
1

(This is technical report GIT-GVU-93-37. Cite as “Frank, M. and
J. Foley, Model-Based User Interface Design by Example and by In-
terview,Proceedings of UIST’93, ACM Symposium on User Inter-
face Software and Technology, Nov. 1993.”)

MODEL-BASED USER INTERFACE DESIGN
BY EXAMPLE AND BY INTERVIEW

Martin R. Frank James D. Foley

Graphics, Visualization and Usability Center
College of Computing, Georgia Institute of Technology

Atlanta, Georgia 30332-0280
{martin,foley}@cc.gatech.edu

ABSTRACT

Model-based user interface design is centered around a de-
scription of application objects and operations at a level of
abstraction higher than that of code. A good model can be
used to support multiple interfaces, help separate interface
and application, describe input sequencing in a simple way,
check consistency and completeness of the interface, evalu-
ate the interface’s speed-of-use, generate context-specific
help and assist in designing the interface. However, design-
ers rarely use computer-supported application modelling to-
day and prefer less formal approaches such as story boards
of user interface prototypes. One reason is that available
tools often use cryptic languages for the model specification.
Another reason is that these tools force the designers to
specify the application model before they can start working
on the visual interface, which is their main area of expertise.
We present the Interactive User Interface Design Environ-
ment (Interactive UIDE), a novel framework for concurrent
development of the application model and the user interface
which combines story-boarding and model-based interface
design. We also present Albert, an intelligent component
within this framework, which is able to infer an application
model from a user interface and from an interview process
with the designer.

KEYWORDS: User Interface Management Systems. Model-
based User Interface Design.

INTRODUCTION

The paper first discusses the design methodology, applica-
tion model and usage modes of Interactive UIDE. It then ex-
plains the use, architecture and capabilities of Albert.

Model-based user interface design uses an application
model as an executable specification rather than a paper
specification. The key idea is to explicitly represent knowl-
edge that has traditionally been buried in code. For example,
objects and operations of an application are represented in

code but they are not accessible from outside the application
code. An application model is accessible by the user inter-
face, the application, and external tools at design time and at
run time. Examples of model-based user interface manage-
ment sys tems (UIMS) are UIDE [1,9] and HU-
MANOID [4,10,11], which both use high-level object-ori-
ented application models.

The original model-based, top-down UIMSs imposed a de-
sign methodology on their users which required them to
specify a model of the application first which was then used
to generate a user interface. Figure 1 illustrates this method-
ology. This class of UIMS is characterized by the absence of
a graphical editor for the user interface so that the designer
has little or no control over the end-user interface. The main
benefit of this architecture is that the interface is updated au-
tomatically if the model changes. However, it has become
evident that designers prefer to build visual interfaces in a
less formal way.

Another class of top-down UIMS gives the designer more
control over the user interface by incorporating a graphical
user interface editor, shown in the lower left-hand corner of
Figure 2. The user interface is generated from the model just
as before but the designer can edit the generated interface
graphically afterwards. However, note the absence of an ar-
row back to the first phase, application modelling. After
modifying the interface by hand, model changes can no

Figure 1. Phases Of Building An Application
Using A Pure, Top-Down UIMS (Examples: original UIDE,

original HUMANOID)

Phase 1: Write an application model of the intended
application in a special-purpose modelling language.

Phase 2: Invoke the automatic user interface generation
based on the application model.

Phase 3: Write the application code in a general-pur-
pose programming language.

2

longer be propagated automatically to the interface because
the manual changes to the interface would be lost. We be-
lieve that these systems are still not flexible enough. First,
the designer still has to specify an application model for the
initial interface generation. Second, designers will be
tempted to abandon application modelling once they start
editing the generated interface manually because there is no
mechanism for regenerating the user interface from a new
version of the model without losing manual changes.

In our methodology, the designer has the choice of starting a
new design with the application model or with the user in-
terface as shown in Figure 3. Visually oriented designers
will normally choose to build the actual user interface or
story boards first. Albert, the intelligent component within
Interactive UIDE, can then infer an application model from
the interface and from a dialog with the designer. Alterna-
tively, a designer can provide an application model first and
have Albert generate an interface from it; in this way, we
support conceptually-oriented designers. In either case, the
model and the interface both exist in later stages of the de-
sign process, and can both be edited concurrently. In this
phase, Albert addresses the synchronization problem of
working on two levels of abstraction at the same time by
pointing out inconsistencies.

THE APPLICATION MODEL

We will now discuss in more detail what an application
model is and how our model compares to previous models.
This section reviews previous work and explains the struc-
ture and use of our model.

MIKE [6] is one of the oldest user interface management
systems which supports graphical user interfaces. Its appli-
cation model consists of actions and their parameters. The
parameters are of predefined types like String and Point, or
application-specific types such as Resistor and Wire for a
circuit design application. However, MIKE does not support
defining the structure of an application-specific object. For

Figure 2. Phases Of Building An Application
Using a Top-Down UIMS Enhanced With An Interface

Builder (Examples: UofA*, MIKE)

Phase 1: Write an application model of the intended
application in a modelling language.

Phase 2: Invoke the automatic user interface generation
based on the application model.

Phase 3a: Tune the
generated user inter-
face using a direct
manipulation inter-
face builder.

Phase 3b: Write appli-
cation code in a pro-
gramming language.

example, it is not possible to state that a wire is an object
which consists of two references to connection points.

UofA*’s [7] application model also consists of actions and
parameters and is similar in spirit to MIKE’s model. The
designer can define application-specific types only in a very
limited sense by specifying ranges. For example, an Angle
type can be defined as “Angle=[0:360]”. From a program-
ming language perspective, the designer can use predefined
simple types like boolean and integer ranges but cannot
define classes or records.

ITS [12] is a user interface management environment con-
sisting of four layers: user interface primitives like buttons
and choice boxes, a rule-based user interface generator, a
dialog control component, and application routines. Its main
contribution is the encoding of user interface style rules. ITS
has no application-level control model but it has an applica-
tion data model. For example, an employee record can be
declared to consist of a name of type string, an address of
type address and a manager of type employee. The interface
generator can then create a dialog box for displaying such a
record.

HUMANOID’s [10] model consists of commands, objects,
global variables and data flow constraints. Commands have
associated inputs (parameters) and preconditions for their
applicability. An input describes one parameter of a com-
mand by defining its type, a predicate for semantic input
validation and other properties. Application objects group
commands and simple objects (variables) into a semanti-
cally meaningful entity. The data flow constraints are the
control element in the model; they specify the dependencies
between inputs, variables and objects.

Interactive UIDE is based on ideas from the original
UIDE [1]. The major differences are the departure from a
“model-first” methodology, the concurrent editing of inter-
face and model, and the intelligent component for interac-
tive interface building, model building and consistency
checking. The existing components of UIDE such as the tex-
tual help generator [9], the animated help generator [8], and
the non-interactive user interface generator [2] can still
operate within Interactive UIDE. The application modelling
language is best explained by an example. We present a

Figure 3. Phases Of Building An Application
Using Interactive UIDE

Phase 2: Write application code in a programming lan-
guage.

Phase 1a: Build the
user interface of the
intended application
using a direct-manip-
ulation tool.

Phase 1b: Write the
application model in a
special-purpose mod-
elling language.

3

small partial model of a chess application below and discuss
its nature and use. Keywords are shown in bold face.

Boolean gameExists := false
Boolean unsavedChanges := false

Action New
Precondition “!unsavedChanges”
Postcondition “gameExists := true ”

Action Open
Precondition “!unsavedChanges”
Postcondition “gameExists := true ”

Action Discard
Postcondition “gameExists := false ;

 unsavedChanges := false ”
Action Save

Precondition “gameExists and unsavedChanges”
Postcondition “unsavedChanges := false ”

Action Quit
Precondition “!unsavedChanges”

Class ChessPosition
Enumeration horizontal: ‘a’..’h’;
Enumeration vertical: 1..8;

Class ChessPiece
Variable ChessPosition pos;
Action move(ChessPosition p)

 Postcondition “pos := p;
 unsavedChanges := true ”

Class King SubclassOf ChessPiece
Class Queen SubclassOf ChessPiece
Class Rook SubclassOf ChessPiece
Class Bishop SubclassOf ChessPiece
Class Knight SubclassOf ChessPiece
Class Pawn SubclassOf ChessPiece

The first two elements defined in this model are variables
which maintain a subset of the application state, namely if a
chess game exists and if it contains unsaved changes. The
next elements describe user actions which are accessible
from the user interface. Actions are only available if their
preconditions apply. In our example, the “New” action is
only available if there are no unsaved changes to the current
game. The postconditions are assertions which modify the
state of the application. For example, the “Discard” action
resets the chess application to its initial state. Classes group
semantically related data and actions relevant to the user in-
terface. In this model, a ChessPiece is an entity which has a
position on the board (data) and which can be moved to a
new position (action). Classes can be organized hierarchi-
cally. In our example, the King is a particular kind of a
ChessPiece.

The intent of our application modelling language is to cap-
ture the application elements which are relevant to the user
interface. It does not provide for multiple inheritance, vir-
tual functions or different inheritance flavors. The objective
is not to develop a more complete object-oriented structur-
ing language but to have a sensible compromise between ex-
pressiveness and novice understandability.

The declarative sequencing through pre- and postconditions
facilitates reasoning by external tools. These tools can “un-
derstand” the sequencing to an extent which would not be
possible with a general-purpose programming language. For
example, a help generator can do backchaining to find a se-
quence of actions which enables an unavailable action by re-
cursively evaluating pre- and postconditions. This sequence
can then be presented in textual or animated form.

MODES OF INTERACTIVE UIDE

At design time, the designer can concurrently edit the user
interface, the application model and the “glue” between

them as shown in Figure 4. The glue is a special-purpose
language which specifies the linkage between user interface
objects and interaction techniques on one side and applica-
tion model abstractions on the other side. The user interface
is edited using an existing interface building tool, SX/Tools
[3], which supports designing custom objects in addition to
providing predefined standard objects. The application
model and the glue are edited in text editors under control of
Interactive UIDE so that switching from design mode to run
mode is instantaneous.

The designer can then ask Albert, the intelligent component,
for advice, for suggestions and for help in inferring an inter-
face or a model. In this mode, the designer reacts to ques-
tions and suggestions from Albert which changes the
representations based on the designer’s answers. This mode
is shown in Figure 5.

After the design activity, the designer can instantly switch to
run mode. Figure 6 shows the system in run mode. At ini-
tialization, Interactive UIDE’s run-time component reads in
the textual specifications of the model and the glue, and is
linked to application-specific code if such code exists. The
user interacts with the application’s user interface which
runs as a separate process under control of SX/Tools. Events
which are relevant to the application are passed from the in-
terface process to the run-time process which does computa-
tion and updates the user interface by sending events back to
the user interface process.

Figure 4. Interactive UIDE Design Mode

Designer

Interface

Model

Glue

visually
edit

textually
edit

textually
edit

4

ALBERT - THE INTELLIGENT COMPONENT WITHIN
INTERACTIVE UIDE

Albert is the component that can generate questions for
building up or for improving the model or the interface. This
component needs knowledge about application modelling,
user interface design and their relationships. We separate
this knowledge into question elements, or knowledge atoms,
which encapsulate the information for a single question or
suggestion presented to the designer. This knowledge struc-
ture is a combination of a rule base and a knowledge base
which facilitates system-initiated questions.

There are two basic alternatives for the overall organization
of these question elements. The first alternative is a graph-
like structure, in which a question element explicitly en-
codes its follow-up questions. This provides for semanti-
cally meaningful sequences of related questions. However,
the resulting graph structure is hard to understand and main-
tain. Figure 7 shows this knowledge base structure.

The second alternative is a flat structure of questions with no
provision for sequencing of related questions as shown in
Figure 8. The question elements do not specify which ques-
tion to ask next, so that the questions can be entered and
evaluated independently, greatly simplifying the mainte-
nance of the knowledge base. Questions have applicability
tests operating on the context of the current user interface

Figure 5. Interactive UIDE “Interview” Mode

Figure 6. Interactive UIDE Run Mode

Designer

Interface

Model

Glue

2. Questions,
Suggestions

Albert

3. Answers,
Choices

1. Read
State

4. Modify
State

End User
Interface

ModelGlue

Runtime
Component

Interact Event
Passing

Read

Application Code

Link

and application model. We have endorsed this philosophy
but there are situations where it is important to ask follow-
up questions to a certain question. Imagine that there are
two threads of questions about independent topics. It would
be confusing if the presented questions would alternate be-
tween the topics. Therefore, we augment the flat structure
with a simple mechanism to provide for explicit sequencing
of questions by allowing a question to increase the priority
of appropriate follow-up questions. This simple mechanism
is sufficient for our moderately-sized rule base. We plan to
use more sophisticated techniques as the rule base grows.

Figure 9 shows one of Albert’s question elements. The ap-
plicability test determines if this question is relevant in the

Figure 7. Graph Structure

Figure 8. Flat Structure

Figure 9. Structure Of A Question Element,
An Atom Of Albert’s Knowledge

Question 3

Question 4

Question 5

Question 2

Question 1

Question 1

Question 2

Questionn

select applicable question of
highest priority

+

Applicability
TestT

T: <There is an actionA in the application
model file which is unconnected accord-

ing to the glue file.>

Q: “I found an actionA in the application
model file which is not connected to a user
interface element, so that it can never be

invoked.”

AN1: “If you want
to connect actionA
to an existing user
interface element,
choose an element
from the selection

box.”

AN2: “If you want
to create a new

interface element
for this action use

the interface
builder and press
OK afterwards.”

EF2: <Detect the
new interface ele-

ment. Create a con-
nection in the glue

file between actionA
and this new ele-

ment.>

EF1: <Insert the
fact that these ele-

ments are connected
into the current

glue file.>

“...” denotes
actual text pre-
sented to the user.

Parameterized
Question TextQ

AnswersAN and
EffectsEF

+

<...> denotes
an executable
equivalent of the
text.

5

.

Figure 10: The Complete Framework Of Interactive UIDE

current context. Albert evaluates the applicable atoms and
presents the candidate with the highest priority to the de-
signer, using the parameterized question text. It also pre-
sents the atom-specific answers in addition to the generic
answers available for all question elements such as “ignore
question” and “help”. The designer selects one of these an-
swers and the system executes the associated effect. Albert
then re-evaluates the atoms and asks the next question.

USE OF ALBERT

The intelligent component provides support for both novice
and expert users. However, the way in which they use Albert
differs. Novice users of our system will first build an inter-
face by dragging elements from a palette and customizing
them; they then invoke Albert to help them build the appli-
cation behind the interface. Both of these activities require
minimal training. Expert users normally prefer to directly
edit the representations instead of going through the inter-
view process but invoke Albert occasionally for design ad-
vice and consistency checking.

One of the contributions of the framework is the smooth
transition from the novice to the expert level. Throughout
the interview process, novice designers watch Albert change
the user interface and the textual representations in real time
in response to their answers. In this way, they learn what in-
formation is needed in the model and how answers are trans-
formed into application model knowledge. They are soon

able to edit the model directly instead of waiting for the sys-
tem to ask questions.

NOVICE USE

We provide an extended novice example session in which a
user interface and an application model for a circuit design
application are constructed. The assumption is that the de-
signer has no programming experience and no knowledge
about application modelling so far. The designer does not
have to edit the textual application model directly, nor does
the designer have to understand the nature and use of the
model at this point.

The designer first constructs the interface using the user in-
terface building component. Figure 10 shows the main win-
dow of the combined interface and application model
builder in the upper left-hand corner, titled “Interactive
UIDE”. The designer has clicked on the “New Interface”
button to start a new design and created some elements by
dragging from element toolboxes. Figure 10 shows one of
the toolboxes on the left (no title) and the user interface de-
sign in the center, titled “Circuit Design Application”.

The designer then invokes the intelligent component of the
system by clicking on the “Albert” button. This brings up
two text editors, one for the application model and the other
for the glue, both of which are empty so far besides the two
lines in the Glue editor which specify which interface and
which model are connected by this glue file. These are
shown in the lower right-hand corner of Figure 10, titled

6

“Application Model” and “Model-Interface Glue”. Finally,
Albert computes the applicable question with the highest
priority and presents it to the designer, shown in the upper
right-hand corner, titled “Albert”. In this case, the system
has detected that several objects use the same bitmap and
queries the designer if they are occurrences of the same con-
cept. The highlighting of the affected user interface ele-
ments has proven helpful for designers to understand the
context and nature of the question. Let us assume that the
designer affirms and provides “NotGate” as the name for the
object. The following initial application model is con-
structed.

Class NotGate

The glue representation is also changed to reflect that these
three bitmap objects represent instances of the NotGate
class. The next questions inquire about the other iconic ob-
jects one at a time (“Would you describe this interface ob-
ject as an instance of a conceptual object?”). The model now
looks like this.

Class NotGate Class AndGate
Class OrGate Class ZeroSource
Class OneSource

The system has limited knowledge about typical uses of
iconic objects in applications, such as static icons for deco-
ration purposes, icons which represent objects which can be
accessed but not moved, and iconic objects which can be
created, moved and deleted at run time. The question shown
in Figure 11 encodes knowledge of this type. Assume the

designer responds by selecting the circuit element objects
and pressing the “thumbs up” button. Albert associates a po-
sition instance variable and a move action with the affected
classes, so that the application model now consists of five
classes with the following identical structure.

Class X
Position pos;
Action move (Position newpos)

Postcondition “pos := newpos”

The identical structure of these classes triggers another rule
intended to help novice users structure their application
model, which is shown in Figure 12.

Figure 11. Knowledge About Common
User Interface Behavior

The designer confirms and gives “Element” as a name for
that class. The model creates this class and moves the de-
tected common functionality to it.

Class Element
Position pos;
Action move (Position newpos)

Postcondition “pos := newpos”
Class NotGate SubclassOf Element
Class AndGate SubclassOf Element
Class OrGate SubclassOf Element
Class OneSource SubclassOf Element
Class ZeroSource SubclassOf Element

We will not further describe the interview process for brev-
ity but it should have become clear how Albert helps novice
designers build an application model from a user interface.
So far, Albert cannot infer application sequencing so that the
pre- and postconditions for sequencing have to be entered in
textual form. This shortcoming is discussed in the “Exten-
sions” section.

EXPERT USE

The previous section illustrated how novices use Albert. Ex-
perts will usually invoke Albert as a consultant only and will
not rely on its initiative to build up the application model.
Albert is redundant in the sense that a user interface and its
corresponding model can be built using Interactive UIDE
without invoking Albert (using only the design and run
modes but not the interview mode). While the intelligent
component is redundant, it is not useless for an expert. Few
designers are experts in both graphical user interface design
and abstract application modelling. Albert offers advice on
both of these topics and can be used for consistency check-
ing similar to automated spell checking in text. It can also be
used as a “creativity agent”, a source of inspiration for user
interface design. Figure 13 is an example of user interface
design knowledge.

Figure 12. Structuring the Model

7

QUESTION CATEGORIES

The Interactive UIDE framework provides for generating
many questions and suggestions. We have grouped these
questions into seven categories. One category builds up the
model based on an existing interface, and, symmetrically,
another category infers user interface elements from an ap-
plication model. Then there are questions which improve a
representation contextually or independently and questions
which check for consistency. Figure 14 summarizes these
categories.

Application Model Building
These questions build up a model from the user interface
and from the interview process. The model is built by asking
questions about the nature of all visible user interface ele-
ments one by one. Currently, there are no provisions for sup-

Figure 13. Expert Use of Albert

Appli-
cation
Model

Glue User
Interface

Application Model
Building

Modify Modify Read

User Interface
Building

Read Modify Modify

Isolated Model
Improvement

Modify --- ---

Isolated Interface
Improvement

--- --- Modify

Contextual Model
Improvement

Modify Read Read

Contextual Interface
Improvement

Read Read Modify

Consistency
Checking

Modify Modify Modify

Figure 14. Question Categories

port on a higher level. The system should detect that the
designer has put in similar information for the last two ob-
jects and ask a question at a meta level like “select other ob-
jects which have similar behavior and click on the OK
button”. It could then fill in model information for these ob-
jects at once, consequently reducing the number of repeti-
tive questions. The system could also pose another meta
level question when the model inference process has just
started, one which offers designers a choice of application
model prototypes and asks which one is closest to the appli-
cation they have in mind. It could then use this model and
start asking from there, also reducing the overall number of
questions.

User Interface Building
These questions derive a user interface from an application
model. This process is often referred to as interface “genera-
tion”. We avoid this term because it implies that this is a
fully automated process with little or no options for the de-
signer. The by-interview methodology facilitates a more in-
teractive generation process. Albert is able to generate new
elements into an existing interface. For example, it can sug-
gest putting a new operation in the same menu where the
other operations on this object reside. In this way, user inter-
faces do not have to be generated completely but can be up-
dated incrementally.

Isolated Model Improvement
In the process of building a model from the interface, there
is a point where all the application information from the vi-
sual user interface has been exploited but where it is still de-
sirable to improve the model. These questions suggest
changes to the application model such as a restructuring of
the class hierarchy. Figure 12 shows such a question.

Isolated Interface Improvement
It is also possible to refine the existing interface independent
of the application model. For example, standard user inter-
face design knowledge can be encoded in our questions so
that this knowledge can be accessed and applied by people
other than user interface designers. This is similar in spirit to
ITS style rules [12] but augmented with the interactive inter-
face to the knowledge. In this way, interface design knowl-
edge is not only automatically applied, but the process is
also visible and understandable to the designers so that they
learn about interface design themselves while using the sys-
tem. The question in Figure 13 is of this type.

Contextual Model Improvement
These questions suggest model changes based on interface
properties. For example, Albert could detect that buttons or
menu entries of certain actions are grouped together visually
and ask the designer if this represents a semantic grouping
that should be captured in the application model.

Contextual Interface Improvement
Albert could suggest improvements to an interface even if
the interface is already complete and consistent with the ap-
plication model. For example, assume that the actions on a
certain type of object are all available in the current inter-
face, but that they reside in different locations. The system

8

could issue a warning about this design and suggest moving
them to one location, such as an object-specific popup
menu.

Consistency Checking
Finally, there is one category of questions concerned with
maintaining the consistency of the interface and the applica-
tion model such as “The application model contains the ac-
tion Align for class VisualElement which currently cannot
be invoked from the interface. Is this intentional?” or “A
connection in the glue file refers to a non-existent applica-
tion action. Do you want me to delete the connection?”.

DISCUSSION

We attempt to classify our tool in the context of the estab-
lished approaches for building user interfaces.

Albert encodes domain-specific knowledge in its questions,
but it is different from knowledge bases in that the initiative
is with the tool rather than with the user. The user invokes
Albert but it is the tool that queries the user in order to ex-
tract knowledge about design decisions, a system-driven
knowledge acquisition process.

Albert asks natural language questions, but the questions it
asks are canned. It has no capabilities in natural language
generation and understanding. The designer provides an-
swers through selecting interface objects and filling out
forms.

When used to infer an application model, our system starts
from a user interface example but it is not a by-example ap-
proach such as Peridot [5] in a strict sense because a user in-
terface example alone is not sufficient for inferring a
semantic application model. However, our approach still
shares a similar philosophy. Examples are inherently easier
to understand than abstract concepts, and our system makes
use of this fact.

Our system is not a with-example approach. In Myers’ and
Halbert’s definition [5], programming with example is a
generalized macro recording approach, following the philo-
sophy of “do what I did” rather than the “do what I mean”
philosophy of by-example programming. Our system does
not follow this approach for inferring the structure of an ap-
plication because this would translate into demonstrating
this static structure in a temporal dimension. However, a
demonstration of the sequencing aspect of the model, the
pre- and postconditions, is possible and discussed in the
“Extensions” section.

Albert is example-based in the above definition, but not ex-
clusively so. One consequence is that we do not experience
the problems often found in systems which are exclusively
example-based. These systems suffer from the lack of an ed-
itable static representation of the demonstrated behavior.
Consequently, selective editing and stepwise improvement
become impossible. It is also often frustrating to the users
that they cannot directly edit a representation even though
they know what they want to specify. Instead, they have to
demonstrate the intended behavior, relying on the system to
infer the intended modification. The inference found in by-
example systems and the recording in with-example systems

are also limited in their expressiveness; they often cannot
handle simple parameters.

Pure by-example approaches infer a program from a few ex-
amples. Myers observed that this contradicts modern soft-
ware testing principles [5]. According to these principles, a
program can never be guaranteed to work correctly if it was
tested with a few examples. Consequently, a program in-
ferred from a few examples can also not be guaranteed to
implement the desired behavior. The designers cannot be
sure of what was inferred unless they read the generated rep-
resentation. Our system alleviates this problem because the
user can directly edit the user interface and application
model at any time. Albert operates on these editable repre-
sentations and changes them in response to the designer’s
answers, so that the results of Albert’s activity are guaran-
teed to be visible and editable.

EXTENSIONS

Albert is strong in inferring the structure of an application,
but it is weak in inferring the sequencing. The designer has
to enter pre- and postconditions textually, even when using
Albert. This requires proficiency in formal logic which vio-
lates Albert’s design goal. Therefore, we are currently inves-
tigating ways of deriving pre- and postconditions by easier
means. For example, the designer could provide two slightly
different interface examples A and B and ask Albert to infer
which postcondition would change the interface state from
A to B. Or, the designer could draw a visual connection be-
tween a button and a popup window so that clicking the but-
ton makes the window visible; this could then be translated
into the corresponding postcondition for the button and pre-
condition for the window. There could also be support for
typical usage of pre- and postconditions. For example, Al-
bert could offer predefined pre- and postcondition templates
which cover common usage.

We believe that specifying pre- and postconditions by dem-
onstration is the most promising approach. Its strength is
that it lets designers describe sequencing declaratively
rather than procedurally - they demonstrate how they want
the user interface to behave without having to specify the
procedural steps that implement this behavior. We are cur-
rently extending Albert with demonstrational capabilities.
The extended Albert will be able to infer pre- and postcondi-
tions from a series of demonstrations. One demonstration
consists of a triggering event and pairs of user interface
snapshots. The first snapshot of such a pair describes a pos-
sible state of the interface before the triggering event. The
second snapshot describes the state that the user interface
should go to given that the triggering event happened in the
context of the first snapshot. The amount of snapshot pairs
required to infer a set of pre- and postconditions depends on
the complexity of the functionality they describe. We will
report on the demonstrational capabilities of the extended
Albert in a future paper.

9

CONCLUSION

Application modelling is a highly abstract activity. Its ab-
stract nature is the premier obstacle in bringing its power to
a wider audience. The major contribution of Albert is that it
does not require novice users to be programmers or user in-
terface management experts to learn building an application
model.

We also believe that the interactive and concurrent editing
and testing of the user interface and its application model in
Interactive UIDE will speed up application development,
and that leaving it up to the designers if they prefer starting a
new project with the user interface or the application model
(Figure 15) will attract more visually-oriented designers to
application modelling.

ACKNOWLEDGEMENTS

We gratefully acknowledge the many helpful suggestions
from Christie Gerlach, Thomas Kühme, Anton Spaans,
Piyawadee Sukaviriya and the (anonymous) referees. We
thank Sun Microsystems and Siemens for partial funding of
this project.

REFERENCES

[1] Foley, J., W. Kim, S. Kovacevic, and K. Murray,
Defining Interfaces at a High Level of Abstraction,
IEEE Software, 6(1), Jan. 1989, pp. 25-32.

[2] Kim, W. and J. Foley, DON: User Inter face
Presentation Design Assistant,Proceedings of
UIST’90, ACM Symposium on User Interface
Software and Technology, Oct. 1990, pp. 10-20.

Figure 15. Interactive UIDE’ Support For Both
Top-Down And Bottom-Up Design

Interface

Model

Interface-First
Methodology

Model-First
Methodology

Model

Model

Interface

Interface Model Interface

Time

1 2

33

1 Computer-Supported Application Model Inference
2 User Interface Generation
3 Computer-Supported Concurrent Development

[3] Kühme, T. and M. Schneider-Hufschmidt, SX/Tools -
An Open Design Environment for Adaptable
Multimedia User Interfaces,Computer Graphics
Forum, 11(3), Sept. 1992, pp. 93-105.

[4] Luo, P., P. Szekely and R. Neches, Management Of
Interface Design in HUMANOID,Proceedings of
INTERCHI’93, ACM Conference on Human Factors
in Computing Systems, Apr. 1993, pp. 107-114.

[5] Myers, B., Creating User Interfaces By Demon-
stration, Academic Press, Boston, 1988.

[6] Olsen, D., MIKE: The Menu Interaction Kontrol
Environment,ACM Transactions on Graphics,Vol. 5,
No. 1, Oct. 1986, pp. 318-344.

[7] Singh, G. and M. Green, A High-Level User Interface
Management System,Proceedings of CHI’89, ACM
Conference on Human Factors in Computing
Systems, May 1989, pp. 133-138.

[8] Sukaviriya, P. and J. Foley, Coupling a User Interface
Framework with Automatic Generation of Context-
Sensitive Animated Help,Proceedings of UIST’90,
ACM Symposium on User Interface Software and
Technology, Oct. 1990, pp. 152-166.

[9] Sukaviriya, P., J. Foley and T. Griffith, A Second
Generation User Interface Design Environment: The
Model And The Runtime Architecture,Proceedings
of INTERCHI’93, ACM Conference on Human
Factors in Computing Systems, Apr. 1993, pp. 375-
382.

[10] Szekely, P., P. Luo and R. Neches, Facilitating the
Exploration of Interface Design Alternatives: The
HUMANOID Mode l o f In te r face Des ign ,
Proceedings of CHI’92, ACM Conference on Human
Factors in Computing Systems, May 1992, pp. 507-
515.

[11] Szekely, P., P. Luo and R. Neches, Beyond Interface
Builders: Model-Based Interface Tools,Proceedings
of INTERCHI’93, ACM Conference on Human
Factors in Computing Systems, Apr. 1993, pp. 383-
390.

[12] Wiecha, C. and S. Boies, Generating User Interfaces:
Principles and Use of ITS Style Rules,Proceedings of
UIST’90, ACM Symposium on User Interface
Software and Technology, Oct. 1990, pp. 21-30.

