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SUMMARY 
 

A commercial flight plan comprises a series of turns and climbs or descents 

defined by headings or waypoints, and speed and altitude constraints at each. Situations 

do occur in-flight where the original plan must be altered. The objective of this research 

was to see how pilots perform in-flight planning by observing the planning behavior of 

pilots in non nominal and emergency conditions arising in the last 15-30 minutes of 

flight. The impact of autoflight systems on planning including notional systems with the 

capability of automatically generating a flight plan was also examined. 

Results from the experiment showed that the autoflight systems did not have a 

significant impact on the replanning task. Instead, the specific scenario showed more of 

an effect on the primary performance measures of time of flight and distance flown. 

Interesting trends of lateral and vertical navigation were also seen, together with 

sometimes unconventional use of the autoflight systems. Pilots always tended to go for 

the most direct route possible when given discretion. Pilots did not verbally express any 

distinction between emergency and non-nominal flight conditions, however, the effect of 

these flight conditions was seen when the planning performance measures of time of 

flight and distance flown were analyzed. Most pilots were quite aggressive with their 

plans in terms of speeds and descents at higher altitudes but maintained shallow turns 

onto final approach. 
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Pilots favored the use of the automatically generated plan. From the experiment 

results it was determined that automatic flight path generation would be beneficial to the 

task of in flight replanning and would only serve to reduce the workload in high 

workload emergencies. However, it is imperative that, for such a system to be useful, it 

should have the ability of considering a number of factors simultaneously, including real 

time access to information about the immediate context, including traffic, weather and 

terrain.  
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CHAPTER 1 
  

INTRODUCTION 
 
 

Air transport pilots face situations at times that require them to re-route the 

aircraft. This calls for replanning the flight route either by modifying the existing plan or 

by creating a new plan by defining waypoints or headings, speeds and altitudes. 

However, this replanning in-flight can be a difficult task. From a pilot’s point of view, 

any flight can be thought of as a plan of turns and descents, as well as changes in aircraft 

dynamics, such as extension of flaps and gear or the dumping of excess fuel. In addition 

to the causal effect of actions on the immediate trajectory, actions also change where and 

when subsequent actions need to be performed. Thus, in replanning, the pilot needs to 

account for all of these complex interactions in the trajectory to plan the flight-path of the 

aircraft. Unfortunately, it can be difficult for the pilot to predict all the interactions.  

Research on planning has emphasized automation with a view to alleviating the 

workload on pilots and dispatchers either by automating planning processes or delegating 

decision-making away from the flight deck. However, few studies have examined the 

behavioral aspects of planning in general and the impact of automation in particular. This 

is especially true for “tactical planning”, i.e., planning in a time horizon on the order of 

tens of minutes. Thus it is hypothesized that some automation in the flight deck should be 
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available that could assist air transport pilots in tactical planning by considering many 

factors about the immediate and near-term situation.  

For this thesis, a flight simulator experiment was conducted to study airline pilot 

performance in tactical replanning tasks using several different autoflight systems. Each 

pilot was placed into either a non nominal or an emergency situation which required 

replanning. All pertinent checklists were assumed to have been performed and the aircraft 

was currently in stable flight. His or her immediate task was to replan the current flight 

and fly down to the final approach using the available tools at hand. These tools always 

included the standard paper charts, such as the en-route chart, the STAR chart, and the 

approach plate. Depending on the scenario, they were given one of four types of 

automation, the MCP, the CDU and two variants of the CDU, the CDU+ and CDU++. 

All the types of automation were functionally similar to that of current aircraft. The latter 

two types had simulated automatic generation of plans called the Autoplan: in the CDU+ 

case, the automatically generated plan could be selected; and, in the CDU++ case, the 

Autoplan automatically became the active route. All the types allowed the pilot to modify 

the plan at any point during the flight.  

 The remainder of this thesis is organized as follows. To motivate this research 

Chapter 2 provides a background on tactical planning, cockpit automation and the 

benefits and problems associated with them. Chapter 3 provides the objectives of this 

research and details the experiment design including experimental apparatus, the 

independent variables to be studied, the experimental procedure, and the measures 

collected. Chapter 4 presents the results of the experiment. Chapter 5 provides a 

discussion of the results and the conclusions and recommendations from this study. 
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CHAPTER 2  
 

BACKGROUND AND MOTIVATION 
 
 

2.1 Flight Planning
 

Formally, a flight plan is a list of destinations or waypoints, their associated 

altitudes and speeds, and a destination which is to be filed with a legal authority before a 

flight. Functionally, the term “plan” can also refer to a succession of goals and actions 

that are designed and executed to fulfill the final objective.  

In air transport, flight plans are typically created by the pilot and dispatcher, and 

approved (and potentially modified) by air traffic operators before take-off. In addition, a 

substantial amount of re-planning may need to be done on the fly during flight, where 

pilots have real time access to more current information sources.  

Flight planning is essential as it is a process by which a suitable set of high level 

actions is created that will enable the flight to reach its destination. At a base level, flying 

an aircraft is essentially an exercise in managing available resources including time, fuel, 

energy, or a combination thereof. Management of these resources is crucial to an efficient 

flight and to do this the pilot must incorporate knowledge about the current environment. 

In higher workload situations, especially emergencies, pilots may face near impossible 
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demands on their time. Flight planning offers a reduction of workload during later stages 

by enabling the pilot to follow a predetermined plan, and also can establish an efficient 

and safe trajectory throughout the flight. 

In aviation, the terms time-critical, tactical and strategic are used quite often to 

describe behaviors and activities on the flight deck. Tactical behavior (and hence 

planning) is generally considered to be a near-term dynamic activity, whereas strategic 

planning behavior is generally considered to be a long term and big picture activity.  

Using these three terms, Kuchar, Hyams and Fan (1998) defined a ‘timeline’ for 

planning. This classification is based on the time required or taken to arrive at a suitable 

course of action  

 

 

Figure 1 - Replanning Timeline (Adapted from Kuchar, Hyams and Fan, 1998) 
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The first type of planning is strategic planning. In airline operations this is usually 

done in an Airline Operations Center (AOC) by dedicated personnel who have access to 

current weather, air traffic, and airline specific information. These plans must also be 

cleared by air traffic control; they are usually made well in advance and require planning 

time of the order of hours. In most cases these are very detailed and provide a careful 

balance of business concerns (fuel costs, flight scheduling), environmental concerns, and 

aircraft performance.  

The second type, tactical planning, is the focus of this research. During the flight 

unexpected situations may occur, requiring tactical replanning by the pilot. Tactical 

planning usually occurs on the order of minutes, and generally involves route 

modification designed to maintain safety and efficiency. Common tactical planning 

involves non-nominal situations like replanning the flight route to negotiate weather 

disturbances or changing the destination runway, and emergency situations like medical 

emergencies or cargo fires which require immediate landing. Although immediate safety 

is an important concern, other measures of efficiency (e.g. time to land, fuel burn, 

passenger comfort) may also be factored in to the extent a pilot can incorporate them in 

his or her plan. 

The third and final type of planning is time-critical planning. Time-critical 

decisions usually require corrective action within a matter of seconds. The emphasis in 

these situations is on maintaining safety without regard for efficiency. Substantial 

research has been done on time critical events and a number of decision aids have been 

developed to assist pilots in decision making, including the Traffic Alert and Collision 

Avoidance System (TCAS) and Ground Proximity Warning System (GPWS).  
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2.2 Flight Deck Automation 
 

Technological developments have made it possible to automate more and more 

functions in the flight deck and in other high workload and dynamic domains. 

Automation in the flight deck has evolved from the most basic autopilots to sophisticated 

systems such as flight management systems. Similarly, automation to maintain flight 

safety has also seen a sea change with the development of systems such as the Traffic 

Alert and Collision Avoidance System (TCAS) and the Ground Proximity Warning 

System (GPWS). The introduction of advanced technology on modern flight decks has 

succeeded in increasing the precision and efficiency of flight operations. 

As part of this trend, systems have been developed that assist pilots with time-

critical planning. For example, TCAS calculates an avoidance maneuver and displays it 

to the pilot, and the GPWS has a built-in aural alert which alerts the pilot to perform a 

standard avoidance maneuver. Due to their time critical nature, such re-planning tools 

have the characteristic of a forcing function on the pilot and are inherently automatic and 

assertive in nature. Another important element of modern flight deck automation is the 

Flight Management System (FMS). 

“The FMS supports the pilots in a variety of tasks, such as flight planning, navigation and 

guidance, performance management and monitoring of flight progress.” (Sarter and 

Woods, 1994). The major FMS interfaces for the pilot are the mode control panel (MCP) 

and the control display units (CDUs).The FMS is also intricately tied to many cockpit 

displays, including the primary flight displays (PFDs), and electronic horizontal situation 
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indicators (EHSI), which display information about the  autoflight modes and the current 

route of flight. 

The CDUs consist of a keyboard and a data display screen.  The keyboard is used 

by the pilots to enter data that define a flight path and to access flight related data 

available in the numerous display pages. The pilot-entered flight path is continuously 

updated to reflect current flight status and is presented on the EHSI when in map mode. 

This allows pilots to monitor progress along the path. In the EHSI plan mode, the pilot 

can visually check modifications to the active flight plan.  

The MCP is used to activate different automatic flight modes such as: Vertical 

Navigation (VNAV), Lateral Navigation (LNAV), Heading Select (HDG SEL) and Flight 

Level Change (FLCH). The pilot can also use knobs on the MCP to dial in targets for 

individual parameters (airspeed, heading, altitude, and vertical speed), which are tracked 

when their corresponding automatic flight mode is activated. To find out which FMS 

modes are currently active, the pilot can monitor the flight mode annunciations on the 

PFD. These provide data on the active (or armed) pitch and roll modes and on the status 

of the autopilot(s).  They also indicate the status and mode of the autothrottles, which can 

be set to either manual or automatic mode for speed and altitude control. The various 

FMS interfaces combine to provide the pilot with a high degree of flexibility in selecting 

and combining levels of automation to respond to different situations. 

The FMS can also help with flight planning. When the authorized flight plan is 

being entered into the FMS while the aircraft is at the gate, it would be considered as 

being used for strategic planning purposes, and when a reroute is being planned in the air 

for the next few minutes of flight, it would be considered as being used for tactical 
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planning. The FMS can also provide a "what-if" capability (Honeywell, 1996). For 

example, the pilot can query the FMS to determine how much extra fuel will be burned if 

he or she increases speed by Mach 0.02. This provides pilots the information needed to 

evaluate new plans.  

Recent accidents and incidents involving glass aircraft suggests that the increase 

in automation in the flight deck also have a degree of operational burden associated with 

them. This can lead to various breakdowns in the overall human-machine system. This 

has been hypothesized to arise from the complexity of the FMS itself and/or poor 

portrayal to the pilot of its functioning. Studies exploring the pilots’ mode awareness and 

understanding of the functional structure of automation are plentiful. However, less 

research has examined its utility for tactical planning. 

 

2.3 Prior Research into Automated Tactical Planning Aids 
 

Some studies have explored intelligent planning tools and their impact on tactical 

planning. Chen and Pritchett (2000) conducted a flight simulator experiment to 

investigate an in-flight computer based re-planner tool that could aid pilots in tactical 

planning, and to gain more information on how pilots planned in these situations and 

what factors were important to them. This system, called the Emergency Flight Planner 

(EFP), allowed the pilot to specify fixes, headings and distinct actions to be carried out at 

pilot defined waypoints or triggering conditions. Based on this information, the EFP then 

predicted the future flight path and displayed it to the pilot on vertical profile and 

horizontal moving map displays. The experiment also examined the utility of an 

automatically generated plan. From the experiment results, it was determined that, given 
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the already high workload environment of the cockpit during an emergency, a planning 

tool in which the pilot had to manually enter a detailed plan would be detrimental to the 

safety of the flight. In addition to the evaluation of this tool, pilot planning was studied by 

breaking down a high level task into a series of low level actions and their triggers. The 

study showed that pilots preferred spatial representations of the plan as opposed to time-

lines and time-based triggers. This study, however, studied only emergency flight 

conditions and did not explicitly study the behavior of pilots during planning when using 

current autoflight systems.  
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CHAPTER 3  
 

DESIGN OF EXPERIMENT 
 

3.1 Experiment Objectives  
 
The main objectives of this experiment were to study: 

• Pilot planning performance at in-flight re-planning in non-nominal and 

emergency flight conditions; 

• Pilot planning behavior for in-flight re-planning in non-nominal and 

emergency flight conditions; 

• The impact of cockpit automation on the planning process. 

Additionally, this experiment was also a preliminary investigation of an 

intelligent cockpit aid capable of automatic flight plan generation. This investigation was 

preliminary in that only the concept of such a system was explored and the plans used for 

the experiment were preprogrammed into the planning interfaces. 

 

3.2 Experiment Overview 
 

In each experiment the pilots faced either a non nominal or an emergency 

situation about 30 minutes (85-90 miles) from landing. Before that start of each flight, 
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pilots were given a scenario briefing (Appendix B.4) along with paper charts. They were 

given 25 seconds to go through the charts before the run was started.  Their task was to 

replan the route while in flight, with the assumption that the all pertinent checklists had 

already been completed, the situation contained, and control of the aircraft had been 

regained just before the run started.  

A confederate pilot was present in all runs. The main function of the confederate 

pilot was to get clearances from air traffic control, deploy the flaps and gear when asked 

by the test pilot, and to enforce the type of automation used for the run, i.e., in the CDU 

(and its variants) cases, pilots were not allowed to use the MCP and vice versa.  

Sixteen pilots took part in the experiment. Each pilot ran nine flights for a total of 

144 runs. The run order was determined by a test matrix which was a balanced 

combination of two independent variables: type of automation and scenario type, based 

on a Latin Square design. The types of automation tested were MCP, CDU, CDU+ and 

CDU++. The scenario types were classified into two types, non nominal and emergency. 

The simulator logged important data including aircraft state variables (such as 

speed, distance, latitude and longitude) and identifiable actions in the autoflight systems 

(such as speed changes, altitude changes and heading changes). Additionally, pilots were 

also asked to fill a questionnaire at the end of each run and at the end of the experiment. 

 

3.3 Scenario Design 
 

To avoid pilot familiarity with a common arrival route, fictitious airports and 

arrival routes were used for the experiment. The airports were adapted from those 

previously utilized in two other experiments to study arrival procedures and cockpit 
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display of traffic information (Yankosky and Pritchett, 1999) and the Emergency Flight 

Planner (EFP) (Chen and Pritchett, 2000). A new airport for the training runs and a 

number of waypoints, fixes and navigation aids were added to the existing charts. Terrain 

was not a consideration in the experiment.  

A total of ten airports and their related charts were used for the experiment, one 

for each scenario. Four airports were reserved for non nominal scenarios, four for 

emergency scenarios, one for the faulty Autoplan scenario and one for the training 

scenario. The tenth airport reserved for the faulty Autoplan scenario and was used for 

both non nominal and emergency scenarios. 

All the scenarios were designed to be of equal difficulty. The initial positions of 

the aircraft at the start of the scenarios were placed such that pilots could choose to 

approach the airport from either the left or the right of the runway. The run was 

terminated once pilots had intercepted the localizer at glideslope altitude at the outer 

marker. Before the start of each run, pilots were given a briefing sheet. Given below is a 

sample of a non-nominal scenario briefing and an emergency scenario briefing. The 

complete set of briefings is given in Appendix B.4.  

Sample non-nominal briefing: 

Atlantic Briefing  

You are heading along the Townhouse One Arrival at Atlantic International Airport and are 13 
miles past VOR CLR[114.0 CLR], when you receive word from ATC that there is severe 
turbulence directly in your path ahead and spanning the area shown in your en-route chart.   

 
The destination is runway RW29L at Atlantic International. Your current state is: 
• heading 347° 
• 13000 ft altitude (-1200 fpm) 
• 290 IAS 

 
Start your replanning from this point. 
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Sample emergency briefing: 
 
Bruin Briefing 
 
You were heading along the Braddock Arrival, when your alarm systems detected a fire in the 
cargo hold. The fire has been put out by the flight attendants, but the extent of the damage is not 
clear. You are 52 miles past VOR BRN [114.0 BRN], by the time you decide to declare an 
emergency and all standard procedures and checklists have been completed.   
 
The destination is runway RW18R at Bruin International Airport and your current state is: 
• heading 34° 
• 9000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 

Additionally, pilots were also provided paper charts for the area based on the 

current Jeppesen standard. The paper charts included an en-route chart, a Standard 

Terminal Arrival Route (STAR) chart and an approach plate. These charts are shown in 

Figure 2, Figure 3 and Figure 4.  
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Figure 2 - Sample En-route Chart 
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Figure 3 - Sample STAR Chart  
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Figure 4 - Sample Approach Plate 
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3.4 Experiment Procedure 
 

3.4.1 Briefing and Training 
 
The experiment started by getting the informed consent of the participating pilot 

(Appendix B.3). This was followed by a briefing about the experiment and the simulator. 

Prior to the data runs, the pilots were put through training tutorials to acquaint them with 

the simulator and the experimental setup. This tutorial briefing is supplied in Appendix 

A. The two tutorials were separated into two phases, one to get acquainted with the 

various types of automation, and the other to experience a complete scenario. In the first 

phase of training, the pilot was asked to fly one run using only the MCP. When the pilot 

was comfortable using the MCP, the first tutorial was restarted and the pilot was exposed 

to the CDU type of automation and its variants. This phase of training was repeated till 

the pilot verbally expressed a satisfactory level of proficiency and comfort using all the 

types of automation. This was followed by the second phase of training, where the pilot 

was asked to fly a complete scenario using all the automation types to give him a better 

understanding of what to expect during the data runs. Following the completion of 

training, the pilots were shown the questionnaires that would follow all experimental 

runs. Upon completion of both tutorials, the pilots were then given the choice to review 

any of the previous tutorials or to continue on with the actual experimental runs.  

 

3.4.2 Data Run Procedure 
 

Following the tutorial session, a total of nine scenarios (including the faulty 

Autoplan scenario) were run for each pilot. For each of the scenarios, the pilot was given 

 - 17 -  



 

a description of the scenario in a briefing sheet and also told what type of automation 

they would be given. In addition, pilots were also told that all pertinent checklists had 

been completed and they had only to plan up to the termination point. A first officer was 

present during all the runs to start the runs, monitor aircraft systems, deploy the flaps and 

gears as requested and communicate ATC clearances to the test pilot. The first officer 

played no part in the planning task. In all the runs, the pilots were told the type of 

automation to use. In the CDU (and its variants) conditions, the pilot was not allowed to 

use the MCP except to make changes in the altitude window (this was needed since in 

typical MCP-FMS operation, the aircraft will not climb above or descend below the 

altitude specified in the MCP altitude window). 

Following each scenario, the pilot was given a set of questions pertaining to that 

scenario (see Appendix B.1). At the conclusion of all the data runs, the pilot was given a 

brief set of questions pertaining to their background, the experiment as a whole, in-flight 

replanning and planning tools (see Appendix B.2).  

 
 

3.5 Experiment Participants 
 

A total of sixteen pilots participated in the experiment. Fifteen pilots were from a 

major airline carrier and one from a major charter service with experience in a major 

airline service. One pilot was recently retired. All the subjects were male. All the subjects 

were either captains or first officers.  

Total piloting hours ranged from 5000 to 16,000. Eight of the test subjects were 

captains with experience ranging from 12,000 to 16,000 hours and an average of 12,250 

hours of flying experience. The other eight were first officers with experience ranging 
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from 5000 to 10,500 hours and an average of 7400 hours of flying experience. Table 1 

shows a summary of the pilots’ experience and backgrounds. Eleven pilots were initially 

military trained before becoming civilian pilots and 5 pilots were initially trained in civil 

aviation. The subjects had flown or were current in a range of glass-cockpit aircraft, 

including the Boeing 737-800, 737-300NG, 757, 767, and MD-88. Of the 16 pilots, 6 had 

previous experience with flight planning software of some sort before (other than the 

FMS), with all six being exposed to ground based planning software and one pilot with 

experience in ground based (B.A.R.T) and in-flight replanning software (Global Data 

Systems). All subjects were compensated for their time.  

 

Table 1 - Summary of Pilot Background and Experience 

Rank 
Captain 8 

First Officer 8 
Initial Training 

Military 11 
Civilian 4 

Both 1 
Total Hours 

>= 5000 and < 10000 8 
>= 10000 and < 12000 3 
>= 12000 and < 15000 3 

>= 15000 2 
Hours in Glass 

>= 2000 and < 4000 9 
>= 4000 and < 6000 5 

>= 6000 2 
Current Aircraft 

B737-NG 4 
B757 1 
B767 5 
B777 2 (1 retired) 

MD-88 4 
Hawker 1 
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3.6 Experiment Apparatus 
 

The experiment was conducted on a fixed-base desktop flight simulator based on 

the Boeing 747-400. The flight simulator has been developed using the Reconfigurable 

Flight Simulator (RFS) software (Ippolito and Pritchett, 2000). The simulator runs on two 

networked desktops PCs. One screen shows the flight instruments, namely, the Primary 

Flight Display (PFD), Electronic Horizontal Situation Indicator (EHSI) (also known as 

the Navigation Display [ND]), and controls for the flaps and gears. The second screen 

displays the Mode Control Panel (MCP), the Control Display Unit (CDU) and navigation 

display controls (ND controls). Both the desktops PCs were equipped with a mouse as an 

input device. The setup was distributed over four flat panel LCD screens with two 

screens - one displaying the PFD, EHSI and flaps and gears, and the other displaying the 

CDU, MCP and ND controls - for the captain and two screens showing the same displays 

for the first officer. Figure 5 shows the experiment setup. 

 

 

 

 

 

 

 

 - 20 -  



 

 

Figure 5 - Experiment Setup for Each Pilot 
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3.6.1 Flight Instruments 
 
The flight instruments included the primary flight display (PFD), electronic 

horizontal situation indicator (EHSI), the Mode Control Panel (MCP) and Control 

Display Unit (CDU), all of which are based on the Boeing 747-400 glass cockpit. 

The PFD (Figure 6) shows the current aircraft state such as the current airspeed 

and altitude. At the top center of the PFD are the Flight Mode Annunciators (FMAs) 

which display which mode of flight the autopilot is in. The magenta figures above the 

altitude and speed tapes show the MCP target altitude and target speed respectively. The 

vertical speed indicator beside the altitude tape shows the rate of climb or descent. The 

two magenta bars in the middle of the display are the Flight Directors (F/D) which show 

the pitch and roll of the aircraft. The arrow indicator at the top of the calibrated scale on 

the artificial horizon indicates the bank angle.  
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Figure 6 - Primary Flight Display (PFD) 

 

 
The EHSI (Figure 7) used in this experiment is based on that used in the B747-

400. The EHSI is comprised mainly of a track up moving map display. The display 

shows the current flight path as a solid magenta line. Any lateral modification to the 

current active flight path is shown by a white stippled line.  The current position of the 

aircraft is shown as a solid white triangle. The green arc shows the point where the 

aircraft will reach its MCP target altitude. The map also shows the various navigation 

aids (with their identifiers) in the vicinity of the aircraft in blue. The destination runway 

is shown in white with its 3-letter identifier, with the approach line extending 14 miles. 
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The Autoplan shows up on the EHSI as a stippled orange line which turns solid magenta 

when executed.  

 
Figure 7 - Electronic Horizontal Situation Indicator (EHSI) 

 

The MCP is an autoflight system through which the pilot can change heading, 

altitude, speed and rate of descent. The flight mode (i.e., HDG, FLCH, VS, ALT, LNAV, 

VNAV, and SPD) selected in the MCP is displayed on the FMA on the PFD. The MCP 

used in this experiment (Figure 8) is modeled on the B747-400 MCP, and the pilot used a 

mouse as an input device to enter values into the MCP. The target values for speed, 

heading, vertical speed and altitude could be entered by the pilots by clicking on the dials 
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below the display window. For example, to change heading, clicking on the right half of 

the circular dial will increase the heading angle and clicking on the left half will decrease 

the heading angle, and similarly for the Indicated Air Speed (IAS) and altitude. The 

vertical speed (V/S) is usually controlled by a roller dial which in this MCP is the pink 

and indigo dial just below the V/S target window.  

 

 

Figure 8 – RFS Mode Control Panel 

 
 

The CDU is an autoflight system which, among other things, pilots use to 

plan/replan flight routes. This experiment used a graphical interface CDU (Figure 9) 

modeled on the B747-400 CDU, where the pilot used a mouse as an input device to enter 

data into the CDU. For this experiment, the pilot had only the RTE and LEGS pages 

available to them. Pilots could enter data into the scratchpad and insert it wherever 

desired. (Detailed working of this CDU is documented in the section titled “The RFS 

Control Display Unit (v1.0) Made Easy” in the pilot briefing Appendix A). 
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Figure 9 - RFS Control Display Unit 
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3.7 Independent Variables 
 

3.7.1 Scenario Types 
 

Two scenario types were tested, namely, emergency and non-nominal situations. 

Both of these required the pilot to perform tactical planning. 

3.7.1.1 Non-Nominal Scenarios 
 

 These are situations where there is no unusual urgency to land the airplane. These 

are not very important in terms of the time taken to land. All of these cases can be 

resolved with a simple detour from the original flight plan. The non-nominal scenarios 

used in this experiment were: 

 Runway Closure: Required the pilot to reroute to a nearby alternative. 

 Runway Change: Required the pilot to change the destination runway. 

 Weather Disturbance: Required a pilot to navigate around a weather disturbance 

i.e., a storm cell.  

Opening up/closing of restricted airspace: Required a pilot to navigate around 

restricted airspace. 

Common to these scenarios is the fact that they envision landing in the order of 

tens of minutes, i.e., immediate landing is not an overwhelming concern. Other factors 

such as aircraft stability, fuel economy, standard operating procedures, etc. are important 

factors when deciding on the rerouting. None of these conditions alter the performance of 

the aircraft in any way and fuel was not a concern. 
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3.7.1.2 Emergency Scenarios 

 
 These are situations where there is an urgency to land the aircraft as soon as 

possible. Thus, in the event of emergencies, the pilots are given a free hand in deciding 

the route to be taken which may involve violating any altitude and speed constraints or 

procedures. Emergency situations can have a number of causes. The emergency scenarios 

used in this experiment were: 

Cargo Fire: This is an emergency wherein a fire in the cargo hold had just been 

extinguished at the start of the run. The extent of damage was not known and the pilot 

was required to land the aircraft as soon as possible. 

 Medical Emergency: This emergency required the pilot to replan, reroute and 

land as soon as possible. 

Fuel Filter Emergency: This is an emergency wherein the fuel filter can get 

blocked by debris thereby inhibiting the intake of fuel into the engines. Landing 

immediately is imperative.  

Loss of Hydraulic Pressure in One of the Hydraulic Systems: This is an 

emergency wherein the EICAS shows a loss of hydraulic pressure in one of the hydraulic 

systems. Landing immediately is imperative. 

All of the emergencies were predicted to be of equal severity. However, they are 

similar in that the replanning process still has to be executed and the new route 

implemented, and they do not alter the performance of the aircraft in any way. 

Emergency scenarios differ from non-nominal scenarios in that they envision the time to 

landing to be less, i.e., on the order of a few minutes.  
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3.7.2 Type of Automation 
 

In each run, the pilot was asked to use a particular type of automation. 

Specifically, the four types of automation tested are detailed in the following sub-

sections. 

3.7.2.1 Mode Control Panel (MCP) 
 

 Pilots were only allowed to command the following autoflight modes through the 

MCP using heading select and heading hold (HDG), vertical speed (V/S), altitude hold 

(ALT), flight level change (FLCH) and speed (SPD).  

3.7.2.2 Control Display Unit (CDU) 
 

 In this condition, pilots were asked to use a conventional CDU based on a 

Honeywell 747-400 CDU. Only pages that assist in planning (RTE and LEGS) were 

made available to them. 

3.7.2.3 Control Display Unit + (CDU+) 
 

 With this type of automation, pilots had the CDU available to them as in the 

previous case. This automation had an added functionality called the Autoplan. This is a 

computer generated flight path that can assist pilots in planning. Pilots could access these 

plans whenever they like and use it as the active route, or plan so that their route can 

intersect parts of the Autoplan, or disregard it totally. The Autoplan feature does not exist 

in current cockpits. 
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3.7.2.4 Control Display Unit ++ (CDU++) 

 
 This automation works the same as the CDU+ with the difference that, when the 

simulation run starts, the Autoplan is implemented as the active flight route. Pilots have 

the option of overriding this plan or modifying as in the previous automation.  

In the CDU+ and CDU++, the Autoplan was designed to be the best plan for the 

given scenario type. For example, in the emergency scenarios, the Autoplan was designed 

to get the aircraft down as soon as possible, keeping in mind standard airspace 

regulations and following/intersecting standard airways as depicted in the charts. In the 

non-nominal scenarios, the Autoplan placed stress on other factors such as negotiating 

the cause of re-route and minimizing the distance flown. 

 
 
 

3.8 Experiment Design 
 
The experiment was divided into two parts run sequentially in one session. The 

first experiment tested all eight combinations of automation and scenario types. In the 

second experiment, pilots were asked to fly only one run, the ninth run, using the CDU++ 

type of automation only. The experiment condition in this run was based on the same 

automation-scenario combination for all the pilots. The second experiment was included 

in the tests to explore the effect of an erroneous automatically generated plan on pilot 

performance. This faulty Autoplan scenario followed completion of the primary 

scenarios. 
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The first experiment consisted of a 4x2 test matrix as shown in Table 2, and was 

made up of a combination two independent factors, type of automation and scenario type. 

The test matrix was arrived at by first blocking by type of automation. Then, within each 

block of type of automation, the two scenarios types were run in random order. The order 

of the automation block was based on a fully balanced Latin squared design to mitigate 

order effects. Specific scenarios were assigned randomly and care taken that the same 

number of pilots flew the same scenario with the same automation. 

The four types of automation were the Mode Control Panel (MCP), Control 

Display Unit (CDU), and two variants of the CDU namely, CDU+ and CDU++. 

Additionally, two scenario types were examined, non-nominal and emergency.  

 

Table 2 - Experiment Test Matrix 

Expt. #1:

Expt. #2:

• 8 runs per pilot

– 4 runs non-nominal

– 4 runs emergency

• Run order blocked 
by automation and 
balanced using Latin 
Square Design

• 1 run per pilot 

– ½ pilots had non-
nominal scenarios

– ½ pilots had 
emergency scenarios  
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The second experiment consisted of a 1x2 matrix, and was made up of a 

combination of one type of automation, the CDU++, and the two scenario types. It 

consisted of only one run per pilot, and used a between subjects design, where the 

scenario types were randomly assigned. This experiment used the faulty Autoplan 

scenario where an error in the automation provided the pilot with an inappropriate 

Autoplan. The plan lacked context sensitivity to the situation and thus did not provide the 

best plan for the current situation, i.e., in the non nominal flight condition the Autoplan 

generated an overly aggressive route fit only for emergencies and, in the emergency flight 

condition, provided a gently paced route that increased time of flight beyond what the 

emergency called for.  

 

3.9 Dependent Measures 
 

3.9.1 Data Collection 
 

Three types of data were collected: 

1. The graphical interface of the CDU recorded important events in the flight 

replanning task. The final mouse click triggering an event was recorded as an 

identifiable action. These events included switching between RTE and LEGS 

pages, making changes to an existing RTE page or a LEGS page, going through 

the route programmed in by clicking the PREV and NEXT buttons (in the case of 

the CDU-based autoflight conditions), making altitude, speed and heading 

changes (in the case of the MCP), creating/deleting a fix/waypoint from the flight 

plan, changing altitude and speed parameters of existing waypoints, resolving 
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route discontinuities, looking at alternative routes, activating an inactive route, 

and executing a change in the flight plan.  

2. Aircraft state data, including airspeed, current heading and current altitude, was 

logged every second by the simulator. 

3. At the end of each run and at the end of the experiment, pilots were asked to 

answer a questionnaire. The end of run questionnaire included questions about the 

factors considered during planning, the strategies used, and effectiveness of the 

autoflight system used, a rating of the ease of planning using that autoflight 

system compared with currently available type of automation they would have 

used and a NASA TLX workload rating sheet. The end of experiment 

questionnaire included questions on pilot background, in-flight replanning in the 

two scenario types, flight replanning systems and tools, performance of the 

Autoplan and the NASA TLX pair-wise comparisons of sources of load. The 

complete end of run questionnaire and end of experiment questionnaire are given 

in Appendix B. 

 

3.9.2 Data Analysis 
 

Two different factors were expected to influence the performance of the pilot in 

the first experiment runs. The first factor was the scenario type, with the categorization of 

either non-nominal or emergency scenarios. The specific non nominal scenarios used are 

described in section 3.7.1. The type of automation available to the pilots was the second 

factor. The four different autoflight systems are described in section 3.7.2.  
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Analysis of the aircraft state data, event logs during the flight, performance logs 

during the flight, measures such as duration and the length of the run, modifications to 

the Autoplan and pilots’ responses to the questionnaires included: 

• Ability to diagnose/recognize errors in automation;  

• Pilot dependency on automation; 

• Time and distance saved for that run compared with the original plan; 

• Pilot’s choice of route implemented and the apparent reasons behind the choice. 

This could indicate the correlation (if any) between type of automation, type of 

scenario and in-flight replanning behavior;  

• Deviation from the existing preprogrammed route to indicate the amount of time 

saved compared with the time taken if the original path was followed; 

• Time taken to start modifying the existing plan or entering a new plan; 

• Regularity with which they tend to update the plan versus leaving it once it has 

been created; 

• Apparent strategies and factors considered during planning; 

• Pilot preferences of certain autoflight systems for in-flight replanning tasks; 

• Comparison of ease of planning using different autoflight systems;  

• Performance of the Autoplan; and  

• Workload assessment of the replanning task. 

The data analysis was divided into three categories: pilot performance, pilot 

planning behavior, and workload assessment.  
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Performance was measured in the first experiment by time to landing and distance 

to landing. In the ninth run, pilot performance was also measured by whether pilots 

recognized the Autoplan was faulty.  

Planning behavior can be manifested in a number of ways. Apparent strategies 

were analyzed for planning with the MCP and the CDU such as establishing one-

dimension of path first followed by the other. For example, some pilots may prefer to 

plan for the lateral path first and then the vertical path. Others may plan for the vertical 

path first and then the lateral path so that they don’t need to descend at a high rate, yet 

others may do it as a series of heading changes followed by descents. In some cases, 

some pilots may start planning immediately and bring out a rough plan and then keep 

refining that plan over time, whereas others may take some more time and come up with 

an almost concrete plan which requires few adjustments.  

A workload assessment based on pilot responses to the NASA TLX Workload 

sheet was also performed to examine which source of workload was felt the most during 

the scenarios. 
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CHAPTER 4  
 

EXPERIMENT RESULTS 
 
 

In total, 144 runs were performed: 128 under the first experiment comparing the 

different autoflight systems and 16 runs for the second experiment’s faulty Autoplan 

case. The 16 faulty Autoplan runs will be discussed separately from the regular 128 runs.  

Unless otherwise specified, the data obtained were analyzed for type of 

automation, scenario type, specific scenario and run order effects by fitting to a general 

linear model. If the residuals of the fit met the requirements for Analysis of Variance 

(ANOVA), an ANOVA was conducted. The type of automation, scenario type and 

specific scenario were analyzed as fixed effects. Pilots, however, were analyzed as a 

random factor, allowing generalization of the observations to a major portion of the pilot 

population. In addition, interactions between the factors were examined.  

Where significant results were found for one or more of the factors, a one-way 

(ANOVA), along with a pair-wise comparison using a 95% confidence level Tukey test, 

was performed strictly on those factors to confirm the results. A non parametric Kruskal-

Wallis test was also performed to test the null hypothesis that there are no differences 

among the factors.  
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4.1 Pilot Performance 
 

The primary measures of pilot performance in the first experiment were the 

distance flown and the duration of the run. In emergency situations, such as a medical 

emergency or cargo fire, these measures directly reflect the safety of the aircraft. In non 

nominal situations, such as weather or airport closures, these measures reflect airline 

operation considerations such as flight time, flight schedules and fuel burn. As can be 

seen in Figure 10 and Figure 11, in both scenario types, the type of automation used was 

not a significant factor. No significant order effects were seen on these measures either. 

The scenario type and the specific scenario, however, did show a significant effect on 

these measures. To confirm the scenario and scenario type effects, an ANOVA was 

performed, showing a significant scenario effect (F = 33.92, p< 0.001) and an effect from 

the scenario type (F = 69.46, p< 0.001).  
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Figure 10 - Average Time of Flight  
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Figure 11 - Average Distance Flown 

 

Since the type of automation did not have any significant effect on the 

performance measures of time and distance, these measures were also looked at by 

specific scenario across all types of automation. As seen in Figure 12 and Figure 13, in 

the non nominal scenarios, the average time of flight and distance flown were distinctly 

higher for the first two scenarios: weather disturbance and restricted airspace. A certain 

degree of variability in flight path was seen as evidenced by the flight paths in Appendix 

D. In the emergency scenarios, time of flight and distance flown was higher for the 

second two: the hydraulic systems failure and fuel filter emergencies. 
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Figure 12 - Average Time of Flight per Scenario 
 

 

Figure 13 - Average Distance Flown per Scenario 
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Although the scenarios were intended to have similar travel times, to account for 

any intended differences between scenarios, another measure was the deviation in time of 

flight and distance flown from the baseline plans for each scenario. The baseline plans 

used were the original routes in the CDU at the start of the run. As can be seen in Figure 

14 and Figure 15, the main effects here were also the scenario type (F = 66.43, p< 0.001) 

and the scenario (F = 14.72, p< 0.001). Additionally, no run order effects were seen with 

the time of flight measure, but the distance flown showed significant run order effects (F 

= 9.66, p=0.003) (Figure 16).  
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Figure 14 - Average Deviation in Time of Flight 
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Figure 15 - Average Deviation in Distance Flown 
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Figure 16 - Run Order Effect on Deviation in Distance Flown 

 
Another measure looked at pertaining to pilot planning performance were the 

speed violations. According to Federal Aviation Administration (FAA) regulations, 
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aircraft flying below 10000 feet must remain at a speed of 250 knots or below, except 

when given discretion by a controller or in an emergency. Figure 17 shows the total 

number of speed violation in all 128 runs in the first experiment. Figure 18 breaks this 

measure down by the scenario type. The scenario, scenario type and run order showed 

significant effects on this measure as did the pilot-scenario interaction. However, all these 

effects failed normality tests and an ANOVA could not be conducted. Order effects were 

also seen (Figure 19) but also failed subsequent normality tests. However, the non-

parametric Kruskal-Wallis test showed that the medical emergency (emergency) had the 

highest number of speed violations and the weather disturbance (non-nominal) had the 

lowest number of speed violations.  
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Figure 17 - Number of Speed Violations in 128 runs 
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Figure 18 - Average Speed Violations per Scenario Type 
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Figure 19 - Run Order Effects in Speed Violations 

 
 

4.2 Pilot Planning Behavior 
 

A number of measures examined pilot planning behavior. First the flight paths 

were looked at for any trends in planning behavior. As an example, the flight paths are 
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shown in Figure 20 for the medical emergency scenario. The flight paths for all scenarios 

are shown in Appendix D.1. During the experiment it was observed that the type of 

automation and scenario had an effect on pilots’ course of action. For this reason, to 

describe the effect of the automation on planning behavior, the measures were also 

analyzed by the type of automation. The specific scenario effect was also considered to 

explain specific behaviors. 

Scn: Medical
        Emergency
Apt:  HomePark 
Intl.
Lat:  -0.007
Lon: 9.957
Elev: 0'

Termination Point (Outer Marker)

Start Point 
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Figure 20 - Flight Paths for the Medical Emergency Scenario 

 

4.2.1 General Observations on Planning Behavior 
 

In general, in each scenario type, the primary objectives were to minimize 

distance to go and to create an expeditious route to the approach. The timing and ordering 

of fixes did not show any specific pattern by which a pilot tended to plan. The usage of 
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the type of automation also showed very specific personal choice traits. For example, 10 

of 16 pilots, with all types of automation, immediately increased speed and kept a high 

altitude to get abeam of the outer marker as fast possible. All pilots except one created an 

along track waypoint ahead of the waypoint being flown direct to, at which point they 

started reducing speed. In 58.3% of the runs where pilots could create along track 

waypoints (CDU, CDU+ and CDU++ types of automation = 96 runs), this point was 

abeam of the outer marker, which would give them a much smoother turn onto the final 

approach leg. When using the MCP, this point was visually marked out (as verbally 

reported by pilots during the experiment) and then HDG SEL was used to turn onto final. 

When using the CDU and its variants, all pilots used the only the LEGS page during 

planning as this provided the necessary information of heading, distance, and speed and 

altitude constraints at waypoints. In general, 14 pilots agreed with the routing the 

Autoplan provided; however, they did not agree with the speed and altitude profile in the 

Autoplan and proceeded to make subsequent changes. Most pilots used the Autoplan to 

orient themselves in the desired direction and then modified the waypoints to create a 

more direct route to the runway.  

In terms of dimensional planning, in all cases, pilots first got themselves oriented 

in the desired direction. This was then followed by a ‘cleaning up’ of the route, where 

some waypoints were deleted or added to provide a more direct route. This was then 

followed by a series of speed and altitude changes until the termination point. Speed and 

altitude changes did not follow any specific pattern. 

 Some interesting observations in usage of the type of automation were made 

during the experiment. Some of the pilots, in order to reduce workload, would simply 
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‘trick’ the CDU into behaving like an MCP. For example, in a long stretch, the pilot 

would put in a very low altitude constraint at the active waypoint, which in turn would 

provide a high rate of descent, and then change the altitude constraints back to specified 

limits when at a suitable distance from the waypoint. Only two pilots resorted to this 

technique as they did remember that they would not be allowed to use the MCP when 

using the CDU or its variants.  

Another technique commonly used by the pilots was the DIRECT-TO function. In 

some cases, instead of creating a waypoint abeam or a little ahead of the marker, pilots 

would wait till the aircraft was abeam or a little ahead of the marker and then initiate a 

DIRECT-TO to the outer marker after accounting for the distance required for a turn. 

This proved extremely effective, and had a result similar to that of creating a waypoint, 

albeit the turn required was sharper. This behavior was exhibited in five runs spread 

among two pilots. In all scenarios, the pilots were cleared to the glideslope altitude. Thus, 

when using the CDU and its variants, in most cases, pilots would enter the clearance 

altitude into the altitude window in the MCP and then adjust the vertical profile by 

altitude changes in the CDU LEGS pages. This was done to eliminate the altitude 

intervention by the MCP. 

 

4.2.2 Pilot Planning Across Automation Types  
 

In the MCP cases, whenever a new speed or altitude target was entered and kept 

constant for at least fifteen seconds, it was counted as a speed or altitude change. For the 

CDU cases, the change in a future speed or altitude or both was identified as an event and 

logged in the simulator. It was observed that the average number of speed and altitude 

 - 46 -  



 

changes when using the MCP was distinctly lower than for the other types of automation 

which is evidenced by Figure 21 and Figure 22 but did not show any statistical 

significance. This suggests that with the MCP, pilots did not have the hindrance of 

forcibly changing speed and altitude constraints at waypoints as was required with the 

other TOAs. Among all the types of automation, the CDU+ was found to have the highest 

average number of speed and altitude changes. This suggests that these measures are 

more a function of pilot choice than scenario or automation effects. 
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Figure 21 - Average Number of Speed Changes 
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Figure 22 - Average Number of Altitude Changes 
 

Two more measures examined pilot behavior with the CDU (and its variants). 

These were the time taken to the first modification and the time taken for the first 

execution of a change to the route in the CDU from the start of the run. The time taken to 

first modification was defined as the time difference between the start of the run and the 

first instance when the page status (either the RTE or LEGS page) changes from active 

(ACT) to modified (MOD), and the time taken for the first execution was defined as the 

time difference between the start of the run and the first instance of the EXEC button 

being pressed to confirm an action. These measures were indicative of the time the pilot 

takes to start planning and implement a change to the plan. A combination of these two 

measures showed that on an average, pilots took a shorter time to start re-planning using 

the CDU+ type of automation than with CDU or CDU++.  

In addition to the above, apparent strategies in planning were also examined. A 

general pattern that did emerge was that pilots oriented themselves in the desired 
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direction first (mostly direct to a point abeam the marker) by either using HDG SEL in 

MCP cases or initiating a DIRECT-TO in the CDU (and its variants) cases. This was 

followed by vertical profile management via speed and altitude changes to get to that 

point, followed by a turn to base leg to line up for approach fully configured. Figure 23 

and Figure 24 shows the real paths and planning pattern for a non-nominal scenario 

(weather disturbance) and an emergency scenario (loss of hydraulic pressure) 

respectively. 
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Figure 23 – Flight Paths and Altitude and Speed Changes in the Weather 
Disturbance Scenario 
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Figure 24 – Flight Paths and Altitude and Speed Changes in the Hydraulic Pressure 
Loss Scenario  

 

Twelve of 16 pilots were at a point abeam the marker at the landing speed and 

glideslope altitude from where they started their turn onto final approach. The remaining 

four gave themselves a little more time by taking a turn further out from the marker and 

descending during the turn. This, however, resulted in three of the pilots reaching the 

outer marker (termination point) at an altitude higher than glideslope intercept altitude. 

The fourth pilot, due to high speed at the turn, did not have sufficient time and distance to 
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slow down to the outer marker speed constraint. He did make the altitude constraint but 

could not line up for approach and was a little offset from the course. It was also 

observed that speed and altitude changes were made in no particular order, except that 

one was made only after the other was established. It was also seen that, in almost all the 

cases where a turn onto the base leg was required, pilots maintained a high speed up to a 

point abeam the marker and had shallow turns onto final approach. 

An analysis of the subjective questionnaires revealed that the most common 

factors considered during re-planning were the distance to go, weather, time, and aircraft 

safety (Figure 25). In general, all pilots said that the first priority was to minimize the 

time of flight and the distance to go, irrespective of the situation. Other considerations 

included factors such as aircraft performance, safety of the maneuver and efficiency 

(Figure 26).  
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Figure 25 - Factors Considered During Planning 
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Figure 26 - Strategies in Choosing the Route Planned and Implemented 

 
 

4.2.3 Pilot Planning Using the Mode Control Panel 
 

When comparing the flight paths for the scenarios types (Appendix D.1), it was 

seen that, when using the MCP for the weather disturbance, two pilots went right of the 

weather and two pilots went left of the weather. Pilots who went right of the weather said 

it was easier to line up for approach and did not require any adverse maneuvering. In the 

restricted airspace scenario, it was seen that three pilots went right of the restricted areas 

and one went left. In the remaining non nominal scenarios, all the pilots followed similar 

right downwind paths. For the emergency scenarios, all pilots took the same right 

downwind and base leg paths. However, average speeds for the emergency scenarios 

were distinctly higher than for the non nominal scenarios, with two pilots flying a 

substantial length of the run at 400 knots in the medical emergency scenario.  
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Figure 27 shows a brief snapshot of the mode usage of the MCP. These were 

measured by the number of times the mode in question was physically engaged by the 

pilot. Mode switching internally by the autopilot was not taken into account for these 

measures. It should be noted that SPD mode was always enabled, unless the pilots 

switched to FLCH mode, and would automatically revert from FLCH to SPD mode when 

the target altitude was reached, unless SPD was physically engaged during FLCH mode. 

Thus, the SPD mode usage in the figure below shows the physical engagement of this 

mode by the pilot when in FLCH mode. 
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Figure 27 - Mode Usage in the MCP per Run 
 

As can be seen from the figure above, heading select (HDG SEL) was the most 

frequently used mode. HDG SEL was engaged from 1 to 5 times per run. Related to the 

usage of HDG SEL was the usage of the heading hold (HDG HLD) mode. This measure 

showed that pilots engaged this mode once on average for emergency (ranging from 0 to 

 - 53 -  



 

4) and non nominal scenarios (also ranging from 0 to 4). Though the scenario did not 

show any significant effect on the usage of this mode, the average mode engagement for 

these two modes was higher for the emergency scenarios. The only significant factor here 

was the pilot, which suggests that the use of these modes for lateral navigation is more a 

personal choice.  

A comparison of flight level change (FLCH) and vertical speed (V/S) modes 

showed that V/S mode proved to be a preferred mode for vertical navigation. It was 

observed that 2 of 16 pilots did not engage the FLCH mode in either of the scenarios in 

which they use the MCP. The specific scenario also did not affect their choice as was 

revealed in discussions during the experiment. The reason given was that they like to 

have control over the descent rates which can be defined in the V/S mode, but is 

internally calculated by the autopilot in the FLCH mode. None of the main effects had 

any significant effect on these two modes, which suggests that usage of these modes is a 

personal choice of pilots. Six pilots said that for emergencies, they preferred to use the 

more aggressive FLCH for climb and descent maneuvers. Seven pilots said they preferred 

V/S as it allowed them to control their own rate of descent/climb, though it did increase 

workload and monitoring activities slightly. The remaining three pilots did not give any 

preference in using these modes for vertical navigation. 

 

4.2.4 Pilot Planning Using the Control Display Unit (CDU) 
 

In the CDU (and its variants) cases, each click of the EXEC button was logged. 

The EXEC button was required to be pressed every time a change to the route was to be 

entered as the active route to be followed by the FMS. Specifically, these changes 
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included adding/deleting a waypoint, erasing the previous action, resolving a route 

discontinuity, and making a speed or altitude modification. This was useful in analyzing 

the number of times that the plan was updated, and how thoroughly the pilots planned 

their task, i.e., whether they formed a skeletal plan and refined it along the way or took a 

little more time and proceed to implement a more concrete plan with fewer modifications. 

When the timing of the EXEC button hits was looked at, it was seen that pilots 

who took longer to start and execute their plans had a spate of modifications and 

executions in the initial part of their plan and consequently fewer modifications along the 

way. This did reinforce the inference that the pilots who took longer to start planning had 

a more concrete idea of their planned route than other pilots. In addition to the above, it 

was observed that 10 of 16 pilots updated their plans more frequently in the non nominal 

scenarios than the emergency, five pilots updated their emergency plans more frequently 

and one showed no difference. 

 

4.2.5 Pilot Planning Using the CDU with Autoplan Available (CDU+) 
 

From a comparison of the flight paths for both scenario types, it was seen that, for 

the weather disturbance, only one pilot intentionally decided against the Autoplan and 

went to the right of the weather. The reasons given were the ease of lining up for 

approach and that it was a non nominal scenario. In the runway change scenario only one 

pilot followed the Autoplan route (with a few modifications) on its right downwind path, 

simply agreeing with the route in general and assuming that Autoplan gave the best route.  

The frequency of update measure (Figure 28) showed a consistent spread across 

the scenario types. It was observed that 11 of 16 pilots updated their plan more frequently 

 - 55 -  



 

in the non nominal scenarios than the emergency scenarios, four pilots updated their 

emergency plans more frequently and one pilot showed no difference.  
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Figure 28 - Frequency of Update of Plan in CDU+ Cases 

 

Pilots’ reliance on the Autoplan was examined by the number of runs in which the 

Autoplan was the active route at the point when the run was terminated. When using the 

CDU+, one pilot did not use the Autoplan at all. Additionally, 7 of 16 pilots were seen to 

have used the Autoplan for both scenarios. From the remaining eight pilots, four used the 

Autoplan only for the emergency scenarios and four others used it only for the non 

nominal scenarios. In all runs where the Autoplan was used, modifications were made for 

a more direct route and to the speeds and altitudes in no particular order. 
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4.2.6 Pilot Planning Using the CDU with Autoplan Active at Start (CDU++) 
 

From a comparison of the flight paths for the non nominal and emergency 

scenario types, it was observed that, for the non nominal scenarios, only one pilot 

(runway change scenario) chose to follow a route different to the others. In this case, 

however, the pilot simply followed the Autoplan route assuming it was the best route. 

From discussions and responses, it emerged that only distance and time were the 

important factors taken into account. In the remaining three non nominal scenarios, all 

the pilots followed similar downwind patterns with the corresponding turns to base leg. In 

the emergency scenarios, only one pilot followed a different route (fuel filter scenario).  

In all runs using CDU++, the Autoplan was maintained as the active route up to 

the end of the run. However, changes were made to get a more direct routing, and also to 

speeds and altitudes to ensure a safe and expeditious flight. Another observation made 

here was that 9 of 16 pilots made substantial modifications to the Autoplan to the extent 

that they followed a different downwind path compared to the Autoplan. 

 
 

4.3 Pilot Interaction with Automation 
 

4.3.1 Use of Autoplan 
 

Pilot responses and simulator log files also gave us insight into the reliance of the 

pilots on the Autoplan. In general, all pilots with the exception of two agreed with the 

general routing that the Autoplan provided, but also concurred that they required speed 

and altitude changes and, in some emergency cases, quite extensive changes. However, 
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they did approve of the Autoplan feature. The sole pilot who did not like the Autoplan 

feature did categorically state that he was not a big fan of automation as he did not agree 

with the extent to which it delegates control of the aircraft away from him.    Figure 29 

shows the number of runs each pilot had with the Autoplan as the active route.  
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   Figure 29 - Number of Runs with Modified Autoplan Active until End of Run 

 
 

4.3.2 Pilot Comments on Automation 
 

On the completion of each scenario, pilots were asked a series of questions 

pertaining to replanning in that scenario using the type of automation they used. Among 

the questions asked was a comparative evaluation of the automation used to what they 

would have preferred to use for that scenario on a Likert scale from ‘Easier’ to ‘More 

Difficult’ (Figure 30). It should be noted that, in each type of automation, there are a total 

of 32 runs with 16 pilots undergoing 2 runs each, one for each scenario type. These 

include cases where in a pilot may have preferred a different type of automation for each 
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scenario type. The complete response to the end of run questionnaire for each pilot is 

given in Appendix C.2.  

 

Type of Automation Pilots Preferred Comparison to Automation Used

 

Figure 30 - Pilot Comparison of Automation Used with Preferred Automation 
 

An interesting read from the above figure is that some pilots preferred to use a 

particular type of automation even though it resulted in more work for them and planning 

was more difficult. This could arise out of familiarity with the system currently being 

used and how often pilots use these in real world situations. 

At the end of the experiment, the pilots were asked to rank the planning tools 

available to them; from best (1) to worst (4), according to which one was they felt was 

more useful for each scenario type. Figure 31 summarizes the rankings. 
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Figure 31 - Pilot Rankings of Automation Types per Scenario Type 

 
From Figure 31 it was quite apparent that the CDU+ was the automation preferred 

by the pilots in the experiment with 62.5% of pilots rating it the best for the non nominal 

scenarios and 50% rating it the best in the emergency scenarios. Interestingly, 56% of 

pilots rated the MCP the worst for the non nominal scenarios and 50% rating it the worst 

in emergencies. The complete response to the end of experiment questionnaire for each 

pilot is given in Appendix C.3. A Wilcoxon signed ranking test (non parametric) was 

performed on the above response for both scenario types. In both scenario types, the 

CDU+ was rated as the best type of automation.  

 Finally pilots were also asked to describe the performance of the Autoplan. This 

was not specific to any scenario type. Error! Reference source not found. shows the 
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response of each pilot to the question: “How would you describe the performance of the 

Autoplan? Please elaborate.” , and it can seen that all but two pilots approved of the 

Autoplan function although some also stipulated caveats such as wanting to double check 

the route it suggests. 

 - 61 -  



 

 

 

Table 3 - Pilot Responses to Performance of Autoplan 

How would you describe the performance of the Autoplan? Please elaborate. 
Pilot 1 It gave a very viable option that you could choose or reject. It would save 

effort and thought process if it was elected 
Pilot 2 I found Autoplan very easy to use and it made my workload much less. 
Pilot 3 Autoplan is a great idea if implemented correctly. It needs the ability to pick 

waypoints that are likely to be used in a given airspace. I think this could be 
accomplished in part by surveying ATC and having them suggest alternate 
route in their airspace. Another constraint is CDU memory, which is in short 
supply in the 757/767s I fly. As long as Autoplan has the ability to pick a 
logical, likely route, it will be a good thing. If however, it picks routes that 
will not be used in real life, it will become a button that never gets used. 

Pilot 4 Helpful as a suggestion, that can be easily modified. Adds fixes that can be 
used without typing. 

Pilot 5 Autoplan has no way of knowing what the objective is. Therefore, it may 
offer a long route when a short route is desired. I believe in most cases, I 
would not use Autoplan. 

Pilot 6 I would not have picked most of the routes it did. A little aggressive for 
passenger operations and routes were longer. 

Pilot 7 I liked Autoplan. Not sure that I wanted it to switch to it automatically 
(CDU++), but I found the displayed alternate route very helpful in picking 
the route I would use. 

Pilot 8 Coupled with the visual representation, it provides me with great options; 
however, I am concerned about ATC's ability to go along with the plan. 

Pilot 9 It may offer a good solution, then again it may not. Autoplan is not the best 
solution in all cases but at least look at it to evaluate it 

Pilot 10 Good. It gave a quick route with an appropriate lead into final. 
Pilot 11 Good. It gives a viable routing to destination and allows you to refine as 

necessary. 
Pilot 12 I think it can be a useful system because it can save cockpit workload. It 

depends on how closely it would match optimum route and how likely pilot 
could stay on that route and not be altered by ATC. 

Pilot 13 Generally good, but needs to be modified based on current factors. 
Pilot 14 I think the Autoplan is a great tool, but it needs to be treated only as a tool to 

help me make rerouting decisions. 
Pilot 15 It provided a shorter route to the airport. However ATC usually does the 

same to the extent that traffic allows. 
Pilot 16 In general good. In time critical situations, it can give a good plan quickly 

and then you can take time refining it. 
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4.4 Workload Assessment 
 

To assess the workload involved in each scenario, the pilot was asked to complete 

NASA Task Load Index (TLX) ratings at the end of every run. The worksheet probed the 

pilot for their personal assessment of workload on a continuous scale. Workload itself 

was broken down into 6 categories: mental demand, physical demand, temporal demand, 

performance, effort, and frustration. Workload within each type of automation is shown 

in Figure 34. For each of the above categories, a general linear model was fitted to 

examine the main effects. Subsequent ANOVA test were done where applicable. 

Categories which failed normality conditions were subjected to non parametric tests to 

examine any differences within the independent variables.  

 In the mental demand category, the residuals of the general linear model failed 

the Kolmogorov-Smirnov normality test (p>0.150), thus disallowing an ANOVA. 

Subsequently, a non parametric test, the Kruskal-Wallis Test was performed which 

showed no significant effect of scenario (H = 1.76, P = 0.972) or type of automation (H = 

0.94, P = 0.815) on mental demand.   

As with mental demand, physical demand also failed the Kolmogorov-Smirnov 

normality test (p>0.15), thus rendering the ANOVA test unusable. Similarly, a non 

parametric test revealed no effect of automation or scenario on physical demand, but run 

order effects were seen in physical this measure (Figure 32). However, discussions with 

pilots and observations during the experiment revealed that any physical demand was 

more a result of using a virtual graphical user interface than of planning.  
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Figure 32 - Run Order Effects in Physical Demand 
 

Temporal demand also failed the normality conditions, when fitted to a general 

linear model. A non-parametric test revealed no significance of the main effects on this 

measure.  Temporal Demand showed run order effects as can be seen from Figure 33. 
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Figure 33 - Run Order Effects in Temporal Demand 
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The performance rating showed a significant automation effect (F=15.81, 

p<0.001). A 95% confidence Tukey test was further performed, which revealed that the 

MCP had the worst effect on performance.  

Pilot ratings of their effort were not affected by the automation types. However, 

the specific scenario did show a significant effect (F=4.33, p=0.040) on effort. 

Specifically, the weather disturbance scenario and the restricted airspace scenario had the 

most effect on effort among all the scenarios.  

Frustration was generally low and none of the variables showed any significant 

effect on the frustration level experienced by pilots during the task. Pilots may have 

reported a low frustration level in using the different autoflight systems since they have 

been exposed to these systems in real aircraft. Subsequent non parametric tests also failed 

any appreciable difference in any of the main effects.  

An online calculator was used to compute the weights for each TLX category to 

calculate total workload. The average workload rating did not vary much with scenario 

type. In fact these were more specific to the type of automation wherein the workload 

rating for both scenario types was highest for the MCP and the lowest for the CDU+ 

(Figure 35) but was not statistically significant. 
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Figure 34 – Average TLX Workload Ratings for the Planning Task 
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Figure 35 - Average Total Workload 
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4.5 ‘Faulty Autoplan’ Scenario 
 

The faulty Autoplan scenario that was run after completion of the first eight runs 

provided insight into the effect that a faulty Autoplan may have on the pilot’s 

performance. Specifically the CDU++ generated a faulty plan which the aircraft would 

immediately start to follow at the beginning of the scenario. The Autoplan was erroneous 

in that, in a non nominal scenario type, it would provide a plan that was extremely 

aggressive and not safe for normal airline operations, i.e., it would generate an over 

aggressive plan that was suitable for a critical emergency. Likewise, for an emergency 

scenario type, it would generate a more circuitous route unsuitable for emergency, 

thereby ignoring the primary measures of time and distance. Eight pilots ran the ninth run 

in the non nominal scenario and eight pilots ran it for the emergency scenario, thereby 

giving 16 runs (data points). Figure 36 and Figure 37 shows the flight paths of the pilots 

in this run for the two scenario types. 
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Figure 36 - Flight Paths for Non Nominal Faulty Autoplan Scenario 
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Figure 37 - Flight Paths for Emergency Faulty Autoplan Scenario  
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Although there are an insufficient number of data points for a statistical analysis, 

some trends merit discussion. Regardless of scenario type, pilots’ primary aim was to 

minimize time aloft and distance to travel. In the non nominal scenarios six out of eight 

pilots did not activate the original route (RTE 1) but chose to modify the Autoplan. The 

two pilots that did activate the original route took, from the start of the run, an average 

time of 2.131 minutes to activate and 2.489 minutes to start modifying the route (the 

other six pilots took an average time of 1.261 minutes to start modifying the route). This 

suggests that they did spend some time evaluating the two plans available and then make 

their choice.  

It was observed that in cases where pilots activated the original route, the average 

number of modifications to the active plan was six whereas, for the other six pilots, the 

number of modifications increased to eight, thereby suggesting that the original route was 

better than the Autoplan and required less modification, which was subsequently verified 

through observations and comments made by the pilots during the experiment and 

debriefing. 

The number of modifications to the plan was measured by the number of times 

the pilots pressed the EXEC button to execute a modification.  In the emergency 

scenarios five out of eight pilots did not activate the original route (RTE 1) but chose to 

modify the Autoplan. The three pilots that did activate the original route, however, took 

an average time of 0.483 minutes to do so. This suggests that they immediately 

recognized the erroneous Autoplan and proceeded to activate the original plan. In the non 

nominal scenario, the average deviation in distance flown was 10.562 miles with a 

corresponding saving in flight time of 7.027 minutes. For the emergencies these measures 
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corresponded to 10.295 minutes saved in flight time and 25.819 miles saved in flying 

distance. These were measured by taking the difference in times of the modified route 

and the unmodified active route. Figure 38 and Figure 39 show a snapshot of the various 

measures for the faulty Autoplan scenario: 
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Figure 38 - Planning Performance Measures in Faulty Autoplan Scenario 
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Figure 39 – Planning Behavior  Measures for Faulty Autoplan Scenario 
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CHAPTER 5  
 

CONCLUSIONS 

 

5.1 Discussion of Results 
 

The results of this experiment suggest that pilot behavior and performance differs 

in different situations, be it non nominal or emergency.   

 When pilots used only the MCP, the time of flight and the length was lower (i.e., 

better) than with the other types of automation. With the MCP, the emergency scenarios 

showed markedly lower values for the primary measures of performance than the non 

nominal scenarios, which had a stronger effect on the safety of the flight. This was 

attributed mainly to the fact that pilots did not need to spend too much time creating and 

modifying fixes, but rather spent more time on speed and altitude changes. 

 The CDU only, however, showed a slight degradation in pilot performance. The 

workload assessment showed no significant difference from that with the MCP, but the 

primary measures of time of flight and length of run were the highest in this type of 

automation. Average deviations were about the same as that of the MCP suggesting that 

resulting plans were similar, but the comparative flights varied substantially. The non 

nominal scenarios show higher averages for time and distance than the emergency 

scenarios; however, these also show a markedly higher average for the emergency 
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scenarios when compared with the MCP only case with no appreciable change in overall 

workload. This case did show a higher level of frustration than the other automation types 

mainly because pilots had to spend time entering and modifying fixes, and, in some 

cases, pilots had been previously been exposed to the other variants of the CDU.  

The variants of the CDU, namely CDU+ and CDU++, were well received by the 

pilots because of the additional Autoplan feature which was found to tremendously 

reduce pilot workload during replanning. Though the CDU+ did show a relatively higher 

temporal demand for both scenario types, it showed overall a much better performance in 

reducing time and distance and the subsequent total workload.  

It was also seen that with all the variants of the CDU, pilots made substantial 

changes to the Autoplan. The Autoplans were created to meet mind airspace regulations; 

however, the inability of the plan to take advantage of the air traffic controller giving the 

pilot discretion over the route explained the changes made by the pilots to the Autoplan. 

These factors highlight the need for careful design of the Autoplan generator to be 

context sensitive including the ability to generate plans for both non-nominal and 

emergency situations and to take advantage of relaxed ATC restrictions. Pilot comments 

concerning the performance and usefulness of the Autoplan were more favorable than 

indicated by the performance measures. Indeed, most of the pilots believed that the 

Autoplan could be useful but at the same time expressed a number of concerns about its 

implementation. 

The results of this preliminary experiment suggest that the functional concept of 

an automatically generated plan is an endeavor worth pursuing which provides the pilot 
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much needed assistance in replanning a flight route. Additionally, it was observed that 

pilots tended to think of plans as a two dimensional space at any time.  

 

5.2 Future Directions 
 

Although this research specifically studied airline pilots’ planning behavior in 

glass cockpit using current autoflight interfaces (MCP and CDU), the results suggest 

several broader implications for cockpit planning aids in general. The most important is 

the level of intelligence required by the FMS to generate such a plan on its own. While 

most pilots did say it was useful, some shot down the idea on the ground that they 

preferred to either create their own plans (even if it increased workload a little and 

increased time), or hand fly the aircraft as it afforded more control of the aircraft. In this 

experiment, for example, some pilots pointed out that the Autoplan did give a very good 

initial routing with minimal route changes, but was not very effective with the speed and 

altitude management.  

Successful implementation of such a concept is highly dependent on the level of 

artificial intelligence, context sensitivity to and the sensing of external factors such as 

traffic, weather and terrain. The objective function or the goal of the plan should coincide 

with the specific situation at hand, be it non nominal or emergency in nature and whether 

the aircraft has been compromised or not.  

Some pilots also observed that such a concept would be more useful in an en-

route environment as terminal area traffic control is far stricter and more stringently 

regulated. A more dynamic and real time update of the plan would also be useful with 
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additional information in the form of ETA to active waypoints would also be helpful to 

pilots.  

Perhaps a more important question is the location of such a system. Though the 

Autoplan (and subsequently the CDU+) did not have much effect on pilot behavior, it 

could be located in the aircraft FMS or used by air traffic control level to create better 

aircraft routings, perhaps updated when the situation changes. 

Other additions that may prove to be helpful are a complementary display which 

shows a vertical and horizontal display of the Autoplan in a space relative to other routes 

and traffic, weather, and terrain, as well as supplemental information of estimated time to 

travel, estimated distance to go, estimated fuel consumption and savings on time and 

distance compared to the previous plan. These additions, with subsequent testing, can 

better confirm the effectiveness of such a concept.  

With the development of free flight, the concept of an automatic plan generator 

would greatly enhance in-flight re-planning tasks and could have better context 

sensitivity if, in addition to the above mentioned enhancements, Autoplan could 

incorporate ‘Party Line’ Information (PLI) such as real time and current pilot reports 

about weather and traffic, Collaborative Decision Making (CDM) information such as 

airspace system status, equipment availability and weather, and the output of other tools 

such as the User Request Evaluation Tool (URET) for conflict prediction, passive Final 

Approach Spacing Tool (pFAST) for terminal area arrival and departure streaming 

operations, and Traffic Management Advisor (TMA) for en-route traffic management. 

Results also bring into focus the effectiveness of the control display unit as a 

replanning interface. With its text display and keystroke method of data entry, planning 
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interfaces such as touch screens which allow pilots to graphically pick waypoints and 

define a flight path may prove to be both easier to use and facilitate pilots in creating 

better plans. Such a system does not call for elimination of the CDU from the flight 

management system, but current methods of using planning interfaces in flight decks do 

call for a more efficient interface. Such a system would be efficient in that pilots would 

have the system in front of them (thus allowing pilots to monitor other flight instruments 

simultaneously), reduce physical movements in terms of data entry into the FMS and not 

requiring the pilot to constantly go heads down when creating the plan and then looking 

up to verify the plan. 
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Objective 
 

This experiment is an investigation of in-flight re-planning using various 
conventional (existing) and enhanced autoflight systems that assist pilots to replan 
and fly their route of flight following an emergency or a non-nominal situation. 

 
Experiment Summary 
 

This experiment will last approximately six hours.  At any time you may request a 
break, ask for further explanation, or, if necessary, terminate the simulator runs.  

[We will be videotaping each of your test runs.  The only purpose of the videotape 
is so that we may go back after testing and review the runs.  These videotapes and all 
other data obtained during the experiment will be kept confidential.  You may request to 
see the videotapes and any other information recorded by us throughout the course of the 
experiment.] 

You’ll be flying our simulator, which is based on a Boeing 747-400. In each run, 
you will be asked to use a particular type of autoflight system. We will begin with tutorial 
flights to familiarize you with the experimental setup, procedures, and the autoflight 
systems. We will only progress to the actual data runs when you feel ready to proceed. 

 
Once you are ready to move onto the data runs, you will be asked to fly nine 

flights.  Each flight will have just experienced either an emergency or a non-nominal 
situation. You will be placed into the scenarios after the problem has been diagnosed and 
immediate danger averted (in the case of an emergency).  Your task will be to plan and 
fly your route as you would in a real aircraft. Each run will end after you have passed the 
final approach fix or are within glideslope intercept. 

 

Throughout the course of the experiment, please feel free to verbalize your 
thought process.  For example, please tell us any important steps you follow or decisions 
you make during re-planning.  Following each test run, you will be asked to fill out a 
questionnaire about your workload, the cockpit displays and your planning activities 
pertaining to the run. At the end of the experiment, we will also give you a more 
complete questionnaire regarding the tool in general. 

 
Please do your best to act naturally and fly the aircraft in the same manner in 

which you would fly your own aircraft.  We would like to get the best estimate of a ‘real-
life’ response. 
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Scenario Introduction  

You are the Captain of a 747-400 style aircraft.  Your F/O is fresh out of training 
with little experience in type.  For each run, you are on a scheduled flight along a pre-
planned route which must be re-planned due to some problem: four of your runs will be 
under a non-nominal situation (i.e., not time-critical) and four under an emergency 
situation (i.e., time-critical). Prior to each run you will be briefed on what has happened, 
which runway you need to plan your descent to, and what type of autoflight system 
interface we would like you to use.  Normal flight deck displays will be available to you, 
as well as Jeppesen style en-route (Figure 40) and STAR charts (Figure 41) and approach 
plates (Figure 42).  

In each scenario, assume that all normal and abnormal procedures have been 
conducted (and will continue to be conducted) by the F/O. Your task is to get the aircraft 
down by planning and flying a safe route. You will not be required to land the aircraft. In 
each case, ATC will be giving you discretion, so your choice of route should be that you 
would pick in real life when not constrained by ATC.  You should, however, 
communicate to your F/O your planned flight route as you come up with it so that he can 
communicate it back to ATC.  You are welcome to modify your planned flight route 
throughout the flight as long as you communicate your changes to the F/O.  To help us 
understand your strategies and needs in these types of situations, please also verbalize 
your thoughts throughout the flight. 
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Figure 40 – En-route Chart for Shannon Grove International Airport 
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Figure 42 - Approach Plates for RW29L/R at Shannon Grove International Airport 
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Autoflight Systems 
 

For this experiment we’ll use four different types of autoflight systems. Briefly, 
these are described below – we’ll go through a tutorial on them next. 

• MCP: In this experimental condition you will be asked to fly the aircraft 
using only the Mode Control Panel (MCP) using the HDG, V/S, ALT, 
FLCH and SPD modes.  

• CDU:  In this experimental condition you will be asked to fly the aircraft 
by programming the FMS by entering in routes and waypoints into the 
Control Display Unit (CDU).  This simulator’s CDU functions similar to 
ones in current Boeing aircraft.  

• CDU+: In this experimental condition an additional button called 
‘AUTOPLAN’ will be available on the CDU. This is an enhancement 
which, when pressed, causes the FMS to generate a flight plan on its own 
accord and display it. You may make changes to this plan or disregard it 
totally. The decision is left to you.  

• CDU++: In this experimental condition the FMS will generate an 
AUTOPLAN on its own accord, display it, and will start to follow it 
automatically when we start the simulator at the beginning of the run.  
You are still welcome to override the plan. 
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Flying The Aircraft  
 

Primary Flight Display 
 

Two primary flight instrument displays are available to you on the screen in front 
of you: the primary flight display (PFD) and the navigation display (ND).  The PFD is 
based on that of a Boeing 747-400 (Figure 43).  The tape on the left is airspeed in knots; 
the one on the right is altitude (MSL) in feet.  The heading is magnetic, and the magnetic 
variation for all scenarios will be zero.  The vertical speed indicator is on the far right, 
and is in feet per minute.  Note the flight mode annunciators at the top. 

 

Figure 43 - RFS Primary Flight Display 
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Navigation Display  
 

The ND is also modeled on the Boeing 747-400 (Figure 44). The stippled magenta line 
shows the pre-selected heading. The solid magenta line shows the active route in the 
CDU. The modified route is shown as a stippled white line.  

 
Figure 44 - Navigation Display showing pre-selected heading, active route and 

modified route 
 

When the AUTOPLAN option is available, it shows up on the navigation display 
as an orange stippled line as shown in Figure 45. This turns white if modified and into a 
solid magenta line if activated. 

Note the green arc (the ‘banana’) which shows the distance (from the aircraft) at 
which you will arrive at the desired altitude. This arc shows up on the ND irrespective of 
the plan being displayed on the CDU. 
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Figure 45 - Navigation Display showing Autoplan route in orange and green arc 
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In addition to the above instruments, in some runs you will also have available to 
you an MCP and a CDU.  When asked to use only the MCP, you can use it to fly the 
aircraft using the airspeed, vertical speed and altitude controls (shown in Figure 46).  You 
will need to adjust speed and altitude yourself to meet your spacing requirements and 
altitude constraints.  The MCP is controlled through the mouse. HDG, V/S, ALT, FLCH 
and SPD modes are available. To increase the value of speed, altitude or vertical speed 
commands, click on the upper pink box of the roller dial of the target window with the 
left button of the mouse; to decrease, click the lower pink box with the left button of the 
mouse. Bear in mind that to enable the values that you have input into the MCP, you have 
to click on the appropriate button for the command to be sent to the aircraft so that it can 
follow it. 

 

 
Figure 46 - Mode Control Panel 
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The RFS Control Display Unit (v1.0) Made Easy 
The following tutorial will help to familiarize you with the working of the control 

display unit (CDU). The CDU (shown in Figure 47) in this simulator is modeled on the 
Boeing 747-400 CDU and functions very similarly with a few modifications. The line 
select keys are placed inside the screen regions themselves. To copy to or from the 
scratchpad just click on the screen region and the entry is copied from the region to the 
scratchpad or vice versa.  The alphanumeric keys are also functional. Programming the 
CDU is described in step-by-step detail next.  In the CDU that will be used in this 
experiment, apart from alphabetic and numeric keys, only the RTE, FIX, LEGS, EXEC, 
AUTOPLAN, PREV and NEXT buttons are enabled. 

 

Figure 47 - Control Display Unit 
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1. Viewing the RTE Pages: 
The RTE button will bring up the screen pertaining to RTE 1 (Figure 48).The page title 

(top center) shows the name of the current route and its mode i.e. MOD or ACT. The 

highlight shows that the particular button is currently under the mouse’s cursor.  

 

Figure 48 - CDU Screen Showing RTE Page 1 
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1.1 Modifying entries in the CDU: 
 

The screen regions in this CDU act as line select keys. Modifying an existing 
route is the same as in a real aircraft CDU. Click on the desired screen region. If the 
region can be changed or selected then the entry will be highlighted in green. Select the 
waypoint TIGER (on page 2/3) and click on it. If the scratchpad is empty then that entry 
is down - selected to the scratchpad as shown in Figure 49. 

 

Figure 49 - CDU Screen after down selecting TIGER to scratchpad 
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Figure 50 - CDU Screen after up selecting entry from scratchpad 

 

Click on the line select key you want to place this entry to and the entry in the 
scratchpad is up-selected to the chosen region. For example, LIONS (in the scratchpad) 
can be up-selected to replace ANNEJ (on page 1/3). When you click on ANNEJ the 
change is made and is reflected on both the RTE page (Figure 50) and the LEGS page of 
that route. Note that the EXEC button lights up waiting for a confirmation of the 
modification. Until the page title of the page will show MOD. Also notice the white 
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stippled line on the ND which denotes the modified route. Pressing the EXEC button 
(when lit) will cause the page mode to change from MOD to ACT. The page title will 
now show ACT RTE 1. 

 

Figure 51 - Confirming the MOD by pressing EXEC to change page mode to ACT. 
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1.2 The AUTOPLAN Feature: 
 

The AUTOPLAN feature is an enhancement on the existing CDU. Two of the 
four autoflight systems (namely CDU+ and CDU++) have a feature wherein the FMS 
itself charts out a plan. The FMS generated plan can be manipulated like any of the other 
routes. To view the AUTOPLAN, simply click on the button marked AUTOPLAN and 
the CDU displays it. 

 

Figure 52 - CDU Screen showing AUTOPLAN 
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Notice that the ND will show an orange stippled line denoting the AUTOPLAN. 

This can be treated and modified like any other plan. You will see that Region 6R says 
“ACTIVATE >”. This means that the AUTOPLAN is in the CDU database, but is not the 
active route. To activate the AUTOPLAN, press the screen region saying “ACTIVATE 
>”. The EXEC button lights up (provided there are no route discontinuities) waiting for a 
confirmation.  

 
Figure 53 - Lit up EXEC button after ACTIVATE > is pressed 
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To confirm, press the EXEC button and the AUTOPLAN gets activated. The page 

title changes to “ACT RTE AUTOPLAN”. 

 

Figure 54 - Confirming the AUTOPLAN activation 
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1.3 Route Discontinuities on the RTE Page 
 

A ROUTE DISCONTINUITY is created whenever there is no defined path 

between successive waypoints in a flight plan. Discontinuities may be created by 

waypoint deletion, line selection or procedure stringing. These show on the RTE and 

LEGS pages as boxes wherever there is a break in the route and the FMS does not know 

where to go next (Figure 55). 
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Figure 55 - RTE Page showing route discontinuity 
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1.3.1 Resolving a Route Discontinuity: 
 

To resolve a route discontinuity, click on the desired waypoint after the route 
discontinuity to down select it to the scratchpad (Figure 56) or type in a waypoint name 
to the scratchpad.  

 
Figure 56 - Down selecting desired waypoint BERYL (on page 3/3) to scratchpad 
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Next, click on the region where the route discontinuity is displayed. The EXEC 
button will light up (Figure 57)  

 
Figure 57 - EXEC button lights up when BERYL is up-selected to route 

discontinuity 
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Click on the EXEC button to confirm the action and the entry in the scratchpad 
will be up selected to the target line and the route discontinuity resolved (Figure 58). Also 
notice that the ND display changes to a solid magenta line showing that the route is 
activated. 

 
Figure 58 - Route Discontinuity resolved and route activated after clicking EXEC  
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2.  Viewing the LEGS Pages: 
 

To view the LEGS pages of the current route, there must be a current route on 
display in the system (RTE 1 or AUTOPLAN). Press the LEGS button. The screen will 
refresh showing you the different legs in the flight plan in the order of flight (Figure 59). 
Modifications to the LEGS pages are similar to that of the RTE pages. 

 

Figure 59 - CDU RTE LEGS Page 
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The legs page shows the details in the same conventions used in real aircraft. The 
heading to each waypoint is displayed above the waypoint identifier. For example, the 
heading 162o brings you on course to intercept waypoint MICHL (from your current 
position). The center column shows the distance to the next waypoint in nautical miles. 
For example, the distance to the active waypoint MICHL is 5 nm and from MICHL to 
ANNEJ is 14 nm. The altitude and speed constraints are displayed on the rightmost 
column of the corresponding waypoint. For example, MICHL has an altitude constraint 
of 10000ft and a speed constraint of 250 knots. 
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2.1 Route Discontinuities on the LEGS Page 
 

As with the RTE pages, route discontinuities also show up on the LEGS pages. 
Figure 60 shows a route discontinuity on a LEGS page. In the LEGS pages, the route 
discontinuities show up only on the left hand column of the screen region. 

 

Figure 60 - LEGS page showing route discontinuity 
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2.1.1 Resolving a Route Discontinuity on the LEGS Page 
 

Resolving a route discontinuity in The LEGS page is similar to that of the RTE 
pages, i.e. down-select the desired waypoint after the route discontinuity to the 
scratchpad, or type in a waypoint into the scratchpad and then up-select it to the region 
showing the discontinuity. The EXEC button will light up. Press the EXEC button to 
confirm, and the route discontinuity will be resolved and the updates legs displayed. 

 

2.2 DIRECT-TO  

 
 Direct-to flight plan entries allow you to fly directly to a particular waypoint. The 

waypoint may be part of the active or modified active route, or it may be off path.  

A direct-to can be performed by entering the desired fix into screen region 1L on 
page 1 of the ACT RTE LEGS page or the MOD RTE LEGS page. This is the same as 
any other legs page modification. Additionally, this can also be done via the DIR/INTC 
Page. To do this: 

• Click on the DIR/INTC button. 
• Screen Region 1L will show box prompts with “Direct To” displayed above 

it (Figure 61). 
• Down select the desired direct-to waypoint to the scratchpad or type in the 

name of the waypoint desired into the scratchpad. 
• Up-select the scratchpad contents to the box prompts and the direct-to action 

is completed. You will then have the option of erasing the direct-to action or 
activating the modification (Figure 62). 
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Figure 61 - The Direct-To Page 
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Figure 62 - Direct-to BERYL completed with modification created 
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3.   Advanced Flight Planning 
 

3.1 Pilot Created Waypoints 
This section describes the various ways in which you can create waypoints to 

assist in flight planning. 

Waypoints and fixes can be created in 2 ways: 

• Place Bearing/Distance (PBD) and  
• Latitude/Longitude 

 

3.1.1 Creating Waypoints by Place/Bearing Distance (PBD): 
 

You can create a fix by PBD into the scratchpad and up-selecting to the desired 
position. These waypoints are identified by the first three characters of entry (which 
should be the name of the reference Navaid) followed by a two-digit sequence number. 
This can be done by: 

• Typing the name of the reference Navaid with bearing and the desired 
distance from the Navaid as one word into the scratchpad. The bearing and 
distance should be separated by a ‘/’ (forward slash). 

• Up-selecting it using the line-select keys to the desired location.  
 

Example: If you want to create a waypoint bearing 205 degrees at a distance of 10 
nm from the Navaid JES, simply type ‘JES205/010’ into the scratchpad (Figure 63).The 
Waypoint JES01 (Figure 64) will be created and the latitude and longitude computed 
automatically where the 01 is FMC assigned and since this is a pilot defined waypoint, a 
route discontinuity will also be inserted after the created waypoint. You can proceed with 
subsequent flight planning only after this route discontinuity has been resolved.  
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Figure 63 - Creating Waypoints by Place/Bearing Distance (PBD) 
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Figure 64 - Pilot created Place/Bearing Distance waypoint JES01 (circled in red) 

and route discontinuity 
 

 

 - 109 -  



 

Multiple waypoints created using the same reference Navaid will have FMC 
assigned numbers in the sequence of waypoints created. Example: If PPA01 already 
exists and you wish to create another waypoint from PPA bearing 210 at a distance of 8 
miles, then type ‘PPA210/08’ into the scratchpad and up-select to the desired screen 
region. The FMC will create the waypoint PPA02 and compute the latitude and longitude 
automatically. 
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3.1.2 Creating Waypoints by Latitude/Longitude: 
You can create a fix by entering the latitude and longitude into the scratchpad and 

up-selecting to the desired position. This can be done by entering the name of the 
waypoint along with the coordinates as one word in the scratchpad and up-selecting it to 
the desired location.  

Waypoints entered as latitudes and longitudes are displayed in a 15 character 
format up to a tenth of a decimal without spaces. Leading zeroes must be entered.  

Example: If you wish to create a waypoint by simply specifying latitude 
(N01o26.5”) and longitude (W003o12.8”), then type the following into the scratchpad 
‘N0126.5W00312.8’ (Figure 65). 

 

Figure 65 - Creating Waypoints by Latitude/Longitude 
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Entering this string into the desired screen region causes the waypoint to be 
created and added to the existing plan with a route discontinuity after. The route 
discontinuity needs to be resolved before any further planning takes place. ). This will be 
displayed as N01W003 in the RTE and Legs Page (Figure 66). 

 

Figure 66 - Pilot created waypoint by latitude/longitude and route discontinuity  
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3.2 Adding a Waypoint from the FMS database: 
 

Waypoints can be entered into your flight plan, if they exist in the FMS database, 
simply by entering the five-letter identifier for the waypoint into the scratchpad and up-
selecting it to the desired screen region.  

Example: You have looked at your en-route chart and seen that waypoint 
MACEY is close to a point you would to get to and would like update your plan to fly to 
MACEY. Enter the five-letter identifier MACEY in the scratchpad and up-select to the 
desired point in the plan. The waypoint MACEY will show up on the RTE or LEGS page 
followed by a ROUTE DISCONTINUITY (Figure 67). 

 

Figure 67 - Inserting a waypoint/fix from the FMC database 
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3.3 Entering Altitude and Speed Constraints for User Defined Waypoints 

 
When a waypoint created or added from the FMS database, it creates only a 

latitude and longitude. Speed and altitude parameters are usually not associated with it as 
these are characteristic of the route being flown. When you do create/add a fix, the 
computer interpolates a speed and altitude between the waypoint previous to and after the 
pilot defined waypoint and assigns these parameters to the pilot defined waypoint. The 
rightmost column on the LEGS page will now show the interpolated values of speed and 
altitude for that waypoint.  

These values are displayed in a distinctly smaller font size than the non pilot 
defined waypoints. This is to alert the pilot that he/she has entered a waypoint and he/she 
may change it if desired. You can create these constraints by entering the speed and 
altitude separated by a ‘/’ (forward slash) as one word into the scratchpad and then up-
selecting it to the desired screen region. Once these values are changed and the changes 
confirmed, the new values of speed and altitude are treated as non pilot defined and 
displayed in regular sized font.  

 

Example: You have just added waypoint FLCNS from the FMS database. The 
speed/altitude column shows you the interpolated values of speed and altitude (Figure 
68). Enter the speed/altitude directed by ATC or as desired and then up-select (Figure 
69).  
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Figure 68 - Pilot added waypoint from FMC database showing interpolated speed 

and altitude 
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Figure 69 - User Entered speed/altitude constraints 
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Training Run #1: Replanning in a non-nominal condition 
 

Welcome to Shannon International Airport. In this training run you will learn how 
to fly our simulator using each of the types of automation in a non-nominal situation. The 
actual simulation runs for data acquisition will not begin until you have given the signal 
that you are comfortable with the system. This tutorial flight will be an example of a non-
nominal situation so that you can also experience the type of scenarios that we’ll be 
asking you to fly during the data runs.   

 

Here is the en-route chart for the Shannon Grove area, STAR chart for Shannon 
International Airport, and the approach plates for RW29L.  

  

ATC at Shannon has communicated to you that there is very light traffic around 
you and that you have been cleared to take any route of your choice to the destination. 
You did not anticipate before that they would want you to land on RW29L, but that’s you 
have just been cleared for. You are currently at: 

• An altitude of 17000 feet. 
• At a heading of 190o 
• At a speed of 330 knots. 
• At a distance of 30 miles from VOR GOLDS (117.3 GLD) 
 

Please communicate with your F/O about your flight plan throughout, so that he 
can communicate with ATC.  He will also be performing all system monitoring and 
checklists, so that you can focus on planning and flying your route. 

 

We’ll start with flying the aircraft through the MCP.  Once you are comfortable 
with that, then we’ll try the CDU, CDU+, and CDU++. 

At the end of run, we’ll ask you to fill out an end-of-run questionnaire that 
pertains to the autoflight system used for the run.  Please try filling it out now in case you 
have any questions about it, and to review the four autoflight systems that you have just 
used. 

 

Part of each questionnaire will be a quick survey regarding the workload you 
experienced during the run. Workload is split up among Mental Demand, Physical 
Demand, Temporal Demand, Performance, Effort, and Frustration Level. Please note that 
all scales go continuously from Low to High except Performance, which goes from Good 
to Poor. Please place a ‘9’ (check mark) anywhere along the scale like the one shown 
below: 
 
Example: 
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Mental Demand: How much mental and perceptual activity was required (e.g. thinking, 
deciding, calculating, remembering, looking, searching, etc.)? Was the 
task easy or demanding, simple or complex, exacting or forgiving? 

Low High

M ental Demand

9
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Training Run #2: Replanning in an emergency condition 
 

Welcome to Shannon International Airport. In this tutorial you will learn how to 
fly our simulator using each of the types of automation that we’ll be trying out in the data 
runs later today. The actual simulation runs for data acquisition will not begin until you 
have given the signal that you are comfortable with the system.  

 

In the middle of the flight you suddenly notice that one of the alarms systems on 
the aircraft have gone off indicating loss of hydraulic pressure in one hydraulic system 
(of three) in the aircraft. The damage has been assessed and found to be harmless in terms 
of aircraft stability and performance. You have already performed all emergency 
procedures and declared an emergency.  Now you need to bring the aircraft in for a 
landing as soon as possible. Your F/O will monitor the systems on the way down, so your 
task is to plan a safe route and fly the aircraft. RW29L is the only available runway. You 
are currently at: 

• An altitude of 17000 feet. 
• At a heading of 190o 
• At a speed of 330 knots. 
• At a distance of 30 miles from VOR GOLDS (117.3 GLD) 

Use this as a starting point for your plan. 
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SUBJECTIVE QUESTIONNAIRES 
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End Of Run Questionnaires 
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MCP 
 
Question 1: Outline your strategy for replanning the flight. What factors did you consider 
important? 

             
 
             
 
             
 
 
Question 2: In what ways (if any) did using the MCP help you replan your flight? 
 
             
 
             
 
             
 
 
Question 3: What would you have done differently if you could use any type of autoflight 
system (including none) ? 
             
 
             
 
             
 
 
Question 4: How would you rate the ease of planning in this run (with the MCP) 
compared to planning using the autoflight system in question 3? 
 

Difficult
Slightly

Difficult

No
Difference Easier

Slightly
More

More Easier
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CDU 
 
Question 1: Outline your strategy for replanning the flight. What factors did you consider 
important? 

 

             
 
             
 
             
 
 
Question 2: In what ways (if any) did using the CDU help you replan your flight? 
 
             
 
             
 
             
 
 
Question 3: What would you have done differently if you could use any type of autoflight 
system (including none) ? 
             
 
             
 
             
 
 
Question 4: How would you rate the ease of planning in this run (with the CDU) 
compared to planning using the autoflight system in question 3? 
 

Difficult
Slightly

Difficult

No
Difference Easier

Slightly
More

More Easier
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CDU+ 
 
Question 1: Outline your strategy for replanning the flight. What factors did you consider 
important?  

             
 
             
 
             
 
 
Question 2: How much did you rely on the Autoplan? 
             
 
             
 
             
 
 
Question 3: In what ways (if any) did using the CDU+ help you replan your flight? 
 
             
 
             
 
             
 
 
Question 4: What would you have done differently if you could use any type of autoflight 
system (including none)? 
             
 
             
 
             
 
 
Question 5: How would you rate the ease of planning in this run (with CDU+ with the 
optimal Autoplan) compared to planning using the autoflight system in question 4? 

 

Difficult
Slightly

Difficult

No
Difference Easier

Slightly
More

More Easier
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CDU++ 
 
Question 1: Outline your strategy for replanning the flight. What factors did you consider 
important?  

             
 
             
 
             
 
 
Question 2: How much did you rely on the Autoplan? If you decided to override or 
modify the automatically generated plan, what was it about the Autoplan you did not 
like? 
             
 
             

             

             
 
 
Question 3: In what ways (if any) did using the CDU++ help you replan your flight? 
             
 
             
 
             
 
 
Question 4: What would you have done differently if you could use any type of autoflight 
system (including none) ? 
             
 
             
 
             
 
 
Question 5: How would you rate the ease of planning in this run (with the automatically 
loaded Autoplan) compared to planning using the autoflight system in question 4? 
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Difficult

Slightly

Difficult

No
Difference Easier

Slightly
More

More Easier

  



 

NASA TLX (Workload) Sheet 
 
Rating Scale Definitions 
 
Mental Demand: How much mental and perceptual activity was required (e.g., thinking, deciding, 

calculating, remembering, looking, searching, etc.)? Was the task easy or 

demanding, simple or complex, exacting or forgiving? 
Low High 

Mental Demand 

 

 
 
Physical Demand: How much physical activity was required (e.g., pushing, pulling, turning, 

controlling, activating, etc.)? Was the task easy or demanding, slow or brisk, 
slack or strenuous, restful or laborious? 

Low High

Physical Demand

 

 
 
Temporal Demand: How much time pressure did you feel due to the rate or pace at which the tasks 

or  task elements occurred? Was the pace slow and leisurely or rapid and 

frantic? 
Low High

Temporal Demand

 
Performance: How successful do you think you were in accomplishing the goals of the task set by 

the experimenter (or yourself)? How satisfied were you with your performance in 
accomplishing these goals? 

Good Poor

Performance 

 

 
 
Effort: How hard did you have to work (mentally and physically) to accomplish your level of 
performance? 

Low High

Effort 

 

 

 - 126 -  



 

 
Frustration Level: How insecure, discouraged, irritated, stressed and annoyed versus secure, 

gratified, content, relaxed and complacent did you feel during the task?  

Low High

Frustration 
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End Of Experiment Questionnaire 
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Background Questions 

Total Hours   _________________________________ 

Hours in Glass  (CRT)  _______________________________________ 
 
Aircraft Current in   _______________________________________ 
 
Hours in Current Type _______________________________________ 
 
 
Captain or Flight Officer? _______________________________________ 
 
Base Airport   _______________________________________ 
  
 
Initial Training (Civilian or Military)?_________________________________ 
 
Prior Glass Aircraft  ______________________________________________ 
 
Do you have any experience with flight planning software?  Yes  , No    
 
If yes, was it: On-Board Based?    Ground Operations Based?  ____ 
 

If so, what tool(s) have you used: _________________________ ______                                               
 
 
Have you ever needed to replan a flight route during an emergency?  Yes ____ No ____ 
 
If yes, please describe: 
 
Cause of emergency:                                                                                                                           
 
             
 
Approximate time to landing:          
 
Approximate distance to landing:          
 
Type of autoflight system used:         
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How often do you need to replan your route due to non-nominal (but not emergency) 
conditions? 
 Please indicate your answer as a percentage (%) of flights.      
 
 
What aspects of the autoflight system do you prefer to use in these conditions? 
             
 
             
 
 
What factors influence your choice of how to use the autoflight system when re-planning 
a route? 
              
 
             
 
              
 

 

 

QUESTIONS ABOUT IN-FLIGHT REPLANNING 

 

In Non-Nominal Scenarios: 

 
Under the given circumstances, did you feel comfortable planning your own route or 
would you rather have received vectors from ATC? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

What was your strategy in choosing the route that you planned and implemented? 

________________________________________________________________________

________________________________________________________________________

 - 130 -  



 

________________________________________________________________________

________________________________________________________________________ 

 

What factors did you consider when you were planning a reroute? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

In Emergency Scenarios: 

 
Under the given circumstances, did you feel comfortable planning your own route or 
would you rather have received vectors from ATC? Why? 

            

            

            

             

 

What was your strategy in choosing the route that you planned and implemented? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 
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What factors did you consider when you were planning a reroute? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

 

QUESTIONS ABOUT IN FLIGHT REPLANNING SYSTEMS 

 

Which type of autoflight system interface were you most comfortable with? Why? 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

How would you describe the performance of the Autoplan? Please elaborate. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

In each of the following scenarios, what would the FMS need to be able to do for you to 
feel comfortable following an automatically generated plan? Why? 
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Non-Nominal:           

            

            

Emergency:            

            

             

 
Any additional comments about the role of autoflight systems in in-flight replanning?  

            

 __________________________________________________________________

________________________________________________________________________ 
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Informed Consent Form 
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Subject #:___________ 

 
School of Industrial and Systems Engineering 

Georgia Institute of Technology 
 

Partially Sponsored by the NASA Langley Research Center Grant 
“Intelligent Pilot Aids For Flight Re-Planning In Emergencies” 

 
HUMAN SUBJECT CONSENT 

 
1. Title of project: FLIGHT DECK AUTOMATION AND IN-FLIGHT RE-

PLANNING 
2. Principal Investigator: Dr. Amy Pritchett, 404-894-0199, 

amy.pritchett@isye.gatech.edu 
 Graduate Research Assistant: Vittesh Kalambi, 404-226-7863, 

vkalambi@isye.gatech.edu 
3. Introduction: You are being asked to participate in a research project investigating 

cockpit aids that assist in in-flight replanning and the usefulness/effectiveness of 
these aids in emergency and non-nominal situations. If you volunteer, you will be 
among about 16 pilots with experience in “glass cockpit” aircraft. Given the 
length of the experiment, you are welcome to take a break between runs.  

4. Procedures: You will be operating an aircraft simulator set up on 2 networked desktop 
personal computers. You will be using a graphic user interface with a mouse as an 
input device for in-flight replanning. You will have a briefing session at the 
beginning, then you will undergo training runs until you are comfortable using the 
simulator setup. You will then fly 9 data runs with a questionnaire to be filled out 
at the end of each run and subsequently a final questionnaire at the end of the 
experiment. An experimenter will act as your first officer (F/O). He will not assist 
you in any way with in-flight replanning. However, please communicate your 
intentions to him as if he will then transmit them to air traffic control. Data will be 
collected on basic aircraft parameters (e.g. position, speed, control inputs, etc.) 
and changes made to flight plan throughout the runs. The experiment will be 
conducted in Room 349 at 755 Ferst Drive on the Georgia Institute of Technology 
campus in Atlanta, GA. The experiment will be conducted within one day session 
and is expected to last approximately 6 hours plus breaks. 

 
5. Foreseeable Risks or Discomforts: This study is considered to have minimal risk, 

which is risk that is not greater than those encountered in normal daily life. In 
particular, this study involves the use of a desktop computer, and will carry risks 
associated with normal computer use, including, but not limited to, eyestrain and 
repetitive motion injury. 
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6. Benefits: This study provides no direct benefit to you other than experience in in-flight 

replanning in a variety of scenarios. The study is intended to evaluate automation 
that would help in flight replanning, to gain more insight into the planning 
processes used by pilots and situation awareness of pilots, and to identify required 
cockpit systems, displays, and procedures. 

7. Compensation: You will receive monetary remuneration for the experiment of $300 at 
its completion. Due to the nature of the experiment, we can only use fully 
completed data sets in our analysis, and thus can only compensate subjects who 
have completed all 9 data runs.  

8. Costs: The only cost to you will be the cost of transportation to the experiment venue. 
9. Confidentiality: All information concerning you will be kept private and confidential. 

Any videotapes will only be used for the Georgia Tech experimenters to review 
your actions in re- replanning your flight, and to examine for unexpected events 
during runs that may impact the our planning data analysis; the videotapes will 
not be released to anyone else. All raw data from this experiment, including 
videotapes, will be stored in a locked facility on the Georgia Tech campus. Once 
the analysis and documentation of this experiment are complete, the videotapes 
will be destroyed; electronic and paper stores of results will be archived in a 
locked facility within the principal investigator’s Georgia Tech office or 
laboratory. Personal information about you will not be published or made 
available to any third party in any form whatsoever. If information about you is 
published, it will be written in a way that you cannot be recognized and may 
include, but not be limited to, categorizations of piloting experience which will be 
a common statistic with other pilots (e.g. number of hours in a glass cockpit, 
number of years as F/O and Captain etc.). However, research records, like 
hospital charts, may be obtained by court order. Only data gathered from a 
completed experiment will be used for the purposes of analysis. To make sure that 
this research is being carried out in the proper way, the Georgia Institute of 
Technology Institute Review Board (IRB) will review study records. 

10. Injury/Adverse Reactions: Reports of injury or reaction should be made to the 
Principal : Investigator or to the Graduate Research Assistant assisting with this 
research. Neither the Georgia Institute of Technology nor the principal 
investigator has made provision for payment of costs associated with any injury 
resulting from participation in this study. 

11. Contact Person: If you have questions about the research, call or write Dr. Amy 
Pritchett at: (404) 894-0199, School of Industrial and Systems Engineering, 755 
Ferst Ave., Atlanta, GA 30332-0205. 
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12. Voluntary Participation/Withdrawal: You are free to withdraw your participation 
at any time throughout the experiment without consequence. If you choose to do so, you 
may leave and any data collected during the experiment resulting from your participation 
will be expunged. 
 
 
You have rights as a research volunteer. Taking part in this study is completely voluntary. 
If you do not take part, there will be no penalty. You may stop taking part in this study at 
any time with no penalty. If you have any questions about your rights as a research 
volunteer, call or write: 
 
Alice Basler 
Office of Research Compliance 
Georgia Institute of Technology 
Atlanta, GA 30332-0420 
Voice (404) 894-6944 
Fax (404) 385-2081 
 
 
A signed copy of this form will be given to you. Your signature indicates that the 
researchers have answered all of your questions to your satisfaction, and that you consent 
to volunteer for this study. 
 
 
Subject’s Signature: __________________________  
 
Date:______________________________ 
 
Subject’s Name: _____________________________ 
 
Investigator’s Signature: _______________________ 
 
Date: ______________________________ 
 
Investigator’s Name: __________________________ 
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Scenario Briefings 
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Atlantic Briefing  
 
You are heading along the Townhouse One Arrival at Atlantic International Airport and are 13 miles past 
VOR CLR[114.0 CLR], when you receive word from ATC that there is severe turbulence directly in your 
path ahead and spanning the area shown in your enroute chart.   
 
The destination is runway RW29L at Atlantic International. Your current state is: 
• heading 347° 
• 13000 ft altitude (-1200 fpm) 
• 290 IAS 
 
Start your replanning from this point. 
 
 
Bruin Briefing 
 
You were heading along the Braddock Arrival, when your alarm systems detected a fire in the cargo hold. 
The fire has been put out by the flight attendants, but the extent of the damage is not clear. You are 52 
miles past VOR BRN[114.0 BRN], by the time you decide to declare an emergency and all standard 
procedures and checklists have been completed.   
 
The destination is runway RW18R at Bruin International Airport and your current state is: 
• heading 34° 
• 9000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 

 
Centennial Briefing 
 
You were heading along the Centennial Arrival, when your alarm systems detected a loss of hydraulic 
pressure in one of three hydraulic systems. This loss of pressure is not severe enough to affect the aircraft, 
but serious enough to for you to declare an emergency. You are 48 miles past VOR Billy[114.0 BLY], by 
the time you decide to declare the emergency and all standard procedures and checklists have been 
completed.   
 
The destination is runway RW18L at Centennial International Airport and your current state is: 
• heading 10° 
• 9000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 
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Flyer Briefing 
 
You were heading along the Elk Arrival, when your alarm systems detected a problem with the fuel filter. 
The severity of the problem is unknown and serious enough for you to declare an emergency. You are 42 
miles past VOR Clint[114.0 CLT], by the time you decide to declare the emergency and all standard 
procedures and checklists have been completed.   
 
The destination is runway RW04L at Flyer International Airport and your current state is: 
• heading 197° 
• 10000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 
 
Home Park Briefing 
 
You were heading along the Kroger Arrival, when you receive word from the head flight attendant that 
there is a medical emergency in the cabin. The severity of the patients medical is serious enough to for you 
to declare an emergency. You are 50 miles past VOR Gold[114.0 GLD], by the time you decide to declare 
the emergency and all standard procedures and checklists have been completed.   
 
The destination is runway RW31R at HomePark International Airport and your current state is: 
• heading 130° 
• 10000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 

 
Springfield Briefing 
 
You were heading along the Shotgun Arrival, when you receive a communiqué from ATC that Air Force 
One has had to make an unexpected departure from a nearby military base. As a result a certain area 
directly in your path has been declared a restricted airspace, which is shown as the shaded area on your 
enroute chart. At this point you are 20 miles past VOR Court[114.0 CRT]. 
 
The destination is runway RW01R at Springfield International Airport and your current state is: 
• heading 170° 
• 11000 ft altitude (-1200 fpm) 
• 270 IAS 
 
Start your replanning from this point. 
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Whoville Briefing 
 
You were heading along the Sword Arrival, when you receive a communiqué from ATC that the ILS 
system on your original destination runway, RW04L, has malfunctioned. You decide to reroute to RW18R. 
At this point you are 50 miles past VOR Welsh[114.0 WSH] and have already entered your destination 
runway into the flight management computer upon receiving the communiqué  
 
The destination is runway RW18R at Whoville International Airport and your current state is: 
• heading 25° 
• 9000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 
 
 
Yankosky  Briefing 
 
You have just passed CNCTC and heading 060o, when you receive a communiqué from ATC that your 
original destination runway, RW06L, has a number of airplanes backed up, waiting to land. You have been 
told to reroute to RW25R. At this point you are 20 miles from VOR Stats[116.8  STS]. 
 
The destination is runway RW25R at Yankosky Island International Airport and your current state is: 
• heading 71° 
• 9000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 

 
Shannon Grove (E) Briefing 
 
You were heading along the Jacket One Arrival, when you receive word from the head flight attendant that 
there is a medical emergency in the cabin. The severity of the patients medical is serious enough to for you 
to declare an emergency. You are 50 miles past VOR Shannon[116.8 SHN], by the time you decide to 
declare the emergency and all standard procedures and checklists have been completed.   
 
The destination is runway RW11R at Shannon Grove International Airport and your current state is: 
• heading 197° 
• 10000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 
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Shannon Grove (NN) Briefing 
 
You are heading along the Jacket One Arrival at Shannon Grove International Airport and are 50 miles past 
VOR Shannon[114.0 SHN], when you receive word that there is severe turbulence directly in your path 
ahead and spanning the area shown in your en-route chart.   
 
The destination is runway RW11R at Shannon Grove International Airport and your current state is: 
• heading 197° 
• 10000 ft altitude (-1200 fpm) 
• 250 IAS 
 
Start your replanning from this point. 
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Objective Measures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - 144 -  



 

Table 4 - Summary of Objective Measures for Primary Experiment 

 
 

 

Table 5 - Summary of Objective Measures for Faulty Autoplan Scenario 
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Table 6 - Pilot Preferences of Autoflight System Per Scenario 
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Pilot Responses to End of Run Questionnaires 
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Table 7 - Pilot Responses to End of Run Questionnaires - I 
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Table 8 - Pilot Responses to End of Run Questionnaires - II 
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Table 9 - Pilot Responses to End of Run Questionnaires - III 
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Table 10 - Pilot Responses to End of Run Questionnaires - IV 
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How would you rate the ease of planning in this run compared to planning using the 
autoflight system described in the previous question? 
 

 
 

Table 11 - Pilot Ratings of Ease of Planning onLikert Scale of 'Easier' to 'More 
Difficult' 

Type of 
Automation Scenario Type Easier Slightly Easier No Difference

Slightly More 
Difficult.

More 
Difficult.

MCP Non Nominal 0 4 4 6 4
Emergency 1 3 3 7 2

CDU Non Nominal 3 3 2 8 0
Emergency 4 2 5 4 1

CDU+ Non Nominal 3 6 4 2 1
Emergency 3 2 4 7 0

CDU++ Non Nominal 8 2 2 4 0
Emergency 3 2 5 5 1

Rating
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APPENDIX C.3 
 

Pilot Responses to End of Experiment Questionnaires 
* All number except percentages and averages indicate the number of pilots  
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Have you ever needed to replan a flight due to an emergency? 

 
Yes: 14 
No: 02 
 
Average Approximate Time to Landing: 34 minutes 
 
Average Approximate Distance to Landing: 125 miles 

 
 

Type of Autoflight System Used 
 
MCP:  10 
FMS/CDU: 05 
Hand Flown: 01 
 
 
How often do you need to replan your route due to non-nominal conditions? 

Please indicate your answer as a percentage (%) of flights. 
 
Average: 20% 
 
What type of autoflight system do you prefer to use in these conditions? (As part 

of your answer please describe what type of autoflight systems would you have used, 
including none) 

 
 MCP Only: 02 
CDU Only: 06 
MCP+CDU: 06 
 
What factors influenced you choice of how to use the autoflight system when 

replanning a route? 
 
Distance:  5 
Time:   4 
Fuel Available: 1 
Weather:  5 
Vectoring:  1 
Safety:   2 
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QUESTIONS ABOUT IN-FLIGHT REPLANNING IN NON NOMINAL 
SCENARIOS 

 
Under the given circumstances did you feel comfortable planning your own 

route or would you rather have received vectors from ATC? Why? 
 
Own Planning:  10 
Vectoring:   2 
Own Planning + Vectoring: 4 
 
 
What was your strategy in choosing the route that you planned and 

implemented? 
 

Minimize Time: 9 
Minimize Distance: 8 
Aircraft Performance: 4 
Safety of Maneuver: 3 
Efficiency:  3 
Weather:  3 
Fuel:   3 

 
 
 

QUESTIONS ABOUT IN-FLIGHT REPLANNNING IN EMERGENCY 
SCENARIOS 

 
 

Under the given circumstances did you feel comfortable planning your own 
route or would you rather have received vectors from ATC? Why? 

 
Own Planning:  8 
Vectoring:   8 
Own Planning + Vectoring: 1 
 
 
What was your strategy in choosing the route that you planned and 

implemented? 
 
Minimize Time: 15 
Minimize Distance: 13 
Aircraft Performance: 3 
Safety of Maneuver: 2 
Efficiency:  7 
Fuel:   5 
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Which type of autoflight system interface were you most comfortable with?  
 

MCP Only:   5 
CDU (including variants): 7 
MCP + CDU:   5 
 
 

Table 12 - Pilots Evaluation of the Performance of the Autoplan 
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For non nominal scenarios, please rank the types of automation (1-Best to 4-

Worst) according to the automation you would choose in that situation. 
 

1 2 3

MCP 2 3 2

CDU 2 3 8

CDU+ 10 3 3 0

CDU++ 2 7 3

4

9

3

4  
 
 
For emergency scenarios, please rank the types of automation (1-Best to 4-

Worst) according to the automation you would choose in that situation. 
 
 

1 2 3

MCP 3 2 3

CDU 3 4 6

CDU+ 8 3 5

CDU++ 2 7 2

4

8

3

0

5  
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APPENDIX C.4  
 

Background Questions 
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Total Hours 
 
>= 5000 and < 10000:   8  
>= 10000 and < 12000: 3 
>= 12000 and < 15000: 3 
>= 15000:     2 
 
Hours in Glass Cockpits 
 
>= 2000 and < 4000: 9 
>= 4000 and < 6000: 5 
>= 6000:  2 
 
Aircraft Current In 
 
B737:  4 
B747:   0 
B757:  1 
B767:  5 
B777:  2 (1 retired) 
MD-11: 0  
MD-80: 0 
MD-88: 4 
Other:  1 
 
Hours in Current Type 
 
>= 100 and < 1000: 4  
>= 1000 and < 2000: 6 
>= 2000 and < 3000: 3 
> 3000:  3 
 
Captain or First Officer? 
 
Captain: 8 
First Officer: 8 
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Initial Training 
 
Civilian: 04 
Military: 11 
Both:    01  
Do you have any experience with flight planning software? 
 
Yes: 6 
No: 10 
 
If yes, was it: On Board or Ground Based? 
 
On Board:  1  
Ground Based: 6  
 
If yes, what tool(s) have you used? 
 
Global Data Systems 
Jeppesen Flitesoft 
BART 
TAMPS 
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APPENDIX D 
 

Comparative Measures and Descriptive Statistics 
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APPENDIX D.1  
 

Real Flight Paths by Automation 
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APPENDIX D.2  
 

Real Flight Paths by Pilot and Specific Scenario 
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APPENDIX D.3 
 

Comparison of Measures for Each Scenario Type by Automation  
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Length of Run 
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Time of Flight 
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Time to First Modification of Plan 
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Time to First Execution of Modified Plan 
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Deviation from Baseline Plan: Length of Run 
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Deviation from Baseline Plan: Time of Flight 
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Number of Speed Changes 
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Number of Altitude Changes 

 

 
 
 
 

 - 176 -  



 

 

 

 

 

 

REFERENCES 
 
 

Fan, T.P., Hyams D.S. and Kuchar J.K., “Study Of In-Flight Replanning Decision Aids,” 
Proceedings of the Guidance, Navigation, and Control Conference, AIAA, 
Washington DC, 1998, pp. 980-988. 

 
Chen, T.L., and Pritchett, A. R., “Development and Evaluation of a Cockpit Decision-Aid 

for Emergency Trajectory Generation,” Journal of Aircraft, AIAA, Vol. 38, no. 5, 
September-October 2001, pp. 935-943. 

 
Parasuraman, R., Moulua, M., Hilburn, B., and Molloy, R.  Ch: 5 “Monitoring of 

Automated Systems”, Automation and Human Performance: Theory and 
Applications –Edited by Raja Parasuraman and Mustapha Mouloua, Lawrence 
Erlbaum Associates, Mahwah, New Jersey. 

 
Sarter, N.B., and Woods, D.D., “Pilot Interaction With Cockpit Automation II: An 

Experimental Study of Pilots’ Model and Awareness of the Flight Management 
System,” International Journal of Aviation Psychology, Vol. 4, No. 1, 1994, pp. 
1-28. 

 
Honeywell Inc. (1996). Boeing 747-400 Flight Management System Pilot’s Guide. 
 
Ippolito, C. and Prichett, A.R., “SABO – A Self-Assembling Architecture for Complex 

System Simulation,” AIAA 38th Aerospace Sciences Meeting and Exhibit, January 
2000. 

 

 - 177 -  


	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	SUMMARY
	CHAPTER 1� �INTRODUCTION
	CHAPTER 2 ��BACKGROUND AND MOTIVATION
	2.1 Flight Planning
	2.2 Flight Deck Automation
	2.3 Prior Research into Automated Tactical Planning Aids

	CHAPTER 3 ��DESIGN OF EXPERIMENT
	3.1 Experiment Objectives
	3.2 Experiment Overview
	3.3 Scenario Design
	3.4 Experiment Procedure
	3.4.1 Briefing and Training
	3.4.2 Data Run Procedure

	3.5 Experiment Participants
	3.6 Experiment Apparatus
	3.6.1 Flight Instruments

	3.7 Independent Variables
	3.7.1 Scenario Types
	3.7.2 Type of Automation

	3.8 Experiment Design
	3.9 Dependent Measures
	3.9.1 Data Collection
	3.9.2 Data Analysis


	CHAPTER 4 ��EXPERIMENT RESULTS
	4.1 Pilot Performance
	4.2 Pilot Planning Behavior
	4.2.1 General Observations on Planning Behavior
	4.2.2 Pilot Planning Across Automation Types
	4.2.3 Pilot Planning Using the Mode Control Panel
	4.2.4 Pilot Planning Using the Control Display Unit (CDU)
	4.2.5 Pilot Planning Using the CDU with Autoplan Available (
	4.2.6 Pilot Planning Using the CDU with Autoplan Active at S

	4.3 Pilot Interaction with Automation
	4.3.1 Use of Autoplan
	4.3.2 Pilot Comments on Automation

	4.4 Workload Assessment
	4.5 ‘Faulty Autoplan’ Scenario

	CHAPTER 5 ��CONCLUSIONS
	5.1 Discussion of Results
	5.2 Future Directions

	APPENDIX A ��PILOT BRIEFING
	APPENDIX B ��SUBJECTIVE QUESTIONNAIRES
	APPENDIX B.1 ��End Of Run Questionnaires
	APPENDIX B.2 ��End Of Experiment Questionnaire
	If so, what tool(s) have you used: _________________________

	APPENDIX B.3 ��Informed Consent Form
	Georgia Institute of Technology
	HUMAN SUBJECT CONSENT


	APPENDIX B.4��Scenario Briefings

	APPENDIX C ��Summary Table of Results
	APPENDIX C.1 ��Objective Measures
	APPENDIX C.2 ��Pilot Responses to End of Run Questionnaires
	APPENDIX C.3��Pilot Responses to End of Experiment Questionn
	APPENDIX C.4 ��Background Questions

	APPENDIX D��Comparative Measures and Descriptive Statistics
	APPENDIX D.1 ��Real Flight Paths by Automation
	APPENDIX D.2 ��Real Flight Paths by Pilot and Specific Scena
	APPENDIX D.3��Comparison of Measures for Each Scenario Type 
	Length of Run
	Time of Flight
	Time to First Modification of Plan
	Time to First Execution of Modified Plan
	Deviation from Baseline Plan: Length of Run
	Deviation from Baseline Plan: Time of Flight
	Number of Speed Changes


	REFERENCES

