COUNTING HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS

A Dissertation
Presented to The Academic Faculty
\section*{By}
Xiaonan Liu
In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the School of Mathematics
College of Science
Georgia Institute of Technology

May 2023
© Xiaonan Liu 2023

COUNTING HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS

Thesis committee:

Dr. Anton Bernshteyn
School of Mathematics
Georgia Institute of Technology

Dr. Greg Blekherman
School of Mathematics
Georgia Institute of Technology

Dr. Will Perkins
School of Computer Science
Georgia Institute of Technology

Dr. Xingxing Yu, Advisor
School of Mathematics
Georgia Institute of Technology

Dr. Tom Kelly

School of Mathematics
Georgia Institute of Technology

Dedicated to my family

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Xingxing Yu, for his invaluable support and guidance throughout my Ph.D. journey. He has been a constant source of inspiration and motivation, guiding me through the research process and opening the doors to the wonderful world of mathematics. His vast knowledge and expertise in the field have helped me see the beauty and complexity of graph theory. His passion for research and his keen intuition for math problems have inspired me to work harder and strive for excellence in my research. I would like to thank him for his unwavering support and care throughout this journey. I am grateful for the tools and skills that I have learned from him, which I will carry with me as I embark on my research career.

I would like to thank Professors Anton Bernshteyn, Greg Blekherman, Tom Kelly, and Will Perkins for serving in my dissertation committee and for their helpful comments and suggestions. I would also like to thank Professors Anton Bernshteyn, Dan Cranston, Luca Dieci and Klara Grodzinsky for writing me recommendation letters for my job application. In particular, I would like to express my deep appreciation to Professor Dan Cranston for his valuable suggestions. I am also grateful to Professor Sung Ha Kang for her kind words and support, to Professor $\mathrm{Zi}-\mathrm{Xia}$ Song for her career advice. I would like to take this opportunity to thank all the professors who have taught me during my Ph.D. journey and all the staff members who have assisted me throughout this journey at Georgia Tech. Special thanks to Professors Mo Burke and Klara Grodzinsky for their support in my teaching endeavors at the School of Mathematics. I would also like to thank Professors Xinmin Hou and Jue Le for their mentoring and support during my time at USTC. I am also grateful to Professor Mark Ellingham for his support and guidance.

I want to express my sincere appreciation to my friends Zhiyu Wang, Zhuangzhuang Han, Xiaofan Yuan, Shasha Liao, Dantong Zhu, Hao Wu, Zilin Jiang, Guangming Jing, Weizhe Shen, Renyi Chen, Weiwei Zhang, Yian Yao, Allegra Allgeier, James Anderson,

Yaghoub Rahimi, Athulya Ram, Jad Salem, Joshua Schroeder, Roberta Shapiro, Jing Yu, Mengyi Tang, Shijie Xie, Guangyu Cui, Haodong Sun, Wei Kuang, Jiasu Wang and all my other friends in Georgia Tech and USTC for their companionship and support during my graduate study.

I would like to extend my gratitude to all the funding agencies that partially supported my work and travel during my graduate study.

Finally, I would like to thank my mom, dad and sister. Thank you for your unwavering love and support in every journey I undertake and in every decision I make. I love you forever!

TABLE OF CONTENTS

Acknowledgments iv
List of Figures viii
Summary ix
Chapter 1: Introduction and Background 1
1.1 Terminology and Notations 1
1.2 Background and history 4
1.2.1 The Four Color Theorem 4
1.2.2 Circumference of 3-connected planar graphs 5
1.2.3 Hamiltonian cycles in 4-connected planar graphs 7
1.2.4 Cycle spectrum of 4-connected planar graphs 9
1.2.5 Counting Hamiltonian cycles 12
1.3 Main results 15
1.4 Proof sketch 16
1.5 Organization 22
Chapter 2: Preliminaries 24
2.1 Tutte paths and Tutte cylces 24
2.2 Separating 4-cycles 25
2.3 A technique of Alahmadi, Aldred, and Thomassen 29
Chapter 3: Qudratic bound 36
3.1 Hamiltonian cycles through two cofacial edges 36
3.2 Proof of quadratic bound 43
Chapter 4: Restricting degree 4 vertices 46
4.1 Nested separating 4-cycles 46
4.2 Proof of exponential bound 55
Chapter 5: Future work 58
5.1 Hakimi-Schmeichel-Thomassen Conjecture 58
5.2 Counting Hamiltonian cycles in graphs embeddable in other surfaces 59
5.3 Counting k-cycles in planar triangulations 59
$5.4 k$-cycles in 4-connected planar triangulations 61
$5.5 k$-cycles in 5-connected planar triangulations 62
5.6 Pancyclicity in 4-connected planar graphs 63
References 64

LIST OF FIGURES

1.1 Tutte's example. 5
1.2 Double wheel on 10 vertices. 13
1.3 Contracting the edge $u v$. 16
1.4 Blue edges belong to F; black vertices belong to K 18
1.5 Edges related to a degree 4 vertex. 19
2.1 H-bridges. 24
2.2 The blocks B_{1}, \ldots, B_{t}. 26
2.3 Diamond-6-cycle (left); diamond-4-cycle (right); solid vertices represent the crucial vertices. 30
2.4 The link sets. 31

SUMMARY

Whitney showed that every planar triangulation without separating 3-cycles is Hamiltonian. This result was extended to all 4-connected planar graphs by Tutte. Hakimi, Schmeichel, and Thomassen showed the first lower bound $n / \log _{2} n$ for the number of Hamiltonian cycles in every n-vertex 4 -connected planar triangulation and, in the same paper, they conjectured that this number is at least $2(n-2)(n-4)$, with equality if and only if G is a double wheel. We show that every 4 -connected planar triangulation on n vertices has $\Omega\left(n^{2}\right)$ Hamiltonian cycles. Moreover, we show that if G is a 4-connected planar triangulation on n vertices and the distance between any two vertices of degree 4 in G is at least 3 , then G has $2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles.

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Terminology and Notations

We list some definitions and notations that will be used throughout the dissertation. Readers are referred to Graph Theory textbook by Bondy and Murty [21] and Diestel [30] for any terminology or notations that we may have missed in this section.
(1) Basic Graph Terminology: A graph $G=(V, E)$ is a pair (V, E) such that V is the vertex set and $E \in 2^{\binom{V}{2}}$ is the edge set. We use $V(G), E(G)$ to denote the vertex set and the edge set of G respectively.

A path on $n(n \geq 2)$ vertices in a graph G is a sequence of distinct vertices $v_{1} v_{2} \cdots v_{n}$ such that $v_{i} v_{i+1} \in E(G)$ for each $i \in[n-1]$. A cycle on $n(n \geq 3)$ vertices in a graph G is a sequence of vertices $v_{1} v_{2} \cdots v_{n} v_{1}$ such that $v_{1} v_{2} \cdots v_{n}$ is a path in G and $v_{1} v_{n} \in E(G)$. A graph G is called connected if for any two vertices in G, there exists a path between them. A graph G is k-connected if it has more than k vertices and if it remains connected when fewer than k vertices are removed. The distance between two vertices u, v in a graph G, denoted by $d_{G}(u, v)$, is the number of edges in a shortest path in G connecting them. A graph G is called Hamiltonian if it contains a Hamiltonian cycle, i.e., a cycle that uses every vertex in G. For a positive integer k, a k-cycle is a cycle (of length k) using k vertices in G. A k-cycle C in a connected graph G is said to be separating if the graph obtained from G by deleting C is not connected. A separating 3-cycle is also called a separating triangle.

Let G be a graph. For $v \in V(G)$, we use $N_{G}(v)$ (respectively, $N_{G}[v]$) to denote the neighborhood (respectively, closed neighborhood) of v, and use $d_{G}(v)$ to denote $\left|N_{G}(v)\right|$, which is the degree of v in G. For a positive integer r, a graph G is called
r-regular if every vertex has degree r in G; moreover if $r=3, G$ is also called a cubic graph. Given a path P and distinct vertices $x, y \in V(P)$, we use $x P y$ to denote the subpath of P between x and y. If H is a subgraph of G, we write $H \subseteq G$. For any set R consisting of vertices of G and 2-element subsets of $V(G)$, we use $H+R$ (respectively, $H-R$) to denote the graph with vertex set $V(H) \cup(R \cap$ $V(G))($ respectively, $V(H) \backslash(R \cap V(G)))$ and edge set $E(H) \cup(R \cap(V(H) \cup(R \cap V(H))))$ (respectively, $E(H) \backslash\left(R \cap\binom{V(H) \cup(R \cap V(H))}{2}\right.$). If $R=\{\{x, y\}\}$ (respectively, $R=$ $\{v\}$), we write $H+x y$ (respectively, $H+v$) instead of $H+R$, and write $H-x y$ (respectively, $H-v$) instead of $H-R$.

Let G and H be graphs. We use $G \cup H$ and $G \cap H$ to denote the union and intersection of G and H, respectively. Thus, $V(G \cup H)=V(G) \cup V(H), E(G \cup H)=E(G) \cup$ $E(H)$ and $V(G \cap H)=V(G) \cap V(H), E(G \cap H)=E(G) \cap E(H)$. The join of G and H, denoted $G+H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{u v \mid u \in V(G), v \in V(H)\}$. For any $S \subseteq V(G)$, we use $G[S]$ to denote the subgraph of G induced by S, i.e., $V(G[S])=S$ and $E(G[S])=$ $E(G) \cap\binom{S}{2}$, and let $G-S=G[V(G) \backslash S]$. A set $S \subseteq V(G)$ is a cut in G if $G-S$ has more components than G, and if $|S|=k$ then S is a cut of size k or k-cut for short. For a subgraph T of G, we often write $G-T$ for $G-V(T)$ and write $G[T]$ for $G[V(T)]$.
(2) Basic Planar Graph Terminology: A graph is called planar if it can be drawn in the plane with no crossing edges. A graph drawn in the plane without crossing edges is called a plane graph.

For any plane graph G, the connected regions of $\mathbb{R}^{2} \backslash G$ are called faces of G, and the set of gaces of G is denoted $F(G)$. Two elements of $V(G) \cup E(G)$ are cofacial if they are incident with a common face of G. For any positive integer k, G is said to be k-face-colorable if all faces of G can be colored by k colors such that no two faces
incident with a common edge use the same color.
A closed walk in a graph G is defined as a sequence of vertices, starting and ending at the same vertex, such that any two consecutive vertices in this sequence are adjacent in G. Every face of a plane graph G is bounded by a closed walk in G called the boundary of the face. We call a face f of G whose boundary consists of k vertices (including repetitions) a face of size k. A cycle is called a facial cycle if it is the boundary of a face. Any face bounded by a triangle is known as a triangular face. It is well-known that every face of a 2-connected plane graph is bounded by a cycle. If G is a finite plane graph, then exactly one face of G is not bounded and we call it the infinite face or outer face of G. The outer walk of G is the boundary of the infinite face of G. If the outer walk is a cycle in G, we call it outer cycle instead. If all vertices of G are incident with its infinite face, then we say that G is an outer planar graph.

Let G be a plane graph. The dual graph of G is the graph G^{*} such that every face f in G corresponds to a vertex f^{*} in G^{*} and every edge e in G correspondings an edge e^{*} in G^{*}, and two vertices f_{1}^{*}, f_{2}^{*} in G^{*} are joined by the edge e^{*} in G^{*} if and only if their corresponding faces f_{1} and f_{2} in G are both incident with the edge e. It is easy to see that $\left(G^{*}\right)^{*} \cong G$.

A planar triangulation is an edge-maximal planar graph on at least three vertices, i.e., every face in any drawing of a planar triangulation in the plane is bounded by a triangle. Every planar triangulation corresponds to a unique plane triangulation up to homeomorphism. By Euler's theorem $(|V(G)|-|E(G)|+\mid F(G \mid=2$ for a connected plane graph G), an n-vertex plane triangulation has exactly $3 n-6$ edges. For a cycle C in G, we use \bar{C} to denote the subgraph of G consisting of all vertices and edges of G contained in the closed disc in the plane bounded by C. The interior of C is then defined as the subgraph $\bar{C}-C$. For any distinct vertices $u, v \in V(C)$, we use $u C v$ to denote the subpath of C from u to v in clockwise order.
(3) Interval Notation: For integers n, m with $m \geq n \geq 1$, we use the notation $[n]=$ $\{1,2, \cdots, n\}$, and $[n, m]=\{n, n+1, \cdots, m-1, m\}$.
(4) Asymptotic Notation: Give two functions $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{R}$, we say $f=O(g)$ if there exist some constant C and some integer n_{0} such that for all $n \geq n_{0},|f(n)| \leq C g(n)$. We say $f=\Omega(g)$ if $g=O(f)$. We say $f=o(g)$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ and we say $f=\omega(g)$ if $g=o(f)$.

1.2 Background and history

1.2.1 The Four Color Theorem

We begin with the Four Color Theorem stating that

Theorem 1.2.1 (Appel and Haken [10, 11, 12]). Every plane graph is 4-face-colorable.

This statement was conjectured by Guthrie in 1852, and remained open until a proof was found by Appel and Haken [10, 11, 12] in 1976. But the proof by Appel and Haken is not completely satisfactory as it uses a computer and cannot be verified by hand. This motivated Robertson, Sanders, Seymour, and Thomas to give a simper proof in [66] but their proof is also computer assisted.

It can be shown easily that each plane graph containing a Hamiltonian cycle is 4 -facecolorable. To see this, let G be a plane graph and C be a Hamiltonian cycle in G. We consider the faces in the interior of C, which induce a tree in G^{*}, and hence we can use two colors to color those faces. Similarly, the faces in the exterior of C can be colored with two colors. Therefore, every plane graph containing a Hamiltonian cycle is 4 -face-colorable.

Tait [70] in 1880 gave a false proof of the Four Color Theorem by assuming that every 3connected cubic planar graph is Hamiltonian. It was not until 1946 that Tutte [76] found the first counterexample: There exists a 3-connected cubic planar graph with no Hamiltonian cycle. See Figure 1.1. More examples can be found in [39]. However, all known examples

Figure 1.1: Tutte's example.
contain odd cycles. Indeed, Barnette [13] in 1969 proposed the following conjecture, which still remains open.

Conjecture 1.2.2 (Barnette [13]). Every 3-connected cubic planar bipartite graph is Hamiltonian.

Each known non-Hamiltonian 3-connected cubic plane graph also has a face of size 7 or more (see [7], [79]). It was conjectured by Barnette and independently by Goodey [35] that every 3 -connected cubic plane graph with all faces of size at most 6 is Hamiltonian. Kardoš [44] proved this conjecture and showed that

Theorem 1.2.3 (Kardoš [44]). Every 3-connected cubic plane graph with faces of size at most 6 is Hamiltonian.

It is interesting to know which planar graphs contain Hamiltonian cycles.

1.2.2 Circumference of 3-connected planar graphs

Note that there exist 3-connected planar triangulations that do not have a Hamiltonian cycle. For example, let G be a plane triangulation on $n(n \geq 5)$ vertices. We obtain a new graph G^{\prime} by inserting a vertex to each face of G and connecting this vertex to the three vertices
on the boundary of that face. Note that the vertices in $V\left(G^{\prime}\right) \backslash V(G)$ form an independent set in G^{\prime}. Since G has exactly $2 n-4$ faces,

$$
\left|V\left(G^{\prime}\right)\right|=n+(2 n-4)=3 n-4
$$

G^{\prime} is a planar triangulation and it is 3 -connected but G^{\prime} contains no Hamiltonian cycle. Otherwise there exist two vertices in $V\left(G^{\prime}\right) \backslash V(G)$ that are adjacent in G^{\prime}. Moreover, there are many 3 -connected planar graphs containing no Hamiltonian cycles (see [39]). Hence one can ask: What is the length of a longest cycle in a 3 -connected planar graph? Is there any lower bound for it?

Definition 1.2.4. The $\operatorname{circumference} \operatorname{circ}(G)$ of a graph G is the length of a longest cycle in G.

Moon and Moser [63] in 1963 constructed 3-connected planar graphs G with $\operatorname{circ}(G) \leq$ $9|V(G)|^{\log _{3} 2}$ and implicitly conjectured that every n-vertex 3 -connected planar graph G has circumference $\Omega\left(n^{\log _{3} 2}\right)$. In 1966, Barnette [14] showed

Theorem 1.2.5 (Barnette [14]). Every n-vertex 3-connected planar graph G has a cycle of length at least $c \sqrt{\lg n}$, i.e., $\operatorname{circ}(G) \geq c \sqrt{\lg n}$ for some constant c.

This bound was improved by Clark [27] in 1985 who showed the following result
Theorem 1.2.6 (Clark [27]). Every n-vertex 3-connected planar graph G has a cycle of length at least $e^{\sqrt{\frac{1}{6} \lg n}}$, i.e., $\operatorname{circ}(G) \geq e^{\sqrt{\frac{1}{6} \lg n}}$.

In 1992, Jackson and Wormald [41] gave a polynomial lower bound.

Theorem 1.2.7 (Jackson and Wormald [41]). Every n-vertex 3-connected planar graph G has a cycle of length at least βn^{α}, i.e., $\operatorname{circ}(G) \geq \beta n^{\alpha}$, where β is some constant and $\alpha \approx 0.207$.

Gao and Yu [33] improved the value of α and generalized this result to graphs on the projective plane, or the torus, or the Kelin bottle.

Theorem 1.2.8 (Gao and $\mathrm{Yu}[33])$. Let G be a 3 -connected graph on n vertices. If G can be embedded in the plane or or the projective plane, or the torus, or the Kelin bottle, $\operatorname{circ}(G) \geq \Omega\left(n^{0.4}\right)$.

In 2002, Chen and Yu [25] solved the conjecture implicitly proposed by Moon and Moser [63] and gave a better construction of 3-connected planar graphs with circumference $O\left(|V(G)|^{\log _{3} 2}\right)$.

Theorem 1.2.9 (Chen and Yu [25]). Let G be a 3 -connected graph on n vertices. If G can be embedded in the plane or or the projective plane, or the torus, or the Kelin bottle, $\operatorname{circ}(G) \geq \Omega\left(n^{\log _{3} 2}\right)$.

1.2.3 Hamiltonian cycles in 4-connected planar graphs

The situation is different when 3 -connected is replaced by 4 -connected. Whitney [78] in 1931 showed

Theorem 1.2.10 (Whitney [78]). Every planar triangulation without separating triangles is Hamiltonian.

Observe that planar triangulations without separating triangles are 4-connected except it is K_{3} or K_{4}. In 1956, Tutte [75] extended Whitney's result by showing the following.

Theorem 1.2.11 (Tutte [75]). Every 4-connected planar graph is Hamiltonian.
Definition 1.2.12. A graph is Hamiltonian connected if for any two distinct vertices u and v, there exists a Hamiltonian path between u and v.

Observe that if a graph G is Hamiltonian connected, then G is Hamiltonian (as G has a Hamiltonian path between u and v for any edge $u v \in E(G)$). In 1983, Thomassen [74] further strengthened Tutte's result by showing the following.

Theorem 1.2.13 (Thomassen [74]). Every 4-connected planar graph is Hamiltonian connected.

These results have been extended to graphs on other surfaces. Thomas and Yu [71] in 1994 extended Tutte's result to the projective plane.

Theorem 1.2.14 (Thomas and Yu [71]). Every 4-connected projective-planar graph is Hamiltonian.

Kawarabayashi and Ozeki [45] in 2015 further strengthened the result of Thomas and Yu to the following.

Theorem 1.2.15 (Kawarabayashi and Ozeki [45]). Every 4-connected projective-planar graph is Hamiltonian connected.

Note that this result cannot be generalized to 4-connected graphs on the torus or on the Klein bottle (There are 4-connected graphs on the torus or on the Klein bottle which are not Hamiltonian-connected).

Altshuler [9] considered the graphs on torus and showed in 1972 that

Theorem 1.2.16 (Altshuler [9]). The followings are true:
(1) Every 6-connected graph on the torus is Hamiltonian.
(2) Every cubic graph on the torus with each face of size 6 is Hamiltonian.
(3) Every 4-regular graph on the torus with each face of size 4 is Hamiltonian.

Thomas and Yu [72] in 1997 improved the first result of Altshuler.

Theorem 1.2.17 (Thomas and Yu [72]). Every 5-connected toroidal graph is Hamiltonian.

Kawarabayashi and Ozeki [46] generalized this result.

Theorem 1.2.18 (Kawarabayashi and Ozeki [46]). Every 5-connected toroidal graph is Hamiltonian connected.

It is possible that the condition on the connectivity above can be weakened if instead one asks for a Hamiltonian path instead of a Hamiltonian cycle. Indeed, Thomas, Yu, and Zang [73] in 2005 considered 4-connected toroidal graphs and proved that

Theorem 1.2.19 (Thomas, Yu, and Zang [73]). Every 4-connected toroidal graph contains a Hamiltonian path.

There also have been extensive investigations on the existence of Hamiltonian cycles in random graphs. For results along this line, we refer the readers to $[47,65,48,17,1,8]$.

1.2.4 Cycle spectrum of 4-connected planar graphs

In this section, we discuss the pancyclicity in planar graphs.
Definition 1.2.20. The cycle spectrum $\mathcal{C}(G)$ of a simple graph G is the set of all possible lengths of cycles in G. A graph G on at least three vertices is said to be pancyclic if G contains cycles of all possible lengths, i.e., $\mathcal{C}(G)=\{3,4, \cdots,|V(G)|\}=[3,|V(G)|]$.

Bondy suggested that it is usually hardest to guarantee the existence of a Hamiltonian cycle for the cylce spectrum of a graph. In 1973, Bondy [20] proposed his famous metaconjecture.

Conjecture 1.2.21 (Bondy [20]). Any non-trivial condition which implies that a graph is Hamiltonian, also implies that this graph is pancyclic (up to a small class of exceptional graphs).

For example, Dirac proved that every n-vertex ($n \geq 3$) graph with minimum degree at least $n / 2$ is Hamiltonian, and Bondy [19] proved the following.

Theorem 1.2.22 (Bondy [19]). Let G be an n-vertex graph with minimum degree $n / 2$. Then either G is pancyclic or G is the complete bipartite graph $K_{\frac{n}{2}, \frac{n}{2}}$.

For more results concerning Hamiltonian degree conditions that imply pancyclicity, we refer the readers to $[15,69,18,26,31]$.

By Tutte's result, Bondy's conjecture suggests that 4-connected planar graphs are pancyclic except for some simple families of graphs. Malkevitch [59] found a simple family of exceptions, of which every member is Hamiltonian but contains no 4 -cycle. There are two
interesting conjectures concerning cycle spectrum of 4-connected planar graphs, proposed by Bondy in 1973 and by Malkevitch in 1988 respectively.

Conjecture 1.2.23 (Bondy [20]). Every 4-connected planar graph contains cycles of all lengths from 3 to $|V(G)|$, with the possible exception of one even length.

Conjecture 1.2.24 (Malkevitch [60]). Every 4-connected planar graph is pancyclic if it contains a cycle of length 4.

A 4-connected planar graph need not contain a cycle of length 4 by a construction in [59]. Plummer [64] in 1975 proposed a conjecture stating that any graph obtained from a 4 -connected planar graph by deleting one vertex has a Hamiltonian cycle. This conjecture follows from a theorem of Tutte in [75]. Plummer [64] also conjectured that any graph obtained from a 4 -connected planar graph by deleting two vertices has a Hamiltonian cycle. This conjecture was proved by Thomas and Yu [71]. Note that deleting three vertices from a 4-connected planar graph may result in a graph which is not 2 -connected and hence, has no Hamiltonian cycle. However, Sanders [67] in 1996 showed that in any 4-connected planar graph with at least six vertices, there are three vertices whose deletion results in a Hamiltonian graph. In 2004, Chen, Fan, and Yu [24] showed that any n-vertex 4 -connected graph also has a cycle of length k for each $k \in\{n-4, n-5, n-6\}$ with $k \geq 3$. It was shown by Cui, Hu, and Wang [29] in 2009 that any n-vertex 4 -connected graph with $n \geq 10$ has a cycle of length $n-7$. We list those results below.

Theorem 1.2.25 (Tutte). If G is an n-vertex 4 -connected planar graph, then G contains a cycle of length $n-1$, i.e., $n-1 \in \mathcal{C}(G)$.

Theorem 1.2.26 (Thomas and Yu [71]). If G is an n-vertex 4 -connected planar graph, then $n-2 \in \mathcal{C}(G)$.

Theorem 1.2.27 (Sanders [67]). If G is an n-vertex 4 -connected planar graph with $n \geq 6$, then $n-3 \in \mathcal{C}(G)$.

Theorem 1.2.28 (Chen, Fan, and Yu [24]). If G is an n-vertex 4 -connected planar graph with $n \geq 9$, then $\{n-4, n-5, n-6\} \subseteq \mathcal{C}(G)$.

Theorem 1.2.29 (Cui, Hu, and Wang [29]). If G is an n-vertex 4 -connected planar graph with $n \geq 10$, then $n-7 \in \mathcal{C}(G)$.

What about small cycle lengths? Wang and Lih [77] in 2002 showed

Theorem 1.2.30 (Wang and Lih [77]). If G is a 4 -connected planar graph, $3,5 \in \mathcal{C}(G)$.

This result was improved by Fihavž, Juvan, Mohar, and Škrekovski [32] to

Theorem 1.2.31 (Fihavž, Juvan, Mohar, and Škrekovski [32]). If G is a 4-connected planar graph, then $3,5,6 \in \mathcal{C}(G)$.

Recently, Lo [54] showed

Theorem 1.2.32 (Lo [54]). If G is an 4-connected planar graph, for any $k \in$ $\left\{\left\lfloor\frac{|V(G)|}{2}\right\rfloor,\left\lfloor\frac{|V(G)|}{2}\right\rfloor+1, \cdots,\left\lceil\frac{|V(G)|}{2}\right\rceil+3\right\}$ with $3 \leq k \leq|V(G)|, k \in \mathcal{C}(G)$.

In addition, Lo [53] gave a lower bound for $|\mathcal{C}(G)|$.

Theorem 1.2.33 (Lo [53]). If G is an n-vertex 4 -connected planar graph with $n \geq 3$, then $|\mathcal{C}(G)| \geq\left\lceil\frac{n}{2}\right\rceil+2$.

Using a similar idea as in [53] and the Hamiltonicity of 4-connected planar graphs, Mohar and Shantanam [62] proved the following.

Theorem 1.2.34 (Mohar and Shantanam [62]). If G is an n-vertex 4-connected planar graph and e is an edge in G, then e is contained in at least $\left\lceil\frac{n}{2}\right\rceil+1$ cycles of pairwise distinct lengths.

It is an interesting problem to study the cycle spectrum of 4-connected planar graphs without 4 cycles. Horňák and Kocková [40] in 2008 proved

Theorem 1.2.35 (Horňák and Kocková [40]). If G is a 4-connected planar graph containing no cycle of length 4 , then $7 \in \mathcal{C}(G)$.

Madaras and Tamášová [58] showed

Theorem 1.2.36 (Madaras and Tamášová [58]). If G is a 4-connected planar graph containing no cycle of length 4 , then $8,9 \in \mathcal{C}(G)$.

Very recently, Lo [52] proved

Theorem 1.2.37 (Lo [52]). If G is a 4-connected planar graph containing no cycle of length 4 , then for any $k \in\{\lfloor|V(G)| / 2\rfloor,\lfloor|V(G)| / 2\rfloor+1, \cdots,|V(G)|\}, k \in \mathcal{C}(G)$.

For the size of the cycle spectrum of 4-connected planar graphs without 4-cycles, Mohar and Shantanam [62] gave the following lower bound.

Theorem 1.2.38 (Mohar and Shantanam [62]). If G is an n-vertex 4-connected planar graph containing no cycle of length 4 , then $|\mathcal{C}(G)| \geq\left\lceil\frac{5 n}{6}\right\rceil+2$.

1.2.5 Counting Hamiltonian cycles

It is a natural problem to consider the number of Hamiltonian cycles in a graph, which also has applications in coding theory according to [3, 4, 5]. For the results concerning the number of Hamiltonian cycles in random graphs, see [43, 28, 34, 61]. In this subsection, we focus on counting Hamiltonian cycles in planar triangulations, which is the main theme of this dissertation.

The problem of determining the number of Hamiltonian cycles in 4-connected planar triangulations was initated by Hakimi, Schmeichel, and Thomassen who showed in 1979 that

Theorem 1.2.39 (Hakimi, Schmeichel, and Thomassen [38]). Every 4-connected planar triangulation on n vertices has at least $n / \log _{2} n$ Hamiltonian cycles.

In the same paper, they conjectured a lower bound which is quadratic in the number of vertices and realized by the double wheel.

Definition 1.2.40. A double wheel is a planar triangulation obtained from a cycle by adding two vertices and all edges from these two vertices to the vertices of the cycle. See the double wheel on 10 vertices in Figure 1.2.

Figure 1.2: Double wheel on 10 vertices.

Now we count the number of the Hamiltonian cycles in a double wheel graph G on n vertices. For each Hamiltonian cycle H in G, consider the choices of the two edges incident with each of the vertices v_{1}, v_{2} of degree $n-2$ in H. If the two edges incident with v_{1} in H are cofacial, then the two edges incident with v_{2} in H are also cofacial. There are $(n-2)(n-3)$ such Hamiltonian cycles. Now suppose the two edges incident with v_{1} in H are not cofacial. We have two ways to extend this path to a Hamiltonian cycle. Hence there are $2\left(\binom{n-2}{2}-(n-2)\right)$ such Hamiltonian cycles. Therefore, the number of Hamiltonian cycles in G is exactly

$$
(n-2)(n-3)+2\left(\binom{n-2}{2}-(n-2)\right)=2(n-2)(n-4)
$$

Conjecture 1.2.41 (Hakimi, Schmeichel, and Thomassen [38]). If G is a 4-connected planar triangulation on n vertices, then G has at least $2(n-2)(n-4)$ Hamiltonian cycles, with equality if and only if G is a double wheel.

It was not until recently that Brinkmann, Souffriau, and Van Cleemput [23] gave the first linear lower bound by showing

Theorem 1.2.42 (Brinkmann, Souffriau, and Van Cleemput [23]). Every n-vertex 4-connected planar triangulation contains $\frac{12}{5}(n-2)$ Hamiltonian cycles.

Subsequently, Brinkmann and Van Cleemput [22] proved linear lower bounds for 4connected plane graphs and plane graphs with at most one 3-cut and sufficiently many edges. Since then, there has been more progress on this problem. Lo [55] showed that

Theorem 1.2.43 (Lo [55]). Every n-vertex 4-connected planar triangulation with $O(\log n)$ separating 4-cycles has $\Omega\left((n / \log n)^{2}\right)$ Hamiltonian cycles.

We in [51] improved this result by showing that
Theorem 1.2.44 (Liu and Yu [51]). Every n-vertex 4 -connected planar triangulation with $O(n / \log n)$ separating 4-cycles has $\Omega\left(n^{2}\right)$ Hamiltonian cycles.

Very recently, Lo and Qian [56] further showed that
Theorem 1.2.45 (Lo and Qian [56]). Every n-vertex 4 -connected planar or projective planar triangulation with $O(n)$ separating 4-cycles has $2^{\Omega(n)}$ Hamiltonian cycles.

Thus Conjecture 1.2.41 holds for large graphs with $O(n)$ separating 4-cycles. Note that the condition on $O(n)$ separating 4-cycles restricts the planar triangulation to have $O(n)$ degree 4 vertices and an n-vertex 4 -connected planar triangulation can have $\Omega(n)$ degree 4 -vertices.

The number of Hamiltonian cycles in a planar triangulation G can be significantly larger if one increases the connectivity or the minimum degree of G. Böhme, Harant, and Tkáč [16] in 1999 showed that

Theorem 1.2.46 (Böhme, Harant, and Tkáč [16]). Every n-vertex 5-connected planar triangulation has $2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles.

In 2020, Alahmadi, Aldred, and Thomassen [2] improved this bound by showing that Theorem 1.2.47 (Alahmadi, Aldred, and Thomassen [2]). Every n-vertex 5-connected planar or projective planar triangulation has $2^{\Omega(n)}$ Hamiltonian cycles.

Note that the more recent result of Lo and Qian [56] is stronger, but the technique used in [2] played an important role in [56]. We [51] weakened the hypothesis of 5-connectivity in the Böhme-Harant-Tkáč result and showed that

Theorem 1.2.48 (Liu and Yu [51]). Every n-vertex 4 -connected planar triangulation with minimum degree 5 has $2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles.

1.3 Main results

In this section, we state the main results of this dissertation. Recall the Hakimi-SchmeichelThomassen Conjecture on the number of Hamiltonian cycles in a 4-connected planar triangulation on n vertices, which states that if G is a 4-connected planar triangulation on n vertices then G has at least $2(n-2)(n-4)$ Hamiltonian cycles, with equality if and only if G is a double wheel.

Building upon techniques from the previous results, and using some new ideas, we settled the conjecture above asymptotically by showing the following.

Theorem 1.3.1 (Liu, Wang, and Yu [50]). If G is a 4-connected planar triangulation on n vertices, then G has at least cn ${ }^{2}$ Hamiltonian cycles, where $c=(12 \times 90 \times 541 \times 301)^{-2} / 2$.

We also observed that the relative locations of degree 4 vertices play an essential role for 4 -connected planar triangulations to have exponentially many Hamiltonian cycles. If any two degree 4 vertices are far from each other in a 4-connected planar triangulation G, we can find exponentially many Hamiltonian cycles in G.

Theorem 1.3.2 (Liu, Wang, and Yu [50]). There exists a constant $c>0$ such that for any 4-connected planar triangulation G on n vertices in which the distance between any two vertices of degree 4 is at least three, G has at least $2^{c n^{1 / 4}}$ Hamiltonian cycles.

1.4 Proof sketch

From the results in section 1.2, we know that if we want to solve Conjecture 1.2.41 we need to deal with the separating 4 -cycles in an n-vertex 4 -connected planar triangulation G. Hence we try to analyse the structure of the interior of a separating 4-cycle in G (Lemmas 2.2.2 and 2.2.3).

Note that the interior of a separating 4 -cycle can be a degree 4 vertex. What happens if G has a lot of degree 4 -vertices? We can imagine that G may contain two vertices u, v of degree 4 that are adjacent to each other. It is natural to consider contracting the edge $u v$ and applying induction to this smaller graph G^{\prime} as G^{\prime} is still a 4-connected planar triangulation and $\left|V\left(G^{\prime}\right)\right|=n-1$.

Figure 1.3: Contracting the edge $u v$.

Observe that each Hamiltonian cycle in G^{\prime} can be modified to a Hamiltonian cycle in G containing the edge $u v$. By induction, G^{\prime} has at least $2(n-3)(n-5)$ Hamiltonian cycles. Therefore, we only need to find the extra

$$
2(n-2)(n-4)-2(n-3)(n-5)=2(n-7)
$$

Hamiltonian cycles (not from induction) to show Conjecture 1.2.41.
Since all Hamiltonian cycles from induction contain the edge $u v$, the extra Hamiltonian cycles could be the cycles not containing the edge $u v$ in G. As G is a planar triangulation, the edge $u v$ is contained in the boundary of exactly two triangular faces. Moreover, $u v$ is contained in exactly two triangles T_{1}, T_{2} in G due to the connectivity of G. For each triangle T of T_{1}, T_{2}, the Hamiltonian cycles through the two edges in $E(T) \backslash\{u v\}$ do not contain the edge $u v$. This motivates us to show that the number of Hamiltonian cycles through any two edges in a triangle of G is linear in n (Lemma 3.1.2).

Now we can assume that any two degree 4 vertices in G are not adjacent. We want to show such G contains $\Omega\left(n^{2}\right)$ Hamiltonian cycles. How can we find this many distinct Hamiltonian cycles in G ? Tutte's theorem states that 4-connected planar graphs are Hamiltonian. Can we still get a 4 -connected graph by removing some edges from a 4 -connected planar triangulation G ? Following an idea from Alahmadi, Aldred, and Thomassen [2], we can find an independent set S such that for any edge set F consisting of exactly one edge incident with each vertex in S, the graph G^{\prime} obtained from G by removing the edges in F is still 4-connected, and hence G^{\prime} has a Hamiltonian cycle and this cycle contains no edges in F. Now we see what will happen if $G-F$ is not 4-connected.

Suppose $G^{\prime}=G-F$ is not 4-connected. Then let K be a minimum cut set of $G^{\prime}=$ $G-F$. Therefore, $|K| \leq 3$ and $G^{\prime}-K$ is not connected. Since each edge in G is contained in exactly two triangles (each is the boundary of a triangular face), Alahmadi, Aldred, and Thomassen in [2] observed that every edge $e=u v$ in G between two components of $G^{\prime}-K$ belongs to F and the exactly two vertices contained in $N(u) \cap N(v)$ are contained in the cut set K.

Thus, if $G-F$ is not 4 -connected, we have that two vertices in S are contained in a separating 4-cycle (the first case in Figure 1.4), or two vertices in S are contained in a separating 5 -cycle (the second case in Figure 1.4), or three vertices in S occur in some 6cycle (the third case in Figure 1.4), or some vertex in S is contained in a separating 4-cycle

Figure 1.4: Blue edges belong to F; black vertices belong to K.
or some vertex in S is adjacent to three vertices in a separating 4 -cycle (the last case in Figure 1.4). Alahmadi, Aldred, and Thomassen in [2] found such good independent set of vertices of degree 5 or 6 in G with size $\Omega(n)$ in n-vertex 5 -connected planar triangulations. Given such an independent set S of vertices of degree 5 or 6 in G, the number of the choices of F is $5^{a_{5}} 6^{a_{6}}$, where a_{i} is the number degree i vertices in S for $i \in\{5,6\}$. For each such F, note that $G-F$ is 4 -connected and has a Hamiltonian cycle. For each Hamiltonian cycle we obtain in this way, it can be picked by at most $(5-2)^{a_{5}}(6-2)^{a_{6}}=3^{a_{5}} 4^{a_{5}}$ times. Then G has at least

$$
\frac{5^{a_{5}} 6^{a_{6}}}{3^{a_{5}} 4^{a_{5}}}=(5 / 3)^{a_{5}}(3 / 2)^{a_{6}} \geq(3 / 2)^{a_{5}+a_{6}}=(3 / 2)^{|S|}
$$

Hamiltonian cycles. This implies that every n-vertex 5 -connected planar triangulation has $2^{\Omega(n)}$ Hamiltonian cycles as $|S|=\Omega(n)$.

However, in a 4-connected planar triangulation G, we cannot find such a good independent set S of vertices of degree 5 or 6 in G with size $\Omega(n)$ since G can have many degree 4 vertices (the number of degree 5 or 6 vertices can be very small) and many separating 4-cycles (we cannot avoid the first case and the last case in Figure 1.4). It is natural to ask when G contains such a good independent S. Lo [55] showed either there are two vertices in G with at least t common neighbors or G has an independent set S of size $\Omega(n / t)$ such that the first three cases in Figure 1.4 cannot occur by using the results in [2].

Suppose there exist $v, x \in V(G)$ such that they have many (a large constant is enough
and t can be a constant) common neighbors. Then we can find a separating 4 -cycle of G such that the interior of G has size at least two but not too large size. Therefore we can apply induction. Now we can assume that G has an independent set S of size $\Omega(n)$ such that the first three cases in Figure 1.4 cannot occur. To deal with the lase case in Figure 1.4, we need to know how to deal with degree 4 vertices. For each degree 4 vertex in S, if we remove an edge incident with it then the remaining graph is not 4 -connected as the other three neighbors form a 3 -cut. We observed that we can remove one edge in the cycle induced by the neighbors of this degree 4 vertex. Since G does not have two adjacent

Figure 1.5: Edges related to a degree 4 vertex.
degree 4 vertices, we can show that the graph obtained by removing an edge from the cycle induced by the neighbors of a degree 4 vertex is still 4 -connected (see Lemma 2.3.4). Finally we can find an edge set F of size $\Omega(n)$ (by the independent set S) in G such that $G-F$ is 4-connected. Here we introduce a result of Sanders [68].

Theorem 1.4.1 (Sanders [68]). If G is a 4-connected planar graph and $e_{1}, e_{2} \in E(G)$, then there exists a Hamiltonian cycle in G containing e_{1} and e_{2}.

Now there exists an edge set F in G with size $\Omega(n)$ such that $G-F$ is still 4-connected. It follows from Sanders's theorem that there exists a Hamiltonian cycle in G through $e, f \in$ F but no edge in $F \backslash\{e, f\}$. Therefore, there are at least $\binom{|F|}{2}$ Hamiltonian cycles in G, and hence G has $\Omega\left(n^{2}\right)$ Hamiltonian cycles as $|F|=\Omega(n)$. Note that we did not use Sanders's theorem to prove Theorem 1.3.1 and instead, we used a lemma (Lemma 3.1.1) we showed
by using the tools about 'Tutte path' and 'Tutte cycle', which is also used in the proof of $\Omega(n)$ Hamiltonian cycles through two cofacial edges in G.

We give a proof sketch of Theorem 1.3.1 here. To prove Theorem 1.3.1, we apply induction on the number of vertices in the planar triangulation G.

- Base case: The assertion holds when $n \leq 1 / \sqrt{c}$ as every 4-connected planar graph is Hamiltonian by Tutte's theorem and $c n^{2} \leq 1$ if $n \leq 1 / \sqrt{c}$.
- Induction step: We may assume $n>1 / \sqrt{c}$ and the statement holds for 4 -connected planar triangulations on fewer than n vertices. We consider two cases.

Case 1. G contains two adjacent vertices of degree 4 , say u and v.
We contract the edge $u v$ to a vertex and apply induction to the new graph G^{*} on $n-1$ vertices. This gives $c(n-1)^{2}$ Hamiltonian cycles in G, of which all contain the edge $u v$. In G, the edge $u v$ is contained in exactly two triangles, say T_{1} and T_{2}. It follows from Lemma 3.1.2 that there are at least $2 c_{1} n$ Hamiltonian cycles in G avoiding the edge $u v$ (as we let the remaining two edges in $E\left(T_{i}\right) \backslash\{u v\}$ be e_{1} and e_{2} in Lemma 3.1.2 for each $i=1,2$). Hence in total there exist at least

$$
c(n-1)^{2}+2 c_{1} n \geq c n^{2}
$$

Hamiltonian cycles in G.

Case 2. No two vertices of degree 4 in G are adjacent.
It can be shown that G contains an independent set I of vertices of degree at most 6 with $|I| \geq n / 12$. By Lemma 2.3.8 (with $t=10$), either (1) there exist distinct vertices $v, x \in V(G)$ such that $|N(v) \cap N(x) \cap I| \geq 10$, or (2) G contains $S \subseteq I$ such that $|S| \geq c_{2} n\left(c_{2}^{2} / 2=c\right)$ and S saturates no 4 -cycle, or 5-cycle, or diamond-6-cycle in G.
(1) For the former case, G contains a separating 4-cycle, say D, whose interior has at least two but at most $n / 4$ vertices. Let \bar{D} denote the subgraph of G consisting of all vertices and edges of G contained in the closed disc in the plane bounded by D. We contract the interior of D, i.e., $\bar{D}-D$, to a vertex u_{0} and obtain a smaller graph G_{0} with $3 n / 4 \leq\left|V\left(G_{0}\right)\right| \leq n-1$. By induction, G_{0} has at least $c(3 n / 4)^{2}$ Hamiltonian cycles. Note that for each Hamiltonian cycle H_{0} in $G_{0}, H_{0}-u_{0}$ union a Hamiltonian path between a and b in $\bar{D}-(V(D) \backslash\{a, b\})$, where $a, b \in N_{H_{0}}\left(u_{0}\right)$ is a Hamiltonian cycle in G. It follows from Lemma 2.2.4 that $\bar{D}-(V(D) \backslash\{a, b\})$ has at least two Hamiltonian paths between a and b for any distinct $a, b \in V(D)$ as no two vertices of degree 4 in G are adjacent. Therefore, G has at least

$$
2 \cdot c(3 n / 4)^{2} \geq c n^{2}
$$

Hamiltonian cycles.
(2) For the latter case, under the assumptions of G, we use the large independent set S to show that G has

$$
|S|(|S|+1) / 2 \geq c_{2}^{2} n^{2} / 2=c n^{2}
$$

Hamiltonian cycles (by Lemma 2.3.4, the counting idea of Alahmadi et al, Lemma 2.1.4 and Lemma 2.1.7).

From time to time, we observe that the distance of degree 4 vertices in G can play an important role to find many Hamiltonian cycles. If the distance of any two degree 4 vertices is large, we can use the tools of showing Theorem 1.3.1 to find a lot of pairwise distinct Hamiltonian cycles in G directly, and we showed Theorem 1.3.2. We also give a proof sketch of Theorem 1.3.2 here.
(i) We may assume that G has an independent set S of vertices of degree 5 or 6 such that $|S|=\Omega\left(n^{3 / 4}\right)$ and S has some good properties. Otherwise, G has two vertices v, x such that $|N(x) \cap N(v) \cap I| \geq c n^{1 / 4}$ for some constant $c>0$ by Lemma 2.3.8. This implies that G contains $\Omega\left(n^{1 / 4}\right)$ separating 4-cycles such that all of them have disjoint interior. We contract the interior of each such separating 4-cycles and use Lemma 2.2.4 to show G has $2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles.
(ii) We may assume that there exists $S_{1} \subseteq S$ such that, $\left|S_{1}\right| \geq|S| / 2$ and each vertex in S_{1} is contained in a separating 4-cycle D in G whose interior has at least two vertices. Suppose not. We can use Lemma 2.3.4 and the counting idea in [2] to find $2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles.
(iii) We may assume that there exists a sequence of $\Omega\left(n^{1 / 2}\right)$ separating 4-cycles with "nested" interiors and each 4-cycle is a maximal separating 4-cycle containing a vertex in S_{1}. Otherwise, there exist at least $\Omega\left(n^{1 / 4}\right)$ separating 4 -cycles in G such that all of them have disjoint interior (We still contract the interior of each separating 4cycle and find the desired number of Hamiltonian cycles). This sequence of "nested" separating 4-cycles has good properties which allows us to find $2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles in G.

1.5 Organization

This dissertation is organized as follows.
In chapter 2, we first cite some known results on "Tutte paths" and "Tutte cycles" in planar graphs. Such results will be used to find a Hamiltonian cycle through specific edges in a planar graph. Then we show several results on the number of Hamiltonian paths between two given vertices in planar graphs (analyzing the interior of a separating 4-cycle in a planar triangulation). Finally, we discuss an idea similar to the idea in [2] for finding an edge set F in a 4-connected planar triangulation G such that removing F from G still
gives a 4-connected graph.
In chapter 3, we prove Theorem 1.3.1. We first show that every n-vertex 4 -connected planar triangulation G has $\Omega(n)$ Hamiltonian cycles through two specified edges in any given triangle. Moreover, if G does not contain two adjacent vertices of degree 4, then G has $\Omega\left(n^{2}\right)$ Hamiltonian cycles. We then use these results and apply induction on n to complete the proof of Theorem 1.3.1.

In chapter 4, we consider 4-connected planar triangulations G in which any two vertices of degree 4 have distance at least three. We show that either G has a large independent set with nice properties, or G has many separating 4 -cycles with pairwise disjoint interiors, or G has many "nested" separating 4-cycles. In all cases, we can find the desired number of Hamiltonian cycles in G.

CHAPTER 2

PRELIMINARIES

2.1 Tutte paths and Tutte cylces

We first give some definitions. Let G be a graph and $H \subseteq G$.
Definition 2.1.1. An H-bridge of G is a subgraph of G induced by either an edge in $E(G) \backslash E(H)$ with both incident vertices in $V(H)$, or all edges in $G-H$ with at least one incident vertex in a single component of $G-H$.

Definition 2.1.2. For an H-bridge B of G, the vertices in $V(B \cap H)$ are the attachments of B on H.

Figure 2.1: H-bridges.

In Figure 2.1, H is the blue part and the green parts represent the components of $G-H$. We denote the four H-bridges from the left to the right by $B_{1}, B_{2}, B_{3}, B_{4}$ respectively. B_{1} consists exactly one edge contained in $E(G) \backslash E(H)$ and it has two attachments on H. Note that B_{2} has three attachments on H, B_{3} has two attachments on H and B_{4} has four attachments on H. Observe that for each $i \in\{2,3,4\}$, the attachments of B_{i} form a cut set in G.

Definition 2.1.3. A path (or cycle) P in a graph G is called a Tutte path (or Tutte cycle) if every P-bridge of G has at most three attachments on P. If, in addition, every P-bridge of
G containing an edge of some subgraph C of G has at most two attachments on P, then P is called a C-Tutte path (or C-Tutte cycle) in G.

Thomassen [74] proved the following result on Tutte paths in 2-connected planar graphs.

Lemma 2.1.4 (Thomassen [74]). Let G be a 2 -connected plane graph and C be its outer cycle, and let $x \in V(C), y \in V(G) \backslash\{x\}$, and $e \in E(C)$. Then G has a C-Tutte path P between x and y such that $e \in E(P)$.

Note that Lemma 2.1.4 implies that every 4-connected planar graph is Hamiltonian connected and has a Hamiltonian cycle through two given edges that are cofacial.

We also need the following result of Thomas and Yu [71], which was used to extend Tutte's theorem on Hamiltonian cycles in planar graphs to projective planar graphs.

Lemma 2.1.5 (Thomas and Yu [71]). Let G be a 2-connected plane graph with outer cycle C, and let $u, v \in V(C)$ and $e, f \in E(C)$ such that u, e, f, v occur on C in clockwise order. Then G has a $u C v$-Tutte path P between u and v such that $e, f \in E(P)$.

Definition 2.1.6. A circuit graph is an ordered pair (G, C) consisting of a 2-connected plane graph G and a facial cycle C of G such that, for any 2 -cut U of G, each component of $G-U$ contains a vertex of C.

Jackson and $\mathrm{Yu}[42]$ showed that every circuit graph (G, C) has a C-Tutte cycle through a given edge of C and two other vertices.

Lemma 2.1.7 (Jackson and Yu [42]). Let (G, C) be a circuit graph, and let r, z be vertices of G and $e \in E(C)$. Then G contains a C-Tutte cycle H such that $e \in E(H)$ and $r, z \in$ $V(H)$.

2.2 Separating 4-cycles

Definition 2.2.1. A near triangulation is a plane graph in which all faces except possibly its infinite face are bounded by triangles.

We considered the number of Hamiltonian paths between two given vertices in the outer cycle of a near triangulation. We use Lemmas 2.1.4 and 2.1.5 to prove the following two lemmas.

Lemma 2.2.2 (Liu and Yu [51]). Let G be a near triangulation with outer cycle $C:=$ uvwxu and assume that $G \neq C+v x$ and G has no separating triangles. Then one of the following holds:
(i) $G-\{v, x\}$ has at least two Hamiltonian paths between u and w.
(ii) $G-\{v, x\}$ is a path between u and w and, hence, $G-\{v, x\}$ is outer planar.

Proof. If $v x \in E(G)$, then $G=C+v x$ or G has a separating triangle, contradicting our assumption. So $v x \notin E(G)$. Then $G-\{v, x\}$ has a path from u to w, say Q. Since G has no separating triangles, each block of $G-\{v, x\}$ contains an edge of Q. Hence, the blocks of $G-\{v, x\}$ can be labeled as B_{1}, \ldots, B_{t} and the cut vertices of $G-\{v, x\}$ can be labeled as b_{1}, \ldots, b_{t-1} such that $V\left(B_{i} \cap B_{i+1}\right)=\left\{b_{i}\right\}$ for $i=1, \ldots, t-1$, and $V\left(B_{i} \cap B_{j}\right)=\emptyset$ when $|i-j| \geq 2$. Let $b_{0}=u$ and $b_{t}=w$. Moreover, let C_{i} denote the outer walk of B_{i} for $1 \leq i \leq t$. See Figure 2.2.

Figure 2.2: The blocks B_{1}, \ldots, B_{t}.

If $\left|V\left(B_{i}\right)\right|=2$ for $1 \leq i \leq t$, then (ii) holds. Hence, we may assume that $\left|V\left(B_{s}\right)\right| \geq 3$ for some s, where $1 \leq s \leq t$. Then $b_{s-1} b_{s} \notin E\left(B_{s}\right)$, as otherwise, $v b_{s-1} b_{s} v$ or $x b_{s-1} b_{s} x$ would be a separating triangle in G. Let e_{1}, e_{2} be the edges of C_{s} incident with b_{s-1}. By Lemma 2.1.4, B_{s} has a C_{s}-Tutte path P_{s}^{j} between b_{s-1} and b_{s} such that $e_{j} \in E\left(P_{s}^{j}\right)$, for $j=1,2$. Since G has no separating triangles, P_{s}^{1} and P_{s}^{2} are Hamiltonian paths in B_{s}.

For each $1 \leq i \leq t$ with $i \neq s$, if $\left|V\left(B_{i}\right)\right| \geq 3$, we apply Lemma 2.1.4 to B_{i} and find a Hamiltonian path P_{i} between b_{i-1} and b_{i} in B_{i}; if $\left|V\left(B_{i}\right)\right|=2$, let $P_{i}=b_{i-1} b_{i}$. Then $\left(\bigcup_{i \neq s} P_{i}\right) \cup P_{s}^{1}$ and $\left(\bigcup_{i \neq s} P_{i}\right) \cup P_{s}^{2}$ are distinct Hamiltonian paths in $G-\{v, x\}$ between u and w. So (i) holds.

Lemma 2.2.3 (Liu and Yu [51]). Let G be a near triangulation with outer cycle $C:=$ uvwxu and assume that G has no separating triangles. Then one of the following holds:
(i) $G-\{w, x\}$ has at least two Hamiltonian paths between u and v.
(ii) $G-\{w, x\}$ is an outer planar near triangulation.

Proof. We apply induction on $|V(G)|$. If $|V(G)|=4$ then we see that (i) holds trivially. So assume $|V(G)| \geq 5$. Then $u w, v x \notin E(G)$, as G has no separating triangles.

We may assume that u, v each have at least two neighbors in $V(G) \backslash V(C)$. For, otherwise, by symmetry assume that u has a unique neighbor in $V(G) \backslash V(C)$, say u^{\prime}. Now $G^{\prime}:=G-u$ is a near triangulation with outer cycle $C^{\prime}:=u^{\prime} v w x u^{\prime}$ and G^{\prime} has no separating triangles. Hence, by induction, $G^{\prime}-\{w, x\}$ is an outerplanar near triangulation, or $G^{\prime}-\{w, x\}$ has at least two Hamiltonian paths between u^{\prime} and v. In the former case, (i) holds; in the latter case, (ii) holds by extending the Hamiltonian paths in G^{\prime} from u^{\prime} to u along the edge $u^{\prime} u$.

Next, we claim that $(G-\{w, x\})-u$ or $(G-\{w, x\})-v$ is 2-connected. For, suppose $(G-\{w, x\})-u$ is not 2 -connected. Then $(G-\{w, x\})-u$ can be written as the union of two subgraphs B_{1} and B_{2} such that $\left|V\left(B_{1} \cap B_{2}\right)\right| \leq 1, B_{1}-B_{2} \neq \emptyset$, and $B_{2}-B_{1} \neq \emptyset$. Without loss of generality, assume that $v \in V\left(B_{2}\right)$. (Indeed, $v \in V\left(B_{2}\right) \backslash V\left(B_{1}\right)$.) We
further choose B_{1}, B_{2} to minimize B_{1}. Then B_{1} is connected and B_{1} has no cut vertex. By planarity, there exists a unique vertex $y \in N_{G}(w) \cap N_{G}(x)$. If $y \in V\left(B_{2}\right)$ then $V\left(B_{1} \cap\right.$ $\left.B_{2}\right) \cup\{u, x\}$ is a 2 -cut in G or induces a separating triangle in G, a contradiction. So $y \in$ $V\left(B_{1}\right) \backslash V\left(B_{2}\right)$. Now u has a neighbor in $V\left(B_{1}\right) \backslash V\left(B_{2}\right)$; as otherwise, $V\left(B_{1} \cap B_{2}\right) \cup\{w, x\}$ is a 2 -cut in G or induces a separating triangle in G, a contradiction. This implies that $G\left[B_{1}+u\right]$ is 2-connected. Now, we repeat this argument for $(G-\{w, x\})-v$. Suppose $(G-\{w, x\})-v$ is not 2 -connected. Then $(G-\{w, x\})-v$ can be written as the union of two subgraphs B_{1}^{\prime} and B_{2}^{\prime} such that $\left|V\left(B_{1}^{\prime} \cap B_{2}^{\prime}\right)\right| \leq 1, B_{1}^{\prime}-B_{2}^{\prime} \neq \emptyset, B_{2}^{\prime}-B_{1}^{\prime} \neq \emptyset$, and $u \notin V\left(B_{1}^{\prime}\right) \backslash V\left(B_{2}^{\prime}\right)$. Then, since $G\left[B_{1}+u\right]$ is 2-connected and $y \in V\left(B_{1}\right) \backslash V\left(B_{2}\right)$, we have $y \in V\left(B_{2}^{\prime}\right)$. Now, $V\left(B_{1}^{\prime} \cap B_{2}^{\prime}\right) \cup\{v, w\}$ is a 2-cut in G or induces a separating triangle in G, a contradiction.

By symmetry, we may assume that $H:=(G-\{w, x\})-u$ is 2-connected. Let D denote the outer cycle of H and let $u_{1}, u_{2} \in N_{G}(u) \cap V(D)$ such that $u_{1} \in N_{G}(x)$ and $u_{2} \in N_{G}(v)$. Since u has at least two neighbors in $V(G) \backslash V(C), u_{1} \neq u_{2}$. Let $y \in N_{G}(w) \cap N_{G}(x)$. Choose an edge $e \in E(D)$ incident with y, and an edge $f \in E(D)$ incident with u_{1}. By Lemma 2.1.4, H has a D-Tutte path P between u_{1} and v such that $e \in E(P)$. By Lemma 2.1.5, H has a $v D u_{2}$-Tutte path Q between u_{2} and v such that $e, f \in E(Q)$. Since G has no separating triangles, we see that both P, Q are Hamiltonian paths in H. Now $P \cup u_{1} u$ and $Q \cup u_{2} u$ are distinct Hamiltonian paths in $G-\{w, x\}$ between u and v, and (ii) holds.

By the above two lemmas, we have the following observation about degree 4 vertices and the number of Hamiltonian paths in a near triangulation.

Lemma 2.2.4 (Liu, Wang, and Yu [50]). Let G be a near triangulation with outer cycle $C:=$ uvwxu and assume that $|V(G)| \geq 6$ and G has no separating triangles. Suppose there exist distinct $a, b \in V(C)$ such that $G-(V(C) \backslash\{a, b\})$ has at most one Hamiltonian path between a and b. Then G has two adjacent vertices of degree 4 that are contained in $V(G) \backslash V(C)$.

Proof. By symmetry, we only need to consider two cases: $\{a, b\}=\{u, w\}$ or $\{a, b\}=$ $\{u, v\}$. If $\{a, b\}=\{u, w\}$ and $G-(V(C) \backslash\{a, b\})=G-\{v, x\}$ has at most one Hamiltonian path between u and w, then by Lemma 2.2.2, $G-\{v, x\}$ is a path. Hence, by planarity, all vertices in $V(G) \backslash V(C)$ have degree 4 in G; so the assertion holds as $|V(G) \backslash V(C)| \geq 2$.

Now suppose $\{a, b\}=\{u, v\}$ and there exists at most one Hamiltonian path between u and v in $G-(V(C) \backslash\{a, b\})=G-\{w, x\}$. Then by Lemma 2.2.3, $G-\{w, x\}$ is an outer planar near triangulation. Let $D=u_{1} u_{2} \ldots u_{t} u_{1}$ denote the outer cycle of $G-\{w, x\}$ such that $u_{1}=u$ and $u_{t}=v$. Note that $t \geq 4$ and that u_{i} is adjacent to w or x for every $i \in[t]$. Let u_{s}, where $s \in[t]$, be the common neighbor of w and x in $V(D)$. (The existence of u_{s} is guaranteed by the fact that G is a near triangulation with outer cycle $u v w x u$.) Since G has no separating triangles, $2 \leq s \leq t-1$ and every edge of $(G-\{w, x\})-E(D)$ is incident with both paths $u_{1} \ldots u_{s-1}$ and $u_{s+1} \ldots u_{t}$. It follows that $d_{G}\left(u_{s}\right)=4$. Moreover, $s \geq 3$ and $d_{G}\left(u_{s-1}\right)=4$, or $s \leq t-2$ and $d_{G}\left(u_{s+1}\right)=4$, as $|V(G) \backslash V(C)| \geq 2$ and G is a near triangulation. This completes the proof of the lemma.

2.3 A technique of Alahmadi, Aldred, and Thomassen

Let S be an independent set in a 4-connected planar triangulation G and $F \subseteq E(G)$ consist of $|S|$ edges incident with S. Alahmadi et al. [2] observed that $G-F$ is not 4-connected only if some vertex in S is contained in a separating 4 -cycle, or some vertex in S is adjacent to three vertices in a separating 4 -cycle, or two vertices in S are contained in a separating 5 -cycle, or three vertices in S occur in some diamond-6-cycle.

Definition 2.3.1. A diamond-6-cycle is a graph isomorphic to the graph shown on the left in Figure Figure 2.3, in which the vertices of degree 3 are called crucial vertices. (A diamond-4-cycle is a graph isomorphic to the graph shown on the right in Figure Figure 2.3, where the two degree 3 vertices not adjacent to the degree 2 vertex are its crucial vertices.)

Definition 2.3.2. We say that S saturates a 4-cycle or 5 -cycle C in G if $|S \cap V(C)|=2$, and S saturates a diamond-6-cycle D in G if S contains three crucial vertices of D.

Figure 2.3: Diamond-6-cycle (left); diamond-4-cycle (right); solid vertices represent the crucial vertices.

For an n-vertex 5-connected planar triangulation G, Alahmadi et al.[2] showed that there exists an independent set S consisting of $\Omega(n)$ vertices of degree at most 6 in G, such that $G-F$ is 4-connected for each set F consisting of $|S|$ edges of G that are incident with S. Then it follows from a simple calculation that G has $2^{\Omega(n)}$ Hamiltonian cycles. Such large independent sets need not exist in 4-connected planar triangulations because of the existence of vertices of degree 4 or separating 4 -cycles.

Next, we prove two lemmas that will help us deal with vertices of degree 4 and separating 4-cycles. Let G be a plane graph. Suppose u is a vertex of degree at most 6 in G. Define the link of u in G, denoted by A_{u}, as

$$
A_{u}= \begin{cases}E(G[N(u)]), & \text { if } d(u)=4 \\ \{e \in E(G): e \text { is incident with } u \text { and } G-e \text { is 4-connected }\}, & \text { if } d(u) \in\{5,6\}\end{cases}
$$

Note that in Figure 2.4, the link of the vertex of degree 4 in the left consists of the four red edges and that blue edge is not contained in the link of the vertex of degree 5 in the right.

Lemma 2.3.3 (Liu, Wang, and Yu [50]). Let G be a 4-connected planar triangulation. Suppose S is an independent set of vertices of degree at most 6 in G such that, for any $u \in S$ with $d(u) \in\{5,6\}$, no degree 4 neighbors of u are adjacent in G. Then the

Figure 2.4: The link sets.

following statements hold:

(i) For $u \in S$ with $d(u) \in\{5,6\},\left\{v \in N(u): u v \notin A_{u}\right\}$ is independent in G and, hence, $\left|A_{u}\right| \geq\lceil d(u) / 2\rceil$.
(ii) If S saturates no 4-cycle in G, then, for any distinct $u_{1}, u_{2} \in S, E\left(G\left[N\left[u_{1}\right]\right]\right) \cap$ $E\left(G\left[N\left[u_{2}\right]\right]\right)=\emptyset$.

Proof. Suppose $u \in S$ and $d(u) \in\{5,6\}$, and suppose there exist two edges $e_{1}=u v_{1}, e_{2}=$ $u v_{2} \in E(G) \backslash A_{u}$ with $v_{1} v_{2} \in E(G)$. Let $v_{0}, v_{3} \in N(u) \backslash\left\{v_{1}, v_{2}\right\}$ be the neighbors of v_{1}, v_{2} in $G[N(u)]$, respectively. Since $G-e_{1}$ is not 4 -connected, there exists a vertex $z \in V(G)$ such that $\left\{z, v_{0}, v_{2}\right\}$ is a 3 -cut in $G-e_{1}$. Since G is a planar triangulation, we have $z v_{0}, z v_{2} \in E(G)$. Since $G-e_{2}$ is not 4 -connected, we see from planarity that $\left\{z, v_{1}, v_{3}\right\}$ is a 3 -cut in $G-e_{2}$. Thus, $z v_{1}, z v_{3} \in E(G)$ as G is a planar triangulation. Since G has no separating triangles, we have $d\left(v_{1}\right)=d\left(v_{2}\right)=4$, a contradiction. Thus, (i) holds.

For (ii), suppose S saturates no 4 -cycle in G, and let $u_{1}, u_{2} \in S$ be distinct. Suppose there exists $e \in E\left(G\left[N\left[u_{1}\right]\right]\right) \cap E\left(G\left[N\left[u_{2}\right]\right]\right)$. Since S is an independent set, it follows that u_{1}, u_{2}, and the two vertices incident with e form a 4 -cycle in G, contradicting the assumption that S saturates no 4-cycle in G. Hence $E\left(G\left[N\left[u_{1}\right]\right]\right) \cap E\left(G\left[N\left[u_{2}\right]\right]\right)=\emptyset$.

The following lemma is derived by using an idea similar to one in [2].

Lemma 2.3.4 (Liu, Wang, and Yu [50]). Let Ge a 4-connected planar triangulation and S be an independent set of vertices of degree at most 6 in G. Suppose that $A_{u} \neq \emptyset$ for all $u \in S$, that S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G, and that no degree 4 vertex of G in S has a neighbor of degree 4 in G. Let $F \subseteq \bigcup_{u \in S} A_{u}$ with $\left|F \cap A_{u}\right| \leq 1$ for all $u \in S$. Then $G-F$ is 4-connected.

Proof. Suppose there exists some $F \subseteq \bigcup_{u \in S} A_{u}$ such that $\left|F \cap A_{u}\right| \leq 1$ for all $u \in S$, and $G-F$ is not 4-connected. Let K be a minimum cut of $G-F$; so $|K| \leq 3$. Let G_{1}, G_{2} be subgraphs of $G-F$ such that $G-F=G_{1} \cup G_{2}, V\left(G_{1} \cap G_{2}\right)=K, E\left(G_{1} \cap G_{2}\right)=\emptyset$, and $V\left(G_{i}\right) \neq K$ for $i=1,2$. Let F^{\prime} be the set of the edges of G between $G_{1}-K$ and $G_{2}-K$. Then $F^{\prime} \subseteq F$ and $F^{\prime} \neq \emptyset($ as $G-K$ is connected $)$.

Observation 1. Since G is a 4-connected planar triangulation, for each $e \in F^{\prime}$, the two vertices incident with e have exactly two common neighbors, which must be contained in K.

Observation 2. For any two edges $e_{1}, e_{2} \in F^{\prime}$, there do not exist distinct vertices $u, v \in K$ such that all vertices incident with e_{1} or e_{2} are contained in $N_{G}(u) \cap N_{G}(v)$. For, otherwise, $G\left[N_{G}[u] \cup N_{G}[v]\right]$ contains a 4-cycle with two vertices in S, contradicting the assumption that S saturates no 4-cycle in G.

By Observation $1,|K| \geq 2$. By Observations 1 and $2,\left|F^{\prime}\right| \leq\binom{|K|}{2}$. Hence, $1 \leq\left|F^{\prime}\right| \leq$ 3. Moreover, $|K|=3$ as, otherwise, $|K|=2$ and $\left|F^{\prime}\right| \leq\binom{ 2}{2}=1$, contradicting the assumption that G is 4-connected. By the definition of A_{u}, if $e \in A_{u} \cap F^{\prime}$ and $d_{G}(u)=4$, then $u \in K$; if $e \in A_{u} \cap F^{\prime}$ and $d_{G}(u) \in\{5,6\}$, then e is incident with u and $u \notin K$.

Suppose $\left|F^{\prime}\right|=1$ and let $e \in F^{\prime}$ with $e \in A_{u}$ for some $u \in S$. If $d_{G}(u)=5$ or 6, then u is incident with e and $G-e$ is 4 -connected by the definition of A_{u}, contradicting the fact that K is a 3 -cut of $G-F^{\prime}=G-e$. Thus $d_{G}(u)=4$ and $u \in K$. Let $e=w_{1} w_{2}$ and $K=\{u, v, w\}$ such that $w_{1} \in V\left(G_{1}\right) \backslash V\left(G_{2}\right), w_{2} \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$, and $N_{G}\left(w_{1}\right) \cap$ $N_{G}\left(w_{2}\right)=\{u, v\}$. Again since G is a planar triangulation and K is a 3-cut in $G-e$, we
have $w u, w v \in E(G)$. Hence $C_{1}=u w_{1} v w u$ and $C_{2}=u w_{2} v w u$ are 4-cycles in G. Let $x \in N_{G}(u) \backslash\left\{w, w_{1}, w_{2}\right\}$. Then $G\left[N_{G}(u)\right]=x w_{2} w_{1} w x$ or $G\left[N_{G}(u)\right]=x w_{1} w_{2} w x$. In the former case, $V\left(G_{1}\right) \backslash K=\left\{w_{1}\right\}$ as, otherwise, $\left\{w_{1}, w, v\right\}$ would be a 3 -cut in G; so w_{1} and u are two adjacent vertices of degree 4 in G, a contradiction. In the latter case, $V\left(G_{2}\right) \backslash K=\left\{w_{2}\right\}$ as, otherwise, $\left\{w_{2}, w, v\right\}$ would be a 3-cut in G; so w_{2} and u are two adjacent vertices of degree 4 in G, a contradiction.

If $\left|F^{\prime}\right|=2$ and let $F^{\prime}=\left\{e_{1}, e_{2}\right\}$, then by Observations 1 and 2, each vertex in K is adjacent to both vertices incident with some edge in F^{\prime}, and exactly one vertex of K is adjacent to all vertices incident with e_{1} or e_{2}. Hence, some 5 -cycle in the subgraph of G induced by K and the vertices incident with F^{\prime} contains two vertices from S, contradicting the assumption that S saturates no 5 -cycle in G.

Hence, $\left|F^{\prime}\right|=3$, and let $e_{1}, e_{2}, e_{3} \in F^{\prime}$ where $e_{i} \in A_{u_{i}}$ and $u_{i} \in S$ for $i=1,2,3$. Since S is independent and saturates no 4 -cycle or 5-cycle, F^{\prime} is a matching in G. If two vertices in $\left\{u_{1}, u_{2}, u_{3}\right\}$ have degree 4 in G, then these two vertices are contained in K and in a 4 -cycle in G, a contradiction. If exactly one vertex in $\left\{u_{1}, u_{2}, u_{3}\right\}$, say u_{1}, has degree 4 in G, then $u_{1} \in K$ and u_{1} must be adjacent to a vertex in $\left\{u_{2}, u_{3}\right\}$, contradicting the assumption that S is independent. So u_{1}, u_{2}, and u_{3} all have degree 5 or 6 in G. But then by Observations 1 and 2, we see that the subgraph of G induced by K and the vertices of G incident with F^{\prime} contains a diamond- 6 -cycle in which u_{1}, u_{2}, u_{3} are three crucial vertices, contradicting the assumption that S saturates no diamond-6-cycle.

We also need the following two lemmas from Lo [55] and Alahmadi et al. [2], that will help us to find an independent set saturating no 4 -cycle, or 5-cycle, or diamond-6-cycle.

Lemma 2.3.5 (Lo [55]). Let G be a 4-connected planar triangulation and let S be an independent set of vertices of degree at most 6 in G, such that S saturates no 4 -cycle in G. Then there exists a subset $S^{\prime} \subseteq S$ of size at least $|S| / 541$ such that S^{\prime} saturates no 5 -cycle in G.

Lemma 2.3.6 (Alahmadi, Aldred, and Thomassen [2]; Lo [55]). Let G be a 4-connected planar triangulation and let S be an independent set of vertices of degree at most 6 in G, such that S saturates no 4-cycle in G. Then there exists a subset $S^{\prime} \subseteq S$ of size at least $|S| / 301$ such that S^{\prime} saturates no diamond-6-cycle in G.

We need another result from Lo [55], which shows that any 4-connected planar triangulation either has a large independent set saturating no 4 -cycle, or contains two vertices with many common neighbors.

Lemma 2.3.7 (Lo [55]). Let G be a 4 -connected planar triangulation. Let S be an independent set of vertices of degree at most 6 in G, and S^{\prime} be a maximal subset of S such that $S^{\prime \prime}$ saturates no 4-cycle in G. Then there exist distinct vertices $v, x \in V(G)$ such that $|(N(v) \cap N(x)) \cap S| \geq|S| /\left(9\left|S^{\prime}\right|\right)$.

The following result can be easily deduced from the previous three lemmas.

Lemma 2.3.8 (Liu, Wang, and Yu [50]). Let G be a 4-connected planar triangulation on n vertices. Let I be an independent set of vertices of degree at most 6 in G. For any positive integer t, one of the following statements holds:
(i) There exist distinct vertices $v, x \in V(G)$ such that $|N(v) \cap N(x) \cap I| \geq t$.
(ii) There is a subset $S \subseteq I$, such that $|S|>|I| /(t \times 9 \times 541 \times 301)$ and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.

Proof. Let S_{1} be a maximal subset of I such that S_{1} saturates no 4-cycle in G. If $\left|S_{1}\right| \leq$ $|I| /(t \times 9)$, then by Lemma 2.3.7 there are distinct vertices v, x in G such that

$$
|N(v) \cap N(x) \cap I| \geq|I| /\left(9\left|S_{1}\right|\right) \geq|I| /(9|I| /(t \times 9))=t
$$

so (i) holds.

Now suppose $\left|S_{1}\right|>|I| /(t \times 9)$. By Lemmas 2.3.5 and 2.3.6, there exists $S \subseteq S_{1}$ such that S saturates no 4-cycle, or 5 -cycle, or diamond-6-cycle in G, and

$$
|S| \geq\left|S_{1}\right| /(541 \times 301)>|I| /(t \times 9 \times 541 \times 301)
$$

thus (ii) holds.

CHAPTER 3
 QUDRATIC BOUND

3.1 Hamiltonian cycles through two cofacial edges

We start with a technical lemma for finding distinct Hamiltonian cycles. Recall the link A_{u} for a vertex u of degree at most 6 in a plane graph G.

$$
A_{u}= \begin{cases}E(G[N(u)]), & \text { if } d(u)=4, \\ \{e \in E(G): e \text { is incident with } u \text { and } G-e \text { is 4-connected }\}, & \text { if } d(u) \in\{5,6\}\end{cases}
$$

Lemma 3.1.1 (Liu, Wang, and Yu [50]). Let Ge a 4-connected plane graph and $e \in$ $E(G)$. Suppose u is a vertex of degree at most 6 in G such that $G[N(u)]$ is a cycle and $e \notin E(G[N[u]])$. Moreover, assume that if $d(u) \in\{5,6\}$ then $\left\{v \in N(u): u v \notin A_{u}\right\}$ is an independent set in G, and that if $d(u)=4$ then there exist two nonadjacent neighbors of u each having degree at least 5 in G. Then the following statements hold.
(i) G has a Hamiltonian cycle through e as well as an edge in A_{u}.
(ii) For any $y \in V(G) \backslash\{u\}$ cofacial with e but not incident with e, $G-y$ has a Hamiltonian cycle through e and an edge in A_{u} not incident with y.

Proof. Let $y \in V(G) \backslash\{u\}$ be cofacial with e but not incident with e. Consider a drawing of G in which y is contained in the infinite face of $G-y$. Let C denote the facial cycle of G containing e and y, and C^{\prime} denote the outer cycle of $G-y$. Then $e \in E\left(C^{\prime}\right)$ as y is cofacial with e and not incident with e. Since G is 4-connected, both (G, C) and $\left(G-y, C^{\prime}\right)$ are circuit graphs.

Case 1. $d_{G}(u) \in\{5,6\}$ and $d_{G}(u)-\left|A_{u}\right| \leq 1$.

By Lemma 2.1.7, G has a C-Tutte cycle D through e, and $G-y$ has a C^{\prime}-Tutte cycle D_{1} through e. Since G is 4 -connected, D is a Hamiltonian cycle in G, and D_{1} is a Hamiltonian cycle in $G-y$. Since $d_{G}(u)-\left|A_{u}\right| \leq 1$, both D and D_{1} contain some edge in A_{u}. Thus, (i) and (ii) hold.

Case 2. $d_{G}(u) \in\{5,6\}$ and $d_{G}(u)-\left|A_{u}\right|=2$.
Then let $r \in N_{G}(u)$ such that $u r \notin A_{u}$, and let $G^{\prime}:=G-u r$.
Let C_{1} be a facial cycle of G^{\prime} containing e. Since G is 4 -connected, $\left(G^{\prime}, C_{1}\right)$ is a circuit graph. By Lemma 2.1.7, G^{\prime} has a C_{1}-Tutte cycle D_{1} through e, r, and u, which is a Hamiltonian cycle in G containing e. Since $d_{G}(u)-\left|A_{u}\right|=2$ and $u r \notin A_{u}, D_{1}$ must contain an edge in A_{u}. Hence, (i) holds.

Let C_{2} be the outer cycle of $G^{\prime}-y$. Since G is 4 -connected, $\left(G^{\prime}-y, C_{2}\right)$ is a circuit graph. By Lemma 2.1.7, $G^{\prime}-y$ has a C_{2}-Tutte cycle D_{2} through e and every vertex in $\{r, u\} \backslash\{y\}$. Now D_{2} is a Hamiltonian cycle in $G-y$ containing e as G is 4-connected. Moreover, D_{2} contains an edge in A_{u} as $d_{G}(u)-\left|A_{u}\right|=2$ and $u r \notin A_{u}$. Hence, (ii) holds.

Case 3. $d_{G}(u) \in\{5,6\}$ and $d_{G}(u)-\left|A_{u}\right| \geq 3$.
Since $\left\{v \in N_{G}(u): u v \notin A_{u}\right\}$ is an independent set in $G,\left|A_{u}\right| \geq\left\lceil d_{G}(u) / 2\right\rceil=3$ (as $d_{G}(u) \in\{5,6\}$). Hence, $d_{G}(u)=6$ and $\left|A_{u}\right|=3\left(\right.$ as $\left.d_{G}(u)-\left|A_{u}\right| \geq 3\right)$. Let $r_{1}, r_{2} \in$ $N_{G}(u)$ such that $u r_{1}, u r_{2} \notin A_{u}$, and let $G^{\prime}=G-\left\{u r_{1}, u r_{2}\right\}$. Note that $r_{1} r_{2} \notin E(G)$.

Let C_{1} be a facial cycle of G^{\prime} containing e. Then $\left(G^{\prime}, C_{1}\right)$ is a circuit graph as G is 4 -connected and $d_{G}(u)=6$. It follows from Lemma 2.1.7 that G^{\prime} has a C_{1}-Tutte cycle D_{1} through e, r_{1}, and r_{2}. If D_{1} is a Hamiltonian cycle in G, then (i) holds, since D_{1} contains an edge of A_{u} (because $d_{G}(u)-\left|A_{u}\right|=3$ and $u r_{1}, u r_{2} \notin A_{u}$. So suppose $V(G) \backslash V\left(D_{1}\right) \neq \emptyset$.

Then there exists a D_{1}-bridge of G^{\prime}, say B, such that $V(B) \backslash V\left(D_{1}\right) \neq \emptyset$ and $V(B \cap$ $\left.D_{1}\right) \leq 3$. Observe that $u \in V(B) \backslash V\left(D_{1}\right)$ otherwise, $V\left(B \cap D_{1}\right)$ is a 3-cut in G, a contradiction. Since $G\left[N_{G}(u)\right]$ is a cycle and $r_{1} r_{2} \notin E(G), V(B) \cap V\left(r_{1} D_{1} r_{2}-\left\{r_{1}, r_{2}\right\}\right) \neq$ \emptyset and $V(B) \cap V\left(r_{2} D_{1} r_{1}-\left\{r_{1}, r_{2}\right\}\right) \neq \emptyset$. Thus, since $\left|V(B) \cap V\left(D_{1}\right)\right| \leq 3$, we may assume $V(B) \cap V\left(r_{2} D_{1} r_{1}-\left\{r_{1}, r_{2}\right\}\right)=\{z\}$. Now since $d_{G}(u)=6,\{u, z\}$ is a 2 -cut in G, or
$\{u\} \cup\left(V\left(B \cap D_{1}\right) \backslash\{z\}\right)$ is a 3-cut in G, a contradiction.
Let C_{2} be the outer cycle of $G^{\prime}-y$. Since G is 4 -connected and $d_{G}(u)=6,\left(G^{\prime}-y, C_{2}\right)$ is a circuit graph. By Lemma 2.1.7, $G^{\prime}-y$ has a C_{2}-Tutte cycle D_{2} through e and every vertex in $\left\{r_{1}, r_{2}\right\} \backslash\{y\}$. Similarly, we can show that D_{2} is a Hamiltonian cycle in $G-y$ containing e as G is 4 -connected and D_{2} is a C_{2}-Tutte cycle. (In particular, note that if B is a D_{2}-bridge and $V(B) \backslash V\left(D_{2}\right)$ contains a neighbor of y, then $\left|V(B) \cap V\left(D_{2}\right)\right| \leq 2$.) Moreover, D_{2} contains an edge in A_{u} as $\left|A_{u}\right|=3$ and $u r_{1}, u r_{2} \notin A_{u}$. Hence, (ii) holds.

Case 4. $d_{G}(u)=4$.
Let $G\left[N_{G}(u)\right]=x_{1} x_{2} x_{3} x_{4} x_{1}$. By our assumption on u, two nonadjacent neighbors of u must each have degree at least 5 in G. Without loss of generality, assume that $d_{G}\left(x_{2}\right) \geq 5$ and $d_{G}\left(x_{4}\right) \geq 5$.

We claim that $(G-u)+x_{1} x_{3}$ or $(G-u)+x_{2} x_{4}$ is 4 -connected. For, suppose $(G-$ $u)+x_{1} x_{3}$ is not 4-connected, and let S be a 3-cut in $(G-u)+x_{1} x_{3}$. Then $\left\{x_{1}, x_{3}\right\} \subseteq S$, and $S \cup\{u\}$ is a 4 -cut in G separating x_{2} and x_{4}. Suppose G_{1}, G_{2} are the components of $G-(S \cup\{u\})$ containing x_{2}, x_{4}, respectively. Since $d_{G}\left(x_{2 i}\right) \geq 5$ for $i=1,2,\left|V\left(G_{i}\right)\right| \geq 2$ for $i=1,2$. Let $w_{i} \in V\left(G_{i}\right) \backslash\left\{x_{2 i}\right\}$ for $i=1,2$. Since G is 4 -connected, there exist a path Q_{i}^{\prime} from w_{i} to x_{1} in $\left(G-\left(S \backslash\left\{x_{1}\right\}\right)\right)-x_{2 i}$ and a path $Q_{i}^{\prime \prime}$ from w_{i} to x_{3} in $\left(G-\left(S \backslash\left\{x_{3}\right\}\right)\right)-$ $x_{2 i}$. Observe that $V\left(Q_{i}^{\prime} \cup Q_{i}^{\prime \prime}\right) \subseteq\left(V\left(G_{i}\right) \backslash\left\{x_{2 i}\right\}\right) \cup\left\{x_{1}, x_{3}\right\}$. Hence, $G-\left\{u, x_{2}, x_{4}\right\}$ has two internally disjoint paths between x_{1} and x_{3}. This implies that $(G-u)+x_{2} x_{4}$ is 4-connected.

So without loss of generality assume that $G^{*}=(G-u)+x_{1} x_{3}$ is 4 -connected and that the edge $x_{1} x_{3}$ is inside the face of $G-u$ bounded by $x_{1} x_{2} x_{3} x_{4} x_{1}$. Let G^{\prime} be the plane graph obtained from G^{*} by inserting two vertices r and z into the faces of G^{*} bounded by $x_{1} x_{2} x_{3} x_{1}$ and $x_{1} x_{3} x_{4} x_{1}$, respectively, and then adding edges $r x_{i}$ for $i=1,2,3$ and $z x_{i}$ for $i=1,3,4$.

Since G^{*} is 4-connected, $\left(G^{\prime}, C\right)$ is a circuit graph. By Lemma 2.1.7, G^{\prime} has a C-Tutte cycle D^{\prime} containing e, r, and z, which is a Hamiltonian cycle in G^{\prime} as G^{*} is 4-connected. It is easy to check that D^{\prime} can be modified at r and z to give a Hamiltonian cycle in G
containing e and an edge in A_{u}; so (i) holds.
To prove (ii), we apply Lemma 2.1.7 to the circuit graph $\left(G^{\prime}-y, C_{1}\right)$, where C_{1} is the outer cycle of $G^{\prime}-y$ containing e. Then $G^{\prime}-y$ has a C_{1}-Tutte cycle D_{1} through e, r, and z. (Note that if $u y \in E(G)$, then $\{r, z\} \cap V\left(C_{1}\right) \neq \emptyset$.) Since G^{*} is 4 -connected, D_{1} is a Hamiltonian cycle in $G^{\prime}-y$. It is straightforward to check that D_{1} can be modified to give a Hamiltonian cycle in $G-y$ containing e and an edge in A_{u} not incident with y.

We now prove that in a 4-connected planar triangulation on n vertices, any two cofacial edges are contained in $\Omega(n)$ Hamiltonian cycles.

Lemma 3.1.2 (Liu, Wang, and Yu [50]). Let n be an integer with $n \geq 4$, G be a 4-connected planar triangulation on n vertices, T be a facial triangle in G, and $e_{1}, e_{2} \in E(T)$. Then G contains at least $c_{1} n$ Hamiltonian cycles through e_{1} and e_{2}, where $c_{1}=(12 \times 63 \times 541 \times$ $301)^{-1}$.

Proof. We apply induction on n. Since G is a 4-connected plane graph and e_{1}, e_{2} are cofacial in G, it follows from Lemma 2.1.4 that G has a Hamiltonian cycle through e_{1} and e_{2}. So the assertion holds when $n \leq 1 / c_{1}$. Now assume $n>1 / c_{1}$ and the assertion holds for 4-connected planar triangulations on fewer than n vertices.

Consider a drawing of G in which T is its outer cycle. Let $y \in V(T)$ be incident with both e_{1} and e_{2}, and let e_{3} be the edge in $E(T) \backslash\left\{e_{1}, e_{2}\right\}$.

We may assume that if there exist two adjacent vertices u_{1}, u_{2} in G with $d_{G}\left(u_{1}\right)=$ $d_{G}\left(u_{2}\right)=4$, then $u_{1} u_{2}=e_{3}$ or $y \in\left\{u_{1}, u_{2}\right\}$. For, suppose there exist $u_{1}, u_{2} \in V(G) \backslash\{y\}$ such that $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=4$ and $u_{1} u_{2} \neq e_{3}$. We contract the edge $u_{1} u_{2}$ to obtain a planar triangulation G^{*} on $n-1$ vertices. (We retain the edges e_{1} and e_{2}.) Note that G^{*} is 4 -connected (as $n>1 / c_{1}>6$) and T is a triangle in G^{*}. So by induction, G^{*} has $c_{1}(n-1)$ Hamiltonian cycles through e_{1} and e_{2}. Observe that all such cycles in G^{*} can be modified to give $c_{1}(n-1)$ distinct Hamiltonian cycles in G through the edges e_{1}, e_{2}, and $u_{1} u_{2}$. Therefore, it suffices to show that G has a Hamiltonian cycle through e_{1} and e_{2} but
not $u_{1} u_{2}$, as $c_{1}(n-1)+1 \geq c_{1} n$. So let C_{1} denote the outer cycle of $G_{1}:=(G-y)-u_{1} u_{2}$. Observe that $e_{3} \in E\left(C_{1}\right)$ and $\left(G_{1}, C_{1}\right)$ is a circuit graph as G is 4-connected and planar. By Lemma 2.1.7, G_{1} contains a C_{1}-Tutte cycle H_{1} through e_{3}, u_{1}, and u_{2}. Moreover, H_{1} is a Hamiltonian cycle in G_{1} (since G is 4 -connected). Therefore, $\left(H_{1}-e_{3}\right)+\left\{y, e_{1}, e_{2}\right\}$ is a Hamiltonian cycle in G through e_{1}, e_{2} and avoiding $u_{1} u_{2}$.

Since G has minimum degree at least 4 and $|E(G)|=3 n-6$ by Euler's formula, we have

$$
\begin{aligned}
2(3 n-6) & =2|E(G)| \\
& =\sum_{\{v \in V(G): 4 \leq d(v) \leq 6\}} d(v)+\sum_{\{v \in V(G): d(v) \geq 7\}} d(v) \\
& \geq 4|\{v \in V(G): d(v) \leq 6\}|+7(n-|\{v \in V(G): d(v) \leq 6\}|) \\
& =7 n-3|\{v \in V(G): d(v) \leq 6\}| .
\end{aligned}
$$

It follows that $|\{v \in V(G): d(v) \leq 6\}| \geq n / 3+4$. By the Four Color Theorem, there exists an independent set I of vertices of degree at most 6 in G with $I \cap V(T)=\emptyset$ and $|I| \geq(n / 3+4-3) / 4 \geq n / 12$. By Lemma 2.3.8 (with $t=7$), either there exist distinct $v, x \in V(G)$ such that $|N(v) \cap N(x) \cap I| \geq 7$, or there is a subset $S \subseteq I$ such that $|S|>c_{1} n$ and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G. Moreover, $S \cap V(T)=\emptyset$ as $I \cap V(T)=\emptyset$.

Case 1. There exist distinct $v, x \in V(G)$ such that $|N(v) \cap N(x) \cap I| \geq 7$.
Recall that any two adjacent degree 4 vertices of G cannot be contained in $V(G) \backslash V(T)$. Since $|N(v) \cap N(x) \cap I| \geq 7, G$ has at least two separating 4-cycles D_{1} and D_{2}, such that $\left|V\left(\overline{D_{i}}\right)\right| \geq 6$ for $i=1,2$, and $\overline{D_{1}}-D_{1}$ and $\overline{D_{2}}-D_{2}$ are disjoint. Without loss of generality, we may assume $\left|V\left(\overline{D_{1}}-D_{1}\right)\right| \leq n / 2$. By our assumptions on G and applying Lemma 2.2.4, we see that $\overline{D_{1}}-\left(V\left(D_{1}\right) \backslash\{a, b\}\right)$ has at least two Hamiltonian paths between a and b for any distinct $a, b \in V\left(D_{1}\right)$.

Let G_{1}^{*} be obtained from G by contracting $\overline{D_{1}}-D_{1}$ to a new vertex v_{1}. Observe that G_{1}^{*} is a 4-connected planar triangulation with outer cycle T. It follows by induction that G_{1}^{*} has at least $c_{1}\left(n-\left|V\left(\overline{D_{1}}-D_{1}\right)\right|+1\right) \geq c_{1} n / 2$ Hamiltonian cycles through e_{1} and e_{2}. For each such Hamiltonian cycle in G_{1}^{*}, say H^{*}, let $a_{1}, b_{1} \in N_{G_{1}^{*}}\left(v_{1}\right)$ such that $a_{1} v_{1} b_{1} \subseteq H^{*}$. We can then form a Hamiltonian cycle in G through e_{1} and e_{2} by taking the union of $H^{*}-v_{1}$ and a Hamiltonian path between a_{1} and b_{1} in $\overline{D_{1}}-\left(V\left(D_{1}\right) \backslash\left\{a_{1}, b_{1}\right\}\right)$. Thus G has at least $2\left(c_{1} n / 2\right)=c_{1} n$ Hamiltonian cycles through e_{1} and e_{2}.

Case 2. There is an independent set S of vertices of degree at most 6 in G such that $|S|>c_{1} n, S \cap V(T)=\emptyset$, and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.

If there exist distinct $u_{1}, u_{2} \in S$ such that $\left|N_{G}\left(u_{i}\right) \cap V(T)\right| \geq 2$ for $i \in[2]$, then u_{1}, u_{2} are contained in a 4 -cycle or a 5 -cycle in G, a contradiction. Hence, at most one vertex in S, say x, is adjacent to two vertices in $V(T)$. Let $S^{\prime}=S$ if x does not exist, and $S^{\prime}=S \backslash\{x\}$ if x exists. Hence, $\left|S^{\prime}\right| \geq|S|-1$ and for all $u \in S^{\prime},\left|N_{G}(u) \cap V(T)\right| \leq 1$.

Next we show that $S^{\prime \prime}$ satisfies the conditions of Lemma 2.3.3 and Lemma 2.3.4. First suppose $d_{G}(y)>4$. If two degree 4 vertices are adjacent in G, they must be the two vertices in $V(T) \backslash\{y\}$. Hence, for any $u \in S^{\prime}$, since $\left|N_{G}(u) \cap V(T)\right| \leq 1$, if $d_{G}(u)=4$ then u is not adjacent to a degree 4 vertex in G, and if $d_{G}(u) \in\{5,6\}$ then no degree 4 neighbors of u are adjacent in G. Now assume that $d_{G}(y)=4$. Notice that for any $v \in N_{G}(y)$, $\left|N_{G}(v) \cap V(T)\right|=2$, and thus, $N_{G}(y) \cap S^{\prime}=\emptyset$. Hence, for any $u \in S^{\prime}$, if $d_{G}(u)=4$ then u is adjacent to no degree 4 vertex in G, and if $d_{G}(u) \in\{5,6\}$ then no degree 4 neighbors of u are adjacent in G. Therefore, S^{\prime} satisfies the conditions of Lemma 2.3.3 and Lemma 2.3.4.

Let $k:=\left|S^{\prime}\right|$ and $S^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Recall the definition of $A_{u_{i}}$ for $i \in[k]$, and let $A_{i}:=A_{u_{i}} \backslash\{e \in E(G): e$ is incident with $y\}$. By Lemma 2.3.3, $E\left(G\left[N_{G}\left[u_{i}\right]\right]\right) \cap$ $E\left(G\left[N_{G}\left[u_{j}\right]\right]\right)=\emptyset$ for $i \neq j$, and if $d_{G}\left(u_{i}\right) \in\{5,6\}$ then $\left\{v \in N_{G}\left(u_{i}\right): v u_{i} \notin A_{u_{i}}\right\}$ is independent in G; so $\left|A_{u_{i}}\right| \geq 3$ for all $u_{i} \in S^{\prime}$. Hence, $\left|A_{i}\right| \geq 2$ for all $i \in[k]$. Note that $e_{3} \notin E\left(G\left[N_{G}\left[u_{i}\right]\right]\right)$, as $S^{\prime} \cap V(T)=\emptyset$ and $\left|N_{G}\left(u_{i}\right) \cap V(T)\right| \leq 1$. We now find $k+1>c_{1} n$

Hamiltonian cycles H_{1}, \ldots, H_{k+1} in G, as follows.
Let $F_{0}=\emptyset$ and $X_{1}:=G-F_{0}=G$. Note that $e_{3} \notin E\left(G\left[N_{G}\left[u_{1}\right]\right]\right)$ and by Lemma 2.3.3, u_{1} satisfies the conditions of Lemma 3.1.1 (with u_{1}, e_{3}, X_{1} as u, e, G in Lemma 3.1.1, respectively). Since y is cofacial with e_{3} but not incident with e_{3}, it follows from (ii) of Lemma 3.1.1 that $X_{1}-y=G-y$ has a Hamiltonian cycle D_{1} through e_{3} and an edge $f_{1} \in A_{1}$. Hence, $H_{1}=\left(D_{1}-e_{3}\right)+\left\{y, e_{1}, e_{2}\right\}$ is a Hamiltonian cycle in G through e_{1}, e_{2}, and $f_{1} \in A_{1}$. Set $F_{1}=\left\{f_{1}\right\}$.

Suppose for some $j \in[k+1](j \geq 2)$ we have found an edge set $F_{j-1}=\left\{f_{1}, \ldots, f_{j-1}\right\}$ where $f_{i} \in A_{i}$ for each $i \in[j-1]$, and a Hamiltonian cycle H_{l} in $X_{l}:=G-F_{l-1}$ for each $l \in[j-1]$, such that $\left\{e_{1}, e_{2}, f_{l}\right\} \subseteq E\left(H_{l}\right)$ and $F_{l-1} \cap E\left(H_{l}\right)=\emptyset$. Consider the graph $X_{j}:=G-F_{j-1}$. By Lemma 2.3.4, X_{j} is 4-connected. When $j=k+1, X_{k+1}:=G-F_{k}$ is 4 -connected; so by Lemma 2.1.4, X_{k+1} has a Hamiltonian cycle H_{k+1} through e_{1} and e_{2}. We stop this process and output the desired H_{1}, \ldots, H_{k+1}. Now suppose $j \leq k$. Note that $G\left[N_{G}\left[u_{j}\right]\right]$ is a subgraph of $X_{j}\left(\right.$ as $E\left(G\left[N_{G}\left[u_{j}\right]\right]\right) \cap A_{u_{l}}=\emptyset$ for any $\left.l \in[j-1]\right)$, and that $e_{3} \in E\left(X_{j}\right) \backslash E\left(G\left[N_{G}\left[u_{j}\right]\right]\right)$. We now show that u_{j} satisfies the conditions of Lemma 3.1.1 (with u_{j}, e_{3}, X_{j} as u, e, G in Lemma 3.1.1, respectively). Since $u_{j} \in S^{\prime}$, $X_{j}-f$ is 4-connected for any $f \in A_{u_{j}}$ (by Lemma 2.3.4), and the link of u_{j} in X_{j} is $A_{u_{j}}$ (as $G\left[N_{G}\left[u_{j}\right]\right] \subseteq X_{i} \subseteq G$). Hence, if $d_{X_{j}}\left(u_{j}\right)=d_{G}\left(u_{j}\right) \in\{5,6\}$ then by Lemma 2.3.3, $\left\{v \in N_{x_{j}}\left(u_{j}\right): v u_{j} \notin A_{u_{j}}\right\}=\left\{v \in N_{G}\left(u_{j}\right): v u_{j} \notin A_{u_{j}}\right\}$ is independent in G (hence, in X_{j}); if $d_{X_{j}}\left(u_{j}\right)=d_{G}\left(u_{j}\right)=4$ then all neighbors of u_{j} each have degree at least 5 in X_{j}, as $A_{u_{j}}=E\left(G\left[N_{G}\left(u_{j}\right)\right]\right)$ and $X_{j}-f$ is 4-connected for any $f \in A_{u_{j}}$. Therefore, by (ii) of Lemma 3.1.1, $X_{j}-y$ has a Hamiltonian cycle D_{j} through e_{3} and some edge $f_{j} \in A_{j}$. Now $H_{j}=\left(D_{j}-e_{3}\right)+\left\{y, e_{1}, e_{2}\right\}$ is a Hamiltonian cycle in G such that $\left\{e_{1}, e_{2}, f_{j}\right\} \subseteq E\left(H_{j}\right)$. Note that $F_{j-1} \cap E\left(H_{j}\right)=\emptyset$ as $D_{j} \subseteq X_{j}$. Set $F_{j}=F_{j-1} \cup\left\{f_{j}\right\}$.

Therefore, G has at least $k+1=\left|S^{\prime}\right|+1>c_{1} n$ Hamiltonian cycles through e_{1}, e_{2}.

3.2 Proof of quadratic bound

Proof of Theorem 1.3.1. Let $c_{2}:=(12 \times 90 \times 541 \times 301)^{-1}$ and $c=c_{2}^{2} / 2$. We show that every 4-connected planar triangulation on n vertices has at least $c n^{2}$ Hamiltonian cycles. It is easy to check that the assertion holds when $n \leq 1 / \sqrt{c}=\sqrt{2} / c_{2}$ as every 4-connected planar graph is Hamiltonian by Tutte's theorem (or by Lemma 2.1.4). Hence we may assume that $n>\sqrt{2} / c_{2}$ and that the assertion holds for 4-connected planar triangulations on fewer than n vertices.

Case 1. G contains two adjacent vertices of degree 4.
Let $u_{1}, u_{2} \in V(G)$ such that $u_{1} u_{2} \in E(G)$ and $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=4$. Let G^{*} be the graph obtained from G by contracting the edge $u_{1} u_{2}$ to a new vertex u^{*}. By induction, G^{*} has at least $c(n-1)^{2}$ Hamiltonian cycles from which we obtain at least $c(n-1)^{2}$ Hamiltonian cycles in G through the edge $u_{1} u_{2}$.

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the vertices that occur on $G\left[N_{G^{*}}\left(u^{*}\right)\right]$ in the clockwise order such that $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)=\left\{x_{2}, x_{4}\right\}$. Note that $u_{1} u_{2} x_{2} u_{1}, u_{1} u_{2} x_{4} u_{1}$ are two triangles in G. By Lemma 3.1.2, G has at least $c_{1} n$ Hamiltonian cycles through $u_{1} x_{2 i}$ and $u_{2} x_{2 i}$ for each $i \in[2]$. Observe that if H is a Hamiltonian cycle in G through $u_{1} x_{2 i}$ and $u_{2} x_{2 i}$, then H is a Hamiltonian cycle in $G-u_{1} u_{2}$. Therefore, G contains at least $2 c_{1} n$ Hamiltonian cycles all avoiding the edge $u_{1} u_{2}$. Hence, there exist at least $c(n-1)^{2}+2 c_{1} n \geq c n^{2}$ Hamiltonian cycles in G.

Case 2. No two vertices of degree 4 in G are adjacent.
Recall that G contains an independent set I of vertices of degree at most 6 with $|I| \geq$ $n / 12$. By Lemma 2.3.8 (with $t=10$), either there exist distinct vertices $v, x \in V(G)$ such that $|N(v) \cap N(x) \cap I| \geq 10$, or G contains $S \subseteq I$ such that $|S| \geq c_{2} n$ and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.

Suppose the former case holds. Since no two vertices of degree 4 in G are adjacent, we can find a separating 4 -cycle D such that $1<|V(\bar{D}-D)| \leq n / 4$. We contract $\bar{D}-D$ to a
vertex and denote this new graph by G_{0}. Note that G_{0} is a 4-connected planar triangulation with $3 n / 4 \leq\left|V\left(G_{0}\right)\right|=n-|V(\bar{D}-D)|+1 \leq n-1$; so G_{0} has at least $c(3 n / 4)^{2}$ Hamiltonian cycles by induction. Therefore, G has at least $2 c(3 n / 4)^{2} \geq c n^{2}$ Hamiltonian cycles, as by Lemma 2.2.4, $\bar{D}-(V(D) \backslash\{a, b\})$ has at least two Hamiltonian paths between a and b for any distinct $a, b \in V(D)$.

Now assume that there exists an independent set S of vertices of degree at most 6 in G with $|S| \geq c_{2} n$ such that S saturates no 4 -cycle, or 5 -cycle, or diamond- 6 -cycle in G. By our assumptions on G, S satisfies the conditions in Lemma 2.3.3 and Lemma 2.3.4. Let $S=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Recall the definition of $A_{u_{i}}$, the link of u_{i} for each $i \in[k]$.

Let $F=\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$, where $f_{i} \in A_{u_{i}}$ for $i \in[k]$. Let $F_{j}=\left\{f_{1}, \ldots, f_{j}\right\}$ for each $j \in[k]$ and let $F_{0}=\emptyset$.

We claim that for each integer $j \in[k]$, there exists a collection of Hamiltonian cycles in G, say \mathcal{C}_{j}, such that $\left|\mathcal{C}_{j}\right|=k-j+1$ and every cycle in \mathcal{C}_{j} contains f_{j} but no edge from F_{j-1}. For each $j \in[k]$, let $X_{j}:=G-F_{j-1}$. By Lemma 2.3.4, X_{j} is 4 -connected for each j. If $j=k$, it follows from Lemma 2.1.4 that X_{k} has a Hamiltonian cycle $H_{k+1}^{(k)}$ through the edge f_{k}. Moreover, $F_{k-1} \cap E\left(H_{k+1}^{(k)}\right)=\emptyset$ as $H_{k+1}^{(k)} \subseteq X_{k}$. Let $\mathcal{C}_{k}=\left\{H_{k+1}^{(k)}\right\}$.

Now assume $j<k$. Let $F_{j}^{(j)}=\emptyset$ and $Y_{j+1}^{(j)}:=X_{j}-F_{j}^{(j)}=X_{j}$. Note that $f_{j} \in X_{j}$ as $X_{j}=G-F_{j-1}$. Note that u_{j+1} satisfies the conditions in Lemma 3.1.1 (with u_{j+1}, f_{j}, X_{j} as u, e, G in Lemma 3.1.1, respectively), since $u_{j+1} \in S, S$ satisfies the conditions in Lemmas 2.3.3 and 2.3.4, and $F_{j-1} \subseteq \cup_{i=1}^{j-1} A_{u_{i}}$ if $j \geq 1$. Then by (i) of Lemma 3.1.1, X_{j} has a Hamiltonian cycle $H_{j+1}^{(j)}$ containing f_{j} and some edge $f_{j+1}^{(j)} \in A_{u_{j+1}}$. Set $F_{j+1}^{(j)}=\left\{f_{j+1}^{(j)}\right\}$. For $j+2 \leq l \leq k+1$, suppose we have found an edge set $F_{l-1}^{(j)}=\left\{f_{j+1}^{(j)}, \ldots, f_{l-1}^{(j)}\right\}$, where $f_{t}^{(j)} \in A_{u_{t}}$ for $j+1 \leq t \leq l-1$, such that, for each $j+1 \leq t \leq l-1, Y_{t}^{(j)}:=X_{j}-F_{t-1}^{(j)}$ is 4 -connected and has a Hamiltonian cycle $H_{t}^{(j)}$ through f_{j} and $f_{t}^{(j)}$. Consider $Y_{l}^{(j)}:=$ $X_{j}-F_{l-1}^{(j)}$. Then $Y_{l}^{(j)}$ is 4 -connected by Lemma 2.3.4. If $l=k+1$, then, by Lemma 2.1.4, $Y_{k+1}^{(j)}:=X_{j}-F_{k}^{(j)}$ has a Hamiltonian cycle $H_{k+1}^{(j)}$ through f_{j} and $F_{k}^{(j)} \cap H_{k+1}^{(j)}=\emptyset$. We stop the process and output the desired $\mathcal{C}_{j}=\left\{H_{j+1}^{(j)}, H_{j+2}^{(j)}, \ldots, H_{k+1}^{(j)}\right\}$. Now assume that
$l<k+1$. Then $G\left[N_{G}\left[u_{l}\right]\right]$ is a subgraph of $Y_{l}^{(j)}$, and u_{l} in $Y_{l}^{(j)}$ satisfies the conditions in Lemma 3.1.1. Since $f_{j} \in E\left(Y_{l}^{(j)}\right) \backslash E\left(G\left[N_{G}\left[u_{l}\right]\right]\right)$, we apply (i) of Lemma 3.1.1 to find a Hamiltonian cycle $H_{l}^{(j)}$ in $Y_{l}^{(j)}$ through f_{j} and an edge $f_{l}^{(j)}$ in $A_{u_{l}}$. Set $F_{l}^{(j)}=F_{l-1}^{(j)} \cup\left\{f_{l}^{(j)}\right\}$. Hence, by the above claim, G has at least

$$
\sum_{i=1}^{k}\left|\mathcal{C}_{j}\right| \geq \sum_{j=1}^{k}(k+1-j)=k(k+1) / 2>c_{2}^{2} n^{2} / 2=c n^{2}
$$

Hamiltonian cycles.

CHAPTER 4

RESTRICTING DEGREE 4 VERTICES

4.1 Nested separating 4-cycles

In this section, we show several lemmas about nested separating 4-cycles in a planar triangulation.

Lemma 4.1.1. Let G be a 4-connected planar triangulation. Let S be an independent set in G saturating no 4-cycle or 5-cycle in G. Let $u, u^{\prime} \in S$ be distinct and let D_{u} and $D_{u^{\prime}}$ be 4-cycles containing u and u^{\prime}, respectively. Then $\left|V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)\right| \leq 2, V\left(D_{u}\right) \cap$ $V\left(D_{u^{\prime}}\right) \cap S=\emptyset$, and if $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)$ consists of two vertices, say a and b, then $a b \in E\left(D_{u}\right) \cap E\left(D_{u^{\prime}}\right)$.

Proof. Note that $u^{\prime} \notin V\left(D_{u}\right)$ since $\left\{u, u^{\prime}\right\}$ saturates no 4-cycle in G. Similarly, $u \notin$ $V\left(D_{u^{\prime}}\right)$. So $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right) \cap S=\emptyset$. Moreover, $\left|V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)\right| \leq 2$ since otherwise u, u^{\prime} are contained in a 4 -cycle in $G\left[D_{u}+u^{\prime}\right]$, contradicting the assumption that S saturates no 4-cycle in G.

Now suppose $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)=\{a, b\}$ with $a \neq b$. If $a b \in E\left(D_{u}\right) \backslash E\left(D_{u^{\prime}}\right)$ then $G\left[D_{u}+u^{\prime}\right]$ has a 5 -cycle containing u and u^{\prime}, contradicting the assumption that S saturates no 5-cycle in G. So, $a b \notin E\left(D_{u}\right) \backslash E\left(D_{u^{\prime}}\right)$. Similarly, $a b \notin E\left(D_{u^{\prime}}\right) \backslash E\left(D_{u}\right)$. If $a b \notin$ $E\left(D_{u}\right) \cup E\left(D_{u^{\prime}}\right)$, then u, u^{\prime} are contained in a 4-cycle in G, a contradiction. Thus, $a b \in$ $E\left(D_{u}\right) \cap E\left(D_{u^{\prime}}\right)$.

We now prove a technical lemma, which will be used in the proof of Lemma 4.1.3 to produce two Hamiltonian paths in a near triangulation.

Lemma 4.1.2. Let G be a near triangulation with outer cycle C, and let $x_{1}, w_{1}, w_{2}, x_{2} \in$ $V(C)$ be distinct and occur on C in clockwise order such that $x_{1} x_{2}, w_{1} w_{2} \in E(C)$ and each
edge of $G-E(C)$ is incident with both $x_{1} C w_{1}$ and $w_{2} C x_{2}$. Let $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)=\{r\}$ and $N_{G}\left(w_{1}\right) \cap N_{G}\left(w_{2}\right)=\{y\}$, and assume $r \notin\left\{y, w_{1}, w_{2}\right\}$ and $y \notin\left\{r, x_{1}, x_{2}\right\}$. Suppose any two degree 3 vertices of G contained in $V(G) \backslash\left\{x_{1}, x_{2}, w_{1}, w_{2}\right\}$ have distance at least three in G. Then $G-\left\{x_{1}, x_{2}, w_{1}, w_{2}\right\}$ has a Hamiltonian path between r and y.

Proof. Note that $|V(G)| \geq 6$ as $r \notin\left\{y, w_{1}, w_{2}\right\}$ and $y \notin\left\{r, x_{1}, x_{2}\right\}$. We apply induction on $|V(G)|$. Without loss of generality, we may assume $r \in V\left(x_{1} C w_{1}\right)$. Then $d_{G}\left(x_{1}\right)=2$.

Suppose $|V(G)|=6$. If $r y \in E(G)$ then we are done. So assume $r y \notin E(G)$. Then $y \in V\left(w_{2} C x_{2}\right), x_{2} w_{1} \in E(G)$, and $d_{G}(r)=d_{G}(y)=3$. This gives a contradiction since $d_{G}(r, y)=2$.

Now assume $|V(G)|>6$. We have two cases: $y \in V\left(x_{1} C w_{1}\right)$ or $y \in V\left(w_{2} C x_{2}\right)$.

Case 1. $y \in V\left(x_{1} C w_{1}\right)$. Then $d_{G}\left(w_{1}\right)=2$.
Consider $G_{1}=G-w_{1}$. Let y^{\prime} denote the unique vertex in $N_{G_{1}}(y) \cap N_{G_{1}}\left(w_{2}\right)$. If $y^{\prime} \notin\left\{r, x_{2}\right\}$ then, by induction, $G_{1}-\left\{x_{1}, x_{2}, y, w_{2}\right\}$ has a Hamiltonian path H_{1} between r and y^{\prime}; so $H_{1}+y^{\prime} y$ gives a Hamiltonian path between r and y in $G-\left\{x_{1}, x_{2}, w_{1}, w_{2}\right\}$. Hence, we may assume $y^{\prime} \in\left\{r, x_{2}\right\}$.

If $y^{\prime}=r$ then $r y, r w_{2} \in E(G)$ and $d_{G}(y)=3$. Since $|V(G)| \geq 7,\left|V\left(w_{2} C x_{2}\right)\right| \geq 3$. Now, y and a degree 3 vertex of G contained in $V\left(w_{2} C x_{2}\right) \backslash\left\{x_{2}, w_{2}\right\}$ are distance 2 apart in G, a contradiction. So $y^{\prime}=x_{2}$. Then $x_{2} y, x_{2} w_{2} \in E(G)$. Hence, since each edge of $G-E(C)$ is incident with both $x_{1} C w_{1}$ and $x_{2} C w_{2}, V(r C y) \subseteq N_{G}\left(x_{2}\right)$, and all vertices in $V(r C y-y)$ have degree 3 in G. Since $|V(G)| \geq 7$ and $x_{2} w_{2} \in E(G), r C y-y$ contains two adjacent vertices of degree 3 in G, a contradiction.

Case 2. $y \in V\left(w_{2} C x_{2}\right)$. Then $d_{G}\left(w_{2}\right)=2$.
Consider $G_{2}=G-w_{2}$. Let y^{\prime} denote the unique vertex in $N_{G_{2}}(y) \cap N_{G_{2}}\left(w_{1}\right)$. Similar to Case 1 , if $y^{\prime} \notin\left\{r, x_{2}\right\}$ then, by induction, $G_{2}-\left\{x_{1}, x_{2}, y, w_{1}\right\}$ has a Hamiltonian path H_{2} between r and y^{\prime}. Hence, $H_{2}+y^{\prime} y$ is a Hamiltonian path between r and y in $G-\left\{x_{1}, x_{2}, w_{1}, w_{2}\right\}$.

If $y^{\prime}=r$, then let x_{2}^{\prime} be the neighbor of x_{2} on $w_{2} C x_{2}$; now $r x_{2}^{\prime} \cup y C x_{2}^{\prime}$ is a Hamiltonian path between r and y in $G-\left\{x_{1}, x_{2}, w_{1}, w_{2}\right\}$. If $y^{\prime}=x_{2}$, then $x_{2} w_{1}, x_{2} y \in E(G)$. It follows that $d_{G}(r)=d_{G}(y)=3$, which gives a contradiction since $d_{G}(r, y)=2$.

Recall that for a cycle D in G, \bar{D} is the subgraph of G consisting of all vertices and edges of G contained in the closed disc bounded by D. In the proof of Theorem 1.3.2, we will need to consider the subgraphs of a planar triangulation that lie between two separating 4 -cycles and use the following result on Hamiltonian paths in those subgraphs.

Lemma 4.1.3. Let G be a 4-connected planar triangulation in which the distance between any two vertices of degree 4 is at least three. Let S be an independent set in G such that S saturates no 4-cycle or 5 -cycle in G. Let $u, u^{\prime} \in S$ be distinct, and $D_{u}, D_{u^{\prime}}$ be separating 4-cycles in G containing u and u^{\prime}, respectively. Suppose $\overline{D_{u^{\prime}}} \subseteq \overline{D_{u}}$, and $D_{u^{\prime}}$ is a maximal separating 4-cycle containing u^{\prime} in G, i.e., $\overline{D_{u^{\prime}}}$ is not contained in \bar{D} for any other separating 4-cycle $D \neq D_{u^{\prime}}$ with $u^{\prime} \in V(D)$. Let H denote the graph obtained from $\overline{D_{u}}$ by contracting $\overline{D_{u^{\prime}}}-D_{u^{\prime}}$ to a new vertex z so that H is a near triangulation with outer cycle D_{u}. Then one of the following holds:
(i) For any distinct $a, b \in V\left(D_{u}\right), H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ has at least two Hamiltonian paths between a and b.
(ii) There exist distinct $a, b \in V\left(D_{u}\right)$ such that $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ has a unique Hamiltonian path, say P, between a and b; but for any distinct $c, d \in V\left(D_{u}\right)$ with $\{c, d\} \neq\{a, b\}, H-\left(V\left(D_{u}\right) \backslash\{c, d\}\right)$ has at least two Hamiltonian paths between c and d and avoiding an edge of P incident with z.

Proof. Let $D_{u}=u v w x u$ and $D_{u^{\prime}}=u^{\prime} v^{\prime} w^{\prime} x^{\prime} u^{\prime}$. Without loss of generality, assume that u, v, w, x occur on D_{u} in clockwise order, and $u^{\prime}, v^{\prime}, w^{\prime}, x^{\prime}$ occur on $D_{u^{\prime}}$ in clockwise order.

By Lemma 4.1.1, we have $\left|V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)\right| \leq 1$ or $\left|E\left(D_{u}\right) \cap E\left(D_{u^{\prime}}\right)\right|=1$. Thus, $|V(H)| \geq 7$, and for any distinct $a, b \in V\left(D_{u}\right)$ with $a b \notin E\left(D_{u}\right), H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ is not a path. So by Lemma 2.2.2, we have

Claim 1. For any distinct $a, b \in V\left(D_{u}\right)$ with $a b \notin E\left(D_{u}\right), H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ has at least two Hamiltonian paths between a and b.

Claim 2. We may assume $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right) \neq \emptyset$.

Proof. For, suppose $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)=\emptyset$. Then z is not incident with the infinite face of $H-D_{u}$. So for any distinct $a, b \in V\left(D_{u}\right)$ with $a b \in E\left(D_{u}\right), H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ cannot be an outer planar graph. Thus, by Lemma 2.2.3, $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ has at least two Hamiltonian paths between a and b. So (i) holds by Claim 1.

Claim 3. We may further assume that $\left|V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)\right|=2$.

Proof. For, suppose $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)$ consists of exactly one vertex, say y. Then $y \in\{v, w, x\} \cap\left\{v^{\prime}, w^{\prime}, x^{\prime}\right\}$. We show that (i) holds. By Claim 1, it suffices to consider distinct $a, b \in V\left(D_{u}\right)$ with $a b \in E\left(D_{u}\right)$. By Lemma 2.2.3, it suffices to show that $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ is not outer planar.

Let $a, b \in V\left(D_{u}\right)$ with $a b \in E\left(D_{u}\right)$. If $y \in\{a, b\}$, then z is not incident with the infinite face of $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$; so $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ is not outer planar. Hence we may assume that $y \notin\{a, b\}$. Let $D_{u}=y y_{1} y_{2} y_{3} y$ and assume that y, y_{1}, y_{2}, y_{3} occur on D_{u} in clockwise order. Then $\{a, b\}=\left\{y_{1}, y_{2}\right\}$ or $\{a, b\}=\left\{y_{2}, y_{3}\right\}$.

First, assume that $y \in\left\{v^{\prime}, x^{\prime}\right\}$. We consider $y=v^{\prime}$, as the other case $y=x^{\prime}$ is symmetric. If $H-\left\{y, y_{3}\right\}$ is outer planar, then u^{\prime} is adjacent to the vertices y, y_{3} in $V\left(D_{u}\right)$. Since $y y_{3} \in E\left(D_{u}\right), G\left[D_{u}+u^{\prime}\right]$ has a 5-cycle containing u and u^{\prime}, contradicting the assumption that S saturates no 5-cycle. Hence, $H-\left(V\left(D_{u}\right) \backslash\left\{y_{1}, y_{2}\right\}\right)=H-\left\{y, y_{3}\right\}$ is not outer planar. It remains to consider $H-\left(V\left(D_{u}\right) \backslash\left\{y_{2}, y_{3}\right\}\right)=H-\left\{y, y_{1}\right\}$. Suppose $H-\left\{y, y_{1}\right\}$ is outer planar. Then w^{\prime} and x^{\prime} are incident with the infinite face of $H-\left\{y, y_{1}\right\}$ and $w^{\prime} y_{1} \in E(G)$. We claim that $x^{\prime} y_{1} \in E(G)$; otherwise $x^{\prime} y \in E(G)$, implying that $x^{\prime} w^{\prime} y x^{\prime}$ or $x^{\prime} u^{\prime} y x^{\prime}$ is a separating triangle in G, a contradiction. But then $D=u^{\prime} y y_{1} x^{\prime} u^{\prime}$ is a separating 4-cycle in G containing u^{\prime}, and \bar{D} properly contains $\overline{D_{u^{\prime}}}$, contradicting the maximality of $D_{u^{\prime}}$.

Suppose $y=w^{\prime}$. For $\{a, b\}=\left\{y_{1}, y_{2}\right\}$ or $\{a, b\}=\left\{y_{2}, y_{3}\right\}$, if $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ is not outer planar, then $u^{\prime} y_{3} \in E(G)$ or $u^{\prime} y_{1} \in E(G)$. So $D=u^{\prime} y_{3} w^{\prime} x^{\prime} u^{\prime}$ or $D=u^{\prime} y_{1} w^{\prime} v^{\prime} u^{\prime}$ is a separating 4-cycle in G such that \bar{D} properly contains $\overline{D_{u^{\prime}}}$. Thus, $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ cannot be outer planar for $\{a, b\}=\left\{y_{1}, y_{2}\right\}$ or $\{a, b\}=\left\{y_{2}, y_{3}\right\}$.

By Claim 3, $\left|E\left(D_{u}\right) \cap E\left(D_{u^{\prime}}\right)\right|=1$; so $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)=\{v, w\}$ or $V\left(D_{u}\right) \cap$ $V\left(D_{u^{\prime}}\right)=\{w, x\}$. By the symmetry among the edges in D_{u} and between the two orientations of D_{u}, we may further assume $V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right)=\{v, w\}$.

Claim 4. For $\{a, b\} \subseteq V\left(D_{u}\right)$ with $a b \in E\left(D_{u}\right)$, if $\{a, b\} \neq\{u, x\}$, then $H-$ $\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ has at least two Hamiltonian paths between a and b.

Proof. For $\{a, b\}=\{v, w\}$, since z is not incident with the infinite face of $H-\{x, u\}$, $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)=H-\{x, u\}$ is not outer planar and has at least two Hamiltonian paths between a and b by Lemma 2.2.3.

For $\{a, b\}=\{u, v\}$ or $\{a, b\}=\{w, x\}, H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ cannot be outer planar. Otherwise, one can check that $\left\{u, u^{\prime}\right\}$ is contained in a 4-cycle or 5-cycle in G. Hence, by Lemma 2.2.3, there exist at least two Hamiltonian paths between a and b in $H-\left(V\left(D_{u}\right) \backslash\{a, b\}\right)$ when $\{a, b\}=\{u, v\}$ or $\{a, b\}=\{w, x\}$.

By Claim 4, we may assume that $H-\{v, w\}$ has a unique Hamiltonian path P between u and x, as otherwise (i) holds. It follows from Lemma 2.2.3 that $H-\{v, w\}$ is an outer planar near triangulation. Let y^{\prime} denote the vertex in $V\left(D_{u^{\prime}}\right) \backslash\left\{u^{\prime}, v, w\right\}$; so $y^{\prime}=x^{\prime}$ or $y^{\prime}=v^{\prime}$. Note that $V(u P z) \subseteq N_{H}(v)$, that $V(x P z) \subseteq N_{H}(w)$, and that P contains $u^{\prime} z y^{\prime}$. Let r denote the unique vertex in $N_{H}(u) \cap N_{H}(x)$. Observe that $\{v, w\}=\left\{v^{\prime}, w^{\prime}\right\}$ or $\{v, w\}=\left\{w^{\prime}, x^{\prime}\right\}$. Recall the definition of diamond-4-cycle in Figure Figure 2.3.

Claim 5. There exists a vertex $y \in V(P) \backslash\{u, x, z\}$ such that $y u^{\prime} \in E(P)$ and $D^{\prime}:=$ $G\left[D_{u^{\prime}}+y\right]$ is a diamond-4-cycle with u^{\prime} and y as crucial vertices. Moreover, $r \notin\left\{y, y^{\prime}\right\}$.

Proof. First, suppose $\{v, w\}=\left\{v^{\prime}, w^{\prime}\right\}$, i.e. $v=v^{\prime}$ and $w=w^{\prime}$. Then $y^{\prime}=x^{\prime}$. Hence, there exists a vertex y in $V\left(u P u^{\prime}\right) \backslash\left\{u, u^{\prime}\right\}$ such that $y u^{\prime} \in E(P)$ and $y v \in E(G)$. If $y x^{\prime} \notin E(G)$, then u^{\prime} has a neighbor z^{\prime} in $V\left(x P x^{\prime}\right)$ since $H-\{v, w\}$ is an outer planar near triangulation; now $u^{\prime} v^{\prime} w^{\prime} z^{\prime} u^{\prime}$ is a separating 4-cycle in G containing u^{\prime} (as $z^{\prime} w=z^{\prime} w^{\prime} \in$ $E(G)$), contradicting the maximality of $D_{u^{\prime}}$. Therefore, $y x^{\prime} \in E(G)$ and $G\left[D_{u^{\prime}}+y\right]$ is a diamond-4-cycle with crucial vertices u^{\prime} and y. Moreover, $r \notin\left\{y, x^{\prime}\right\}=\left\{y, y^{\prime}\right\}$; otherwise, $u v u^{\prime} y u$ (when $r=y$) or $u v u^{\prime} x^{\prime} u$ (when $r=y^{\prime}$) is a 4-cycle saturated by S, a contradiction.

Now assume that $\{v, w\}=\left\{w^{\prime}, x^{\prime}\right\}$, i.e., $v=w^{\prime}$ and $w=x^{\prime}$. Then $y^{\prime}=v^{\prime}$. Observe that $u^{\prime} x \notin E(G)$, otherwise $u v w u^{\prime} x u$ is a 5 -cycle in G saturated by S, a contradiction. Hence, there exists $y \in V\left(u^{\prime} P x\right) \backslash\left\{u^{\prime}, x\right\}$ such that $y u^{\prime} \in E(P)$ and $y w \in E(G)$. Now $y v^{\prime} \in E(G)$ by the maximality of $D_{u^{\prime}}$. Therefore, $G\left[D_{u^{\prime}}+y\right]$ is a diamond-4-cycle in G in which u^{\prime}, y are crucial vertices. If $r=y^{\prime}=v^{\prime}$ then $u v w u^{\prime} y^{\prime} u$ is a 5 -cycle in G containing $\left\{u, u^{\prime}\right\}$, and if $r=y$ then $u y u^{\prime} w x u$ is a 5 -cycle in G containing $\left\{u, u^{\prime}\right\}$. This contradicts the assumption that S saturates no 5 -cycle in G, completing the proof of Claim 5 .

We need another claim, in order to show that for any $\{c, d\} \neq\{u, x\}, H-$ $\left(V\left(D_{u}\right) \backslash\{c, d\}\right)$ has at least two Hamiltonian paths between c and d and not containing $u^{\prime} z y^{\prime}$. Let $H^{\prime}:=H-\left(V\left(D_{u}\right) \cap V\left(D_{u^{\prime}}\right) \cup\{z\}\right)=H-\{v, w, z\}$. Then H^{\prime} is an outer planar near triangulation and $H^{\prime} \subseteq G$.

Claim 6. $r \in V\left(H^{\prime}\right) \backslash\left\{y, u^{\prime}, y^{\prime}\right\}$ and $H^{\prime}-\left\{u, x, u^{\prime}, y^{\prime}\right\}$ has a Hamiltonian path P_{1} between r and y.

Proof. Since $r \in N_{G}(u)$ and S is independent, $r \neq u^{\prime}$. By Claim 5, $r \notin\left\{y, y^{\prime}\right\}$ and $y \notin\left\{u, x, y^{\prime}\right\}$. Thus, $r \notin\left\{y, y^{\prime}, u^{\prime}\right\}$.

Let C denote the outer cycle of H^{\prime}. Then $u x, u^{\prime} y^{\prime} \in E(C)$. We may assume $y^{\prime}=x^{\prime}$; the other case is similar.

Since G contains no separating triangle, each edge in $H^{\prime}-E(C)$ is incident with both
$u P u^{\prime}$ and $x P y^{\prime}$. Since $V\left(u P u^{\prime}\right) \subseteq N_{G}(v)$ and $V\left(x P y^{\prime}\right) \subseteq N_{G}(w)$, every degree 4 vertex of G in $V\left(H^{\prime}\right) \backslash\left\{u, x, u^{\prime}, y^{\prime}\right\}$ has degree 3 in H^{\prime}. Hence, by assumption of the lemma, the distance between any two degree 3 vertices of H^{\prime}, contained in $V\left(H^{\prime}\right) \backslash\left\{u, x, u^{\prime}, y^{\prime}\right\}$, is at least three in H^{\prime}. Applying Lemma 4.1.2 to H^{\prime}, we see that $H^{\prime}-\left\{u, x, u^{\prime}, y^{\prime}\right\}$ has a Hamiltonian path P_{1} between r and y.

Let $Q_{1}:=P_{1} \cup y u^{\prime} y^{\prime} z$ and $Q_{2}:=P_{1} \cup y y^{\prime} u^{\prime} z$. Then Q_{1} and Q_{2} are two distinct Hamiltonian paths between r and z in $H-V\left(D_{u}\right)$, and neither contains $u^{\prime} z y^{\prime}$. We now show that (ii) holds with $\{a, b\}=\{u, x\}$. Let $c, d \in V\left(D_{u}\right)$ be distinct such that $\{c, d\} \neq\{u, x\}$. Observe that one vertex in $\{c, d\}$ is a neighbor of r and the other is a neighbor of z. We may assume $c \in N_{H}(r)$ and $d \in N_{H}(z)$. Then $c r \cup Q_{1} \cup z d, c r \cup Q_{2} \cup z d$ are two distinct Hamiltonian paths in $H-\left(V\left(D_{u}\right) \backslash\{c, d\}\right)$ between c and d and not containing $u^{\prime} z y^{\prime}$.

We also need the following result, which is given implicitly in the proof of Theorem 1.3 in [51].

Lemma 4.1.4 (Liu and Yu [51]). Let Ge a 4-connected planar triangulation. Assume that G contains a collection of separating 4-cycles, say $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{t+1}\right\}$, such that $\overline{D_{1}} \supseteq \overline{D_{2}} \supseteq \cdots \supseteq \overline{D_{t+1}}$. For $j \in[t]$, let G_{j} be the graph obtained from $\overline{D_{j}}$ by contracting $\overline{D_{j+1}}-D_{j+1}$ to a new vertex, denoted by z_{j+1}. Suppose the conclusion of Lemma 4.1.3 holds for G_{j} and z_{j+1} (as H and z, respectively, in Lemma 4.1.3). Then G has at least $2^{\sqrt{t}}$ Hamiltonian cycles.

Proof. Let G_{0} be the graph obtained from G by contracting $\overline{D_{1}}-D_{1}$ to the vertex z_{1}. We see that G_{0} is 4 -connected. Hence G_{0} has a Hamiltonian cycle, say F_{0}, and let $a_{1}, b_{1} \in$ $V\left(D_{1}\right)$ such that $a_{1} z_{1} b_{1} \subseteq F_{0}$. We now define a rooted tree T whose root r represents F_{0}, and whose leaves are Hamiltonian cycles in G. Note that G_{1} is a near triangulation with outer cycle D_{1} and no separating triangles. For each Hamiltonian path P_{1} in $G_{1}-$ $\left(V\left(D_{1}\right) \backslash\left\{a_{1}, b_{1}\right\}\right)$ between a_{1} and $b_{1}, F_{1}:=\left(F_{0}-z_{1}\right) \cup P_{1}$ is a Hamiltonian cycle in $G_{1} \cup\left(G-\left(\overline{D_{1}}-D_{1}\right)\right)$; we add a neighbor to r in T to represent F_{1}. This defines all
vertices of T at distance 1 from the root r. Now, suppose we have defined all vertices of T at distance s from r, for some $s \in[t-1]$, each of which represents a Hamiltonian cycle in $G_{s} \cup\left(G-\left(\overline{D_{s}}-D_{s}\right)\right)$. To define the vertices of T at distance $s+1$ from r, we let v be an arbitrary vertex in T that is at distance s from r. Then v represents a Hamiltonian cycle F_{s} in $G_{s} \cup\left(G-\left(\overline{D_{s}}-D_{s}\right)\right)$. Let $a_{s+1}, b_{s+1} \in V\left(D_{s+1}\right)$ such that $a_{s+1} z_{s+1} b_{s+1} \subseteq F_{s+1}$. For each Hamiltonian path P_{s+1} in $G_{s+1}-\left(V\left(D_{s+1}\right) \backslash\left\{a_{s+1}, b_{s+1}\right\}\right)$ between a_{s+1} and b_{s+1}, $F_{s+1}:=\left(F_{s}-z_{s+1}\right) \cup P_{s+1}$ is a Hamiltonian cycle in $G_{s+1} \cup\left(G-\left(\overline{D_{s+1}}-D_{s+1}\right)\right)$; we add a neighbor to v in T to represent F_{s+1}. Suppose we defined all vertices of T at distance at most t from r. For each vertex v of distance t from r in T, v represents a Hamiltonian cycle F_{t} in $G_{t} \cup\left(G-\left(\overline{D_{t}}-D_{t}\right)\right)$. Let $a_{t+1}, b_{t+1} \in V\left(D_{t+1}\right)$ such that $a_{t+1} z_{t+1} b_{t+1} \subseteq F_{t}$. For each Hamiltonian path P_{t+1} between a_{t+1} and b_{t+1} in $\overline{D_{t+1}}-\left(V\left(D_{t+1}\right) \backslash\left\{a_{t+1}, b_{t+1}\right\}\right)$, $F_{t+1}=\left(F_{t}-z_{t+1}\right) \cup P_{t+1}$ is a Hamiltonian cycle in G. Then we add a neighbor to v to represent F_{t+1} and we finished constructing T. Hence the leaves of T correspond to distinct Hamiltonian cycles in G. Note that, by construction, the distance in T between the root and any leaf is $t+1$.

If T has no path of length \sqrt{t} whose internal vertices are of degree 2 in T, We obtain the tree T^{*} from T by contracting all edges of T incident with degree 2 vertices in T. Then all vertices in T^{*}, except the leaves and possibly the root, have degree at least 3 . Since each leaf of T has distance t from the root r, the distance between the root and any leaf in T^{*} is at least \sqrt{t}. Hence, T^{*} and, thus, T both have at least $2^{\sqrt{t}}$ leaves. Therefore, G has at least $2^{\sqrt{t}}$ Hamiltonian cycles.

Now suppose T has a path of length \sqrt{t} whose internal vertices are of degree 2 in T. This implies that for some $k \in\{0,1, \ldots, t-\sqrt{t}\}$, all $j \in\{k+1, \ldots, k+\sqrt{t}\}$, there exist $a_{j}, b_{j} \in V\left(D_{j}\right)$ such that $G_{j}-\left(V\left(D_{j}\right) \backslash\left\{a_{j}, b_{j}\right\}\right)$ has a unique Hamiltonian path P_{j} between a_{j} and b_{j} such that $a_{j+1} z_{j+1} b_{j+1} \subseteq P_{j}$. It follows from Lemma 4.1.3 that for any distinct $c_{j}, d_{j} \in V\left(D_{j}\right)$ with $\left\{c_{j}, d_{j}\right\} \neq\left\{a_{j}, b_{j}\right\}, G_{j}-\left(V\left(D_{j}\right) \backslash\left\{c_{j}, d_{j}\right\}\right)$ has at least two Hamiltonian paths between c_{j} and d_{j} and avoiding the edge $a_{j+1} z_{j+1}$ or the edge $b_{j+1} z_{j+1}$.

Without loss of generality, we may assume $k=0$.
Recall G_{0}. By Sanders's Theorem, G_{0} has a Hamiltonian cycle F_{0} through the edges $c_{1} z_{1}, d_{1} z_{1}$ such that $\left\{c_{1}, d_{1}\right\} \neq\left\{a_{1}, b_{1}\right\}$. We now define a new rooted tree T^{\prime} whose root r^{\prime} represent F_{0} and whose leaves are Hamiltonian cycles in G. Note that $G_{1}-\left(V\left(D_{1}\right) \backslash\left\{c_{1}, d_{1}\right\}\right)$ has at least two Hamiltonian paths between c_{1} and d_{1} and not containing $a_{2} z_{2} b_{2}$. For each such Hamiltonian path P_{1}, we see that $\left(F_{0}-z_{1}\right) \cup P_{1}$ is a Hamiltonian cycle in $G_{1} \cup\left(G-\left(\overline{D_{1}}-D_{1}\right)\right)$, and we add a vertex to T^{\prime} representing $\left(F_{0}-z_{1}\right) \cup P_{1}$ and make it adjacent to r^{\prime}. This defines all vertices of T^{\prime} within distance 1 from r^{\prime}. Note that $d_{T^{\prime}}\left(r^{\prime}\right) \geq 2$. Now suppose we have defined the vertices of T^{\prime} at distance s from r for some $s \in[\sqrt{t}-1]$, each representing a Hamiltonian cycle in $G_{s} \cup\left(G-\left(\overline{D_{s}}-D_{s}\right)\right)$ not containing $a_{s+1} z_{s+1} b_{s+1}$. To define the vertices of T^{\prime} that are at distance $s+1$ from r^{\prime}, let v be an arbitrary vertex of T^{\prime} at distance s from r^{\prime}. Then v corresponds to a Hamiltonian cycle F_{s} in $G_{s} \cup\left(G-\left(\overline{D_{s}}-D_{s}\right)\right)$ not containing $a_{s+1} z_{s+1} b_{s+1}$. Let $c_{s+1}, d_{s+1} \in V\left(D_{s+1}\right)$ be distinct such that $c_{s+1} z_{s+1} d_{s+1} \subseteq F_{s}$. Then $\left\{c_{s+1}, d_{s+1}\right\} \neq\left\{a_{s+1}, b_{s+1}\right\}$. Hence, by Lemma 4.1.3, $G_{s+1}-\left(V\left(D_{s+1}\right) \backslash\left\{c_{s+1}, d_{s+1}\right\}\right)$ has at least two Hamiltonian paths between c_{s+1} and d_{s+1} and not containing $a_{s+2} z_{s+2} b_{s+2}$. For each such path $P_{s+1},\left(F_{s}-z_{s+1}\right) \cup P_{s+1}$ is a Hamiltonian cycle in $G_{s+1} \cup\left(G-\left(\overline{D_{s+1}}-D_{s+1}\right)\right)$ not containing $a_{s+2} z_{s+2} b_{s+2}$, and we add a neighbor to v in T^{\prime} to represent $\left(F_{s}-z_{s+1}\right) \cup P_{s+1}$. Thus, $d_{T}(v) \geq 3$. We repeat this process for $s=1, \ldots, \sqrt{t}-1$. Note that the number of vertices of T^{\prime} with distance $i \in[\sqrt{t}]$ is at least 2^{i}.

For an arbitrary vertex u of T^{\prime} that has distance $q=\sqrt{t}$ from r^{\prime} in T^{\prime}, it represents a Hamiltonian cycle F_{q} in $G_{q} \cup\left(G-\left(\overline{D_{q}}-D_{q}\right)\right)$. Assume $c_{q+1} z_{q+1} d_{q+1} \subseteq F_{q}$. By Lemma 2.2.2 or Lemma 2.2.3, there exist at least one Hamiltonian path P_{q+1} between c_{q+1} and d_{q+1} in $\overline{D_{q+1}}-\left(V\left(D_{q+1}\right) \backslash\left\{c_{q+1}, d_{q+1}\right\}\right)$. Then $\left(F_{q}-z_{q+1}\right) \cup P_{q+1}$ is Hamiltonian cycle in G. So T^{\prime} has at least $2^{q}=2^{\sqrt{t}}$ leaves. Hence, G has at least $2^{\sqrt{t}}$ Hamiltonian cycles.

4.2 Proof of exponential bound

Proof of Theorem 1.3.2. Note that, for any two distinct vertices x, y of degree 4 in G, we have $N_{G}(x) \cap N_{G}(y)=\emptyset$ as $d_{G}(x, y) \geq 3$. Hence, the number of vertices of degree 4 in G is at most $n / 5$. Thus, since $|E(G)|=3 n-6$ and $\delta(G) \geq 4$, there exist at least $n / 5$ vertices of degree 5 or 6 in G. Then by the Four Color Theorem, there is an independent set I such that every vertex in I has degree 5 or 6 in G and $|I| \geq(n / 5) / 4=n / 20$. We may assume that
(1) G has an independent set $S \subseteq I$ of size $\Omega\left(n^{3 / 4}\right)$ such that S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.

For, otherwise, by Lemma 2.3.8, there exist distinct $v, x \in V(G)$ such that $\mid N_{G}(v) \cap$ $N_{G}(x) \cap I \mid \geq c_{0} n^{1 / 4}$ for some constant $c_{0}>0$. Since any two vertices of degree 4 in G have distance at least three, $G\left[N_{G}[v] \cup N_{G}[x]\right]$ contains separating 4-cycles C_{1}, \ldots, C_{k} in G, where $k \geq c_{0} n^{1 / 4}-1$, such that $\left|V\left(\overline{C_{i}}\right)\right| \geq 6$ for each $i \in[k]$, and $\overline{C_{i}}-C_{i}, \overline{C_{j}}-C_{j}$ are disjoint whenever $1 \leq i \neq j \leq k$. Let G^{*} be the graph obtained from G by contracting $\overline{C_{i}}-C_{i}$ to a new vertex v_{i}, for $i \in[k]$. Then G^{*} is a 4-connected planar triangulation and, hence, has a Hamiltonian cycle, say H.

Let $a_{i}, b_{i} \in N_{G^{*}}\left(v_{i}\right)$ such that $a_{i} v_{i} b_{i} \subseteq H$ for $i \in[k]$. Since $\left|V\left(\overline{C_{i}}\right)\right| \geq 6$ and no vertices of degree 4 in G are adjacent, it follows from Lemma 2.2.4 that $\overline{C_{i}}-\left(V\left(C_{i}\right) \backslash\left\{a_{i}, b_{i}\right\}\right)$ has at least two Hamiltonian paths between a_{i} and b_{i}. We can form a Hamiltonian cycle in G by taking the union of $H-\left\{v_{i}: i \in[k]\right\}$ and one Hamiltonian path between a_{i} and b_{i} in $\overline{C_{i}}-\left(V\left(C_{i}\right) \backslash\left\{a_{i}, b_{i}\right\}\right)$ for each $i \in[k]$. Thus, G has at least $2^{k} \geq 2^{c_{0} n^{1 / 4}-1}$ Hamiltonian cycles and we are done. This completes the proof of (1).

For each $u \in S$, recall the link A_{u} defined in Section 2. We may assume that
(2) there exists $S_{1} \subseteq S$ such that $\left|S_{1}\right| \geq|S| / 2$ and, for each $u \in S_{1}, d_{G}(u)-\left|A_{u}\right| \geq 2$ and u is contained in a separating 4-cycle D in G with $|V(\bar{D})| \geq 6$.

Suppose we have $S_{2} \subseteq S$ with $\left|S_{2}\right| \geq|S| / 2$ such that $d_{G}(u)-\left|A_{u}\right| \leq 1$ for all $u \in S_{2}$. Hence, for any $u \in S_{2},\left|A_{u}\right| \geq 4$ if $d_{G}(u)=5$; and $\left|A_{u}\right| \geq 5$ if $d_{G}(u)=6$. Let F be any subset of $E(G)$ with $|F|=\left|S_{2}\right|$ and $\left|F \cap A_{u}\right|=1$ for each $u \in S_{2}$. By Lemma 2.3.4, $G-F$ is 4 -connected; so $G-F$ has a Hamiltonian cycle by Tutte's theorem (or by Lemma 2.1.4). Let \mathcal{C} be a collection of Hamiltonian cycles in G by taking precisely one Hamiltonian cycle in $G-F$ for each choice of F. Let a_{5} and a_{6} denote the number of vertices in S_{2} of degree 5 and 6 in G, respectively. There are at least $4^{a_{5}} 5^{a_{6}}$ choices of the edge set $F \subseteq E(G)$. Each Hamiltonian cycle of G in \mathcal{C} is chosen at most $(5-2)^{a_{5}}(6-2)^{a_{6}}=3^{a_{5}} 4^{a_{6}}$ times. Thus

$$
|\mathcal{C}| \geq(4 / 3)^{a_{5}}(5 / 4)^{a_{6}} \geq(5 / 4)^{a_{5}+a_{6}}=(5 / 4)^{\left|S_{2}\right|} \geq(5 / 4)^{\Omega\left(n^{3 / 4}\right)}
$$

Hence, we may assume that there exists $S_{1} \subseteq S$ such that $\left|S_{1}\right| \geq|S| / 2$ and $d_{G}(u)-$ $\left|A_{u}\right| \geq 2$ for all $u \in S_{1}$. For each $u \in S_{1}$, since $d_{G}(u)-\left|A_{u}\right| \geq 2$, there exist at least two edges e_{1} and e_{2} incident with u such that $G-e_{i}$ is not 4-connected for $i \in[2]$. Since u has at most one neighbor of degree 4 in G (by assumption), there exists $i \in[2]$ such that a 3 -cut of $G-e_{i}$ and u induce a separating 4 -cycle D_{u} in G with $\left|V\left(\overline{D_{u}}\right)\right| \geq 6$. This completes the proof of (2).

For each $u \in S_{1}$, we choose a maximal separating 4-cycle D_{u} containing u. Note that $\left|V\left(\overline{D_{u}}\right)\right| \geq 6$. Let $\mathcal{D}=\left\{D_{u}: u \in S_{1}\right\}$. Since S_{1} saturates no 4-cycle, $D_{u} \neq D_{u^{\prime}}$ for any distinct $u, u^{\prime} \in S_{1}$ and $|\mathcal{D}|=\left|S_{1}\right| \geq|S| / 2$. By Lemma 4.1.1, for any distinct $D_{1}, D_{2} \in \mathcal{D}$, either $\overline{D_{1}}-D_{1}$ and $\overline{D_{2}}-D_{2}$ are disjoint, or $\overline{D_{1}}$ contains $\overline{D_{2}}$ or vice versa. We may assume that
(3) there exist $D_{1}, D_{2}, \ldots, D_{t+1} \in \mathcal{D}$, where $t=\Omega\left(n^{1 / 2}\right)$, such that $\overline{D_{1}} \supseteq \overline{D_{2}} \supseteq \cdots \supseteq$

$$
\overline{D_{t+1}} .
$$

For, otherwise, since $|\mathcal{D}|=\left|S_{1}\right| \geq|S| / 2=\Omega\left(n^{3 / 4}\right)$, there exist separating 4-cycles $D_{1}^{\prime}, \ldots, D_{k}^{\prime} \in \mathcal{D}$, where $k=\Omega\left(n^{1 / 4}\right)$, such that $\left|V\left(\overline{D_{i}^{\prime}}\right)\right| \geq 6$ for $i \in[k]$, and $\overline{D_{i}^{\prime}}-D_{i}^{\prime}$, $\overline{D_{j}^{\prime}}-D_{j}^{\prime}$ are disjoint for $1 \leq i \neq j \leq k$. Hence, G has at least 2^{k} Hamiltonian cycles, as
shown in the first paragraph in the proof of (1). This completes the proof of (3).
For each $j \in[t]$, let G_{j} denote the graph obtained from $\overline{D_{j}}$ by contracting $\overline{D_{j+1}}-D_{j+1}$ to a new vertex z_{j+1}. Note that G_{j} is a near triangulation with outer cycle D_{j} and that G_{j} contains the 4 -cycle D_{j+1}.

By Lemma 4.1.1 and the definition of \mathcal{D}, we see that D_{j+1}, D_{j}, G_{j}, and G (as $D_{u^{\prime}}, D_{u}, H, G$, respectively, in Lemma 4.1.3) for $j \in[t]$, satisfy the conditions in Lemma 4.1.3. Hence, by Lemma 4.1.3 and Lemma 4.1.4, G has at least $2^{\sqrt{t}}=2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles.

CHAPTER 5

FUTURE WORK

In this chapter, we list some results and open problems related to counting cycles in planar graphs.

5.1 Hakimi-Schmeichel-Thomassen Conjecture

The main result of this dissertation states that every 4-connected planar triangulation on n vertices has $\Omega\left(n^{2}\right)$ Hamiltonian cycles, and provides evidence that the extremal graph contains a large double wheel structure. However, the Hakimi-Schmeichel-Thomassen Conjecture remains open in its exact form.

Conjecture 5.1.1 (Hakimi, Schmeichel, and Thomassen [38]). If G is a 4-connected planar triangulation on n vertices then G has at least $2(n-2)(n-4)$ Hamiltonian cycles, with equality if and only if G is a double wheel.

To show the exact bound $2(n-2)(n-4)$, it is natural to first consider the planar triangulations that are 'close' to a double wheel graph. We calculated the number of Hamiltonian cycles in a 4 -connected n-vertex planar triangulation G such that the graph H obtained from G by contracting an edge e is a double wheel. We know that the number of Hamiltonian cycles in G is at least the sum of the number of Hamiltonian cycles in H and $2(2 n-7)$. Let $C(G)$ denote the set of all Hamiltonian cycles in G. We wish to construct a sequence $G_{0}, G_{1}, \ldots, G_{k}$ for some integer k such that $G_{0}=G,\left|V\left(G_{i}\right)\right| \leq n$ for $i \in[k], G_{k}$ is a double wheel, and $\left|C\left(G_{i-1}\right)\right| \geq\left|C\left(G_{i}\right)\right|+2\left(\left|V\left(G_{i-1}\right)\right|-\left|V\left(G_{i}\right)\right|\right)\left(\left|V\left(G_{i-1}\right)\right|+\left|V\left(G_{i}\right)\right|-6\right)$ for $i \in[k]$. We hope to figure out graph operatins that we could use to obtain this sequence.

5.2 Counting Hamiltonian cycles in graphs embeddable in other surfaces

The problem of counting Hamiltonian cycles in graphs embeddable on other surfaces has also attracted a lot of attention (see [2, 16, 56]). In particular, the existence of Hamiltonian cycles in graphs embeddable on a projective plane or torus has been investigated in, e.g., [71, 45, 9, 72, 46, 73].

It is possible that these previous results on the existence of Hamiltonian cycles in graphs embeddable on other surfaces of higher genus can be combined with our methods to obtain similar counting results on Hamiltonian cycles in certain triangulations on other surfaces.

Problem 5.2.1. Generalize the results in counting Hamiltonian cycles in planar triangulations to triangulations on the surfaces other than the sphere, in particular, the projective plane.

5.3 Counting k-cycles in planar triangulations

Motivated by Bondy's meta conjecture [20], it is natural to consider the problem of counting cycles of other lengths in Hamiltonian graphs.

Definition 5.3.1. The girth of a graph G is the length of a shortest cycle in G. A graph G is said to be weakly pancyclic if G contains cycles of all lengths between its girth and its circumference.

Note that any planar triangulation G is weakly pancyclic. Let C be a longest cycle in G. Consider the graph $G_{1}=\bar{C}$ (the subgraph of G consisting all vertices and edges of G contained in the closed disc bounded by C), which is a near triangulation with outer cycle C. We can obtain a sequence of 2 -connected graphs $G_{1}, G_{2}, \cdots, G_{t}$ such that G_{i+1} is obtained from G_{i} by removing a degree 2-vertex in the outer cycle of G_{i} for each $i \in[t-1]$, and G_{t} is a triangle. Let C_{i} denote the outer cycle of G_{i} for each $i \in[t]$. Observe that either $\left|E\left(C_{i+1}\right)\right|=\left|E\left(C_{i}\right)\right|-1$ for every $i \in[t-1]$. Therefore, it follows that G is weakly pancyclic. Hence any 4-connected planar triangulation is pancyclic.

By Euler's formula, an n-vertex planar triangulation G has exactly $2 n-4$ triangular faces and hence G has $\Omega(n)$ triangles. Let $C_{k}(G)$ denote the number of k-cycles in G. Hakimi and Schmeichel [37] in 1979 gave tight upper and lower bounds on the number of triangles (3-cycles) and 4-cycles in planar triangulations, and characterized the extremal graphs. They also gave upper and lower bounds on the number of 5-cycles.

Theorem 5.3.2 (Hakimi and Schmeichel [37]). Let G be an n-vertex planar triangulation.

Then

(1) $2 n-4 \leq C_{3}(G) \leq 3 n-8$ for $n \geq 6$, where the lower bound is attained if and only if G is 4-connected, and the upper bound is attained if and only if G is obtained from K_{3} by recursively placing a vertex of degree 3 inside a face, and joining this new vertex to the three vertices incident to that face.
(2) $3 n-6 \leq C_{4}(G) \leq\left(n^{2}+3 n-22\right) / 2$ for $n \geq 5$, where the lower bound is attained if and only if $n=5$ or G is 5 -connected, and the upper bound is attained if and only if G is the join of P_{n-2} and K_{2}.
(3) $6 n \leq C_{5}(G) \leq 5 n^{2}-26 n$ for $n \geq 8$, and there are infinitely many triangulations attaining this lower bound $6 n$.

For the second result of this theorem, Alameddine [6] pointed out that for $n=7,8$, there is another planar triangulation on n vertices attaining the upper bound $\left(n^{2}+3 n-22\right) / 2$ for the number of 4 -cycles.

For the number of 5 -cycles in an n-vertex planar triangulation, Hakimi and Schmeichel [37] conjectured an upper bound $2 n^{2}-10 n+12$; moreover, this bound is achieved by the double wheel on n-vertices. Recently, Győri, Paulos, Salia, Tompkins, and Zamora [36] confirmed this conjecture by showing the following.

Theorem 5.3.3 (Győri, Paulos, Salia, Tompkins, and Zamora [36]). Let G be an n-vertex planar triangulation. Then
(1) $C_{5}(G) \leq 2 n^{2}-10 n+12$ for $n=6$ or $n \geq 8$,
(2) $C_{5}(G) \leq 6$ for $n=5$,
(3) $C_{5}(G) \leq 41$ for $n=7$.

Moreover, they characterized the n-vertex planar graphs that attain the upper bound for each $n \geq 5$.

It is natural to consider the following general problem.

Problem 5.3.4. Determine the minimum number of k-cycles in an n-vertex planar triangulation for each $k \in[6, n]$.

While it is tempting to conjecture every planar triangulation G has $\Omega(n)$ many k-cycles for every $3 \leq k \leq \operatorname{circ}(G)$, it is not true in general. In particular, Hakimi, Schmeichel, and Thomassen [38] constructed an infinite family of planar triangulations with exactly four Hamiltonian cycles. One cannot hope for constructions with fewer Hamiltonian cycles, as Kratochvil and Zeps [49] showed that if a triangulation different from K_{4} contains a Hamiltonian cycle, then it contains at least four of them.

Very recently, Lo and Zamfirescu [57] prove the following bound.

Theorem 5.3.5 (Lo and Zamfirescu [57]). Every n-vertex planar triangulation G has $\Omega(n)$ many k-cycles for each $k \in\left\{3,4, \cdots, 3+\max \left\{\operatorname{rad}\left(G^{*}\right),\left\lceil\left(\frac{n-3}{2}\right)^{\log _{3} 2}\right\rceil\right\}\right\}$, where $\operatorname{rad}\left(G^{*}\right)$ is the radius of the dual graph of G.

Recall that Moon and Moser [63] showed that there are infinitely many n-vertex triangulations with no k-cycle for all $k>9 n^{\log _{3} 2}$.

$5.4 k$-cycles in 4-connected planar triangulations

Now we focus on 4-connected planar triangulations. The results of Tutte in [75] imply that every n-vertex 4 -connected planar triangulation G has $\Omega(n)$ cycles of length $n-1$. Our
result (in particular, Lemma 3.1.2) implies that G has $\Omega\left(n^{2}\right)$ many ($n-1$)-cycles. It follows from a theorem of Thomas and Yu [71] that G also has $\Omega\left(n^{2}\right)$ cycles of length $n-2$. A result of Sanders in [67] implies that G has $\Omega(n)$ many $(n-3)$-cycles. This motivates the following problem.

Problem 5.4.1. Determine the best (asymptotic) lower bound on the number of k-cycles in a 4-connected planar triangulation on n vertices.

Lo and Zamfirescu [57] show that every n-vertex planar triangulation with at most one separating triangle contains $\Omega(n) k$-cycles for every $k \in\{3, \cdots, n\}$. In particular, this implies that every 4 -connected n-vertex planar triangulation has $\Omega(n) k$-cycles for every $k \in\{3, \cdots, n\}$, i.e., 4 -connected planar triangulations are linearly pancyclic. In the same paper, Lo and Zamfirescu [57] also show that under certain circumstances, 4-connected triangulations contain a quadratic number of k-cycles for many values of k linear in n. They mentioned the following open problem.

Problem 5.4.2. Determine whether there exists an integer k such that every n-vertex ($n \geq$ k) 4-connected planar triangulation contains $\Omega\left(n^{2}\right) k$-cycles.

$5.5 k$-cycles in 5-connected planar triangulations

Recall that Alahmadi, Aldred, and Thomassen [2] showed that every n-vertex 5 -connected planar or projective planar triangulation has $2^{\Omega(n)}$ Hamiltonian cycles. We [51] recently showed every n-vertex 4 -connected planar triangulation with minimum degree 5 has $2^{\Omega\left(n^{1 / 4}\right)}$ Hamiltonian cycles. It is natural to consider the problem of counting cycles of other lengths in 5-connected planar triangulations. In particular, in a paper of Lo and Zamfirescu [57], they mentioned the following open question.

Problem 5.5.1. Is it true that for every 5-connected planar triangulation G there exists a subset S of the cycle spectrum of G such that $|S|=\omega(1)$ and G contains exponentially many k-cycles for every $k \in S$?

5.6 Pancyclicity in 4-connected planar graphs

We end with the following conjecture by Malkevitch [60] concerning the pancyclicity of 4-connected planar graphs.

Conjecture 5.6.1 (Malkevitch [60]). Every 4-connected planar graph containing a cycle of length 4 is pancyclic.

It is also interesting to investigate the cycle spectrum for 4-connected planar graph without 4-cycles.

REFERENCES

[1] M. Ajtai, J. Komlós, and E. Szemerédi, "The first occurrence of Hamilton cycles in random graphs," Annals of Discrete Mathematics, vol. 27, pp. 173-178, 1985.
[2] A. Alahmadi, R. Aldred, and C. Thomassen, "Cycles in 5-connected triangulations," J. Combin. Theory Ser. B, vol. 140, pp. 27-44, 2020.
[3] A. Alahmadi, R. E. L. Aldred, R. de la Cruz, S. Ok, P. Solé, and C. Thomassen, "The minimum number of minimal codewords in an $[n, k]$-code and in graphic codes," Discrete Appl. Math., vol. 184, pp. 32-39, 2015.
[4] A. Alahmadi, R. E. L. Aldred, R. de la Cruz, P. Solé, and C. Thomassen, "The maximum number of minimal codewords in an $[n, k]$-code," Discrete Appl. Math., vol. 161, pp. 424-429, 2013.
[5] A. Alahmadi, R. E. L. Aldred, R. de la Cruz, P. Solé, and C. Thomassen, "The maximum number of minimal codewords in long codes," Discrete Math., vol. 313, pp. 1569-1574, 2013.
[6] A. F. Alameddine, "On the number of cycles of length 4 in a maximal planar graph," J. Graph Theory, vol. 4, pp. 417-422, 1980.
[7] R. E. L. Aldred, S. Bau, D. A. Holton, and B. McKay, "Nonhamiltonian 3-connected cubic planar graphs," SIAM J. on Discrete Math., vol. 13, pp. 25-32, 2000.
[8] Y. Alon and M. Krivelevich, "Random graph's Hamiltonicity is strongly tied to its minimum degree," Electron. J. Combin., vol. 27, no. P1.30, 2020.
[9] A. Altshuler, "Hamiltonian circuits in some maps on the torus," Discrete Math., vol. 1, pp. 299-314, 1972.
[10] K. Appel and W. Haken, "Every planar map is four colorable," A.M.S. Contemp. Math., vol. 98, 1989.
[11] K. Appel and W. Haken, "Every planar map is four colorable. Part I. Discharging," Illinois J. Math., vol. 21, pp. 429-490, 1977.
[12] K. Appel and W. Haken, "Every planar map is four colorable. Part II. Reducibility," Illinois J. Math., vol. 21, pp. 491-567, 1977.
[13] D. W. Barnette, "Conjecture 5, In W.T. Tutte, ed.," Recent Progress in Combinatorics. Proc. 3rd Waterloo Conf. Combinatorics, vol. 3, p. 343, 1969.
[14] D. W. Barnette, "Trees in polyhedral graphs," Canad. J. Math., vol. 18, 1966.
[15] D. Bauer and E. Schmeichel, "Hamiltonian degree conditions which imply a graph is pancyclic," J. Combin. Theory Ser. B, vol. 48(1), pp. 111-116, 1990.
[16] T. Böhme, J. Harant, and M. Tkáč, "On certain Hamiltonian cycles in planar graphs," J. Graph Theory, vol. 32, pp. 81-96, 1999.
[17] B. Bollobás, "The evolution of sparse graphs," Graph theory and combinatorics (Cambridge, 1983), pp. 35-57, 1984.
[18] J. A. Bondy, "Longest paths and cycles in graphs of high degree," 1990.
[19] J. A. Bondy, "Pancyclic graphs I," J. Combin. Theory Ser. B, vol. 11, pp. 80-84, 1971.
[20] J. A. Bondy, "Pancyclic graphs: Recent results, infinite and finite sets," Colloq. Math. Soc. János Bolyai, vol. 10, pp. 181-187, 1973.
[21] J. A. Bondy and U. S. R. Murty, Graph theory (Graduate Texts in Mathematics). Springer, 2008, ISBN: 978-1-84628-969-9.
[22] G. Brinkmann and N. V. Cleemput, "4-connected polyhedra have at least a linear number of hamiltonian cycles," European J. Combin., vol. 97, 103395, 2021.
[23] G. Brinkmann, J. Souffriau, and N. V. Cleemput, "On the number of Hamiltonian cycles in triangulations with few separating triangles," J. Graph Theory, vol. 87, pp. 164-175, 2018.
[24] G. Chen, G. Fan, and X. Yu, "Cycles in 4-connected planar graphs," European J. Combin., vol. 25, pp. 763-780, 2004.
[25] G. Chen and X. Yu, "Long cycles in 3-connected graphs," J. Combin. Theory Ser. B, vol. 86, pp. 80-99, 2002.
[26] V. Chvátal, "On Hamilton’s ideals," J. Combin. Theory Ser. B, vol. 12(2), pp. 163168, 1972.
[27] L. Clark, "Longest cycles in 3-connected planar graphs," Congr. Number, vol. 47, pp. 199-204, 1985.
[28] C. Cooper and A. M. Frieze, "On the number of hamilton cycles in a random graph," Journal of Graph Theory, vol. 13, pp. 719-735, 1989.
[29] Q. Cui, Y. Hu, and J. Wang, "Long cycles in 4-connected planar graphs," Discrete Math., vol. 309, pp. 1051-1059, 2009.
[30] R. Diestel, Graph theory (Graduate Texts in Mathematics). Springer, 2017, ISBN: 978-3-662-53621-6.
[31] G. H. Fan, "New sufficient conditions for cycles in graphs," J. Combin. Theory Ser. B, vol. 37(3), pp. 221-227, 1984.
[32] G. Fihavž, M. Juvan, B. Mohar, and R. Škrekovski, "Planar graphs without cycles of specific lengths," European J. Combin., vol. 23, pp. 377-388, 2002.
[33] Z. Gao and X. Yu, "Convex programming and circumference of 3-connected graphs of low genus," J. Combin. Theory Ser. B, vol. 69, pp. 39-51, 1997.
[34] R. Glebov and M. Krivelevich, "On the number of Hamilton cycles in sparse random graphs," SIAM Journal on Discrete Mathematics, vol. 27, pp. 27-42, 2013.
[35] P. Goodey, "A class of Hamiltonian polytopes," (special issue dedicated to Paul Tur 'an) J. Graph Theory, vol. 1, pp. 181-185, 1977.
[36] E. Győri, A. Paulos, N. Salia, C. Tompkins, and O. Zamora, "The maximum number of pentagons in a planar graph," arXiv:1909.13532,
[37] S. L. Hakimi and E. F. Schmeichel, "On the number of cycles of length k in a maximal planar graph," J. Graph Theory, vol. 3, pp. 69-86, 1979.
[38] S. L. Hakimi, E. F. Schmeichel, and C. Thomassen, "On the number of Hamiltonian cycles in a maximal planar graph," J. Graph Theory, vol. 3, pp. 365-370, 1979.
[39] D. A. Holton and B. D. McKay, "The smallest non-Hamiltonian 3-connected xubic planar graphs have 38 vertices," J. Combin. Theory Ser. B, vol. 45, pp. 305-319, 1988.
[40] M. Horňák and Z. Kocková, "On planar graphs arbitrarily decomposable into closed trails," Graphs Combin., vol. 24, pp. 19-28, 2008.
[41] B. Jackson and N. Wormald, "Longest cycles in 3-connected planar graphs," J. Combin. Theory Ser. B, vol. 54, pp. 291-321, 1992.
[42] B. Jackson and X. Yu, "Hamilton cycles in plane triangulations," J. Graph Theory, vol. 41, pp. 138-150, 2002.
[43] S. Janson, "The numbers of spanning trees, Hamilton cycles and perfect matchings in a random graph," Combinatorics, Probability and Computing, vol. 3, pp. 97-126, 1994.
[44] F. Kardǒs, "A computer-assisted proof of the Barnette-Goodey conjecture: Not only fullerence graphs are Hamiltonian," SIAM J. Discrete Math., vol. 34, pp. 62-100, 2020.
[45] K.-i. Kawarabayashi and K. Ozeki, "4-connected projective-planar graphs are Hamiltonian-connected," J. Combin. Theory Ser. B, vol. 112, pp. 36-69, 2015.
[46] K.-i. Kawarabayashi and K. Ozeki, " 5 -connected toroidal graphs are Hamiltonianconnected," SIAM J. Discrete Math., vol. 34(1), pp. 112-140, 2016.
[47] J. Komlós and E. Szemeré, "Problems. In A. Hajnal, R. Rado, and V. T Sós, editors, Infinite and finite sets," Colloq. Math. Soc. János Bolyai, vol. 10, 1973.
[48] A. D. Korsunov, "Solution of a problem of Erdős and Rényi on hamiltonian cycles in nonoriented graphs," Soviet Math. Doklaidy, vol. 17, pp. 760-764, 1976.
[49] J. Kratochvil and D. Zeps, "On the number of Hamiltonian cycles in triangulations," J. Graph Theory, vol. 12, pp. 191-194, 1988.
[50] X. Liu, Z. Wang, and X. Yu, "Counting Hamiltonian cycles in planar triangulations," J. Combin. Theory Ser. B, vol. 155, pp. 256-277, 2022.
[51] X. Liu and X. Yu, "Number of Hamiltonian cycles in planar triangulations," SIAM J. Discrete Math., vol. 35(2), pp. 1005-1021, 2021.
[52] O. S. Lo, "Cycles in 3-connected claw-free planar graphs and 4-connected planar graphs without 4-cycles," Manuscript,
[53] O. S. Lo, "Distribution of subtree sums," European J. Combin., vol. 108, 103615, 2023.
[54] O. S. Lo, "Find subtrees of specified weight and cycles of specified length in linear time," J. Graph Theory, vol. 98, pp. 531-552, 2021.
[55] O. S. Lo, "Hamiltonian cycles in 4-connected plane triangulations with few 4separators," Discrete Math., vol. 343, no. 12, 112126, 2020.
[56] O. S. Lo and J. Qian, "Hamiltonian cycles in 4-connected planar and projective planar triangulations with few 4-separators," SIAM J. Discrete Math., vol. 36, no. 2, pp. 1496-1501, 2022.
[57] O. S. Lo and C. T. Zamfirescu, "Counting cycles in planar triangulations," arXiv:2210.01190,
[58] T. Madaras and M. Tamášová, "Minimal unavoidable sets of cycles in plane graphs with restricted minimum degree and edge weight," Australasian J. Combin., vol. 74, pp. 240-252, 2019.
[59] J. Malkevitch, "On the lengths of cycles in planar graphs," Recent Trends in Graph Theory, pp. 191-195, 1971.
[60] J. Malkevitch, "Polytopal graphs," Selected Topics in Graph Theory, pp. 169-188, 1988.
[61] C. McDiarmid, "Expected numbers at hitting times," Journal of Graph Theory, vol. 15, pp. 637-648, 1991.
[62] B. Mohar and A. Shantanam, "Pancyclicity in 4-connected graphs," Manuscript,
[63] J. W. Moon and L. Moser, "Simple paths on polyhedra," Pacific J. Math., pp. 629631, 1963.
[64] Plummer, "Problems. In A. Hajnal, R. Rado, and V. Sós, editors, Infinite and finite sets," Colloq. Math. Soc. János Bolyai, vol. 10, pp. 1549-1550, 1975.
[65] L. Pósa, "Hamiltonian circuits in random graphs," Discrete Math., vol. 14, pp. 359364, 1976.
[66] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, "The Four-Colour Theorem," J. Combin. Theory Ser. B, vol. 70, pp. 2-44, 1997.
[67] D. Sanders, "On hamilton cycles in certain planar graphs," J. Graph Theory, vol. 21, pp. 43-50, 1996.
[68] D. Sanders, "On paths in planar graphs," J. Graph Theory, vol. 24, pp. 341-345, 1997.
[69] E. F. Schmeichel and S. L. Hakimi, "A cycle structure theorem for Hamiltonian graphs," J. Combin. Theory Ser. B, vol. 45(1), pp. 99-107, 1988.
[70] P. Tait, "Remarks on the colourings of maps," Proc. R. Soc. Edinburgh, 1880.
[71] R. Thomas and X. Yu, "4-connected projective-planar graphs are Hamiltoninan," J. Combin. Theory Ser. B, vol. 62, no. 1, pp. 114-132, 1994.
[72] R. Thomas and X. Yu, " 5 -connected toroidal graphs are Hamiltonian," J. Combin. Theory Ser. B, vol. 69, pp. 79-96, 1997.
[73] R. Thomas, X. Yu, and W. Zang, "Hamilton paths in toroidal graphs," J. Combin. Theory Ser. B, vol. 69, pp. 214-236, 2005.
[74] C. Thomassen, "A theorem on paths in planar graphs," J. Graph Theory, vol. 7, no. 2, pp. 169-176, 1983.
[75] W. T. Tutte, "A theorem on planar graphs," Trans. Amer. Math. Soc., vol. 82, no. 1, pp. 99-116, 1956.
[76] W. T. Tutte, "On Hamiltonian Circuits," Journal of the London Mathematical Society, vol. s1-21, pp. 98-101, 1946.
[77] W.-F. Wang and K.-W. Lih, "Choosability and edge choosability of planar graphs without 5-cycles," Appl. Math. Lett., vol. 15, pp. 561-565, 2002.
[78] H. Whitney, "A theorem on graphs," Ann. Math., vol. 32, no. 2, pp. 378-390, 1931.
[79] J. Zaks, "Non-Hamiltonian simple 3-polytopes having just two types of faces," Discrete Math., vol. 29, pp. 87-101, 1980.

