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• Apollo 16 Lunar Module landing sequence

• “I think dust is probably one of our greatest inhibitors to a nominal 
operation on the Moon.  I think we can overcome physiological or 
physical or mechanical problems except dust.”
– Gene Cernan, Apollo 17 Technical Debrief

Introduction (1 of 3)

Apollo16 lunar landing.mpeg
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Introduction (2 of 3)

• During the Apollo missions it became apparent that lunar dust 
was a significant hazard.  Problems included
– Surface obscuration during landing sequence
– Abrasion damage to gauge faces and helmet visors
– Mechanism clogging
– Development of space suit pressurization leaks
– Loss of radiator heat rejection capabilities to the point where vulnerable 

equipment exceeded maximum survival temperature ratings
– Temporary vision and respiratory problems within the Apollo Lunar 

Module (LM)



4 MSW

Introduction (3 of 3)

• NASA Constellation Program features many system-level 
components
– including the Altair Lunar Lander

• Altair to endure longer periods at lunar surface conditions
– Apollo LM, about three days
– Altair, over seven months

• Program managers interested in plume-generated dust 
transport onto thermal control surface radiators of the first 
Altair created by its own landing operations 
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Problem Description

• Analyze dust contamination environment generated 
during first Lunar Lander landing
– Self-contamination of critical thermal control radiators
– Non-LOS

• Virtually no lunar atmosphere
– No atmospheric mixing of gases

• Concern that electrostatically-charged particles, freed 
from lunar regolith by lander engine operations, may 
find their way to critical lander surfaces
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Approach

• Model main engine plume
• Calculate surface stresses on lunar regolith
• Calculate regolith removal rate

– Fluid acceleration against particle inertia, short-range forces

• Determine electrostatic work necessary to overcome kinetic 
energy of mobile dust particles

• Current modeling efforts still underway



7 MSW

Altair Lunar Lander
• Much larger than Apollo Lunar Lander

– 46,000 kg vs. 16,400 kg

• Meant to remain on lunar surface for weeks
– Period depends on type of mission (sortie vs. outpost support modes)

Vertical 
radiator

Main 
engine
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Pratt & Whitney RL-10 Engine Description

• Created RL-10 model
– Hard to pin down unspecified Altair parameters

• Range of O/F ratios
• Various Isp ’s, nozzle geometries
• Versatile engine, designed in 1957, has used vast array of fuels 

under test conditions, throttled down to 1% full thrust in testing
– Used RL-10A-4 info

• Isp = 449 s, O/F = 5.5, p0 = 39 bar, m = 21 kg/s, Ae /A* = 84
– Nozzle exit properties (simplistic)

• 22 H2 O + 10 H2

• Ve = 4.3 km/s, T0 = 2600 K, Te = 550 K, Me = 6.37
• Decided flat exit profile adequate for current application

– Neglect boundary-layer development and its high-angle influence
– Altair geometry inhibits backflow development

.



9 MSW

Descent Engine Comparisons

• Altair RL-10 vs. Apollo LM Descent Stage (DS)
– Fuel

• LOX/LH2 vs. N2 O4 /Aerozine-50
– Thrust

• 99.1 kN vs. 44.0 kN
– Specific Impulse Isp

• 449 s vs. 311 s
– Exit velocity

• 4.3 km/s vs. 3.1 km/s

• Altair DS engine parameters much more energetic than Apollo
– Apollo-related models may not be suitable for Altair investigations
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Observations
• Period of highest plume impingement not same as period of worst dust 

attraction
• Particle drag will overwhelm charge effects

– Neglect dust attraction during firing periods
• Drag force and attraction both fall with square of distance

• Attraction occurs during, after engine shutdown
– Only for disturbed, charged dust within Debye radius from Lander
– Intersection with lunar surface produces disk of influence

– Varies with particle size, relative potential
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Plume Model Formulation

• Initial modeling uses FM plume formulation
– Can use rapidly to approximate incident fluxes (impingement stresses)
– Try correcting for Knudsen layer using bridging technique

• DLR
• Potter

– Reynolds analogy for high density shear (Legge)

• Can substitute results from different approaches
– DSMC simulations
– CFD computations
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FM Model—Free Expansion
• Logarithmic mass flux contour map
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FM Model—Surface Impingement

• Pressure contours (incident + reflected, Tsurf = 300 K)
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FM Model—Surface Impingement (cont.)

• Radial shear stress contours
– Max of 7.5 Pa @ r = 11.3 m
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Plume Model Procedure

• Create time-varying gas properties across starting surface
• Inputs at each timestep affects solution domain over long 

subsequent period
– May identify arbitrary response periods to individual input timestep 

conditions beyond which influences decay to negligible values
– Build up overall FM solution from summation of transient responses to 

inputs at each single timestep

• Look for opportunities to revise with solutions using higher- 
fidelity techniques
– DSMC, CFD, hybrids
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Lunar Dust Attributes

(Frame width ≈

 

0.66 microns)
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Lunar Dust Attributes

• Typical sample described as a basaltic ash
• Density ≈

 
2.9 g/cm3

• Avg. grain radius ≈
 

70 microns
– Size distribution ranges from sub-micron to hundreds of microns

• Jagged features
– Oxidation removes roughness for terrestrial dust
– Exposure to high-energy solar wind

• Low electrical conductivity
• Surface adhesion facilitated by

– Burr-like geometry
– Electrostatic effects
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Dust Production Mechanism

• “Viscous erosion” model developed for Apollo program
– Issue concerned obscuration of landing site, not charged particle attraction

• Particle expected to remain at rest until local plume shear stress 
overcomes static friction, cohesive stress, component of gravity
– Does this process produce triboelectric charging?

• Plume shear stress in excess of the critical value converted into 
accelerating particles to their final velocities

• Some subsequent testing found model erosion rates match to 
within an order of magnitude
– Verification of particle velocities not mentioned
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Observations
• Viscous erosion model

– assumes instantaneous acceleration to final velocity
– Neglects persistent influence of plume environment

• Model assumes dust trajectories determined by surface 
ejection angle

• Recent photogrammetric analyses indicate actual trajectories 
lie 1-3° off horizontal

• Effects on dust velocity

• Current studies identify at least three other mechanisms
– “Bearing Capacity Failure”
– “Diffused Gas Eruption”
– “Diffusion-Driven Shearing”

• Erosion model modifications currently under development
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Electrostatic Attraction to Altair
• Compute Debye radius

– Representative distance over which significant charge separation can occur 
and still exert influence

– Outside this distance, charges are considered screened

• Time lag determines whether generated particles remain within 
influence disk (intersection of Debye sphere and lunar surface) at 
instant engine firing ceases
– Sorta like “musical chairs” once music stops

• Electrostatic attraction model
– Electrostatic work performed to overcome K.E. for Altair surface attraction
– Translate these effects to a incident dust mass flux
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Final Results--Dust Mass Flux

• Dust return flux will be particle size dependent
– Must use binning to create return fractions
– Summation provides estimate for Percent Area Coverage (PAC)

• Assume no overlap of particles (simple, conservative for high PAC’s)

• Relate PAC to radiator degradation
– Changes in absorptivity, emissivity

• Others could use mass flux to determine effects on mechanisms, 
visors, etc.
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Concluding Remarks

• Relatively unique investigation requires at least three models
– Transient plume impingement problem
– Dust generation rates
– Non-line-of-sight electrostatic attraction

• Must remain responsive to possibility of incorporating 
– high-fidelity RL-10 lunar plume impingement computational results
– updates to dust generation models from current studies

• Including newly-defined generation mechanisms
– Estimates of charging of lunar surface, Altair due to various mechanisms
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