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SUMMARY 
 
 
 

The Multidimensional Generalized Graded Unfolding Model (MGGUM) is a 

proximity-based, noncompensatory item response theory (IRT) model.  It has 

applications in the context of attitude, personality, and preference measurement.  Initial 

development of the MGGUM used fully Bayesian Markov Chain Monte Carlo (MCMC) 

parameter estimation (Roberts, Jun, Thompson, & Shim, 2009a; Roberts & Shim, 2010).  

Research has shown several challenges can arise while estimating MGGUM parameters 

using this method.  For instance, the meaning of dimensions can switch during the 

MCMC estimation process.  In addition, difficulties in obtaining informative starting 

values may lead to increased identification of local maxima.  Furthermore, researchers 

must contend with lengthy MCMC computer processing time.  Previous research has 

shown alternative estimation methods perform just as well as, if not better than, MCMC 

for the unidimensional Generalized Graded Unfolding Model (GGUM; Roberts & 

Thompson, 2011).  Specifically, marginal maximum a posteriori (MMAP) item 

parameter estimation paired with expected a posteriori (EAP) person parameter 

estimation is a viable alternative to MCMC in the GGUM.  The present work implements 

MMAP/EAP parameter estimation with the multidimensional model using rectangular 

quadrature.  Additionally, item location initial values are derived from detrended 

correspondence analysis (DCA) based on previous work implementing correspondence 

analysis with the GGUM (Polak, 2011).  A parameter recovery study is used to 

demonstrate the accuracy of two-dimensional MGGUM MMAP/EAP parameter 

estimates and a comparative analysis of MMAP/EAP and MCMC demonstrates equal 
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accuracy, yet much improved efficiency of the former method.  Analysis of real attitude 

measurement data provides an illustrative application of the model. 
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CHAPTER 1 

OVERVIEW 

 

 

 

Parameter estimation in multidimensional item response theory (MIRT) is a 

complex process.  MIRT models allow item parameters to vary across items and 

dimensions.  Therefore, in a MIRT model with only two item parameters allowed to vary 

per dimension (e.g. location and discrimination), it is necessary to estimate D-dimensions 

of latent traits and 2*D item parameters.  One such highly parameterized 

multidimensional model is the recently developed multidimensional extension of the 

Generalized Graded Unfolding Model (GGUM; Roberts, Donoghue, & Laughlin, 2000).  

The GGUM measures attitudes using graded levels of agreement responses to statements.  

The multidimensional extension of the GGUM is known as the Multidimensional 

Generalized Graded Unfolding Model (MGGUM; Roberts, Jun, Thompson, & Shim, 

2009a; Roberts & Shim, 2010).  Within this model, person parameter estimates are 

obtained for each dimension.  In addition, item location and discrimination parameters 

may vary across items and dimensions.  Furthermore, other item parameters, known as 

subjective response category thresholds, can also vary across items, but are constant 

across dimensions. 

 Previous research has shown reasonable MGGUM parameter estimates can be 

obtained using Markov Chain Monte Carlo (MCMC) techniques (Roberts et al., 2009a; 

Roberts & Shim, 2010).  The primary drawback of this process is that it is vastly time-

consuming.  Using a fast personal computer running WinBUGS (Spiegelhalter, Thomas, 

Best, & Lunn, 2007), this estimation method can take days (e.g. 14 days for 20,000 
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iterations) to converge on a solution for a single data set comprised of 2000 subjects, 20 

items, and 6 response categories.  The purpose of this research is to ascertain the 

advantages of an alternative approach to parameter estimation in the MGGUM.  This 

work estimates item parameters using a marginal maximum a posteriori (MMAP; 

Mislevy, 1986) approach.  Person parameters are estimated with an expected a posteriori 

(EAP; Bock & Mislevy, 1982) technique.  Comparative parameter estimation research in 

the unidimensional GGUM has demonstrated the superiority of MMAP/EAP.  It was 

shown to produce parameter estimates that are just as accurate, if not more so, than those 

derived from MCMC (Roberts & Thompson, 2011).  In addition, MMAP/EAP took 

seconds as opposed to hours to reach a solution for a typical set of GGUM item 

responses.  As shown later in this document, the implementation of MMAP/EAP to 

estimate MGGUM parameters in this study is a more efficient and equally accurate 

method. 

 Marginal item parameter estimation in multidimensional models like the 

MGGUM requires integration over latent space.  Integration of person parameters (θ1, …, 

θD) out of the likelihood function can be accomplished using the Expectation-

Maximization algorithm (EM; Dempster, Laird, & Rubin, 1977).  Within the EM 

algorithm, rectangular quadrature is commonly used to approximate integration over a 

unidimensional latent continuum.  After this integration has been accomplished, the item 

parameter estimates that maximize the marginal posterior distribution are found.  Because 

integration of person parameters requires known item parameter values (i.e. the 

expectation component), the process of integration followed by item parameter 
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estimation via maximization continues iteratively until there is little change in the 

estimates. 

The iterative estimation process is likely to reach a solution faster with more 

informative starting values of item parameters.  Previous MGGUM research has 

suggested the need for more informative item location starting values to increase 

estimation accuracy (Roberts & Shim, 2010).  In this study, initial values for item 

location parameters are obtained using detrended correspondence analysis (DCA; Hill & 

Gauch, 1980).  DCA is a variant of traditional correspondence analysis (CA; Greenacre, 

2007) to counteract estimation artifacts, which shall be addressed further in Chapter 5.  

Past research has shown CA was able to produce GGUM item location estimates 

comparable to those obtained using GGUM estimation software (Polak, 2011).  

 The forthcoming pages in Part I provide a historical foundation for 

multidimensional measurement, parameter estimation, and the MGGUM.  Part II 

generalizes the MMAP/EAP parameter estimation approach to the MGGUM, discusses 

the implementation of DCA with the MGGUM, details a simulation design and presents 

subsequent results investigating the application of the new approach, presents a 

comparative analysis of MMAP/EAP and MCMC MGGUM parameter estimates, and 

describes an application of the new approach to real attitude measurement data.  
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PART I: INTRODUCTION 
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CHAPTER 2 

BACKGROUND 

 

 

 

2.1 Classical Unfolding 

2.1.1 Coombs Unfolding Model 

 The concept of unfolding has its foundation in psychological scaling literature.  

Coombs (1950; 1960) was the first to explicitly propose an unfolding model based on 

preference rankings between stimuli.  His model yields single-peaked preference 

functions.  This conceptualization is based on the idea that individuals and stimuli lie on a 

joint continuum or J scale.  Figure 1 depicts the location of an individual, X, and the 

location of four stimuli, A through D, on such a scale. 

 

 

Figure 1.  Joint distribution of stimuli and an individual. 
 
 

Individuals and stimuli have fixed positions along this continuum.  Using observed 

preference rankings, Coombs suggested a model to find the locations of individuals and 

items along the continuum.  Unfolding involves the notion of folding the J scale at the 

individual’s location such that all preference rankings increase in magnitude.  Coombs 

proposed that as the distance of an individual from an item decreases on a continuum, the 

probability of endorsement or preference for the item increases.  The continuum here 

represents a type of preference dimension underlying the stimuli in question. 

A B C D 

X 
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2.1.2 Multidimensional Unfolding 

 One of the limitations of Coombs’ (1950; 1960) unfolding model is that it was 

restricted to a single latent continuum.  Bennett and Hays (1960) extended unfolding 

models of preference rankings to multiple dimensions, or continua.  In a 

multidimensional context, preferences are based on multiple characteristics/attributes of a 

single stimulus.  According to this model, individuals have an ideal point on each 

dimension.  Their reported overall preference ranking of a stimulus is a function of how 

closely the stimulus location coincides with ideal points across dimensions.  Preference 

functions are now single-peaked surfaces in multidimensional space.  Still distance-

based, this implies the probability of endorsement or preference increases to the extent an 

individual is close to the location of the stimulus in multidimensional space (Busing, 

2010). 

The extension of unidimensional unfolding to multiple latent dimensions is 

theoretically well-grounded.   However, applications of such models lead to cumbersome 

mathematics reducing the feasibility of their implementation.  As a result, Bennett and 

Hays’ approach to multidimensional unfolding was blended with the field of 

multidimensional scaling (Shepard, 1962a, 1962b; Kruskal & Wish, 1978).  

Multidimensional scaling provides a method of locating points in multidimensional space 

based on similarity or dissimilarity judgments (e.g. rankings or ratings).  The similarity or 

dissimilarity provides an indication of distances between points.  When combined with 

Bennett and Hays’ work, this approach models preference ranking in a D-dimensional 

joint space which locates both persons and stimuli. 
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A concern when working with multidimensional models is that researchers need 

to determine the appropriate number of dimensions underlying a given model.  Bennett 

and Hays (1960) initially proposed three methods of identifying the minimum number of 

dimensions present: mutual boundary, cardinality, and groups.  However, the most 

common method utilized to assess dimensionality in the multidimensional scaling 

approach involves analyzing model fit via Kruskal’s concept of stress (1964).  Stress is a 

fit index for D-dimensional models.  It is essentially a loss function where lower levels of 

stress indicate greater levels of model fit. 

Stress can be measured in a variety of ways.  Raw stress is directly dependent 

upon the size of the D-dimensional design.  Within multidimensional unfolding it is the 

sum of squared deviations of distances (dji) and distance estimates ( ˆ
jid ) between the 

coordinate locations of the jth individual and ith item in D-dimensional space.  Kruskal’s 

(1964) initial concept of stress is known as Stress-1.  It is raw stress divided by the sum 

of squared distance estimates (Kruskal & Carroll, 1969).  This value is calculated for 

each individual and then averaged across the sample: 

 

 
2

1
1

21

1

ˆ
1

ˆ

I

ji jiJ
i

I
j

ji

i

d d

S S
J
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



 





 (1) 

where J is the total number of subjects and I is the total number of items.   

Kruskal and Carroll’s (1969) Stress-2 uses an alternative constant within the 

denominator that is proportional to the variance of distance estimates.  Again, this value 

is computed for each individual and averaged across the sample: 
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where 
..d̂  is the grand mean of all distance estimates. 

S-Stress is a measure of stress that comes in two forms: S-Stress-1 and S-Stress-2.  

These two forms differ from the former quantities in that squared versus raw distances 

are used in the calculation of stress, but are still averages of the sample values: 
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and 
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One potential problem with either formulation of S-Stress is that it can lead to situations 

where extreme distances are exacerbated and small distances are trivialized (Takane, 

Young, & De Leeuw, 1977; Busing, Groenen, & Heiser, 2005).  However, minimizing 

any of these forms of stress is thought to improve model fit. 
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2.1.3 Degeneracy in Multidimensional Unfolding 

 Minimizing stress should improve model fit, but it will not always lead to a 

meaningful solution.  This can be a common occurrence with multidimensional unfolding 

models.  An optimal solution for a multidimensional unfolding 1) minimizes stress, 2) is 

interpretable, 3) is parsimonious, and 4) is reliable (Shepard, 1974).  Degenerate solutions 

occur when stress is minimized, but points are tightly clustered in multidimensional 

space.  These solutions are not interpretable because there is not enough differentiation 

between points despite almost, if not, perfect model fit (Busing, 2010).  It has been 

argued that degeneracies will occur in almost all multidimensional unfolding situations.  

Consequently, researchers have attempted to penalize or correct the calculation of stress 

in multidimensional unfolding to avoid degenerate solutions (e.g. Busing et al., 2005).  

Unfortunately, these adjustments appear to only be successful some of the time.  

Degenerate solutions can still result despite adjustments to stress calculations (Busing, 

2010; Busing et al., 2005).  Other psychometric approaches, such as item response theory 

(IRT), may be more promising.  A method like IRT may allow researchers to select an 

unfolding model capable of estimating latent traits and features of stimuli with less risk of 

degenerate solutions due to additional information provided by the probability function 

(Roberts, Shim, Jun, Thompson, & McIntyre, 2009b). 

2.2 Thurstone and Likert Attitude Measurement 

 Thus far, the discussion of unfolding models has centered on preference rankings.  

Unfolding is also relevant to direct ratings of a single stimulus.  In order to study 

unfolding in such situations, it is necessary to delve deeper into historical attitude 

measurement literature.  While Coombs (1950; 1960) proposed the first formal unfolding 
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model, notions of unfolding are present in earlier work by Thurstone (1927; 1928).  

Although Thurstone did not officially propose a model for the locations of individuals on 

an attitude continuum, he presented a rationale for determining the locations of 

individuals after scaling the locations of questionnaire items on that same continuum.  

Moreover, his rationale is consistent with the notion of an ideal-point response process.  

Likert (1932), on the other hand, introduced a method to measure individuals without 

previously scaling questionnaire items.  His approach is consistent with the notion of a 

dominance-based response process.  Thus, the ideal-point and dominance-based response 

processes have their roots in classical attitude measurement, as do unfolding and 

cumulative measurement models.  The details of these two perspectives are discussed 

further below. 

2.2.1 Thurstone Attitude Measurement 

 In order to understand Thurstone’s (1927; 1928) approach, it is necessary to 

understand his law of comparative judgment.  This is the basis for what is commonly 

referred to as Thurstone scaling.  The law of comparative judgment involves the notion of 

statements possessing varying degrees of affective value along a continuum.  The 

likelihood of statement A being judged as having a greater (or lesser) affective value than 

statement B is the result of both statements’ affective values as seen in Figure 2. 

 

 

 

Figure 2.  Distribution of affective value ratings for statements. 
 
 

- Affective Value + Affective Value 

B A 
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Each statement has a distribution of affective values indicating its variability across 

persons.  Moreover, the scale value is the mode of a given affective value distribution.  

The affective value of a statement is presumably not related to the particular attitude of 

the judge.   

The process of Thurstone scaling begins with the creation of statements covering 

all possible degrees of affective value towards a particular stimulus.  Statements are 

scaled onto a continuum using affective values assigned by judges.  The methods of 

successive intervals and equal-appearing intervals are commonly used in the scaling 

process.  Final statements are selected so there are roughly an equal number of statements 

representing all portions of the continuum.  Agreement ratings to the final statements (i.e. 

a second source of data) are used to identify the locations of persons along the 

continuum.  Thurstone scaling is consistent with the notion of a proximity-based 

unfolding model: an individual is more likely to endorse or agree with statements whose 

scale values are closer to his/her location on the continuum.  Therefore, person locations 

are derived by calculating the average or median scale value of items to which an 

individual agrees. 

2.2.2 Likert Attitude Measurement 

 In contrast to the Thurstone paradigm, Likert (1932) proposed an alternative 

method of rating-based measurement.  Statements are written clearly in favor or not in 

favor of a stimulus.  Only statements with unmistakably positive or negative affective 

values towards a particular stimulus are included.  Potentially neutral or moderate 

statements are not present.  In contrast to Thurstone, the Likert procedure does not scale 
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statements and select them based on affective values.  This makes Likert’s method much 

more efficient than Thurstone’s.  Likert’s procedure requires that individuals provide 

agreement ratings for each statement.  After obtaining these ratings, researchers can use 

such methods as item-total correlations, Cronbach’s alpha, or principal components 

analysis to select the final statements.  The final statements are presented to individuals 

with a graded agreement scale.  Reverse scoring of responses to statements with negative 

affective values is necessary, after which a total item sum score is constructed for each 

person.  This score serves as a proxy for the person’s location on the continuum.  For 

instance, an individual who expresses some level of agreement with a positive statement 

will have a more positive attitude than an individual who expresses disagreement.  Thus, 

the Likert procedure is consistent with a dominance-based response process in which 

greater overall agreement is an indication of a more positive attitude and greater overall 

disagreement suggests a more negative attitude, taking into account reverse-scored items.  

However, the affective value of each statement is ignored when constructing the total 

item score. 

2.2.3 Classical Models from an Item Response Theory Perspective 

Researchers have argued that the Thurstone, as opposed to Likert, procedure is 

more consistent with unfolding IRT models (Andrich, 1996; Roberts, Laughlin, & 

Wedell, 1999; Drasgow, Chernyshenko, & Stark, 2010).  The two methods generally 

yield highly correlated measures of individuals with moderate attitudes or preferences. 

However, Likert’s method has been shown to incorrectly estimate the attitudes or 

preferences of individuals at the extreme ends of the continuum when responses follow 

from a proximity-based response process (Roberts et al., 1999).  Whether at the extreme 
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positive or negative end of the continuum, Likert’s procedure suggests those individuals 

had more moderate attitudes.  The Thurstone method, on the other hand, is able to 

adequately estimate attitudes or preferences across the entire range of the latent 

continuum.  While the Likert procedure may be a more efficient method, the inability to 

realistically measure all individuals is a substantial limitation in the eyes of many 

researchers.  This is not to say the Likert procedure should be entirely discarded.  Using 

this method, it is possible to efficiently obtain accurate parameter estimates for responses 

that follow from a dominance-based response process.  Only when the data follow a 

proximity-based response process should researchers be wary (Roberts et al., 1999).  In 

light of this, the Thurstone paradigm is recommended as a viable option in the context of 

unfolding measurement models. 

2.3 Unfolding in Item Response Theory 

Unfolding IRT seeks to model the responses of individuals to items on a 

test/questionnaire and estimate their latent trait level.  Items may possess different 

characteristics, such as varying locations (e.g. difficulty or valence) or the ability to 

discriminate between respondents (Rasch, 1960; Lord & Novick, 1968).  In traditional 

measurement applications, most IRT models are cumulative in nature.  This implies 

higher levels of a latent trait should lead to increased probabilities of obtaining higher 

item and resulting test scores.  On the other hand, unfolding IRT models are proximity-

based like the Thurstone measurement technique.  In these models higher item scores 

have a greater probability of occurring when an individual is located close to an item on 

the latent continuum.  As individuals are located farther away from an item, lower item 

scores are more likely to occur.  Graphical representations of such models yield single-
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peaked expected value functions along the latent continuum like that seen in Figure 5a 

(see page 24). 

2.3.1 Applications of Unfolding 

Within the context of IRT, studies have shown unfolding models are capable of 

utilizing binary or polytomous scales (e.g. Andrich & Luo, 1993; Andrich, 1996; Roberts 

& Laughlin, 1996; Roberts et al., 2000).  One area in which unfolding IRT models are 

frequently applied is attitude research.  Studies have investigated attitudes towards such 

issues as national pride (Javaris & Ripley, 2007), abortion (Roberts et al., 2000), capital 

punishment (Andrich, 1989), and work satisfaction (Carter & Dalal, 2010).  Unfolding 

IRT models have also been implemented in personality research (e.g. Chernyshenko, 

Stark, Drasgow, & Roberts, 2007; Weekers & Meijer, 2008; Drasgow et al., 2010).  For 

instance, studies have found that perceptions of personality traits like conscientiousness 

are measured well with an unfolding IRT model (Stark, Chernyshenko, Drasgow, & 

Williams, 2006; Carter, Lake, & Zickar, 2010).  Furthermore, unfolding IRT models have 

also been utilized in research on individual change.  A study on smoking cessation 

assessed individuals’ propensity to change to determine the likelihood of success in 

smoking cessation (Noel, 1999).  Proximity-based, ideal-point models in these areas 

provide just as good model fit, if not better, than dominance models.   

2.3.2 Unfolding Item Response Theory Models 

2.3.2.1 Squared Simple Logistic Model (SSLM) 

 Using Thurstone’s (1927; 1928) approach to attitude measurement, one of the first 

unidimensional unfolding IRT models was presented by Andrich (1988).  Andrich 
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proposed a parametric unfolding IRT model based on the premise of Rasch’s (1960) 

simple logistic model, but utilizing a different distance metric.  The dichotomous IRT 

model known as the Squared Simple Logistic Model (SSLM) takes the form: 

  
 

 
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exp
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 (5) 

where 

iZ  is a response to the ith item, 

j  is the location of the jth individual on the latent continuum, 

i  is the location of the ith item on the latent continuum, and 

z  indicates an observable response of 1 (agreement) or 0 (disagreement). 

It has been shown model parameters (person and item locations) can be recovered 

in a simulation study consisting of 200 persons and 20 items (Andrich, 1988).  Using 

joint maximum likelihood estimation (JML; see Section 2.4.1) the obtained parameter 

estimates were of adequate accuracy levels as measured by root mean square deviation 

(RMSD) of estimates to true values despite some statistical inconsistencies.  Some 

researchers find the inability to use graded levels of agreement as a limitation of this 

model since responses are treated in a binary fashion.  A second limitation of this model 

is the response probability ceiling of 0.5 in situations where a person and item are located 

at the exact same point on the latent continuum (θj - δi = 0).  Unfortunately, the only 

option to overcome this restriction is to select another model. 
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2.3.2.2 Parallelogram Analysis (PARELLA) Model 

 An alternative dichotomous unfolding IRT model suitable for assessing attitudes 

or preferences was derived by Hoitjink (1990).  With foundations in Coombs’ (1964) 

work, the Parallelogram Analysis (PARELLA) model is no longer restricted by the 

SSLM probability ceiling of 0.5 when the distance between a person and an item is zero.  

The probability of agreement in the PARELLA model takes the form: 
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 (6) 

where γ is a power parameter indicating response interference and the remaining 

parameters are as defined in Equation 5. 

            Larger values of the power parameter (γ > 10) indicate responses occur in a 

deterministic fashion.  Smaller values (γ < 10) suggest a probabilistic-based response 

mechanism.  Again, model parameters were estimated and adequately recovered 

comparing estimates to true values in simulation studies (Hoitjink, 1990).  Using 

marginal maximum likelihood estimation (MML; see Section 2.4.2), greater accuracy of 

parameter estimates were obtained as sample size increased from 100 to 900 subjects.  In 

addition, as the value of the power parameter increased better estimates were obtained. 

2.3.2.3 Hyperbolic Cosine Model (HCM) 

 The SSLM and PARELLA model are restricted to dichotomous disagree or agree 

responses.  The Hyperbolic Cosine Model (HCM; Andrich & Luo, 1993; Andrich, 1995) 

provides an alternative approach which considers subjectively why an individual 
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disagrees or agrees with a particular item.  An individual who agrees lies relatively close 

to the given item on a latent continuum.  However, disagreement can occur for either of 

two reasons – an individual is located so far above or below the item that it no longer 

represents them well.  Using this logic, the HCM consists of three ordered subjective 

response categories even though there are only two possible observable response options.  

The three subjective response categories are disagreement from below the item, 

agreement, and disagreement from above the item.  Observed disagree responses are 

coded as 0, while observed agree responses are coded as 1.  Using the symmetry of the 

hyperbolic cosine (cosh) function, the probability of a given observed response takes the 

form: 
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where 

 2 1 / 2i i i     is the unit parameter for the ith item and 

τik 
is the kth threshold between levels of subjective agreement for the ith 

item. 

 

The HCM implements thresholds, τik, which are symmetric about the point θj - δi 

for each item.  Thresholds occur where successive subjective response probability curves 

cross each other, and thus, there are two thresholds in the binary case as seen in Figure 3. 
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Figure 3.  Subjective response probability curves for a binary item.  From “A Hyperbolic 

Cosine Latent Trait Model for Unfolding Dichotomous Single-Stimulus Responses,” by 

D. Andrich and G. Luo, 1993, Applied Psychological Measurement, 17, p. 256. 
 
 
 

When thresholds are ordered on the latent continuum, then the subjective response 

category (z) with the greatest probability of occurring between thresholds is considered to 

be the dominant response category.  Individuals located within this interval along the 

latent continuum have a higher probability of utilizing the dominant response category.  

Subjective responses follow a cumulative model in that as the level of θ increases, an 

individual is more likely to use a higher order subjective response category.  Andrich and 

Luo (1993) summed the subjective response category curves associated with either type 

of disagreement to obtain the probability of observed disagreement.  The probability 

associated with the single subjective agree response category was, therefore, the observed 

probability of an agree response. 

θ-δ 

Disagreement 

from Below 

Agreement 

P(z) 

Disagreement 
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2.3.2.4 General Hyperbolic Cosine Model (GHCM) 

 An extension of the HCM, the General Hyperbolic Cosine Model (GHCM), was 

developed by Andrich (1996).  The GHCM incorporates graded response categories 

representing levels of agreement from strongly disagree to strongly agree.  In this 

polytomous model, individuals theoretically have subjective levels of agreement from 

below or above an item given their location on the latent continuum in relation to the 

item.  Extreme agreement has only one subjective response probability curve, but all 

remaining observed response options possess two subjective response probability curves, 

as in the HCM.  For each of these levels of disagreement, symmetric thresholds, τik, still 

exist, but have increased in number as there are more possible response options.  The 

units (i.e. τi(k+1) - τik) also need not be equal across categories or items allowing for greater 

model flexibility.  The GHCM takes the form: 
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where 

z  indicates the level of agreement ranging from 0 (strongest 

disagreement) to C (strongest agreement), 

1

z

ik ik

k

 


   is the summation of negated subjective response category 

thresholds, τik, for the ith item, and 

C is the number of observable response categories minus 1. 
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As seen in Figure 4, subjective response probability curves for each of the 

observable response options are symmetric about the item location (δi) and hence the 

point θj - δi. 

 

 

Figure 4.  Subjective response category probability curves for a four category item.  

From “A Hyperbolic Cosine Latent Trait Model for Unfolding Polytomous Resposnes: 

Reconciling Thurstone and Likert Methodologies,” by D. Andrich, 1996, Journal of 

Mathematical and Statistical Psychology, 49, p. 357. 
 
 
 

The subjective response curve depicting extreme agreement (strongly agree) is symmetric 

with a single mode.  Extreme disagreement possesses two symmetric subjective response 

curves that are unimodal.  This curve approaches a probability of 1 at the extreme ends of 

the latent continuum and a probability of 0 when a person is located closest to the item.  

Curves expressing some other level of disagreement (e.g. agree, disagree) are symmetric 

and bimodal.  Like the HCM and PARELLA model, the GHCM is not restricted by the 

θj-δi 
τi1 τi2 τi3 τi4 τi5 τi6 



21 
 

probability ceiling found in the SSLM.  This freedom and the ability to incorporate more 

response options made the GHCM a useful addition to the field of unfolding IRT models. 

2.3.2.5 Graded Unfolding Model (GUM) 

 Similar to the HCM and GHCM, the Graded Unfolding Model (GUM; Roberts & 

Laughlin, 1996) posits graded subjective response categories follow a cumulative model.  

Unlike the GHCM, the GUM presumes there are two subjective response categories 

associated with each observable response option – including the response indicating the 

highest level of agreement.  These, in turn, are combined to model observed responses 

that represent incremental levels of agreement.  The GUM takes the form: 
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 (11) 

where M = 2*C +1, τ0 = 0, and all other terms are as previously defined. 

As shown in Equation 11, the probability of a particular observed response option 

is the result of the summation of two subjective response probability curves.  These 

subjective response probability curves follow Andrich’s (1978) rating scale model.  

Probability curves for observed responses remain symmetric about the item location and 

the point θj - δi.  The expected value of a response increases to the extent a person is 

located close to an item on the latent continuum.  In this formulation of the GUM, the 

subjective response category thresholds are constant across items.

 On the other hand, it is also possible to conceptualize the GUM using a partial 

credit model (PCM; Masters, 1982) formulation.  In this approach subjective response 
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category thresholds (τik) are allowed to vary across items with τi1 = 0 so that the GUM 

becomes (Roberts & Laughlin, 1996): 
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In both formulations, item discrimination values are constrained to equal one across 

items.  While the SSLM, PARELLA model, and HCM are limited to dichotomous 

responses, the GHCM and GUM allow for graded responses.  The GHCM and the GUM 

both possess subjective response curves symmetric about the point θj - δi on the latent 

continuum.  However, the difference between the GHCM and the GUM is the inclusion 

of two subjective response categories for the strongest level of observed agreement in the 

latter model.  Consequently, the GUM can be represented with a single parametric 

equation, whereas the GHCM requires a piecewise function. 

2.3.2.6 Generalized Graded Unfolding Model (GGUM) 

A broader conceptualization of the GUM is found within the Generalized Graded 

Unfolding Model (GGUM; Roberts et al., 2000).  This model is a unidimensional, 

polytomous IRT model with single-peaked, nonmonotonic response functions.  It is the 

foundation for the focal model in this research, which will be discussed in further detail 

in Chapter 3.  The primary difference between the GUM and GGUM is the incorporation 

of item discrimination (αi) parameters that are allowed to vary across items.  For a 

particular item, given an individual’s latent trait (θj), the GGUM depicts the probability 

of an observable response as: 
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(13) 

where αi is the discrimination of the ith item (free to vary across items) and the remaining 

parameters are defined as in Equations 11 and 12. 

Figure 5a depicts the expected value function of a hypothetical GGUM item 

located at δi = 0 with αi = 1 and τi0 = 0, τi1 = -1.3, τi2 = -0.7, and τi3 = -0.3.  As is the case 

with the GUM, GGUM expected value functions are symmetric about item locations (δi), 

and hence the point θj - δi.  Moreover, the expected value of the GGUM increases as the 

absolute value of the distance between θj - δi decreases.  Figures 5b and 5c demonstrate 

the impact of changes in certain item parameters on the expected value function.  As item 

discrimination (αi) values increase, the curve becomes steeper approaching an upper 

bound of the expected value function, as seen in Figure 5b moving from Panel I to Panel 

II.  Increases in interthreshold distances again result in the expected value function 

approaching its upper bound.  However, these increases also produce curves with more 

gradual slopes, which contrast the effects of increases in discrimination values, as evident 

in Figure 5c moving from Panel I to Panel II. 
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Figure 5a.  The expected value of a hypothetical four response category unidimensional 

GGUM item. 
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Figure 5b.  The expected value of a hypothetical four response category unidimensional 

GGUM item as discrimination values change. 
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Figure 5c.  The expected value of a hypothetical four response category unidimensional 

GGUM item as interthreshold distances and discrimination values change.  
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An indication of precision of measurement for the GGUM can be obtained 

through item and test information.  Test information is the result of summing item 

information for all items on a questionnaire.  The inverse of test information provides the 

error variance for latent ability estimates.  Information from a single unidimensional 

GGUM item is obtained by: 
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where, using Equation 13, 
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such that 

xij is an observable response to the ith item for the jth individual, while 

P (Zi = xij | θj) indicates the model probability of a particular response to 

the ith item. 

Figure 6 illustrates the item information function for a hypothetical GGUM item 

with four response categories while setting δi = 0, αi = 1, τi0 = 0, τi1 = -1.3, τi2 = -0.7, and 

τi3 = -0.3.  As seen in the figure, information is symmetric about the item’s location. 
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Figure 6.  Item information for a hypothetical four category unidimensional GGUM item. 

 

 

 

As the distance between a person and item approaches infinity or zero, the amount 

of information obtained approaches zero.  Strong observed agreement suggests a person 

is located near or at the item, but they could in reality be located slightly above or below 

the item.  Consequently, the response conveys no directional information regarding the 

individual’s location relative to the item.  Strong observed disagreement results from an 

individual being located very far above or below an item.  Again, the exact location of the 

individual relative to the item is unknown.  Thus, the amount of information obtained 

approaches zero in those situations as well.  Therefore, maximum information can be 

obtained when an individual is located far enough away such that they are on the cusp 

between disagreement and agreement. 
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2.4 Parameter Estimation in the Univariate GGUM Family of Models 

2.4.1 Joint Maximum Likelihood (JML) 

 In the GUM, parameter estimation was accomplished with joint maximum 

likelihood (JML) estimation (Roberts & Laughlin, 1996).  This method involves jointly 

estimating both person (θ) and item (δ, τ) parameters.  Maximizing the log of the 

likelihood function in iterative steps results in model parameter estimates.  Researchers 

may choose to iterate using the Newton-Raphson algorithm (N-R; Lord, 1986; Baker, 

1987) or Fisher scoring (Rao, 1973), which uses the information matrix as opposed to the 

Hessian matrix.  Regardless of the iterative method selected, the first step involves 

developing initial values for all model parameters.  Then, person parameters are treated 

as known, fixed values in order to solve for item parameters.  Next, estimated item 

parameters are fixed in order to solve for person parameters.  In each iteration constraints 

are imposed to provide an (arbitrary) origin and scale.  The log likelihood function for the 

GUM takes the form: 
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(16) 

where all terms are as defined in Equation 11.  Maximizing Equation 16 with respect to 

each parameter results in GUM estimates. 

Statistical concerns emerge in the JML approach as estimates may not be 

consistent unless samples are large enough and tests are long enough (e.g. Haberman, 

1977).  However, as more persons and items are added there are more parameters to 
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estimate.  With more parameters to estimate the estimation process becomes more 

complex (Bock & Aitkin, 1981; Harwell & Baker, 1991).   Despite increased complexity, 

GUM person and item parameter estimates increased in accuracy, as measured by 

RMSD, when the number of items increased to at least 15 and the number of subjects 

increased to at least 100 (Roberts & Laughlin, 1996).   

One issue of concern is that JML is problematic for individuals consistently 

utilizing extreme disagreement response categories.  Person parameter estimates ( ˆ
j ) for 

these individuals are infinite, as are item location estimates ( ˆ
i ) for those items to which 

all individuals express extreme disagreement.  As such, those individuals and items must 

be discarded from analysis with the GUM when using JML.  Another concern is the 

identification of local maxima.  In search of the global maximum of the log likelihood, 

local maxima may be identified, which can substantially slow down the estimation 

process.  This is especially true when solving for person parameter estimates ( ˆ
j ).  Local 

maxima necessitate implementation of slower estimation techniques such as grid search 

checks of surrounding parameter values along the latent continuum.  Despite these issues, 

JML was able to adequately recover both person (θj) and item parameters (δi, τik) of the 

GUM (Roberts & Laughlin, 1996). 

2.4.2 Marginal Maximum Likelihood (MML) 

 With the advent of the GGUM, an alternative estimation method was 

implemented to circumvent some of the operational drawbacks of JML (e.g. statistical 

inconsistency, estimation in the presence of extreme scores, local maxima, etc.).  

Marginal maximum likelihood (MML) is a method of item parameter estimation that 



31 
 

incorporates a prior distribution for person parameters (θj).  Person parameters (θj) are 

then integrated out of the likelihood function to solve for item parameter ( ˆ ˆ ˆ, ,  i i ik   ) 

estimates.  Unlike JML, person parameters ( ˆ
j ) are only obtained after conducting a 

separate estimation process such as expected a posteriori (EAP) estimation (see Section 

2.4.5). 

The general marginal likelihood function for an item estimated with MML takes 

the form: 

     2

1

| | ,  
J

i i ji j j j

j

L P Z x g d    


  
    (17) 

where g(θj|μ,σ
2
) is an arbitrary prior distribution for θj with population mean μ and 

variance σ
2
.  Maximizing the log of the general marginal likelihood function with respect 

to each item parameter will again yield item parameter estimates, as in JML.  However, 

MML is capable of producing more accurate estimates with smaller samples (fewer 

subjects/items) where JML would produce biased estimates (Harwell, Baker, & Zwarts, 

1988; Lord, 1986). 

Using the Expectation-Maximization algorithm (EM; Dempster et al., 1977), 

MML parameter estimates are obtained by first estimating the number of individuals 

expected to be at particular points along the latent continuum.  These points, known as 

quadrature points, are artificial divisions of the latent continuum that allow one to 

approximate integrals over a continuous space.  The most common form of quadrature 

used in MML is rectangular quadrature in which equally spaced midpoints of rectangles 

are used as the quadrature points (Bock & Aitkin, 1981; Mislevy, 1986). 
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The expectation step involves calculating the expected number of individuals 

utilizing a specific response category at a particular quadrature point.  The expected 

values, or pseudocounts, are then treated as fixed quantities and used to estimate item 

parameters during the maximization step in order to find the global maximum of the log 

marginal likelihood.  Iterations between the expectation and maximization steps continue 

until estimates change minimally between quadrature points.  However, the very first 

iteration is conducted using initial item parameter values identified by the researcher 

(Bock & Aitkin, 1981; Harwell, Baker & Zwarts, 1988).  As is the case with JML, a 

researcher may choose to implement either the N-R algorithm or Fisher scoring in the 

maximization step. 

As seen in Roberts et al. (2000), the conditional probability of a distinct response 

vector is: 

    
1

|
I

s i si

i

P P Z x


 X    (18) 

where 

S is the possible number of distinct response vectors, 

Xs is a distinct response vector, and 

xsi is the response to the ith item in response vector Xs. 

Thus, the marginal probability of response vector Xs is: 

       .s sP P g d   X X  (19) 

Using the marginal probability, the likelihood function for a set of item response data is: 
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Taking the log of Equation 20 will yield the log marginal likelihood function under the 

GGUM: 
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where rs is the number of individuals with response vector Xs.  Solving for the maximum 

of Equation 21 with respect to an arbitrary item parameter (πi) produces an estimate of 

that parameter, which is approximated in quadrature form as: 
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where 
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is the expected number of individuals using a particular response category for item i at 

the qth quadrature point, Aq, having quadrature weight W(Aq) with Hsiz taking on a value 

of 1 when z equals xsi and 0 otherwise.  The probability of a using a particular response 

category at the qth quadrature point, Aq, is: 

  i qP Z z A . (24) 
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The derivative of Equation 24 with respect to an arbitrary item parameter (πi) is then 

computed as: 
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i q

i
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
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
 (25) 

Finally, the likelihood of a particular response pattern at the qth quadrature point, Aq, is: 

    
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   (26) 

and 
sP  is the marginal probability of a particular response pattern in quadrature form: 
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s s q q
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Utilizing Fisher scoring within the EM algorithm, Roberts, Donoghue, and 

Laughlin (1998) were able to recover item parameter estimates ( ˆ ˆ ˆ, ,  i i ik   ) in a 

simulation study using initial values from a constrained model.  Accurate item parameter 

estimates, as measured by RMSD, were obtained with as few as 750 subjects, 20 items, 

and 6 response categories.  Interestingly, the inclusion of additional subjects did not 

substantially improve accuracy of item parameter estimates.  In addition, Roberts and 

colleagues (2000) applied this model to simulated and real data.  Using MML they found 

good estimates of true values as measured by RMSD.  Data demand studies have shown 

accurate MML item parameter estimates are generally obtained when there are at least 

1250 subjects, 15-20 items, and 4 response categories, again using RMSD (Cui, Roberts, 

& Bao, 2004).  With fewer response categories, MML parameter estimates for extreme 
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item ( ˆ ˆ ˆ, ,  i i ik   ) and person ( ˆ
j ) parameters may drift (Roberts & Thompson, 2011).  

With respect to non-extreme parameters, fewer subjects are needed to achieve accurate 

parameter estimates when more response categories are involved.  With 6 response 

categories and 750-1000 subjects, accurate item parameter estimates can be still be 

obtained (Cui et al., 2004).  Similar results indicate little to no change in accuracy levels 

as the number of subjects increases beyond 1000 (Roberts & Thompson, 2011).  These 

studies demonstrate the existence of variations in data demands when using MML with 

the GGUM as a function of sample size, test length, and the number of response 

categories.  Therefore, researchers should be cognizant of the effects of their study design 

on parameter accuracy when implementing MML. 

2.4.3 Markov Chain Monte Carlo (MCMC) 

 JML and MML are not the only estimation methods that have been implemented 

within the GGUM.  De la Torre, Stark, and Chernyshenko (2006) performed a 

comparative study of MML and Markov Chain Monte Carlo (MCMC) estimation in the 

GGUM.  MCMC is a fully Bayesian technique involving the specification of prior 

distributions for all parameters, initial values for all parameters, and then jointly 

estimating all parameters.  Point estimates of posterior distributions are used as estimates 

in this sampling-based method (Béguin & Glas, 2001), but one of the luxuries of the 

method is the ability to look at the form of the posterior distribution of each model 

parameter.   

 De la Torre and colleagues (2006) determined MCMC is capable of producing 

more accurate item parameter estimates than MML with smaller RMSD of estimates to 
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true values based on a GGUM simulation study.  Their study used Metropolis-Hastings 

(Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) within 

Gibbs sampling (Geman & Geman, 1984).  Gibbs sampling generates n samples from a 

joint probability distribution of person and item parameters with known conditional 

distributions in order to obtain the joint posterior distribution.  Beginning with initial 

values for each parameter, individual samples are obtained that draw each parameter 

from its associated full conditional distribution: 

      1 2, , , , , , ,CP θ δ α τ τ τ L P θX X  (28) 

      1 2, , , , , , ,CP δ θ α τ τ τ L P δX X  (29) 

      1 2, , , , , , ,CP α θ δ τ τ τ L P αX X  (30) 

      1 2 1, , , , , , ,CP τ θ δ α τ τ L P τX X  (31) 

 

      1 2 1, , , , , , ,C C CP τ θ δ α τ τ τ L P τ X X  (32) 

where X is a raw data matrix.  A distribution is formed from the samples, which, in 

theory, converges to a stationary joint posterior distribution.  Parameter estimates are 

obtained from the associated mean values of the joint posterior distribution. 

If conditional distributions are not known, Metropolis-Hastings can be 

implemented within Gibbs sampling.  Metropolis-Hastings involves taking random 

samples from a probability distribution where direct sampling is not possible (Patz & 
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Junker, 1999).   In each iteration, t, a sample value (i.e. θ
*
, δ

*
, α

*
, τ1

*
, …, τC

*
) is drawn 

from a proposal distribution.  The sample is accepted and each parameter is set equal to 

the value from the proposal distribution with probability: 
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Consequently the new parameter value is either accepted with the corresponding 

probability given above or the value remains unchanged from the previous draw.  De la 

Torre et al. (2006) obtained parameter estimates by performing a single Metropolis-

Hastings parameter update within each of the Gibbs sampling iterations. 

MCMC has been shown to produce more accurate GGUM estimates than MML 

with respect to estimates of extreme items measured via RMSD of estimates to true 
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values (de la Torre et al., 2006; Roberts & Thompson, 2011).  This was especially true 

for items with few response categories (e.g. binary items).  In these instances, MCMC 

had substantially lower RMSD of parameter estimates than MML.  While these findings 

may induce researchers to implement MCMC in their own work, it is important to note 

the substantial processing time of MCMC.  De la Torre et al. (2006) found convergence 

using MCMC for a particular data set took just over an hour while an MML solution was 

reached in minutes.  Other researchers have found MCMC can take even longer (e.g. 

hours to days) to converge upon a solution as the number of subjects, items, and or 

response categories increase (e.g. Roberts & Thompson, 2011).  The duration of 

estimation is, no doubt, affected by the type of computer program used to implement the 

MCMC algorithm.  De la Torre and colleagues (2006) demonstrated the Ox-based 

program (Doornik, 2003) can produce GGUM parameter estimates ( ˆ ˆ ˆ ˆ,  , ,  j i i ik    ) much 

faster than the WinBUGS program (Spiegelhalter et al., 2007) for general MCMC 

parameter estimation.  Computer programs optimized for GGUM parameter estimation 

may shorten the wait for convergence upon a solution. 

2.4.4 Marginal Maximum A Posteriori (MMAP) 

 If time is not an issue, researchers may be inclined to use MCMC with the GGUM 

as opposed to MML, given the evidence presented thus far.  Should time constraints be 

an issue, the efficiency of MML suggests it may be a viable choice, especially when the 

number of response categories is greater than four.  However, recent research has shown 

the performance of an alternative marginal method of item parameter estimation, 

marginal maximum a posteriori (MMAP; Mislevy, 1986), supersedes that of MCMC and 

MML in the GGUM (Roberts & Thompson, 2011).  While MML is able to adequately 
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estimate GGUM item parameters, it is not without its shortcomings.  In general, MML 

has been known to result in less accurate estimates in smaller samples and with fewer 

items than MMAP (Mislevy, 1986; Cui et al., 2004; Gao & Chen, 2005).  In addition, 

research has shown use of MML leads to inconsistent estimates of extreme items 

compared with MCMC, which is exacerbated with binary items (de la Torre et al., 2006; 

Roberts & Thompson, 2011). 

Bayesians would thus counter the argument to use MML in the GGUM with the 

notion that the inclusion of prior distributions for item (δi, αi, τik) and person (θj) 

parameters provides additional sources of information during the MCMC estimation 

process.  This can lead to more accurate parameter estimates.  Prior distributions play 

larger roles in the estimation process when the data are less informative, or rather, more 

extreme.  The prior distributions restrict estimates from drifting to extreme values by 

imposing a distributional assumption as a guide for the estimation process.  When the 

data are more informative, there is less sensitivity to any imposed prior distributions 

(Harwell et al., 1988; Mislevy, 1986). 

MMAP is an estimation method that incorporates prior distributions for all 

parameters.  However, unlike MCMC, the person parameter (θj) is integrated out of the 

likelihood function during the estimation process (Mislevy, 1986).  Within IRT, there 

will generally be more person parameters than item parameters regardless of the model.  

Including person parameters in the estimation process substantially increases the number 

of necessary calculations.  Integration of these terms out of the likelihood function 

simplifies the item parameter estimation process.  This method of marginal Bayesian item 

parameter estimation is, like MML, an iterative procedure requiring initial values only for 
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item parameters in which the EM algorithm can be implemented to maximize the 

posterior likelihood, which is the product of prior distributions and a likelihood function. 

As demonstrated in Roberts and Thompson (2011), in the context of the GGUM, 

the posterior likelihood can be found up to a proportionality constant via: 
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where 

P (Zi = z | θj) is the probability of the jth individual’s response to the ith 

item as given in Equation 13, 

b (δi) is a prior distribution for the ith item location, 

a (αi) is a prior distribution for the ith item discrimination, and 

t (τik) is a prior distribution for the kth subjective response category for the 

ith item.  

Taking the logarithm of Equation 38 yields: 
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where the marginal probability of response vector X for the jth individual is denoted by 

P(Xj).  Using Fisher scoring, this function is maximized with respect to each item 

parameter (δi, αi, τik).  Following Roberts and Thompson (2011), MMAP estimates are 

obtained in quadrature form by finding the root (posterior maximum) of: 
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and 
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These equations require the derivative, with respect to a given item parameter, of the 

probability function evaluated at a particular quadrature point.  The final terms in 

Equations 40 through 42 are the derivatives of the log of the parameter’s prior 

distribution.  Derivations of these terms and the derivatives of the GGUM probability 

function at the qth quadrature point with respect to a parameter (δi, αi, τik) are available in 

the appendix of Roberts and Thompson (2011). 

Research has shown there are many benefits to utilizing MMAP.  There tends to 

be less drifting of item location ( ˆ
i ) and discrimination ( ˆ

i ) estimates for extreme items 

using MMAP compared to MML (Lim & Drasgow, 1990).  The prior distributions appear 

to rein in those items and regress estimates back towards the mean of the prior 

distribution.  In larger samples there is less of an opportunity for this to occur given the 

increased amount of information in the data used in the estimation process.  In addition, 

studies have shown MMAP is able to produce more accurate item parameter estimates 

than MML in smaller samples with fewer items (Gao & Chen, 2005).  While research has 
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shown marginal techniques may have excessive standard errors for extreme items, this 

appears to be more common in MML than MMAP (Roberts & Thompson, 2011). 

 Roberts and Thompson (2011) performed a comparative study of MML, MMAP, 

and MCMC within the GGUM.  When the number of response categories, items, and 

subjects were large, there was little differentiation between the methods.  However, 

MMAP resulted in greater accuracy of item parameter estimates ( ˆ ˆ ˆ, ,  i i ik   ) compared to 

MML and MCMC with fewer response categories, items, and subjects, as measured via 

RMSD.  MMAP was also able to produce accurate estimates of extreme items, thus 

performing better than MML in such instances.  With respect to processing time, 

MMAP’s efficiency was similar to MML, but took substantially less time than MCMC.  

Whereas MCMC could take hours or days to converge on a solution for a single 

replication, MMAP took no more than a few seconds to a few minutes to reach a solution.   

Thus, MMAP appears to be a more appropriate estimation method for the GGUM than 

MCMC or MML, given enhanced or comparable accuracy and decreased processing 

time.  Recommended data demands with MMAP in the GGUM are similar to those of 

MML based on the work by Roberts and Thompson (2011).  

2.4.5 Expected A Posteriori (EAP) Estimates of θ 

While MMAP is recommended for item parameter estimation ( ˆ ˆ ˆ,  ,  i i ik   ) in the 

GGUM, it does not produce person parameter estimates ( ˆ
j ).  A method of person 

parameter estimation routinely paired with marginal item parameter estimation is 

expected a posteriori (EAP) estimation (Bock & Mislevy, 1982).  EAP is non-iterative 
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process that requires the specification of a prior distribution for θj.  A posterior 

distribution is obtained via: 
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where L(Xj|θ) is the likelihood of response vector X for the jth individual.  The mean of 

the posterior distribution is the EAP estimate for the person parameter ( ˆ
j ).  Unlike 

estimates in JML, an EAP estimate can be calculated for any response pattern.  In 

addition, the average population error of an EAP estimate is lower, and thus more 

accurate, than maximum a posteriori and maximum likelihood person parameter 

estimates when the population matches the prior distribution (Bock & Mislevy, 1982). 

 Item parameter estimation ( ˆ ˆ ˆ,  ,  i i ik   ) research with the GGUM has utilized 

EAP to estimate person parameters ( ˆ
j ).  The GGUM EAP estimates can be obtained 

using quadrature via: 
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where L(Xj|Aq) is the conditional likelihood of the jth individual’s response vector given 

that the individual is located at the qth quadrature point, Aq.  Research has shown GGUM 

EAP person parameter (θj) accuracy, measured via RMSD, improves as test length 

increases from 10 to 30 items (Roberts, Donoghue, & Laughlin, 2002; Roberts & 
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Thompson, 2011).  In addition, person parameter estimates ( ˆ
j ) had lower RMSD as the 

number of response categories increased beyond a binary condition.  Interestingly, there 

were no observed differences in EAP person parameter estimate ( ˆ
j ) accuracy based on 

MML, MMAP, or MCMC item parameter estimates.  Thus, EAP estimation can be 

implemented in the GGUM with any of these item parameter estimation methods 

(Roberts & Thompson, 2011). 

2.4.6 Initial Values 

 Item parameter estimation using MMAP (or MML) does not require the 

specification of initial values for person parameters (θj).  However, the process of 

marginal item parameter estimation does require starting points for the iterative process.  

Initial values for GGUM item parameters provide a “best guess” of where the item lies on 

the latent continuum (δi), how discriminating the item is (αi), and the locations of 

subjective response category thresholds (τik).  GGUM initial values are derived from 

GUM item parameter estimates (Roberts et al., 2000; Roberts, Fang, Cui, & Wang, 2006; 

Roberts & Thompson, 2011).  GUM estimates provide informative initial values for the 

GGUM given that one model is a generalized version of the other.  Uninformative initial 

values can lengthen the time it takes to obtain item parameter estimates.  More iterations 

may be required to move along the latent continuum while searching for the optimal 

solution located at the global maximum of the corresponding log marginal likelihood 

function.  However, progressing through more of the latent continuum increases the 

chance of locating a local maximum.  More informative initial values should avoid local 

maxima while speeding up the estimation process (Roberts & Laughlin, 1996).  While 

some researchers have argued the selection of initial values should not impact parameter 
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estimates (Bock, 1991), others suggest evidence exists to the contrary (Nader, Tran, & 

Formann, 2011).  Therefore, using informed initial values will likely not hinder, but 

rather may benefit researchers.      
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CHAPTER 3 

MULTIDIMENSIONAL GENERALIZED GRADED UNFOLDING MODEL 

 

 

 

Within the context of unfolding, the most widely used IRT models are 

unidimensional in nature – involving one latent continuum.  While this simplifies the 

model and resulting conclusions, it is possible an item deemed unidimensional actually 

assesses more than one dimension.  Failing to include a dimension in a model can lead to 

incorrect results due to the violation of local independence.  Generally speaking, 

preferences are multifaceted constructs.  For example, graded responses indicating coffee 

preference could be a function of the amount of cream present, the amount of sugar 

present, the strength of the coffee, etc.  Thus, a researcher using a multidimensional 

model to assess such preferences can enhance the validity of their study.  In addition, 

using a single questionnaire comprised of multidimensional items analyzed with a 

multidimensional model can save time over using multiple questionnaires each assessing 

a single dimension.  Thus, multidimensional models, as found in multidimensional 

unfolding IRT, are more appropriate in these situations. 

 Multidimensional IRT (MIRT) models allow for the assessment of multiple latent 

traits regardless of whether some or all items load onto each dimension.  Unfolding 

MIRT models remain proximity-based and are noncompensatory.  In a noncompensatory 

model the probability of endorsing an item increases when an individual is located close 

to an item on all dimensions (Reckase, 2009).  As the number of dimensions increase in a 

multidimensional model, there are corresponding increases in the number of parameters 
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to be estimated.  Increases in model complexity result in a more complicated parameter 

estimation process. 

 The Multidimensional Generalized Graded Unfolding Model (MGGUM; Roberts 

et al., 2009a; Roberts & Shim, 2010) is a recent multidimensional extension of the 

GGUM.  The MGGUM probability function takes the form: 
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where 

 1j j jD     is a vector of D location coordinates for the jth 

individual in the latent space,
 

jdθ  is the location of the jth individual on the dth dimension, 

id   is the location of the ith item on the dth dimension, 

id   is the discrimination of the ith item on the dth dimension, 

 

and 

 
1

.
D

ik id ik

d

  


  (46) 

Note that ψik is a dimensionless quantity which varies by item and response category.  

Similar to the GGUM, an individual will receive higher item scores to the degree the 

individual is located close to an item in multidimensional space.  The MGGUM is an 

unfolding model yielding single-peaked expected value surfaces that are symmetric about 

the item’s location in the latent space, as seen in Figure 7a with two dimensions.  This is 
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a two-dimensional extension of the unidimensional GGUM expected value curve found 

in Figure 5a.  The contour plot of the expected value function found in Figure 7b depicts 

concentric circles symmetric about the item’s location in latent space.  This hypothetical 

MGGUM item is located at δi1 = 0, δi2 = 0 with equal discriminations of αi1 = 1, αi2 = 1 

and subjective response category thresholds of τi0 = 0, τi1 = -1.3, τi2 = -0.7, and τi3 = -0.3.  

 

 

Figure 7a.  Expected value surface for the MGGUM. 

  

θ1 

θ2 
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Figure 7b. Contour plot of the expected value surface for the MGGUM. 

 

 

 

Changes in the discrimination values and interthreshold distances affect the 

MGGUM expected value surface in a manner similar to the unidimensional GGUM.  As 

seen in Figures 5b and 5c, increases in unidimensional GGUM discrimination values 

result in steeper expected value curves, while increasing the interthreshold distance 

results in more diffuse expected value curves.  Increases in the MGGUM dimensional 

discrimination values result in steeper expected value surfaces.  In the presence of equally 

weighted dimensional discrimination values, equal increases of these values increase the 

slopes on both dimensions.  Increases leading to unequal dimensional discrimination 

values result in a steeper slope for the dimension with the larger discrimination value 

θ1 

 

θ2 
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compared to other dimensions.  Changes in interthreshold distances continue to produce 

more diffuse expected value surfaces as in the GGUM.  These relationships are depicted 

in the contour plots found in Figure 8 for a four category MGGUM item located at δi1 = 0 

and δi2 = 0.  Moving from Panel I to Panel II, increases in the discrimination value for a 

single dimension result in concentric elliptical contour plots versus concentric circular 

plots.  This implies there is greater differentiation between individuals along the 

dimension with the higher discrimination value in terms of their likelihood of utilizing a 

particular subjective response category.  Increases in interthreshold distances, moving 

from Panel I to Panel III, result in greater distances between the concentric circles.  

Moving from Panel I to Panel IV, increases in both the discrimination value for a single 

dimension and interthreshold distances result in concentric ellipses with greater distances 

in between ellipses. 

 

 
 

Figure 8.  Contour plots of a hypothetical four category MGGUM item. 
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Figure 8.  Continued. 
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τik = 0, -1.3, -0.7, -0.3 

Panel II 
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τik = 0, -2.6, -1.4, -0.6 

Panel III 
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Figure 8.  Continued. 

 

 

 

Item information within the MGGUM can be calculated using Ackerman’s (1994) 

matrix method.  As the MGGUM is a noncompensatory model, there is no one particular 

vector of interest and thus, Ackerman’s procedure is more appropriate than the 

directional vector approach of Reckase and McKinley (1991).  In a two-dimensional case 

Ackerman’s procedure defines information as: 
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where, using Equation 45, 
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Item information that is unique to each dimension in a two-dimensional model is 

determined by the elements on the main diagonal of the matrix, whereas joint information 

is determined by the off diagonal elements in the matrix.  Thus, item information 

becomes: 
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and 
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The full derivation of MGGUM item information for two dimensions is available in 

Appendix A. 

Item information surfaces take on different forms depending upon the nature of 

the item structure.  Simple structure occurs when an item loads onto only one dimension.  

Figures 9a and 9b depict item information for a hypothetical four response category 

MGGUM item with simple structure located at δi1 = 0, δi2 = 0 with unequal 

discriminations αi1 = 1, αi2 = 0 and subjective response category thresholds set at τi0 = 0, 

τi1 = -1.3, τi2 = -0.7, and τi3 = -0.3.    As seen in Figure 9a, MGGUM item information will 
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resemble a unidimensional GGUM item information curve along the primary dimension 

with constant values along all other dimensions.  This occurs because the only non-zero 

value in the information matrix is associated with the dimension on which the item loads, 

which is the negative expected value of the second derivative of the log likelihood 

function.  All other elements in the information matrix will have a value of zero in the 

case of simple structure.  The contour plot in Figure 9b depicts how information remains 

constant along the non-measured dimension for simple structure items.  Information with 

respect to the measured dimension changes for different levels of latent ability θ1, while it 

remains constant across θ2. 

 

 

          

Figure 9a.  Information surface for two-dimensional simple structure MGGUM item. 

θ1 

θ2 
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Figure 9b.  Contour plot of item information surface for two-dimensional simple 

structure MGGUM item. 

 

 

 

Complex structure occurs when an item loads on multiple dimensions.  Here, the 

item information surface will remain symmetric about the item’s location in latent space.  

However, it will take on a different graphical form due to multiple distinct non-zero 

elements in the information matrix.  Figure 10a depicts the information surfaces with 

respect to θ1, θ2, and both dimensions simultaneously for a hypothetical four response 

category MGGUM item.  This item is located at δi1 = 0, δi2 = 0 with equal discriminations 

αi1 = 1, αi2 = 1 and subjective response category thresholds of τi0 = 0, τi1 = -1.3, τi2 = -0.7, 

and τi3 = -0.3.  Each panel represents a unique element from the 2 x 2 information matrix.  

The information surfaces with respect to θ1 and θ2 are bimodal, while the information 

θ2 

 

θ1 



56 
 

surface with respect to both dimensions simultaneously is quad-modal.  The associated 

contour plots found in Figure 10b depict symmetry about the location of the item in latent 

space and again each panel corresponds to a unique element of the information matrix.  

Information approaches zero at the point in latent space where |θjd - δid| = 0.  In addition, 

information also approaches zero where |θjd - δid| = ±∞.  Maximum information is 

obtained at coordinate locations in the latent space when an individual expresses 

moderate levels of agreement (Thompson & Roberts, 2010).   

 

 

 
 

Figure 10a.  Information surface for two-dimensional complex structure MGGUM item. 
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Figure 10a.  Continued. 
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Figure 10b.  Contour plot of item information surface for two-dimensional complex 

structure MGGUM item. 
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Figure 10b.  Continued. 

 

 

 

It is argued that within the context of the MGGUM, there is only one optimal 

orientation of the dimensions, which will be identified during the estimation process 

(Roberts & Shim, 2010).  The idea of optimal orientation bears similarities to Carroll and 

Chang’s (1970) INDSCAL model in multidimensional scaling.  It may be the case that 

other, or even all, noncompensatory MIRT models have a unique optimal orientation 

given the structure of the models.  The discrimination matrix needs to be a diagonal 

matrix for each item.  Rotation, however, will result in a non-diagonal matrix.  Therefore, 

the meaning of a rotated solution conflicts with the basic definition of the MGGUM 

(Roberts et al., 2009a; Roberts & Shim, 2010).  Thus, the existence of the singular 
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optimal orientation of dimensions suggests there is a unique orientation which may have 

a substantive psychological meaning (Carroll & Chang, 1970). 

3.1 Estimation in the Multidimensional Generalized Graded Unfolding Model 

At present, only fully Bayesian parameter estimation techniques implemented via 

MCMC have been utilized with the MGGUM (Roberts et al., 2009a; Roberts & Shim, 

2010).  In previous MCMC studies estimates of item locations ( ˆ
id ) and person 

parameters (
1
ˆ ˆ, , D  ) were obtained using Metropolis-Hastings sampling (Hastings, 

1970; Metropolis et al., 1953).  Slice sampling was used to estimate discrimination ( ˆ
id ) 

and subjective response category threshold ( îk ) parameters (Neal, 2003). 

Research has shown MCMC is able to adequately recover MGGUM item 

parameters (δid, αid, τik) and EAP person parameters (θjd) using RMSD of estimates to true 

values as an indicator of accuracy (Roberts et al., 2009a; Roberts & Shim, 2010).  Similar 

to the performance of MCMC with the unidimensional GGUM (Roberts & Thompson, 

2011), estimation accuracy for MGGUM item location (δid) and subjective response 

category threshold parameters (τik) is enhanced as sample size increases (Roberts et al., 

2009a; Roberts & Shim, 2010).  However, dimensional structure of items within the 

MGGUM appears to affect accuracy of parameter estimation as well.  Complex structure 

enhances accuracy of discrimination (αid) and subjective response category thresholds 

(τik), but has the opposite effect on person (θjd) and item location (δid) parameters.  

Estimation accuracy these parameters decreases in complex structure conditions, but 

improves with simple structure.  As noted by Roberts et al. (2009a), the reason item 

structure affects item location estimates in this manner is not entirely clear.  It may be 
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related to the calculation of RMSD.  RMSD in complex structure has been calculated 

using item location estimates for all dimensions.  However, in the case of simple 

structure, RMSD is calculated using only item location estimates for the measured 

dimension. 

With respect to person parameters (θjd), certain conditions have led to increased 

accuracy of estimates in the presence of complex structure items.  Longer tests with 

complex structure items lead to greater accuracy (Roberts et al., 2009a).  Although, with 

longer tests there will be more item parameters to estimate, which will likely be estimated 

with less accuracy (larger RMSD).  Despite differences in estimation accuracy for 

parameters in certain dimensional structure conditions, all estimates were of an 

acceptable level of accuracy (Roberts et al., 2009a; Roberts & Shim, 2010).  It is possible 

that similar findings regarding the effect of item structure on item location and person 

parameter estimates may occur with other estimation methods. 

In the unidimensional GGUM, MCMC/EAP estimation is an extremely time-

consuming process taking hours to converge upon a solution given the volume and 

complexity of the data (number of subjects, items, and response categories; Roberts & 

Thompson, 2011).  In the multidimensional model, the computational efficiency of 

MCMC/EAP estimation is substantially worse (Roberts et al., 2009a; Roberts & Shim, 

2010).  As model complexity increases, more time is required to estimate parameters.  

Days of estimation in a unidimensional model become weeks in a multidimensional 

model.  There is some appeal to implementing MCMC/EAP as it avoids calculation of 

potentially cumbersome derivatives and is able to conduct joint estimation of all model 

parameters (Béguin & Glas, 2001; Yao & Schwartz, 2006).  However, unless researchers 
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have ample time to conduct a study; it is not the most realistic option.  Waiting weeks for 

parameter estimates only to find out a model does not appear to fit the data is a luxury 

few can afford.  A marginal approach is likely to reach a solution much more efficiently. 

Efficiency may also be impacted by the selection of initial values, whether using a 

marginal or fully Bayesian estimation method.  Previous research implementing 

MCMC/EAP with a two-dimensional MGGUM identified initial values using 

unidimensional GGUM estimates (Roberts et al., 2009a; Roberts & Shim, 2010).  Initial 

values for the first dimension came from unidimensional estimates regardless of item 

structure, while values for the second dimension were set to zero.  Initial subjective 

response category thresholds were then computed based on item locations and the 

number of response categories following the technique of Roberts and Thompson (2011).    

Using the initial value strategy detailed above there is relatively no information 

guiding a starting point to estimate the second dimension.  In the case of simple structure 

items this may seem like a non-issue.  However, if some items assess one dimension and 

others assess a different dimension, this strategy implies that some of the items are being 

estimated from an item location and discrimination starting point of zero on their 

measured dimension.  In the case of complex structure, where items load onto all 

dimensions, there is at least some initial information for one dimension, but all items 

begin the estimation process with item locations and discriminations starting at zero on 

the remaining dimensions.  Therefore, a different initial value strategy which provides 

information relative to all dimensions may be more appropriate and increase efficiency.  

Detrended correspondence analysis (DCA; Hill & Gauch, 1980), a method used primarily 

in ecological research, is described in Section 5.4 as such an alternative. 
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 In addition to the issue of efficiency, previous research with MCMC/EAP in the 

MGGUM has raised other concerns.  Roberts et al. (2009a) and Roberts and Shim (2010) 

found that, on occasion, the meaning of dimensions could switch during a Markov chain.  

This is not a novel finding as Bolt and Lall (2003) observed something similar in their 

work with the Multicomponent Latent Trait Model (Whitely, 1980) using MCMC.  In 

addition, MCMC/EAP in the MGGUM incorrectly estimated the sign on the non-

measured dimension for a few individuals with extreme scores on that non-measured 

dimension (Roberts et al., 2009a).  Utilizing a different form of parameter estimation like 

MMAP/EAP may eliminate these problems.  For example, the misestimation of extreme 

person parameters may be related to the fact that MCMC jointly estimates parameters.  

Thus, it requires initial values for all types of parameters.  Simplifying the process and 

estimating one set of parameters at a time may improve accuracy of estimates.  In 

addition, EAP estimates based on marginal item estimates, like MMAP, are computed 

after obtaining item parameter estimates.  It is possible EAP estimation accuracy may 

improve when calculated using potentially more accurate item parameters. 

The reversal of dimensional meaning may also be related to the estimation 

method or perhaps the initial values of item parameters.  It is possible the identities of 

dimensions may still switch using MMAP/EAP.  However, integration of person 

parameters out of the solution may help stabilize the meaning of dimensions.  Regardless, 

the MMAP/EAP procedure should be relatively quick, and if dimensional switching still 

occurs, then its impact on the solution time should be relatively less than that seen with 

MCMC/EAP.  MCMC/EAP takes time to converge upon a posterior distribution after 

processing a number of burn-in iterations.  If dimensions switch within the MCMC/EAP 
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procedure additional burn-ins may be required, which would increase the duration of an 

already computationally burdensome method. 
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CHAPTER 4 

AIMS OF THE PRESENT STUDY 

 

 

 

As previously discussed, research has shown MMAP item and EAP person 

parameter estimation is equal or superior to MML/EAP and fully Bayesian MCMC/EAP 

approaches implemented in the GGUM with respect accuracy and computational 

efficiency (Roberts & Thompson, 2011).  The primary argument of the present research 

is that similar findings result when MMAP/EAP are applied to the multidimensional 

extension of the GGUM.   

Fully Bayesian techniques are presently implemented in the MGGUM via MCMC 

which provides EAP estimates of all model parameters.  The extensive computing time 

(i.e. days) required to use this method is not realistic for large-scale applications.  

MMAP/EAP offers an alternative estimation method that takes seconds/minutes to 

converge for the unidimensional GGUM.  Given the increase in model complexity, the 

use of MMAP/EAP in the MGGUM will be somewhat slower than in the GGUM.  

However, MGGUM parameter estimation with MMAP/EAP should take considerably 

less time than with MCMC/EAP, at least for situations with limited dimensionality.  

Therefore, this study implements MMAP item parameter estimation in a two-dimensional 

MGGUM.  The characteristics of this new approach are assessed using simulation 

techniques and the method is applied to real data to further illustrate its utility.  In light of 

the previous work with MCMC/EAP in the MGGUM, a direct comparative analysis of 

MMAP/EAP and MCMC/EAP is included as well to address the issues of accuracy and 

efficiency. 
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As researchers have suggested the selection of initial values may affect estimation 

accuracy and efficiency (Nader et al., 2011), this study utilizes an alternative method of 

selecting initial values.  Based on previous unidimensional work (Polak, 2011), detrended 

correspondence analysis (DCA; Hill & Gauch, 1980; see Section 5.4) is used to identify 

initial values for item and person location estimates.  Initial subjective response category 

thresholds are then computed based on the item locations estimated with DCA.  These 

initial values should be more informative, and hence lead to greater accuracy in a shorter 

amount of time when estimating MGGUM parameters. 
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PART II: PROCEDURE 
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CHAPTER 5 

PARAMETER ESTIMATION 

 

 

 

5.1 Item Parameter Estimation 

Implementing MMAP item parameter estimation in the MGGUM is a more 

complex process than with the unidimensional GGUM.  Integrating over the latent space 

within the EM algorithm becomes more computationally burdensome with each 

additional dimension in the model.  Typically 20-30 rectangular quadrature points are 

recommended in GGUM data demand studies (Roberts et al., 2002).  If this rationale is 

applied to the MGGUM, then each additional dimension added to the model would 

exponentially increase the number of quadrature points.  Thus, a simple two-dimensional 

MGGUM will require 900 quadrature points (i.e. 30 x 30).  In addition, as the number of 

quadrature points increase, there will be an associated increase in duration of the 

estimation process, and the computation time could become substantial.  In two-

dimensional models, MMAP will likely take less time than MCMC.  However, 

computational speed may still be an issue with MMAP in higher dimensional models.  

Research has suggested alternative estimation methods like adaptive quadrature may 

improve efficiency in such cases (Schilling & Bock, 2005).  This is beyond the scope of 

the current proposal, but is a direction for future research. 

The process of MMAP item parameter estimation in the MGGUM begins with 

deriving the likelihood function.  Within the MGGUM, the conditional probability of a 

response vector Xj given the jth individual’s latent trait levels is: 
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The marginal probability of a response vector becomes: 
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where g1(θj1) … gD(θjD) are prior population distributions for each of the D dimensions.  

Higher order integration is necessary with each additional dimensional in the MGGUM.  

Building upon this, the marginal posterior likelihood for the MGGUM becomes: 
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where 

xji is the observed response for the jth individual to the ith item, 

bd (δid) is a prior distribution for the ith item location on the dth 

dimension, 

ad (αid) is a prior distribution for the ith item discrimination on the dth 

dimension, and 

t (τik) is a prior distribution for the kth subjective response category for the 

ith item. 

Taking the logarithm of the marginal posterior likelihood in Equation 54 results 

in: 

   

           

        

1 1 1 1

1 1 1

1 1 1 1

ln ln ( )

        ln ( ) ln ln ln .

J I C

j i D iD i D D i k

j i k

J I D C

j d id d id i k

j i d k

L P b b a a t

P b a t

    

  

  

   

    
          

    
         

   

  

   

X

X

 (55) 



70 
 

MGGUM item parameters can be obtained by finding the respective roots of first-

order partial derivatives of Equation 55.  However, these estimates are approximated in 

quadrature form (full derivations are available in Appendix B): 
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and 
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where 
1 dq qA A  are quadrature coordinates (i.e. a quadrature point in d-dimensional 

space), and 

  
1 di q qP Z z A A  (59) 

is the probability of response z evaluated at a quadrature point.  Equations 56 through 58 

also involve the derivatives of Equation 59 with respect to a particular item parameter 

(δid, αid, τik), which are available in Appendix C. 

The expected number of individuals using a particular response category, z, for 

item i at a quadrature point is: 
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where Hjiz has a value of 1 when z equals xji and 0 otherwise.  The weight at a quadrature 

point in latent space is  
dqW A  and 
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is the conditional probability of a particular response pattern at a quadrature point in 

latent space.  The marginal probability of a particular response pattern is: 
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MMAP item parameter estimation with rectangular quadrature necessitates the 

specification of quadrature points along each dimension, forming a grid in the two 

dimensional case.  The EM algorithm is then implemented by evaluating item parameter 

estimates at each quadrature point along one dimension, holding the coordinate values for 

all other dimensions constant.  Next, the researcher evaluates estimates at quadrature 

points along the second dimension holding the coordinate values of all other dimensions 

constant.  This process is continued until all dimensions have been evaluated.  Final item 

parameter estimates are obtained when the global maximum of the log marginal 

likelihood function is identified across all dimensions. 

Following the approach of Roberts et al. (2000) and Roberts and Thompson 

(2011), Fisher scoring is used in the EM cycles.  Fisher scoring requires calculating 
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information with respect to a particular item parameter.  In a D-dimensional MGGUM, 

information for subjective response category thresholds estimates ( îk ) is equal to: 
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Subjective response category thresholds can then be estimated iteratively using the 

parameter gradient along with Equation 63 as follows: 
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When estimating item location ( ˆ
id ) and discrimination ( ˆ

id ) parameters that may vary 

across dimensions, information with respect to these parameters is defined as: 
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In a two-dimensional model this becomes: 
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Information is then used to iteratively update parameter estimates: 
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which in two dimensions is: 
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Preliminary work determined that a dimension by dimension approach was 

required to estimate item location ( ˆ
id ) and discrimination ( ˆ

id ) parameters.  In the case 

of items with simple structure, the information matrix associated with Equation 66 

contains both zero and non-zero values.  Non-zero values exist in the rows and columns 
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for the measured dimension parameters, while zero values pervade the rows and columns 

for the non-measured dimension.  Therefore, inversion of this matrix, as seen in Equation 

67, is not possible.  There are entire rows and columns containing values of zero for the 

non-measured dimension.  For consistency, the same method was applied to complex 

structure items because item structure is not always known before estimating item 

parameters.  Therefore, using a multidimensional likelihood, parameter estimates from 

each dimension are obtained using dimension-specific information: 

 
id id id id

id id id id

id

I I

I I
I  (69) 

in the updating of:  
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The iterative updating of parameters occurs until there is little to no change in values 

from one iteration to the next.  Derivations of elements in the information matrices 

denoted in Equations 63 and 69 can be found in Appendix D. 

5.2 Person Parameter Estimation 

 EAP estimates for D dimensions of latent traits are based on the expectation of an 

individual’s latent traits given the person’s response vector.  The conditional likelihood 

of the response vector, L(Xj|θj1…θjD), is multiplied by prior distributions for each 
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dimension, d.  Taking into account the observed response pattern, Xj, integration over the 

latent space leads to the EAP estimate for a particular dimension: 

  
     

     

1 1 11

1 1 11

... ... ...
E .

... ... ...

jd j jD j D jD j jDj

jd j

j jD j D jD j jDj

L g g d d

L g g d d

      


     

 

 

X
X

X

 (71)  

Equation 71 can be approximated with quadrature as: 
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Thus, with a set of fixed rectangular quadrature coordinates, EAP produces MGGUM 

person parameter estimates ( ˆ
jd ) for the jth individual on the dth dimension using 

Equation 72. 

5.3 MCMC / EAP Parameter Estimation 

Using the procedures of Roberts et al. (2009a) and Roberts & Shim (2010), 

MCMC/EAP estimation in the MGGUM is also implemented in this study for a subset of 

the replications in the simulation design to provide a direct comparison of MMAP/EAP 

to MCMC/EAP.  Metropolis-Hastings sampling is used to estimate item location ( ˆ
id ) 

and person ( 1
ˆ ˆ, , D  ) parameters while slice sampling is used to estimate discrimination 

( ˆ
id ) and subjective response category threshold ( îk ) parameters.  No rotational 

constraints are required in light of the previous discussion regarding identifying the 

optimal orientation of dimensions in the estimation process. 
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5.4 Detrended Correspondence Analysis (DCA) for Initial Values 

 Research suggests the selection of initial values for item parameters may impact 

the accuracy of resulting estimates (Nader et al., 2011).  For instance, it has been 

suggested estimation of item locations using initial values which are not in the vicinity of 

true item locations may lead to increased identification of local maxima (Roberts & 

Laughlin, 1996).  More informative initial values should avoid or at least identify fewer 

local maxima.  In addition, initial values closer to the true item parameters should 

decrease the time necessary to locate the global maximum. Therefore, it is desirable to 

obtain informative initial values for MGGUM item parameters. 

Previous research implementing correspondence analysis (CA; Greenacre, 2007) 

with data that are consistent with the unidimensional GGUM (Polak, 2011) shows 

promise for an alternative initial value strategy for the MGGUM.  CA, also known as 

reciprocal averaging (RA), is widely used in the field of ecology for categorical data and 

has only more recently been extended to other domains.  Based on a table of frequency 

counts, F, CA uses singular value decomposition to scale or obtain dimensional structure 

(coordinate locations) of variables from an n x m contingency table, P, with observations 

pnm.  Each identified CA axis/dimension is orthogonal to other axes/dimensions (ter 

Braak & Prentice, 1988). Similar to principal components analysis, the first dimension 

will account for the greatest variance, the second dimension will account for the 

maximum variance that is orthogonal to the first dimension, and so on.  Generally 

speaking, the dimensions accounting for the greatest variance and are subjectively 

interpretable are retained in the final solution (ter Braak, 1995). 
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Within the GGUM, F is a J x I matrix of observed responses (xji).  This matrix is 

then transformed into a correspondence matrix, P, also known as a contingency table, 

 /ji jip x x  (73) 

where x  is the sum over respective rows and columns.  As noted by Greenacre (2007), 

the general algorithm is computed by first obtaining a matrix of standardized residuals, S, 

using the correspondence matrix: 
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where 

r = P1 is a vector of row marginal probabilities, 

c = P
T
1 is a vector of column marginal probabilities, 

Dr is the diagonal matrix of row marginal probabilities, and 

Dc is the diagonal matrix of column marginal probabilities. 

The S matrix now consists of standardized deviations of locations in space based on a 

metric referred to as chi-square distances: 
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Next, the singular value decomposition of S is obtained through an iterative process, 

available in Appendix E, 

 T

aS UD V  (76) 
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where 

U contains uj1, …, uj[min(j-1, i-1)], 

V contains vi1, …, vi[min(j-1, i-1)], 

U
T
U = V

T
V = I, and 

Da is the min(j-1, i-1) x min(j-1, i-1) square diagonal matrix of singular 

values, a, in descending order. 

This singular value decomposition of a rectangular matrix is akin to eigenvector-

eigenvalue decomposition of a square symmetric matrix. 

After completion of this singular value decomposition, the standardized 

coordinates are computed separately for rows, Ф, and columns, Г, 
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The final row, R, and column, C, coordinates are calculated using the standardized 

coordinates from Equations 77 and 78, respectively, 
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One drawback of traditional CA is that an artifact known as the arch effect may 

be present.  This effect is identified when the estimated locations lie in an arch or 

parabolic shape along higher order dimensions (Peet, Knox, Case, & Allen, 1988).  
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Arches can occur anywhere beyond the first dimension regardless of whether these 

dimensions are interpretable (Jongman, ter Braak, & van Tongeren, 1995).  With a 

unidimensional solution, an arch may be present along the second dimension.  As seen in 

Figure 11 with a one-dimensional interpretable solution, item and person locations lie 

along an arch on the second dimension.  However, in the presence of a two-dimensional 

interpretable solution an arch may be present on the second dimension, as well as higher 

order dimensions.  In such situations the parabolic coordinate locations on higher order 

dimensions are artifacts of the estimation process.  

  

 

 

 

 

 

 

 

Figure 11.  CA location estimates for two dimensions. 

 

 

 

In the case of known unidimensional data, any additional dimensions identified by 

CA are typically ignored.  Therefore, the arch effect is not an issue.  However, with 

exploratory analyses, it becomes necessary to determine exactly how many dimensions 
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should be retained.  There are no definitive standards for retaining dimensions in the 

literature.  The common practice is to subjectively decide the proper number of 

dimensions based on interpretability.  Using this method, researchers will likely have to 

contend with arch effects. 

Another area of concern with CA is known as the edge effect (Greenacre, 2007).  

This occurs when there is decreased variation in the outer ranges of the latent space for 

higher order dimensions, whether interpretable or not.  This artificial compression of 

points along the extremes of a dimension can also be seen in Figure 11 for two 

dimensions.  The items and people located at the extreme ends the first dimension have 

decreased variation in their locations on the second dimension.  Again, with known 

unidimensional data, this effect is a non-issue.  However, higher order dimensional 

solutions will need to contend with edge effects because additional dimensions may be 

real dimensions versus artifacts of the estimation process.  Artificial compression along 

the extremes of an interpretable dimension will lead to less accurate location estimates.  

A solution to combat both the arch and edge effects in such situations will be discussed 

shortly. 

Using CA with row principal normalization, Polak (2011) conducted a parameter 

recovery study in the context of the unidimensional GGUM.  CA item location estimates 

of generated GGUM items were extremely close to actual item locations.  The high 

correspondence rate between estimates and true locations suggests CA is a sufficient 

method to obtain GGUM item location estimates.  While CA performed well with the 

GGUM, it should be noted that a second dimension was observed containing an arch 

effect.  As unidimensional data was used in the study, the second dimension was 
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discarded.  It should be noted there are other benefits to utilizing CA with the GGUM.  

CA does not require the specification of initial values or prior distributions in the 

estimation process.  In addition, CA is able to simultaneously estimate the location of 

persons and items, whereas marginal estimation methods require separate estimation of 

persons and items (Polak, 2011; Roberts & Thompson, 2011). 

 Given the performance of CA within the unidimensional GGUM in estimating 

item locations, it seems to reason that CA could be implemented within the MGGUM to 

provide informative initial values for item locations.  However, with multidimensional 

data the possibility of obtaining arch and edge effects must be addressed.  As an arch 

effect was observed in unidimensional data, it is quite likely one will also be observed in 

multidimensional data.  With respect to the edge effect, this may be a concern when there 

are few extreme MGGUM items such that there is decreased variability at the ends of a 

dimension.  The present study hopes to address and/or avoid these issues by 

implementing a variant of CA developed to alleviate, or at least diminish, these effects 

regardless of model dimensionality. 

Detrended correspondence analysis (DCA; Hill & Gauch, 1980) is a modification 

of CA, still based on chi-square distances, thought to be a more appropriate for analyzing 

multidimensional data (Peet et al., 1988).  After conducting CA to identify the number of 

dimensions and produce initial location estimates in multidimensional space, an 

additional step is added, namely the process of detrending.  This detrending is able to 

reduce the effects of both the edge and arch effects.  After detrending in a 

multidimensional solution, the first dimension will still account for the greatest amount of 

variance with additional dimensions accounting for decreasing amounts of variance.  
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Detrending is carried out such that locations on the second dimension are detrended with 

respect to the first dimension, locations on the third dimension are detrended with respect 

to the first and second dimensions, and so on with all higher order dimensions detrended 

with respect to lower order dimensions (Jongman et al., 1995). 

There are two common ways to detrend, but both methods will flatten an existing 

arch effect.  An arch on the second dimension can be thought of as the result of folding 

along the first dimension.  In order to reduce this arch, one detrending method is to 

segment the first dimension and normalize locations on the second dimension within each 

of the segments.  The edge effect is then reduced by re-segmenting and re-normalizing 

multiple times using different starting points along a dimension (Hill, 1994).  The number 

of segments used is arbitrary and set by the researcher.   

The second detrending method is to detrend by higher order polynomials.  A 

second extracted dimension is identified so that it is orthogonal to the first dimension.  

Thinking of an arch as the result of folding the first dimension, the presence of an arch 

suggests the second dimension is quadratically related to the first dimension.  Therefore, 

detrending by polynomials requires an extracted dimension be orthogonal to a lower 

order dimension and orthogonal to the square, cube, etc., of that lower order dimension 

(Jongman et al, 1995).  It is argued this is a ‘more stable’ method of detrending since 

detrending by segments can still lead to artificial compression of variance, otherwise 

known as the edge effect (Jongman et al, 1995, p.108; Minchin, 1987).  Upon completion 

of the detrending process, regardless of the detrending method, the resulting location 

estimates should resemble those found in Figure 12 for two interpretable dimensions with 

reductions in the arch and edge effects compared to Figure 11. 
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Figure 12.  DCA location estimates for two dimensions. 

 

 

 

 Implementing DCA within the MGGUM for item location initial values involves 

first obtaining CA estimates of item locations for each dimension based on the 

aforementioned computations in Equation 80, as well Appendix E.  Item locations are 

estimated using: 
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where κ takes on a value of 0 for row principal normalization, 1 for column principal 

normalization, or ½ for symmetric normalization.  This study utilizes row principal 

normalization such that locations are normalized within a row or person (Polak, 2011). 
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Detrending by polynomials is then conducted to obtain estimates for higher order 

dimensions by extracting each additional dimension such that it is orthogonal not only to 

lower order dimensions, but any polynomial function of lower order dimensions.  

Coordinate locations on the second dimension are identified such that they are orthogonal 

to locations on the first dimension, 2 1
ˆ ˆ ,i i   and orthogonal to the square of locations on 

the first dimension,  
2

2 1
ˆ ˆ .i i    Locations on the third dimension are identified such 

that they are orthogonal to locations on the first dimension, 3 1
ˆ ˆ ,i i   orthogonal to the 

square of locations on the first dimension,  
2

3 1
ˆ ˆ ,i i   and orthogonal to the cube of 

locations on the first dimension,  
3

3 1
ˆ ˆ .i i    In an analogous fashion, locations on the 

third dimension will also be orthogonal to locations on the second dimension to the first, 

second, and third power.  The extraction of further higher order dimensions continues in 

the same manner (Jongman et al., 1995).  This is implemented in the iterative singular 

value decomposition process found in Appendix E.  Thus, in a two-dimensional 

MGGUM, this implies DCA item locations on the first dimension will be equal to CA 

item locations on the first dimension.  Only locations on higher order dimensions will 

differ between the two methods given the detrended dimensional extraction. 

In light of the past success identifying GGUM item locations with CA and the 

ability to counteract the arch and edge artifacts using DCA, the present study implements 

DCA with detrending by polynomials to identify initial values for MGGUM item 

locations (δid).  While DCA is utilized to identify initial values for item location 
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parameters, item discrimination and subjective response category threshold parameters 

also require initial values for MMAP estimation, which is discussed further in Chapter 6. 
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CHAPTER 6 

SIMULATION DESIGN 

 

 

 

6.1 Estimation Programs 

Following the design of previous research with the MGGUM (Roberts et al., 

2009a; Roberts & Shim, 2010) and GGUM (Roberts & Thompson, 2011), a parameter 

recovery study and analysis of real attitude measurement data was conducted.  

Multidimensional MMAP item parameter estimates ( ˆ ˆ ˆ,  ,  id id ik   ) were obtained with 

rectangular quadrature using Fisher scoring.  EAP person parameter estimates ( ˆ
jd ) were 

then calculated using final MMAP item parameter estimates.  The MMAP/EAP 

estimation was performed with a modified version of the GGUM2004 software (Roberts 

et al., 2006).  The FORTRAN modifications were performed by the author to estimate 

MGGUM parameters using MMAP/EAP.  MCMC estimation of parameters was 

accomplished using OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009), an open-

source version of WinBUGS (Spiegelhalter et al., 2007).  All work was conducted on 

computers running a 64-bit operating system with either Intel® Core™ 2 Quad 

processors or Intel® Core™ i7 processors and 8 GB of memory. 

6.2 Factorial Design 

This study utilized a two-dimensional MGGUM.  The performance of 

MMAP/EAP was examined while varying test length, sample size, number of response 

categories, and dimensional structure.  Three test lengths (10, 20, and 30 items), six 

sample sizes (500 to 2000 subjects in increments of 250), three response category 

conditions (2, 4, and 6 response categories), and two dimensional structure conditions 
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(simple and complex structure) were included.  Following recommendations with the 

unidimensional GGUM (Roberts et al., 2002), there were 30 replications in each cell.  

Therefore, the MMAP/EAP parameter recovery study utilized a 3 x 7 x 3 x 2 (test length x 

sample size x response category x dimensional structure) design for a total of 126 cells 

with 30 replications each; resulting in 3,780 total replications. 

Efficiency and accuracy of MMAP/EAP and MCMC/EAP was examined in a 

subset of the aforementioned design.  Previous GGUM research indicated a difference in 

accuracy of parameter estimates between MMAP/EAP and MCMC/EAP manifested 

while varying the number of response categories (Roberts & Thompson, 2011).  The 

estimates were most discrepant with two response categories, but little difference was 

observed with six response categories.  No differences were found between the 

estimation methods while varying sample size or test length.  Thus, MGGUM estimates 

in the current study were compared for two and six response categories, while holding the 

number of subjects (2000) and items (20) constant.  Divergent accuracy results were 

thought to occur more often when comparing estimates from complex structure items, so 

item structure was held constant as well.  Finally, in light of the time required to 

implement MCMC/EAP with the MGGUM (Roberts et al., 2009a; Roberts & Shim, 

2010) only five replications were examined in each of these two cells of interest. 

6.3 True Parameters 

True person parameters (θjd) were sampled from a multivariate normal 

distribution Θj ~ MVN(0, I).  True values of multidimensional item parameters (δid, αid) 

were developed from past MMAP estimates of GGUM parameters (Roberts, Lin, & 

Laughlin, 2001; Roberts & Thompson, 2011).  MMAP item parameter locations of 
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generated GGUM data were used to classify items into five equally-spaced intervals.  In 

the case of simple structure, stratified random sampling with replacement resulted in the 

selection of an equal number of items from each interval.  Half of the items were 

assigned GGUM estimates as truth on the first dimension with the second dimension 

zeroed out.  The remaining items reversed the assignment of GGUM estimates on 

dimensions.  This resulted in an equal number of items spanning each dimension.  For 

complex structure items, stratified random sampling with replacement was conducted 

twice, once for each dimension, resulting in an equal number of items from each interval.  

The samples for each dimension were randomly paired and the associated GGUM 

estimates were assigned to an item.  In accordance with previous research, all item 

discrimination (αid) true values were rescaled by 1 2  so that similar information from 

different latent dimensions was available as dimensional structure varied (Roberts et al., 

2009a).  Subjective response category thresholds, on the other hand, were held constant 

across dimensions for an item.  Therefore, true τik parameters came from the average of 

resampled unidimensional GGUM τik parameters. 

6.4 Item Response Generation 

True person and item parameters were used as input in the calculation of the 

probability of utilizing a specific response category using Equation 45.  These 

probabilities then divided a [0, 1] interval into corresponding segments.  After generating 

a random uniform number, the location of the number within the interval (within a 

probability range of a particular response category) indicated the generated response for 

that item.  A contingency table check of the generated item responses verified all 

response categories were utilized across all items within a replication. 



89 
 

6.5 Prior Distributions 

Person (θjd), item location (δid), and subjective response category threshold (τik) 

parameters were estimated in MMAP/EAP and MCMC using the following prior 

distributions: θjd ~ MVN(0, I), δid ~  N(0, 4), and τik ~  Lognormal(μik, 1), where μik is a 

linear function dependent upon the number of response categories and item location 

(difficulty) extremity.  This function led to prior values for successive subjective 

response category thresholds that generally fell closer together as the number of response 

categories increased.  It also shifted the prior values away from the item location (δid) as 

the number of categories decreased. 

Prior distributions for item discrimination (αid) parameters varied by estimation 

method.  Pilot testing of a lognormal(0, 2) distribution with MMAP/EAP resulted in 

problematic item discrimination estimates ( ˆ
id ) for simple structure items.  Item 

discrimination estimates ( ˆ
id ) for the non-measured dimension were at times noticeably 

different from zero (e.g. ˆ 0.37id  ).  Therefore, following the work of Béguin and Glas 

(2001), a normal prior, N(0,1), was used for item discrimination (αid) estimation in 

MMAP/EAP.  This prior had no noticeable effect on the MMAP/EAP estimates of 

complex structure items.  Therefore, it was used for both complex and simple structure 

items.  Pilot testing implementing the same normal prior in MCMC, where only complex 

structure items are considered, resulted in discrepant item discrimination estimates (αid).  

Item discrimination estimates ( ˆ
id ) for measured dimensions were at times noticeably 

close to zero (e.g. ˆ 0.08id  ).  Thus, MCMC item discrimination (αid) estimation utilized 

a lognormal(0, 2) prior distribution used in earlier studies (Roberts & Shim, 2010). 
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6.6 Initial Values 

The computer program CANOCO (ter Braak & Smilauer, 2002) was used to 

perform DCA on a generated item response matrix for each replication.  This analysis 

resulted in item location (δid) and person location (θjd) coordinates in the same two-

dimensional space.  Initial subjective response category thresholds (τik) for both methods 

were computed using the initial item location (δid) coordinates following the technique 

suggested in Roberts and Laughlin (1996).  These thresholds need not be equidistant, but 

are constant across dimensions with τi0 = 0 for all items.  Given that subjective response 

category thresholds are impacted by the extremity of an item, it is first necessary to 

identify the origin or location, O, with respect to the interthreshold distance.  This is 

accomplished by approximating: 

   2 2

1 1 2ln ln .961 .707 .i i iO      
 

 (82) 

Next, an interthreshold distance quantity, Δ, based on the number of response categories, 

is incorporated into the approximation formula.  This yields initial estimates for 

successive item thresholds as k increases: 

           2 2 2

1 2ln ln .961 .707 2 .825 .732 .096 .ik i iO k C C               
 (83) 

If the initial value of τik was less than zero, it was set to the arbitrary small value of 

ln(0.1). 

Initial values for item discrimination (αid) parameters were set to 0.25 for all 

dimensions regardless of item structure and estimation method. 
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6.7 Quadrature 

Numerical integration was performed in both the MMAP and EAP algorithms 

using rectangular quadrature in which there were 30 quadrature points spanning from -4.0 

to 4.0 on each dimension.  This gave rise to a 900 point grid on the two-dimensional 

latent plane.  Quadrature points and the associated densities were static throughout both 

the MMAP and EAP procedures.     
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CHAPTER 7 

RESULTS 

 

 

 

7.1 DCA Initial Values 

Prior to implementing the resultant DCA coordinates as initial values, the 

correlations between true multidimensional coordinate values and the DCA coordinate 

estimates were examined.  Strong correlations were observed for items (average absolute 

r = 0.85) and persons (average absolute r = 0.90).  On occasion, the DCA process 

reversed the poles of a dimension such that positive estimates corresponded with negative 

true generated values and vice versa, but this is irrelevant to the MGGUM likelihood 

function. 

As an example, Figures 13 and 14 present one replication of DCA coordinates for 

items and persons, respectively, with 2000 subjects, 20 items, and 6 response categories 

in the complex structure condition.  Panel I of each figure depicts the true parameter 

values, while Panel II depicts the DCA coordinate estimates. 
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Figure 13.  True (Panel I) and estimated DCA (Panel II) item locations. 
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Figure 14.  True (Panel I) and estimated DCA (Panel II) person locations. 

 

 

 

In light of compression around the origin for the DCA estimates visible in Figures 

13 and 14, coordinate locations of items and persons were rescaled to match their 

corresponding prior distributions, δid ~ N(0, 4) and θjd ~ MVN(0, I).  Figures 15 and 16 
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present the rescaled DCA coordinates of items and persons, respectively, for the same 

replication of 2000 subjects, 20 items, and 6 response categories in the complex structure 

condition.   

 

 

Figure 15.  Rescaled DCA item location coordinates. 
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Figure 16.  Rescaled DCA person location coordinates. 

 

 

 

The rescaled item location (δid) coordinates were then used as initial values in MMAP 

and MCMC estimation.  Initial values for person parameters were also required for 

MCMC, thus the rescaled DCA person location coordinates were utilized. 

7.2 Parameter Recovery 

Comparisons of true and estimated item and person parameters were examined 

using the average RMSD across parameters in a given replication.  The RMSD is a 

function of the similarity of means, variances, and covariance between true and estimated 

values.  In this simulation study, the RMSDs for estimates of item locations ( ˆ
id ), item 

discriminations ( ˆ
id ), and person parameters ( ˆ

jd ) were calculated as: 

 

  
2 2

1 1

ˆ

.
2

G
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g d
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 
 






 (84) 
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Here 

g is a specific item or person, 

G is the total number of items or persons, 

d is the specific dimension, 

λgd is the true parameter value for δid, αid, or θjd, respectively, and 

ˆ
gd is the estimated parameter value for δid, αid, or θjd. 

Vgd was set to one when estimating the RMSDs for ˆ
id  and ˆ

jd .  When estimating 

ˆ
id  in the simple structure condition, Vgd was set to one for the measured dimension and 

zero for the non-measured dimension.  For the complex structure condition Vgd was set to 

one for both dimensions.  Following Roberts et al. (2009a) and Roberts et al. (2002), 

mean square deviations for subjective response category thresholds were pooled across C 

response categories when calculating the RMSD: 

 

 
2

1 1

ˆ

ik

I C

ik ik

i kRMSD
IC



 
 






 (85) 

where 

  ik  is the true parameter value and 

  îk  is the estimated parameter value. 

 Four between-subjects factorial analyses of variance were conducted using the 

RMSD for a given parameter as the dependent measure in order to evaluate the accuracy 

of MMAP/EAP estimates.  Each ANOVA examined the main effect of test length, 

sample size, number of response categories, and item structure along with all possible 
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interactions.  Results were deemed interpretable when the effect size (η
2
) was greater than 

or equal to 5% and observed statistical significance was below the Bonferroni corrected 

statistical significance level of p ≤ .05/4.  The Type I error rate was divided by four 

because the same ANOVA model was used to assess the accuracy of each of the four 

types of MGGUM parameters.   

Separate split-plot analyses were conducted to compare the accuracy of 

MMAP/EAP and MCMC/EAP parameter estimates.  Each of these analyses examined 

the main effects of estimation method and number of response categories (limited to 

either 2 or 6 categories) and their interaction.   Estimation method was treated as a 

within-replications factor whereas the number of response categories was a between-

replications effect.  Following Roberts and Thompson (2011), the effect size within a 

family ( 2

w ) was calculated for a given effect based on the sum of squares associated with 

either the between-replications or within-replications part of the design.  Again, results 

were considered worthy of interpretation when 2

w  > .05 and p ≤ .05/4. 

7.2.1 MMAP / EAP Parameters 

Preliminary testing implementing a normal prior distribution to estimate 

MGGUM item discriminations ( ˆ
id ) allowed the resulting estimates to have positive or 

negative values.  This was most evident when estimating parameters in the simple 

structure condition.  Following the guidelines in previous research using normal prior 

distributions, negative item discrimination estimates ( ˆ
id ) were treated as missing data 

and ignored in subsequent analyses of RMSDs (Béguin & Glas, 2001; Finkelman, 

Hooker, & Wang, 2010).   
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In addition, use of a normal prior distribution for item discriminations required 

the implementation of a new check on the feasibility of estimating a given item location.  

Specifically, if an estimated discrimination parameter had a value too close to zero during 

a maximization loop (i.e. within the interval [-0.075, +0.075]), then the associated item 

location estimate ( ˆ
id ) for that dimension was set to zero, regardless of the item’s true 

latent structure.  The logic behind this constraint has foundations in Sympson’s (1978) 

work wherein there are an infinite number of possible item locations (δi) for a given item 

if the corresponding item discrimination (αi) is truly zero.  When item discrimination 

values (αid) are near zero, the likelihood function is essentially flat across the associated 

dimension.  Therefore, attempting to locate the maximum of such a function is extremely 

difficult.  Dimensional item location estimates ( ˆ
id ) were thus constrained to have a 

value of zero when the associated dimension’s item discrimination estimates ( ˆ
id ) were 

too close to zero.  Should item discrimination estimates ( ˆ
id ) move outside the interval 

cutoff prior to meeting the iterative convergence criterion, then item locations ( ˆ
id ) were 

again freely estimated. 

This artificial constraint on item location estimates ( ˆ
id ) due to small item 

discrimination estimates ( ˆ
id ) was most prominent in the simple structure condition.  In 

this condition, 85.47% of all item discrimination estimates ( ˆ
id ) were outside the 

constraint interval, with 14.53% within it.  For the measured dimension, where the true 

discrimination values (αid) were non-zero, 99.77% of the estimates were outside the 

constraint interval.  Only 0.23% of the item discrimination estimates ( ˆ
id ) for the 
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measured dimension were within the constraint interval, thus forcing artificial item 

locations ( ˆ
id ) of zero.  For the non-measured dimension, where true discrimination 

values (αid) were zero, 71.16% of the item discrimination estimates ( ˆ
id ) were outside the 

constraint interval, while 28.84% were within it.  There was only one instance in the 

complex structure condition (one dimension of one item) where a small item 

discrimination estimate ( ˆ
id ) led to a constraint on an item location estimate ( ˆ

id ).  

Under the assumption that researchers may not always have a priori knowledge of 

the true structure of an item, all non-negative item discrimination estimates ( ˆ
id ) outside 

the cutoff interval are included in the forthcoming analyses regardless of whether they are 

associated with true measured or non-measured dimensions.  In the complex structure 

condition, all estimates of item locations ( ˆ
id ) are examined, except for the single 

dimension item location estimate ( ˆ
id ) that was constrained to be zero due the small 

corresponding item discrimination estimate ( ˆ
id ).  However, in the simple structure 

condition, item location estimates ( ˆ
id ) are examined only for the measured dimensions 

when corresponding true discrimination values (αid) are non-zero and the associated item 

discrimination estimates ( ˆ
id ) are outside the constraint interval. 

With respect to subjective response category thresholds (τik), these MGGUM 

parameters do not vary by dimension.  However, the challenging or sometimes 

impossible task of identifying an item’s location (δid) when the discrimination value (αid) 

is very small also leads to problems with properly locating the corresponding subjective 

response category thresholds (τik).  As such, only information from the measured 
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dimensions is helpful in locating these estimates.  Thus, in the present study all subjective 

response category threshold estimates ( îk ) are examined in the complex structure 

condition.  Yet, in the simple structure condition subjective response category threshold 

estimates ( îk ) are only included in the recovery analyses when the item location 

estimates ( ˆ
id ) for the measured dimension were not subject to the artificial constraint.  

However, as a reminder, the locations were only constrained 0.23% of the time for the 

measured dimensions, so almost all of the subjective response category threshold 

estimates ( îk ) were analyzed using this strategy. 

Person parameter estimates ( ˆ
jd ) were assumed to be substantially unaffected by 

the constraint because they are computed based on all estimated item parameters for all 

items on a simulated questionnaire.  As no replication resulted in every item being 

subject to the constraint, there were still informative items available to compute person 

parameter estimates ( ˆ
jd ).  Thus, all person parameter estimates ( ˆ

jd ) are included in the 

recovery analysis regardless of item structure. 

7.2.1.1 Convergence 

Convergence for MMAP item parameter solutions was operationally defined as 

parameter values changing less than 0.0005 from one iteration to the next.  A maximum 

of 1000 expectation (outer) cycles, 30 maximization (inner) cycles, 50 Fisher scoring 

iterations for subjective response category thresholds, and 50 Fisher scoring iterations for 

item locations and item discriminations were allowed.  All replications converged using 

these criteria (expectation cycle mean = 117, s.d. = 125), however some replications 
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converged faster than others (expectation cycle minimum = 20, expectation cycle 

maximum = 974).  Item structure, complex versus simple, impacted convergence with 

complex structure requiring more cycles (expectation cycle mean = 143, s.d. = 117) than 

simple structure (expectation cycle mean = 92, s.d. = 133).  Table 1 presents the average 

number of expectation cycles required for convergence across the different conditions of 

the factorial design.  Convergence was fairly consistently achieved with a similar average 

number of expectation cycles across the different sample size conditions in the respective 

item structure conditions.  However, as the number of response categories increased, the 

average number of expectation cycles required decreased in both item structure 

conditions.  While a general decrease in the average number of expectation cycles was 

observed in the complex structure condition as test length increased, the simple structure 

condition required more expectation cycles, on average, as test length increased. 

Related to the average number of expectation cycles needed to achieve 

convergence is the duration of computer time required.  Also presented in Table 1 is the 

average duration, in minutes, required for parameter estimation across replications.  

Overall, each solution took, on average, 53 minutes (mean = 53.10, s.d. = 88.42).  Across 

the structure conditions as the number of subjects increased the duration required 

decreased, but substantially more so with simple structure.  As test length increased there 

was an associated increase in duration, but again this increase was more pronounced for 

simple structure.  Increases in the number of response categories also increased the time 

required for simple structure, but there was a slight decrease in duration for complex 

structure.  In general, complex structure solutions (mean = 13.83, s.d. = 28.84) took 

substantially less time to converge relative to simple structure solutions (mean = 92.37, 
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s.d. = 148.00).  The discrepancy between estimation in the complex structure condition 

taking less time than the simple structure condition, yet requiring more expectation cycles 

may be related to fewer cycles being required within the maximization loop.  Conversely, 

estimation in the simple structure condition may have required more cycles within the 

maximization loop.  However, this is just one possible explanation, as only the number of 

expectation cycles were tracked during the estimation process in this study.  Given the 

shorter duration, these results indicate MMAP/EAP parameter estimation in the 

MGGUM is more efficient with complex structure items compared to parameter 

estimation with simple structure items. 
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Table 1.  Convergence of MMAP/EAP replications by item structure condition. 

Factorial Condition 

Average Expectation Cycles Average Duration (minutes) 

Complex Simple Complex Simple 

Sample Size     

500 158 90 33.98 154.37 

750 140 108 17.37 103.68 

1000 144 108 11.08 97.19 

1250 141 78 9.34 82.02 

1500 132 81 9.80 77.86 

1750 140 78 8.69 64.83 

2000 144 100 9.02 66.69 

Test Length     

10 170 63 6.24 19.51 

20 123 98 12.67 75.80 

30 134 143 22.60 181.82 

Response Categories     

2 203 118 17.21 54.29 

4 122 98 10.87 88.05 

6 104 72 13.36 134.79 
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7.2.1.2 Parameter Recovery 

 Interpretable effects were identified after analyzing the average RMSD using the 

aforementioned ANOVA models.  However, prior to those analyses it was necessary to 

match the true and estimated dimensions, as well as the proper signs corresponding to a 

particular end of the latent continuum.  Magnitude and direction of correlations were used 

to identify the proper dimensional assignment and the poles of the latent continuum.  Of 

the total 3,780 replications, there were 1,698 instances of dimensions needing to be 

switched.  Of the total 7,560 possible instances of sign flipping within a dimension, 5,230 

dimensions within replications required a sign adjustment. 

 In addition, it was necessary to rescale the MMAP/EAP estimates to the metric of 

the true parameters prior to computing the RMSDs because these estimates were 

overconstrained by the fixed hyperparameters used with the item prior distributions.  

True person parameter values were regressed on the EAP estimates by dimension within 

each replication.  The resulting intercepts and slopes were used to set the origin and unit 

of MMAP/EAP estimates to that of the true parameters.  Person parameter ( ˆ
jd ) and item 

location ( ˆ
id ) estimates were multiplied by the slope and shifted along the dimension 

according to the value of the intercept.  Subjective response category threshold estimates 

( îk ) were multiplied by the slope, while item discrimination estimates ( ˆ
id ) were 

multiplied by the inverse of the slope. 

 The average RMSDs of all parameter estimates across all conditions were equal to 

0.241, 0.166, 0.297, and 0.335 for MMAP item ( ˆ ˆ ˆ,  ,  id id ik   ) and EAP person parameter 
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( ˆ
jd ) estimates, respectively.  Table 2 presents the average RMSDs in the factorial design 

conditions, while statistical results from the analyses of variance are presented in Table 3. 
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Table 2.  Average RMSD of parameter estimates by condition. 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

Sample Size     

500 0.330 0.232 0.388 0.344 

750 0.281 0.205 0.341 0.341 

1000 0.253 0.175 0.313 0.336 

1250 0.223 0.152 0.277 0.332 

1500 0.216 0.144 0.271 0.331 

1750 0.199 0.131 0.249 0.330 

2000 0.187 0.124 0.242 0.329 

Test Length     

10 0.289 0.204 0.319 0.427 

20 0.226 0.154 0.291 0.315 

30 0.209 0.140 0.281 0.262 

Response Categories     

2 0.313 0.266 0.304 0.422 

4 0.225 0.141 0.287 0.304 

6 0.187 0.091 0.301 0.277 
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Table 2.  Continued. 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

Item Structure     

Complex 0.316 0.167 0.204 0.357 

Simple 0.166 0.165 0.390 0.312 
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Table 3.  η
2
 values for analysis of variance effects. 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

Sample Size 9.78% 8.85% 12.30% 0.27% 

Test Length 5.23% 4.87% 1.30% 46.55% 

Response Categories 12.58% 35.13% 0.28% 38.82% 

Sample Size x Test Length 0.19% 0.48% 0.13% 0.02% 

Sample Size x Response Categories 0.92% 2.86% 0.13% 0.24% 

Test Length x Response Categories 0.67% 2.50% 0.18% 0.82% 

Sample Size x Test Length  

        x Response Categories 
0.16% 0.56% 0.42% 0.05% 

Item Structure 25.14% 0.01% 43.75% 4.90% 

Item Structure x Sample Size 1.49% 0.92% 0.08% 0.14% 

Item Structure x Test Length 0.24% 0.75% 0.05% 0.18% 

Item Structure x Response Categories 6.08% 6.46% 6.81% 2.03% 

Item Structure x Sample Size 

        x Test Length 0.21% 0.28% 0.21% 0.03% 

Item Structure x Sample Size 

        x Response Categories 0.58% 2.03% 1.22% 0.22% 

Item Structure x Test Length 

         x Response Categories 1.39% 1.96% 0.94% 0.03% 

Item Structure x Sample Size 

        x Test Length  

        x Response Categories 

0.28% 0.55% 0.37% 0.04% 

Note: Values in bold were statistically significant effects at the p < 0.0125 level with η
2
 

larger than 5%, and thus, are deemed interpretable. 
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A main effect of the number of subjects was interpretable for all item parameter 

estimates ( ˆ ˆ ˆ,  ,  id id ik   ).  The same effect was also observed in previous GGUM and 

MGGUM research (Roberts & Thompson, 2011; Roberts et al., 2009a; Roberts & Shim, 

2010).  As seen in Figures 17, 18, and 19, there is a decrease in average RMSD of 

parameter estimates for item locations (F(6,3654) = 169.86, p < 0.0001), item 

discriminations (F(6,3654) = 169.64, p < 0.0001), and subjective response category 

thresholds  (F(6,3654) = 390.50, p < 0.0001) as the number of subjects increase, from 

which an increase in estimation accuracy can be inferred.  As sample size increased from 

500 to 2000 simulees, item location ( ˆ
id ) average RMSDs decreased from 0.330 to 0.187, 

item discrimination ( ˆ
id ) average RMSDs decreased from 0.232 to 0.124, and subjective 

response category threshold ( îk ) average RMSDs decreased from 0.388 to 0.242.  

Across these parameters there appears to be less of a decrease in average RMSD values 

when increasing sample sizes beyond 1250 subjects.  Thus, the greatest benefit in 

accuracy of parameter estimation is likely achieved when increasing sample sizes up to 

1250 subjects.  
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Figure 17.  Average RMSD of item location estimates across subject conditions. 

 

 

Figure 18.  Average RMSD of item discrimination estimates across subject conditions. 
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Figure 19.  Average RMSD of subjective response category threshold estimates across 

subject conditions. 
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Figure 20.  Average RMSD of item location estimates across test length conditions. 
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increased; leading to enhanced accuracy of parameter estimates.  Item location ( ˆ
id ) 

average RMSDs decreased from 0.313 to 0.187 and item discrimination ( ˆ
id ) average 

RMSDs decreased from 0.266 to 0.091.  As such, it appears as though estimation 

accuracy of both of these parameters benefits from increasing the number of response 

categories. 

 

 

Figure 21.  Average RMSD of item location estimates across response category 

conditions. 
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Figure 22.  Average RMSD of item discrimination estimates across response category 

conditions. 
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2010) wherein having responses to more items provides more information to better 

estimate person parameters ( ˆ
jd ). 

 

 

 

Figure 23.  Average RMSD of person parameter estimates across response category 

conditions. 
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Figure 24.  Average RMSD of person parameter estimates across test length conditions. 
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structure for person parameter estimates ( ˆ
jd ).  Previous MGGUM research using 

MCMC/EAP found the opposite to be true; identifying a main effect of item structure and 

an interaction effect of item structure with test length (Roberts et al., 2009a; Roberts & 

Shim 2010).  The current study used MMAP/EAP, incorporated greater variation in the 

factorial design, and increased the number of replications within a cell.  The use of a 

different estimation method and/or the limited sample of the earlier work may have 

contributed to these discrepant results.  It should be noted, however, that the average 

RMSDs for person parameter estimates ( ˆ
jd ) appear more similar to those obtained in 

previous research for the complex structure condition as opposed to the simple structure 

condition. 

Several interpretable main and interactions effects involving item structure were 

observed for item parameter estimates ( ˆ ˆ ˆ,  ,  id id ik   ).  As a reminder, these results are 

based on all positive item discrimination estimates ( ˆ
id ) and those item location 

estimates ( ˆ
id ) not subject to the artificial constraint for the measured dimension(s), 

where true item discrimination values (αid) were non-zero.  However, this led to the 

inclusion of 71.16% of item discrimination estimates ( ˆ
id ) on the non-measured 

dimensions of items in the simple structure condition.  As researchers typically have little 

to no a priori knowledge of appropriate item structure, this is arguably a valid approach.  

In addition, subjective responses category threshold estimates ( îk ) were included for all 

complex structure items, but only included for simple structure items when an item 

location estimate ( ˆ
id ) for a measured dimension was not subject to the constraint.  Given 
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that only 0.23% of the measured dimensions’ item location estimates ( ˆ
id ) were 

constrained in the simple structure condition, the representativeness of these results is not 

likely impacted.  However, the majority (72%) of item discrimination estimates ( ˆ
id ) for 

non-measured dimensions were larger than the cutoff and thus included in analyses.  

Thus, accuracy of estimates in the simple structure condition may be impacted by this 

selectivity. 

The present results identified interpretable main effects of item structure for item 

location (F(1,3654) = 2620.52, p < 0.0001) and subjective response category threshold 

(F(1,3654) = 5020.62, p < 0.0001) estimates.  As seen in Figure 25, the average RMSD 

of item location estimates ( ˆ
id ) was larger in the complex structure condition, 0.316, 

compared to that obtained in the simple structure condition, 0.166.  This suggests 

enhanced accuracy within simple structure.  A potential rationale is that the increased 

dimensional complexity makes identifying an item’s location more challenging.  These 

findings also coincide with previous MGGUM estimation work (Roberts et al., 2009a; 

Roberts & Shim, 2010).  Figure 26, on the other hand, identified the reverse effect for 

estimates of subjective response category thresholds ( îk ).  Again, this effect replicated 

that found in previous MGGUM research (Roberts et al., 2009a; Roberts & Shim 2010).  

The average RMSD of subjective response category threshold estimates ( îk ) in the 

complex structure condition, 0.204, was significantly smaller than in the simple structure 

condition, 0.390.  Regardless of item structure, subjective response category thresholds 

(τik) remain constant across dimensions.  Therefore, it is conceivable the additional 

information provided by the second measured dimension enhances parameter estimation 
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accuracy of complex structure items compared to simple structure items, where 

information from only one measured dimension is considered.   

 

 

 

Figure 25.  Average RMSD of item location estimates by item structure condition. 

 

 

 

 

Figure 26.  Average RMSD of subjective response category threshold estimates by item 

structure condition. 
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The lack of a main effect of item structure for item discrimination estimates ( ˆ
id ), 

as identified in earlier MGGUM work (Roberts et al., 2009a; Roberts & Shim 2010), may 

be due to differences in the factorial designs of the studies.  The present study varied the 

number of response categories which led to interpretable two-way interaction effects of 

item structure and the number of response categories for all item parameter estimate 

(item location: F(2,3654) = 317.18, p < 0.0001; item discrimination: F(2,3654) = 37145, 

p < 0.0001; subjective response category threshold: F(2,3654) = 390.50, p < 0.0001).  

These interpretable interaction effects varied by parameter type, as seen in Figures 27, 28, 

and 29. 

 

 

 

Figure 27.  Average RMSD of item location estimates for item structure by response 

category condition. 
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Figure 28.  Average RMSD of item discrimination estimates for item structure by 

response category condition. 

 

 

 

 

Figure 29.  Average RMSD of subjective response category threshold estimates for item 

structure by response category condition. 
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The interaction effect present in Figure 27 identifies differential changes in 

accuracy of item location parameter estimates ( ˆ
id ) according to the structure of an item 

while varying the number of response categories.  There are small increases in accuracy 

of these estimates in the simple structure condition when the number of response 

categories increases, as evident by the decreasing RMSDs.  Accuracy in the complex 

structure condition increases substantially more when moving from two to four response 

categories compared to when moving from four to six response categories.  It would 

seem that the relative lack of information provided by binary response categories for a 

multidimensional item make locating the item much more difficult than when there are 

more response categories to choose from. 

However, a slightly different effect was observed in Figure 29 for subjective 

response category threshold estimates ( îk ).  While there is still an overall decrease in 

average RMSDs of these estimates in the complex structure condition as the number of 

response categories increase, the same cannot be said for average RMSDs of subjective 

response category threshold estimates ( îk ) in the simple structure condition.  Increases 

in the number of response categories lead to increases in average RMSD for estimates of 

subjective response category thresholds ( îk ) in the simple structure condition.  Though 

at first, these results may seem unexpected, it should be noted that previous GGUM 

research observed a similar trend with increasing average RMSDs of subjective response 

category threshold estimates ( îk ) as the number of response categories increased 

(Roberts & Thompson, 2011).  A likely explanation is, again, that these parameters do 

not vary across dimensions and the additional information provided by the second 
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measured dimension while increasing the number of response categories may be 

enhancing accuracy. 

As is mentioned above, it is not possible to compare these results directly to 

previous MGGUM research, as earlier work did not investigate effects while varying the 

number of response categories.  However, performance comparisons in the six response 

category condition are possible given that it was implemented in previous MCMC 

simulation studies (Roberts et al., 2009a; Roberts & Shim 2010).  When considering the 

accuracy of item location ( ˆ
id ) and subjective response category threshold ( îk ) estimates 

in this response category condition, it should be noted that the present results are akin to 

previous MCMC findings for the MGGUM (Roberts et al., 2009a; Roberts & Shim 

2010). 

The relationship observed in Figure 28 for item discrimination estimates ( ˆ
id ) 

also indicates estimation accuracy varies depending on both item structure and the 

number of response categories.  In both the complex and simple structure item conditions 

the average RMSDs of item discrimination estimates ( ˆ
id ) decrease as the number of 

response categories increase.  There is a consistent decrease in average RMSDs for 

estimates in the simple structure condition as the number of response categories increase.  

However, moving from two to four response categories provides a greater decrease in 

average RMSD for the complex structure condition than does moving from four to six 

response categories.  Overall, item discrimination estimates ( ˆ
id ) in the simple structure 

condition are more accurate than in the complex structure condition when there are only 

two response categories.  When there are more response categories, the reverse is true 
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with item discrimination estimates ( ˆ
id ) being more accurate in the complex structure 

condition.  This likely explains the lack of the previously identified main effect of item 

structure on accuracy of item discrimination estimates ( ˆ
id ) given that only the six 

response category condition was examined in that earlier work (Roberts et al., 2009a; 

Roberts & Shim 2010).  The interaction effect found here is such that the simple main 

effect of item structure reverses as the number of response categories increases.  This 

leads to different conclusions about the effect of item structure on parameter estimation 

accuracy depending on the number of response categories under consideration.  If only 

the six category condition is considered, then the current results are consistent with those 

found previously. 

These results suggest that if using complex structure items, a minimum of four 

response categories should be sufficient for accurate parameter estimates.  If using simple 

structure items, there appears to be a tradeoff in estimation accuracy as the number of 

response categories vary.  As the number of response categories increase, there is greater 

accuracy of item location and discrimination estimates.  However, there is an 

accompanying decrease in accuracy of subjective response category thresholds. 

7.2.1.3 Standard Errors 

Average standard errors (ASEs) of the parameter estimates suggest greater 

variation in estimation of person parameter estimates ( ˆ
jd  s.e. = 0.403) compared to item 

parameters estimates ( ˆ
id  s.e. = 0.137, ˆ

id  s.e. = 0.067, îk  s.e. = 0.190).  The ASEs by 

condition in the factorial design are presented in Table 4. 
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Table 4.  Average standard error of parameter estimates by condition. 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

Sample Size     

500 0.212 0.100 0.265 0.399 

750 0.163 0.081 0.226 0.400 

1000 0.135 0.069 0.196 0.399 

1250 0.127 0.061 0.178 0.403 

1500 0.113 0.056 0.167 0.403 

1750 0.109 0.052 0.157 0.405 

2000 0.100 0.049 0.145 0.406 

Test Length     

10 0.163 0.078 0.202 0.513 

20 0.136 0.067 0.189 0.380 

30 0.128 0.062 0.186 0.316 

Response Categories     

2 0.177 0.088 0.113 0.496 

4 0.137 0.070 0.169 0.373 

6 0.099 0.043 0.281 0.340 
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Table 4.  Continued. 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

Item Structure     

Complex 0.113 0.080 0.151 0.421 

Simple 0.161 0.056 0.230 0.386 

 

 

 

ASEs of item parameter estimates ( ˆ ˆ ˆ,  ,  id id ik   ) decreased as sample size 

increased, but there was little change in the ASEs of person parameter estimates ( ˆ
jd ).  

Increasing test length led to smaller ASEs for all parameter estimates, but this was most 

noticeable for person parameter estimates ( ˆ
jd ).  Increasing the number of response 

categories also led to decreases in ASEs for person parameter ( ˆ
jd ) estimates as well as 

for item location ( ˆ
id ) and item discrimination ( ˆ

id ) estimates.  The ASEs for subjective 

response category threshold estimates ( îk ), on the other hand, increased as the number 

of response categories increased.  One explanation for these results is that with more 

response categories, there are more thresholds to estimate and hence, greater variability 

of the estimates may occur (Shaftel, Nash, & Gillmor, 2012).  Finally, the differences 

between ASEs of parameter estimates in the complex structure condition compared to 

those in the simple structure condition were negligible for estimated item location ( ˆ
id ), 

item discrimination ( ˆ
id ), and person ( ˆ

jd ) parameters.  The differences in the ASEs of 

estimated subjective response category thresholds ( îk ) were slightly more pronounced 
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with ASEs in the complex structure condition being lower than those in the simple 

structure condition.  It is likely the additional information available in the second 

measured dimension for the complex structure condition accounted for this result. 

7.2.2 MMAP/EAP and MCMC/EAP Comparison 

In order to assess differences in MGGUM estimation accuracy and efficiency 

between the MMAP/EAP procedure and the previously applied MCMC/EAP procedure 

(Roberts et al., 2009a; Roberts & Shim, 2010), a reduced-factorial design was analyzed 

varying only the number of response categories (2 or 6 categories).  The number of 

subjects (2000), items (20), and item structure (complex) were held constant. 

7.2.2.1 Convergence 

 The MMAP/EAP estimates for this comparative analysis were taken from the first 

five replications of the relevant cells in the full-factorial simulation design.  Item 

responses from the same replications were also analyzed with the MCMC/EAP technique 

using the OpenBUGS freeware program (Lunn, Spiegelhalter, Thomas, & Best, 2009) 

with estimates obtained after 19,000 burn-in iterations.  Trace and quantile plots for item 

parameters were examined after 9,000 and 19,000 burn-in iterations to determine if a 

chain had converged.  After 9,000 burn-in iterations, some posterior distributions on a 

few replications had not yet stabilized.  Those distributions appeared stationary after 

19,000 burn-in iterations, thus MCMC/EAP estimates were derived from the 1,000 

samples following the burn-in phase. 

As anticipated, there was a very noticeable difference in duration of the 

estimation processes.  MMAP/EAP was a much faster procedure and took on average 
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approximately 7 minutes to converge (mean = 6.60, s.d. = 1.26) compared to 

MCMC/EAP’s average duration of 5,029 minutes (mean = 5,029.73, s.d. = 2,781.13), 

which is almost 84 hours or close to 3 ½ days.  The duration of MMAP/EAP was fairly 

consistent in both the two and six response category conditions.  However, as seen in 

Table 5, there was a vast difference in the duration of MCMC/EAP depending on the 

number of response categories.  Utilizing only two categories took substantially less time.  

If fewer MCMC/EAP burn-in iterations had been used, there would likely still be a 

marked difference in duration compared to MMAP/EAP.  Regardless, these results 

indicate MMAP/EAP parameter estimation is an exceptionally more efficient method of 

MGGUM parameter estimation than MCMC/EAP. 
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Table 5.  Duration of MMAP/EAP and MCMC/EAP replications. 

Replication 

Average Duration (minutes) 

2 Categories 6 Categories 

MMAP / EAP   

1 7.31 7.28 

2 5.12 6.64 

3 8.11 5.85 

4 8.86 5.30 

5 5.83 5.70 

MCMC / EAP   

1 2,385.63 7,730.17 

2 2,402.73 7,738.57 

3 2,401.48 7,801.00 

4 2,388.82 7,542.32 

5 2,383.98 7,522.60 

 

 

 

7.2.2.2 Parameter Recovery 

 Having established the superior efficiency of MMAP/EAP to MCMC/EAP, 

potential differential accuracy was examined by analyzing average RMSDs of the 
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resulting parameter estimates.  Prior to analyzing the results it was necessary to ensure 

the true and estimated dimensions were properly matched, as were the signs 

corresponding to a particular end of the dimension.  Again, correlations of true (θjd) and 

estimated person parameters ( ˆ
jd ) by dimension indicated any necessary adjustments 

based on magnitude and direction.  In addition, before formal comparative analyses could 

begin the scales of the MMAP/EAP and MCMC/EAP estimates were equated.  This was 

accomplished just as in the full MMAP/EAP factorial design by regressing true person 

parameter values on the associated estimates separately for each dimension in a given 

replication.  Again, person parameter ( ˆ
jd ) and item location ( ˆ

id ) estimates were 

multiplied by the slope and shifted according to the value of the intercept from the 

corresponding regression, while subjective response category thresholds ( îk ) were 

multiplied by the slope and item discrimination estimates ( ˆ
id ) were multiplied by the 

inverse of the slope.  Rescaling each set of estimates ensured the same metrics as the true 

parameters were utilized.  Average RMSDs of all rescaled parameter estimates are 

presented in Table 6. 
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Table 6.  Average RMSD of MMAP/EAP and MCMC/EAP parameter estimates by 

condition. 

 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

MMAP / EAP 0.204 0.109 0.137 0.339 

2 Categories 0.258 0.173 0.155 0.414 

6 Categories 0.149 0.045 0.120 0.263 

MCMC / EAP 0.279 0.123 0.149 0.340 

2 Categories 0.343 0.191 0.155 0.415 

6 Categories 0.216 0.055 0.143 0.265 

Overall 0.241 0.116 0.143 0.339 

 

 

 

The results describing the effects of varying the number of response categories 

and estimation method on the item ( ˆ ˆ ˆ,  ,  id id ik   ) and person parameter ( ˆ
jd ) estimates 

can be found in Table 7.  Effect sizes were computed within a family using the 

appropriate errors terms in order to obtain a better sense of variability in the data 

attributed to a particular effect.  The effect size for the between-replications effect, 

varying the number of response categories, was computed separately from the effect sizes 

for the within-replication effects, estimation method and the interaction of estimation 

method and varying the number of response categories.  While the effect sizes of several 

tested conditions were greater than the 5% cutoff, some failed to meet the significance 

criteria (p ≤ .05/4) and are not identified as interpretable.  The lack of statistical 
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significance is likely a sign of low power to detect modest effects.  In the future, 

incorporation of additional replications may increase the power to detect such effects, and 

thus, resolve the issue. 

 

 

Table 7.  2

w  values for MMAP/EAP and MCMC/EAP analysis of variance effects. 

 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

Response Categories 73.75% 92.75% 15.54% 98.05% 

Estimation Method 49.97% 31.04% 3.80% 8.53% 

Response Categories  

        x Estimation Method  

0.73% 2.33% 4.06% 0.42% 

Note: Values in bold were statistically significant effects at the p < 0.0125 level with 

effect sizes larger than 5%, and thus, are deemed interpretable. 

 

 

 

As shown in Table 8, the magnitudes of the Type III sums of squares used in the 

analyses were clearly different for the within- versus between-replication effects in this 

design.  The Type III sum of squares associated with the between-replication component 

of the design was substantially larger than those in the within-replication component.  

Consequently, the moderately-sized values of 2

w  associated with the main effect of 

estimation method in the analyses of item location ( ˆ
id ) and item discrimination ( ˆ

id ) 

RMSDs represent substantial proportions of an extremely small within-replication share 

of the total sum of squares.  In this light, it is not surprising that these effects were not 

statistically significant.  In short, despite the small number of replications examined, the 

response category effect was noticeably the most prominent effect. 
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Table 8.  Type III sum of squares values for the MMAP/EAP and MCMC/EAP analysis 

effects. 

 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

Response Categories 0.06949 0.08675 0.00281 0.11394 

Estimation Method 0.02847 0.00098 0.00064 9.211 E-6 

Response Categories  

        x Estimation Method  

0.00042 0.00007 0.00068 4.528 E-7 

 

 

 

Just as in the full-factorial MMAP/EAP parameter recovery study, a main effect 

of the number of response categories was interpretable for all estimated parameters with 

the exception of the subjective response category threshold estimates ( îk ).  Moving from 

two to six response categories resulted in decreasing the average RMSDs, and, in turn, 

increasing accuracy of item location (F(1,9) = 22.47, p < 0.0001), item discrimination 

(F(1,9) = 102.38, p < 0.0001), and person parameter (F(1,9) = 401.55, p < 0.0001) 

estimates, as seen in Figure 30.   
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Figure 30.  Combined MMAP/EAP and MCMC/EAP average RMSD of item and person 

parameter estimates varying the number of response categories. 

 

 

 

Interestingly there were no interpretable main or interaction effects of estimation 

method for any of the parameters.  Previous GGUM research identified an interpretable 

interaction of estimation method and varying the number of response categories for item 

location ( ˆ
id ) and subjective response category threshold ( îk ) estimates (Roberts & 

Thompson, 2011).  Those results suggested MCMC/EAP estimates were less accurate 

than MMAP/EAP with fewer response categories, but such differences faded as the 

number of response categories increased.  One marked difference between the previous 

research and the current study is that the present design only examined accuracy 

differences of MMAP/EAP and MCMC/EAP parameter estimates in the complex 

structure condition.  Again, perhaps the additional information provided by the second 

dimension influenced these results.  Regardless, from the current study it can be 

concluded the MMAP/EAP and MCMC/EAP procedures produce very similar MGGUM 

parameter estimates. 
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7.2.2.3 Standard Errors 

The ASEs of parameter estimates, presented in Table 9, were rescaled to the 

metric of true parameters using the same method as previously described.  However, it 

should be noted that ASEs are computed differently within each estimation method.  The 

MMAP/EAP ASEs are asymptotic and analytically calculated from the information 

matrix associated with the estimates.  MCMC/EAP ASEs, on the other hand, are 

calculated as the standard deviations of parameter estimates across draws from the 

posterior distribution. 
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Table 9.  Average standard error of MMAP/EAP and MCMC/EAP parameter estimates 

by condition. 

 

Factorial Condition ˆ
id  ˆ

id  îk  ˆ
jd  

MMAP / EAP 0.079 0.053 0.110 0.422 

2 Categories 0.106 0.070 0.078 0.515 

6 Categories 0.052 0.035 0.145 0.329 

MCMC / EAP 0.192 0.121 0.101 0.424 

2 Categories 0.236 0.183 0.102 0.517 

6 Categories 0.148 0.058 0.101 0.330 

Overall 0.136 0.087 0.106 0.423 

 

 

 

For the most part, varying the number of response categories led to changes in 

ASEs of parameters within each estimation method.  The ASEs for MMAP/EAP and 

MCMC/EAP person parameter estimates ( ˆ
jd ) were fairly similar across methods and 

decreased as the number of response categories increased.  A similar decrease was 

observed with respect to the ASEs of item location ( ˆ
id ) and item discrimination ( ˆ

id ) 

estimates, again within each estimation method.  Conversely, an increase in the ASEs of 

subjective response category threshold estimates ( îk ) was observed, but only with 

MMAP.  The MCMC ASEs of subjective response category threshold estimates ( îk ) 

appear to have remained fairly stable despite changes in the number of response 
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categories.  This observation is likely due to the computational differences in ASEs 

between the estimation methods. 

These results deviate somewhat from findings in the unidimensional GGUM with 

respect to the ASEs of estimated item parameters ( ˆ ˆ ˆ,  ,  id id ik   ; Roberts & Thompson, 

2011).  Previously, GGUM research found similar ASEs of MMAP and MCMC for item 

location ( ˆ
id ) and subjective response category threshold ( îk ) estimates regardless of the 

number of response categories.  However, smaller ASEs of MMAP item discrimination 

estimates ( ˆ
id ) were observed in the presence of fewer response categories.  The 

multidimensional nature of the current data may be a contributing factor in these 

discrepant findings.  However, this is only speculation as no MGGUM studies have 

previously examined the effects of varying the number of response categories (Roberts et 

al., 2009a; Roberts & Shim, 2010).  Future work is recommended to further explore 

changes in ASEs within and across estimation methods. 
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CHAPTER 8 

REAL DATA APPLICATION 

 

 

 

Having established the ability to estimate MGGUM parameters with 

MMAP/EAP, real data from a questionnaire assessing attitudes towards abortion were 

analyzed.  Attitude responses to 19 statements were obtained from 1,562 university 

students and all responses were obtained using a six-point graded agreement scale.  The 

statements are presented in Appendix F. 

Previous studies estimating MGGUM parameters with MCMC/EAP suggested the 

presence of two dimensions in this data, with the first dimension having a stronger 

presence than the second (Roberts et al., 2009a; Roberts & Shim, 2010).  Thus, two-

dimensional MMAP item ( ˆ ˆ ˆ,  ,  id id ik   ) and EAP person ( ˆ
jd ) parameters were 

estimated using the computer program implemented in the parameter recovery study.  

Identical prior distributions as implemented in the parameter recovery study were used 

for all parameters.  The same initial values for item discrimination (αid) parameters, 0.25, 

were used as well.  Initial values for item locations (δid) were obtained from DCA using 

the CANOCO software (ter Braak & Smilauer, 2002) and rescaled as in the parameter 

recovery study.  Subjective response category threshold (τik) initial values were then 

computed following the technique described in Roberts and Laughlin (1996) using the 

rescaled initial item locations (δid). 
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Utilizing the same convergence criterion as in the recovery study, a solution was 

reached after 214 expectation (outer) cycles, taking 99.11 minutes.  The item parameter 

estimates ( ˆ ˆ ˆ,  ,  id id ik   ) are presented in Table 10. 
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Table 10.  MGGUM item parameter estimates of abortion attitude data. 

Item 1
ˆ
i  

2
ˆ
i  1

ˆ
i  2

ˆ
i  2î  3î  4î  5î  6î  

1 2.44 -3.21 1.57 0.55 -1.63 -1.78 -1.31 -1.85 -1.26 

2 2.58 -1.91 1.82 0.95 -2.23 -2.04 -1.99 -1.67 -1.57 

3 2.76 -1.16 2.57 1.75 -2.06 -1.88 -1.81 -1.59 -1.42 

4 2.47 -1.82 3.13 1.63 -2.24 -1.95 -1.82 -1.58 -1.40 

5 2.14 -0.74 1.32 1.00 -1.50 -1.35 -1.44 -1.00 -0.87 

6 1.72 -0.38 1.81 1.25 -1.54 -1.18 -1.19 -1.00 -0.83 

7 1.88 0.58 0.67 0.50 -1.39 -1.31 -1.53 -1.27 -1.07 

8 1.10 -0.08 1.52 0.73 -1.28 -0.91 -0.88 -0.68 -0.14 

9 0.98 0.41 1.27 0.59 -1.02 -0.76 -0.70 -0.72 -0.17 

10 0.06 0.21 2.73 1.90 -0.77 -0.51 -0.58 -0.29 -0.31 
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Table 10. Continued. 

Item 1
ˆ
i  

2
ˆ
i  1

ˆ
i  2

ˆ
i  2î  3î  4î  5î  6î  

11 0.01 0.18 2.58 1.93 -0.83 -0.54 -0.66 -0.30 -0.31 

12 -0.67 -0.15 1.23 0.83 -1.16 -0.79 -1.32 -0.88 -0.72 

13 -0.82 -0.17 1.21 0.70 -1.05 -0.81 -1.32 -0.88 -0.85 

14 -1.09 -3.67 3.11 0.81 -1.89 -1.63 -1.56 -1.31 -1.04 

15 -1.41 -1.44 1.93 1.06 -1.86 -1.51 -1.61 -1.47 -1.29 

16 -1.87 -2.29 2.11 1.03 -2.05 -1.81 -1.71 -1.59 -1.32 

17 -1.91 -2.09 2.31 1.01 -2.16 -1.85 -1.95 -1.52 -1.39 

18 -1.86 -1.83 2.47 1.13 -2.10 -1.77 -1.87 -1.54 -1.30 

19 -2.11 -4.08 1.69 0.54 -1.75 -1.99 -1.73 -1.83 -1.30 
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A graphical representation of the estimates can be found in Figure 31.  This plot 

displays the dimension location estimates ( ˆ
id ) for each item with ‘spokes’ extending 

from a point indicating the dimensional discrimination estimates ( ˆ
id ).  The estimated 

person parameters ( ˆ
jd ) are presented in Figure 32, while person parameter ( ˆ

jd ) and 

item location ( ˆ
id ) estimates are presented jointly in Figure 33.  The estimated item 

locations ( ˆ
id ), as seen in Figures 31 and 33, appear to have greater variability along the 

first dimension relative to the second.  However, estimates of person parameters ( ˆ
jd ) 

appear to approximate a two-dimensional multivariate normal distribution. 

 

 

Figure 31.  Estimated two-dimensional item locations with discrimination ‘spokes.’ 
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Figure 32.  Estimated two-dimensional person parameters. 
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Figure 33.  Estimated two-dimensional item locations and person parameters. 

 

 

 

The normality of the person parameter estimates ( ˆ
jd ) is supported given the fit of the 

Mahalanobis distance by chi-square scatterplot presented in Figure 34 (Burdenski, 2000).  

However, the greater variation observed in the Mahalanobis distance by chi-square 

scatterplot of item location estimates ( ˆ
id ) seen in Figure 35 supports the notion that both 

dimensions are not equally assessed using these items; an idea that is also clear from the 

spokes in Figure 31.  Item discrimination estimates ( ˆ
id ) are proportionally larger for the 

first dimension; however the lack of small item discrimination estimates ( ˆ
id ) on the 
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second dimension supports the presence of two dimensions in the data.  As such, it 

appears as though the first dimension differentiates individual to a greater extent. 

 

     

 
Figure 34.  Mahalanobis distance by chi-square scatterplot of person parameter estimates. 
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Figure 35.  Mahalanobis distance by chi-square scatterplot of item location estimates. 

 

 

 

Relative fit indices were lower for a multidimensional versus a unidimensional 

solution (two dimensions: AIC = 56774.10; BIC = 58947.07; CAIC = 59289.07; one 

dimension: AIC = 58323.34; BIC = 60013.43; CAIC = 60279.43).  In keeping with 

previous research (Roberts et al., 2009a; Roberts & Shim, 2010), the first dimension in 

the two-dimensional solution accounts for approximately 89% of the variance of GGUM 

item location estimates ( ˆ
id ), while the second dimension accounts for approximately 

7.5%.  In addition, approximately 50% of the variation in GGUM item discrimination 

estimates ( ˆ
id ) is accounted for by the first dimension, while the second dimension 
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accounts for approximately 39%.  Therefore, the first dimension of the two-dimensional 

solution corresponds with the single dimension obtained in a unidimensional solution. 

Interpreting dimensions is best accomplished by examining the content of items 

with moderate to high discrimination estimates ( ˆ
id ) and their associated estimated item 

locations ( ˆ
id ).  Thus, given the estimates presented in Table 10, the first dimension 

appears to indicate a pro-life to pro-choice continuum, which was well accounted for by 

the unidimensional GGUM continuum in previous research (Roberts, Donoghue, & 

Laughlin, 2002; Roberts & Thompson, 2011).  An interpretation of the second dimension 

is less clear and open for discussion.  While there are many items with moderate to high 

discrimination estimates ( ˆ
id ), item location estimates ( ˆ

id ) do not span the entire range 

of the continuum.  Therefore, considering the content of items with the most discrepant 

locations along the second dimension, this dimension might involve assessing judicial 

qualities given that items with high discrimination estimates ( ˆ
id ) tend to use the words 

“right(s)” or “legal.” 

Given the uncertainty of an interpretation for the second dimension, some might 

question whether it truly exists or if it is merely an artifact of the estimation process.  It 

could be argued that the pattern of estimated item locations ( ˆ
id ) suggests the presence of 

an arch-like effect, or rather improper fit of a multidimensional model to unidimensional 

data, despite the detrending of initial values using DCA.  In addition, the non-trivial item 

discrimination estimates ( ˆ
id ) could be seen by some to support the presence of a larger 

arch rather than a true second dimension.  Arch effects are discussed primarily within the 

context of correspondence analysis (Greenacre, 2007), however there is little to no 
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mention of them when using other techniques – particularly never within the context of 

multidimensional unfolding. 

In the simulation portion of this study, parameter estimates were obtained for data 

generated to fit a two-dimensional model.  There were no instances of any arch effects 

amongst any of those results.  Thus, it seems to reason that data which perfectly fits a 

two-dimensional MGGUM should also not result in an arch effect.  On the other hand, it 

may be that arch effects appear when there is some degree of model misfit to the data.  In 

this case, possibly overfitting unidimensional data may lead to an observable arch effect 

on higher order dimensions.  As such, a unidimensional model may be a more appropriate 

fit for this data and more interpretable as well.  Additional support of overfitting the data 

comes from the time required to obtain estimates for this data set.  Given the average 

duration to estimate parameters of complex structure items observed in the simulation 

study, the estimation process for the real data was comparatively long.  In the presence of 

an arch effect the lengthy estimation time could be attributed to a lack of information 

from a meaningful second dimension.  Finally, the uncertain meaning of the second 

dimension also generates suspicion about its authenticity beyond a mere arch effect.  

Further applications of this method with real data may provide greater insight into 

whether arch effects truly exist and what precipitates their presence.   
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CHAPTER 9 

DISCUSSION 

 

 

The primary purpose of this research was to examine the performance of a 

marginal parameter estimation method, namely MMAP/EAP, within the proximity-based, 

non-compensatory MGGUM through a simulation study and analysis of real data.  

Efficiency and accuracy were the focal points of the simulation study, while MMAP/EAP 

was applied to real data as an indication of the appropriateness of this method in practice.  

All in all, MMAP/EAP was found to efficiently recover reasonably accurate parameter 

estimates of a simulated two-dimensional MGGUM.  Similar trends to those observed in 

unidimensional and multidimensional GGUM research with respect to accuracy of 

estimates when varying the number of subjects, items, and response categories were 

identified (Roberts & Thompson, 2011; Roberts et al. 2009a, Roberts & Shim, 2010).  In 

addition, MMAP/EAP was able to produce two-dimensional estimates of a real data set 

measuring attitudes towards abortion. 

9.1 Suitability of MMAP / EAP with the MGGUM 

Despite the increased popularity of implementing MCMC/EAP in research today, 

using an alternative method such as MMAP/EAP can, at times, benefit researchers.  

There  were no observed differences in estimation accuracy between the methods in the 

present study, despite implementing different prior distributions for item discrimination 

parameters (αid) and the additional specification of initial values for person parameters 

(θjd) with MCMC/EAP.  The only observable benefit came with respect to computational 

efficiency, but this benefit was substantial. 
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Depending on the complexity of the design (i.e. the number of subjects, test 

length, number of response categories, and latent structure of the items) MMAP/EAP 

estimates of two-dimensional MGGUM parameters were obtained in anywhere from 

approximately 6 to 180 minutes, with an average, across all conditions, of just under an 

hour.  To provide a direct comparison, parameters from a subset of the full simulation 

design were also estimated with MCMC/EAP in light of previous research requiring days 

to achieve convergence with this method (Roberts et al., 2009a; Roberts & Shim, 2010).  

Of particular interest is the substantial discrepancy in computing time that was observed 

in this study when implementing MMAP/EAP and MCMC/EAP.  Estimating the same 

parameters and using the same subset of data, MMAP/EAP took a little over six and a 

half minutes to reach a solution, on average, whereas MCMC/EAP took almost three and 

a half days.  Such disparities can hardly be ignored.  However, attention should also be 

drawn to the fact that parameter estimation in this study was limited to just two-

dimensions.  The numerical integration process required in MMAP is likely to become 

computationally challenging and inefficient as model dimensionality increases.  In such 

cases, MCMC, although more time-consuming, may be a viable option as it does not 

require numerical integration.  Researchers have also suggested implementing techniques 

such as adaptive quadrature (Schilling & Bock, 2005), Metropolis-Hastings Robbins-

Monro (MHRM; Cai, 2010), or reversible jump MCMC (Green & Hastie, 2009) to 

estimate parameters of multidimensional models. 

Within the context of a two-dimensional MGGUM, the efficiency of MMAP/EAP 

estimation is impacted by the latent structure of items.  It appears as though the 

identifiability of item parameters may be responsible for discrepancies in efficiency.  
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Attempting to identify item parameters on non-measured dimensions substantially slows 

down the estimation process relative to instances where all items measure both 

dimensions.  It remains to be seen how efficient MMAP/EAP estimation would be in 

situations where there is a mix of complex and simple structure items.  This is something 

worthy of future exploration. 

The latent structure of items also affects the accuracy of two-dimensional 

MGGUM parameter estimates.  Items measuring multiple dimensions are more 

challenging to locate in multidimensional space (δid).  Conversely, when an item only 

measures one dimension its location is more accurately identified.  Estimating the 

location of multidimensional (i.e. complex structure) items can be likened to an item’s 

location being pulled simultaneously in different directions.  If one assumes that 

information about an item’s location is constant, then those items pulled only in one 

direction with one measured dimension essentially have more information available to 

guide the estimation of that single coordinate compared to sharing what information 

resources are available to estimate multiple coordinates. 

Despite more accurate estimation of item locations (δid) for unidimensional (i.e. 

simple structure) items, subjective response category threshold estimates ( îk ) were more 

accurate with multidimensional (i.e. complex structure) items.  The most likely 

explanation for this finding is that MGGUM subjective response category thresholds (τik) 

are constant across dimensions, which may lead to more stable and accurate estimates 

when an item measures multiple dimensions.  In this case, all of the information 

contained in an item with regard to these parameters can be focused on a single set of 

coordinates rather than a different set of coordinates for each dimension. 
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Moving beyond simulations, in exploratory analyses researchers may have little to 

no a priori knowledge of item structure, thus there could be uncertainty regarding 

accuracy of the resulting estimates.  It should be noted than an exploratory MGGUM is 

not an identifiable model when there are one or more items that fail to discriminate at 

least to some extent on all estimated dimensions.  In such instances, it may be beneficial 

to attempt to simultaneously fit multiple correlated simple structure dimensions using a 

confirmatory MIRT approach to the model. 

Analysis of the MMAP/EAP estimates of the real data in this study suggest a two-

dimensional model is more appropriate than a unidimensional one, as indicated by 

relative fit indices (e.g. AIC, BIC, CAIC).  Though given the ‘weakness’ of the second 

dimension, an argument could be made that the second dimension is, in fact, not a real 

dimension, but rather an artifact similar to the arch effect often observed with 

correspondence analysis.  MMAP/EAP estimation of MGGUM parameters in the 

stimulation study did not identify the presence of any arch effects; however those data 

were generated to be two-dimensional.  It is quite possible that the real data in this study 

are unidimensional.  If that is the case, then the data were overfit by the model.  The 

effects of overfitting a model would be best explored through further simulation research.  

For instance, attempting to fit a two-dimensional model to simulated unidimensional 

data, with and without some degree of model misfit may shed light onto whether arch 

effects are the result of incorporating an unwarranted dimension in the model. 

At present, there are no model-specific fit indices to formally confirm the 

multidimensional structure of data with an MGGUM.  Generalizing the S-X
2
 indices 

implemented in the unidimensional GGUM (Roberts, 2008) amongst other fit indices 
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(e.g., Maydeu-Olivares & Garcia-Forero, 2010; Maydeu-Olivares, Cai, & Hernandez, 

2011) are suggested avenues of future research.  An even better approach would be to 

develop a model-free assessment of dimensionality (e.g., DIMTEST: Stout, 1987; 

DETECT: Zhang & Stout, 1999), although this seems more difficult due to the absence of 

an observable response scoring function that is suitable for proximity-based responses.   

9.2 Implementation of DCA 

An ancillary goal of the present research was to implement an alternative method 

of identifying initial values to be used in the estimation processes.  In theory, informative 

initial values may increase the probability of properly identifying the global maximum of 

the log marginal likelihood instead of local maxima, and may locate it quicker as well 

(Roberts & Laughlin, 1996).  The previously implemented method of using 

unidimensional GGUM estimates as initial values in the MGGUM estimation process 

(Roberts et al., 2009a; Roberts & Shim, 2010) imposes a unidimensional structure on data 

that is knowingly multidimensional, specifically in parameter recovery simulation 

studies.  In such instances, DCA is arguably a more appropriate method given that it 

attempts to identify a multidimensional structure with multidimensional data.  The 

implementation of DCA in both the parameter recovery study and real data analysis was a 

simple, straightforward process and is recommended for use over the previous approach.   

No direct manipulations designed to ascertain the benefits of DCA over cruder 

estimates that have been previously used in MGGUM estimation studies were 

incorporated into this study.  Nonetheless, there does appear to be at least one advantage 

of DCA initial values when comparing results across studies.  In former MCMC 
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estimation studies, the signs of person parameter estimates ( ˆ
jd ) were occasionally 

misestimated for respondents with the most extreme opinions.  In these cases, there was 

little information about the valance of an attitude because the respondents in question 

generally disagreed with all of the statements that measured a given dimension.  Indeed, 

Roberts and Shim (2010) attempted to alleviate this problem by estimating the sign for 

extreme estimates midway through the MCMC chain using a maximum likelihood 

procedure.  Their efforts noticeably reduced the frequency in which sign misestimation 

occurred, but it did not eliminate it.  In contrast, use of DCA estimates for initial values 

eliminated this problem in the corresponding MCMC replications studied here.  Although 

a more rigorous test of this finding remains for future research, the current results suggest 

that DCA is a preferable method to develop initial estimates of person parameters ( ˆ
jd ), 

if needed by a given estimation technique.    

9.3 Conclusion 

Despite the aforementioned limitations, this research has identified notable and 

novel findings.  Particularly, it is the first study to investigate a more computationally 

efficient parameter estimation algorithm for the recently developed MGGUM.  

MMAP/EAP performed as expected thereby reinforcing its position as a viable 

estimation method for the MGGUM and with other MIRT models as well.  Its accuracy is 

comparable to the previously implemented MCMC/EAP, but it is considerably more 

efficient.  In addition, this study is the first to implement DCA to identify 

multidimensional initial values for a multidimensional noncompensatory IRT model.  
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This research has the ability to foster the application of this innovative model in 

more diverse areas involving preference ratings, where more than one latent dimension is 

generally assumed to operate.  Moreover, it makes such applications computationally 

feasible for practitioners by providing the foundational background and derivation. 

.
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APPENDIX A 

 

 

 

 Item information is derived from Ackerman’s (1994) matrix formulation 
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where, using Equation 45, 
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The first derivative of Equation A.3 with respect to one dimension (θd) is 
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where the first derivative of the MGGUM probability function (Equation 45) with respect 

to one dimension (θd) is 
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setting 
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Taking the second derivative of Equation A.4 yields 
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Therefore, item information with respect to one dimension is calculated as 
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Joint item information is based on the mixed derivative of Equation A.4 with respect to 

both dimensions 
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where 
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Thus, joint information is obtained via 
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APPENDIX B 

 

 

 

The marginal probability of response vector Xj is 
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where g1(θj1) … gD(θjD) are population prior distributions for each of the D dimensions.  

The likelihood of Equation B.1 is: 
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where rj is the number of individuals with response vector Xj.  Taking the logarithm of 

the likelihood function in Equation B.2 yields 
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The derivative of Equation B.3 with respect to an item location for the ith item on the dth 

dimension δid becomes 
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where      1 1 ,j D jDg g         1 1 ,i D iDb b    and

     1 1 .i D Da a     

Simplifying Equation B.4 leads to 
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Equation B.5 can be approximated in quadrature form as 
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In a similar manner it is possible to approximate the derivative of Equation B.3 with 

respect to item discrimination and subjective response category threshold parameters in 

quadrature form leading to 
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and 
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APPENDIX C 
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 The derivative of C.1 with respect to item location is calculated for each item as 
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 The derivative of C.1 with respect to item discrimination also calculated for each item is 
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 The derivative of C.1 with respect to subjective response category thresholds by item is 
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where 
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APPENDIX D 

 

 

 

 Information with respect to MGGUM item location (δid) and discrimination (αid) 

parameters using a dimension by dimension approach in Equation 69 is 
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Solving for one dimension of one item at a time and using Equation 45 in quadrature 

form, the likelihood is 
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Next, take the log of equation D.2 
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Then, the first derivative of Equation D.3 with respect to the ith item location estimate on 

the dth dimension is 
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and with respect to the ith item discrimination estimate on the dth dimension is 
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again using the definitions found in Appendix C. 

Taking the second derivative of Equations D.6 and D.7 with respect to the ith item 

location estimate and item discrimination estimation on the dth dimension yields 
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Therefore, information for the ith item on the dth dimension for item location and item 

discrimination parameters is obtained via 
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and 
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respectively. 

 Item information with respect to subjective response category thresholds is 

calculated separately from item location and discrimination parameters, as these values 

do not vary across dimensions 
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The first derivative of Equation D.3 with respect to the kth subjective response category 

threshold for the ith item is 
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can be determined using definitions from Appendix C. 
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 The second derivative of Equation D.20 with respect to the kth subjective 

response category threshold is 
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Therefore, the information for the kth subjective response category threshold parameter is 

obtained via 
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 The mixed derivative of Equation D.25 with respect to the kth and k*th subjective 

response category threshold with k ≠ k* is the foundation for computing joint information 
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Joint information can now be calculated using 
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APPENDIX E 
 

 

 

 Using the standardized residuals found in Equation 74, the singular value 

decomposition of S involves the following iterative process as taken from ter Braak 

(1988) and Jongman, ter Braak, and van Tongeren (1995), adapted for an IRT framework 

Step 1: Select arbitrary unique item locations, δ
*
 = [δ1

*
, …, δi

*
 ]. 

Step 2: Calculate person locations based on weighted averages of item locations 

 

*
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Step 3: Calculate new item locations δ
*
 based on the new person locations 
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Step 4: For the first dimension/axis, skip to Step 6.  For all other dimensions/axes, 

calculate u and v 
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Step 5: Calculate the new person, θ
*+1

, and item, δ
*+1

, locations so that each dimension is 

orthogonal to previous dimensions 
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* 1 * * 1

j j ju      (E.5) 

 * 1 * * 1

i i iv      (E.6)  

Step 6: Normalize the locations as detailed in Equations 77 and 78. 

Step 7: Convergence is achieved when the new locations are sufficiently close to those of 

the previous iteration.  An acceptable level of convergence is a difference of less than   

10
-10

.  If convergence has not been achieved return to Step 2 and repeat the process. 

 When detrending by polynomials, the extraction of additional dimensions requires 

not only orthogonality to previous dimensions, but orthogonality to polynomial functions 

of previous dimensions.  Therefore, it is necessary to compute up to fourth degree 

polynomial values of item and person location scores (i.e.  
2

* *

2i i  ,  
3

* *

3 i i  , 

 
4

* *

4i i  , etc.).  These values are then used to in the computations found in Step 2 

through Step 7. 
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APPENDIX F 
 

 

 

1. Abortion is unacceptable under any circumstances. 

2. Abortion is the destruction of one life for the convenience of another. 

3. Abortion is inhumane. 

4. Abortion can be described as taking a life unjustly. 

5. Abortion could destroy the sanctity of motherhood. 

6. Abortion should not be made readily available to everyone. 

7. Even if one believes that there may be some exceptions, abortion is still generally 

wrong. 

8. Abortion is basically immoral except when the woman's physical health is in danger. 

9. Abortion should be illegal except in extreme cases involving incest or rape. 

10. My feelings about abortion are very mixed. 

11. I cannot whole-heartedly support either side of the abortion debate. 

12. Abortion should be a woman's choice, but should never be used simply due to its 

convenience. 

13. Abortion should generally be legal, but should never be used as a conventional 

method of birth control. 

14. Although abortion on demand seems quite extreme, I generally favor a woman's right 

to choose. 

15. Regardless of my personal views about abortion, I do believe others should have the 

legal right to choose for themselves. 

16. Society has no right to limit a woman's access to abortion. 

17. A woman should retain the right to choose an abortion based on her own life 

circumstances. 

18. Abortion should be legal under any circumstances. 

19. Outlawing abortion violates a woman’s civil rights. 



181 
 

REFERENCES 
 
 
 

Ackerman, T.A.  (1994).  Using multidimensional item response theory to understand 

what items and tests are measuring.  Applied Measurement in Education, 7, 255-

278. 

 

Andrich, D.  (1978).  A rating formulation for ordered response categories.  

Psychometrika, 43, 105-113. 

 

Andrich, D.  (1988).  The application of an unfolding model of the PIRT type to the 

measurement of attitude.  Applied Psychological Measurement, 12, 33-51. 

 

Andrich, D.  (1989).  A probabilistic IRT model for unfolding preference data.  Applied 

Psychological Measurement, 13, 193-216. 

 

Andrich, D.  (1995).  Hyperbolic cosine latent trait models for unfolding direct responses 

and pairwise preferences.  Applied Psychological Measurement, 19, 269-290. 

 

Andrich, D.  (1996).  A general hyperbolic cosine latent trait model for unfolding 

polytomous responses: Reconciling Thurstone and Likert methodologies.  British 

Journal of Mathematical and Statistical Psychology, 49, 347-365. 

 

Andrich, D., & Luo, G.  (1993).  A hyperbolic cosine latent trait model for unfolding 

dichotomous single-stimulus responses.  Applied Psychological Measurement, 17, 

253-276. 

 

Baker, F.B.  (1987).  Methodology review: Item parameter estimation under the one-, 

two-, and three-parameter logistic models.  Applied Psychological Measurement, 

11, 111-141. 

 

Béguin, A., & Glas, C.  (2001).  MCMC estimation and some model-fit analysis of 

multidimensional IRT models.  Psychometrika, 66, 541-561. 

 

Bennett, J.F., & Hays, W.L.  (1960).  Multidimensional unfolding: Determining the 

dimensionality of ranked preference data.  Psychometrika, 25, 27-43. 

 

Bock, R.D., & Aitkin, M.  (1981).  Marginal maximum likelihood estimation of item 

parameters: Application of an EM algorithm.  Psychometrika, 46, 443-459. 

 

Bock, R.D., & Mislevy, R.J.  (1982).  Adaptive EAP estimation of ability in a 

microcomputer environment.  Applied Psychological Measurement, 6, 431-444. 

 

Bolt, D.M., & Lall, V.F.  (2003).  Estimation of compensatory and noncompensatory 

multidimensional item response models using Markov chain Monte Carlo.  

Applied Psychological Measurement, 27, 395-414. 



182 
 

Burdenski, T.  (2000).  Evaluating Univariate, bivariate, and multivariate normality using 

graphical and statistical procedures.  Multiple Linear Regression Viewpoints, 26, 

15-28. 

 

Busing, F.M.T.A.  (2010).  Advances in Multidimensional Unfolding.  Doctoral 

dissertation, Universiteit Leiden. 
 

Busing, F.M.T.A., Groenen, P.J.F., & Heiser, W.J.  (2005).  Avoiding degeneracy in 

multidimensional unfolding by penalizing on the coefficient of variation.  

Psychometrika, 70, 71-98. 

 

Cai, L.  (2010).  High-dimensional exploratory item factor analysis by a Metropolis-

Hastings Robbins-Monro algorithm.  Psychometrika, 75, 33-57. 

 

Carroll, J.D., & Chang, J.  (1970).  Analysis of individual differences in multidimensional 

scaling via an n-way generalization of “Eckart-Young” decomposition.  

Psychometrika, 35, 283-319. 

 

Carter, N.T., & Dalal, D.K.  (2010).  An ideal point account of the JDI Work Satisfaction 

Scale.  Personality and Individual Differences, 49, 743-748. 

 

Carter, N.T., Lake, C.J., & Zickar, M.J.  (2010).  Toward understanding the psychology 

of unfolding.  Industrial and Organizational Psychology: Perspective on Science 

and Practice, 3, 511-514. 

 

Chernyshenko, O.S., Stark, S. Drasgow, F., & Roberts, B.W.  (2007).  Construction 

personality scales under the assumptions of an ideal point response process: 

Toward increasing the flexibility of personality measures.  Psychological 

Assessment, 19, 88-106. 

 

Coombs, C.H.  (1950).  Psychological scaling without a unit of measurement.  The 

Psychological Review, 57, 145-158. 

 

Coombs, C.H.  (1960).  A theory of data.  The Psychological Review, 67, 143-159. 

 

Coombs, C.H.  (1964).  A Theory of Data.  Ann Arbor: Mathesis Press. 

 

Cui, W., Roberts, J.S., & Bao, H.  (April, 2004).  Data Demands for the Generalized 

Graded Unfolding Model.  Poster presented at the 2004 Annual Meeting of the 

National Council on Measurement in Education, San Diego, California. 

 

de la Torre, J., Stark, S., & Chernyshenko, O.S.  (2006).  Markov Chain Monte Carlo 

estimation of item parameters for the generalized graded unfolding model.  

Applied Psychological Measurement, 30, 216-232. 

 



183 
 

Dempster, A.P., Laird, N.M., & Rubin, D.B.  (1977).  Maximum likelihood from 

incomplete data via the EM algorithm.  Journal of the Royal Statistical Society, 

39, 1-38. 

 

Doornik, J.A.  (2003).  Object-oriented Matrix Programming Using Ox (Version 3.1) 

[Computer software].  London, U.K.: Timberlake Consultants Press. 

 

Drasgow, F., Chernyshenko, O.S., & Stark, S.  (2010).  75 years after Likert: Thurstone 

was right!  Industrial and Organizational Psychology: Perspectives on Science 

and Practice, 3, 465-476. 

 

Finkelman, M.D., Hooker, G., & Wang, Z.  (2010).  Prevalence and magnitude of 

paradoxical results in multidimensional item response theory.  Journal of 

Educational and Behavioral Statistics, 35, 744-761. 

 

Gao, F. & Chen, L.  (2005).  Bayesian or Non-Bayesian: A comparison study of item 

parameter estimation in the three-parameter logistic model.  Applied Measurement 

in Education, 18, 351-380. 

 

Geman, S., & Geman, D.  (1984).  Stochastic relaxation, Gibbs distributions, and the 

Bayesian restoration of images.  IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 6, 721-741. 

 

Green, P.J., & Hastie, D.I.  (2009).  Reversible jump MCMC.  Genetics, 155, 1391-1403. 

 

Greenacre, M.J.  (2007).  Correspondence Analysis in Practice.  Second Edition.  

London: Chapman & Hall/CRC. 

 

Haberman, S.J.  (1977).  Maximum likelihood estimates in exponential response models.  

Annals of Statistics, 5, 815-841. 

 

Harwell, M.R. & Baker, F.B.  (1991).  The use of prior distributions in marginalized 

Bayesian item parameter estimation: A didactic.  Applied Psychological 

Measurement, 15, 375-389. 

 

Harwell, M.R., Baker, F.B., & Zwarts, M.  (1988).  Item parameter estimation via 

marginal maximum likelihood and an EM algorithm: A didactic.  Journal of 

Educational Statistics, 13, 243-271. 

 

Hastings, W.K.  (1970).  Monte Carlo sampling methods using Markov chains and their 

applications.  Biometrika, 57, 97-109. 

 

Hill, M.O.  (1994).  DECORANA and TWINSPAN, for Ordination and Classification of 

Multivariate Species Data: A New Edition. Oxfordshire, United Kingdom: Center 

for Ecology & Hydrology. 

 



184 
 

Hill, M.O., & Gauch, H.G.  (1980).  Detrended correspondence analysis: An improved 

ordination technique.  Vegetatio, 42, 47-58. 

 

Hoitjink, H.  (1990).  A latent trait model for dichotomous choice data.  Psychometrika, 

55, 641-656. 

 

Javaris, K.N., & Ripley, B.D.  (2007).  An “unfolding” latent variable model for Likert 

attitude data: Drawing inferences adjusted for response style.  Journal of the 

American Statistical Association, 102, 454-463. 

 

Jongman, R.H.G., ter Braak, C.J.F., & van Tongeren, O.F.R.  (1995).  Data Analysis in 

Community and Landscape Ecology.  Melbourne, Australia: Cambridge 

University Press. 

Kruskal, J.B.  (1964).  Multidimensional scaling by optimizing goodness of fit to a 

nonmetric hypothesis.   Psychometrika, 29, 1-27. 

 

Kruskal, J.B., & Carroll, J.D.  (1969).  Geometrical models and badness-of-fit functions.  

In P.R. Krishnaiah (Ed.), Multivariate Analysis (Vol. 2, pp. 639-671).  New York: 

Academic Press. 

 

Kruskal, J.B., & Wish, M. (1978). Multidimensional Scaling. Sage University Paper 

series on Quantitative Applications in the Social Sciences, 07-011. Beverly Hills, 

CA: Sage. 

 

Likert, R.  (1932).  A technique for the measurement of attitudes.  Archives of 

Psychology, 140, 44-53. 

 

Lim, R.G., & Drasgow, F.  (1990).  Evaluation of two methods for estimating item 

response theory parameters when assessing differential item functioning.  Journal 

of Applied Psychology, 75, 164-174. 

 

Lord, F.M.  (1986).  Maximum likelihood and Bayesian parameter estimation in item 

response theory.  Journal of Educational Measurement, 23, 157-162. 

 

Lord, F.M., & Novick, M.R.  (1968).  Statistical Theories of Mental Test Scores.  

Reading, MA: Addison-Wesley. 

 

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N.  (2009).  The BUGS project: 

Evolution, critique, and figure directions.  Statistics in Medicine, 28, 3049-3067. 

 

Maydeu-Olivares, A., Cai, L., & Hernandez, A.  (2011).  Comparing the fit of item 

response theory and factor analysis models.  Structural Equation Modeling, 18, 

333-356. 

 

Maydeu-Olivares, A., & Garcia-Forero, C.  (2010).  Goodness-of-fit testing.  

International Encyclopedia of Education, 7, 190-196. 



185 
 

Masters, G.N.  (1982).  A Rasch model for partial credit scoring.  Psychometrika, 47, 

149-174. 

 

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E.  (1953).  

Equations of state calculations by fast computing machines.  Journal of Chemical 

Physics, 21, 1087-1092. 

 

Minchin, P.R.  (1987).  An evaluation of the relative robustness of techniques for 

ecological ordination.  Vegetatio, 67, 1167-1179. 

 

Mislevy, R.J.  (1986).  Bayes modal estimation in item response models.  Psychometrika, 

51, 177-195. 

 

Nader, I.W., Tran, U.S., & Formann, A.K.  (2011).  Sensitivity to initial values in full 

non-parametric maximum-likelihood estimation of the two-parameter logistic 

model.  British Journal of Mathematical and Statistical Psychology, 64, 320-336. 

 

Neal, R. M.  (2003).  Slice sampling.  The Annals of Statistics, 31, 705-767. 

 

Noel, Y.  (1999).  Recovering unimodal latent patterns of change by unfolding analysis: 

Application to smoking cessation.  Psychological Methods, 4, 173-191. 

 

Patz, R.J., & Junker, B.W.  (1999).  A straightforward approach to Markov Chain Monte 

Carlo methods for item response theory.  Journal of Educational and Behavioral 

Statistics, 24, 146-178. 

 

Peet, R.K., Knox, R.G., Case, J.S., & Allen, R.B.  (1988).  Putting things in order: The 

advantages of detrended correspondence analysis.  The American Naturalist, 131, 

924-934. 

 

Polak, M.  (2011).  Item Analysis of Single-Peaked Response Data: The Psychometric 

Evaluation of Bipolar Measurement Scales.  Unpublished doctoral dissertation, 

Universiteit Leiden, Leiden, The Netherlands. 

 

Rao, C.R.  (1973).  Statistical Inference and Its Applications (2
nd

 ed.). New York: Wiley. 

 

Rasch, G.  (1960/1980).  Probabilistic Models for Some Intelligence and Attainment 

Tests.  Chicago: The University of Chicago Press. 

 

Reckase, M.D.  (2009).  Multidimensional Item Response Theory.  New York: Springer. 

 

Reckase, M.D., & McKinley, R.L.  (1991). The discriminating power of items that 

measure more than one dimension.  Applied Psychological Measurement, 15, 

361-373. 

 



186 
 

Roberts, J.S.  (2008).  Modified likelihood-based item fit statistics for the generalized 

graded unfolding model.  Applied Psychological Measurement, 32, 407-423. 

 

Roberts, J.S., Donoghue, J.R., & Laughlin, J.E.  (1998).  The Generalized Graded 

Unfolding Model: A General Parametric Item Response Model for Unfolding 

Graded Responses (Research Report RR-98-32).  Princeton, NJ: Educational 

Testing Service. 

 

Roberts, J.S., Donoghue, J.R., & Laughlin, J.E.  (2000).  A general item response theory 

model for unfolding unidimensional polytomous responses.  Applied 

Psychological Measurement, 24, 3-32. 

 

Roberts, J.S., Donoghue, J.R., & Laughlin, J.E.  (2002).  Characteristics of MML/EAP 

parameter estimates in the generalized graded unfolding model.  Applied 

Psychological Measurement, 26, 192-207. 

 

Roberts, J.S., Fang, H., Cui, W., & Wang, Y.  (2006).  GGUM2004: A Windows-based 

program to estimate parameters in the generalized graded unfolding model.  

Applied Psychological Measurement, 30, 64-65. 

 

Roberts, J.S., Jun, H., Thompson, V.M., & Shim, H.  (March, 2009a).  A Distance-Based 

Multidimensional Extension of the Generalized Graded Unfolding Model.  Paper 

presented at the 2009 Annual Meeting of the National Council on Measurement in 

Education, San Diego, California. 

 

Roberts, J.S., & Laughlin, J.E.  (1996).  A unidimensional item response model for 

unfolding responses from a graded disagree-agree scale.  Applied Psychological 

Measurement, 20, 231-255. 

 

Roberts, J.S., Laughlin, J.E., & Wedell, D.H.  (1999).  Validity issues in the Likert and 

Thurstone approaches to attitude measurement.  Educational and Psychological 

Measurement, 59, 211-233. 

 

Roberts, J.S., Lin, Y., & Laughlin, J.E. (2001).  Computerized adaptive testing with the 

generalized graded unfolding model.  Applied Psychological Measurement, 25, 

177-196. 

 

Roberts, J.S., & Shim, H.  (July, 2010).  Multidimensional Unfolding with Item Response 

Theory: The Multidimensional Generalized Graded Unfolding Model.  Paper 

presented at the 2010 Annual Meeting of the Psychometric Society, Athens, 

Georgia. 

 

 

 

 



187 
 

Roberts, J.S., Shim, H., Jun, H., Thompson, V.M., & McIntyre, H.  (April, 2009b).  A 

Comparison of the Multidimensional Generalized Graded Unfolding Model and 

the Classical Non-metric Multidimensional Unfolding Model for Analyzing 

Responses to Common Likert-type Questionnaires.  Paper presented at the 2009 

Annual Meeting of the American Educational Research Association, San Diego, 

California. 

 

Roberts, J.S., & Thompson, V.M. (June, 2008).  Accuracy of Alternative Parameter 

Estimation Methods with the Generalized Graded Unfolding Model.  Paper 

presented at the 2008 Annual Meeting of the Psychometric Society, Durham, New 

Hampshire. 

Roberts, J.S., & Thompson, V.M.  (2011).  Marginal maximum a posteriori item 

parameter estimation for the generalized graded unfolding model.  Applied 

Psychological Measurement. 

Schilling, S., & Bock, R.D.  (2005).  High-dimensional maximum marginal likelihood 

item factor analysis by adaptive quadrature.  Psychometrika, 70, 533-555. 

Shaftel, J., Nash, B., & Gillmor, S.  (2012).  Effects of the Number of Response 

Categories on Rating Scales.  Paper presented at the 2012 Annual Meeting of the 

American Educational Research Association, Vancouver, Canada. 

Shepard, R.N. (1962a). The analysis of proximities: Multidimensional scaling with an 

unknown distance function (I). Psychometrika, 27, 125-139. 

Shepard, R.N. (1962b). The analysis of proximities: Multidimensional scaling with an 

unknown distance function (II). Psychometrika, 27, 219-246. 

 

Shepard, R.N.  (1974).  Representation of structure in similarity data: Problems and 

prospects.  Psychometrika, 39, 373-421. 

 

Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D.  (2007).  WinBUGS (Version 1.4.2) 

[Computer software].  Cambridge, U.K.: MRC Biostatistics Unit, Institute of 

Public Health. 

 

Stark, S., Chernyshenko, O.S., & Drasgow, F., & Williams, B.A.  (2006).  Item 

responding in personality assessment: Should ideal point methods be considered 

for scale development and scoring?  Journal of Applied Psychology, 91, 25-39. 

 

Stout, W.F.  (1987).  A nonparametric approach to assessing latent trait 

unidimensionality.  Psychometrika, 52, 589-617. 

 

Sympson, J.B.  (1978).  A model for testing with multidimensional items.  In D.J. Weiss 

(Ed.), Proceedings of the 1977 Computerized Adaptive Testing Conference (pp. 

82-98).  Minneapolis, MN: University of Minnesota. 

 



188 
 

Takane, Y., Young, F.W., & De Leeuw, J.  (1977).  Nonmetric individual differences 

multidimensional scaling: An alternating least-squares method with optimal 

scaling features. Psychometrika, 42, 7–67. 

 

ter Braak, C.J.F.  (1988).  CANOCO: A FORTRAN program for canonical community 

ordination by [partial] [detrended] [canonical] correspondence analysis, principal 

components analysis, and redundancy analysis (Version 2.1).  DLO-Agricultural 

Mathematics Group, Wageningen, The Netherlands. 

 

ter Braak, C.J.F.  (1995).  Ordination.  In R.H.G. Jongman, C.J.F. ter Braak, and O.F.R. 

van Tongeren (Eds.), Data Analysis in Community and Landscape Ecology (pp. 

91-173).  New York: Cambridge University Press. 

 

ter Braak, C.J.F., & Prentice, I.C.  (1988).  A theory of gradient analysis.  Advances in 

Ecological Research, 18, 271-317. 

 

ter Braak, C.J.F., & Smilauer, P.  (2002).  CANOCO Reference Manual and 

CANODRAW for Windows User’s Guide: Software for Canonical Community 

Ordination (version 4.5).  Ithaca, NY: Microcomputer Power. 

 

Thompson, V.M., & Roberts, J.S.  (July, 2010).  Item Information in the 

Multidimensional Generalized Graded Unfolding Model.  Poster presented at the 

2010 Annual Meeting of the Psychometric Society, Athens, Georgia. 

 

Thurstone, L.L.  (1927).  A law of comparative judgment.  Psychological Review, 34, 

273-286. 

 

Thurstone, L.L.  (1928).  Attitudes can be measured.  The American Journal of Sociology 

33, 529-553. 

 

Weekers, A., & Meijer, R. (2008). Scaling response processes on personality items using 

unfolding and dominance models: An illustration with a Dutch dominance and 

unfolding personality inventory. European Journal of Psychological Assessment, 

24, 65-77.  

 

Whitely, S.E.  (1980).  Multicomponent latent trait models for ability tests.  

Psychometrika, 45, 479-494. 

 

Yao, L., & Schwarz, R. (2006).  A multidimensional partial credit model with associated 

item and test statistics: An application to mixed-format tests.  Applied 

Psychological Measurement, 30, 469-492. 

 

Zhang, J., & Stout, W.F.  (1999).  The theoretical DETECT index of dimensionality and 

its application to approximate simple structure.  Psychometrika, 64, 213-249. 


