ((90))  89.9 dBA ((85)) |
| L = 16.61 log (16F) + 85. F =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= 1/T_{-} = (1/16)2^{[(L-85)/5]}$ | dBA ((80))                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -/-p (2/20/2                       | 885                                 |

\_\_ dBA ((85))

dBA ((80))

886

| NOTES                          | TOTAL S                                         | TOTAL SAMPLE                  |       | SAMPLE RATE |  |
|--------------------------------|-------------------------------------------------|-------------------------------|-------|-------------|--|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F     | P=nx        |  |
| Less than 85                   |                                                 |                               | 0.    | 0.          |  |
| 85                             |                                                 |                               | 0.062 | <u> </u>    |  |
| 86                             |                                                 |                               | 0.072 |             |  |
| 87                             |                                                 |                               | 0.082 |             |  |
| 88                             |                                                 | ,                             | 0.095 |             |  |
| 89                             |                                                 |                               | 0.109 |             |  |
| 90                             |                                                 |                               | 0.125 |             |  |
| 91                             |                                                 |                               | 0.144 |             |  |
| 92                             |                                                 |                               | 0.165 |             |  |
| 93                             | trumuter less then 90.                          |                               | 0.189 |             |  |
| 94                             |                                                 |                               | 0.218 |             |  |
| 95                             | · See take                                      |                               | 0.250 |             |  |
| 96                             |                                                 |                               | 0.287 |             |  |
| 97                             |                                                 |                               | 0.330 |             |  |
| 98                             |                                                 |                               | 0.379 |             |  |
| 99                             |                                                 |                               | 0.435 |             |  |
| 100                            |                                                 |                               | 0.500 |             |  |
| 101                            |                                                 |                               | 0.574 |             |  |
| 102                            |                                                 |                               | 0.660 |             |  |
| 103                            |                                                 |                               | 0.758 |             |  |
| 104                            |                                                 |                               | 0.871 |             |  |
| 105                            |                                                 |                               | 1.000 |             |  |
| 106                            |                                                 |                               | 1.149 |             |  |
| 107                            |                                                 |                               | 1.320 |             |  |
| 108                            |                                                 |                               | 1.516 |             |  |
| 109                            |                                                 |                               | 1.741 |             |  |
| 110                            |                                                 |                               | 2.000 |             |  |
| 111                            |                                                 |                               | 2.297 |             |  |
| 112                            |                                                 |                               | 2.639 |             |  |
| 113                            |                                                 |                               | 3.031 |             |  |
| 114                            |                                                 |                               | 3.482 |             |  |
| 115                            |                                                 |                               | 4.000 |             |  |
|                                |                                                 | ~                             | -     |             |  |
| 115                            |                                                 | \( \sum_{n} =                 | 4.000 |             |  |

L = 16.61 log (16F) + 85. F =  $1/T_p = (1/16)2^{(L-85)/5}$ .

| NOTES                          | DAI                                             | AL SAMPLE 45 MC               | SAMPLE 1 | RATE 12 |
|--------------------------------|-------------------------------------------------|-------------------------------|----------|---------|
| MEASURED<br>SOUND LEVEL<br>dBA | NUMBER OF OCCURRENCES (ONE MARK PER OCCURRENCE) | TOTAL OCCURRENCES PER LEVEL n | F        | P=nxF   |
| Less than 85                   | ·                                               |                               | 0.       | 0.      |
| 85                             |                                                 |                               | 0.062    |         |
| 86                             |                                                 |                               | 0.072    |         |
| 87                             |                                                 |                               | 0.082    |         |
| 88                             |                                                 |                               | 0.095    |         |
| 89                             |                                                 |                               | 0.109    |         |
| 90                             | W)                                              | S                             | 0.125    | .625    |
| 91                             |                                                 |                               | 0.144    |         |
| 92                             |                                                 |                               | 0.165    | 1 2 .   |
| 93                             | MIIII                                           |                               | 0.189    | 1,301   |
| 94<br>95                       | MIMI                                            |                               | 0.218    | 2.83    |
| 96                             |                                                 | ·                             | 0.230    | 152     |
| 97                             |                                                 |                               | 0.330    |         |
| 98                             |                                                 |                               | 0.379    |         |
| 99                             |                                                 |                               | 0.435    |         |
| 100                            |                                                 |                               | 0.500    |         |
| 101                            |                                                 |                               | 0.574    |         |
| 102                            |                                                 |                               | 0.660    |         |
| 103                            |                                                 |                               | 0.758    |         |
| 104                            |                                                 |                               | 0.871    |         |
| 105                            |                                                 |                               | 1.000    |         |
| 106                            |                                                 |                               | 1.149    |         |
| 107                            |                                                 |                               | 1.320    |         |
| 108                            |                                                 |                               | 1.516    |         |
| 109                            |                                                 |                               | 1.741    |         |
| 110                            |                                                 |                               | 2.000    |         |
| 111                            |                                                 |                               | 2.297    |         |
| 112                            |                                                 |                               | 2.639    |         |
| 113                            |                                                 |                               | 3.031    |         |
| 114                            |                                                 |                               | 3.482    |         |
| 115                            |                                                 |                               | 4.000    | 1       |

 $\sum_{n} = \frac{28}{28} \qquad \sum_{p} \frac{5.41}{28} = \frac{1932}{28} = Fm (2) \qquad \underbrace{\frac{\text{Daily Hours Exposed}}{\text{Shift Time}}} = \frac{1932}{8} = Ta (3)$   $Fm \times Ta = \frac{1932}{28} = Fm (4) \qquad \underbrace{\frac{\text{Equivalent}}{\text{Noise Level}}}_{\text{Noise Level}} = \frac{93.1}{48} dBA ((90))$   $\underline{\frac{93.1}{48}}_{\text{A}} dBA ((85))$   $\underline{\frac{193.1}{48}}_{\text{A}} dBA ((80))$   $\underline{\frac{193.1}{48}}_{\text{A}} dBA ((80))$   $\underline{\frac{193.1}{48}}_{\text{A}} dBA ((80))$   $\underline{\frac{193.1}{48}}_{\text{A}} dBA ((80))$   $\underline{\frac{193.1}{48}}_{\text{A}} dBA ((80))$ 





























































































,





Tape for Task 41 "Round Table Man, P19, Idle and Cleanup!" was misplaced.

























QP 0102

QP 0102



































































QP 0102











































ACOUSTICAL INFEED TUNNEL FOR THE FULGHUM MODEL 60-8K CHIPPER AT THE CONTINENTAL FOREST INDUSTRIES!

MILL No. 152

HAZLEHURST, GA

GHLEE, GA TECH IED, MACON, GA.





CAP SCREW, L'WASHER, & NUT, 12 PLCS.

NOTES:

 √ 1 - 13 x 3" LG HEX HD I)IN ORDER TO ACCOMODATE THIS THINEL THE LOWER CONVEYOR BELT ROLLERS FOR THE TROUGH WHICH PASSES OVER THIS TUNNEL MUST BE RAISED. ALSO, THE 1/2-3/4" ELECTRICAL CONDUIT ATTACHED TO THE ABOVE MENTIONED TROUGH MUST BE RAISED.

2) PATCH : Z-3 HOLES IN THE VIBRATING CONVEYOR WHICH ALLOW SAWDUST TO ACCUMULATE ON THE GROUND UNDERNEATH.

VIEW E-E

SCALE: 1"= 8" (12"-1-0")

SHT 2 OF 12

















PANEL (9), OF & STEEL SHEET, IS RECTANGULAR





