
FINANCIAL AND COMPUTATIONAL MODELS IN
ELECTRICITY MARKETS

A Thesis
Presented to

The Academic Faculty

by

Li Xu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
May, 2014

Copyright © 2014 by Li Xu



FINANCIAL AND COMPUTATIONAL MODELS IN
ELECTRICITY MARKETS

Approved by:

Professor Shi-Jie Deng, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Andy Sun
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Valerie M. Thomas
School of Industrial and Systems
Engineering
School of Public Policy
Georgia Institute of Technology

Professor A.P. Sakis Meliopoulos
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Steve Hackman
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Date Approved: March 25, 2014



ACKNOWLEDGEMENTS

I would like to express my gratitude to all individuals who have offered me generous

help and insightful advice during my doctoral study at Georgia Tech.

First and foremost, I am extremely grateful to my advisor Dr. Shi-Jie Deng. He

not only brought me to the journey of pursuing a Ph.D. in Industrial Engineering, but

also provided me with precious opportunities to open my mind at various academic

conferences and industrial workshops. I could not be more appreciative of his invalu-

able guidance, inspiring advice and incredible patience along the journey. Without

his support and encouragement, this thesis would hardly be possible. His insights into

research, attitude towards work and passion in life have influenced me signigicantly.

Being his student and working with him is one of my greatest honors in my life.

Besides, I would like to thank Dr. Valerie M. Thomas, for her tremendous help

and valuable suggestions to the third part of this thesis. Our research project was a

memorable experience for me. I also feel fortunate to collaborate with Dr. Jingfang

Huang at UNC-Chapel Hill, who motivated the first part of this thesis. I benefited a

lot from his admirable deep knowledge in computational methods. Moreover, special

thanks go to the other committee members: Dr. Steve Hackman, Dr. Andy Sun and

Dr. A.P. Sakis Meliopoulos for their reading and comments, which make the thesis

more satisfactory.

I also wish to extend my sincere thanks to Dr. Shmuel Oren and his student

Dr. Anthony Papavasiliou at UC-Berkeley, for their advice and comments. I am also

grateful to Dr. Aram Sogomonian at Edison Mission Energy and Dr. Sandeep Jain at

UBS AG for giving me hands-on experience in electricity markets and financial mar-

kets. I am extremely thankful to the Power Systems Engineering Research Center for

iii



its financial support during my doctoral study. I should not forget my colleagues from

ISyE: Wenwei Cao, Xuefeng Gao, Jieyun Zhou, Yang Zhang, Xinyu Min, Fangfang

Xiao, Zhi Han, Rensheng Zhou, Yibiao Lu, Bo Zhang and Sangho Shim. The discus-

sions with them are essential to my thesis and research. I also wish to acknowledge

my friends Mingqi Zhao, Zhenwu Shi, Xin Chen, Zhengqin Fan, Zhongyuan Yu and

Mengdi Luo who always share my joy and sadness. It is a great fortune for me to

have friends like them.

Finally and most importantly, my deepest appreciation goes to my parents and

my girlfriend Zhen Li, for their boundless support and endless love. Thank you for

giving me great confidence to succeed in my life.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II OPTIONS PRICING BY FAST TRANSFORM ALGORITHM UN-
DER JUMP MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Fast Convolution Algorithm . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Single Asset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Spot Price Dynamics . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Bermudan Options . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Lookback Options . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.5 Asian Options . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Multi-Asset Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Fast Convolution in 2D . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Bermudan Spread Options . . . . . . . . . . . . . . . . . . . 41

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

III AN INCENTIVE-BASED DEMAND RESPONSE CONTRACT
DESIGN FOR THERMOSTATICALLY CONTROLLED LOADS
IN A SMART GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Contract Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



3.3.1 A Two-Stage Stochastic Programming . . . . . . . . . . . . . 54

3.3.2 State-Space Representation . . . . . . . . . . . . . . . . . . . 55

3.3.3 Model Predictive Control for TCLs . . . . . . . . . . . . . . 56

3.3.4 Customers’ Preference and Participation . . . . . . . . . . . 58

3.4 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

IV CARBON EMISSION PERMIT PRICE VOLATILITY REDUC-
TION VIA FINANCIAL OPTIONS . . . . . . . . . . . . . . . . . . 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 A Two-compliance-time Model . . . . . . . . . . . . . . . . . . . . . 81

4.3 Price Volatility Reduction via Different Approaches . . . . . . . . . 84

4.3.1 A Safety Valve Approach . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Banking and Borrowing Approach . . . . . . . . . . . . . . . 85

4.3.3 Financial Options Approach . . . . . . . . . . . . . . . . . . 90

4.3.4 Financial Options in a Bankable System . . . . . . . . . . . . 98

4.4 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

APPENDIX A — DERIVATION OF THE CHARACTERISTIC FUNC-
TION OF A 2D AJD PROCESS . . . . . . . . . . . . . . . . . . . . 111

APPENDIX B — NOTATIONS AND PARAMETERS IN CHAP-
TER III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

APPENDIX C — DERIVATION OF PROPOSITIONS IN CHAP-
TER III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

vi



LIST OF TABLES

1 Comparison of Prices for a Down-and-out Put under OU Model . . . 24

2 Price of a Down-and-out Put under OU Double-Exp. Jumps . . . . . 26

3 Comparison of Prices for a Bermudan Put under OU Model . . . . . 30

4 Price of a Bermudan Put under Stochastic Volatility . . . . . . . . . 32

5 Price of a Lookback Put under Different Lévy Models . . . . . . . . . 35
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SUMMARY

The electric power industry in the United States is being transformed towards

a low-carbon, clean and environmentally friendly one. The federal and state gov-

ernments have been pushing forward cap-and-trade programs to reduce greenhouse

gas emissions and renewable portfolio standards to increase clean energy penetration.

Various types of risks associated with the newly established emission markets as well

as the traditional electricity markets with emerging elements present significant new

challenges to all industry participants. On the load serving entity (LSE) side, the un-

certainty and intermittency of renewable energy supply resources drive the LSEs to

manage customers’ demand to maintain power balance in electricity markets. How-

ever, the demand itself has uncertainty (namely, volumetric risk), and this uncertainty

is often positively correlated with electricity price movements (price risk). Both en-

ergy price risk and volumetric risk challenge the operational and financial success of

LSEs. On the generation side, in the carbon emission markets, permit prices turn

out to be volatile, bringing additional uncertainties to conventional fossil-fuel gener-

ators’ operational costs. Therefore, they are seeking ways to hedge the price risks of

emission permits, and for this purpose, regulators need to offer hedging mechanisms

to encourage emitters’ participation. In this dissertation, we contribute to the re-

search on the design and utilization of financial contracts and pricing mechanisms for

managing the demand/price risks in electricity markets and the price risks in carbon

emission markets from different perspectives. This study helps to provide insights

and alternatives for stakeholders to achieve financial success and to manage risks in

the future electric power industry.
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This dissertation contains three parts. In the first part, we study efficient com-

putational methods for pricing complex financial options. These options include a

wide variety of structured energy financial instruments such as spark-spread options,

tolling contracts, and swing options, which are useful risk management tools for en-

ergy firms, such as the LSEs, to hedge against the price and demand uncertainties in

electricity markets. We start with developing a generic computational framework for

pricing several path-dependent options and early-exercise options under a broad class

of stochastic price models. It is then extended to evaluate multi-assets options, e.g.,

spark-spread options, which are widely used in the electricity markets. The prices of

these options are computed through evaluating a series of convolutions of a known

function with the underlying price transition density function. The proposed compu-

tational scheme possesses several nice features. First, it reduces the total amount of

computational work for pricing an option with multiple monitoring or exercising dates

to the asymptotically optimal O(MN), where M is the number of monitoring or exer-

cising dates, and N is the number of discretized sample points of the underlying price.

Second, it is applicable to non-uniformly spaced grid points in computing the convo-

lution, which provides a way to achieve exponential convergence of the option prices.

We illustrate the efficiency of this algorithm via several examples covering Bermudan

options, barrier options, lookback options, Asian options, and spread options under

commonly assumed classes of underlying price processes.

In the second part, we present an incentive based contract design mechanism to

induce demand response (DR) from thermostatically controlled loads (TCLs) as a

resource to integrate intermittent power generation into a smart grid. By directly

controlling customers’ thermostats within their self-selected control ranges, LSEs are

able to create flexible load profiles to balance the power output fluctuation of the re-

newable energy resources, such as wind and solar. LSEs offer an incentive compatible

reward scheme specifying different levels of rebate associated with different set-point

xi



adjustment ranges for thermostats. In the context of air-conditioning loads, we model

customers’ preferences on room temperature through a utility function which char-

acterizes the reward and discomfort tradeoff of different choices of room temperature

set-points. To find the optimal rebate levels under the output uncertainty of renew-

able generation, we propose a two-stage stochastic programming framework. A model

predictive control (MPC) approach is applied to derive the second stage control strat-

egy, which minimizes the total cost of meeting the shortage of renewable generation

output. We illustrate the feasibility and effectiveness of the proposed mechanism

through a case study with two- and three-contract offerings. We perform sensitivity

analysis on how contract design parameters affect the customers’ rebate subscription

distributions, as well as the lump sum payments to customers, and the avoided costs

in wholesale markets. We show that our mechanism provides a viable approach for

LSEs to price customers’ discomfort and achieve demand side flexibility in absorbing

the variability of renewable energy supplies.

In the third part, we analyze the price volatility mitigation issue in carbon emission

markets. We develop a stylized model to investigate the impact of financial options on

reducing carbon permit price volatility under a cap-and-trade system. The existence

of an option market provides a mechanism to hedge the uncertainty of future spot

prices and is a stimulus for investment in carbon emission abatement technologies.

We show that both the spot price level and the price volatility of carbon permits

can be reduced via the trading of properly designed financial options, while achieving

the emission reduction target. We also show that introducing carbon permit options

in an environment allowing carbon permit to be banked makes more effective and

economically efficient risk management in carbon permit trading.

xii



CHAPTER I

INTRODUCTION

1.1 Background

In the process of restructuring the electric power industries, electricity markets have

been established in many countries and regions around the world. In the United

States, federal and state governments aim to create a clean and sustainable energy

environment in the next 20 years.

Fox-Penner and Bishop [46], and Lovins [66] point out several major trends hap-

pening towards the future electricity markets in the U.S. First, global climate change

drives significant transformations in the electricity markets. The regulators propose

to handle the environmental issues via different approaches, including reduction of

greenhouse gas emissions by cap-and-trade programs, acceleration of renewable en-

ergy integration, as well as development of plug-in hybrid electric vehicles. Regional

Greenhouse Gas Initiative (RGGI) has been implemented in ten U.S. states to re-

duce SO2 and NOx [75]. In 2013, California became the first state in the U.S. to

start a carbon cap-and-trade program to reduce CO2 emissions, which provides valu-

able experiences to develop a model for the entire country. The design of such a

cap-and-trade program remains experimental and needs investigation.

On the adoption of renewable energy, it accounts for 12% of the electricity produc-

tion in the U.S. in 2012. California is a leading state and around 20% of California’s

electricity comes from renewable sources. The renewable energy production grew 45%

from 357.65 TWh in 2005 to 520.07 TWh in 2011, and will continue to grow to reach

25% target of the total electricity production in 2025. Among renewable sources, the

installed capacity of wind power grew 17% in 2011, to 47 GW and is estimated to
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reach roughly 300 GW by 2030 [38]. This fast growth in renewable energy generation

poses new challenges to load serving entities (LSEs) in managing the variable and

intermittent resources.

Another trend is the increase of energy efficiency and the adoption of smart grid

technologies. In the process of transforming the current power systems into smart

grids, advanced digital control, sensoring, and communications technologies are de-

ployed in the power grids, which enables LSEs to monitor, analyze, control, and repair

the grid much more efficiently than ever before. The smart grid technologies enhance

the interaction between LSEs and customers. They allow LSEs to create more so-

phisticated services to customers, and meanwhile they make customers aware of their

own power usage and better respond to the price signals, etc. Moreover, the power

generation system is shifted from a centralized one to distributed ones, called micro

grids. They are cost effective and clean (usually renewable).

As more and more renewable energy generation resources are integrated in the

power grids, the high variability and intermittency of the renewable energy supply

have to be taken into account to ensure the reliability of the power systems. Figure

1 shows wind power outputs for 3 MW wind turbines in western U.S. We note that

the wind power outputs could vary from 0 MW to the capacity during the same

hours on different dates. The uncertainty in renewable generation makes LSEs to

consider demand-side management instead of the supply side. There are various ways

to manage the price risks and volumetric risks in electricity markets. Traditionally,

price risks and demand-side (volumetric) risks are managed through trading financial

derivatives [35]. A large variety of electricity derivatives are traded among market

participants in over-the-counter (OTC) markets, including forwards, swaps, plain

vanilla options, and exotic options such as spread options and swing options. The

key to the effective utilization of the exotic financial instruments to meet the needs

of LSEs lies in the ability to price these instrument fast and accurately. These exotic
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options sometimes contain path-dependent or early exercise features, which impose

computational challenges in pricing them under stochastic electricity price models.

Recently, due to the deployment of smart grid technologies, innovative electrity

load management tools, for example, demand response (DR) programs, are designed

to shift the load patterns of customers. They are graduately becoming another signif-

icant tool for managing demand risk. The fundamental of a DR program is to encour-

age the participation of end users in making their electricity consumption (namely,

load) flexible at a low cost. This leads us to investigate the design of incentive pay-

ments in certain DR programs.

In terms of the design of a successful cap-and-trade program, one of the major

challenges is to stablize the emission permit prices and control the price volatility.

It is known in electricity markets and other commodity markets, trading financial

derivatives, if well designed, provides information sharing and price discovery. This

motivates us to study whether a properly designed option trading system can reduce

the price volatility risks in emission markets.

In this dissertation, we address the issues pertaining to the efficient computational

algorithms for pricing complex financial options which include many structured en-

ergy financial contracts and the design of economic mechanisms for managing the

risks associated with increasing penetration of renewable energy resources and with

trading emission allowance permits in the restructured electric power industry. To

address the computational challenges arising from pricing exotic energy derivatives

designed for various hedging purposes in electricity markets, we develop a generic

computational framework based on a fast transform method, which attains asymp-

totically optimal computational complexity and exponential convergence. For the

purpose of absorbing the variability and uncertainties of renewable energy resources

in a smart grid, we propose an incentive-based contract design for thermostatically

controlled loads (TCLs) to encourage end users’ participation as a source of DR.

3



Figure 1: Wind Power Outputs in Western U.S.

Finally, we propose a market-based approach to mitigate the emission permit price

risks faced by generation companies in a cap-and-trade system. Through a stylized

economic model, we illustrate that the trading of properly designed financial options

on emission permits reduces permit price volatility and the total emission reduction

cost.

1.2 Organization

The dissertation is organized as follows. In Chapter 2, we propose a computational

framework based on fast convolution for option pricing. It is applied to discretely

monitored path-dependent options and discretely exercisable Bermudan options on

single asset under a broad class of stochastic price models. The pricing scheme is

then extended to evaluate multi-assets options with path-dependent or discretely

exercisable features. We show the proposed convolution algorithm has computational

complexity O(N), where N is the number of discretized price levels in pricing, and it

works well on non-uniform grids to achieve exponential convergence.
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In Chapter 3, we present an incentive based contract design mechanism to in-

duce demand response from thermostatically controlled loads (TCLs) as a resource

to integrate intermittent power generation into a smart grid. To find the optimal con-

tract design, we propose a two-stage stochastic programming framework. A model

predictive control (MPC) approach is applied to derive the second stage control strat-

egy, which minimizes the total cost of meeting the shortage of renewable generation

output. We show that our mechanism provides a viable approach for LSEs to price

customers’ discomfort and achieve demand side flexibility in absorbing the variability

of renewable energy supplies.

In Chapter 4, we develop a stylized model to investigate the impact of financial

options on reducing carbon permit price volatility under a cap-and-trade system. By

analyzing the demand and supply in the cabon emission market, we show that both

the spot price level and the price volatility of carbon permits can be reduced via the

trading of properly designed financial options, while achieving the emission reduction

target. We also compare financial options with other methods including bankable

permits and safety valve in managing carbon emission permit price volatility. We

conclude the dissertation in Chapter 5.
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CHAPTER II

OPTIONS PRICING BY FAST TRANSFORM

ALGORITHM UNDER JUMP MODELS

2.1 Introduction

Options are among the most widely traded financial derivatives across all financial

markets. Option holders have the rights, but not the obligations, to buy or sell some

assets on a specified date at a specified price. The asset on which an option is written

is known as the underlying asset. The predetermined trading date of an option is

called the maturity date or the expiry date, usually denoted by T . And the price at

which the asset is delivered at the maturity is called the strike price or the delivery

price, usually denoted by K.

Options are designed for hedging different types of risks. They are usually cate-

gorized by their exercising styles and payoff structures.

• European options. These options can only be exercised at the maturity date.

Since European style options are the most basic, well studied and traded options,

they are also named “vanilla options”.

• American options. These options can be exercised by holders at any trading

date before or at the maturity date.

• Bermudan options. These options allow holders to exercise at one of a set

of specified dates before or at the maturity. They are intermediate between

European style options and American options.

• Asian options. The option payoff depends on the average of the underlying

asset over the life of the contract.
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• Barrier options. The payoff for this kind of options depends on whether the

underlying asset crosses the given barrier level before the maturity date.

• Lookback options. The payoff depends on the maximum or the minimum of the

underlying asset’s price over the life of the contract.

• Spread options. The option payoff depends on the spread of two underlying

assets’ prices. They are typical multi-asset options and are widely used in

energy markets.

Options with complex payoff structures or exercising styles are called “exotic options”.

The key issue in the theory of option pricing is to determine the price of an option.

In 1973, Black and Scholes [7] first introduce an equilibrium framework for pricing

an European option, which sets the foundation for the option pricing theory. They

demonstrate that it is possible to construct a risk-free portfolio containing a stock

and its European call option. By continuously adjusting the quantities of the stock

and the option in the appropriate manner, the return of the portfolio becomes the

risk-free rate. Consequently, the price of the option satisfies a partial differential

equation (PDE) and an analytical pricing formula for the option is derived from the

solution to the PDE (see [95]). Following the argument of no-arbitrage by Black and

Scholes, a general framework, termed as the risk-neutral option pricing approach was

proposed by Harrison and Pliska [49]. In short, if there exists no arbitrage in the

markets, the price of an option at time t can be represented by the expectation of the

discounted payoff with respect to a risk-neutral probablity measure Q:

Vt(S, T ) = EQ
t [e−r(T−t)f(S,K, T )], (1)

where S is the spot price of the underlying, K is the strike price, T is the maturity

date and r is the risk-free rate. f(S,K, T ) and Vt(S, T ) stand for the payoff function

and the value of the option at t, respectively.
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For many path-dependent options, e.g., barrier options and Asian options, their

payoffs are determined by a set of prices observed on a finite set of time points called

monitoring dates. Similarly, for Bermudan options, their prices depend on when to

optimally exercise the options over a finite set of time points. In principle, the prices

of these discrete options can be calculated by forward or backward recursion over

time. For example, we compute the value of a Bermudan option at each monitoring

date t by working backwards. Specifically, the option price at time t is the maximum

of the exercise value and the continuation value:

V (St, t) = max{f(St, K, t),EQ
t [e−r∆tV (St+1, t)|St]}. (2)

In most cases, the analytical formulas for the prices of these discrete options are not

available. When pricing them through numerical schemes, we discretize the price

space as {St,1, St,2, · · · , St,N} at each monitoring date t. Then the continuation value

at (t, St,i) is approximated by

EQ[V (St+1, t+ 1)|St,i] ≈
N∑
j=1

wijV (St+1,j, t+ 1), i = 1, · · · , N, (3)

where wij are the quadrature weights. The computation efforts for directly evaluating

the conditional expectation with the conditional price St,i spanning the price space

at time t in equation (3) is of order O(N2). To improve the computational efficiency

over the direct evaluation approach, Broadie and Yamamoto [12] propose a fast Gauss

transform reducing the computational complexity to O(N), where the underlying

asset price is modeled as a geometric Brownian motion (GBM).

However, even in equity markets, empirical studies show the GBM assumption fails

to explain certain market evidences, such as the volatility smile, skewness, volatility

clustering, and price jumps, etc. (see [26]). In electricity markets, the prices have

some additional features, such as mean-reverison and seasonality (see [70] for empirical

studies). Figure 2 shows ERCOT on-peak electricity prices from 2002-2007, in which

you see spikes and mean-reversion in the price process apparently. These phenomena

8



Figure 2: ERCOT On Peak Electricity Prices

prevent us using a GBM to model electricity prices. Researchers have been proposing

models to capture the phenomena in price dynamics, for example, stochastic volatility

models [50] and jump models [71, 31, 25]. Deng [34] introduces affine jump diffusion

(AJD) processes to model the electricity price dynamics. These models bring new

challenges in efficient pricing of options, especially those path-dependent and early

exercise options. The underlying price distributions in the models are no longer

Gaussian, which prevent the use of fast Gauss transform developed in [12]. The

probability density functions of these distributions are not available in closed-forms

either. In order to resolve the densities of these fat-tail distributions, we may need a

large number of states in the price space, which calls for a fast numerical method in

calculating prices of path-dependent options and Bermudan options. The efficiency

of the numerical method becomes more essential especially when LSEs hold a very

large portfolio of these types of options.
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Various numerical methods have been developed in the literature for option pric-

ing, for example, tree methods [27], Monte Carlo simulation [9, 64], finite difference

method [95, 10], Fourier transform [17], etc. Recently, fast Fourier transform draws

a lot of attentions to scholars in option pricing. It is very flexible to handle a wide

class of processes, including Lévy processes and affine jump diffusion processes (AJD),

because their density functions can be recovered from the inverse Fourier transform

of the characteristic functions, which are known in closed-forms for these processes

[31]. Carr and Madan [17] are among the first to use fast Fourier transform (FFT) to

price European options. Benhamou [5] presents a FFT based approach to price Asian

options under the Black-Scholes framework. Dempster and Hong [33], and Hurd and

Zhou [54] propose two dimensional FFT to price spread options. However, these pa-

pers only focus on the pricing of a certain type of options. Some other researchers

make efforts to develop more general pricing methods by means of transform analysis.

Lord et. al [65] and Fang and Oosterlee [41] introduce Fourier-cosine expansion to

evaluate early-exercise and barrier options under Lévy models, however, their frame-

work does not consider mean-reversion and cannot be easily extended to other types

of path-dependent options. Feng and Linetsky [43] propose an efficient method to

generalize the pricing of path-dependent options and early-exercise options to any

Lévy processes using Hilbert transform. Jackson et al. [57] apply Fourier space time

spacing techniques to solve partial differential-integral equations for pricing various

types of path-dependent and early-exercise options under Lévy processes with mean-

reversion. The computational complexity of their algorithm is O(N logN). One of

the common problems inherent in FFT is that it is only applicable to uniform grids.

This limits the use of FFT in some cases, e.g. pricing Asian options or working on

non-uniform quadrature points. An alternative way is to use a nonuniform version of

FFT (see [96]), but it is seen to be about 10 times slower than FFT on uniform grids.
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In this chapter, we develop a fast convolution algorithm to compute the condi-

tional expectation in (3). The algorithm avoids the direct evaluation of the Fourier

sum by FFT, thus reduces the computational complexity from O(N logN) to O(N).

Another advantage of this fast algorithm is that it is applicable to nonuniform grids.

It allows us to work on a nonuniform grid derived by the double-exponential formula

in computing the convolution, which theoretically results in exponential convergence

of the algorithm. Along the line of [11], the prices of some path-dependent options

and early exercise options can be written as a series of convolutions. Thus, the

proposed algorithm implies a generic pricing framework for various types of options

covering path-dependent options (barrier, lookback and Asian), early-exercise options

(American/Bermudan) as well as multi-asset options (spread). It also preserves the

flexibility of handling a wide class of stochastic processes, as long as their characteris-

tic functions are known analytically. This makes us easily incorporate AJD processes

and Lévy processes, both of which are widely used for electricity prices modeling.

This chapter is organized as follows: in Section 2.2, we develop a fast transform

algorithm to compute a general convolution. In Section 2.3, we focus on applying

the fast convolution algorithm to price single asset options with path-dependent or

early exercise features. We discuss the stochastic price models in Section 2.3.1. From

Section 2.3.2 to 2.3.5, we cover the pricing of following options: barrier, Bermudan,

lookback and Asian options. Numerical examples of these options under different price

models are provided. We finally extend the algorithm to handle two-asset options,

e.g., Bermudan spread options in Section 2.4. We draw the conclusion in Section 2.5.

2.2 Fast Convolution Algorithm

In this section, we propose a fast transform algorithm to calculate a probability den-

sity function convoluting with a given function. We approximate the probability

density with it Fourier expansion, then a recursive relation is derived for each output,
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which reduces the total computation to asymptotically O(N), where N is the num-

ber of grid points. In general, we would like to compute the following convolution

efficiently:

I(x) =

∫ ∞
−∞

g(y)f(x− y)dy, (4)

where f(·) is a probability density function, which is smooth and decays to zero very

fast at infinity.

We have an input grid y with N points: yl, l = 1, 2, · · · , N , and we compute I(·)

at an output grid x with M points: xj, j = 1, 2, · · · ,M . They are not required to be

uniformly spaced. Then the discretized convolution becomes

I(x) ≈
N∑
l=1

qlf(x− yl), (5)

where ql = wl · g(yl), wl are the quadrature weights. The discretization error here

decreases to zero exponentially fast, given the integrand is analytic and integrable on

the real line (see [94]).

As function f is a probability density, which decays to zero outside [−L,L], we

write f as its Fourier series expansion with period 2L:

f(x) =
1

2L

∞∑
k=−∞

ake
−ik πx

L , (6)

where

ak =

∫ L

−L
f(x)eik

πx
L dx = φ(

kπ

L
; 0), (7)

is the corresponding characteristic function. As ak decays to zero fast (in the form of

an exponential function), then f can be truncated and be approximated by

f(x) ≈ 1

2L

m∑
k=−m

ake
−ik πx

L , (8)

where x ∈ [−L,L]. The truncation error here decays to zero exponentially fast, due

to the exponential convergence of the Fourier expansion. Then for a given output
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point xj, we have

I(xj) ≈
1

2L

N+
j∑

l=N−j

ql(
m∑

k=−m

ake
−ikπ

xj−yl
L )

=
1

2L

m∑
k=−m

ωj,k, (9)

where

ωj,k = ak

N+
j∑

l=N−j

qle
−ikπ

xj−yl
L ,

and

N−j = min
l≥0
{xj − yl > −L},

N+
j = max

l≤N
{xj − yl < L}.

When we move to evaluate I(·) at the next point xj+1, we do not need to re-calculate

ωj+1,k at all input points yl, which again costs O(N) efforts. Instead we use the

information from ωj,k to compute ωj+1,k, which reduces the computation to O(1). We

note that ωj+1,k can be decomposed into three terms:

ωj+1,k = ak

N+
j+1∑

l=N−j+1

qle
−ikπ

xj+1−yl
L

= ak(

N+
j∑

l=N−j

+

N+
j+1∑

l=N+
j +1

−
N−j+1−1∑
l=N−j

)qle
−ikπ

xj+1−yl
L

= ω0
j+1,k + ω+

j+1,k − ω
−
j+1,k, (10)

where

ω0
j+1,k = e−ikπ

xj+1−xj
L ωj,k

= e−ikπ
∆x
L ωj,k. (11)

We also notice that N−j+1 and N+
j+1 may not change or increase to include several

terms when we move to xj+1. In this way, we basically get ωj+1,k by first rescaling
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Figure 3: Changes of N−j+1 and N+
j+1 in the Recursive Relation

ωj,k using equation (11) and then check N−j+1 and N+
j+1. If N−j+1 and/or N+

j+1 change,

ω+
j+1,k and/or ω−j+1,k are given as follows, otherwise, they are 0:

ω+
j+1,k = ak

N+
j+1∑

l=N+
j +1

qle
−ikπ

xj+1−yl
L , (12)

ω−j+1,k = ak

N−j+1−1∑
l=N−j

qle
−ikπ

xj+1−yl
L . (13)

Figure 3 illustrates the changes in N−j+1 and N+
j+1 when the output grid is uniform.

This recursive relation (10) is the key to reduce the computational complexity.

The proposed method also possesses exponential convergence given the integrand

in the convolution is C1 continuous. To show the efficiency of the fast convolution

method, we use a simple example. We consider the following convolution:

I(x) =

∫ ∞
−∞

yf(x− y)dy,

where f(z) = 1√
2π

exp (− z2

2
) is the density of a standard normal distribution. If we

let Y be a normal random variable with mean x and unit standard deviation, the

value of the convolution I(x) = E[Y ] = x, which is exact and ideal to be verified.

We choose L = 8 and the input grid y is equally spaced on [−L,L]. We arbitrarily

choose

x = [−2,−1.4,−1.26,−1.1,−0.85,−0.33, 0.02, 0.06, 0.4, 0.55, 0.68, 1.05, 1.43, 1.52, 1.7, 1.78],
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Figure 4: Convergence of the Fast Convolution

which are not equally spaced. We set m = 16 to truncate the Fourier series. The

weights wl are obtained from the trapezoidal rule. The use of trapezoidal rule does not

bound the accuracy of the algorithm, because it converges exponentially fast provided

the integrand is analytic [94]. Figure 4 shows the log10 maximum absolute errors with

respect to the number of input points N . N is varied from 23 to 28. We find that we

only need 16 points to control the errors at 10−8 level, which demonstrates the fast

convergence of the algorithm.

2.3 Single Asset Options

According to Broadie and Yamamoto [11] and Benhamou [5], many path-dependent

options and early-exercise options can be written as a series of convolutions. In this

section, we discuss how to apply the proposed fast convolution algorithm in Section

2.2 to price these single asset options. We start from introducing two classes of

stochastic processes to model the asset price dynamics. Then a barrier option is used

as an example to show where convolution is involved in pricing. Similar approach is

extended to price lookback, Asian and Bermudan options.
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2.3.1 Spot Price Dynamics

In this section, we consider two classes of processes to model the asset price processes:

affine jump diffusion processes (AJD) and Lévy processes. Both classes belong to the

jump processes and are capable of capturing certain features of the electricity prices,

such as stochastic volatility, mean-reversion, jumps and spikes, etc.

Let St denote the underlying asset price, for instance, the electricity price. We

denote the log-return of the asset price by Xt, where Xt = logSt/S0. The asset price

is then modeled as an exponential process St = S0e
Xt . The definitions of the two

classes of processes are given below.

AJD processes are jump-diffusion processes in which the drift, covariance and

jump intensities are all affine functions. Specifically, they are defined as follows:

Definition 2.1. A Markov process Xt ∈ D ⊂ Rn on a filtered probability space

(Ω,F ,P) is an AJD process if it satisfies the following dynamics

dXt = µ(Xt)dt+ σ(Xt)dWt + dZt

where

1. the drift vector µ(Xt) :→ D → Rn is an affine function of X;

2. the covariance matrix σ(Xt)σ
ᵀ(Xt) is an affine function of X;

3. Wt is a n-dimensional Ft-Brownian motion;

4. Zt is a pure jump process whose jumps have a fixed probability distribution ν

on Rn and arrive with intensity λ(Xt) : t ≥ 0 for some affine function λ : D →

[0,∞).

A Lévy process is a Brownian motion with drift combined with a jump process.

It is defined as follows:
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Definition 2.2. A càdlàg, real valued stochastic process (Xt)t≥0 on a filtered proba-

bility space (Ω,F ,P) with X0 = 0 is called a Lévy process if it satisfies the following

conditions:

1. Independent increments: for any 0 ≤ s < t ≤ T , the increment Xt − Xs is

independent of Fs.

2. Stationary increments: for any s, t ≥ 0, the distribution of Xt+s −Xt does not

depend on t.

3. Stochastic continuity: for any t ≥ 0 and ε > 0, lims→t P(|Xt −Xs| > ε) = 0.

The conditional characteristic functions (CCFs) of both families are known in

closed-forms. From equation (6), we know the characteristic function ak is an essential

input argument to the fast convolution algorithm. This is why the pricing framework

is applicable to both price models without any modification.

For example, we consider the following AJD process:

dXt = κ(θ −Xt)dt+ σdWt +
2∑
i=1

∆Zi
t , (14)

where κ is the mean-reverting coefficient, θ is the long-term mean, σ is the volatility,

Zj is a compound Poisson process with arrival intensity λj and mean of jump size µj,

j = 1, 2. The CCF of this AJD process given xt is defined as

φ(u;xt) = EQ[eiuXt+1 |xt]

=

∫ ∞
−∞

eiuxt+1f(xt+1|xt)dxt+1, (15)

where f(y|x) denotes the transition probability density function. By Duffie et. al

[31], the CCF has the following form:

φ(u;xt) = e−Au
2+iDu+H(u)

= (
1− iH1u

1− iH2u
)
λ1
κ (

1− iH3u

1− iH4u
)
λ2
κ e−Au

2+iDu, (16)
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where

A =
σ2

4κ
− σ2

4κ
e−2κ∆t,

D = θ + (xt − θ)e−κ∆t,

H1 = µ1e
−κ∆t, H2 = µ1, H3 = µ2e

−κ∆t, H2 = µ2.

The CCFs of Lévy processes are also known in analytical forms through Lévy-

Khinchine representation. Let X ′t be a Lévy process, the asset price is modeled as

St = S0e
rt+ωt+X′t , (17)

where ω is determined by setting exp(−ωt) = φX(−i, t) or equivalently EQ[eX
′
t ] =

exp(−ωt). If such ω is chosen, the discounted asset price exp(−rt)St = S0 exp(ωt+X ′t)

is definitely a martingale, i.e. it is under risk-neutral probability measure Q. In this

setting, we have Xt = rt + ωt + X ′t. The CCFs φX(u, t) of some widely used Lévy

processes are listed as follows:

• Log-normal model: φLN(u, t) = exp(−σ2u2

2
t).

• Merton’s jump diffusion model: φMJD(u, t) = exp
[
−σ2u2

2
t+ λt

(
eiuα−δ

2u2/2 − 1
)]

.

• Variance-Gamma model: φVG(u, t) =
(

1
1−iθνu+(σ2ν/2)u2

)t/ν
.

• Normal Inverse Gaussian model: φNIG(u, t) = exp[tδ(
√
α2 − β2−

√
α2 − (β + iu)2)].

• CGMY model: φCGMY(u, t) = exp{tCΓ(−Y )[(M−iu)Y−MY +(G+iu)Y−GY ]},

where Γ(·) is a gamma function.

2.3.2 Barrier Options

2.3.2.1 The Pricing Problem

In this section, we set up a framework for pricing an European barrier option with

discrete monitoring dates. We assume the log return of asset price xt follows an affine

jump diffusion (14) or a Lévy process. The asset price is modeled by St = S0e
xt .
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We now consider a set of time points t = 0, 1, · · · , T . A discrete down-and-out call

option with maturity T , monitoring dates t, barrier B and strike K pays (ST −K)+

if St > B for all t, 1 ≤ t ≤ T and zero otherwise. This payoff is equivalent to

h(xt) =

 (S0e
xt −K)+ xt > b,

0 xt ≤ b,

where b = logB/S0. We introduce a sequence of probability density functions ft(xt),

0 ≤ t ≤ T under the risk-neutral measure such that ft(x)dx is the probability that

xs > b for 1 ≤ s ≤ t and x ≤ xt ≤ x + dx. Then the price of such a down-and-out

call at time 0 is given by

V0(S0, K,B) = e−rT
∫ ∞

logK/S0

fT (xT )(S0e
xT −K)dxT . (18)

We go along with Broadie’s [11] formulation, the probability density functions ft

can be obtained by the following recursive formula:

f1(x1) =

 f(x1|x0) x1 > b,

0 x1 ≤ b,

ft+1(xt+1) =


∫∞
b
f(xt+1|xt)ft(xt)dxt xt+1 > b,

0 xt+1 ≤ b,

where f(xt+1|xt) is the transition probability density of xt. For a Lévy process, the

increments are independent and stationary, which follows f(xt+1|xt) = f(xt+1−xt|0).

Thus

ft+1(xt+1) =

∫ ∞
b

f(xt+1|xt)ft(xt)dxt, (19)

which is a convolution on the half line [b,∞]. For a AJD process, the CCF in (16) im-

plies f(xt+1|xt) = f(xt+1 − xte−κ∆t|0). Let yt = xte
−κ∆t, and gt(yt) = ft(yte

κ∆t)eκ∆t,

then ft+1(xt+1) becomes

ft+1(xt+1) =

∫ ∞
be−κ∆t

f(xt+1 − yt|0)gt(yt)dyt, (20)
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which is again a convolution along the half line [be−κ∆t,∞]. In principle, we could

pad 0’s on [−∞, b] or [−∞, be−κ∆t] and apply any convolution methods, e.g., FFT

based algorithm, to compute ft+1(xt+1) directly. But the corner point at b or be−κ∆t

reduces the accuracy of the algorithm. Takahasi and Mori [88], Mori [74] and Ooura

and Mori [77] introduce a double-exponential (DE) formula to transform such an

integral on a half line to the entire real line. It is known that the discretization

error decreases to zero exponentially fast as the number of points increases. This

preserves the exponential convergence of the convolution algorithm. Additionally,

the DE grid is non-uniform, which can be properly handled by the proposed fast

convolution method.

2.3.2.2 The Double-Exponential Formula

Given the following integral:

I =

∫ ∞
c

f(x)dx,

we would like to compute it efficiently. We apply the following change of variable, so

called DE formula to transform the integral from a half line to the whole real line:

x = c+ exp
(π

2
sinh(u)

)
. (21)

Then the integral becomes

I =

∫ ∞
−∞

f
(
c+ exp

(π
2

sinh(u)
))

exp
(π

2
sinh(u)

)π
2

cosh(u)du. (22)

The advantage of DE transform is that if the integral I converges, the integrand in (22)

decays at least as fast as the double-exponential function at ±∞. Then trapezoidal

rule is optimal to discretize the integral to attain the exponential convergence. When

the integrand f itself decays to zero very fast at ∞, for example, a multiplication of

two probability density functions in the barrier options pricing, the DE formula gives

another factor approaching zero double-exponentially. In this case, the benefit is that

we can truncate the integration region at a small range, but the drawback is that we
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need a finer grid to resolve the integrand. Some numerical experiments suggest that

the drawback is more obvious. To improve the efficiency of computing convolutions

in the barrier option pricing, Broadie and Yamamoto [11] suggest a modified formula,

which mimics the DE transform at −∞ and approaches an identity at ∞ to take

advantage of the rapid decay of the integrand f(xt+1|xt)ft(xt).

The modified DE formula for the integral I is given as:

x = ln{ec + exp(
π

2
(1 + u− e−u))}.

In the barrier option pricing formula (20), the modified DE formula implies the input

grid points and the corresponding weights are:

yi = ln{ebe−κ∆t

+ exp(
π

2
(1 + ih− e−ih))}, (23)

and

wi = h
exp(π

2
(1 + ih− e−ih))π

2
(1 + e−ih)

ebe−κ∆t + exp(π
2
(1 + ih− e−ih))

. (24)

2.3.2.3 Fast Convolution for Barriers Options

In this section, we put CCF of the underlying spot process, DE formula and the fast

convolution method together to price an European barrier option efficiently. For the

down-and-out call under AJD, we compute ft(xt) at each monitoring date t. We

discretize ft+1(xt+1) by the modified DE formula, which gives:

ft+1(xt+1) ≈
N∑
i=1

qif(xt+1 − yi), (25)

where qi = wi · g(yi), yi and wi are DE points and weights given in (23) and (24).

Then we apply the fast convolution algorithm to this finite sum. For the output grid

xj, j = 1, 2, · · · ,M , we have

ft+1(xj) ≈
1

2L

m∑
k=−m

ωj,k, (26)
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Figure 5: Illustration of Fast Convolution Method for a Barrier Option in One Step

where

ωj,k = ak

N+∑
i=N−

qie
−ikπ(xj−yi)/L, (27)

ak = φ(
kπ

L
; 0). (28)

The algorithm for a barrier option under Lévy processes is the same. The com-

putational complexity of the above algorithm for a convolution in pricing a barrier

option is O(M + N). Figure 5 shows how fast convolution method is applied at

each step in pricing a barrier option from source points xt to target points xt+1. As

it does not require uniformly spaced grid for inputs and outputs, we can rely on

the double-exponential transform to retain the exponential convergence. Moreover,

a non-uniform grid enable us to compute the option price at the final step in equa-

tion (18) more efficiently by high accurate quadratures. For example, we can simply

output fT at a Gaussian grid and use Gaussian quadrature to compute (18).

The algorithm for barrier options pricing is summarized as follows:

22



1. Choose a uniform grid [−U,U ] with N points.

2. Derive a non-uniform grid yi and weights wi by the modified

DE formula (23-24). xi = yie
κ∆t.

3. Compute f1(xi) by Fourier expansion.

4. Loop t = 2 to T − 1. Input: ft(xi).

• Compute ft+1(xi) by the fast convolution algorithm.

End Loop. Output: ft+1(xi).

5. Derive a Gaussian grid on [logK/S0, Bound] for a call and

[b, logK/S0] for a put.

6. Output fT at the Gaussian grid by the fast convolution algo-

rithm.

7. Compute the option price by (18).

2.3.2.4 Numerical Examples

We provide an example of pricing a down-and-out put when the price log return is

modeled by an Ornstein-Uhlenbeck (OU) process

dxt = κ(xt − θ)dt+ σdWt,

where the mean-reverting rate κ = 0.5, long-term mean θ = 0.4, and instantaneous

volatility σ = 0.1. We assume the risk-free rate r = 0.1, maturity T = 1, barrier

B = 95, initial asset price S0 = 100, and strike price K = 110. Number of monitoring

dates M = 50. An OU process has an analytic formula for transition density which

allows us for an easy check.
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Table 1: Comparison of Prices for a Down-and-out Put under OU Model

N M DE+Conv+Gaussian quad Uniform Grid via FFT
27 50 0.728657 0.630441
28 50 0.608877 0.585485
29 50 0.608872 0.604733
210 50 0.608872 0.607901
211 50 0.608872 0.609543
212 50 0.608872 0.610379

The conditional characteristic function of an OU process is

φ(u;xt) = e−Au
2+iDu, (29)

where

A =
σ2

4κ
− σ2

4κ
e−2κ∆t,

D = θ + (xt − θ)e−κ∆t,

a special case of (16).

We choose the support of density L = 0.12, the uniform grid u ∈ [−3, 3] to deduce

a DE grid, and 2m = 64 be the number of terms in the Fourier expansion to ensure

that the errors of Fourier expansion and fast convolution stay at 10−14 level. We

compare the results obtained by fast convoluton algorithm plus DE formula with

FFT in Figure 6 and Table 1. We keep 6 decimal places here and note that our

fast convolution algorithm converges much faster than FFT. This is because FFT

has to be on a uniform grid which prevents the use of DE formula to enhance the

convergence.

In the second example of a barrier option, we consider that the log price xt follows

an OU process with Kou’s double-exponential jumps [61]:

dXt = κ(θ −Xt)dt+ σdWt + ∆Zt, (30)
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Figure 6: Relative Errors for a Down-and-out Put under OU Model

where Zt is a compound Poisson process with arrival rate λ, and the jumps are i.i.d.

double-exponential distributed with parameter p, η+, η−, where η+ and η− stand for

the mean of positive jump size and negative jump size. The rest parameters have the

same meaning as in an OU process.

The conditional characteristic function is derived as:

φ(u;xt) = (
1− iH1u

1− iH2u
)
λp
κ (

1 + iH3u

1 + iH4u
)
λ(1−p)
κ e−Au

2+iDu, (31)

where

A =
σ2

4κ
− σ2

4κ
e−2κ∆t,

D = θ + (xt − θ)e−κ∆t,

H1 = η+e−κ∆t, H2 = η+, H3 = η−e−κ∆t, H2 = η−.

We price a down-and-out put under the OU mean-reverting double-exponential

process with mean-reverting rate κ = 0.5, long-term θ = 0.4, instantaneous volatility

σ = 0.25, mean of positive jump η+ = 0.45, mean of negative jump η− = 0.35, p =
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Figure 7: Relative Errors for a Down-and-out Put under OU Double-Exp. Jumps

Table 2: Price of a Down-and-out Put under OU Double-Exp. Jumps

N M DE+Conv+Gaussian quad CPU time
26 12 0.287459 0.155
27 12 0.287368 0.301
28 12 0.287368 0.608
29 12 0.287368 1.335

0.96, and jump intensity λ = 0.6. Let risk-free rate r = 0.1, maturity T = 1, barrier

B = 95, initial price S0 = 100, and strike price K = 110. Number of monitoring

dates M = 12 (monthly). We choose support L = 6 (heavier tail than OU process),

uniform grid u ∈ [−3, 3], and m = 256 in the Fourier expansion. In Figure 7 and

Table 2, we find again the price converges fairly fast. We only need 128 points to

achieve 6 correct digits within 0.3 seconds.
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2.3.3 Bermudan Options

Similar to barrier options, the fast convolution method is applicable to Bermudan

options as well. We consider a Bermudan option with exercise dates t. At each

exercise date, the price of a Bermudan option is the maximum of its continuation

value and the instant payoff. Specifically, a Bermudan option can be priced by the

following backward induction:

1. v(T, xT ) = h(T, xT )

2. p(t, xt) = e−r∆t
∫ ∞
−∞

v(t+ 1, xt+1)f(xt+1|xt)dxt+1

3. v(t, xt) = max{p(t, xt), h(t, xt)}

where h(t, xt) is the payoff at time t and t = 1, 2, · · · , T .

For a Bermudan put, whose payoff is h(T, xT ) = (K − S0e
xT )+, it has an optimal

exercise price S0e
xct at each time t. When xt < xct , h(t, xt) > p(t, xt), and when

xt ≥ xct , h(t, xt) ≤ p(t, xt). Basically, the above backward induction can be re-written

as:

p(t, xt) = e−r∆t
{∫ xct+1

−∞
h(t+ 1, xt+1)f(xt+1|xt)dxt+1

+

∫ ∞
xct+1

p(t+ 1, xt+1)f(xt+1|xt)dxt+1

}
, (32)

with terminal conditions xcT = log(K/S0), h(T, xT ) = (K −S0e
xT ), and p(T, xT ) = 0.

Under an AJD process, we let yt = xte
−κ∆t, and gt(x) = ft(−x), then equation

(32) becomes

p(t, yt) = e−r∆t
{∫ xct+1

−∞
h(t+ 1, xt+1)g(yt − xt+1)dxt+1

+

∫ ∞
xct+1

p(t+ 1, xt+1)g(yt − xt+1)dxt+1

}
, (33)

containing two convolution type of integrals on a half line.

In the first step, we apply the DE formula to transform the integration on (−∞, xct ]

and [xct ,∞) into (−∞,∞), then the integrand shows double-exponential decay, so that
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we can take advantage of the trapezoidal rule to compute the integration after the

change of variables. For (−∞, xct ], we discretize the integral with grid points xt,i and

weights wt,i:

xt,i = − ln{e−xct+1 + exp(
π

2
(1 + ih− e−ih))} (34)

wt,i = h
exp(π

2
(1 + ih− e−ih))π

2
(1 + e−ih)

e−x
c
t+1 + exp(π

2
(1 + ih− e−ih))

, (35)

and for [xct ,∞), we use

xt,i = ln{exct+1 + exp(
π

2
(1 + ih− e−ih))} (36)

wt,i = h
exp(π

2
(1 + ih− e−ih))π

2
(1 + e−ih)

ex
c
t+1 + exp(π

2
(1 + ih− e−ih))

. (37)

As noted, the grid and the weights change at every time step t because of the

change of xct . We locate xct by finding the root of p(t, xt) − h(t, xt) at each step via

secant method. (Because the first order derivative is not available, Newton’s method is

not applicable here). We specify the bounds of the root, xt,L and xt,U , and compute

the corresponding p(t, xt,L) and p(t, xt,U) (the computational complexity is O(N)).

In the iteration of secant method, we take advantage of the fast convolution method

again to compute the value of p(t, xt) by only 1 operation instead of N . Therefore, at

t+1, given xct+1, grid xt+1,i, weights wt+1,i and p(t+1, xt+1) on [xct+1,∞), we compute

p(t, xt) in equation (32) and apply secant search until the root xct of p(t, xt)−h(t, xt) is

located within a given tolerance. Once xct is obtained, we derive the grid and weights

by equation (33-37). Finally, p(t, xt) on this grid [xct ,∞) can be computed via the

fast convolution.

The algorithm for Bermudan options pricing is summarized as follows:
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1. Choose a uniform grid [−U,U ] with N points.

2. Given xcT = k, derive a non-uniform grid xT,i and weights wT,i

by equation (33-37).

3. Given p(T, xT ) = 0 on [xcT ,∞).

4. Loop t = T − 1 to 2. Input: xct+1 = k and p(t+ 1, xt+1).

• Specify the bounds, xt,L and xt,U .

• Locate xct = k by secant method, p(t, xt) in the iteration

is calculated by fast convolution in equation (32).

• Derive the DE grid xt,i and weights wt,i by equation (33-

37) given xct .

• Compute p(t, xt) on [xct ,∞).

End Loop. Output: xct = k and p(t, xt).

5. Compute price P = p(0, 0).

2.3.3.1 Numerical Examples

We first price a Bermudan put when log price is modeled by an OU process with

mean-reverting rate κ = 0.5, long-term mean θ = 0.4, and instantaneous volatility

σ = 0.1. We assume the risk-free rate r = 0.1, maturity T = 1, initial asset price

S0 = 100, and strike price K = 110. Number of monitoring dates M = 50. Again,

an OU process has an analytic formula for transition density which allows us for an

easy check. We choose the support of density L = 0.12, the uniform grid u ∈ [−3, 3]

to deduce a DE grid, and 2m = 64 be the number of terms in the Fourier expansion

to ensure that the errors of Fourier expansion and fast convolution stay at 10−14

level. Monte Carlo simulation gives a reference price at 9.585234 with standard error
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Figure 8: Relative Errors for a Bermudan Put under OU Model

Table 3: Comparison of Prices for a Bermudan Put under OU Model

N M DE+Conv Uniform Grid
26 50 10.353984 31.986766
27 50 9.572504 9.560004
28 50 9.572096 9.572096
29 50 9.572096 9.572096
210 50 9.572096 9.572096

0.013943 within 1.286 seconds (10,000 paths). In Figure 8 and Table 3, we find the

fast convolution method for pricing Bermudan option still converges faster than using

FFT. The CPU time of using 27 grid points is 0.664 seconds, which gives 4 correct

digits and is 2 times faster than the Monte Carlo method.

Next, we consider the following stochastic volatility model for the log return xt

and stochastic volatility vt:
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d

 xt

vt

 =

 κ1(θ1 − xt)

κ2(θ2 − vt)

 dt+

 √
vt 0

ρσ
√
vt

√
1− ρ2σ

√
vt

 dWt +
2∑
i=1

∆Zi
t , (38)

where κ1 is the mean-reverting rate of the log return, θ1 is the long-term mean of the

log return, κ2 is the mean-reverting rate of the volatility, θ1 is the long-term mean of

the volatility, σ is the volatility of volatility, Wt is a Ft-adapted standard Brownian

motion under Q in R2 with correlation ρ, Zi
t is a compound Poisson process in R2

with the Poisson arrival intensity being λi, i = 1, 2, and ∆Zi
t denotes the random

jump size in R2 with mean jump size being µi, i = 1, 2. This is again an affine jump

duffusion process, and its conditional characteristic function is in the form of (see

[31]):

φ(u, v;xt, vt) = exp[A(u, v, t, T )xt +B(u, v, t, T )vt + C(u, v, t, T )] (39)

where A(·), B(·), C(·) satisfy the Riccati equations:

dA(·)
dt

= κ1A(·)

dB(·)
dt

= κ2B(·)− 1

2
A(·)(A(·) + ρσB(·))− 1

2
B(·)(A(·)ρσ +B(·)σ2))

dC(·)
dt

= −κ1θ1A(·)− κ2θ2B(·)− λ1(
1

1− A(·)µ1

− 1)− λ2(
1

1− A(·)µ2

− 1),

with terminal conditions A(u, v, T, T ) = iu, B(u, v, T, T ) = iv and C(u, v, T, T ) = 0.

We can solve for A(·) = iue−κ1(T−t). We only need to find φ(kπ
L
− iε, 0; 0, 0) =

exp[C(kπ
L
− iε, 0, t, t + ∆t; 0, 0)]. As B(·) and C(·) cannot be solved analytically, we

do it numerically. By change of variable, s = T − t, we solve B(kπ
L
− iε, 0,∆t) and

C(kπ
L
− iε, 0,∆t) by Runge-Kutta method with the initial conditions B(kπ

L
, 0, 0) = 0

and C(kπ
L
, 0, 0) = 0.

We price a Bermudan put under such a mean-reverting stochastic volatility model

with the following parameters: κ1 = 0.5, θ1 = 0.03, κ2 = 1, θ2 = 0.4, σ = 0.3, ρ = 0.8,

λ1 = 0.5, λ2 = 0.3, µ1 = 0.15, µ2 = 0.1, risk-free rate r = 0.1, maturity T = 1, initial
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Figure 9: Relative Errors for a Bermudan Put under Stochastic Volatility

Table 4: Price of a Bermudan Put under Stochastic Volatility

N M DE+Conv CPU time
26 12 10.547933 0.416
27 12 10.550425 0.860
28 12 10.550474 1.565
29 12 10.550427 3.148
210 12 10.550427 5.801
211 12 10.550427 14.596

asset price S0 = 100, and strike price K = 110. Number of monitoring dates M = 12.

We choose density support L = 3, uniform grid u ∈ [−3, 3], and m = 128 in the

Fourier expansion. We list the price of the put under the stochastic volatility model

in Figure 9 and Table 4. We achieve 4 digits within 0.86 seconds.
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2.3.4 Lookback Options

We can also price lookback options using the proposed fast convolution algorithm,

and it works for any exponential Lévy models.

Following [11], the price of a lookback put option is given by

P (S0, K) = e−rTS0E[emT−xT − 1] (40)

where xT = log(ST/S0), mT = log(MT/S0), and Mt = maxSs, 0 ≤ s ≤ t. The

probability density of yt = mt − xt can be written as ctδ(x) + gt(x), where δ(x) is a

Dirac function. We have the following relation:

mt − xt = max(0, (mt−1 − xt−1) + (xt−1 − xt)).

Then given ct−1 and gt−1(x), we calculate ct and gt(x) by the following recursive

formula with c0 = 1, g0(x) = 0.

ḡt(x) = ct−1f(x) +

∫ ∞
0

gt−1(y)f(x− y)dy, (41)

ct =

∫ 0

−∞
ḡt(x)dx, gt(x) = ḡt(x), (42)

where f is the density of xt+1 − xt, i.e. the transition density function f(xt+1|xt)

as f(xt+1|xt) = f(xt+1 − xt) for any Lévy processes, which again gives a series of

convolutions. We deduce a double-exponential grid for [0,∞) and (−∞, 0], and at

the final step, the expectation is a integral on [0,∞), double exponential grid and

trapezoidal rule is applied again to get the price.

2.3.4.1 Numerical Example

We price a one year lookback put when the log return follows log-normal model,

Merton’s jump diffusion model, NIG model and CGMY model. In order to facilitate

a comparison, the model parameters are calibrated form the market data of S&P

500 European options in [82]. Also the initial price S0 = 100, and risk-free rate

r = 0.0367.
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Figure 10: Densities of the Log-returns in 1 year

The calibrated volatility parameter for the log-normal model is σ = 0.17801.

The calibrated parameters for the Merton’s jump diffusion model are σ = 0.126349,

α = −0.390078, λ = 0.174814 and δ = 0.338796.

The calibrated parameters for the NIG model are α = 6.1882, β = −3.8941 and

δ = 0.1622.

The calibrated parameters for the CGMY model are C = 0.0244, G = 0.0765,

M = 7.5515 and Y = 1.2945.

The densities of the log-returns modeled by these Lévy processes in the risk-neutral

world are plotted in Figure 10.

The comparison of lookback put prices under different Lévy models are presented

in Table 5. In the LN model, the price converges very fast. However, for other Lévy

models, it converges a bit slow due to the fat tail behavior in the transition densities.

The relative errors are given in Figure 11.
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Figure 11: Relative Errors for Lookback Options under Different Lévy Models

Table 5: Price of a Lookback Put under Different Lévy Models

N M LN MJD
26 12 13.622075 15.763815
27 12 13.630574 13.077226
28 12 13.630591 13.072445
29 12 13.630591 13.072445
210 12 13.630591 13.072446
211 12 13.630591 13.072446

N M NIG CGMY
27 12 9.204032 41.277875
28 12 12.265347 17.298511
29 12 12.914692 17.362650
210 12 12.906571 17.372705
211 12 12.906524 17.368559
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2.3.5 Asian Options

The price of a discretely monitored Asian option is given by

P (S0, K) = e−rTE[(A−K)+], (43)

where the average price A = 1
T

∑T
i=0 Si. Let rt = xt − xt−1 and the mean of rt be µt.

Benhamou [5] introduces a recursive formula for sequences At and mt:

mt = µT+1−t + log(1 + expmt−1), (44)

At = rT+1−t + log(1 + exp(At−1 +mt−1))−mt, (45)

with m1 = µT and A1 = rT −m1. Then A = S0

T+1
(1 + eAT+mT ), so that the price of a

Asian option is computable upon knowing the density of AT . The probability density

of At is a convolution of rT+1−t and the density of log(1 + eAt−1+mt−1)−mt.

Denote the density function of At as fAt (x), the density of rt as f r(x) (time

independent due to independent increments of any Lévy processes), and the density

of yt = log(1 + eAt−1+mt−1) −mt as gt(y). The following steps summarize the Asian

option pricing via fast convolutions.

• At each time t, deduce a double-exponential grid on [−mt+1,∞) for y.

• Find a grid x by x = log(exp(y +mt+1)− 1)−mt.

• Evaluate fAt on x.

• Find gt(y) = ey+mt+1

ey+mt+1−1
fAt (x).

• Deduce a double-exponential grid on [−mt+2,∞) for y.

• Find a grid x by x = log(exp(y +mt+2)− 1)−mt+1.

• Output fAt+1(x) =
∫∞
−mt+1

gt(y)f(x− y)dy.
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Figure 12: Relative Errors for Asian Options

fAt+1 can be computed by the proposed fast convolution method with a double-

exponential transform. At each step, the grid is shifted because of the introduction

of the sequence mt to center the density function of the average At.

2.3.5.1 Numerical Example

We price an Asian call option using the same set of parameters for the Lévy processes

in Section 2.3.4.1. The comparison of Asian call prices when the asset price is modeled

by different Lévy models are presented in Table 6. In the LN model and MJD model,

the option price converges very fast. However, for other Lévy models, it converges a

bit slow again due to the fat tail behavior in the transition densities. The relative

errors are given in Figure 12.
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Table 6: Price of a Asian Options under Different Lévy Models

N M LN MJD
27 12 9.792488 3.962091
28 12 11.908814 12.442391
29 12 11.904916 12.710676
210 12 11.904916 12.710676
211 12 11.904916 12.710676

N M NIG CGMY
27 12 18.302354 10.486487
28 12 14.249799 9.029223
29 12 13.077276 13.914945
210 12 12.909521 14.826061
211 12 12.626188 14.827052

2.4 Multi-Asset Options

The fast convolution algorithm can be extended to handle multi-asset options with

path-dependent or early exercise features, e.g., a Bermudan spread option. Spread

options are commonly used in energy markets to hedge the spreads in fuel prices or

hedge the price spreads at different delivery dates of certain fuel. For example, there

are two assets, electricity and natural gas. Let xt and yt be the logarithm of electricity

and natural gas spot price respectively: xt = logSet and yt = logSgt , where Set and

Sgt is the spot electricity and natural gas price at time t. The difference Set − HS
g
t

is called spark-spread, where H is the heat rate. A call spark-spread option is an

European call option on the spark-spread, whose payoff is

h(xT , yT ) = (exT −HeyT −K)+,

and a Bermudan spread option can be exercised on a set of dates t before and on the

maturity T . To price a Bermudan spread option, we compare its continuation value

with the instant payoff at each exercise date, and the continuation values involve

computation of a series of convolutions in 2 dimensions:∫ ∫
R2

v(t+ 1, xt+1, yt+1)f(xt+1, yt+1|xt, yt)dxt+1dyt+1.
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This 2D convolution cannot be simply calculated by two 1D convolutions. In

the next section, we show how the fast convolution algorithm can be extended to

2D with computational complexity O(N2), where N is the number of points in each

dimension. In Section 2.4.2, we apply 2D convolution to price a Bermudan spread

put. Numerical examples are also provided.

2.4.1 Fast Convolution in 2D

We consider the following convolution in 2D:

I(u, v) =

∫ ∫
R2

g(x, y)f(u− x, v − y)dxdy, (46)

where f(·, ·) is a joint probability density function, which is smooth and vanishes to

zero fast. We choose an input grid with N2 points (xs, yt), s, t = 1, 2, · · · , N and an

output grid with M2 points (ui, vj), i, j = 1, 2, · · · ,M . They need not be uniformly

spaced. Then

I(ui, vj) =
N∑

s,t=1

qs,tf(ui − xs, vj − yt),

where qs,t = ws,t · g(xs, yt), ws,t are the quadrature weights.

As f is a joint probability density, we expand it using Fourier series:

f(x, y) =
1

2L

1

2R

∞∑
k=−∞

∞∑
l=−∞

ak,le
−iπ( kx

L
+ ly
R

). (47)

where

ak,l =

∫ R

−R

∫ L

−L
f(x, y)e−iπ( kx

L
+ ly
R

)dxdy.

= φ(
kπ

L
,
lπ

R
) (48)

is the corresponding characteristic function. So

I(ui, vj) =
1

4LR

N+
i∑

s=N−i

N+
j∑

t=N−j

qs,t(
m∑

k=−m

n∑
l=−n

ak,le
−iπ[

k(ui−xs)

L
+
l(vj−yt)

R
])

=
1

4LR

m∑
k=−m

n∑
l=−n

ωi,j,k,l (49)
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ωi,j,k,l = ak,l

N+
i∑

s=N−i

N+
j∑

t=N−j

qs,te
−iπ[

k(ui−xs)

L
+
l(vj−yt)

R
], (50)

where

N−i = min
s≥0
{ui − xs > −L}, N+

i = max
s≤N
{ui − xs < L},

N−j = min
t≥0
{vj − yt > −R}, N+

j = max
t≤N
{vj − yt < R}.

Let

βt,i,k =

N+
i∑

s=N−i

qs,te
−iπ k(ui−xs)

L , (51)

then

ωi,j,k,l = ak,l

N+
j∑

t=N−j

βt,i,ke
−iπ

l(vj−yt)
R . (52)

For a given vj, when we move to ui+1, we have

ωi+1,j,k,l = ak,l

N+
j∑

t=N−j

βt,i+1,ke
−iπ

l(vj−yt)
R ,

and

βt,i+1,k = β0
t,i+1,k + β+

t,i+1,k − β
−
t,i+1,k,

where

β0
t,i+1,k = eikπ

∆u
L βt,i,k,

and when two ends of xs change, then

β+
t,i+1,k = qN+

i +1,te
−iπ

k(u
N+
i

+1
−ui+1)

L ,

β−t,i+1,k = qN−i ,te
−iπ

k(u
N−
i

−ui+1)

L .

For a given ui, when we move to vj+1, we have

ωi,j+1,k,l = ω0
i,j+1,k,l + ω+

i,j+1,k,l − ω
−
i,j+1,k,l,

where

ω0
i,j+1,k,l = eilπ

∆v
R ωi,j,k,l,
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and when two ends of yt change, then

ω+
i,j+1,k,l = ak,lβN+

j +1,i,ke
−iπ

l(v
N+
j

+1
−vj+1)

R

ω−i,j+1,k,l = ak,lβN−j ,i,ke
−iπ

l(v
N−
j

−vj+1)

R .

Now the computational complexity has been reduced to O(N2) +O(M2).

2.4.2 Bermudan Spread Options

In this section, we apply the 2D fast convolution algorithm to a Bermudan spread

option under the following two dimensional mean-reverting model:

d

 xt

yt

 =

 κ1(θ1 − xt)

κ2(θ2 − yt)

 dt+

 σ1 0

ρσ2

√
1− ρ2σ2

 dWt +
2∑
i=1

∆Zi
t , (53)

where κ1 and κ2 are the mean-reverting coefficients, θ1 and θ2 are the long term

means, σ1 and σ2 are instantaneous volatilities of xt and yt, Wt is a Ft-adapted

standard Brownian motion under Q in R2 with correlation ρ, Zi
t is a compound

Poisson process in R2 with the Poisson arrival intensity being λi, i = 1, 2, and ∆Zi
t

denotes the random jump size in R2 with mean jump size being µi, i = 1, 2.

Its conditional characteristic function has the following formation (see Appendix

A for derivation):

φ(u, v;xt, yt) = e−Au
2−Bv2−Cuv+iDu+iEv+H(u)

= (
1− iH1u

1− iH2u
)
λ1
κ1 (

1− iH3u

1− iH4u
)
λ2
κ1 e−Au

2−Bv2−Cuv+iDu+iEv, (54)

where

A =
σ2

1

4κ1

− σ2
1

4κ1

e−2κ1∆t,

B =
σ2

2

4κ2

− σ2
2

4κ2

e−2κ2∆t,
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C =
ρσ1σ2

κ1 + κ2

(1− e−(κ1+κ2)∆t)

D = θ1 + (xt − θ1)e−κ1∆t,

E = θ2 + (yt − θ2)e−κ2∆t,

H1 = µ1e
−κ1∆t, H2 = µ1, H3 = µ2e

−κ1∆t, H4 = µ2.

For a Bermudan spread put, as an analog to the 1D case, the option value at each

exercise date can be written as

p(t, xt, yt) = e−r∆t
{∫ ∫

D2
t+1

v(t+ 1, xt+1, yt+1)f(xt+1, yt+1|xt, yt)dxt+1dyt+1

+

∫ ∫
D̄2
t+1

p(t+ 1, xt+1, yt+1)f(xt+1, yt+1|xt, yt)dxt+1dyt+1

}
,

=

{∫ ∫
D2
t+1

v(t+ 1, xt+1, yt+1)f(xt+1 − xte−κ1∆t, yt+1 − yte−κ2∆t|0, 0)dxt+1dyt+1

+

∫ ∫
D̄2
t+1

p(t+ 1, xt+1, yt+1)f(xt+1 − xte−κ1∆t, yt+1 − yte−κ2∆t|0, 0)dxt+1dyt+1

}
.

It is again a series of 2D convolutions and the algorithm proposed in the above section

can be applied.

The algorithm for Bermudan spread options pricing is summarized as

follows:
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1. Choose a uniform grid [−U,U ] with N points.

2. Fix a uniform grid [−Y, Y ] with N points for yt, t = 1, 2, · · · , T .

3. Given yjT , j = 1, · · · , N , compute xc,jT = log(K + Hey
j
T ), which is the

exercise boundary at T , denoted as ∂D2
T .

4. Derive a non-uniform grid xjT,i and weights wjT,i by equation (33-37).

5. Given p(T, xT , yT ) = 0 on D̄2
T .

6. Loop t = T − 1 to 2. Input: ∂D2
t+1 and p(t+ 1, xt+1, yt+1).

• Locate ∂D2
t by repeating secant method N times looping yt.

p(t, xt, yt) in the iteration is calculated by 2D fast convolution in

equation (55).

• Derive the DE grid xjt,i and weights wjt,i by equation (33-37) given

xc,jt on the ∂D2
t .

• Compute p(t, xt, yt) on D̄2
t by 2D fast convolution.

End Loop. Output: ∂D2
t and p(t, xt, yt).

7. Compute price P = p(0, 0, 0).

We price European and Bermudan call spread options under the affine jump dis-

susion model (53) with the parameters: κ1 = 1.7, θ1 = 3.4, κ2 = 1.8, θ2 = 0.87,

σ1 = 0.74, σ2 = 0.34, ρ = 0.2, λ1 = 6.08, λ2 = 7, µ1 = 0.19, µ2 = −0.11, risk-free

rate r = 0.04, maturity T = 1, initial electricity price Se0 = 24.63, initial gas price

Sg0 = 2.105, heat rate H = 9.5, and strike price K = 5. European spread call is

priced first and it can be valued by one convolution. But in order to check whether

the values produced by our algorithm are correct, we can still use some interme-

diate steps for European options. We set the support of the transition probability
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function to be [−8, 8]× [−2, 2], and the payoff function decays to zero outside region

[0, 12]×[−10, 8]. An semi-analytical form of an European spread under an affine jump

diffusion is available via inverse FFT. It gives a benchmark value of the European

call spread at 15.771749. The value of such an European call spread option by our

convolution method as well as the error compared with the benchmark value are given

in Table 7. It shows the fast convolution method does converge to the exact value as

expected. For Bermudan spread call options with different number of exercise dates,

we compute their prices in Table 8. The Monte Carlo simulation gives a reference

value for the 2 exercise dates Bermudan spread call at 18.867930 with standard er-

ror of 0.251212 in 29.56 seconds (10,000 paths). We note the computational time

of Bermudan spread options under 2D fast convolution is not faster than the Monte

Carlo. This is because the major computation burden comes from searching the ex-

ercise boundary in 2D, though theoritically the computational complexity is O(N2).

However, the convolution based algorithm is still superior to Monte Carlo simulation,

especially for path-dependent options. Kou and Wang [61] point out that Monte Carlo

simulation has systematic discretization bias in pricing path-dependent options. This

bias is difficult to be reduced because for an example of lookback options, simulation

approximates the maximum of a coutinuous process by the maximum of a discrete

process. The same reason applies to barrier options and Asian options. Asmussen et

al. [3] show that the discretization error decays at an order of 1/2 with respect to the

number of paths, which is much slower than the convolution method.

2.5 Conclusion

Energy firms commonly utilize exotic derivatives for hedging their exposure to the

price and volumetic risks in electricity markets. The complex contract provisions
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Table 7: European Spread Call Option under Affine Jump Diffusion Model

N M Value Absolute Error Time (sec)
26 × 27 1 15.780483 0.0087 0.13
27 × 28 1 15.771763 1.4E-5 0.43
28 × 29 1 15.771741 8.0E-6 0.89
26 × 27 2 15.786538 0.0148 6.28
27 × 28 2 15.771787 3.8E-5 23.56
27 × 28 4 15.771772 2.3E-5 67.98

Table 8: Bermudan Spread Call Option under Affine Jump Diffusion Model

N M Value Time (sec)
26 × 27 2 18.667381 33.50
27 × 28 2 18.632833 131.88
28 × 29 2 18.632941 509.47
26 × 27 3 19.744085 64.04
27 × 28 3 19.670257 260.51
26 × 27 4 20.308621 101.38
27 × 28 4 20.192349 410.06

of these derivatives, such as path-dependency and early-exercising, make their pric-

ing time consuming. The prices of these path-dependent options and early-exercise

options, which include barrier, Bermudan, lookback and Asian options, can be evalu-

ated through a series of convolutions of a given function against the transition density

of the underlying electricity prices. In this chapter, we propose a fast algorithm to

compute a convolution which reduces the computational complexity from O(N logN)

to asymptotically O(N), where N is the number of discretized price levels in com-

puting the convolution. The computational complexity of our method in pricing

path-dependent options and Bermudan options is O(MN), where M is the number

of monitoring/exercise dates. The algorithm is general to a broad class of stochastic

electricity price models, including AJD processes and Lévy processes, because it takes

the characteristic function of the underlying electricity price distribution as an input,
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which is known in closed-form for such price models.

The proposed fast convolution algorithm is applicable to non-uniform grids instead

of uniform grids in FFT. This feature allows us to take advantage of the double-

exponential integration formula to speed up the rate of convergence in option pricing.

Theoretically, the error of our method decreases faster than any negative power of

N . Our computational framework can also handle lookback and Asian options due

to the use of non-uniform grids.

We also extend the fast convolution algorithm to two dimensions in order to price

spread options with path-dependent and early exercise features. Numerical examples

show the fast convolution method is flexible and efficient pricing different types of

exotic options in electricity markets.
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CHAPTER III

AN INCENTIVE-BASED DEMAND RESPONSE

CONTRACT DESIGN FOR THERMOSTATICALLY

CONTROLLED LOADS IN A SMART GRID

3.1 Introduction

A smart grid is being developed rapidly in the United States to potentially resolve

many challenges faced by the future electric power industry. It uses information

and communication technology to improve the efficiency, reliability, economics, and

sustainability of the production and distribution of electricity in an automated manner

[37]. For example, the sophisticated control capability of a smart grid facilitates

the integration of intermittent and variable renewable energy resources, and smart

meter technology enables many possibilities in demand side management. Renewable

energy capacity in the United States nearly doubled from 43.5GW in 2008 to 85.7GW

in 2012. In particular, wind power installed capacity reached 48 GW in 2012, and

the electricity production from wind power grows 10 times to 120 billion kWh in the

past ten years. The growth in renewable energy helps reduce the carbon emission by

13% and reduce the energy consumption by 6.4% from 2007 [39]. However, renewable

energy resources are costly to integrate into the current power grid due to some of

their different features from the conventional coal and gas generation ones. On the

one hand, renewables are highly variable and intermittent. It is hard to accurately

predict the renewable energy production; even during the same hours on two different

dates, the patterns of renewables might behave dramatically different. The increasing

uncertainty in the supply side requires fast responsive generators as additional reserves

when load serving entities (LSEs) are short of renewable energy supply. On the
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other hand, renewable energy is limited dispachable. For example, when wind power

resources are excessive, operators cannot ramp up or ramp down the wind generators

as they can conventional ones in order to adjust the outputs. It is feasible to curtail

some wind turbines, but it might waste this cheap and clean energy.

High uncertainty in renewable energy supply turns system operators and LSEs

to managing demand instead of managing supply. Demand response contracts are

tools designed to create demand flexibility (see [36] for a detailed survey of demand

response mechanisms). In addition to traditional demand response programs offered

by system operators, researchers are looking for other sources of flexible loads as de-

mand responses. For example, Papavasiliou and Oren [78] study directly coupling

deferrable loads, such as plug-in electric vehicles charging, laundry, etc., with renew-

able energy resources to mitigate the inherent intermittency and variability. Husen

et al. [55] address the control of multiple lighting systems in a building to provide

demand response services. Among sources of energy consumption, the Department

of Energy in 2007 reported that thermostatically controlled loads (TCLs) including

cooling, air conditioning and refrigerating, account for 60%-70% of U.S. household en-

ergy consumption. In the smart grid environment, LSEs are able to communicate with

commercial/residential thermostat devices remotely via programmable thermostats.

In practice, a variety of pilot demand response programs on curtailing and control-

ling TCLs have been deployed in several states. In Texas, Austin Energy successfully

recruited 2,000 customers to participant in its “Rush Hour Rewards” program last

summer. Austin Energy gives participants one-time $85 rebate toward the purchase

of a smart thermostat, like “Nest”. When a period of high demand is expected,

they send an alert to the programmable thermostats to notify participants that their

thermostats will be set higher during that period so they use less air-conditioning.

ERCORT has been implementing such polit programs since 2007. According to their
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experience, an average demand reduction of 0.6 kW is estimated for each partici-

pating household, and wholesale prices could be reduced by over 60% during the

peak-periods. The total value saved from controlling customers’ thermostats during

peak-periods is estimated to be $160 million (see [45]). In California, Southern Cali-

fornia Edison and San Diego Gas & Electric partnered with major thermostat makers

to leverage smart thermostats in 2013. They offer participants $1.25 credit per kWh

saved during peak days. For customers enrolling with “EnergyHub” brand ther-

mostats, the set-points may be adjusted by up to 6◦F, although EnergyHub usually

precools homes to avoid discomfort. These programs illustrate that peak-period loads

can be reduced by controlling TCLs, however, the potential of TCLs has not been

fully explored. The rebate plan and the set-point control range can be designed in a

more flexible and customer-friendly way to encourage participation. By directly con-

trolling customers’ thermostats within their self-selected control ranges, LSEs achieve

flexible load profiles to balance the power output fluctuation from intermittent and

variable renewable energy resources, such as wind and solar.

Modeling of TCLs is well documented in the literatures. Ihara and Schweppe [56]

start to model the dynamics of a single thermostat in the population from a physical

view. Malhame and Chong [69] describe the dynamics of aggregated TCLs by using

Fokker-Planck equation. Ucak and Dokuyucu [91] use Monte Carlo simulation to

study TCLs as a direct control method. Lu et al. [67] discuss the modeling of uncer-

tainties in aggregated TCLs using a state queueing model. Recently, researchers have

been exploring the potentials of TCLs as demand response in tracking an exogenous

renewable generation signal. Callaway [14] proposes a minimum variance controller

of manipulating thermostat set-points of a homogeneous group to track a wind power

generation signal. Kundu et al. [62] derive a transfer function relating the aggregate

response of a homogeneous group of TCLs to uniform variation of thermostat set-

points, and present a linear quadratic regulator for tracking purposes. Both works
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assume a known reference signal. However, a long-term forecast, even in hour ahead,

is far from accurate. Using forecasted values as a whole trajectory to get a close

loop control signal will produce large control errors in the real time operations. Koch

et al. [60] extend the idea to a heterogeneous group of TCLs, and apply the model

predictive control (MPC) technique to solve for a control rule, which only requires

one step ahead forecast of wind power as a model input. However, their paper as-

sumes the central control cannot override customers’ settings and cannot cause any

discomfort to customers. This means the room temperature must always stay inside

the set-point dead band, and LSEs can only shift the operating cycles of thermostat

devices. This limits the availability of TCLs, especially during some extreme events,

e.g. wind production is extremely low. LSEs do not have sufficient amount of flexible

loads for control, which prevents matching the demand to the wind profile. In order

to maintain the system reliability in such situations, costly additional reserves have

to come in places of renewables, or LSEs have to purchase electricity in the wholesale

market at very high prices.

In this chapter, we would like to expolit the potential of TCLs as a source of

demand response for renewable energy integration. We assume customers are willing

to bear some discomfort by allowing the temperature to be outside of the set-point

dead band in exchange for some rewards. LSEs offer an incentive-compatible reward

scheme to compensate the discomfort that customers endure as a result of render-

ing the control of their loads to LSEs. In this way, LSEs gain more flexible control

of customers’ thermostat-related loads to absorb the variability of renewable energy

outputs. By offering different levels of rebate associated with different set-point ad-

justment ranges, LSEs are able to differentiate customers into several control groups

according to their preference types. Customers decide whether to participate and

which rebate/temperature set-point range to subscribe to based on their preferences.

We model customers’ preferences on room-temperature through a utility function
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which characterizes the reward and discomfort tradeoff of different choices of room

temperature set-point by a customer. As long as the contracts are designed to be in-

centive compatible and individually rational, LSEs can vary the rebate offering levels

to induce different degrees of customers’ participation and get different contract-

subscription distributions. LSEs then come up with a control law for each group

optimizing their performance metrics. Two examples of performance metrics are con-

sidered. The first one minimizes the opportunity costs of purchasing in the wholesale

electricity market when LSEs lack concerned renewable power outputs, and the sec-

ond one minimizes the weighted sum of squared errors of tracking an output level of

renewable resources. We apply MPC to handle the control problem. MPC is attrac-

tive here for two reasons. First, it is easily applicable to both linear and quadratic

control problem with inequality constraints (ranges of set-point adjustment). Second,

as an input of MPC, the reference signal is updated according to the short-term 10

minutes forecasting at each step. However, LSEs have to offer the reward/discomfort

scheme to customers before the uncertainties in the renewable production and the

electricity wholesale spot prices are realized. In order to obtain an optimal contract

parameters design, we present a two-stage stochastic programming, in which LSEs

minimize the expected total costs among different scenarios.

The rest of the chapter is organized as follows: in Section 3.2 we provide an

overview of the contract structure and key contract parameters. A two-stage stochas-

tic programming framework addressing the optimal contract design is proposed in

Section 3.3. We also discuss the dynamics of TCLs, the solution to LSEs’ control

problem by MPC, and customers’ choices in this section. In Section 3.4 we provide

a case study which includes comparisons of control strategies under two performance

metrics, and under different rebate level offerings. We also analyze the sensitivity of

contract parameters to customer subscription distributions, the lump sum payments

to customers, and the total costs of this mechanism. We conclude in Section 3.5.
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3.2 Contract Structure

In the context of air-conditioning or heating, we assume LSEs own renewable energy

resources which are designated to serve a load from N customers. LSEs offer a reward

scheme (s, ū) containing m different levels of reward and temperature set-point range

to customers. sm×1 = (s1, s2, · · · , sm)T , where sj is the bill savings to the customers

who choose contract j, j = 1, 2, · · ·m (from LSEs’ prespective, it is the rebate they

pay to the customers). um×1 is the controller (the change of temperature set point).

An upper bound ū and a lower bound −ū for the controller specify the ranges of

the controller for each group. Under cooling environments, LSEs need to raise the

temperature set-point in order to reduce the power consumption, i.e. they exercise

control 0 < u < ū, then the participating customers will receive rebates s on their

utility bills.

LSEs can change the key contract parameters (s, ū) to get a different subscription

from customers, which follows different dynamics of TCLs. For example, increasing

the rebate levels of every group will definitely get more customer subscription, and

as a result, will increase the loads available to release. Increase the rebate level of a

single group will increase the subscription of that group and change the distribution of

control groups as well. LSEs need to find the optimal levels of rebate and associated

subscription, which achieve certain targets, such as minimizing the total costs or the

tracking errors. Figure 13 gives a simple illustration of the entire process. There are

two stages in the process. At stage 1, an LSE offers two contracts, $2 monthly rebate

for 0.2◦C adjustment and $5 monthly rebate for 0.5◦C adjustment. We assume there

are 10 target customers. Based on their own preferences, 5 of them choose contract I, 3

of them choose contract II and the rest 2 do not participate. In this case, the LSE will

pay $2∗5+$5∗3 = $25 per month to gain access to TCLs. At stage 2, the LSE starts

to control the thermostats of the 8 subscribers. When there is renewable shortage, it

lowers the loads from the subscribers to prevent high purchasing costs in the wholesale
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Figure 13: An Overview of the Model

market. The LSE will implement an optimal strategy which minimizes the purchasing

costs. Since the renewable energy production and the electricity wholesale price are

random and unknown at stage 1, the LSE estimates an expected purchasing cost

and choose an optimal contract design to minimize its lump sum payment plus the

expected purchasing cost.

3.3 Model Description

In this section, we describe how to design optimal rebate levels s to minimize LSEs’

cost of integrating uncertain renewable energy resources via controlling TCLs. We

formulate it as a two-stage stochastic programming in Section 3.3.1. By working

backward, we then discuss if LSEs were given a scenario, how can they develop a

control strategy under contract design parameters (s, ū) and customers’ subscription

N? In Section 3.3.2 we utilize a state-space form of a linear system to describe the

dynamics of TCLs in terms of the customers’ subscription. At the second stage,

we define an optimal control problem subject to the linear system with inequality

constraints. We solve it by MPC in Section 3.3.3. At the first stage, we need to answer
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whether customers participate and how they choose which contract to subscribe to.

We study customer preferences in Section 3.3.4. All the notations appearing in the

following text are listed in Appendix B.1.

3.3.1 A Two-Stage Stochastic Programming

Due to high uncertainties in renewable energy resources and load profiles, when LSEs

make decisions on the levels of rebate paid to customers, they do not have much

information about which scenario is going to be realized for the renewable energy

outputs and the wholesale spot prices. There are two stages in the decision process.

At the first stage, LSEs need to determine the contract design parameters without

the realization of uncertainties (the here and now stage), customers observe the con-

tracts and decide a subscription, which has an impact on the dynamics of the TCLs

(though it does not have an impact on the realization of uncertainties). At the second

stage, the LSEs solve a control problem minimizing the control costs based on the

observations of renewable energy outputs and wholesale spot prices (the wait and see

stage).

The stochastic programming can be formulated as follows:

mins NTs + E[J(yt(N(s, ū), pt, rt)] (55)

s.t. s > 0. (56)

NTs is the lump sum payment to the customers who participate in the contract

offerings. J(yt(N(s, ū), pt, rt) is the control cost for each scenario, where yt(N(s))

is the TCLs under control at time t depending on the subscription N. And the

subscription N is a function of the rebate level s. We optimize the expected costs

among all possible scenarios. In order to solve this two-stage problem, we need

to construct different scenarios and associated probabilities. A simple and popular

way to handle this is by means of Monte Carlo sampling and approximating the

expectation by the sample average. This needs a stochastic model to describe the
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joint distribution of renewable energy outputs and electricity prices, for example,

[78]. It requires a process of calibrating the model parameters from renewable energy

and price data sets. Although, this takes extra computation, the resulting distribution

may not well describe the variable renewable outputs. Bootstrap sampling method

is an alternative here, which is model-free and preserves the seasonality patterns in

renewable energy and price processes. After solving the two-stage problem by the

bootstrapped sample average given a set of rebate levels, we apply a random search

to find the optimal rebate levels.

3.3.2 State-Space Representation

Kundu et al. [62] proposed a state-space model for a homogeneous group of TCLs as

follows:

ẋ = Ax+Bu (57)

y = Cx+Du (58)

where the model output y is the change of total power outputs from the steady-state,

and the input u is the shift in thermostat set-points.

We extend this model to homogeneous TCLs (with the same characteristics of

thermostats) with different initial temperature set-points and contract subscriptions.

We assume there is an initial distribution of customers’ temperature set-point θ0 with

n possible values θi0, i = 1, 2, · · · , n. Each possible set-point has an equal probability.

As we have m different contract offerings, there are in total mn groups of customers.

The dynamics of TCLs for each group follow the model (57)-(58). For i = 1, 2, · · · , n

and j = 1, 2, · · · ,m, we have

ẋij = Aixij + Bijuj (59)

yij = C0xij +Djuj, (60)

where Ai,Bij,C0,Dj depend on thermostats parameters, given in Appendix B.2.
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We combine the states of group ij into one state vector x and derive the aggregated

power outputs y =
∑

i,j yij in a new state-space form as follows:

ẋ = Ax + Bu (61)

y = Cx + Du (62)

where A,B,C,D are also given in Appendix B.2. This is the model we will use in

the subsequent control problem.

3.3.3 Model Predictive Control for TCLs

Given design parameters (s, ū) and customers’ subscription N, we propose two ob-

jectives for the control problem in the second stage. The first one minimizes the

purchasing cost in the wholesale market due to wind power shortage 1:

J = min
u

∫ T

0

pt(yt − rt)+dt (63)

s.t. −ū ≤ u ≤ ū. (64)

The second one is formulated as a linear-quadratic (LQ) tracking problem, and we

treat the weighted squared errors as well as the control costs as our objective:

J = min
u

1

2

∫ T

0

p2
t (yt − rt)2 + uTRudt (65)

s.t. −ū ≤ u ≤ ū. (66)

In the traditional control theory, we need to know the whole trajectory of rt in

[0, T ]. However, accurately forecasting the wind power production long term, say one

day or even several hours, is quite hard. Inaccurate forecasts may cause the controlled

outputs to deviate from the desired trajectory in the long run. We apply MPC to

handle the problem by doing on-line optimization across a time window at each step

with updated states and inputs. At time k, MPC finds number Nc of controllers which

1If LSEs own conventional generators and use them to cover the wind power shortage, the op-
portunity cost is identical to selling power at the wholesale price
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minimize the costs across Np steps. The reference signal during Np steps is assumed

to be constant at rk. Thus, only the state estimation and wind power forecasts are

needed at the step to perform the optimization. Both of them are fairly accurate.

We discrete the system (61)-(62) into:

xk+1 = Axk + Buk (67)

yk = Cxk + Duk, (68)

and the augmented system is

YkNp×1 = FNp×2mnxk2mn×1 + GNp×m(Nc+1)Ukm(Nc+1)×1. (69)

The derivation of F and G is given in the Appendix B.2.

At time k, the control problem (63)-(64) can be solved by the following linear

programming (LP). The derivation and the coefficients are also given in Appendix

B.2.

Jk = min
Z,U

fTk Zk (70)

s.t. H[Zk,Uk]T ≤ h. (71)

At time k, the control problem (65)-(66) can be solved by the following quadratic

programming (QP) with inequality constraints:

Jk = min
U

(Sk −Yk)TQk(Sk −Yk) + UT
k R̄Uk (72)

s.t. MUk ≤m0, (73)

where Qk = diag(p2
k∆t, · · · p2

k+Np
∆t)Np×Np , R̄ = diag(s2, s2, · · · , s2)rw. Without con-

straints, we have Uk = (GTQkG + R̄)−1GTQT
k (Sk −Fxk) = −Kxxk + Krrk. Here,

we use Active Set method to solve the constrained quadratic programming. So far,

we are able to solve the second stage problem which optimizes LSEs’ targets given

rebate contract offerings and customers’ subscription.
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3.3.4 Customers’ Preference and Participation

At the first stage, LSEs offer a set of rebate/discomfort levels (s, ū) = (sj, ūj), j =

0, 1, · · ·m (s0 = 0 and ū0 = 0 stand for opt-out of these contracts). They need to

estimate the number of customers subscribing to each contract Nj, j = 0, 1, · · · ,m.

We start to derive some conditions under which the contracts offered are gauranteed

to be incentive compatible (IC) and individually rational (IR). For such offerings, we

study customers’ choices through their utility functions. Based upon this study, LSEs

have information to imply the number of customers of each group and to estimate

how the subscription changes with respect to the change of contract parameters.

The contracts offered are different pairs of reward associated with a discomfort

level. Customers have experiences in choosing from different price and quantity com-

bos of a product. For example, sellers sometimes offer customers different packing

sizes of a certain good and charge them different prices. Different types of customers

will purchase different sizes. In economic theory, this is called second-degree price

discrimination, which states that if a seller does not know customer types, but the

inverse demand function of each type, the seller can design a pricing scheme such

that each type of customers choose their corresponding price and quantity bundle.

Here, customers choose from different levels of discomfort, represented by temper-

ature set-points adjustment ranges. They trade discomfort ūj for reward sj. To

analyze customers’ choices, we make a few assumptions. 1) We assume a contin-

uum of customer types α ∈ [α, α], and a single customer’s type α is drawn from

a distribution F (α). The density function is denoted as f(α), α ∈ [α, α]. 2) We

define customers’ utility functions V (s, ū;α). In second-degree price discrimination,

the utility function is defined as the consumers surplus, which is the integration of

the inverse demand function minus the cost. Here, we denote an inverse discomfort

function d(ū, α), ū ≥ 0, representing the rewards that a type α customer requires

to compensate every unit of change in the temperature set-point adjustment limit ū.
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The aggregated discomfort D(ū, α) is the integration of d(ū, α):

D(ū, α) =

∫ ū

0

d(µ, α)dµ.

Then the utility function of a type α customer V (s, ū;α) = s −D(ū, α) depends on

the lump sum payment s (rewards), the set-point adjustment limit ū (discomfort),

and the customer’s type α. In equilibrium, each customer chooses a contract offer

which maximizes his/her utility. We denote the equilibrium utility function U(α) =

maxj V (sj, ūj;α) = V (s(α), ū(α);α). 3) We assume the inverse discomfort function

is positive and increasing, i.e. d(ū, α) > 0 and ∂d(ū, α)/∂ū > 0. Moreover, by

Spence-Mirrlees condition ([72, 85]), we also assume

∂2D(ū, α)

∂α∂ū
> 0.

This implies that ∂D/∂ū > 0 and ∂D/∂α > 0 for all ū > 0. The higher α is, the

more discomfort averse the customer is. The bottom line of LSEs’ contract offerings

is to ensure a customer who is more tolerant to discomfort chooses a larger range of

set-point adjustment. This means LSEs need to design a pricing scheme such that a

pair (s(α), ū(α)) is preferred to type α customer, i.e. it is IC and IR.

Based on the above assumptions, the following conditions guarantee an IC and

IR contract design. The proofs to Lemma 1, Proposition 1 and Theorem 1 are quite

standard in the textbook ([8]).

Lemma 3.1. A necessary condition for a pricing scheme (s, ū) to be incentive com-

patible and individually rational is that ū(·) is non-increasing.

Proposition 3.1. If a pricing scheme (s, ū) is incentive compatible and individually

rational, we have

U ′(α) = −∂D(ū(α), α)

∂α
(74)

Theorem 3.1. If a pricing scheme (s, ū) satisfies (74) and ū(·) is a non-increasing

function, then it is incentive compatible and individually rational.
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If we view non-subscription as a contract offer (0, 0), we have m + 1 different

levels in a pricing scheme (s, ū). In our setting, ū(·) in what LSEs offer is a stepwise

non-increasing function, which jumps at αj:

ū(α) = ūj, αj < α ≤ αj−1. (75)

It is obviously a special case of an IC and IR scheme. In order for LSEs to estimate

customers’ subscription to an IC and IR pricing scheme, they need to infer a distri-

bution of customer type f(α), determine the switching points αj, and then calculate

the numbers of customers subscribing to each contract. The switching point happens

when a type of customer is indifferent to two consequent contract offers. Theorem 1

implies that the utility function U(·) is continuous in α, which enables LSEs to find

the type α’s at switching points.

Corollary 3.1. The utility function U(·) is continuous in α, and at αj, we have

sj −D(ūj, αj) = sj+1 −D(ūj+1, αj). (76)

In terms of the distribution of type f(α), LSEs can start with some surveys or

pilot programs to get an initial subscription Nj to contracts (sj, ūj), j = 1, 2, · · · , l.

After finding the switching type points αj, LSEs can infer a distribution f(α) from

Nj. A distribution with l parameters can be inferred by l contracts (including no

subscription). For example, LSEs need 2 contracts in the survey to infer a normal

distribution of customer type. If LSEs offer N contracts, they are able to cover the

true type distribution, which allows LSEs to easily to compute the subscription N

for other contract offerings.

LSEs are also able to find how αj and Nj change with respect to sj. Denote

E(·) = ∂D/∂α, we have the following propositions. The derivations are given in

Appendix C.

Proposition 3.2. The increase in reward sj will have a positive effect on αj−1 but a
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negative effect on αj, for j = 1, 2, · · · ,m:

dαj
dsj

= − 1

E(ūj+1, αj)− E(ūj, αj)
< 0, (77)

dαj−1

dsj
=

1

E(ūj, αj−1)− E(ūj−1, αj−1)
> 0. (78)

Proposition 3.3. The increase in reward sj will have a positive effect on Nj but a

negative effect on Nj−1 and Nj+1, for j = 1, 2, · · · ,m− 1:

dNj

dsj
= N

[
f(αj−1)

E(ūj, αj−1)− E(ūj−1, αj−1)
+

f(αj)

E(ūj+1, αj)− E(ūj, αj)

]
> 0,(79)

dNj−1

dsj
= −N

[
f(αj−1)

E(ūj, αj−1)− E(ūj−1, αj−1)

]
< 0, (80)

dNj+1

dsj
= −N

[
f(αj)

E(ūj+1, αj)− E(ūj, αj)

]
< 0. (81)

For sm, its change only affects Nm and Nm−1:

dNm

dsm
= N

[
f(αm−1)

E(ūm, αm−1)− E(ūm−1, αm−1)

]
> 0, (82)

dNm−1

dsm
= −N

[
f(αm−1)

E(ūm, αm−1)− E(ūm−1, αm−1)

]
< 0. (83)

In addition, we compute the marginal utility for s and ū:

MUs = 1,MUū = −∂D
∂ū

< 0.

This indicates that ū is a “bad”, and its marginal utility is also diminishing. The

marginal rate of substitution is calculated as well:

MRS = −MUs
MUū

=
1

∂D/∂ū
> 0.

It decreases when ū increases, meaning that with a larger range of set-point adjust-

ment, a customer requires a higher rebate level to maintain his/her utility.

We consider a linear inverse discomfort function

d(ū, α) = ū+ α,
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Figure 14: Utility Indifference Curves

Then the utility function is given as follows:

U(s, ū) = s− 1

2
ū2 − αū,

where α ∈ [α, α] is the type of customers 2. Figure 14 plots several indifferent utility

curves with α = 5.

3.4 A Case Study

In this section, we perform a case study to illustrate how customers subscribe to

given TCL contracts, and how LSEs design a control law to meet their targets. At a

certain location, we assume a population of N = 4, 000 potential customers receiving

the contract offers. The type of customers α is drawn uniformly from [1, 75]. We

assume their thermostats are homogeneous with parameters in Table 9. Initially,

2In general, LSEs can specify a parametric form of the discomfort function and the utility function,
then infer the parameters from customers’ feedback through pilot programs. The resulting utility
function is more realistic in reflecting customers’ tradeoff between bearing discomfort and getting
rebates.
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Table 9: Thermostat Parameters

Ambient temp. Thermal capacitance Thermal resistance TCL’s rated power
θa C R P

32◦C 10kWh/◦C 2◦C/kW 14kW

Dead-band width Temp. set-point Electrical efficiency Damping coefficient
δ θ0 η σ

1◦C 21, 22, 23◦C 2.5 0.002 hr−1

Table 10: Contract Parameters

Regular rate Rebate I Rebate II Temp. change limit I Temp. change limit II
p̄ s1 s2 ū1 ū2

10¢/kWh 23¢ 45¢ 0.5◦C 1.5◦C

customers set their room temperature at three different levels, 21◦C, 22◦C, and 23◦C

with an equal probability. The average daily expenses on air-conditioning b = 480¢

in the steady state. We first study a case in which a LSE offers two rebate levels

to customers. The contract parameters are shown in Table 10. Customers who do

not subscribe to any of these contracts pay a fixed regular rate at 10¢/kWh for

power consumption, while participators in group I receive a fixed rebate payment

23¢/day, which is approximately 4.8% savings of the regular bills, and those in group

II receive 45¢/day, approximately 9.4% savings. With s1=23¢, s2 = 45¢, we obtain a

subscription, in which each customer maximizes the utility functions. The numbers

of customers subscribing to contract I and contract II are N1 = 135(3.4%), and

N2 = 2284(57.1%) respectively. And there are N0 = 1581(39.5%) customers who do

not participate.

We assume these customers consume wind power. We use the National Renew-

able Energy Laboratory (NREL) 10 minutes forecasting wind power data of 2006
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in Western U.S., and pick the wind power series on a typical day Feb. 26 as our

reference signal. This location in the power grid contains 10 wind turbines with ca-

pacity of 30MW. Time horizon of tracking is T = 24 (hours), and step size ∆t = 1/6

(10 minutes), matching the wind power forecasts. In the following subsection, we

apply MPC to solve a control problem with two different performance metrics. One

minimizes the electricity purchasing cost in the wholesale market (linear objective),

and the other minimizes the cost represented by the wind tracking errors (quadratic

objective). We compare the control strategy, tracking errors and total costs under

these two objectives. In MPC, we set prediction step Np = 7, control step Nc = 7,

and weight rw = 102 in the quadratic objective.

Linear versus Quadratic Objective under a Two Contracts Case

We generate the optimal output trajectory and the control signal for the linear

objective in Figure 15 and for the quadratic objective in Figure 16. The first plots in

both figures show TCLs versus wind power outputs versus the electricity wholesale

prices. The second plots show the tracking errors, and the third and fourth ones show

the control signals of manipulating the set-points of group I and II respectively. We

have several observations by comparing Figure 15 and Figure 16. 1) In Figure 15,

LSEs minimize the purchasing costs in the wholesale market due to wind shortage.

That is why the controlled loads tend to go below the wind power signal to avoid the

purchasing costs. In Figure 16, LSEs minimize the tracking errors plus the control

costs. We find that the resulting controlled loads tend to fluctuate near the wind

power signal to avoid large deviations from the tracking wind power. The total costs

which contain the lump sum rebate payments to customers and the purchasing costs

in the wholesale market are $1179.89/day for the linear objective and $1243.52/day

for the quadratic objective (5.39% higher). 2) When the electricity spot prices are

high from 5pm to 6pm on this day, the deviations of TCLs from wind power are small

in both cases to avoid the high costs during peak hours. The loads are compensated
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Figure 15: Controlled Loads v.s. Wind Power (Linear)

an hour ago when the prices are low. 3) The maximum error in Figure 16 is higher

than it in Figure 15, 3.33 MW versus 2.44 MW. But fortunately, it is negative in

Figure 16 , implying no purchases. 4) In Figure 15, both groups reach their set-

points change upper limits during 3pm-5pm to lower the aggregated load, while in

Figure 16, the second group never reaches their control limits. This is because LSEs

also consider the cost of set-points change (stand for customers’ discomfort) in the

quadratic objective. We list several statistics in Table 11 and Table 12. Figure 17

plots the power outputs of group I and II respectively for the linear objective. The

outputs of two groups tend to offset each other to achieve the desired trajectory of

the wind power signal.
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Figure 16: Controlled Loads v.s. Wind Power (Quadratic)

Table 11: Tracking Performance (Linear)

Max Err. (MW) Percent Err Min NRMSE (MW) Max NRMSE (MW)
2.44 37% 6% 10%

Rebate ($/day) Buying Cost ($/day) Total Cost ($/day) Control Cost
1058.85 121.04 1179.89 1.24E8

Table 12: Tracking Performance (Quadratic)

Max Err. (MW) Percent Err Min NRMSE (MW) Max NRMSE (MW)
3.33 35% 8% 13%

Rebate ($/day) Buying Cost ($/day) Total Cost ($/day) Control Cost
1058.85 184.67 1243.52 7.61E7
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Figure 17: Controlled Loads of Two Groups

Three Levels of Contract Offers

We also investigate the performance under the linear objective with more contract

offerings. We assume the LSE adds an extra contract offer at s3 = 50¢, ū3 = 1.2◦C.

The participation becomes N1 = 135, N2 = 1046, N3 = 1238, and N0 = 1581. The

performance statistics are given in Table 13. We find that all four metrics of tracking

errors are reduced, and it follows the buying costs from the wholesale market is 30.57%

lower after introducing a higher rebate level contract. This is because the optimal

control strategy under two contracts is always a feasible strategy under extra contract

levels. This implies that LSEs can offer more levels of rebate to attract customers in

order to create more control flexibility and to further mitigate the mismatch between

the controlled loads and the renewable outputs. It is very important especially during

extreme events, e.g., very low level of renewable supply. However, LSEs need to pay

more to customers as the number of contracts increases. They pay this extra portion
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Table 13: Tracking Performance (3 Contracts)

Max Err. (MW) Percent Err Min NRMSE (MW) Max NRMSE (MW)
1.64 23% 4% 7%

Rebate ($/day) Buying Cost ($/day) Total Cost ($/day) Control Cost
1120.75 84.08 1204.83 2.61E8

of money aiming to reduce the risks (uncertainties in renewables). It is worth doing

because during such extreme events, the cost of generating power is very high. LSEs

can hedge against the risks of renewables by paying this fixed and pre-determined

amount of money.

Local Optimum of Rebate Levels

The above analysis shows given contract rebate levels, how customers choose and

how LSEs come up with a control law to achieve desired targets. In this subsection,

we study how to obtain a set of optimal rebate levels by solving a two-stage stochastic

programming problem (55)-(56). For one year NREL wind power data, if we bootstrap

a bunch of samples directly, we lose the seasonal patterns. We treat the wind power

series as 365 sample curves, each with 144 data points, and then apply block bootstrap

to handle this two dimensional data. We pick 100 sample wind power curves and use

the sample average approximation to derive a control law for each scenario. Then

in the two constracts example, we apply a random search within s1 ∈ [15, 30]¢/day

and s2 ∈ [35, 55]¢/day. After 39 iterations, we obtain a local optimal rebate level

s1 = 23¢/day and s2 = 45¢/day. By offering these levels of rebate to customers, LSEs

apply MPC to derive the control law when the wind and price processes are realized,

as we did above. We find that customers subscribed to group II (57.1%) is much higher

than those of group I (3.4%). LSEs design contracts to encourage more customers to

choose higher temperature adjustment ranges, so that LSEs become easier to reduce

the loads when wind power supply is extreme low and avoid purchasing in the spot
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market.

Finally, we investigate how contract parameters (s, ū) affect the subscription, the

lump sume payment, the purchasing cost and the total cost. We perform the following

sensitivity analysis.

Change the Rebate of Group I (s1)

We fix the set-point manipulation limits ū and the rebate s2 at 45¢/day, but vary

the rebate of group I, s1, from 26¢/day to 30¢/day. The upper chart in Figure 18

illustrates the change of customers subscription versus the change of rebate s1. We

find that one unit increase in rabate s1 causes 108 customers who opt-out initially

will choose contract I, and causes 108 customers switch from contract II to contract I.

The lower left plot in Figure 18 illustrates the change of the rebate payment and the

buying cost versus the rebate level of contract I. As the rebate of group I increases,

the aggregated rebate payment almost increases linearly, and the marginal payment

is at around $20/day. However, the buying cost in the spot market decreases at

the beginning and then increases. The lower right plot in Figure 18 illustrates the

expected total cost with respect to different levels of rebate s1. The lowest total cost

happens at s1 =27¢/day. The largest marginal cost is $312.01/day and the smallest

marginal cost is $28.97/day. The 90% cut off of root mean squared error (RMSE)

normalized by the mean power output is 5.42%, meaning that LSEs are 90% confident

that the RMSE of tracking the wind power outputs is lower than 5.42%.

Change the Rebate of Group II (s2)

Then we fix the set-point manipulation limits ū and the rebate s1 at 27¢/day, but

change the rebate of group II s1 from 43¢/day to 47¢/day. In the upper chart of

Figure 19, we show the change of customers subscription versus the change of rebate

s2. We note that one unit increase in rabate s2 causes 108 customers switch from

contract I to contract II. In the lower left plot of Figure 19, we show the change of

the rebate payment and the buying cost change versus the rebate level of contract II.
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Figure 18: Customers Participation (Upper), Rebates to Customers/Purchasing Cost
(Lower Left), and Total Cost (Lower Right) v.s. Rebate Level of Group I

As the rebate of group II increases, the aggregates rebate payment almost increases

linearly, and the marginal payment is at around $38/day. However, the buying cost

in the spot market tends to decrease. In the lower right plot in Figure 19, we show

the expected total cost with respect to different levels of rebate s2. It achieves the

lowest total cost at s2 =45¢/day. The largest marginal cost is $162.60/day and the

smallest marginal cost is $19.16/day. The 90% cut off of RMSE normalized by the

mean power output is also 5.42%.

We find that the total cost is more sensitive to the high rebate level (s2) than

to the low rebate level (s1). This is because high rebate group offers more flexible

to LSEs in controlling the loads and LSEs become easier to reduce the total cost.

The customers’ subscription is more sensitive to the low rebate level than to the high

rebate level. This is because the change in the low rebate turns those who opt-out of
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Figure 19: Customers Participation (Upper), Rebates to Customers/Purchasing Cost
(Lower Left), and Total Cost (Lower Right) v.s. Rebate Level of Group II
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contracts to opt-in.

Change of Setpoint Limits

We also investigate how change in the set-point manipulation limits affect the

control. We fix the rebate levels at s1 = 27¢ and s2 = 45¢, but vary the setpoint limits

of group I, ū1 in [0.3, 0.7] degree and then vary that of group II, ū2 in [0.8, 1.2] degree.

The upper charts in Figure 20 and 21 show the change of customers subscription

versus the change of manipulation limits. We find that one tenth unit increases in

ū1 causes approximately 1000 customers opt-out from group I, and one tenth unit

increases in ū2 causes approximately 400 customers opt-out from group II. The lower

left plots in Figure 20 and 21 show the rebate payments decrease as the manipulation

limits increase. This is also because customers opt-out of the their subscription,

i.e. the number of participating customers decreases follows the payments decrease.

In Figure 20, the increase in group I’s set-point reduces the buying cost, because it

increases the size of group II and hence adds the control flexibility. However, in Figure

21, the increase in group II’s set-point raises the buying cost, because it reduces the

size of group II and hence reduces the control flexibility.

3.5 Conclusion

In this chapter, we propose an incentive-based demand response contract design for

TCLs to absorb the variability of renewable energy production in a smart grid. LSEs

offer different levels of reward and temperature set-points adjustment range for cus-

tomers to choose from. In this way, LSEs separate customers into several control

groups according to their types. Each group offers different degree of directly con-

trol ability to LSEs via programmable thermostats. As long as the contracts are

IC and IR, customers decide whether to subscribe and which contract to subscribe

to depending on their utility functions, which measure a tradeoff between bearing
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Figure 20: Customers Participation (Upper), Rebates to Customers/Purchasing Cost
(Lower Left), and Total Cost (Lower Right) v.s. Set-Point Limit of Group I
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Figure 21: Customers Participation (Upper), Rebates to Customers/Purchasing Cost
(Lower Left), and Total Cost (Lower Right) v.s. Set-Point Limit of Group II
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discomfort and getting rebates. LSEs then observe the customers’ subscription, and

design an optimal control law to meet their targets. We discuss two performance

metrics: minimizing the cost of integrating the renewable energy outputs, and mini-

mizing the tracking errors. We apply MPC to solve for the optimal control signal due

to its nice features. It handles inequality constraints easily, and it only requires one

step ahead forecasting of the wind power signal. We formulate a two-stage stochastic

programming to find the optimal rebate levels which minimize the total cost among

different scenarios.

Through the analysis, we show this contract design mechanism is a very flexible

and effective way for LSEs to mitigate the variability of renewable energy resources

in the smart grid environment. 1) It greatly increases the availability of customers’

TCLs to LSEs, which is essential to reduce the loads as well as the costs during

extreme events, e.g., wind power production is very low. LSEs can easily change the

subscription distribution by means of varying the contract parameters. Or they can

add extra contract offerings to exploit more potentials of accessing TCLs. 2) LSEs

can infer customer types and estimate the subscription distribution to an IC and IR

pricing scheme. 3) The local optimal rebate levels suggest LSEs to encourage more

customers to choose large set-points manipulation ranges. This creates more demand

flexibility and lower costs of integrating renewables. 4) This mechanism also obtains a

90% confidence cut for LSEs to understand the NRMSE of tracking renewable signals

among all scenarios. 5) The total cost is more sensitive to high rebate levels, but the

customers subscription is more sensitive to low rebate levels. As a result, LSEs need

to be careful when varying the contract parameters. However, the optimal contract

design depends on the choice of customers’ utility functions and the distribution of

customer types. These information may take LSEs several rounds of pilot problems

to find out. The global optimal contract parameters are also hard to find. We left all

these issues in a future study.
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CHAPTER IV

CARBON EMISSION PERMIT PRICE VOLATILITY

REDUCTION VIA FINANCIAL OPTIONS

4.1 Introduction

Cap-and-trade mechanisms are market-based approaches to control pollution. They

are used to reduce greenhouse gas emissions in the European Union under the Kyoto

Protocol, as well as under the Regional Greenhouse Gas Initiative (RGGI) in ten

U.S. states, building on the cap-and-trade experience of US SO2 and NOx reduction

policies (Napolitano et al. [75]). Allowance trading rewards efficient energy produc-

tion/consumption and motivates emissions reductions. Thus, cap-and-trade programs

provide flexibility to energy producers and consumers in designing their own compli-

ance strategy while ensuring that the overall emissions reductions are achieved, as

discussed in [2, 86, 90, 13, 40]. A comprehensive review of emission cap-and-trade

mechanism can be found in [6].

The concept of cap-and-trade was first introduced by Dales [29]. He showed that

emission trading is able to achieve the emission reduction targets at the lowest social

cost, when the marginal abatement cost is the same among all regulated polluters.

Montgomery [73] formalized this result. He proposed a static and deterministic model

showing that there exists an equilibrium in a competitive permit market without

transaction costs. Based upon this work, numerous studies on modeling the emission

permit markets have been conducted. Researchers have extended the model of permit

prices to dynamic frameworks as well as stochastic settings. Tietenberg [89] and

Cronshaw and Kruse [28] developed a discrete-time deterministic model with banking

and borrowing allowed. In their models, the permit price rises at the rate of interest.
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Rubin [80] further extended the results to a continuous time setting. Furthermore, he

obtained that if borrowing is restricted, the growth rate of the marginal abatement

cost and the permit price is less than the rate of interest. Schennach [81] explored

the consequences of constraints on borrowing. She also attempted to incorporate

random emissions into modeling the permit price dynamic. She showed that the

expected permit prices grow at the discount rate when the constraint on borrowing is

not binding, while the expected prices will rise less than the discount rate when the

constraint is binding. The same results were proved in Newell [76] under a stochastic

model, and they also showed the cap-and-trade system with banking and borrowing

would be largely equivalent to an emissions tax system.

Under a stochastic model of permit markets, it is important to understand not

only the path of the expected permit prices, but also its variation from the expected

price levels. That means the control of price volatility is a key to design efficient cap-

and-trade programs. The issue of permit price volatility has also been investigated in

the literature. For example, Celebi and Graves [18] estimated a standard deviation of

50% or more for CO2 price per year in the U.S. under Americas Climate Security Act

proposed by Lieberman and Warner in 2007. As it is argued that a cap-and-trade

market mechanism for carbon may offer stronger incentives for carbon reduction tech-

nology investment (e.g., [21]), high volatility in CO2 price could discourage and delay

investment in the CO2 abatement technologies needed to achieve large reductions in

carbon emissions.

We contribute to the body of knowledge on the design of mechanisms for reducing

carbon permit price volatility by examining the role of trading permit options in in-

fluencing the permit price volatility and its implications on carbon emission reduction

policy design. Specifically, we show that the trading of properly designed financial

options on carbon permits can prevent excessive price volatility in the spot market

for permits and reduce overall carbon emission reduction costs.
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Several approaches have been proposed to address the price volatility issue in

carbon emission trading. Jacoby and Ellerman [58] proposed a safety valve mechanism

which includes a slowly evolving price floor and ceiling. They mentioned that this

mechanism does reduce price volatility, however, a low price ceiling can lead to extra

emissions. As we reviewed, banking is well studied in smoothing permit prices and

lowering costs. However, Fell et al. [42] showed that the price volatility remains

large with the persistence of baseline emissions shocks. They suggested there may

still be motivation for considering price mechanisms in addition to banking. Other

authors also addressed the controls of price and price volatility with bankable permits.

Maeda [68] studied the linkage between the spot price and the future price of bankable

permits. He showed that an increase in the uncertainty in future prices would first

lower the spot price and then cause an increase in spot price with the futures price

volatility getting too high. He also studied how future spot volatility may affect the

current spot level and the banking behavior. Empirically, Alberola [1] showed that

the low European Union Allowance (EUA) spot price during Phase I (2005-2007)

was partially due to the unlimited intra-period banking and restricted inter-period

banking between Phase I and II. The intra-period banking can increase the abatement

and spot price in the early phase of a program, but can knock them down at the

end of the same period. Seifert et al. [83] showed the price volatility in EU ETS

increases when it comes closer to the end of the Phases, while, at the same time, it

decreases when the price is close to its bounds. Carmona et al. [16] also showed that

this phenomenon is a general result of cap and trade systems without inter-period

banking. When inter-period banking is now allowed, Hitzemann and Uhrig-Homburg

[53] found that the price of allowances and its volatility depend on upcoming Phases,

and identify that each additional Phase leads to an additional component in the

current price. Although these studies conclude that banking is able to stabilize the

expected permit price level, price variability may remain large. How banking or other
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mechanisms may affect the future spot volatility needs further study.

It is well-known from the finance literature that, in a world with complete markets,

symmetric information, and no transaction costs, the trading of financial options

would have no effect on their underlying assets. However, as most financial markets

including carbon permit markets are inherently incomplete and prone to asymmetric

information, options can affect their underlying assets in various aspects. In a setting

with incomplete markets and transaction costs, Grossman [47] showed the trading

of options may indeed affect the price volatility of the underlying assets. In the

financial equity markets, research indicates that the magnitude of reduction in the

price volatility of underlying assets following the introduction of their options’ trading

ranges from 4% to 20% [24, 4, 84, 30]. In the commodity markets, for example, the

crude oil market, Fleming and Ostdiek [44] found that deep and liquid future markets

may reduce the volatility of the underlying market. And the introduction of crude oil

options and other energy derivatives has little effect on increasing the price volatility,

because they gradually complete the market.

Carbon futures and options are actively traded in the European Emission Trading

Scheme (EU ETS), and European Union Allowance (EUA) and Certified Emission Re-

duction (CER) futures and options are also traded through NYMEX, Nasdaq OMX,

and ICE platform in the United States. Leconte and Pagano [63] argued that in the

European carbon market, insufficient market regulation drove the market to deviate

from its critical functions of price discovery and risk transfer. To ensure a properly

functioning derivative market, they as well as Grüll and Taschini [48] suggested a

range of actions, such as screening of market participants.

In this chapter, in the context of a properly functioning derivative market, we

investigate the trading of financial options on CO2 permits as an alternative approach

for carbon permit price volatility reduction. For emissions permits markets, several

papers: [22, 32, 51, 59] have studied options pricing on emission allowances. And
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Kijima et al. [59] also showed that price spikes can be reduced with banking. Grüll

and Taschini [48] showed that popular price control mechanisms, such as price floor,

price collar and allowance reserve, can be replicated by an ordinary scheme with

European and American options. This implies that options are efficient and sufficient

in permit price management, and their results also hold when banking is allowed.

Recently, Chevallier et al. [23] completed an empirical study on the effect of the

introduction of options on emission permit price volatility based on data collected

from EU ETS. They suggested that the introduction of options may decrease the

volatility level of emission permits. However, they did not investigate the mechanism

behind this effect in detail. Through a stylized model, this chapter demonstrates

that introducing financial options on emission permits increases the price elasticity of

demand. We find that the existence of financial options reduces the spot price level,

the price volatility of CO2 permits, and the total cost of achieving emission limits. We

also show that the financial option approach works more effectively in a system with

banking than in a system without banking. In contrast to the price ceiling approach,

the options approach does not result in extra emissions. Furthermore, the existence

of option markets enable the regulated sources to hedge the uncertainty of future spot

prices and stimulates investment in carbon emission abatement technologies.

The reminder of the chapter is organized as follows. We formulate a two-compliance-

time model of a carbon cap and trade system without controls or financial instruments

in Section 2. Then we analyze the effect of the following four approaches to price

volatility reduction: 1) safety valve, 2) banking/borrowing, 3) financial options, and

4) financial options in a bankable system in Section 3. We follow up with a numerical

example for illustration. Finally, we conclude that financial options are potentially

effective tools in emission permit price volatility reduction.
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4.2 A Two-compliance-time Model

We consider a model in which there are only two compliance times, the present time

(t = 0) and the future time (t = 1). Carbon permits can be traded in the spot market

at both times. In this base case model, we assume that there are N regulated sources

in the system1. For each source i, i = 1, · · · , N , the business-as-usual emissions

at time t are denoted as ei,t, and the allocated emission allowances at time t are

denoted as ai,t. We denote Pt as the spot price at time t and Ci,t = Ci,t(qi,t) as

the cost function of achieving emissions reduction qi,t for source i at time t. Some

papers [16, 52] model these costs explicitly; here we use a stylized model to focus

on the price volatility issue. We assume that the emission allowances are initially

allocated freely. And business-as-usual emission for time 1, ei,1, is uncertain at time

0, which is drawn from a probability space (Ω,F ,P) with mean µi,1 and variance

σ2
i,1. This also determines the uncertainty of the spot price P1 at time 0. Usually the

business-as-usual emissions of different emission sources, for example, power plants,

are driven by some common factors, so we assume ei,1 and ej,1 are correlated to each

other with correlation ρij for any i, j = 1, · · · , N . We also impose a condition that

the regulator always allocates less allowances to the individual emitters than their

expected business-as-usual emissions, i.e., ai,1 < µi,1, i = 1, · · · , N , to ensure the

positive expectations of spot prices.

From the perspective of regulators, the policy goal is to achieve the desired car-

bon emissions reductions with the lowest costs to the regulated sources during each

compliance period. All regulated sources will equate marginal costs with the permit

price, which results in lower marginal cost sources to increase their abatement levels

relative to others. In this case, the above problem of the regulators can be formulated

1In later sections, we extend this model to include unregulated sources which play a role of
supplying financial options. In the base case model, there are no banking and no financial instruments
involved.
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as follows:

min
qi,t

N∑
i=1

Ci,t(qi,t)

s.t.
N∑
i=1

qi,t =
N∑
i=1

[ei,t − ai,t], t = 0, 1. (84)

The solution to problem (84) implies the lowest social cost for required emissions

reductions.

However, from the perspective of emission sources, the goal is to minimize their

individual costs. Specifically, at time 1, for any realized spot price P1(ω), ω ∈ Ω, each

source would like to reduce qi,1(ω) emissions such that P1(ω) is equal to its marginal

cost, i.e.

P1(ω) = C
′

i,1(qi,1(ω)), i = 1, · · · , N. (85)

Here, each source is assumed to be a price taker. If each emission source acts in

this way, the outcome is equivalent to the first best solution in problem (84). For

simplicity, we assume that the cost function of each source is quadratic: Ci,t(qi,t) =

1
2
ci,tq

2
i,t, i = 1, · · · , N , where ci,t > 0 represents the ability in emissions reductions at

time t. Then the spot price P1 can be determined by imposing the following market

clearing condition:

N∑
i=1

qi,1(ω) =
N∑
i=1

[ei,1(ω)− ai,1], ω ∈ Ω. (86)

Since everything at time 0 is known, the market clearing condition at time 0 is

similarly written as:
N∑
i=1

qi,0 =
N∑
i=1

[ei,0 − ai,0]. (87)

By applying equation (85), we have the spot price at time 0 and time 1 as:

P0 =

∑N
i=1[ei,0 − ai,0]∑N

i=1 c
−1
i,0

, P1(ω) =

∑N
i=1[ei,1(ω)− ai,1]∑N

i=1 c
−1
i,1

, (88)

and the minimized total costs of achieving ai,0 and ai,1 are:

TCi,0 = P0[(ei,0 − qi,0)− ai,0] + Ci,0(qi,0), (89)
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Figure 22: Market Equilibrium in the Base Case

TCi,1(ω) = P1(ω)[(ei,1(ω)− qi,1(ω))− ai,1] + Ci,1(qi,1(ω)). (90)

Figure 22 illustrates the market equilibrium at time 1 in this case. In this figure,

D1(ω) =
∑N

i=1[ei,1(ω) − ai,1] stands for the net demand of required emissions reduc-

tions at time 1, which is random. S1 is the aggregate supply curve at time 1, which

is equivalent to the aggregate marginal cost curve,
∑N

i=1 qi,1(ω)/
∑N

i=1 c
−1
i,1 = P1(ω).

The intersection of them determines the carbon permit price at time 1, P1(ω), and

the total actual emissions reductions at time 1, Q1(ω). These notations will be used

in the subsequent figures.

For simplicity, we consider that these N regulated sources are symmetric, i.e., ei,1

are independent and identically distributed (i.i.d.). So we omit the subscript i in our

notation and obtain the following expressions:

P0 = c0(e0 − a0), (91)

E[P1] = c1(µ1 − a1), V ar[P1] =
c2

1σ
2
1

N
, (92)
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TC = TC0 +
1

1 + r
E[TC1]

=
c0(e0 − a0)2

2
+

1

1 + r

[
c1(µ1 − a1)2

2
+
c1σ

2
1

2N

]
. (93)

We find that the variance of carbon permit prices or the price volatility decreases

as N becomes larger. This means the uncertainty in business-as-usual emissions and

spot prices can be offset as N increases due to the law of large numbers. We also

calculate dTC/dc1, which equals

1

1 + r

[
(µ1 − a1)2

2
+

σ2
1

2N

]
> 0. (94)

This implies that an increase in the ability to reduce emissions will definitely reduce

the total discounted cost of achieving the emission limits. Regulated sources have

an incentive to invest in carbon abatement technology in the case that the marginal

cost for reducing c1 is less than dTC/dc1. In the subsequent sections, these above

expressions are used as a benchmark for comparison of different volatility reduction

approaches. We summarize the expressions in Table 16 at the end of Section 4 to

facilitate the comparison.

4.3 Price Volatility Reduction via Different Approaches

In this section, we study different approaches to permit price volatility reduction in

the framework of the above two-compliance-time model. We analyze the following

four schemes: 1) safety valve, 2) banking/borrowing, 3) financial options, and 4)

financial options in a bankable system, and we also compare their performance.

4.3.1 A Safety Valve Approach

First, we look at the safety valve approach. A safety valve refers to a price limit

for confining the spot price to a desired range. With this approach, the regulator

puts a floor P and a ceiling P on the spot price. When the spot price exceeds

the price ceiling, market buyers can purchase products from the government at this
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Figure 23: Market Equilibrium in the Safety Valve Case

regulated ceiling. When the spot price falls below the price floor, market sellers can

sell products to the government at this floor. In this case, the spot price at time

1, P v
1 (ω) = P ∨ P1(ω) ∧ P . This does reduce the variance or the volatility of the

spot price, while the change of its expected value depends on the choice of the floor

P and the ceiling P . However, if a price ceiling is imposed, an imbalance between

supply and demand may occur. In a carbon emission market, when the spot price

is higher than P , the regulator needs to issue new allowances of carbon emissions to

buyers at the price ceiling in order to compensate for the supply shortage, resulting

in emissions above the policy target. Figure 23 illustrates the market equilibrium at

time 1 in the safety valve case. When the price ceiling P is lower than the equilibrium

price, the supply curve determines the corresponding total emissions reductions Q1.

The difference between Q1 and Q1(ω) is shown by the shortage.

4.3.2 Banking and Borrowing Approach

The second approach we discuss is a banking and borrowing mechanism. When

banking is allowed, the regulated sources are able to hold their unused allowances for

the future compliance period usage, or even purchase allowances from the current spot
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market and hold them to hedge against a high future spot price. When borrowing is

allowed, the emitters can use the future allowances to cover a shortage in the current

period, or even sell them in the current spot market to hedge against a decline in the

future spot price. This provides a linkage between the current spot and the future

spot. In our two-compliance-time model, each source i can bank or borrow allowances

Bi,0 at time 0. Bi,0 > 0 corresponds to banking, while Bi,0 < 0 represents borrowing.

Then the market clearing conditions at time 0 and time 1 are written as:

N∑
i=1

qi,0 =
N∑
i=1

[ei,0 − ai,0 +Bi,0], (95)

N∑
i=1

qi,1(ω) =
N∑
i=1

[ei,1(ω)− ai,1 −Bi,0], ω ∈ Ω. (96)

By equation (85), we have the spot price at time 0 and time 1 as

P b
0 =

∑N
i=1[ei,0 − ai,0 +Bi,0]∑N

i=1 c
−1
i,0

, P b
1 (ω) =

∑N
i=1[ei,1(ω)− ai,1 −Bi,0]∑N

i=1 c
−1
i,1

. (97)

The total costs of achieving ai,0 and ai,1 are

TCb
i,0 = P b

0 [(ei,0 − qi,0)− ai,0 +Bi,0] + Ci,0(qi,0), (98)

TCb
i,1(ω) = P b

1 (ω)[(ei,1(ω)− qi,1(ω))− ai,1 −Bi,0] + Ci,1(qi,1(ω)). (99)

Comparing equation (97) with equation (88), we note when
∑N

i=1Bi,0 > 0, P b
0 in-

creases and E[P b
1 ] decreases but V ar[P b

1 ] does not change. This implies banking is

able to stabilize the spot price process with the variance or volatility unchanged. The

regulators can reduce the price difference between time 0 and time 1 by bankable

permits. The left panel of Figure 24 plots the market equilibrium at time 0 in the

banking case. It shows that positive net banking B =
∑N

i=1Bi,0 increases the demand

for emissions reductions from D0 to Db
0, and consequently raises the price level at time

0. The right panel of Figure 24 plots the market equilibrium at time 1. It shows that

positive net banking B decreases the demand for emissions reductions from D1(ω)

to Db
1(ω) at time 1, so that the demand curve shifts towards the left. This parallel
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Figure 24: Market Equilibrium in the Banking Case at Time 0 (Left) and at Time
1 (Right)

shifting leads to the decrease in the expected equilibrium price while the variance of

the price remains unchanged. We also note in Figure 24 that the price difference be-

tween time 0 and time 1 with banking (∆P b) is smaller than the one without banking

(∆P ).

In order to determine the optimal amount of banking/borrowing B∗i,0, we assume

each source i needs to minimize the following total discounted cost:

TCb
i = TCb

i,0 +
1

1 + r
E[TCb

i,1], i = 1, · · · , N, (100)

where r is the interest rate, and that they make decisions independently and at the

same time. This is a game with N players on the amount of Bi,0. To find the

Nash equilibrium of this game, we first solve the best response functions of these

players by taking the first order condition to (100). We have the following for each i,

i = 1, · · · , N ,

(ei,0 − ai,0 +Bi,0) +
∑N

i=1[ei,0 − ai,0 +Bi,0]∑N
i=1 c

−1
i,0

− c−1
i,0

∑N
i=1[ei,0 − ai,0 +Bi,0]

(
∑N

i=1 c
−1
i,0 )2

− 1

1 + r

[
(µi,1 − ai,1 −Bi,0) +

∑N
i=1[µi,1 − ai,1 −Bi,0]∑N

i=1 c
−1
i,1

− c−1
i,1

∑N
i=1[µi,1 − ai,1 −Bi,0]

(
∑N

i=1 c
−1
i,1 )2

]
= 0. (101)
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By summing up (101) in i from 1 to N , we are able to obtain
∑N

i=1B
∗
i,0 as:

N∑
i=1

B∗i,0 =

∑N
i=1(µi,1 − ai,1)/

∑N
i=1 c

−1
i,1 − (1 + r)

∑N
i=1(ei,0 − ai,0)/

∑N
i=1 c

−1
i,0

(1 + r)/
∑N

i=1 c
−1
i,0 + 1/

∑N
i=1 c

−1
i,1

. (102)

The Nash equilibrium (B∗1,0, B
∗
2,0, · · · , B∗N,0) can be obtained by plugging (102) into

best response functions (101).

In order to study the implications of a banking mechanism, we consider the sim-

plified symmetric case. We obtain the following:

P b
0 = c0(e0 − a0 +B0), (103)

E[P b
1 ] = c1(µ1 − a1 −B0), V ar[P b

1 ] =
c2

1σ
2
1

N
. (104)

Comparing equations (103) (104) with equations (91) (92), we note when B0 > 0,

P b
0 increases and E[P b

1 ] decreases, meaning that banking is able to stabilize the spot

price process with the variance or volatility unchanged.

In this case, the total discounted cost in (100) is simplified as:

TCb = TCb
0 +

1

1 + r
E[TCb

1]

=
c0(e0 − a0 +B0)2

2
+

1

1 + r

[
c1(µ1 − a1 −B0)2

2
+
c1σ

2
1

2N

]
, (105)

where r is the interest rate. We also simplify equations (101) and (102) to get the

explicit form of the optimal amount B∗0 for each source,

B∗0 =
c1(µ1 − a1)− c0(1 + r)(e0 − a0)

c0(1 + r) + c1

. (106)

To ensure B∗0 > 0, equation (106) is rewritten as:

µ1 − a1

e0 − a0

>
(1 + r)c0

c1

, (107)

implying that the regulator needs to impose a cap a1 such that the ratio of carbon

emissions reductions at time 1 to those at time 0 is greater than (1+r)c0/c1, in which

case the price difference of carbon permits between time 0 and 1 is reduced.
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The effect of emissions reduction potential on the total discounted cost, dTCb∗/dc1

is given by:

dTCb∗

dc1

=
1

1 + r

[
(µ1 − a1 −B∗0)2

2
+

σ2
1

2N

]
> 0, (108)

This shows that the increase in emissions reduction potential will definitely reduce

the total discounted cost of achieving the emission limits. But compared with equa-

tion (94), as long as the regulator chooses B∗0 > 0 to stabilize the price, we have

dTCb∗/dc1 < dTC/dc1, meaning that the regulated sources do not have more incen-

tive to invest in carbon abatement technology than in the base case. This is because

investment in carbon abatement technology is the only way to reduce the total dis-

counted cost in the base case, while in the banking case, the bankable permits offset

the cost reduction benefits of increasing carbon emissions reduction potential. More-

over, the banked allowances will be used in the following compliance period, which

means there are no extra emission allowances issued in a whole control period. Fur-

thermore, as B∗0 minimizes TCb, while the total discounted cost in the base case

equals TCb when setting B0 = 0, we conclude the total discounted cost of achieving

the emission target is reduced when banking and borrowing are allowed compared

with the base case. Finally, we plug B∗0 into equation (103) and (104), and obtain:

P b∗
0 =

c0c1(e0 − a0 + µ1 − a1)

c0(1 + r) + c1

(109)

E[P b∗
1 ] =

c0c1(1 + r)(e0 − a0 + µ1 − a1)

c0(1 + r) + c1

= (1 + r)P b∗
0 . (110)

We find that expected permit prices rise at the interest rate, which is consistent with

the result obtained in [76].

Based on all the calculations above, we summarize the findings in the following

propositions.

Proposition 4.1 (Banking only). For symmetric regulated emitters, if the ratio of

carbon emissions reductions at time 1 to those at time 0 is greater than (1 + r)c0/c1,
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the emitters will bank permits for future usage, i.e., the optimal banking/borrowing

B∗0 is positive. This stabilizes the spot price process with the variance or volatility

unchanged.

Remark: If the marginal cost is not linear, but a general convex function, banking

is able to reduce the price volatility.

Proposition 4.2 (Banking only). For symmetric regulated emitters, if the ratio of

carbon emissions reductions at time 1 to those at time 0 is greater than (1 + r)c0/c1,

the change of total discounted cost with respect to carbon abatement ability is less

than in the base case, and the total discounted cost of achieving required emissions

reductions is always less than in the base case.

4.3.3 Financial Options Approach

In this section, we investigate a financial options approach for reducing carbon price

volatility. A call option on a carbon emission permit gives the holder the right but

not obligation to purchase the underlying permit at the predetermined strike price

in a pre-specified maturity time. This offers a way to hedge the risk of high future

permit prices.

In the financial equity markets, researchers suggest that there are several reasons

why volatility reduction in a stock price return can be expected following the intro-

duction of trading of derivatives on the stock. In the context of futures contracts,

Stein [87] showed that volatility reduction can be achieved when the benefit of risk

sharing by the derivative securities outweighs the possible volatility-increasing effect

due to speculative trading. For options markets, both improved risk-sharing (in the

case of options extending the hedging contingency set) and the lowered transaction

costs (due to leverage offered by options) attract more informed trading activities

in the options markets, making the underlying price reflect more information about

the underlying assets [15]. This improves information sharing and reduces the risk

90



of investing in the underlying assets, and in turn tends to raise the underlying asset

prices and make them less volatile [24, 79].

Augmenting the base-case model, we introduce markets for trading carbon permit

call options. We assume that carbon permit options with all strike prices are traded

and there exist M unregulated sources participating in the emission options markets.

These unregulated sources could be companies which can provide carbon offsets that

meet verification requirements of the market regulator. At time 0, options are traded

among these regulated and unregulated sources, and the maturity of these options is

time 1.

We consider an option instrument written on carbon emission permits which has

a payoff defined as that of a portfolio of call options on carbon permits with strike

price spanning all possible permit price levels (a bundle of call options with strike

prices uniformly distributed from zero to a large price cap). We term it as an option

bundle, or a bundle (the use of such options in the context of electricity reserve

capacity market was proposed in [20]). If a market participant purchases a bundle at

time 0, then, as P1 gets higher, the holder will exercise more call options (those with

strikes lower than P1) at time 1, that is, the number of permits settled via options

at time 1 are positively correlated to the spot price P1. Here we simply assume one

permit can be purchased from exercising the option bundle at each strike price level2.

At time 1, the permits settled via options equals
∫ P1

0
dP = P1 for such a bundle, and

the payoff of this bundle is
∫ P1

0
PdP = 1

2
P 2

1 . We denote θi and γj as the number

of bundles purchased or sold by regulated source i and unregulated source j, where

i = 1, · · · , N and j = 1, · · · ,M . Here the positive numbers correspond to buy and

the negative ones correspond to sell. The price of such a bundle is denoted as λ.

The regulated sources can be natural buyers of option contracts, because these

contracts offer them a way to hedge the risk of high permit prices at time 1. When

2This corresponds to a proportional factor with value 1 in ton2/$.

91



spot price P1 is realized at time 1, holding θi bundles of option portfolio allows them to

acquire θiP1 units of permits at cost 1
2
θiP

2
1 versus θiP

2
1 if purchasing in the spot market

directly. In addition, unregulated sources can be natural sellers in the option market.

For example, companies with carbon reducing capabilities can generate income by

selling option contracts and use this income for investment and development of their

carbon reducing technologies. We assume each source j has its own cost structure

for carbon abatement. In order to sequester or store q units of emissions, they are

assumed to pay 1
2
hjq

2, j = 1, · · · ,M . The unregulated sources with carbon reducing

potential can be viewed as if they own carbon permits. When option portfolios are

exercised, they do not need to buy from the spot market at price P1. Instead, they

use their facilities to reduce carbon emissions. Thus, the company j is willing to

participate as an option seller if the following condition is satisfied:

−1

2
γjP

2
1 ≥

1

2
hj(γjP1)2, j = 1, · · · ,M. (111)

This means that the benefits of settling −γjP1 units of emissions from options are

sufficient to cover the cost of reducing them. Then we have 0 ≤ −γj ≤ 1
hj

, j =

1, · · · ,M . Here γj is negative by definition, because these companies are selling

options. In this case, when hj is low enough, there will be sufficient sellers willing to

clear the option market.

The market clearing conditions for spot and options at time 0 are written as:

N∑
i=1

qi,0 =
N∑
i=1

[ei,0 − ai,0],
N∑
i=1

θi = −
M∑
j=1

γj. (112)

The market clearing condition for spot at time 1 is written as:

N∑
i=1

[qi,1(ω) + θiP
o
1 (ω)] =

N∑
i=1

[ei,1(ω)− ai,1], ω ∈ Ω. (113)

By equation (85), we have the spot price at time 0 and time 1 as

P o
0 =

∑N
i=1[ei,0 − ai,0]∑N

i=1 c
−1
i,0

, P o
1 (ω) =

∑N
i=1[ei,1(ω)− ai,1]∑N

i=1[c−1
i,1 + θi]

. (114)
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Figure 25: Market Equilibrium in the Financial Option Case (Left) and the Com-
bined Case (Right)

The total cost of achieving ai,0 and ai,1 are

TCo
i,0 = P o

0 [(ei,0 − qi,0)− ai,0] + λθi + Ci,0(qi,0), (115)

TCo
i,1(ω) = P o

1 (ω)[(ei,1(ω)− qi,1(ω))− ai,1]− 1

2
θiP

o2
1 (ω) + Ci,1(qi,1(ω)). (116)

Comparing equation (114) with equation (88), we note that when
∑N

i=1 θi > 0, both

E[P o
1 ] and V ar[P o

1 ] decrease. This implies that call options can reduce the spot price

level and the variance or volatility simultaneously. The left panel of Figure 25 plots

the market equilibrium at time 1 in the financial option case. It shows the positive

net purchase of call options Θ =
∑N

i=1 θi tilts the demand curve from D1(ω) to Do
1(ω),

i.e., increases the price elasticity of demand. The angle of tilting is tan−1 Θ and it

corresponds to ΘP o
1 (ω) units of emission permits settled via option purchase. This

non-parallel movement results in the reduction in both the expected equilibrium price

and the price volatility.

In order to determine the optimal amount of options θ∗i , we assume each source i

needs to minimize the following total discounted cost:

TCo
i = TCo

i,0 +
1

1 + r
E[TCo

i,1], i = 1, · · · , N, (117)
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where r is the interest rate, and each makes decisions independently and at the same

time. This is again a game with N players on the amount of θi. To find the Nash

equilibrium of this game, we first solve the best response functions of these players

by taking the first order condition to (117).

If one imposes the no-arbitrage condition on the price of this bundle of options,

λ becomes a function of θi, i = 1, · · · , N . We have

λ = λ(θ1, · · · , θN) =
1

1 + r
E[

1

2
P o2

1 ], (118)

which is the discounted expectation of the payoff at maturity. Then terms λθi and

1
1+r

E[1
2
θiP

o2
1 ] are cancelled in (117). From the first order condition, we have the

following for each i, i = 1, · · · , N

−
(µi,1 − ai,1)

∑N
i=1(µi,1 − ai,1) + σ2

i,1 +
∑

j 6=i ρijσi,1σj,1

[
∑N

i=1(c−1
i,1 + θi)]2

+
c−1
i,1 {[

∑N
i=1(µi,1 − ai,1)]2 +

∑N
i=1 σ

2
i,1 +

∑N
i=1

∑
j 6=i ρijσi,1σj,1}

[
∑N

i=1(c−1
i,1 + θi)]3

= 0. (119)

By summing up (119) for i from 1 to N , we are able to obtain
∑N

i=1 θ
∗
i = 0. This

means that if arbitrage opportunities are ruled out in the market, the regulated

sources’ aggregate purchase or selling of bundles of options are zero. This is because

such bundles of options can be replicated using spot permits at any price level. So, as

a whole, there is no difference between before and after introducing financial options.

However, if the price λ is assumed to be an exogenous parameter3, then the

participants in the option market are price takers, and λ is taken as a constant.

Discussion of pricing option contracts on tradable permits can be found in [32, 59, 19].

In this case, we can show the optimal choice of θi will also lead to arbitrage free in

the market. From the first order condition to equation (117), we have the following

3One justification for this assumption is that these option bundles cannot be exactly replicated by
trading carbon permits. The introduction of such options indeed makes the markets more complete.
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for each i, i = 1, · · · , N

λ +
1

1 + r

[
−

(µi,1 − ai,1)
∑N

i=1(µi,1 − ai,1) + σ2
i,1 +

∑
j 6=i ρijσi,1σj,1

[
∑N

i=1(c−1
i,1 + θi)]2

− 1

2

[
∑N

i=1(µi,1 − ai,1)]2 +
∑N

i=1 σ
2
i,1 +

∑N
i=1

∑
j 6=i ρijσi,1σj,1

[
∑N

i=1(c−1
i,1 + θi)]2

+ (c−1
i,1 + θi)

[
∑N

i=1(µi,1 − ai,1)]2 +
∑N

i=1 σ
2
i,1

∑N
i=1

∑
j 6=i ρijσi,1σj,1

[
∑N

i=1(c−1
i,1 + θi)]3

]
= 0. (120)

By summing up (120) in i from 1 to N , we are able to obtain
∑N

i=1 θ
∗
i as:

N∑
i=1

θ∗i =

√
[
∑N

i=1(µi,1 − ai,1)]2 +
∑N

i=1 σ
2
i,1 +

∑N
i=1

∑
j 6=i ρijσi,1σj,1

2λ(1 + r)
−

N∑
i=1

c−1
i,1 . (121)

The Nash equilibrium (θ∗1, θ
∗
2, · · · , θ∗N) can be obtained by plugging (121) into the best

response functions (120). If such (θ∗1, θ
∗
2, · · · , θ∗N) are chosen, it is easy to compute

the discounted expectation of payoff:

1

1 + r
E[

1

2
P o2

1 ] ≡ λ, (122)

implying that the optimal choice of θi still ensures there is no arbitrage in the option

market. The chosen θi guarantees a partial equilibrium in the option market. In this

case,
∑M

j=1 γj needs to equal −
∑N

i=1 θ
∗
i to clear the option market. To ensure price

and volatility reduction,
∑M

j=1 γj is negative, meaning the unregulated sources sell

options aggregately.

For simplicity, we again consider the symmetric case to study the implications of

the options approach. We obtain the following:

P o
0 = c0(e0 − a0), (123)

E[P o
1 ] =

µ1 − a1

c−1
1 + θ

, V ar[P o
1 ] =

σ2
1

N(c−1
1 + θ)2

. (124)

Comparing equations (123) and (124) with equations (91) and (92), we note that

when θ > 0, both E[P o
1 ] and V ar[P o

1 ] decrease, meaning that, as was shown in the
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general case, call options can reduce the spot price level and the variance or volatility

simultaneously.

In this case, the total discounted cost in (117) is simplified as:

TCo = TCo
0 +

1

1 + r
E[TCo

1 ]

=
c0(e0 − a0)2

2
+ λθ +

1

1 + r

N(µ1 − a1)2 + σ2
1

2N(c−1
1 + θ)

, (125)

where r is interest rate. We also simplify equations (120) and (121) to get the explicit

form of the optimal amount θ∗ for each source,

θ∗ =

√
N(µ1 − a1)2 + σ2

1

2Nλ(1 + r)
− c−1

1 , (126)

which is a local minimum point.

Similarly, to ensure θ∗ > 0, equation (126) is rewritten as:

λ <
c1

1 + r

[
c1(µ1 − a1)2

2
+
c1σ

2
1

2N

]
=

c1E[TC1]

1 + r
, (127)

or

µ1 − a1 >

√
2λ(1 + r)− V ar[P1]

c1

, (128)

implying that the regulator needs to impose a sufficiently tight cap a1 such that the

emissions reductions are greater than the lower bound specified in equation (128), in

which case both the spot price and price volatility are controlled. In this case, the

regulated sources are the buyers in the option market, while the unregulated sources

are the sellers. In addition, we investigate the change of total discounted cost with

respect to the ability of emissions reductions. We compute dTCo∗/dc1 = λc−2
1 > 0,

meaning that the increase in ability of emissions reduction will definitely reduce the

total discounted cost of achieving the emission limits. But compared with equation

(94), as long as the regulator chooses θ∗ > 0 to reduce the price and price volatility

(equation (127) holds), we have dTCo∗/dc1 < dTC/dc1, meaning that the regulated
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sources do not have more incentive to invest in carbon abatement technology than in

the base case. However, comparing with equation (108), the regulated sources may

have more incentive to invest in the option case than in the banking case, if we have

dTCo∗/dc1 > dTCb∗/dc1, which implies

λ >
c1E[TCb∗

1 ]

1 + r
. (129)

Thus, we can write down the lower bound and upper bound of λ to ensure the benefits

of financial options:

c1E[TCb∗
1 ]

1 + r
< λ <

c1E[TC1]

1 + r
. (130)

In this case, regulated sources don’t have additional incentives to carbon abate-

ment technology investment over base case is because their risks in high permit prices

are partially hedged by entering option contracts. However, these allowance permits

coming from option contracts are created by unregulated sources, which could be

companies with carbon capture and sequestration technologies. They have incentives

to invest in carbon reduction technologies. With option trading, investment in car-

bon technology is reallocated among regulated and unregulated sources, i.e., partially

transferred from regulated sources to unregulated sources. In the long-run, the total

emission reduction targets will still be guaranteed.

Moreover, there are no extra emission allowances issued in a whole control period

after introducing financial options. Furthermore, as θ∗ minimizes TCo while the

total discounted cost in the base case equals TCo when setting θ = 0, we conclude

the that the total discounted cost of achieving the emission target is reduced by

introducing options compared with the base case. Of course, the existence of such an

option market requires new regulation. The cost for encouraging selling options, the

operations cost and transaction cost should also be taken into account. Finally, we

plug θ∗ into equation (124) and obtain:

E[P o∗
1 ] =

√
2Nλ(1 + r)(µ1 − a1)2

N(µ1 − a1)2 + σ2
1

, V ar[P o∗
1 ] =

2λ(1 + r)σ2
1

N(µ1 − a1)2 + σ2
1

. (131)
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Based on all the calculations above, we summarize the findings in the following

propositions.

Proposition 4.3 (Options only). For symmetric regulated emitters, if condition

(128) is satisfied, the regulated emitters would purchase financial options, i.e., the

optimal option portfolio position θ∗ is positive. This reduces both the expected spot

price and the price volatility.

Remark: If the marginal cost is not linear, but a general convex function, options

are able to reduce the price volatility more than banking does.

Proposition 4.4 (Options only). For symmetric regulated emitters, the optimal

choices of option portfolio θ∗, which minimizes the total discounted costs, ensure that

the price of the option portfolio λ equals 1
1+r

E[1
2
P o2

1 ], i.e., there is no arbitrage in the

option market.

Proposition 4.5 (Options only). For symmetric regulated emitters, if condition

(130) is satisfied, the change of total discounted cost with respect to the ability in

carbon abatement is less than in the base case but greater than in the banking case,

and the total discounted cost of achieving required emissions reductions is always less

than in the base case.

4.3.4 Financial Options in a Bankable System

From the analysis in the previous sections, we conclude that both banking and finan-

cial options are able to reduce price volatility in carbon permits markets. They also

reduce the total discounted cost of achieving the emission target without extra emis-

sion allowances issued in a whole control period. Due to the popularity of banking

in the recent cap-and-trade proposals, we are interested in studying the impact of

introducing financial options on price volatility when carbon permits are bankable.

Following the framework of the previous sections, we still assume there are only

two compliance times 0 and 1. Each regulated source i can bank or borrow allowances
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and trade bundles of options at time 0. The same notation is used in this two-

compliance-time model with both financial options and bankable permits. Then the

market clearing conditions for spot and options at time 0 are written as:

N∑
i=1

qi,0 =
N∑
i=1

[ei,0 − ai,0 +Bi,0],
N∑
i=1

θi = −
M∑
j=1

γj. (132)

The market clearing condition for spot at time 1 is written as:

N∑
i=1

[qi,1(ω) + θiP
ob
1 (ω)] =

N∑
i=1

[ei,1(ω)− ai,1 −Bi,0], ω ∈ Ω. (133)

By equation (85), we have the spot price at time 0 and time 1 as

P ob
0 =

∑N
i=1[ei,0 − ai,0 +Bi,0]∑N

i=1 c
−1
i,0

, P ob
1 (ω) =

∑N
i=1[ei,1(ω)− ai,1 −Bi,0]∑N

i=1[c−1
i,1 + θi]

. (134)

The total cost of achieving ai,0 and ai,1 are

TCob
i,0 = P ob

0 [(ei,0 − qi,0)− ai,0 +Bi,0] + λθi + Ci,0(qi,0), (135)

TCob
i,1(ω) = P ob

1 (ω)[(ei,1(ω)− qi,1(ω))− ai,1−Bi,0]− 1

2
θiP

ob2
1 (ω) +Ci,1(qi,1(ω)). (136)

The right panel of Figure 25 plots the market equilibrium at time 1 in this combined

case. It shows that the positive net banking B shifts the demand curve D1(ω) towards

the left, and at the same time, the positive net purchase of call options Θ tilts the

demand curve to Dob
1 (ω), i.e., increases the price elasticity of demand. The angle of

tilting is tan−1 Θ and it corresponds to ΘP ob
1 (ω) units of emission permits settled via

option purchase. This movement also results in the reduction in both the expected

equilibrium price and the price volatility.

In the symmetric case, we get the following results:

P ob
0 = c0(e0 − a0 +B0), (137)

E[P ob
1 ] =

µ1 − a1 −B0

c−1
1 + θ

, V ar[P ob
1 ] =

σ2
1

N(c−1
1 + θ)2

. (138)

Comparing equations (137) and (138) with equations (91) and (92), we note that

when B0 > 0 and θ > 0, P ob
0 increases and both E[P ob

1 ] and V ar[P ob
1 ] decrease.
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In this combined mechanism, even B0 < 0, i.e., the regulated sources choose to

borrow permits from future periods, their purchase of financial options may still

reduce both E[P ob
1 ] and V ar[P ob

1 ], meaning that introducing options is still effective

in reducing the spot price level and the variance or volatility simultaneously in a

banking environment.

The total discounted cost is simplified as:

TCob = TCob
0 +

1

1 + r
E[TCob

1 ]

=
c0(e0 − a0 +B0)2

2
+ λθ +

1

1 + r

N(µ1 − a1 −B0)2 + σ2
1

2N(c−1
1 + θ)

, (139)

where r is the interest rate. In this case, the optimal B∗0 and θ∗ for each source are

determined by solving the simplified equation system:

c0(e0 − a0 +B0)− 1

1 + r

µ1 − a1 −B0

c−1
1 + θ

= 0, (140)

and

λ− 1

1 + r

N(µ1 − a1 −B0)2 + σ2
1

2N(c−1
1 + θ)2

= 0. (141)

We recall that the regulator needs to impose a sufficiently tight cap a1 so that

B∗0 > 0 and θ∗ > 0 to control the spot price and price volatility in the banking

only or option only case. However, in this case, when both financial options and

banking exist, the regulator may choose a relatively looser cap such that B∗0 may be

negative, while the spot price and price volatility are still controlled. This suggests

that combining financial options with banking/borrowing is more flexible in poten-

tially allowing borrowing or choosing a cap while managing the permit price process.

In addition, we also have dTCob∗/dc1 = λc−2
1 > 0, indicating that these regulated

sources have at least the same incentive to invest in carbon abatement technologies

as in the option case. Furthermore, there are no extra emission allowances issued in

a whole control period after introducing financial options. Finally, we note that the

total discounted cost of achieving the emission target is further reduced by combining
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options and banking. Thus, this combined mechanism provides all the advantages of

banking and financial options.

4.4 Numerical Example

In this section, we develop a numerical example to illustrate the above mechanisms,

based on the U.S. carbon emissions profile. U.S. CO2 emissions in 2008 were about

6,000 million metric tons (Mt) [93]. Although climate regulation may not regulate

all CO2 emissions, for this example we work with 6,000 Mt. In the U.S. there are

about 3000 total electric utilities, although the roughly 200 investor-owned electric

utilities provide 40 percent of total electric generation. In addition, petroleum refiners

might under certain circumstances be regulated emitters, as well as industrial sources

of CO2 and other greenhouse gases. In a more detailed climate regulation scenario,

there might be several hundred large regulated sources and more than a thousand

smaller regulated sources. For development of a simple numerical example, we here

approximate the emission sources as 1000 equal-sized regulated emitters. Let the

number of regulated emitters be N = 1000, the initial business-as-usual emissions

for each emitter be e0 = 6 Mt CO2, and the permit allocations at the beginning

of the period be a0 = 5.9 Mt. A 15% reduction target over the modeled period,

which might be 10 years or more, would correspond to allowances at the end of the

period of a1 = 5.1 Mt. Let the expected business-as-usual emissions at the end of the

period be µ1 = 5.5 Mt, with a standard deviation σ1 = 0.5 Mt. EPA [92] estimates

an allowance price of about $11 per metric ton (t) for 2012, and with a 15% cut in

emissions allowances, estimates that the price would rise to about 23 $/t in 2027.

Accordingly, for the base case we let P0 = 11 $/t and E[P1] = 23 $/t. By equation

(91) and (92), we estimate c0 = 1.1 × 10−4 $/t2 and c1 = 0.6 × 10−4 $/t2. We set

the interest rate r = 0.02 and by equation (122), we estimate the price of a bundle of

options λ = $100. All the parameters used in this numerical example are summarized
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Table 14: Summary of Parameters in the Numerical Example

N e0 µ1 σ1 a0 a1

1000 6 Mt 5.5 Mt 0.5 Mt 5.9 Mt 5.1 Mt

c0 c1 P0(base) E[P1](base) r λ
1.1× 10−4 $/t2 0.6× 10−4 $/t2 11 $/t 23 $/t 0.02 $100

in Table 14.

For a system with combined banking and options, we solve (140) and (141) nu-

merically, and get the optimal banked quantity Bob∗
0 = 0.03 Mt for each emitter,

θob∗ = 8509 units and the total discounted cost for each regulated source TCob∗ =

$4.45 million. With the same parameters, we solve Bb∗
0 = 0.07 Mt for the banking

only case and θo∗ = 11361 units for the option only case. And the total discounted

costs for each regulated emitter under the base case, banking case and option case

are $5.26 million, $4.80 million and $4.49 million respectively. This illustrates that

the combination of banking and options offers the lowest cost to achieve the carbon

emissions limits. We show the total discounted cost for the entire system of N emit-

ters in Figure 26 for emission limits ranging from 5,050 to 5,150 Mt. The figure shows

that if the reductions target is 15% (at 5,100 Mt level), introducing financial options

provides greater cost savings than banking. The slight difference between the options

case and the combined options plus banking case shows the cost reductions mainly

come from option contracts rather than from banking.

Based on the above numbers, we show the performance of different approaches in

reducing price difference, price volatility and total discounted cost in Table 15. The

numbers in the brackets stand for the differences compared to the base case. We note

that bankable permits can reduce more price difference than financial options, and

that the combined approach is the best here in reducing price difference. Banking

does nothing to reduce price volatility; the financial options approach performs the
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Figure 26: Numerical Example of Optimal Total Cost for the Entire System of
Achieving Emissions Limits under Different Approaches

best in reducing volatility. The lowest total discounted cost of the entire system is

achieved in the combined case.

A comparison of spot prices, variances, total discounted costs and changes of total

discounted costs with respect to c1 in the base case, banking case, financial option

case, and combined case is provided in Table 16. The main findings are as follows. In

the banking case, the positive net banking makes the price difference between time 0

Table 15: Numerical Example of Performance of Different Price Management Ap-
proaches

Base Banking/Borrowing Financial Options Combined
P0,E[P1] ($/t) 11, 23 19.16, 19.54 11, 14.27 14.38, 14.67

Price difference: E[P1]− P0 ($/t) 12 0.38 (-11.62) 3.27 (-8.73) 0.29 (-11.71)
Price volatility ($/t) 0.95 0.95 (0.00) 0.56 (-0.39) 0.63 (-0.32)

Total discounted cost ($ billion) 5.26 4.80 (-0.46) 4.49 (-0.77) 4.45 (-0.81)
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Table 16: A Summary Comparison of Price Management Approaches

Base Banking/Borrowing
P0 c0(e0 − a0) c0(e0 − a0 +B0)

E[P1] c1(µ1 − a1) c1(µ1 − a1 −B0)

V ar[P1]
c21σ

2
1

N

c21σ
2
1

N

E[TC1] c1(µ1−a1)2

2
+

c1σ2
1

2N
c1(µ1−a1−B0)2

2
+

c1σ2
1

2N

TC c0(e0−a0)2

2
+ 1

1+r

[
c1(µ1−a1)2

2
+

c1σ2
1

2N

]
c0(e0−a0+B0)2

2
+ 1

1+r

[
c1(µ1−a1−B0)2

2
+

c1σ2
1

2N

]
dTC∗/dc1

1
1+r

[
(µ1−a1)2

2
+

σ2
1

2N

]
1

1+r

[
(µ1−a1−B∗0 )2

2
+

σ2
1

2N

]
Financial Options Combined

P0 c0(e0 − a0) c0(e0 − a0 +B0)

E[P1] µ1−a1

c−1
1 +θ

µ1−a1−B0

c−1
1 +θ

V ar[P1]
σ2

1

N(c−1
1 +θ)2

σ2
1

N(c−1
1 +θ)2

E[TC1]
N(µ1−a1)2+σ2

1

2N(c−1
1 +θ)

N(µ1−a1−B0)2+σ2
1

2N(c−1
1 +θ)

TC c0(e0−a0)2

2
+ λθ + 1

1+r

N(µ1−a1)2+σ2
1

2N(c−1
1 +θ)

c0(e0−a0+B0)2

2
+ λθ + 1

1+r

N(µ1−a1−B0)2+σ2
1

2N(c−1
1 +θ)

dTC∗/dc1 λc−2
1 λc−2

1

and time 1 smaller than the base case, but the variance or the volatility is unchanged.

The total discounted cost is lower than the base case, while the marginal cost with

respect to c1 is larger. In the financial options case, the positive net purchase of call

options makes both the price difference and variance smaller than the base case. The

total discounted cost is also reduced, while the marginal cost with respect to c1 is

larger than the base case. If we choose λ appropriately, we have lower total discounted

cost and marginal cost in the option case than in the banking case. Finally, in the

combined case, there is more flexibility to choose the amount of banking or borrowing

to reduce both the price difference and the variance. The combined case has the

lowest total discounted cost among the four schemes, providing the benefits of both

the simple banking case and the option case.
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4.5 Conclusion

In this chapter, we investigate the role of option contracts in managing the spot price

risk such as price volatility in the carbon emission permit market under a cap-and-

trade system. Through a two-compliance-time model, we show that with a tight cap

imposed by the regulator, the trading of bundles of call options can reduce both the

spot price level and the price volatility, regardless of whether banking is allowed in the

system or not4. In addition, option contracts enable regulators to achieve some other

important benefits simultaneously: providing incentives for the regulated emitters to

invest more in carbon abatement technologies given appropriate prices of options,

providing incentives for unregulated emission sources to develop carbon reduction

opportunities, and reducing the total discounted cost of achieving the emission target.

We also compare the option contracts mechanism with its alternatives: a safety

valve approach and a banking approach. While a price ceiling can indeed reduce

the price volatility in the spot market, it may result in more carbon emissions than

the desired cap level. Banking, when a tight emission cap is imposed, can stabilize

the expected price levels of carbon permits and reduce the total discounted cost of

achieving the emission cap. However, it does not necessarily reduce the volatility of

carbon price at any future time nor provides sufficient incentives for investments in

carbon abatement technologies.

Finally, we show when combining banking and financial options, all the advantages

of both approaches get kept. Moreover, it offers the regulator with more flexibility

in determining the desired emission target, and this target can be achieved at lower

cost. Although the introduction of such an option market requires new regulations and

4While it appears that the options bundles proposed in our approach have an impractical feature
of covering a continuum of strike prices, the insight of such financial instruments can reduce the
carbon permit price volatility through increasing the carbon permits’ demand elasticity remains
true when we consider options bundles with a set of properly chosen discrete strike price levels in a
practical design to approximate the theoretical ones.
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induces extra operations and transactions costs, we conclude that it is a potentially

promising market-based approach to reduce carbon permit price volatility and manage

the emission market. The design of such an option market requires careful study and

can be left for future work.
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CHAPTER V

CONCLUSION

The electric power industry in the United States is being restructured and several

major trends are happening towards the future electricity markets. These include

establishing cap-and-trade systems to reduce greenhouse-gas emissions, continuous

integration of renewable energy resources, and adoption of smart grid technologies.

Various types of risks associated with the newly established emission markets as

well as the traditional electricity markets with emerging elements present significant

new challenges to all industry participants. On the LSE side, the uncertainty and

intermittency of renewable energy resources drive the LSEs to enhance demand-side

management, which poses challenges in managing volumetric risks as well as the

positively correlated price risks in the electricity markets. On the generation side, in

the carbon emission markets, permit prices turn out to be volatile, bringing additional

uncertainties to conventional fossil-fuel generators’ operational costs.

This dissertation is dedicated to study the design and utilization of financial con-

tracts and pricing mechanisms for managing the demand/price risks in electricity

markets and the price risks in carbon emission markets from different perspectives.

We address the issues pertaining to the efficient computational algorithms for pric-

ing complex financial options which include many structured energy financial con-

tracts and the design of economic mechanisms for managing the risks associated

with increasing penetration of renewable energy resources and with trading emis-

sion allowance permits in the restructured electric power industry. To address the

computational challenges arising from pricing exotic energy derivatives designed for

various hedging purposes in electricity markets, we develop a generic computational
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framework based on a fast transform method, which attains asymptotically optimal

computational complexity and exponential convergence. For the purpose of absorb-

ing the variability and uncertainties of renewable energy resources in a smart grid,

we propose an incentive-based contract design for thermostatically controlled loads

(TCLs) to encourage end users participation as a source of DR. Finally, we propose

a market-based approach to mitigate the emission permit price risks faced by gener-

ation companies in a cap-and-trade system. Through a stylized economic model, we

illustrate that the trading of properly designed financial options on emission permits

reduces permit price volatility and the total emission reduction cost.

The results of this dissertation are summarized as follows. In the first part, we

propose a fast algorithm to compute a convolution which reduces the computational

complexity from O(N logN) to asymptotically O(N), where N is the number of dis-

cretized price levels in computing the convolution. The computational complexity

of our method in pricing path-dependent options and Bermudan options is O(MN),

where M is the number of monitoring/exercise dates. The algorithm is general to a

broad class of stochastic electricity price models, including AJD processes and Lévy

processes, because it takes the characteristic function of the underlying electricity

price distribution as an input, which is known in closed-form for such price models.

The proposed fast convolution algorithm is applicable to non-uniform grids instead

of uniform grids in FFT. This feature allows us to take advantage of the double-

exponential integration formula to speed up the rate of convergence in option pricing.

Theoretically, the error of our method decreases faster than any negative power of

N . Our computational framework can also handle lookback and Asian options due

to the use of non-uniform grids. We also extend the fast convolution algorithm to

two dimensions in order to price spread options with path-dependent and early exer-

cise features. Numerical examples show the fast convolution method is flexible and

efficient pricing different types of exotic options in electricity markets.
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In the second part, we propose an incentive-based demand response contract de-

sign for TCLs to absorb the variability of renewable energy production in a smart

grid. Through the analysis, we show this contract design mechanism is a very flexible

and effective way for LSEs to mitigate the variability of renewable energy resources

in the smart grid environment. 1) It greatly increases the availability of customers’

TCLs to LSEs, which is essential to reduce the loads as well as the costs during ex-

treme events, e.g., wind power production is very low. LSEs can easily change the

subscription distribution by means of varying the contract parameters. Or they can

add extra contract offerings to exploit more potentials of accessing TCLs. 2) LSEs

can infer customer types and estimate the subscription distribution to an IC and IR

pricing scheme. 3) The local optimal rebate levels suggest LSEs to encourage more

customers to choose large set-points manipulation ranges. This creates more demand

flexibility and lower costs of integrating renewables. 4) This mechanism also obtains a

90% confidence cut for LSEs to understand the NRMSE of tracking renewable signals

among all scenarios. 5) The total cost is more sensitive to high rebate levels, but the

customers subscription is more sensitive to low rebate levels. As a result, LSEs need

to be careful when varying the contract parameters. However, the optimal contract

design depends on the choice of customers’ utility functions and the distribution of

customer types. The global optimal contract parameters are also hard to find. We

left all these issues in a future study.

In the thrid part, we investigate the role of option contracts in managing the

spot price risk such as price volatility in the carbon emission permit market under a

cap-and-trade system. Through a two-compliance-time model, we show that with a

tight cap imposed by the regulator, the trading of bundles of call options can reduce

both the spot price level and the price volatility, regardless of whether banking is

allowed in the system or not. In addition, option contracts enable regulators to

achieve some other important benefits simultaneously: providing incentives for the
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regulated emitters to invest more in carbon abatement technologies given appropriate

prices of options, providing incentives for unregulated emission sources to develop

carbon reduction opportunities, and reducing the total discounted cost of achieving

the emission target. We also show when combining banking and financial options, all

the advantages of both approaches get kept. Moreover, it offers the regulator with

more flexibility in determining the desired emission target, and this target can be

achieved at lower cost. Although the introduction of such an option market requires

new regulations and induces extra operations and transactions costs, we conclude that

it is a potentially promising market-based approach to reduce carbon permit price

volatility and manage the emission market. The design of such an option market

requires careful study and can be left for future work.
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APPENDIX A

DERIVATION OF THE CHARACTERISTIC FUNCTION

OF A 2D AJD PROCESS

We derive the characteristic function of the following 2D AJD process used in Chapter

2:

d

 xt

yt

 =

 κ1(θ1 − xt)

κ2(θ2 − yt)

 dt+

 σ1 0

ρσ2

√
1− ρ2σ2

 dWt +
2∑
i=1

∆Zi
t . (142)

Its conditional characteristic function at T given xt, yt is given in the following

form (see [34]):

φ(u, v;xt, yt) = exp(α(t, u, v) + β1(t, u)xt + β2(t, v)yt) (143)

where

β1(t, u) = iu exp(−κ1(T − t))

β2(t, v) = iv exp(−κ2(T − t))

α(t, u, v) =
∫ T
t

([κ1θ1β1(s, u) + 1
2
σ2

1β
2
1(s, u)]

+[κ2θ2β2(s, v) + 1
2
σ2

2β
2
2(s, v)]

+ρσ1σ2β1(s, u)β2(s, v)

+
2∑
j=1

λj(φj(β, s)− 1))ds

(144)

and φj(β, s) = 1
1−µjβ1

, j = 1, 2.

The integrand of α(t, u, v) can be divided into five parts:

κ1θ1β1(s, u) +
1

2
σ2

1β
2
1(s, u)

κ2θ2β2(s, v) +
1

2
σ2

2β
2
2(s, v)
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ρσ1σ2β1(s, u)β2(s, v)

λ1(
1

1− µ1β1

− 1) =
λ1µ1β1

1− µ1β1

λ2(
1

1− µ2β1

− 1) =
λ2µ2β1

1− µ2β1

We compute the integral for each of them:

1. The first part:

∫ T

t

κ1θ1iue
−κ1(T−s) − 1

2
σ2

1u
2e−2κ1(T−s)ds

= κ1θ1iu

∫ T

t

e−κ1(T−s)ds− σ2
1u

2

2

∫ T

t

e−2κ1(T−s)ds

= (θ1 − θ1e
−κ1(T−t))iu− (

σ2
1

4κ1

− σ2
1

4κ1

e−2κ1(T−t))u2

2. The second part:

∫ T

t

κ2θ2ive
−κ2(T−s) − 1

2
σ2

2v
2e−2κ2(T−s)ds

= κ2θ2iv

∫ T

t

e−κ2(T−s)ds− σ2
2v

2

2

∫ T

t

e−2κ2(T−s)ds

= (θ2 − θ2e
−κ2(T−t))iv − (

σ2
2

4κ2

− σ2
2

4κ2

e−2κ2(T−t))v2

3. The third part:

∫ T

t

ρσ1σ2β1(s, u)β2(s, v)ds = −
∫ T

t

ρσ1σ2uve
−(κ1+κ2)(T−s)ds

= −(
ρσ1σ2

κ1 + κ2

− ρσ1σ2

κ1 + κ2

e−(κ1+κ2)(T−t))uv

4. The forth part:

∫ T

t

λ1µ1β1(s, u)

1− λ1µ1β1(s, u)
ds =

∫ T

t

λ1µ1e
−κ1(T−s)iu

1− λ1µ1e−κ1(T−s)iu
ds

=
λ1

κ1

ln(1− µ1iue
−κ1(T−t))− λ1

κ1

ln(1− µ1iu)
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5. The fifth part:

∫ T

t

λ2µ2β1(s, u)

1− λ2µ2β1(s, u)
ds =

∫ T

t

λ2µ2e
−κ1(T−s)iu

1− λ2µ2e−κ1(T−s)iu
ds

=
λ2

κ1

ln(1− µ2iue
−κ1(T−t))− λ2

κ1

ln(1− µ2 − iu)

Putting the above parts into (143), the final form of the conditional charatertistic

function of the AJD process (54) is given by:

φ(u, v;xt, yt) = e−Au
2−Bv2−Cuv+iDu+iEv+H(u)

= (
1− iH1u

1− iH2u
)
λ1
κ1 (

1− iH3u

1− iH4u
)
λ2
κ1 e−Au

2−Bv2−Cuv+iDu+iEv, (145)

where

A =
σ2

1

4κ1

− σ2
1

4κ1

e−2κ1(T−t),

B =
σ2

2

4κ2

− σ2
2

4κ2

e−2κ2(T−t),

C =
ρσ1σ2

κ1 + κ2

(1− e−(κ1+κ2)(T−t))

D = θ1 + (xt − θ1)e−κ1(T−t),

E = θ2 + (yt − θ2)e−κ2(T−t),

H1 = µ1e
−κ1(T−t), H2 = µ1, H3 = µ2e

−κ1(T−t), H4 = µ2.
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APPENDIX B

NOTATIONS AND PARAMETERS IN CHAPTER III

B.1 Notations

Contract and Population Parameters:

N : Number of customers
m: Number of contract offerings
n: Number of initial set-points
sm×1: Vector of rebates, s = (s1, s2, · · · , sm)
ūm×1: Vector of set-point adjustment limits, ū = (ū1, ū2, · · · , ūm)
um×1: Vector of set-point controller, u = (u1, u2, · · · , um)
Nm×1: Customers’ subscription to contract pair (s, ū), N = (N1, N2, · · · , Nm)
θ0: Initial set-points temperature, θ0 = (θ1

0, θ
2
0, · · · , θn0 )

Nj Number of customers subscribing to contract j
Nij Number of customers with initial set-point θi0 subscribing to contract j

Thermostats Parameters:

θa: Ambient temperature
C: Thermal capacitance
R: Thermal resistance
P : TCL’s rated power
θi+: Temperature upper bound of group i
δ: Dead-band width
η: Electrical efficiency
σ: Damping coefficient
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T ic0: Total cooling time of group i
T ih0: Total heating time of group i

State Space and Control Parameters:

xij: States of thermostats with initial temperature θi0 and subscribing to
contract j

yij: Loads of customers with initial temperature θi0 and subscribing to
contract j

Ai,Bij,C0,Dj: States space coefficients of xij and yij
x: States of thermostats for all groups
y(yt): Aggregated controlled loads at time t
A,B,C,D: States space coefficients of x and y
pt: Wholesale electricity price at time t
rt: Reference renewable power outputs at time t
R: Weights on control costs, R = diag(rws

2
1, rws

2
2, · · · , rws2

m)
rw: Weight coefficient

Customers’ Preferences:

α: Customer’s type
F (α), f(α): Distribution function and density function of type α
V (s, ū;α): Utility function of type α customer
U(α): Equilibrium utility function of type α customer
d(ū, α): Inverse discomfort function
D(ū, α): Aggregated discomfort
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B.2 Parameters and Matrices

The state space coefficients in (59)-(60) are given as follows:

Ai =

 −2σ −ωi
σ2+ω2

i

ωi
0

, Bij =

 ωi∆ij

0

, C0 =

[
−1 0

]
, and Dj = −dj.

∆ij =
5
√

15C(θa − θi+)(PR− θa + θi+)

η(P 2R2 + 3PR(θa − θi+)− 3(θa − θi+)2)3/2
·

(3PR− θa + θi+)Nij

(T ic0 + T ih0)
,

ωi =
2
√

15C(θa − θi+)(PR− θa + θi+)

CRδ
√
P 2R2 + 3PR(θa − θi+)− 3(θa − θi+)2

,

dj =
Nj

ηR
.

The state space coefficients to equation (61)-(62) are given as follows:

x =

[
x1 · · · xn

]T
2mn×1

,xi =

[
xi1 · · · xim

]T
2m×1

,u =


u1

...

um


m×1

,

A = diag

[ m︷ ︸︸ ︷
A1 · · ·A1 · · ·

m︷ ︸︸ ︷
An · · ·An

]
2mn×2mn

,

B =

[
B1 · · · Bn

]T
2mn×m

,Bi = diag

[
Bi1 · · · Bim

]
2m×m

,

C =

[
2mn︷ ︸︸ ︷

C0 · · ·C0

]
1×2mn

,

D =

[
−d1 · · · −dm

]
1×m

.

By equation (67)-(68), we rewrite the linear system as:

yk+1 = CAxk + CBuk + Duk+1;

yk+2 = CA2xk + CABuk + CBuk+1 + Duk+2;

· · ·

yk+Np = CANpxk + CANp−1Buk + · · ·+ CANp−NcBuk+Nc−1 + Duk+Np .
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Let Yk = [yk+1, yk+2, · · · , yk+Np ]
T and Uk = [uk,uk+1, · · · ,uk+Nc−1,uk+Np ]T, we

have

Yk = Fxk + GUk,

where

F =



CA

CA2

...

CANp


,G =



CB D

CAB CB D

· · · · · · · · · . . .

CANp−1B CANp−2B CANp−NcB · · · D


.

This control problem (70)-(71) is equivalent to the following:

J = min
u

∫ T

0

ptztdt (146)

s.t. −ū ≤ u ≤ ū, (147)

zt ≥ yt − rt, (148)

zt ≥ 0. (149)

In the discrete system, we plug in Yk = Fxk + GUk, then the above formulation can

be rewritten as the following linear programming:

Jk = min
Z,U

fTk Zk

s.t. H[Zk,Uk]T ≤ h,

where fTk = (pk∆t, · · · pk+Np∆t)1×Np ,

H =


−I G

−I 0

0 M


[2Np+2m(Nc+1)]×[Np+m(Nc+1)]

,h =


Sk − Fxk

0

m0


[2Np+2m(Nc+1)]×1

,

Sk = rk1Np×1,M =

 Im(Nc+1)×m(Nc+1)

−Im(Nc+1)×m(Nc+1)


,
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m0 = Lūm×1,L =


Im×m

...

Im×m


2m(Nc+1)×m

.
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APPENDIX C

DERIVATION OF PROPOSITIONS IN CHAPTER III

Derivation of Proposition 3.2:

By Corollary 3.1, for j = 0, 1, · · · ,m − 1, sj − sj+1 = D(ūj, αj) − D(ūj+1, αj).

Differentiating it on both sides gives

d(sj − sj+1) =

[
∂D(ūj, αj)

∂α
− ∂D(ūj+1, αj)

∂α

]
dαj

= [E(ūj, αj)− E(ūj+1, αj)] dαj.

Thus, we have

dαj
dsj

= − 1

E(ūj+1, αj)− E(ūj, αj)
,

dαj
dsj+1

=
1

E(ūj+1, αj)− E(ūj, αj)
,

which follows for any j = 1, 2, · · · ,m,

dαj
dsj

= − 1

E(ūj+1, αj)− E(ūj, αj)
,

dαj−1

dsj
=

1

E(ūj, αj−1)− E(ūj−1, αj−1)
.

Derivation of Proposition 3.3:

The number of customers to contract j is Nj = N
∫ αj−1

αj
f(α)dα, j = 1, 2, · · · ,m−

1. N0 = N
∫ +∞
α0

f(α)dα, and Nm = N
∫ αm−1

−∞ f(α)dα.

As s0 is always 0, we analyze how sj change will affect the subscription, for

j = 1, 2, · · · ,m.

For sm, it only affects the number of customers to contract m and m− 1, Nm and
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Nm−1.

dNm

dsm
= Nf(αm−1)

dαm−1

dsm

= N

[
f(αm−1)

E(ūm, αm−1)− E(ūm−1, αm−1)

]
.

dNm−1

dsm
= −Nf(αm−1)

dαm−1

dsm

= −N
[

f(αm−1)

E(ūm, αm−1)− E(ūm−1, αm−1)

]
.

For sj, j = 1, 2, · · · ,m− 1,

dNj

dsj
= N

[
f(αj−1)

dαj−1

dsj
− f(αj)

dαj
dsj

]
= N

[
f(αj−1)

E(ūj, αj−1)− E(ūj−1, αj−1)
+

f(αj)

E(ūj+1, αj)− E(ūj, αj)

]
.

dNj−1

dsj
= −Nf(αj−1)

dαj−1

dsj

= −N
[

f(αj−1)

E(ūj, αj−1)− E(ūj−1, αj−1)

]
.

dNj+1

dsj
= Nf(αj)

dαj
dsj

= −N
[

f(αj)

E(ūj+1, αj)− E(ūj, αj)

]
.
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